1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 #include <linux/pgalloc_tag.h> 42 43 #include <asm/tlb.h> 44 #include <asm/pgalloc.h> 45 #include "internal.h" 46 #include "swap.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/thp.h> 50 51 /* 52 * By default, transparent hugepage support is disabled in order to avoid 53 * risking an increased memory footprint for applications that are not 54 * guaranteed to benefit from it. When transparent hugepage support is 55 * enabled, it is for all mappings, and khugepaged scans all mappings. 56 * Defrag is invoked by khugepaged hugepage allocations and by page faults 57 * for all hugepage allocations. 58 */ 59 unsigned long transparent_hugepage_flags __read_mostly = 60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 61 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 62 #endif 63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 65 #endif 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 69 70 static struct shrinker *deferred_split_shrinker; 71 static unsigned long deferred_split_count(struct shrinker *shrink, 72 struct shrink_control *sc); 73 static unsigned long deferred_split_scan(struct shrinker *shrink, 74 struct shrink_control *sc); 75 76 static atomic_t huge_zero_refcount; 77 struct folio *huge_zero_folio __read_mostly; 78 unsigned long huge_zero_pfn __read_mostly = ~0UL; 79 unsigned long huge_anon_orders_always __read_mostly; 80 unsigned long huge_anon_orders_madvise __read_mostly; 81 unsigned long huge_anon_orders_inherit __read_mostly; 82 83 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 84 unsigned long vm_flags, 85 unsigned long tva_flags, 86 unsigned long orders) 87 { 88 bool smaps = tva_flags & TVA_SMAPS; 89 bool in_pf = tva_flags & TVA_IN_PF; 90 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 91 /* Check the intersection of requested and supported orders. */ 92 orders &= vma_is_anonymous(vma) ? 93 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 94 if (!orders) 95 return 0; 96 97 if (!vma->vm_mm) /* vdso */ 98 return 0; 99 100 /* 101 * Explicitly disabled through madvise or prctl, or some 102 * architectures may disable THP for some mappings, for 103 * example, s390 kvm. 104 * */ 105 if ((vm_flags & VM_NOHUGEPAGE) || 106 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 107 return 0; 108 /* 109 * If the hardware/firmware marked hugepage support disabled. 110 */ 111 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 112 return 0; 113 114 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 115 if (vma_is_dax(vma)) 116 return in_pf ? orders : 0; 117 118 /* 119 * khugepaged special VMA and hugetlb VMA. 120 * Must be checked after dax since some dax mappings may have 121 * VM_MIXEDMAP set. 122 */ 123 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 124 return 0; 125 126 /* 127 * Check alignment for file vma and size for both file and anon vma by 128 * filtering out the unsuitable orders. 129 * 130 * Skip the check for page fault. Huge fault does the check in fault 131 * handlers. 132 */ 133 if (!in_pf) { 134 int order = highest_order(orders); 135 unsigned long addr; 136 137 while (orders) { 138 addr = vma->vm_end - (PAGE_SIZE << order); 139 if (thp_vma_suitable_order(vma, addr, order)) 140 break; 141 order = next_order(&orders, order); 142 } 143 144 if (!orders) 145 return 0; 146 } 147 148 /* 149 * Enabled via shmem mount options or sysfs settings. 150 * Must be done before hugepage flags check since shmem has its 151 * own flags. 152 */ 153 if (!in_pf && shmem_file(vma->vm_file)) 154 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 155 !enforce_sysfs, vma->vm_mm, vm_flags) 156 ? orders : 0; 157 158 if (!vma_is_anonymous(vma)) { 159 /* 160 * Enforce sysfs THP requirements as necessary. Anonymous vmas 161 * were already handled in thp_vma_allowable_orders(). 162 */ 163 if (enforce_sysfs && 164 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 165 !hugepage_global_always()))) 166 return 0; 167 168 /* 169 * Trust that ->huge_fault() handlers know what they are doing 170 * in fault path. 171 */ 172 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 173 return orders; 174 /* Only regular file is valid in collapse path */ 175 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 176 return orders; 177 return 0; 178 } 179 180 if (vma_is_temporary_stack(vma)) 181 return 0; 182 183 /* 184 * THPeligible bit of smaps should show 1 for proper VMAs even 185 * though anon_vma is not initialized yet. 186 * 187 * Allow page fault since anon_vma may be not initialized until 188 * the first page fault. 189 */ 190 if (!vma->anon_vma) 191 return (smaps || in_pf) ? orders : 0; 192 193 return orders; 194 } 195 196 static bool get_huge_zero_page(void) 197 { 198 struct folio *zero_folio; 199 retry: 200 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 201 return true; 202 203 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 204 HPAGE_PMD_ORDER); 205 if (!zero_folio) { 206 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 207 return false; 208 } 209 preempt_disable(); 210 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 211 preempt_enable(); 212 folio_put(zero_folio); 213 goto retry; 214 } 215 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 216 217 /* We take additional reference here. It will be put back by shrinker */ 218 atomic_set(&huge_zero_refcount, 2); 219 preempt_enable(); 220 count_vm_event(THP_ZERO_PAGE_ALLOC); 221 return true; 222 } 223 224 static void put_huge_zero_page(void) 225 { 226 /* 227 * Counter should never go to zero here. Only shrinker can put 228 * last reference. 229 */ 230 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 231 } 232 233 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 234 { 235 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 236 return READ_ONCE(huge_zero_folio); 237 238 if (!get_huge_zero_page()) 239 return NULL; 240 241 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 242 put_huge_zero_page(); 243 244 return READ_ONCE(huge_zero_folio); 245 } 246 247 void mm_put_huge_zero_folio(struct mm_struct *mm) 248 { 249 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 250 put_huge_zero_page(); 251 } 252 253 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 254 struct shrink_control *sc) 255 { 256 /* we can free zero page only if last reference remains */ 257 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 258 } 259 260 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 261 struct shrink_control *sc) 262 { 263 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 264 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 265 BUG_ON(zero_folio == NULL); 266 WRITE_ONCE(huge_zero_pfn, ~0UL); 267 folio_put(zero_folio); 268 return HPAGE_PMD_NR; 269 } 270 271 return 0; 272 } 273 274 static struct shrinker *huge_zero_page_shrinker; 275 276 #ifdef CONFIG_SYSFS 277 static ssize_t enabled_show(struct kobject *kobj, 278 struct kobj_attribute *attr, char *buf) 279 { 280 const char *output; 281 282 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 283 output = "[always] madvise never"; 284 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 285 &transparent_hugepage_flags)) 286 output = "always [madvise] never"; 287 else 288 output = "always madvise [never]"; 289 290 return sysfs_emit(buf, "%s\n", output); 291 } 292 293 static ssize_t enabled_store(struct kobject *kobj, 294 struct kobj_attribute *attr, 295 const char *buf, size_t count) 296 { 297 ssize_t ret = count; 298 299 if (sysfs_streq(buf, "always")) { 300 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 301 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 302 } else if (sysfs_streq(buf, "madvise")) { 303 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 304 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 305 } else if (sysfs_streq(buf, "never")) { 306 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 307 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 308 } else 309 ret = -EINVAL; 310 311 if (ret > 0) { 312 int err = start_stop_khugepaged(); 313 if (err) 314 ret = err; 315 } 316 return ret; 317 } 318 319 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 320 321 ssize_t single_hugepage_flag_show(struct kobject *kobj, 322 struct kobj_attribute *attr, char *buf, 323 enum transparent_hugepage_flag flag) 324 { 325 return sysfs_emit(buf, "%d\n", 326 !!test_bit(flag, &transparent_hugepage_flags)); 327 } 328 329 ssize_t single_hugepage_flag_store(struct kobject *kobj, 330 struct kobj_attribute *attr, 331 const char *buf, size_t count, 332 enum transparent_hugepage_flag flag) 333 { 334 unsigned long value; 335 int ret; 336 337 ret = kstrtoul(buf, 10, &value); 338 if (ret < 0) 339 return ret; 340 if (value > 1) 341 return -EINVAL; 342 343 if (value) 344 set_bit(flag, &transparent_hugepage_flags); 345 else 346 clear_bit(flag, &transparent_hugepage_flags); 347 348 return count; 349 } 350 351 static ssize_t defrag_show(struct kobject *kobj, 352 struct kobj_attribute *attr, char *buf) 353 { 354 const char *output; 355 356 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 357 &transparent_hugepage_flags)) 358 output = "[always] defer defer+madvise madvise never"; 359 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 360 &transparent_hugepage_flags)) 361 output = "always [defer] defer+madvise madvise never"; 362 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 363 &transparent_hugepage_flags)) 364 output = "always defer [defer+madvise] madvise never"; 365 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 366 &transparent_hugepage_flags)) 367 output = "always defer defer+madvise [madvise] never"; 368 else 369 output = "always defer defer+madvise madvise [never]"; 370 371 return sysfs_emit(buf, "%s\n", output); 372 } 373 374 static ssize_t defrag_store(struct kobject *kobj, 375 struct kobj_attribute *attr, 376 const char *buf, size_t count) 377 { 378 if (sysfs_streq(buf, "always")) { 379 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 382 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 383 } else if (sysfs_streq(buf, "defer+madvise")) { 384 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 387 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 388 } else if (sysfs_streq(buf, "defer")) { 389 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 392 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 393 } else if (sysfs_streq(buf, "madvise")) { 394 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 397 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 398 } else if (sysfs_streq(buf, "never")) { 399 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 403 } else 404 return -EINVAL; 405 406 return count; 407 } 408 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 409 410 static ssize_t use_zero_page_show(struct kobject *kobj, 411 struct kobj_attribute *attr, char *buf) 412 { 413 return single_hugepage_flag_show(kobj, attr, buf, 414 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 415 } 416 static ssize_t use_zero_page_store(struct kobject *kobj, 417 struct kobj_attribute *attr, const char *buf, size_t count) 418 { 419 return single_hugepage_flag_store(kobj, attr, buf, count, 420 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 421 } 422 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 423 424 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 425 struct kobj_attribute *attr, char *buf) 426 { 427 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 428 } 429 static struct kobj_attribute hpage_pmd_size_attr = 430 __ATTR_RO(hpage_pmd_size); 431 432 static struct attribute *hugepage_attr[] = { 433 &enabled_attr.attr, 434 &defrag_attr.attr, 435 &use_zero_page_attr.attr, 436 &hpage_pmd_size_attr.attr, 437 #ifdef CONFIG_SHMEM 438 &shmem_enabled_attr.attr, 439 #endif 440 NULL, 441 }; 442 443 static const struct attribute_group hugepage_attr_group = { 444 .attrs = hugepage_attr, 445 }; 446 447 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 448 static void thpsize_release(struct kobject *kobj); 449 static DEFINE_SPINLOCK(huge_anon_orders_lock); 450 static LIST_HEAD(thpsize_list); 451 452 struct thpsize { 453 struct kobject kobj; 454 struct list_head node; 455 int order; 456 }; 457 458 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 459 460 static ssize_t thpsize_enabled_show(struct kobject *kobj, 461 struct kobj_attribute *attr, char *buf) 462 { 463 int order = to_thpsize(kobj)->order; 464 const char *output; 465 466 if (test_bit(order, &huge_anon_orders_always)) 467 output = "[always] inherit madvise never"; 468 else if (test_bit(order, &huge_anon_orders_inherit)) 469 output = "always [inherit] madvise never"; 470 else if (test_bit(order, &huge_anon_orders_madvise)) 471 output = "always inherit [madvise] never"; 472 else 473 output = "always inherit madvise [never]"; 474 475 return sysfs_emit(buf, "%s\n", output); 476 } 477 478 static ssize_t thpsize_enabled_store(struct kobject *kobj, 479 struct kobj_attribute *attr, 480 const char *buf, size_t count) 481 { 482 int order = to_thpsize(kobj)->order; 483 ssize_t ret = count; 484 485 if (sysfs_streq(buf, "always")) { 486 spin_lock(&huge_anon_orders_lock); 487 clear_bit(order, &huge_anon_orders_inherit); 488 clear_bit(order, &huge_anon_orders_madvise); 489 set_bit(order, &huge_anon_orders_always); 490 spin_unlock(&huge_anon_orders_lock); 491 } else if (sysfs_streq(buf, "inherit")) { 492 spin_lock(&huge_anon_orders_lock); 493 clear_bit(order, &huge_anon_orders_always); 494 clear_bit(order, &huge_anon_orders_madvise); 495 set_bit(order, &huge_anon_orders_inherit); 496 spin_unlock(&huge_anon_orders_lock); 497 } else if (sysfs_streq(buf, "madvise")) { 498 spin_lock(&huge_anon_orders_lock); 499 clear_bit(order, &huge_anon_orders_always); 500 clear_bit(order, &huge_anon_orders_inherit); 501 set_bit(order, &huge_anon_orders_madvise); 502 spin_unlock(&huge_anon_orders_lock); 503 } else if (sysfs_streq(buf, "never")) { 504 spin_lock(&huge_anon_orders_lock); 505 clear_bit(order, &huge_anon_orders_always); 506 clear_bit(order, &huge_anon_orders_inherit); 507 clear_bit(order, &huge_anon_orders_madvise); 508 spin_unlock(&huge_anon_orders_lock); 509 } else 510 ret = -EINVAL; 511 512 return ret; 513 } 514 515 static struct kobj_attribute thpsize_enabled_attr = 516 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 517 518 static struct attribute *thpsize_attrs[] = { 519 &thpsize_enabled_attr.attr, 520 NULL, 521 }; 522 523 static const struct attribute_group thpsize_attr_group = { 524 .attrs = thpsize_attrs, 525 }; 526 527 static const struct kobj_type thpsize_ktype = { 528 .release = &thpsize_release, 529 .sysfs_ops = &kobj_sysfs_ops, 530 }; 531 532 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 533 534 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 535 { 536 unsigned long sum = 0; 537 int cpu; 538 539 for_each_possible_cpu(cpu) { 540 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 541 542 sum += this->stats[order][item]; 543 } 544 545 return sum; 546 } 547 548 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 549 static ssize_t _name##_show(struct kobject *kobj, \ 550 struct kobj_attribute *attr, char *buf) \ 551 { \ 552 int order = to_thpsize(kobj)->order; \ 553 \ 554 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 555 } \ 556 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 557 558 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 559 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 560 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 561 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 562 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 563 564 static struct attribute *stats_attrs[] = { 565 &anon_fault_alloc_attr.attr, 566 &anon_fault_fallback_attr.attr, 567 &anon_fault_fallback_charge_attr.attr, 568 &swpout_attr.attr, 569 &swpout_fallback_attr.attr, 570 NULL, 571 }; 572 573 static struct attribute_group stats_attr_group = { 574 .name = "stats", 575 .attrs = stats_attrs, 576 }; 577 578 static struct thpsize *thpsize_create(int order, struct kobject *parent) 579 { 580 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 581 struct thpsize *thpsize; 582 int ret; 583 584 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 585 if (!thpsize) 586 return ERR_PTR(-ENOMEM); 587 588 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 589 "hugepages-%lukB", size); 590 if (ret) { 591 kfree(thpsize); 592 return ERR_PTR(ret); 593 } 594 595 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 596 if (ret) { 597 kobject_put(&thpsize->kobj); 598 return ERR_PTR(ret); 599 } 600 601 ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group); 602 if (ret) { 603 kobject_put(&thpsize->kobj); 604 return ERR_PTR(ret); 605 } 606 607 thpsize->order = order; 608 return thpsize; 609 } 610 611 static void thpsize_release(struct kobject *kobj) 612 { 613 kfree(to_thpsize(kobj)); 614 } 615 616 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 617 { 618 int err; 619 struct thpsize *thpsize; 620 unsigned long orders; 621 int order; 622 623 /* 624 * Default to setting PMD-sized THP to inherit the global setting and 625 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 626 * constant so we have to do this here. 627 */ 628 huge_anon_orders_inherit = BIT(PMD_ORDER); 629 630 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 631 if (unlikely(!*hugepage_kobj)) { 632 pr_err("failed to create transparent hugepage kobject\n"); 633 return -ENOMEM; 634 } 635 636 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 637 if (err) { 638 pr_err("failed to register transparent hugepage group\n"); 639 goto delete_obj; 640 } 641 642 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 643 if (err) { 644 pr_err("failed to register transparent hugepage group\n"); 645 goto remove_hp_group; 646 } 647 648 orders = THP_ORDERS_ALL_ANON; 649 order = highest_order(orders); 650 while (orders) { 651 thpsize = thpsize_create(order, *hugepage_kobj); 652 if (IS_ERR(thpsize)) { 653 pr_err("failed to create thpsize for order %d\n", order); 654 err = PTR_ERR(thpsize); 655 goto remove_all; 656 } 657 list_add(&thpsize->node, &thpsize_list); 658 order = next_order(&orders, order); 659 } 660 661 return 0; 662 663 remove_all: 664 hugepage_exit_sysfs(*hugepage_kobj); 665 return err; 666 remove_hp_group: 667 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 668 delete_obj: 669 kobject_put(*hugepage_kobj); 670 return err; 671 } 672 673 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 674 { 675 struct thpsize *thpsize, *tmp; 676 677 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 678 list_del(&thpsize->node); 679 kobject_put(&thpsize->kobj); 680 } 681 682 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 683 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 684 kobject_put(hugepage_kobj); 685 } 686 #else 687 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 688 { 689 return 0; 690 } 691 692 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 693 { 694 } 695 #endif /* CONFIG_SYSFS */ 696 697 static int __init thp_shrinker_init(void) 698 { 699 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 700 if (!huge_zero_page_shrinker) 701 return -ENOMEM; 702 703 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 704 SHRINKER_MEMCG_AWARE | 705 SHRINKER_NONSLAB, 706 "thp-deferred_split"); 707 if (!deferred_split_shrinker) { 708 shrinker_free(huge_zero_page_shrinker); 709 return -ENOMEM; 710 } 711 712 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 713 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 714 shrinker_register(huge_zero_page_shrinker); 715 716 deferred_split_shrinker->count_objects = deferred_split_count; 717 deferred_split_shrinker->scan_objects = deferred_split_scan; 718 shrinker_register(deferred_split_shrinker); 719 720 return 0; 721 } 722 723 static void __init thp_shrinker_exit(void) 724 { 725 shrinker_free(huge_zero_page_shrinker); 726 shrinker_free(deferred_split_shrinker); 727 } 728 729 static int __init hugepage_init(void) 730 { 731 int err; 732 struct kobject *hugepage_kobj; 733 734 if (!has_transparent_hugepage()) { 735 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 736 return -EINVAL; 737 } 738 739 /* 740 * hugepages can't be allocated by the buddy allocator 741 */ 742 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 743 744 err = hugepage_init_sysfs(&hugepage_kobj); 745 if (err) 746 goto err_sysfs; 747 748 err = khugepaged_init(); 749 if (err) 750 goto err_slab; 751 752 err = thp_shrinker_init(); 753 if (err) 754 goto err_shrinker; 755 756 /* 757 * By default disable transparent hugepages on smaller systems, 758 * where the extra memory used could hurt more than TLB overhead 759 * is likely to save. The admin can still enable it through /sys. 760 */ 761 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 762 transparent_hugepage_flags = 0; 763 return 0; 764 } 765 766 err = start_stop_khugepaged(); 767 if (err) 768 goto err_khugepaged; 769 770 return 0; 771 err_khugepaged: 772 thp_shrinker_exit(); 773 err_shrinker: 774 khugepaged_destroy(); 775 err_slab: 776 hugepage_exit_sysfs(hugepage_kobj); 777 err_sysfs: 778 return err; 779 } 780 subsys_initcall(hugepage_init); 781 782 static int __init setup_transparent_hugepage(char *str) 783 { 784 int ret = 0; 785 if (!str) 786 goto out; 787 if (!strcmp(str, "always")) { 788 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 789 &transparent_hugepage_flags); 790 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 791 &transparent_hugepage_flags); 792 ret = 1; 793 } else if (!strcmp(str, "madvise")) { 794 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 795 &transparent_hugepage_flags); 796 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 797 &transparent_hugepage_flags); 798 ret = 1; 799 } else if (!strcmp(str, "never")) { 800 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 801 &transparent_hugepage_flags); 802 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 803 &transparent_hugepage_flags); 804 ret = 1; 805 } 806 out: 807 if (!ret) 808 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 809 return ret; 810 } 811 __setup("transparent_hugepage=", setup_transparent_hugepage); 812 813 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 814 { 815 if (likely(vma->vm_flags & VM_WRITE)) 816 pmd = pmd_mkwrite(pmd, vma); 817 return pmd; 818 } 819 820 #ifdef CONFIG_MEMCG 821 static inline 822 struct deferred_split *get_deferred_split_queue(struct folio *folio) 823 { 824 struct mem_cgroup *memcg = folio_memcg(folio); 825 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 826 827 if (memcg) 828 return &memcg->deferred_split_queue; 829 else 830 return &pgdat->deferred_split_queue; 831 } 832 #else 833 static inline 834 struct deferred_split *get_deferred_split_queue(struct folio *folio) 835 { 836 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 837 838 return &pgdat->deferred_split_queue; 839 } 840 #endif 841 842 static inline bool is_transparent_hugepage(const struct folio *folio) 843 { 844 if (!folio_test_large(folio)) 845 return false; 846 847 return is_huge_zero_folio(folio) || 848 folio_test_large_rmappable(folio); 849 } 850 851 static unsigned long __thp_get_unmapped_area(struct file *filp, 852 unsigned long addr, unsigned long len, 853 loff_t off, unsigned long flags, unsigned long size, 854 vm_flags_t vm_flags) 855 { 856 loff_t off_end = off + len; 857 loff_t off_align = round_up(off, size); 858 unsigned long len_pad, ret, off_sub; 859 860 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall()) 861 return 0; 862 863 if (off_end <= off_align || (off_end - off_align) < size) 864 return 0; 865 866 len_pad = len + size; 867 if (len_pad < len || (off + len_pad) < off) 868 return 0; 869 870 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 871 off >> PAGE_SHIFT, flags, vm_flags); 872 873 /* 874 * The failure might be due to length padding. The caller will retry 875 * without the padding. 876 */ 877 if (IS_ERR_VALUE(ret)) 878 return 0; 879 880 /* 881 * Do not try to align to THP boundary if allocation at the address 882 * hint succeeds. 883 */ 884 if (ret == addr) 885 return addr; 886 887 off_sub = (off - ret) & (size - 1); 888 889 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 890 return ret + size; 891 892 ret += off_sub; 893 return ret; 894 } 895 896 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 897 unsigned long len, unsigned long pgoff, unsigned long flags, 898 vm_flags_t vm_flags) 899 { 900 unsigned long ret; 901 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 902 903 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 904 if (ret) 905 return ret; 906 907 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 908 vm_flags); 909 } 910 911 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 912 unsigned long len, unsigned long pgoff, unsigned long flags) 913 { 914 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 915 } 916 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 917 918 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 919 struct page *page, gfp_t gfp) 920 { 921 struct vm_area_struct *vma = vmf->vma; 922 struct folio *folio = page_folio(page); 923 pgtable_t pgtable; 924 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 925 vm_fault_t ret = 0; 926 927 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 928 929 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 930 folio_put(folio); 931 count_vm_event(THP_FAULT_FALLBACK); 932 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 933 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 934 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 935 return VM_FAULT_FALLBACK; 936 } 937 folio_throttle_swaprate(folio, gfp); 938 939 pgtable = pte_alloc_one(vma->vm_mm); 940 if (unlikely(!pgtable)) { 941 ret = VM_FAULT_OOM; 942 goto release; 943 } 944 945 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 946 /* 947 * The memory barrier inside __folio_mark_uptodate makes sure that 948 * clear_huge_page writes become visible before the set_pmd_at() 949 * write. 950 */ 951 __folio_mark_uptodate(folio); 952 953 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 954 if (unlikely(!pmd_none(*vmf->pmd))) { 955 goto unlock_release; 956 } else { 957 pmd_t entry; 958 959 ret = check_stable_address_space(vma->vm_mm); 960 if (ret) 961 goto unlock_release; 962 963 /* Deliver the page fault to userland */ 964 if (userfaultfd_missing(vma)) { 965 spin_unlock(vmf->ptl); 966 folio_put(folio); 967 pte_free(vma->vm_mm, pgtable); 968 ret = handle_userfault(vmf, VM_UFFD_MISSING); 969 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 970 return ret; 971 } 972 973 entry = mk_huge_pmd(page, vma->vm_page_prot); 974 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 975 folio_add_new_anon_rmap(folio, vma, haddr); 976 folio_add_lru_vma(folio, vma); 977 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 978 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 979 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 980 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 981 mm_inc_nr_ptes(vma->vm_mm); 982 spin_unlock(vmf->ptl); 983 count_vm_event(THP_FAULT_ALLOC); 984 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 985 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 986 } 987 988 return 0; 989 unlock_release: 990 spin_unlock(vmf->ptl); 991 release: 992 if (pgtable) 993 pte_free(vma->vm_mm, pgtable); 994 folio_put(folio); 995 return ret; 996 997 } 998 999 /* 1000 * always: directly stall for all thp allocations 1001 * defer: wake kswapd and fail if not immediately available 1002 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1003 * fail if not immediately available 1004 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1005 * available 1006 * never: never stall for any thp allocation 1007 */ 1008 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1009 { 1010 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1011 1012 /* Always do synchronous compaction */ 1013 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1014 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1015 1016 /* Kick kcompactd and fail quickly */ 1017 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1018 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1019 1020 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1021 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1022 return GFP_TRANSHUGE_LIGHT | 1023 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1024 __GFP_KSWAPD_RECLAIM); 1025 1026 /* Only do synchronous compaction if madvised */ 1027 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1028 return GFP_TRANSHUGE_LIGHT | 1029 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1030 1031 return GFP_TRANSHUGE_LIGHT; 1032 } 1033 1034 /* Caller must hold page table lock. */ 1035 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1036 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1037 struct folio *zero_folio) 1038 { 1039 pmd_t entry; 1040 if (!pmd_none(*pmd)) 1041 return; 1042 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1043 entry = pmd_mkhuge(entry); 1044 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1045 set_pmd_at(mm, haddr, pmd, entry); 1046 mm_inc_nr_ptes(mm); 1047 } 1048 1049 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1050 { 1051 struct vm_area_struct *vma = vmf->vma; 1052 gfp_t gfp; 1053 struct folio *folio; 1054 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1055 vm_fault_t ret; 1056 1057 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1058 return VM_FAULT_FALLBACK; 1059 ret = vmf_anon_prepare(vmf); 1060 if (ret) 1061 return ret; 1062 khugepaged_enter_vma(vma, vma->vm_flags); 1063 1064 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1065 !mm_forbids_zeropage(vma->vm_mm) && 1066 transparent_hugepage_use_zero_page()) { 1067 pgtable_t pgtable; 1068 struct folio *zero_folio; 1069 vm_fault_t ret; 1070 1071 pgtable = pte_alloc_one(vma->vm_mm); 1072 if (unlikely(!pgtable)) 1073 return VM_FAULT_OOM; 1074 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1075 if (unlikely(!zero_folio)) { 1076 pte_free(vma->vm_mm, pgtable); 1077 count_vm_event(THP_FAULT_FALLBACK); 1078 return VM_FAULT_FALLBACK; 1079 } 1080 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1081 ret = 0; 1082 if (pmd_none(*vmf->pmd)) { 1083 ret = check_stable_address_space(vma->vm_mm); 1084 if (ret) { 1085 spin_unlock(vmf->ptl); 1086 pte_free(vma->vm_mm, pgtable); 1087 } else if (userfaultfd_missing(vma)) { 1088 spin_unlock(vmf->ptl); 1089 pte_free(vma->vm_mm, pgtable); 1090 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1091 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1092 } else { 1093 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1094 haddr, vmf->pmd, zero_folio); 1095 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1096 spin_unlock(vmf->ptl); 1097 } 1098 } else { 1099 spin_unlock(vmf->ptl); 1100 pte_free(vma->vm_mm, pgtable); 1101 } 1102 return ret; 1103 } 1104 gfp = vma_thp_gfp_mask(vma); 1105 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1106 if (unlikely(!folio)) { 1107 count_vm_event(THP_FAULT_FALLBACK); 1108 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 1109 return VM_FAULT_FALLBACK; 1110 } 1111 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1112 } 1113 1114 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1115 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1116 pgtable_t pgtable) 1117 { 1118 struct mm_struct *mm = vma->vm_mm; 1119 pmd_t entry; 1120 spinlock_t *ptl; 1121 1122 ptl = pmd_lock(mm, pmd); 1123 if (!pmd_none(*pmd)) { 1124 if (write) { 1125 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1126 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1127 goto out_unlock; 1128 } 1129 entry = pmd_mkyoung(*pmd); 1130 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1131 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1132 update_mmu_cache_pmd(vma, addr, pmd); 1133 } 1134 1135 goto out_unlock; 1136 } 1137 1138 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1139 if (pfn_t_devmap(pfn)) 1140 entry = pmd_mkdevmap(entry); 1141 if (write) { 1142 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1143 entry = maybe_pmd_mkwrite(entry, vma); 1144 } 1145 1146 if (pgtable) { 1147 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1148 mm_inc_nr_ptes(mm); 1149 pgtable = NULL; 1150 } 1151 1152 set_pmd_at(mm, addr, pmd, entry); 1153 update_mmu_cache_pmd(vma, addr, pmd); 1154 1155 out_unlock: 1156 spin_unlock(ptl); 1157 if (pgtable) 1158 pte_free(mm, pgtable); 1159 } 1160 1161 /** 1162 * vmf_insert_pfn_pmd - insert a pmd size pfn 1163 * @vmf: Structure describing the fault 1164 * @pfn: pfn to insert 1165 * @write: whether it's a write fault 1166 * 1167 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1168 * 1169 * Return: vm_fault_t value. 1170 */ 1171 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1172 { 1173 unsigned long addr = vmf->address & PMD_MASK; 1174 struct vm_area_struct *vma = vmf->vma; 1175 pgprot_t pgprot = vma->vm_page_prot; 1176 pgtable_t pgtable = NULL; 1177 1178 /* 1179 * If we had pmd_special, we could avoid all these restrictions, 1180 * but we need to be consistent with PTEs and architectures that 1181 * can't support a 'special' bit. 1182 */ 1183 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1184 !pfn_t_devmap(pfn)); 1185 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1186 (VM_PFNMAP|VM_MIXEDMAP)); 1187 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1188 1189 if (addr < vma->vm_start || addr >= vma->vm_end) 1190 return VM_FAULT_SIGBUS; 1191 1192 if (arch_needs_pgtable_deposit()) { 1193 pgtable = pte_alloc_one(vma->vm_mm); 1194 if (!pgtable) 1195 return VM_FAULT_OOM; 1196 } 1197 1198 track_pfn_insert(vma, &pgprot, pfn); 1199 1200 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1201 return VM_FAULT_NOPAGE; 1202 } 1203 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1204 1205 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1206 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1207 { 1208 if (likely(vma->vm_flags & VM_WRITE)) 1209 pud = pud_mkwrite(pud); 1210 return pud; 1211 } 1212 1213 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1214 pud_t *pud, pfn_t pfn, bool write) 1215 { 1216 struct mm_struct *mm = vma->vm_mm; 1217 pgprot_t prot = vma->vm_page_prot; 1218 pud_t entry; 1219 spinlock_t *ptl; 1220 1221 ptl = pud_lock(mm, pud); 1222 if (!pud_none(*pud)) { 1223 if (write) { 1224 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1225 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1226 goto out_unlock; 1227 } 1228 entry = pud_mkyoung(*pud); 1229 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1230 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1231 update_mmu_cache_pud(vma, addr, pud); 1232 } 1233 goto out_unlock; 1234 } 1235 1236 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1237 if (pfn_t_devmap(pfn)) 1238 entry = pud_mkdevmap(entry); 1239 if (write) { 1240 entry = pud_mkyoung(pud_mkdirty(entry)); 1241 entry = maybe_pud_mkwrite(entry, vma); 1242 } 1243 set_pud_at(mm, addr, pud, entry); 1244 update_mmu_cache_pud(vma, addr, pud); 1245 1246 out_unlock: 1247 spin_unlock(ptl); 1248 } 1249 1250 /** 1251 * vmf_insert_pfn_pud - insert a pud size pfn 1252 * @vmf: Structure describing the fault 1253 * @pfn: pfn to insert 1254 * @write: whether it's a write fault 1255 * 1256 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1257 * 1258 * Return: vm_fault_t value. 1259 */ 1260 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1261 { 1262 unsigned long addr = vmf->address & PUD_MASK; 1263 struct vm_area_struct *vma = vmf->vma; 1264 pgprot_t pgprot = vma->vm_page_prot; 1265 1266 /* 1267 * If we had pud_special, we could avoid all these restrictions, 1268 * but we need to be consistent with PTEs and architectures that 1269 * can't support a 'special' bit. 1270 */ 1271 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1272 !pfn_t_devmap(pfn)); 1273 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1274 (VM_PFNMAP|VM_MIXEDMAP)); 1275 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1276 1277 if (addr < vma->vm_start || addr >= vma->vm_end) 1278 return VM_FAULT_SIGBUS; 1279 1280 track_pfn_insert(vma, &pgprot, pfn); 1281 1282 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1283 return VM_FAULT_NOPAGE; 1284 } 1285 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1287 1288 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1289 pmd_t *pmd, bool write) 1290 { 1291 pmd_t _pmd; 1292 1293 _pmd = pmd_mkyoung(*pmd); 1294 if (write) 1295 _pmd = pmd_mkdirty(_pmd); 1296 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1297 pmd, _pmd, write)) 1298 update_mmu_cache_pmd(vma, addr, pmd); 1299 } 1300 1301 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1302 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1303 { 1304 unsigned long pfn = pmd_pfn(*pmd); 1305 struct mm_struct *mm = vma->vm_mm; 1306 struct page *page; 1307 int ret; 1308 1309 assert_spin_locked(pmd_lockptr(mm, pmd)); 1310 1311 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1312 return NULL; 1313 1314 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1315 /* pass */; 1316 else 1317 return NULL; 1318 1319 if (flags & FOLL_TOUCH) 1320 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1321 1322 /* 1323 * device mapped pages can only be returned if the 1324 * caller will manage the page reference count. 1325 */ 1326 if (!(flags & (FOLL_GET | FOLL_PIN))) 1327 return ERR_PTR(-EEXIST); 1328 1329 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1330 *pgmap = get_dev_pagemap(pfn, *pgmap); 1331 if (!*pgmap) 1332 return ERR_PTR(-EFAULT); 1333 page = pfn_to_page(pfn); 1334 ret = try_grab_page(page, flags); 1335 if (ret) 1336 page = ERR_PTR(ret); 1337 1338 return page; 1339 } 1340 1341 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1342 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1343 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1344 { 1345 spinlock_t *dst_ptl, *src_ptl; 1346 struct page *src_page; 1347 struct folio *src_folio; 1348 pmd_t pmd; 1349 pgtable_t pgtable = NULL; 1350 int ret = -ENOMEM; 1351 1352 /* Skip if can be re-fill on fault */ 1353 if (!vma_is_anonymous(dst_vma)) 1354 return 0; 1355 1356 pgtable = pte_alloc_one(dst_mm); 1357 if (unlikely(!pgtable)) 1358 goto out; 1359 1360 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1361 src_ptl = pmd_lockptr(src_mm, src_pmd); 1362 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1363 1364 ret = -EAGAIN; 1365 pmd = *src_pmd; 1366 1367 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1368 if (unlikely(is_swap_pmd(pmd))) { 1369 swp_entry_t entry = pmd_to_swp_entry(pmd); 1370 1371 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1372 if (!is_readable_migration_entry(entry)) { 1373 entry = make_readable_migration_entry( 1374 swp_offset(entry)); 1375 pmd = swp_entry_to_pmd(entry); 1376 if (pmd_swp_soft_dirty(*src_pmd)) 1377 pmd = pmd_swp_mksoft_dirty(pmd); 1378 if (pmd_swp_uffd_wp(*src_pmd)) 1379 pmd = pmd_swp_mkuffd_wp(pmd); 1380 set_pmd_at(src_mm, addr, src_pmd, pmd); 1381 } 1382 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1383 mm_inc_nr_ptes(dst_mm); 1384 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1385 if (!userfaultfd_wp(dst_vma)) 1386 pmd = pmd_swp_clear_uffd_wp(pmd); 1387 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1388 ret = 0; 1389 goto out_unlock; 1390 } 1391 #endif 1392 1393 if (unlikely(!pmd_trans_huge(pmd))) { 1394 pte_free(dst_mm, pgtable); 1395 goto out_unlock; 1396 } 1397 /* 1398 * When page table lock is held, the huge zero pmd should not be 1399 * under splitting since we don't split the page itself, only pmd to 1400 * a page table. 1401 */ 1402 if (is_huge_zero_pmd(pmd)) { 1403 /* 1404 * mm_get_huge_zero_folio() will never allocate a new 1405 * folio here, since we already have a zero page to 1406 * copy. It just takes a reference. 1407 */ 1408 mm_get_huge_zero_folio(dst_mm); 1409 goto out_zero_page; 1410 } 1411 1412 src_page = pmd_page(pmd); 1413 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1414 src_folio = page_folio(src_page); 1415 1416 folio_get(src_folio); 1417 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1418 /* Page maybe pinned: split and retry the fault on PTEs. */ 1419 folio_put(src_folio); 1420 pte_free(dst_mm, pgtable); 1421 spin_unlock(src_ptl); 1422 spin_unlock(dst_ptl); 1423 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1424 return -EAGAIN; 1425 } 1426 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1427 out_zero_page: 1428 mm_inc_nr_ptes(dst_mm); 1429 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1430 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1431 if (!userfaultfd_wp(dst_vma)) 1432 pmd = pmd_clear_uffd_wp(pmd); 1433 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1434 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1435 1436 ret = 0; 1437 out_unlock: 1438 spin_unlock(src_ptl); 1439 spin_unlock(dst_ptl); 1440 out: 1441 return ret; 1442 } 1443 1444 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1445 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1446 pud_t *pud, bool write) 1447 { 1448 pud_t _pud; 1449 1450 _pud = pud_mkyoung(*pud); 1451 if (write) 1452 _pud = pud_mkdirty(_pud); 1453 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1454 pud, _pud, write)) 1455 update_mmu_cache_pud(vma, addr, pud); 1456 } 1457 1458 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1459 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1460 struct vm_area_struct *vma) 1461 { 1462 spinlock_t *dst_ptl, *src_ptl; 1463 pud_t pud; 1464 int ret; 1465 1466 dst_ptl = pud_lock(dst_mm, dst_pud); 1467 src_ptl = pud_lockptr(src_mm, src_pud); 1468 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1469 1470 ret = -EAGAIN; 1471 pud = *src_pud; 1472 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1473 goto out_unlock; 1474 1475 /* 1476 * When page table lock is held, the huge zero pud should not be 1477 * under splitting since we don't split the page itself, only pud to 1478 * a page table. 1479 */ 1480 if (is_huge_zero_pud(pud)) { 1481 /* No huge zero pud yet */ 1482 } 1483 1484 /* 1485 * TODO: once we support anonymous pages, use 1486 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1487 */ 1488 pudp_set_wrprotect(src_mm, addr, src_pud); 1489 pud = pud_mkold(pud_wrprotect(pud)); 1490 set_pud_at(dst_mm, addr, dst_pud, pud); 1491 1492 ret = 0; 1493 out_unlock: 1494 spin_unlock(src_ptl); 1495 spin_unlock(dst_ptl); 1496 return ret; 1497 } 1498 1499 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1500 { 1501 bool write = vmf->flags & FAULT_FLAG_WRITE; 1502 1503 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1504 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1505 goto unlock; 1506 1507 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1508 unlock: 1509 spin_unlock(vmf->ptl); 1510 } 1511 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1512 1513 void huge_pmd_set_accessed(struct vm_fault *vmf) 1514 { 1515 bool write = vmf->flags & FAULT_FLAG_WRITE; 1516 1517 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1518 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1519 goto unlock; 1520 1521 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1522 1523 unlock: 1524 spin_unlock(vmf->ptl); 1525 } 1526 1527 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1528 { 1529 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1530 struct vm_area_struct *vma = vmf->vma; 1531 struct folio *folio; 1532 struct page *page; 1533 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1534 pmd_t orig_pmd = vmf->orig_pmd; 1535 1536 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1537 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1538 1539 if (is_huge_zero_pmd(orig_pmd)) 1540 goto fallback; 1541 1542 spin_lock(vmf->ptl); 1543 1544 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1545 spin_unlock(vmf->ptl); 1546 return 0; 1547 } 1548 1549 page = pmd_page(orig_pmd); 1550 folio = page_folio(page); 1551 VM_BUG_ON_PAGE(!PageHead(page), page); 1552 1553 /* Early check when only holding the PT lock. */ 1554 if (PageAnonExclusive(page)) 1555 goto reuse; 1556 1557 if (!folio_trylock(folio)) { 1558 folio_get(folio); 1559 spin_unlock(vmf->ptl); 1560 folio_lock(folio); 1561 spin_lock(vmf->ptl); 1562 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1563 spin_unlock(vmf->ptl); 1564 folio_unlock(folio); 1565 folio_put(folio); 1566 return 0; 1567 } 1568 folio_put(folio); 1569 } 1570 1571 /* Recheck after temporarily dropping the PT lock. */ 1572 if (PageAnonExclusive(page)) { 1573 folio_unlock(folio); 1574 goto reuse; 1575 } 1576 1577 /* 1578 * See do_wp_page(): we can only reuse the folio exclusively if 1579 * there are no additional references. Note that we always drain 1580 * the LRU cache immediately after adding a THP. 1581 */ 1582 if (folio_ref_count(folio) > 1583 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1584 goto unlock_fallback; 1585 if (folio_test_swapcache(folio)) 1586 folio_free_swap(folio); 1587 if (folio_ref_count(folio) == 1) { 1588 pmd_t entry; 1589 1590 folio_move_anon_rmap(folio, vma); 1591 SetPageAnonExclusive(page); 1592 folio_unlock(folio); 1593 reuse: 1594 if (unlikely(unshare)) { 1595 spin_unlock(vmf->ptl); 1596 return 0; 1597 } 1598 entry = pmd_mkyoung(orig_pmd); 1599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1600 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1601 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1602 spin_unlock(vmf->ptl); 1603 return 0; 1604 } 1605 1606 unlock_fallback: 1607 folio_unlock(folio); 1608 spin_unlock(vmf->ptl); 1609 fallback: 1610 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1611 return VM_FAULT_FALLBACK; 1612 } 1613 1614 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1615 unsigned long addr, pmd_t pmd) 1616 { 1617 struct page *page; 1618 1619 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1620 return false; 1621 1622 /* Don't touch entries that are not even readable (NUMA hinting). */ 1623 if (pmd_protnone(pmd)) 1624 return false; 1625 1626 /* Do we need write faults for softdirty tracking? */ 1627 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1628 return false; 1629 1630 /* Do we need write faults for uffd-wp tracking? */ 1631 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1632 return false; 1633 1634 if (!(vma->vm_flags & VM_SHARED)) { 1635 /* See can_change_pte_writable(). */ 1636 page = vm_normal_page_pmd(vma, addr, pmd); 1637 return page && PageAnon(page) && PageAnonExclusive(page); 1638 } 1639 1640 /* See can_change_pte_writable(). */ 1641 return pmd_dirty(pmd); 1642 } 1643 1644 /* NUMA hinting page fault entry point for trans huge pmds */ 1645 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1646 { 1647 struct vm_area_struct *vma = vmf->vma; 1648 pmd_t oldpmd = vmf->orig_pmd; 1649 pmd_t pmd; 1650 struct folio *folio; 1651 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1652 int nid = NUMA_NO_NODE; 1653 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1654 bool migrated = false, writable = false; 1655 int flags = 0; 1656 1657 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1658 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1659 spin_unlock(vmf->ptl); 1660 goto out; 1661 } 1662 1663 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1664 1665 /* 1666 * Detect now whether the PMD could be writable; this information 1667 * is only valid while holding the PT lock. 1668 */ 1669 writable = pmd_write(pmd); 1670 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1671 can_change_pmd_writable(vma, vmf->address, pmd)) 1672 writable = true; 1673 1674 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1675 if (!folio) 1676 goto out_map; 1677 1678 /* See similar comment in do_numa_page for explanation */ 1679 if (!writable) 1680 flags |= TNF_NO_GROUP; 1681 1682 nid = folio_nid(folio); 1683 /* 1684 * For memory tiering mode, cpupid of slow memory page is used 1685 * to record page access time. So use default value. 1686 */ 1687 if (node_is_toptier(nid)) 1688 last_cpupid = folio_last_cpupid(folio); 1689 target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags); 1690 if (target_nid == NUMA_NO_NODE) { 1691 folio_put(folio); 1692 goto out_map; 1693 } 1694 1695 spin_unlock(vmf->ptl); 1696 writable = false; 1697 1698 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1699 if (migrated) { 1700 flags |= TNF_MIGRATED; 1701 nid = target_nid; 1702 } else { 1703 flags |= TNF_MIGRATE_FAIL; 1704 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1705 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1706 spin_unlock(vmf->ptl); 1707 goto out; 1708 } 1709 goto out_map; 1710 } 1711 1712 out: 1713 if (nid != NUMA_NO_NODE) 1714 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1715 1716 return 0; 1717 1718 out_map: 1719 /* Restore the PMD */ 1720 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1721 pmd = pmd_mkyoung(pmd); 1722 if (writable) 1723 pmd = pmd_mkwrite(pmd, vma); 1724 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1725 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1726 spin_unlock(vmf->ptl); 1727 goto out; 1728 } 1729 1730 /* 1731 * Return true if we do MADV_FREE successfully on entire pmd page. 1732 * Otherwise, return false. 1733 */ 1734 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1735 pmd_t *pmd, unsigned long addr, unsigned long next) 1736 { 1737 spinlock_t *ptl; 1738 pmd_t orig_pmd; 1739 struct folio *folio; 1740 struct mm_struct *mm = tlb->mm; 1741 bool ret = false; 1742 1743 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1744 1745 ptl = pmd_trans_huge_lock(pmd, vma); 1746 if (!ptl) 1747 goto out_unlocked; 1748 1749 orig_pmd = *pmd; 1750 if (is_huge_zero_pmd(orig_pmd)) 1751 goto out; 1752 1753 if (unlikely(!pmd_present(orig_pmd))) { 1754 VM_BUG_ON(thp_migration_supported() && 1755 !is_pmd_migration_entry(orig_pmd)); 1756 goto out; 1757 } 1758 1759 folio = pmd_folio(orig_pmd); 1760 /* 1761 * If other processes are mapping this folio, we couldn't discard 1762 * the folio unless they all do MADV_FREE so let's skip the folio. 1763 */ 1764 if (folio_likely_mapped_shared(folio)) 1765 goto out; 1766 1767 if (!folio_trylock(folio)) 1768 goto out; 1769 1770 /* 1771 * If user want to discard part-pages of THP, split it so MADV_FREE 1772 * will deactivate only them. 1773 */ 1774 if (next - addr != HPAGE_PMD_SIZE) { 1775 folio_get(folio); 1776 spin_unlock(ptl); 1777 split_folio(folio); 1778 folio_unlock(folio); 1779 folio_put(folio); 1780 goto out_unlocked; 1781 } 1782 1783 if (folio_test_dirty(folio)) 1784 folio_clear_dirty(folio); 1785 folio_unlock(folio); 1786 1787 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1788 pmdp_invalidate(vma, addr, pmd); 1789 orig_pmd = pmd_mkold(orig_pmd); 1790 orig_pmd = pmd_mkclean(orig_pmd); 1791 1792 set_pmd_at(mm, addr, pmd, orig_pmd); 1793 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1794 } 1795 1796 folio_mark_lazyfree(folio); 1797 ret = true; 1798 out: 1799 spin_unlock(ptl); 1800 out_unlocked: 1801 return ret; 1802 } 1803 1804 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1805 { 1806 pgtable_t pgtable; 1807 1808 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1809 pte_free(mm, pgtable); 1810 mm_dec_nr_ptes(mm); 1811 } 1812 1813 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1814 pmd_t *pmd, unsigned long addr) 1815 { 1816 pmd_t orig_pmd; 1817 spinlock_t *ptl; 1818 1819 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1820 1821 ptl = __pmd_trans_huge_lock(pmd, vma); 1822 if (!ptl) 1823 return 0; 1824 /* 1825 * For architectures like ppc64 we look at deposited pgtable 1826 * when calling pmdp_huge_get_and_clear. So do the 1827 * pgtable_trans_huge_withdraw after finishing pmdp related 1828 * operations. 1829 */ 1830 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1831 tlb->fullmm); 1832 arch_check_zapped_pmd(vma, orig_pmd); 1833 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1834 if (vma_is_special_huge(vma)) { 1835 if (arch_needs_pgtable_deposit()) 1836 zap_deposited_table(tlb->mm, pmd); 1837 spin_unlock(ptl); 1838 } else if (is_huge_zero_pmd(orig_pmd)) { 1839 zap_deposited_table(tlb->mm, pmd); 1840 spin_unlock(ptl); 1841 } else { 1842 struct folio *folio = NULL; 1843 int flush_needed = 1; 1844 1845 if (pmd_present(orig_pmd)) { 1846 struct page *page = pmd_page(orig_pmd); 1847 1848 folio = page_folio(page); 1849 folio_remove_rmap_pmd(folio, page, vma); 1850 WARN_ON_ONCE(folio_mapcount(folio) < 0); 1851 VM_BUG_ON_PAGE(!PageHead(page), page); 1852 } else if (thp_migration_supported()) { 1853 swp_entry_t entry; 1854 1855 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1856 entry = pmd_to_swp_entry(orig_pmd); 1857 folio = pfn_swap_entry_folio(entry); 1858 flush_needed = 0; 1859 } else 1860 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1861 1862 if (folio_test_anon(folio)) { 1863 zap_deposited_table(tlb->mm, pmd); 1864 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1865 } else { 1866 if (arch_needs_pgtable_deposit()) 1867 zap_deposited_table(tlb->mm, pmd); 1868 add_mm_counter(tlb->mm, mm_counter_file(folio), 1869 -HPAGE_PMD_NR); 1870 } 1871 1872 spin_unlock(ptl); 1873 if (flush_needed) 1874 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1875 } 1876 return 1; 1877 } 1878 1879 #ifndef pmd_move_must_withdraw 1880 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1881 spinlock_t *old_pmd_ptl, 1882 struct vm_area_struct *vma) 1883 { 1884 /* 1885 * With split pmd lock we also need to move preallocated 1886 * PTE page table if new_pmd is on different PMD page table. 1887 * 1888 * We also don't deposit and withdraw tables for file pages. 1889 */ 1890 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1891 } 1892 #endif 1893 1894 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1895 { 1896 #ifdef CONFIG_MEM_SOFT_DIRTY 1897 if (unlikely(is_pmd_migration_entry(pmd))) 1898 pmd = pmd_swp_mksoft_dirty(pmd); 1899 else if (pmd_present(pmd)) 1900 pmd = pmd_mksoft_dirty(pmd); 1901 #endif 1902 return pmd; 1903 } 1904 1905 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1906 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1907 { 1908 spinlock_t *old_ptl, *new_ptl; 1909 pmd_t pmd; 1910 struct mm_struct *mm = vma->vm_mm; 1911 bool force_flush = false; 1912 1913 /* 1914 * The destination pmd shouldn't be established, free_pgtables() 1915 * should have released it; but move_page_tables() might have already 1916 * inserted a page table, if racing against shmem/file collapse. 1917 */ 1918 if (!pmd_none(*new_pmd)) { 1919 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1920 return false; 1921 } 1922 1923 /* 1924 * We don't have to worry about the ordering of src and dst 1925 * ptlocks because exclusive mmap_lock prevents deadlock. 1926 */ 1927 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1928 if (old_ptl) { 1929 new_ptl = pmd_lockptr(mm, new_pmd); 1930 if (new_ptl != old_ptl) 1931 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1932 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1933 if (pmd_present(pmd)) 1934 force_flush = true; 1935 VM_BUG_ON(!pmd_none(*new_pmd)); 1936 1937 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1938 pgtable_t pgtable; 1939 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1940 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1941 } 1942 pmd = move_soft_dirty_pmd(pmd); 1943 set_pmd_at(mm, new_addr, new_pmd, pmd); 1944 if (force_flush) 1945 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1946 if (new_ptl != old_ptl) 1947 spin_unlock(new_ptl); 1948 spin_unlock(old_ptl); 1949 return true; 1950 } 1951 return false; 1952 } 1953 1954 /* 1955 * Returns 1956 * - 0 if PMD could not be locked 1957 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1958 * or if prot_numa but THP migration is not supported 1959 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1960 */ 1961 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1962 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1963 unsigned long cp_flags) 1964 { 1965 struct mm_struct *mm = vma->vm_mm; 1966 spinlock_t *ptl; 1967 pmd_t oldpmd, entry; 1968 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1969 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1970 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1971 int ret = 1; 1972 1973 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1974 1975 if (prot_numa && !thp_migration_supported()) 1976 return 1; 1977 1978 ptl = __pmd_trans_huge_lock(pmd, vma); 1979 if (!ptl) 1980 return 0; 1981 1982 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1983 if (is_swap_pmd(*pmd)) { 1984 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1985 struct folio *folio = pfn_swap_entry_folio(entry); 1986 pmd_t newpmd; 1987 1988 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1989 if (is_writable_migration_entry(entry)) { 1990 /* 1991 * A protection check is difficult so 1992 * just be safe and disable write 1993 */ 1994 if (folio_test_anon(folio)) 1995 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1996 else 1997 entry = make_readable_migration_entry(swp_offset(entry)); 1998 newpmd = swp_entry_to_pmd(entry); 1999 if (pmd_swp_soft_dirty(*pmd)) 2000 newpmd = pmd_swp_mksoft_dirty(newpmd); 2001 } else { 2002 newpmd = *pmd; 2003 } 2004 2005 if (uffd_wp) 2006 newpmd = pmd_swp_mkuffd_wp(newpmd); 2007 else if (uffd_wp_resolve) 2008 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2009 if (!pmd_same(*pmd, newpmd)) 2010 set_pmd_at(mm, addr, pmd, newpmd); 2011 goto unlock; 2012 } 2013 #endif 2014 2015 if (prot_numa) { 2016 struct folio *folio; 2017 bool toptier; 2018 /* 2019 * Avoid trapping faults against the zero page. The read-only 2020 * data is likely to be read-cached on the local CPU and 2021 * local/remote hits to the zero page are not interesting. 2022 */ 2023 if (is_huge_zero_pmd(*pmd)) 2024 goto unlock; 2025 2026 if (pmd_protnone(*pmd)) 2027 goto unlock; 2028 2029 folio = pmd_folio(*pmd); 2030 toptier = node_is_toptier(folio_nid(folio)); 2031 /* 2032 * Skip scanning top tier node if normal numa 2033 * balancing is disabled 2034 */ 2035 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2036 toptier) 2037 goto unlock; 2038 2039 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2040 !toptier) 2041 folio_xchg_access_time(folio, 2042 jiffies_to_msecs(jiffies)); 2043 } 2044 /* 2045 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2046 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2047 * which is also under mmap_read_lock(mm): 2048 * 2049 * CPU0: CPU1: 2050 * change_huge_pmd(prot_numa=1) 2051 * pmdp_huge_get_and_clear_notify() 2052 * madvise_dontneed() 2053 * zap_pmd_range() 2054 * pmd_trans_huge(*pmd) == 0 (without ptl) 2055 * // skip the pmd 2056 * set_pmd_at(); 2057 * // pmd is re-established 2058 * 2059 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2060 * which may break userspace. 2061 * 2062 * pmdp_invalidate_ad() is required to make sure we don't miss 2063 * dirty/young flags set by hardware. 2064 */ 2065 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2066 2067 entry = pmd_modify(oldpmd, newprot); 2068 if (uffd_wp) 2069 entry = pmd_mkuffd_wp(entry); 2070 else if (uffd_wp_resolve) 2071 /* 2072 * Leave the write bit to be handled by PF interrupt 2073 * handler, then things like COW could be properly 2074 * handled. 2075 */ 2076 entry = pmd_clear_uffd_wp(entry); 2077 2078 /* See change_pte_range(). */ 2079 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2080 can_change_pmd_writable(vma, addr, entry)) 2081 entry = pmd_mkwrite(entry, vma); 2082 2083 ret = HPAGE_PMD_NR; 2084 set_pmd_at(mm, addr, pmd, entry); 2085 2086 if (huge_pmd_needs_flush(oldpmd, entry)) 2087 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2088 unlock: 2089 spin_unlock(ptl); 2090 return ret; 2091 } 2092 2093 #ifdef CONFIG_USERFAULTFD 2094 /* 2095 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2096 * the caller, but it must return after releasing the page_table_lock. 2097 * Just move the page from src_pmd to dst_pmd if possible. 2098 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2099 * repeated by the caller, or other errors in case of failure. 2100 */ 2101 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2102 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2103 unsigned long dst_addr, unsigned long src_addr) 2104 { 2105 pmd_t _dst_pmd, src_pmdval; 2106 struct page *src_page; 2107 struct folio *src_folio; 2108 struct anon_vma *src_anon_vma; 2109 spinlock_t *src_ptl, *dst_ptl; 2110 pgtable_t src_pgtable; 2111 struct mmu_notifier_range range; 2112 int err = 0; 2113 2114 src_pmdval = *src_pmd; 2115 src_ptl = pmd_lockptr(mm, src_pmd); 2116 2117 lockdep_assert_held(src_ptl); 2118 vma_assert_locked(src_vma); 2119 vma_assert_locked(dst_vma); 2120 2121 /* Sanity checks before the operation */ 2122 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2123 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2124 spin_unlock(src_ptl); 2125 return -EINVAL; 2126 } 2127 2128 if (!pmd_trans_huge(src_pmdval)) { 2129 spin_unlock(src_ptl); 2130 if (is_pmd_migration_entry(src_pmdval)) { 2131 pmd_migration_entry_wait(mm, &src_pmdval); 2132 return -EAGAIN; 2133 } 2134 return -ENOENT; 2135 } 2136 2137 src_page = pmd_page(src_pmdval); 2138 2139 if (!is_huge_zero_pmd(src_pmdval)) { 2140 if (unlikely(!PageAnonExclusive(src_page))) { 2141 spin_unlock(src_ptl); 2142 return -EBUSY; 2143 } 2144 2145 src_folio = page_folio(src_page); 2146 folio_get(src_folio); 2147 } else 2148 src_folio = NULL; 2149 2150 spin_unlock(src_ptl); 2151 2152 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2153 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2154 src_addr + HPAGE_PMD_SIZE); 2155 mmu_notifier_invalidate_range_start(&range); 2156 2157 if (src_folio) { 2158 folio_lock(src_folio); 2159 2160 /* 2161 * split_huge_page walks the anon_vma chain without the page 2162 * lock. Serialize against it with the anon_vma lock, the page 2163 * lock is not enough. 2164 */ 2165 src_anon_vma = folio_get_anon_vma(src_folio); 2166 if (!src_anon_vma) { 2167 err = -EAGAIN; 2168 goto unlock_folio; 2169 } 2170 anon_vma_lock_write(src_anon_vma); 2171 } else 2172 src_anon_vma = NULL; 2173 2174 dst_ptl = pmd_lockptr(mm, dst_pmd); 2175 double_pt_lock(src_ptl, dst_ptl); 2176 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2177 !pmd_same(*dst_pmd, dst_pmdval))) { 2178 err = -EAGAIN; 2179 goto unlock_ptls; 2180 } 2181 if (src_folio) { 2182 if (folio_maybe_dma_pinned(src_folio) || 2183 !PageAnonExclusive(&src_folio->page)) { 2184 err = -EBUSY; 2185 goto unlock_ptls; 2186 } 2187 2188 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2189 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2190 err = -EBUSY; 2191 goto unlock_ptls; 2192 } 2193 2194 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2195 /* Folio got pinned from under us. Put it back and fail the move. */ 2196 if (folio_maybe_dma_pinned(src_folio)) { 2197 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2198 err = -EBUSY; 2199 goto unlock_ptls; 2200 } 2201 2202 folio_move_anon_rmap(src_folio, dst_vma); 2203 src_folio->index = linear_page_index(dst_vma, dst_addr); 2204 2205 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2206 /* Follow mremap() behavior and treat the entry dirty after the move */ 2207 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2208 } else { 2209 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2210 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2211 } 2212 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2213 2214 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2215 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2216 unlock_ptls: 2217 double_pt_unlock(src_ptl, dst_ptl); 2218 if (src_anon_vma) { 2219 anon_vma_unlock_write(src_anon_vma); 2220 put_anon_vma(src_anon_vma); 2221 } 2222 unlock_folio: 2223 /* unblock rmap walks */ 2224 if (src_folio) 2225 folio_unlock(src_folio); 2226 mmu_notifier_invalidate_range_end(&range); 2227 if (src_folio) 2228 folio_put(src_folio); 2229 return err; 2230 } 2231 #endif /* CONFIG_USERFAULTFD */ 2232 2233 /* 2234 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2235 * 2236 * Note that if it returns page table lock pointer, this routine returns without 2237 * unlocking page table lock. So callers must unlock it. 2238 */ 2239 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2240 { 2241 spinlock_t *ptl; 2242 ptl = pmd_lock(vma->vm_mm, pmd); 2243 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2244 pmd_devmap(*pmd))) 2245 return ptl; 2246 spin_unlock(ptl); 2247 return NULL; 2248 } 2249 2250 /* 2251 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2252 * 2253 * Note that if it returns page table lock pointer, this routine returns without 2254 * unlocking page table lock. So callers must unlock it. 2255 */ 2256 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2257 { 2258 spinlock_t *ptl; 2259 2260 ptl = pud_lock(vma->vm_mm, pud); 2261 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2262 return ptl; 2263 spin_unlock(ptl); 2264 return NULL; 2265 } 2266 2267 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2268 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2269 pud_t *pud, unsigned long addr) 2270 { 2271 spinlock_t *ptl; 2272 2273 ptl = __pud_trans_huge_lock(pud, vma); 2274 if (!ptl) 2275 return 0; 2276 2277 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2278 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2279 if (vma_is_special_huge(vma)) { 2280 spin_unlock(ptl); 2281 /* No zero page support yet */ 2282 } else { 2283 /* No support for anonymous PUD pages yet */ 2284 BUG(); 2285 } 2286 return 1; 2287 } 2288 2289 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2290 unsigned long haddr) 2291 { 2292 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2293 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2294 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2295 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2296 2297 count_vm_event(THP_SPLIT_PUD); 2298 2299 pudp_huge_clear_flush(vma, haddr, pud); 2300 } 2301 2302 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2303 unsigned long address) 2304 { 2305 spinlock_t *ptl; 2306 struct mmu_notifier_range range; 2307 2308 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2309 address & HPAGE_PUD_MASK, 2310 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2311 mmu_notifier_invalidate_range_start(&range); 2312 ptl = pud_lock(vma->vm_mm, pud); 2313 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2314 goto out; 2315 __split_huge_pud_locked(vma, pud, range.start); 2316 2317 out: 2318 spin_unlock(ptl); 2319 mmu_notifier_invalidate_range_end(&range); 2320 } 2321 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2322 2323 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2324 unsigned long haddr, pmd_t *pmd) 2325 { 2326 struct mm_struct *mm = vma->vm_mm; 2327 pgtable_t pgtable; 2328 pmd_t _pmd, old_pmd; 2329 unsigned long addr; 2330 pte_t *pte; 2331 int i; 2332 2333 /* 2334 * Leave pmd empty until pte is filled note that it is fine to delay 2335 * notification until mmu_notifier_invalidate_range_end() as we are 2336 * replacing a zero pmd write protected page with a zero pte write 2337 * protected page. 2338 * 2339 * See Documentation/mm/mmu_notifier.rst 2340 */ 2341 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2342 2343 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2344 pmd_populate(mm, &_pmd, pgtable); 2345 2346 pte = pte_offset_map(&_pmd, haddr); 2347 VM_BUG_ON(!pte); 2348 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2349 pte_t entry; 2350 2351 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2352 entry = pte_mkspecial(entry); 2353 if (pmd_uffd_wp(old_pmd)) 2354 entry = pte_mkuffd_wp(entry); 2355 VM_BUG_ON(!pte_none(ptep_get(pte))); 2356 set_pte_at(mm, addr, pte, entry); 2357 pte++; 2358 } 2359 pte_unmap(pte - 1); 2360 smp_wmb(); /* make pte visible before pmd */ 2361 pmd_populate(mm, pmd, pgtable); 2362 } 2363 2364 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2365 unsigned long haddr, bool freeze) 2366 { 2367 struct mm_struct *mm = vma->vm_mm; 2368 struct folio *folio; 2369 struct page *page; 2370 pgtable_t pgtable; 2371 pmd_t old_pmd, _pmd; 2372 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2373 bool anon_exclusive = false, dirty = false; 2374 unsigned long addr; 2375 pte_t *pte; 2376 int i; 2377 2378 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2379 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2380 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2381 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2382 && !pmd_devmap(*pmd)); 2383 2384 count_vm_event(THP_SPLIT_PMD); 2385 2386 if (!vma_is_anonymous(vma)) { 2387 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2388 /* 2389 * We are going to unmap this huge page. So 2390 * just go ahead and zap it 2391 */ 2392 if (arch_needs_pgtable_deposit()) 2393 zap_deposited_table(mm, pmd); 2394 if (vma_is_special_huge(vma)) 2395 return; 2396 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2397 swp_entry_t entry; 2398 2399 entry = pmd_to_swp_entry(old_pmd); 2400 folio = pfn_swap_entry_folio(entry); 2401 } else { 2402 page = pmd_page(old_pmd); 2403 folio = page_folio(page); 2404 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2405 folio_mark_dirty(folio); 2406 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2407 folio_set_referenced(folio); 2408 folio_remove_rmap_pmd(folio, page, vma); 2409 folio_put(folio); 2410 } 2411 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2412 return; 2413 } 2414 2415 if (is_huge_zero_pmd(*pmd)) { 2416 /* 2417 * FIXME: Do we want to invalidate secondary mmu by calling 2418 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2419 * inside __split_huge_pmd() ? 2420 * 2421 * We are going from a zero huge page write protected to zero 2422 * small page also write protected so it does not seems useful 2423 * to invalidate secondary mmu at this time. 2424 */ 2425 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2426 } 2427 2428 pmd_migration = is_pmd_migration_entry(*pmd); 2429 if (unlikely(pmd_migration)) { 2430 swp_entry_t entry; 2431 2432 old_pmd = *pmd; 2433 entry = pmd_to_swp_entry(old_pmd); 2434 page = pfn_swap_entry_to_page(entry); 2435 write = is_writable_migration_entry(entry); 2436 if (PageAnon(page)) 2437 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2438 young = is_migration_entry_young(entry); 2439 dirty = is_migration_entry_dirty(entry); 2440 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2441 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2442 } else { 2443 /* 2444 * Up to this point the pmd is present and huge and userland has 2445 * the whole access to the hugepage during the split (which 2446 * happens in place). If we overwrite the pmd with the not-huge 2447 * version pointing to the pte here (which of course we could if 2448 * all CPUs were bug free), userland could trigger a small page 2449 * size TLB miss on the small sized TLB while the hugepage TLB 2450 * entry is still established in the huge TLB. Some CPU doesn't 2451 * like that. See 2452 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2453 * 383 on page 105. Intel should be safe but is also warns that 2454 * it's only safe if the permission and cache attributes of the 2455 * two entries loaded in the two TLB is identical (which should 2456 * be the case here). But it is generally safer to never allow 2457 * small and huge TLB entries for the same virtual address to be 2458 * loaded simultaneously. So instead of doing "pmd_populate(); 2459 * flush_pmd_tlb_range();" we first mark the current pmd 2460 * notpresent (atomically because here the pmd_trans_huge must 2461 * remain set at all times on the pmd until the split is 2462 * complete for this pmd), then we flush the SMP TLB and finally 2463 * we write the non-huge version of the pmd entry with 2464 * pmd_populate. 2465 */ 2466 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2467 page = pmd_page(old_pmd); 2468 folio = page_folio(page); 2469 if (pmd_dirty(old_pmd)) { 2470 dirty = true; 2471 folio_set_dirty(folio); 2472 } 2473 write = pmd_write(old_pmd); 2474 young = pmd_young(old_pmd); 2475 soft_dirty = pmd_soft_dirty(old_pmd); 2476 uffd_wp = pmd_uffd_wp(old_pmd); 2477 2478 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2479 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2480 2481 /* 2482 * Without "freeze", we'll simply split the PMD, propagating the 2483 * PageAnonExclusive() flag for each PTE by setting it for 2484 * each subpage -- no need to (temporarily) clear. 2485 * 2486 * With "freeze" we want to replace mapped pages by 2487 * migration entries right away. This is only possible if we 2488 * managed to clear PageAnonExclusive() -- see 2489 * set_pmd_migration_entry(). 2490 * 2491 * In case we cannot clear PageAnonExclusive(), split the PMD 2492 * only and let try_to_migrate_one() fail later. 2493 * 2494 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2495 */ 2496 anon_exclusive = PageAnonExclusive(page); 2497 if (freeze && anon_exclusive && 2498 folio_try_share_anon_rmap_pmd(folio, page)) 2499 freeze = false; 2500 if (!freeze) { 2501 rmap_t rmap_flags = RMAP_NONE; 2502 2503 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2504 if (anon_exclusive) 2505 rmap_flags |= RMAP_EXCLUSIVE; 2506 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2507 vma, haddr, rmap_flags); 2508 } 2509 } 2510 2511 /* 2512 * Withdraw the table only after we mark the pmd entry invalid. 2513 * This's critical for some architectures (Power). 2514 */ 2515 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2516 pmd_populate(mm, &_pmd, pgtable); 2517 2518 pte = pte_offset_map(&_pmd, haddr); 2519 VM_BUG_ON(!pte); 2520 2521 /* 2522 * Note that NUMA hinting access restrictions are not transferred to 2523 * avoid any possibility of altering permissions across VMAs. 2524 */ 2525 if (freeze || pmd_migration) { 2526 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2527 pte_t entry; 2528 swp_entry_t swp_entry; 2529 2530 if (write) 2531 swp_entry = make_writable_migration_entry( 2532 page_to_pfn(page + i)); 2533 else if (anon_exclusive) 2534 swp_entry = make_readable_exclusive_migration_entry( 2535 page_to_pfn(page + i)); 2536 else 2537 swp_entry = make_readable_migration_entry( 2538 page_to_pfn(page + i)); 2539 if (young) 2540 swp_entry = make_migration_entry_young(swp_entry); 2541 if (dirty) 2542 swp_entry = make_migration_entry_dirty(swp_entry); 2543 entry = swp_entry_to_pte(swp_entry); 2544 if (soft_dirty) 2545 entry = pte_swp_mksoft_dirty(entry); 2546 if (uffd_wp) 2547 entry = pte_swp_mkuffd_wp(entry); 2548 2549 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2550 set_pte_at(mm, addr, pte + i, entry); 2551 } 2552 } else { 2553 pte_t entry; 2554 2555 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2556 if (write) 2557 entry = pte_mkwrite(entry, vma); 2558 if (!young) 2559 entry = pte_mkold(entry); 2560 /* NOTE: this may set soft-dirty too on some archs */ 2561 if (dirty) 2562 entry = pte_mkdirty(entry); 2563 if (soft_dirty) 2564 entry = pte_mksoft_dirty(entry); 2565 if (uffd_wp) 2566 entry = pte_mkuffd_wp(entry); 2567 2568 for (i = 0; i < HPAGE_PMD_NR; i++) 2569 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2570 2571 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2572 } 2573 pte_unmap(pte); 2574 2575 if (!pmd_migration) 2576 folio_remove_rmap_pmd(folio, page, vma); 2577 if (freeze) 2578 put_page(page); 2579 2580 smp_wmb(); /* make pte visible before pmd */ 2581 pmd_populate(mm, pmd, pgtable); 2582 } 2583 2584 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2585 unsigned long address, bool freeze, struct folio *folio) 2586 { 2587 spinlock_t *ptl; 2588 struct mmu_notifier_range range; 2589 2590 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2591 address & HPAGE_PMD_MASK, 2592 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2593 mmu_notifier_invalidate_range_start(&range); 2594 ptl = pmd_lock(vma->vm_mm, pmd); 2595 2596 /* 2597 * If caller asks to setup a migration entry, we need a folio to check 2598 * pmd against. Otherwise we can end up replacing wrong folio. 2599 */ 2600 VM_BUG_ON(freeze && !folio); 2601 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2602 2603 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2604 is_pmd_migration_entry(*pmd)) { 2605 /* 2606 * It's safe to call pmd_page when folio is set because it's 2607 * guaranteed that pmd is present. 2608 */ 2609 if (folio && folio != pmd_folio(*pmd)) 2610 goto out; 2611 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2612 } 2613 2614 out: 2615 spin_unlock(ptl); 2616 mmu_notifier_invalidate_range_end(&range); 2617 } 2618 2619 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2620 bool freeze, struct folio *folio) 2621 { 2622 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2623 2624 if (!pmd) 2625 return; 2626 2627 __split_huge_pmd(vma, pmd, address, freeze, folio); 2628 } 2629 2630 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2631 { 2632 /* 2633 * If the new address isn't hpage aligned and it could previously 2634 * contain an hugepage: check if we need to split an huge pmd. 2635 */ 2636 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2637 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2638 ALIGN(address, HPAGE_PMD_SIZE))) 2639 split_huge_pmd_address(vma, address, false, NULL); 2640 } 2641 2642 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2643 unsigned long start, 2644 unsigned long end, 2645 long adjust_next) 2646 { 2647 /* Check if we need to split start first. */ 2648 split_huge_pmd_if_needed(vma, start); 2649 2650 /* Check if we need to split end next. */ 2651 split_huge_pmd_if_needed(vma, end); 2652 2653 /* 2654 * If we're also updating the next vma vm_start, 2655 * check if we need to split it. 2656 */ 2657 if (adjust_next > 0) { 2658 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2659 unsigned long nstart = next->vm_start; 2660 nstart += adjust_next; 2661 split_huge_pmd_if_needed(next, nstart); 2662 } 2663 } 2664 2665 static void unmap_folio(struct folio *folio) 2666 { 2667 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2668 TTU_BATCH_FLUSH; 2669 2670 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2671 2672 if (folio_test_pmd_mappable(folio)) 2673 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2674 2675 /* 2676 * Anon pages need migration entries to preserve them, but file 2677 * pages can simply be left unmapped, then faulted back on demand. 2678 * If that is ever changed (perhaps for mlock), update remap_page(). 2679 */ 2680 if (folio_test_anon(folio)) 2681 try_to_migrate(folio, ttu_flags); 2682 else 2683 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2684 2685 try_to_unmap_flush(); 2686 } 2687 2688 static void remap_page(struct folio *folio, unsigned long nr) 2689 { 2690 int i = 0; 2691 2692 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2693 if (!folio_test_anon(folio)) 2694 return; 2695 for (;;) { 2696 remove_migration_ptes(folio, folio, true); 2697 i += folio_nr_pages(folio); 2698 if (i >= nr) 2699 break; 2700 folio = folio_next(folio); 2701 } 2702 } 2703 2704 static void lru_add_page_tail(struct page *head, struct page *tail, 2705 struct lruvec *lruvec, struct list_head *list) 2706 { 2707 VM_BUG_ON_PAGE(!PageHead(head), head); 2708 VM_BUG_ON_PAGE(PageLRU(tail), head); 2709 lockdep_assert_held(&lruvec->lru_lock); 2710 2711 if (list) { 2712 /* page reclaim is reclaiming a huge page */ 2713 VM_WARN_ON(PageLRU(head)); 2714 get_page(tail); 2715 list_add_tail(&tail->lru, list); 2716 } else { 2717 /* head is still on lru (and we have it frozen) */ 2718 VM_WARN_ON(!PageLRU(head)); 2719 if (PageUnevictable(tail)) 2720 tail->mlock_count = 0; 2721 else 2722 list_add_tail(&tail->lru, &head->lru); 2723 SetPageLRU(tail); 2724 } 2725 } 2726 2727 static void __split_huge_page_tail(struct folio *folio, int tail, 2728 struct lruvec *lruvec, struct list_head *list, 2729 unsigned int new_order) 2730 { 2731 struct page *head = &folio->page; 2732 struct page *page_tail = head + tail; 2733 /* 2734 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2735 * Don't pass it around before clear_compound_head(). 2736 */ 2737 struct folio *new_folio = (struct folio *)page_tail; 2738 2739 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2740 2741 /* 2742 * Clone page flags before unfreezing refcount. 2743 * 2744 * After successful get_page_unless_zero() might follow flags change, 2745 * for example lock_page() which set PG_waiters. 2746 * 2747 * Note that for mapped sub-pages of an anonymous THP, 2748 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2749 * the migration entry instead from where remap_page() will restore it. 2750 * We can still have PG_anon_exclusive set on effectively unmapped and 2751 * unreferenced sub-pages of an anonymous THP: we can simply drop 2752 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2753 */ 2754 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2755 page_tail->flags |= (head->flags & 2756 ((1L << PG_referenced) | 2757 (1L << PG_swapbacked) | 2758 (1L << PG_swapcache) | 2759 (1L << PG_mlocked) | 2760 (1L << PG_uptodate) | 2761 (1L << PG_active) | 2762 (1L << PG_workingset) | 2763 (1L << PG_locked) | 2764 (1L << PG_unevictable) | 2765 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2766 (1L << PG_arch_2) | 2767 (1L << PG_arch_3) | 2768 #endif 2769 (1L << PG_dirty) | 2770 LRU_GEN_MASK | LRU_REFS_MASK)); 2771 2772 /* ->mapping in first and second tail page is replaced by other uses */ 2773 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2774 page_tail); 2775 page_tail->mapping = head->mapping; 2776 page_tail->index = head->index + tail; 2777 2778 /* 2779 * page->private should not be set in tail pages. Fix up and warn once 2780 * if private is unexpectedly set. 2781 */ 2782 if (unlikely(page_tail->private)) { 2783 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2784 page_tail->private = 0; 2785 } 2786 if (folio_test_swapcache(folio)) 2787 new_folio->swap.val = folio->swap.val + tail; 2788 2789 /* Page flags must be visible before we make the page non-compound. */ 2790 smp_wmb(); 2791 2792 /* 2793 * Clear PageTail before unfreezing page refcount. 2794 * 2795 * After successful get_page_unless_zero() might follow put_page() 2796 * which needs correct compound_head(). 2797 */ 2798 clear_compound_head(page_tail); 2799 if (new_order) { 2800 prep_compound_page(page_tail, new_order); 2801 folio_set_large_rmappable(new_folio); 2802 } 2803 2804 /* Finally unfreeze refcount. Additional reference from page cache. */ 2805 page_ref_unfreeze(page_tail, 2806 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2807 folio_nr_pages(new_folio) : 0)); 2808 2809 if (folio_test_young(folio)) 2810 folio_set_young(new_folio); 2811 if (folio_test_idle(folio)) 2812 folio_set_idle(new_folio); 2813 2814 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2815 2816 /* 2817 * always add to the tail because some iterators expect new 2818 * pages to show after the currently processed elements - e.g. 2819 * migrate_pages 2820 */ 2821 lru_add_page_tail(head, page_tail, lruvec, list); 2822 } 2823 2824 static void __split_huge_page(struct page *page, struct list_head *list, 2825 pgoff_t end, unsigned int new_order) 2826 { 2827 struct folio *folio = page_folio(page); 2828 struct page *head = &folio->page; 2829 struct lruvec *lruvec; 2830 struct address_space *swap_cache = NULL; 2831 unsigned long offset = 0; 2832 int i, nr_dropped = 0; 2833 unsigned int new_nr = 1 << new_order; 2834 int order = folio_order(folio); 2835 unsigned int nr = 1 << order; 2836 2837 /* complete memcg works before add pages to LRU */ 2838 split_page_memcg(head, order, new_order); 2839 2840 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2841 offset = swp_offset(folio->swap); 2842 swap_cache = swap_address_space(folio->swap); 2843 xa_lock(&swap_cache->i_pages); 2844 } 2845 2846 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2847 lruvec = folio_lruvec_lock(folio); 2848 2849 ClearPageHasHWPoisoned(head); 2850 2851 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2852 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2853 /* Some pages can be beyond EOF: drop them from page cache */ 2854 if (head[i].index >= end) { 2855 struct folio *tail = page_folio(head + i); 2856 2857 if (shmem_mapping(folio->mapping)) 2858 nr_dropped++; 2859 else if (folio_test_clear_dirty(tail)) 2860 folio_account_cleaned(tail, 2861 inode_to_wb(folio->mapping->host)); 2862 __filemap_remove_folio(tail, NULL); 2863 folio_put(tail); 2864 } else if (!PageAnon(page)) { 2865 __xa_store(&folio->mapping->i_pages, head[i].index, 2866 head + i, 0); 2867 } else if (swap_cache) { 2868 __xa_store(&swap_cache->i_pages, offset + i, 2869 head + i, 0); 2870 } 2871 } 2872 2873 if (!new_order) 2874 ClearPageCompound(head); 2875 else { 2876 struct folio *new_folio = (struct folio *)head; 2877 2878 folio_set_order(new_folio, new_order); 2879 } 2880 unlock_page_lruvec(lruvec); 2881 /* Caller disabled irqs, so they are still disabled here */ 2882 2883 split_page_owner(head, order, new_order); 2884 pgalloc_tag_split(head, 1 << order); 2885 2886 /* See comment in __split_huge_page_tail() */ 2887 if (folio_test_anon(folio)) { 2888 /* Additional pin to swap cache */ 2889 if (folio_test_swapcache(folio)) { 2890 folio_ref_add(folio, 1 + new_nr); 2891 xa_unlock(&swap_cache->i_pages); 2892 } else { 2893 folio_ref_inc(folio); 2894 } 2895 } else { 2896 /* Additional pin to page cache */ 2897 folio_ref_add(folio, 1 + new_nr); 2898 xa_unlock(&folio->mapping->i_pages); 2899 } 2900 local_irq_enable(); 2901 2902 if (nr_dropped) 2903 shmem_uncharge(folio->mapping->host, nr_dropped); 2904 remap_page(folio, nr); 2905 2906 /* 2907 * set page to its compound_head when split to non order-0 pages, so 2908 * we can skip unlocking it below, since PG_locked is transferred to 2909 * the compound_head of the page and the caller will unlock it. 2910 */ 2911 if (new_order) 2912 page = compound_head(page); 2913 2914 for (i = 0; i < nr; i += new_nr) { 2915 struct page *subpage = head + i; 2916 struct folio *new_folio = page_folio(subpage); 2917 if (subpage == page) 2918 continue; 2919 folio_unlock(new_folio); 2920 2921 /* 2922 * Subpages may be freed if there wasn't any mapping 2923 * like if add_to_swap() is running on a lru page that 2924 * had its mapping zapped. And freeing these pages 2925 * requires taking the lru_lock so we do the put_page 2926 * of the tail pages after the split is complete. 2927 */ 2928 free_page_and_swap_cache(subpage); 2929 } 2930 } 2931 2932 /* Racy check whether the huge page can be split */ 2933 bool can_split_folio(struct folio *folio, int *pextra_pins) 2934 { 2935 int extra_pins; 2936 2937 /* Additional pins from page cache */ 2938 if (folio_test_anon(folio)) 2939 extra_pins = folio_test_swapcache(folio) ? 2940 folio_nr_pages(folio) : 0; 2941 else 2942 extra_pins = folio_nr_pages(folio); 2943 if (pextra_pins) 2944 *pextra_pins = extra_pins; 2945 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2946 } 2947 2948 /* 2949 * This function splits a large folio into smaller folios of order @new_order. 2950 * @page can point to any page of the large folio to split. The split operation 2951 * does not change the position of @page. 2952 * 2953 * Prerequisites: 2954 * 2955 * 1) The caller must hold a reference on the @page's owning folio, also known 2956 * as the large folio. 2957 * 2958 * 2) The large folio must be locked. 2959 * 2960 * 3) The folio must not be pinned. Any unexpected folio references, including 2961 * GUP pins, will result in the folio not getting split; instead, the caller 2962 * will receive an -EAGAIN. 2963 * 2964 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 2965 * supported for non-file-backed folios, because folio->_deferred_list, which 2966 * is used by partially mapped folios, is stored in subpage 2, but an order-1 2967 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 2968 * since they do not use _deferred_list. 2969 * 2970 * After splitting, the caller's folio reference will be transferred to @page, 2971 * resulting in a raised refcount of @page after this call. The other pages may 2972 * be freed if they are not mapped. 2973 * 2974 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2975 * 2976 * Pages in @new_order will inherit the mapping, flags, and so on from the 2977 * huge page. 2978 * 2979 * Returns 0 if the huge page was split successfully. 2980 * 2981 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 2982 * the folio was concurrently removed from the page cache. 2983 * 2984 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 2985 * under writeback, if fs-specific folio metadata cannot currently be 2986 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 2987 * truncation). 2988 * 2989 * Returns -EINVAL when trying to split to an order that is incompatible 2990 * with the folio. Splitting to order 0 is compatible with all folios. 2991 */ 2992 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 2993 unsigned int new_order) 2994 { 2995 struct folio *folio = page_folio(page); 2996 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2997 /* reset xarray order to new order after split */ 2998 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 2999 struct anon_vma *anon_vma = NULL; 3000 struct address_space *mapping = NULL; 3001 bool is_thp = folio_test_pmd_mappable(folio); 3002 int extra_pins, ret; 3003 pgoff_t end; 3004 bool is_hzp; 3005 3006 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3007 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3008 3009 if (new_order >= folio_order(folio)) 3010 return -EINVAL; 3011 3012 /* Cannot split anonymous THP to order-1 */ 3013 if (new_order == 1 && folio_test_anon(folio)) { 3014 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3015 return -EINVAL; 3016 } 3017 3018 if (new_order) { 3019 /* Only swapping a whole PMD-mapped folio is supported */ 3020 if (folio_test_swapcache(folio)) 3021 return -EINVAL; 3022 /* Split shmem folio to non-zero order not supported */ 3023 if (shmem_mapping(folio->mapping)) { 3024 VM_WARN_ONCE(1, 3025 "Cannot split shmem folio to non-0 order"); 3026 return -EINVAL; 3027 } 3028 /* No split if the file system does not support large folio */ 3029 if (!mapping_large_folio_support(folio->mapping)) { 3030 VM_WARN_ONCE(1, 3031 "Cannot split file folio to non-0 order"); 3032 return -EINVAL; 3033 } 3034 } 3035 3036 3037 is_hzp = is_huge_zero_folio(folio); 3038 if (is_hzp) { 3039 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3040 return -EBUSY; 3041 } 3042 3043 if (folio_test_writeback(folio)) 3044 return -EBUSY; 3045 3046 if (folio_test_anon(folio)) { 3047 /* 3048 * The caller does not necessarily hold an mmap_lock that would 3049 * prevent the anon_vma disappearing so we first we take a 3050 * reference to it and then lock the anon_vma for write. This 3051 * is similar to folio_lock_anon_vma_read except the write lock 3052 * is taken to serialise against parallel split or collapse 3053 * operations. 3054 */ 3055 anon_vma = folio_get_anon_vma(folio); 3056 if (!anon_vma) { 3057 ret = -EBUSY; 3058 goto out; 3059 } 3060 end = -1; 3061 mapping = NULL; 3062 anon_vma_lock_write(anon_vma); 3063 } else { 3064 gfp_t gfp; 3065 3066 mapping = folio->mapping; 3067 3068 /* Truncated ? */ 3069 if (!mapping) { 3070 ret = -EBUSY; 3071 goto out; 3072 } 3073 3074 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3075 GFP_RECLAIM_MASK); 3076 3077 if (!filemap_release_folio(folio, gfp)) { 3078 ret = -EBUSY; 3079 goto out; 3080 } 3081 3082 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3083 if (xas_error(&xas)) { 3084 ret = xas_error(&xas); 3085 goto out; 3086 } 3087 3088 anon_vma = NULL; 3089 i_mmap_lock_read(mapping); 3090 3091 /* 3092 *__split_huge_page() may need to trim off pages beyond EOF: 3093 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3094 * which cannot be nested inside the page tree lock. So note 3095 * end now: i_size itself may be changed at any moment, but 3096 * folio lock is good enough to serialize the trimming. 3097 */ 3098 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3099 if (shmem_mapping(mapping)) 3100 end = shmem_fallocend(mapping->host, end); 3101 } 3102 3103 /* 3104 * Racy check if we can split the page, before unmap_folio() will 3105 * split PMDs 3106 */ 3107 if (!can_split_folio(folio, &extra_pins)) { 3108 ret = -EAGAIN; 3109 goto out_unlock; 3110 } 3111 3112 unmap_folio(folio); 3113 3114 /* block interrupt reentry in xa_lock and spinlock */ 3115 local_irq_disable(); 3116 if (mapping) { 3117 /* 3118 * Check if the folio is present in page cache. 3119 * We assume all tail are present too, if folio is there. 3120 */ 3121 xas_lock(&xas); 3122 xas_reset(&xas); 3123 if (xas_load(&xas) != folio) 3124 goto fail; 3125 } 3126 3127 /* Prevent deferred_split_scan() touching ->_refcount */ 3128 spin_lock(&ds_queue->split_queue_lock); 3129 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3130 if (folio_order(folio) > 1 && 3131 !list_empty(&folio->_deferred_list)) { 3132 ds_queue->split_queue_len--; 3133 /* 3134 * Reinitialize page_deferred_list after removing the 3135 * page from the split_queue, otherwise a subsequent 3136 * split will see list corruption when checking the 3137 * page_deferred_list. 3138 */ 3139 list_del_init(&folio->_deferred_list); 3140 } 3141 spin_unlock(&ds_queue->split_queue_lock); 3142 if (mapping) { 3143 int nr = folio_nr_pages(folio); 3144 3145 xas_split(&xas, folio, folio_order(folio)); 3146 if (folio_test_pmd_mappable(folio) && 3147 new_order < HPAGE_PMD_ORDER) { 3148 if (folio_test_swapbacked(folio)) { 3149 __lruvec_stat_mod_folio(folio, 3150 NR_SHMEM_THPS, -nr); 3151 } else { 3152 __lruvec_stat_mod_folio(folio, 3153 NR_FILE_THPS, -nr); 3154 filemap_nr_thps_dec(mapping); 3155 } 3156 } 3157 } 3158 3159 __split_huge_page(page, list, end, new_order); 3160 ret = 0; 3161 } else { 3162 spin_unlock(&ds_queue->split_queue_lock); 3163 fail: 3164 if (mapping) 3165 xas_unlock(&xas); 3166 local_irq_enable(); 3167 remap_page(folio, folio_nr_pages(folio)); 3168 ret = -EAGAIN; 3169 } 3170 3171 out_unlock: 3172 if (anon_vma) { 3173 anon_vma_unlock_write(anon_vma); 3174 put_anon_vma(anon_vma); 3175 } 3176 if (mapping) 3177 i_mmap_unlock_read(mapping); 3178 out: 3179 xas_destroy(&xas); 3180 if (is_thp) 3181 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3182 return ret; 3183 } 3184 3185 void folio_undo_large_rmappable(struct folio *folio) 3186 { 3187 struct deferred_split *ds_queue; 3188 unsigned long flags; 3189 3190 if (folio_order(folio) <= 1) 3191 return; 3192 3193 /* 3194 * At this point, there is no one trying to add the folio to 3195 * deferred_list. If folio is not in deferred_list, it's safe 3196 * to check without acquiring the split_queue_lock. 3197 */ 3198 if (data_race(list_empty(&folio->_deferred_list))) 3199 return; 3200 3201 ds_queue = get_deferred_split_queue(folio); 3202 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3203 if (!list_empty(&folio->_deferred_list)) { 3204 ds_queue->split_queue_len--; 3205 list_del_init(&folio->_deferred_list); 3206 } 3207 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3208 } 3209 3210 void deferred_split_folio(struct folio *folio) 3211 { 3212 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3213 #ifdef CONFIG_MEMCG 3214 struct mem_cgroup *memcg = folio_memcg(folio); 3215 #endif 3216 unsigned long flags; 3217 3218 /* 3219 * Order 1 folios have no space for a deferred list, but we also 3220 * won't waste much memory by not adding them to the deferred list. 3221 */ 3222 if (folio_order(folio) <= 1) 3223 return; 3224 3225 /* 3226 * The try_to_unmap() in page reclaim path might reach here too, 3227 * this may cause a race condition to corrupt deferred split queue. 3228 * And, if page reclaim is already handling the same folio, it is 3229 * unnecessary to handle it again in shrinker. 3230 * 3231 * Check the swapcache flag to determine if the folio is being 3232 * handled by page reclaim since THP swap would add the folio into 3233 * swap cache before calling try_to_unmap(). 3234 */ 3235 if (folio_test_swapcache(folio)) 3236 return; 3237 3238 if (!list_empty(&folio->_deferred_list)) 3239 return; 3240 3241 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3242 if (list_empty(&folio->_deferred_list)) { 3243 if (folio_test_pmd_mappable(folio)) 3244 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3245 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3246 ds_queue->split_queue_len++; 3247 #ifdef CONFIG_MEMCG 3248 if (memcg) 3249 set_shrinker_bit(memcg, folio_nid(folio), 3250 deferred_split_shrinker->id); 3251 #endif 3252 } 3253 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3254 } 3255 3256 static unsigned long deferred_split_count(struct shrinker *shrink, 3257 struct shrink_control *sc) 3258 { 3259 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3260 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3261 3262 #ifdef CONFIG_MEMCG 3263 if (sc->memcg) 3264 ds_queue = &sc->memcg->deferred_split_queue; 3265 #endif 3266 return READ_ONCE(ds_queue->split_queue_len); 3267 } 3268 3269 static unsigned long deferred_split_scan(struct shrinker *shrink, 3270 struct shrink_control *sc) 3271 { 3272 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3273 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3274 unsigned long flags; 3275 LIST_HEAD(list); 3276 struct folio *folio, *next; 3277 int split = 0; 3278 3279 #ifdef CONFIG_MEMCG 3280 if (sc->memcg) 3281 ds_queue = &sc->memcg->deferred_split_queue; 3282 #endif 3283 3284 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3285 /* Take pin on all head pages to avoid freeing them under us */ 3286 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3287 _deferred_list) { 3288 if (folio_try_get(folio)) { 3289 list_move(&folio->_deferred_list, &list); 3290 } else { 3291 /* We lost race with folio_put() */ 3292 list_del_init(&folio->_deferred_list); 3293 ds_queue->split_queue_len--; 3294 } 3295 if (!--sc->nr_to_scan) 3296 break; 3297 } 3298 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3299 3300 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3301 if (!folio_trylock(folio)) 3302 goto next; 3303 /* split_huge_page() removes page from list on success */ 3304 if (!split_folio(folio)) 3305 split++; 3306 folio_unlock(folio); 3307 next: 3308 folio_put(folio); 3309 } 3310 3311 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3312 list_splice_tail(&list, &ds_queue->split_queue); 3313 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3314 3315 /* 3316 * Stop shrinker if we didn't split any page, but the queue is empty. 3317 * This can happen if pages were freed under us. 3318 */ 3319 if (!split && list_empty(&ds_queue->split_queue)) 3320 return SHRINK_STOP; 3321 return split; 3322 } 3323 3324 #ifdef CONFIG_DEBUG_FS 3325 static void split_huge_pages_all(void) 3326 { 3327 struct zone *zone; 3328 struct page *page; 3329 struct folio *folio; 3330 unsigned long pfn, max_zone_pfn; 3331 unsigned long total = 0, split = 0; 3332 3333 pr_debug("Split all THPs\n"); 3334 for_each_zone(zone) { 3335 if (!managed_zone(zone)) 3336 continue; 3337 max_zone_pfn = zone_end_pfn(zone); 3338 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3339 int nr_pages; 3340 3341 page = pfn_to_online_page(pfn); 3342 if (!page || PageTail(page)) 3343 continue; 3344 folio = page_folio(page); 3345 if (!folio_try_get(folio)) 3346 continue; 3347 3348 if (unlikely(page_folio(page) != folio)) 3349 goto next; 3350 3351 if (zone != folio_zone(folio)) 3352 goto next; 3353 3354 if (!folio_test_large(folio) 3355 || folio_test_hugetlb(folio) 3356 || !folio_test_lru(folio)) 3357 goto next; 3358 3359 total++; 3360 folio_lock(folio); 3361 nr_pages = folio_nr_pages(folio); 3362 if (!split_folio(folio)) 3363 split++; 3364 pfn += nr_pages - 1; 3365 folio_unlock(folio); 3366 next: 3367 folio_put(folio); 3368 cond_resched(); 3369 } 3370 } 3371 3372 pr_debug("%lu of %lu THP split\n", split, total); 3373 } 3374 3375 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3376 { 3377 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3378 is_vm_hugetlb_page(vma); 3379 } 3380 3381 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3382 unsigned long vaddr_end, unsigned int new_order) 3383 { 3384 int ret = 0; 3385 struct task_struct *task; 3386 struct mm_struct *mm; 3387 unsigned long total = 0, split = 0; 3388 unsigned long addr; 3389 3390 vaddr_start &= PAGE_MASK; 3391 vaddr_end &= PAGE_MASK; 3392 3393 /* Find the task_struct from pid */ 3394 rcu_read_lock(); 3395 task = find_task_by_vpid(pid); 3396 if (!task) { 3397 rcu_read_unlock(); 3398 ret = -ESRCH; 3399 goto out; 3400 } 3401 get_task_struct(task); 3402 rcu_read_unlock(); 3403 3404 /* Find the mm_struct */ 3405 mm = get_task_mm(task); 3406 put_task_struct(task); 3407 3408 if (!mm) { 3409 ret = -EINVAL; 3410 goto out; 3411 } 3412 3413 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3414 pid, vaddr_start, vaddr_end); 3415 3416 mmap_read_lock(mm); 3417 /* 3418 * always increase addr by PAGE_SIZE, since we could have a PTE page 3419 * table filled with PTE-mapped THPs, each of which is distinct. 3420 */ 3421 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3422 struct vm_area_struct *vma = vma_lookup(mm, addr); 3423 struct page *page; 3424 struct folio *folio; 3425 3426 if (!vma) 3427 break; 3428 3429 /* skip special VMA and hugetlb VMA */ 3430 if (vma_not_suitable_for_thp_split(vma)) { 3431 addr = vma->vm_end; 3432 continue; 3433 } 3434 3435 /* FOLL_DUMP to ignore special (like zero) pages */ 3436 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3437 3438 if (IS_ERR_OR_NULL(page)) 3439 continue; 3440 3441 folio = page_folio(page); 3442 if (!is_transparent_hugepage(folio)) 3443 goto next; 3444 3445 if (new_order >= folio_order(folio)) 3446 goto next; 3447 3448 total++; 3449 /* 3450 * For folios with private, split_huge_page_to_list_to_order() 3451 * will try to drop it before split and then check if the folio 3452 * can be split or not. So skip the check here. 3453 */ 3454 if (!folio_test_private(folio) && 3455 !can_split_folio(folio, NULL)) 3456 goto next; 3457 3458 if (!folio_trylock(folio)) 3459 goto next; 3460 3461 if (!split_folio_to_order(folio, new_order)) 3462 split++; 3463 3464 folio_unlock(folio); 3465 next: 3466 folio_put(folio); 3467 cond_resched(); 3468 } 3469 mmap_read_unlock(mm); 3470 mmput(mm); 3471 3472 pr_debug("%lu of %lu THP split\n", split, total); 3473 3474 out: 3475 return ret; 3476 } 3477 3478 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3479 pgoff_t off_end, unsigned int new_order) 3480 { 3481 struct filename *file; 3482 struct file *candidate; 3483 struct address_space *mapping; 3484 int ret = -EINVAL; 3485 pgoff_t index; 3486 int nr_pages = 1; 3487 unsigned long total = 0, split = 0; 3488 3489 file = getname_kernel(file_path); 3490 if (IS_ERR(file)) 3491 return ret; 3492 3493 candidate = file_open_name(file, O_RDONLY, 0); 3494 if (IS_ERR(candidate)) 3495 goto out; 3496 3497 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3498 file_path, off_start, off_end); 3499 3500 mapping = candidate->f_mapping; 3501 3502 for (index = off_start; index < off_end; index += nr_pages) { 3503 struct folio *folio = filemap_get_folio(mapping, index); 3504 3505 nr_pages = 1; 3506 if (IS_ERR(folio)) 3507 continue; 3508 3509 if (!folio_test_large(folio)) 3510 goto next; 3511 3512 total++; 3513 nr_pages = folio_nr_pages(folio); 3514 3515 if (new_order >= folio_order(folio)) 3516 goto next; 3517 3518 if (!folio_trylock(folio)) 3519 goto next; 3520 3521 if (!split_folio_to_order(folio, new_order)) 3522 split++; 3523 3524 folio_unlock(folio); 3525 next: 3526 folio_put(folio); 3527 cond_resched(); 3528 } 3529 3530 filp_close(candidate, NULL); 3531 ret = 0; 3532 3533 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3534 out: 3535 putname(file); 3536 return ret; 3537 } 3538 3539 #define MAX_INPUT_BUF_SZ 255 3540 3541 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3542 size_t count, loff_t *ppops) 3543 { 3544 static DEFINE_MUTEX(split_debug_mutex); 3545 ssize_t ret; 3546 /* 3547 * hold pid, start_vaddr, end_vaddr, new_order or 3548 * file_path, off_start, off_end, new_order 3549 */ 3550 char input_buf[MAX_INPUT_BUF_SZ]; 3551 int pid; 3552 unsigned long vaddr_start, vaddr_end; 3553 unsigned int new_order = 0; 3554 3555 ret = mutex_lock_interruptible(&split_debug_mutex); 3556 if (ret) 3557 return ret; 3558 3559 ret = -EFAULT; 3560 3561 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3562 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3563 goto out; 3564 3565 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3566 3567 if (input_buf[0] == '/') { 3568 char *tok; 3569 char *buf = input_buf; 3570 char file_path[MAX_INPUT_BUF_SZ]; 3571 pgoff_t off_start = 0, off_end = 0; 3572 size_t input_len = strlen(input_buf); 3573 3574 tok = strsep(&buf, ","); 3575 if (tok) { 3576 strcpy(file_path, tok); 3577 } else { 3578 ret = -EINVAL; 3579 goto out; 3580 } 3581 3582 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3583 if (ret != 2 && ret != 3) { 3584 ret = -EINVAL; 3585 goto out; 3586 } 3587 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3588 if (!ret) 3589 ret = input_len; 3590 3591 goto out; 3592 } 3593 3594 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3595 if (ret == 1 && pid == 1) { 3596 split_huge_pages_all(); 3597 ret = strlen(input_buf); 3598 goto out; 3599 } else if (ret != 3 && ret != 4) { 3600 ret = -EINVAL; 3601 goto out; 3602 } 3603 3604 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3605 if (!ret) 3606 ret = strlen(input_buf); 3607 out: 3608 mutex_unlock(&split_debug_mutex); 3609 return ret; 3610 3611 } 3612 3613 static const struct file_operations split_huge_pages_fops = { 3614 .owner = THIS_MODULE, 3615 .write = split_huge_pages_write, 3616 .llseek = no_llseek, 3617 }; 3618 3619 static int __init split_huge_pages_debugfs(void) 3620 { 3621 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3622 &split_huge_pages_fops); 3623 return 0; 3624 } 3625 late_initcall(split_huge_pages_debugfs); 3626 #endif 3627 3628 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3629 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3630 struct page *page) 3631 { 3632 struct folio *folio = page_folio(page); 3633 struct vm_area_struct *vma = pvmw->vma; 3634 struct mm_struct *mm = vma->vm_mm; 3635 unsigned long address = pvmw->address; 3636 bool anon_exclusive; 3637 pmd_t pmdval; 3638 swp_entry_t entry; 3639 pmd_t pmdswp; 3640 3641 if (!(pvmw->pmd && !pvmw->pte)) 3642 return 0; 3643 3644 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3645 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3646 3647 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3648 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3649 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3650 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3651 return -EBUSY; 3652 } 3653 3654 if (pmd_dirty(pmdval)) 3655 folio_mark_dirty(folio); 3656 if (pmd_write(pmdval)) 3657 entry = make_writable_migration_entry(page_to_pfn(page)); 3658 else if (anon_exclusive) 3659 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3660 else 3661 entry = make_readable_migration_entry(page_to_pfn(page)); 3662 if (pmd_young(pmdval)) 3663 entry = make_migration_entry_young(entry); 3664 if (pmd_dirty(pmdval)) 3665 entry = make_migration_entry_dirty(entry); 3666 pmdswp = swp_entry_to_pmd(entry); 3667 if (pmd_soft_dirty(pmdval)) 3668 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3669 if (pmd_uffd_wp(pmdval)) 3670 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3671 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3672 folio_remove_rmap_pmd(folio, page, vma); 3673 folio_put(folio); 3674 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3675 3676 return 0; 3677 } 3678 3679 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3680 { 3681 struct folio *folio = page_folio(new); 3682 struct vm_area_struct *vma = pvmw->vma; 3683 struct mm_struct *mm = vma->vm_mm; 3684 unsigned long address = pvmw->address; 3685 unsigned long haddr = address & HPAGE_PMD_MASK; 3686 pmd_t pmde; 3687 swp_entry_t entry; 3688 3689 if (!(pvmw->pmd && !pvmw->pte)) 3690 return; 3691 3692 entry = pmd_to_swp_entry(*pvmw->pmd); 3693 folio_get(folio); 3694 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3695 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3696 pmde = pmd_mksoft_dirty(pmde); 3697 if (is_writable_migration_entry(entry)) 3698 pmde = pmd_mkwrite(pmde, vma); 3699 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3700 pmde = pmd_mkuffd_wp(pmde); 3701 if (!is_migration_entry_young(entry)) 3702 pmde = pmd_mkold(pmde); 3703 /* NOTE: this may contain setting soft-dirty on some archs */ 3704 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3705 pmde = pmd_mkdirty(pmde); 3706 3707 if (folio_test_anon(folio)) { 3708 rmap_t rmap_flags = RMAP_NONE; 3709 3710 if (!is_readable_migration_entry(entry)) 3711 rmap_flags |= RMAP_EXCLUSIVE; 3712 3713 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3714 } else { 3715 folio_add_file_rmap_pmd(folio, new, vma); 3716 } 3717 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3718 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3719 3720 /* No need to invalidate - it was non-present before */ 3721 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3722 trace_remove_migration_pmd(address, pmd_val(pmde)); 3723 } 3724 #endif 3725