xref: /linux/mm/huge_memory.c (revision 721cb3c8bc8890e824b7be53bf951960ff7811f9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 
36 #include <asm/tlb.h>
37 #include <asm/pgalloc.h>
38 #include "internal.h"
39 
40 /*
41  * By default, transparent hugepage support is disabled in order to avoid
42  * risking an increased memory footprint for applications that are not
43  * guaranteed to benefit from it. When transparent hugepage support is
44  * enabled, it is for all mappings, and khugepaged scans all mappings.
45  * Defrag is invoked by khugepaged hugepage allocations and by page faults
46  * for all hugepage allocations.
47  */
48 unsigned long transparent_hugepage_flags __read_mostly =
49 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
50 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
51 #endif
52 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
53 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
54 #endif
55 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
58 
59 static struct shrinker deferred_split_shrinker;
60 
61 static atomic_t huge_zero_refcount;
62 struct page *huge_zero_page __read_mostly;
63 
64 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
65 {
66 	/* The addr is used to check if the vma size fits */
67 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
68 
69 	if (!transhuge_vma_suitable(vma, addr))
70 		return false;
71 	if (vma_is_anonymous(vma))
72 		return __transparent_hugepage_enabled(vma);
73 	if (vma_is_shmem(vma))
74 		return shmem_huge_enabled(vma);
75 
76 	return false;
77 }
78 
79 static struct page *get_huge_zero_page(void)
80 {
81 	struct page *zero_page;
82 retry:
83 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
84 		return READ_ONCE(huge_zero_page);
85 
86 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
87 			HPAGE_PMD_ORDER);
88 	if (!zero_page) {
89 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
90 		return NULL;
91 	}
92 	count_vm_event(THP_ZERO_PAGE_ALLOC);
93 	preempt_disable();
94 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
95 		preempt_enable();
96 		__free_pages(zero_page, compound_order(zero_page));
97 		goto retry;
98 	}
99 
100 	/* We take additional reference here. It will be put back by shrinker */
101 	atomic_set(&huge_zero_refcount, 2);
102 	preempt_enable();
103 	return READ_ONCE(huge_zero_page);
104 }
105 
106 static void put_huge_zero_page(void)
107 {
108 	/*
109 	 * Counter should never go to zero here. Only shrinker can put
110 	 * last reference.
111 	 */
112 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
113 }
114 
115 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
116 {
117 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 		return READ_ONCE(huge_zero_page);
119 
120 	if (!get_huge_zero_page())
121 		return NULL;
122 
123 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
124 		put_huge_zero_page();
125 
126 	return READ_ONCE(huge_zero_page);
127 }
128 
129 void mm_put_huge_zero_page(struct mm_struct *mm)
130 {
131 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
132 		put_huge_zero_page();
133 }
134 
135 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
136 					struct shrink_control *sc)
137 {
138 	/* we can free zero page only if last reference remains */
139 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
140 }
141 
142 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
143 				       struct shrink_control *sc)
144 {
145 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
146 		struct page *zero_page = xchg(&huge_zero_page, NULL);
147 		BUG_ON(zero_page == NULL);
148 		__free_pages(zero_page, compound_order(zero_page));
149 		return HPAGE_PMD_NR;
150 	}
151 
152 	return 0;
153 }
154 
155 static struct shrinker huge_zero_page_shrinker = {
156 	.count_objects = shrink_huge_zero_page_count,
157 	.scan_objects = shrink_huge_zero_page_scan,
158 	.seeks = DEFAULT_SEEKS,
159 };
160 
161 #ifdef CONFIG_SYSFS
162 static ssize_t enabled_show(struct kobject *kobj,
163 			    struct kobj_attribute *attr, char *buf)
164 {
165 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
166 		return sprintf(buf, "[always] madvise never\n");
167 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
168 		return sprintf(buf, "always [madvise] never\n");
169 	else
170 		return sprintf(buf, "always madvise [never]\n");
171 }
172 
173 static ssize_t enabled_store(struct kobject *kobj,
174 			     struct kobj_attribute *attr,
175 			     const char *buf, size_t count)
176 {
177 	ssize_t ret = count;
178 
179 	if (!memcmp("always", buf,
180 		    min(sizeof("always")-1, count))) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 	} else if (!memcmp("madvise", buf,
184 			   min(sizeof("madvise")-1, count))) {
185 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 	} else if (!memcmp("never", buf,
188 			   min(sizeof("never")-1, count))) {
189 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 	} else
192 		ret = -EINVAL;
193 
194 	if (ret > 0) {
195 		int err = start_stop_khugepaged();
196 		if (err)
197 			ret = err;
198 	}
199 	return ret;
200 }
201 static struct kobj_attribute enabled_attr =
202 	__ATTR(enabled, 0644, enabled_show, enabled_store);
203 
204 ssize_t single_hugepage_flag_show(struct kobject *kobj,
205 				struct kobj_attribute *attr, char *buf,
206 				enum transparent_hugepage_flag flag)
207 {
208 	return sprintf(buf, "%d\n",
209 		       !!test_bit(flag, &transparent_hugepage_flags));
210 }
211 
212 ssize_t single_hugepage_flag_store(struct kobject *kobj,
213 				 struct kobj_attribute *attr,
214 				 const char *buf, size_t count,
215 				 enum transparent_hugepage_flag flag)
216 {
217 	unsigned long value;
218 	int ret;
219 
220 	ret = kstrtoul(buf, 10, &value);
221 	if (ret < 0)
222 		return ret;
223 	if (value > 1)
224 		return -EINVAL;
225 
226 	if (value)
227 		set_bit(flag, &transparent_hugepage_flags);
228 	else
229 		clear_bit(flag, &transparent_hugepage_flags);
230 
231 	return count;
232 }
233 
234 static ssize_t defrag_show(struct kobject *kobj,
235 			   struct kobj_attribute *attr, char *buf)
236 {
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
241 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
242 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
243 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
244 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
245 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
246 }
247 
248 static ssize_t defrag_store(struct kobject *kobj,
249 			    struct kobj_attribute *attr,
250 			    const char *buf, size_t count)
251 {
252 	if (!memcmp("always", buf,
253 		    min(sizeof("always")-1, count))) {
254 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
255 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
257 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 	} else if (!memcmp("defer+madvise", buf,
259 		    min(sizeof("defer+madvise")-1, count))) {
260 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
261 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 	} else if (!memcmp("defer", buf,
265 		    min(sizeof("defer")-1, count))) {
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 	} else if (!memcmp("madvise", buf,
271 			   min(sizeof("madvise")-1, count))) {
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
273 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
275 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
276 	} else if (!memcmp("never", buf,
277 			   min(sizeof("never")-1, count))) {
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
279 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 	} else
283 		return -EINVAL;
284 
285 	return count;
286 }
287 static struct kobj_attribute defrag_attr =
288 	__ATTR(defrag, 0644, defrag_show, defrag_store);
289 
290 static ssize_t use_zero_page_show(struct kobject *kobj,
291 		struct kobj_attribute *attr, char *buf)
292 {
293 	return single_hugepage_flag_show(kobj, attr, buf,
294 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
295 }
296 static ssize_t use_zero_page_store(struct kobject *kobj,
297 		struct kobj_attribute *attr, const char *buf, size_t count)
298 {
299 	return single_hugepage_flag_store(kobj, attr, buf, count,
300 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
301 }
302 static struct kobj_attribute use_zero_page_attr =
303 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
304 
305 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
306 		struct kobj_attribute *attr, char *buf)
307 {
308 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
309 }
310 static struct kobj_attribute hpage_pmd_size_attr =
311 	__ATTR_RO(hpage_pmd_size);
312 
313 #ifdef CONFIG_DEBUG_VM
314 static ssize_t debug_cow_show(struct kobject *kobj,
315 				struct kobj_attribute *attr, char *buf)
316 {
317 	return single_hugepage_flag_show(kobj, attr, buf,
318 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319 }
320 static ssize_t debug_cow_store(struct kobject *kobj,
321 			       struct kobj_attribute *attr,
322 			       const char *buf, size_t count)
323 {
324 	return single_hugepage_flag_store(kobj, attr, buf, count,
325 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326 }
327 static struct kobj_attribute debug_cow_attr =
328 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329 #endif /* CONFIG_DEBUG_VM */
330 
331 static struct attribute *hugepage_attr[] = {
332 	&enabled_attr.attr,
333 	&defrag_attr.attr,
334 	&use_zero_page_attr.attr,
335 	&hpage_pmd_size_attr.attr,
336 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
337 	&shmem_enabled_attr.attr,
338 #endif
339 #ifdef CONFIG_DEBUG_VM
340 	&debug_cow_attr.attr,
341 #endif
342 	NULL,
343 };
344 
345 static const struct attribute_group hugepage_attr_group = {
346 	.attrs = hugepage_attr,
347 };
348 
349 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
350 {
351 	int err;
352 
353 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
354 	if (unlikely(!*hugepage_kobj)) {
355 		pr_err("failed to create transparent hugepage kobject\n");
356 		return -ENOMEM;
357 	}
358 
359 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
360 	if (err) {
361 		pr_err("failed to register transparent hugepage group\n");
362 		goto delete_obj;
363 	}
364 
365 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
366 	if (err) {
367 		pr_err("failed to register transparent hugepage group\n");
368 		goto remove_hp_group;
369 	}
370 
371 	return 0;
372 
373 remove_hp_group:
374 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
375 delete_obj:
376 	kobject_put(*hugepage_kobj);
377 	return err;
378 }
379 
380 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
381 {
382 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
383 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
384 	kobject_put(hugepage_kobj);
385 }
386 #else
387 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
388 {
389 	return 0;
390 }
391 
392 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
393 {
394 }
395 #endif /* CONFIG_SYSFS */
396 
397 static int __init hugepage_init(void)
398 {
399 	int err;
400 	struct kobject *hugepage_kobj;
401 
402 	if (!has_transparent_hugepage()) {
403 		transparent_hugepage_flags = 0;
404 		return -EINVAL;
405 	}
406 
407 	/*
408 	 * hugepages can't be allocated by the buddy allocator
409 	 */
410 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
411 	/*
412 	 * we use page->mapping and page->index in second tail page
413 	 * as list_head: assuming THP order >= 2
414 	 */
415 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
416 
417 	err = hugepage_init_sysfs(&hugepage_kobj);
418 	if (err)
419 		goto err_sysfs;
420 
421 	err = khugepaged_init();
422 	if (err)
423 		goto err_slab;
424 
425 	err = register_shrinker(&huge_zero_page_shrinker);
426 	if (err)
427 		goto err_hzp_shrinker;
428 	err = register_shrinker(&deferred_split_shrinker);
429 	if (err)
430 		goto err_split_shrinker;
431 
432 	/*
433 	 * By default disable transparent hugepages on smaller systems,
434 	 * where the extra memory used could hurt more than TLB overhead
435 	 * is likely to save.  The admin can still enable it through /sys.
436 	 */
437 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
438 		transparent_hugepage_flags = 0;
439 		return 0;
440 	}
441 
442 	err = start_stop_khugepaged();
443 	if (err)
444 		goto err_khugepaged;
445 
446 	return 0;
447 err_khugepaged:
448 	unregister_shrinker(&deferred_split_shrinker);
449 err_split_shrinker:
450 	unregister_shrinker(&huge_zero_page_shrinker);
451 err_hzp_shrinker:
452 	khugepaged_destroy();
453 err_slab:
454 	hugepage_exit_sysfs(hugepage_kobj);
455 err_sysfs:
456 	return err;
457 }
458 subsys_initcall(hugepage_init);
459 
460 static int __init setup_transparent_hugepage(char *str)
461 {
462 	int ret = 0;
463 	if (!str)
464 		goto out;
465 	if (!strcmp(str, "always")) {
466 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 			&transparent_hugepage_flags);
468 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 			  &transparent_hugepage_flags);
470 		ret = 1;
471 	} else if (!strcmp(str, "madvise")) {
472 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 			  &transparent_hugepage_flags);
474 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 			&transparent_hugepage_flags);
476 		ret = 1;
477 	} else if (!strcmp(str, "never")) {
478 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
479 			  &transparent_hugepage_flags);
480 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
481 			  &transparent_hugepage_flags);
482 		ret = 1;
483 	}
484 out:
485 	if (!ret)
486 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
487 	return ret;
488 }
489 __setup("transparent_hugepage=", setup_transparent_hugepage);
490 
491 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
492 {
493 	if (likely(vma->vm_flags & VM_WRITE))
494 		pmd = pmd_mkwrite(pmd);
495 	return pmd;
496 }
497 
498 static inline struct list_head *page_deferred_list(struct page *page)
499 {
500 	/* ->lru in the tail pages is occupied by compound_head. */
501 	return &page[2].deferred_list;
502 }
503 
504 void prep_transhuge_page(struct page *page)
505 {
506 	/*
507 	 * we use page->mapping and page->indexlru in second tail page
508 	 * as list_head: assuming THP order >= 2
509 	 */
510 
511 	INIT_LIST_HEAD(page_deferred_list(page));
512 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513 }
514 
515 static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
516 		loff_t off, unsigned long flags, unsigned long size)
517 {
518 	unsigned long addr;
519 	loff_t off_end = off + len;
520 	loff_t off_align = round_up(off, size);
521 	unsigned long len_pad;
522 
523 	if (off_end <= off_align || (off_end - off_align) < size)
524 		return 0;
525 
526 	len_pad = len + size;
527 	if (len_pad < len || (off + len_pad) < off)
528 		return 0;
529 
530 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
531 					      off >> PAGE_SHIFT, flags);
532 	if (IS_ERR_VALUE(addr))
533 		return 0;
534 
535 	addr += (off - addr) & (size - 1);
536 	return addr;
537 }
538 
539 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
540 		unsigned long len, unsigned long pgoff, unsigned long flags)
541 {
542 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
543 
544 	if (addr)
545 		goto out;
546 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
547 		goto out;
548 
549 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
550 	if (addr)
551 		return addr;
552 
553  out:
554 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555 }
556 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557 
558 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
559 			struct page *page, gfp_t gfp)
560 {
561 	struct vm_area_struct *vma = vmf->vma;
562 	struct mem_cgroup *memcg;
563 	pgtable_t pgtable;
564 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
565 	vm_fault_t ret = 0;
566 
567 	VM_BUG_ON_PAGE(!PageCompound(page), page);
568 
569 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
570 		put_page(page);
571 		count_vm_event(THP_FAULT_FALLBACK);
572 		return VM_FAULT_FALLBACK;
573 	}
574 
575 	pgtable = pte_alloc_one(vma->vm_mm);
576 	if (unlikely(!pgtable)) {
577 		ret = VM_FAULT_OOM;
578 		goto release;
579 	}
580 
581 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
582 	/*
583 	 * The memory barrier inside __SetPageUptodate makes sure that
584 	 * clear_huge_page writes become visible before the set_pmd_at()
585 	 * write.
586 	 */
587 	__SetPageUptodate(page);
588 
589 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
590 	if (unlikely(!pmd_none(*vmf->pmd))) {
591 		goto unlock_release;
592 	} else {
593 		pmd_t entry;
594 
595 		ret = check_stable_address_space(vma->vm_mm);
596 		if (ret)
597 			goto unlock_release;
598 
599 		/* Deliver the page fault to userland */
600 		if (userfaultfd_missing(vma)) {
601 			vm_fault_t ret2;
602 
603 			spin_unlock(vmf->ptl);
604 			mem_cgroup_cancel_charge(page, memcg, true);
605 			put_page(page);
606 			pte_free(vma->vm_mm, pgtable);
607 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
608 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
609 			return ret2;
610 		}
611 
612 		entry = mk_huge_pmd(page, vma->vm_page_prot);
613 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
614 		page_add_new_anon_rmap(page, vma, haddr, true);
615 		mem_cgroup_commit_charge(page, memcg, false, true);
616 		lru_cache_add_active_or_unevictable(page, vma);
617 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
618 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
619 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
620 		mm_inc_nr_ptes(vma->vm_mm);
621 		spin_unlock(vmf->ptl);
622 		count_vm_event(THP_FAULT_ALLOC);
623 		count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
624 	}
625 
626 	return 0;
627 unlock_release:
628 	spin_unlock(vmf->ptl);
629 release:
630 	if (pgtable)
631 		pte_free(vma->vm_mm, pgtable);
632 	mem_cgroup_cancel_charge(page, memcg, true);
633 	put_page(page);
634 	return ret;
635 
636 }
637 
638 /*
639  * always: directly stall for all thp allocations
640  * defer: wake kswapd and fail if not immediately available
641  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642  *		  fail if not immediately available
643  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644  *	    available
645  * never: never stall for any thp allocation
646  */
647 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
648 {
649 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
650 	gfp_t this_node = 0;
651 
652 #ifdef CONFIG_NUMA
653 	struct mempolicy *pol;
654 	/*
655 	 * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
656 	 * specified, to express a general desire to stay on the current
657 	 * node for optimistic allocation attempts. If the defrag mode
658 	 * and/or madvise hint requires the direct reclaim then we prefer
659 	 * to fallback to other node rather than node reclaim because that
660 	 * can lead to excessive reclaim even though there is free memory
661 	 * on other nodes. We expect that NUMA preferences are specified
662 	 * by memory policies.
663 	 */
664 	pol = get_vma_policy(vma, addr);
665 	if (pol->mode != MPOL_BIND)
666 		this_node = __GFP_THISNODE;
667 	mpol_cond_put(pol);
668 #endif
669 
670 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
671 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
672 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
673 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
674 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
675 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
676 							     __GFP_KSWAPD_RECLAIM | this_node);
677 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
678 		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
679 							     this_node);
680 	return GFP_TRANSHUGE_LIGHT | this_node;
681 }
682 
683 /* Caller must hold page table lock. */
684 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
685 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
686 		struct page *zero_page)
687 {
688 	pmd_t entry;
689 	if (!pmd_none(*pmd))
690 		return false;
691 	entry = mk_pmd(zero_page, vma->vm_page_prot);
692 	entry = pmd_mkhuge(entry);
693 	if (pgtable)
694 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
695 	set_pmd_at(mm, haddr, pmd, entry);
696 	mm_inc_nr_ptes(mm);
697 	return true;
698 }
699 
700 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
701 {
702 	struct vm_area_struct *vma = vmf->vma;
703 	gfp_t gfp;
704 	struct page *page;
705 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
706 
707 	if (!transhuge_vma_suitable(vma, haddr))
708 		return VM_FAULT_FALLBACK;
709 	if (unlikely(anon_vma_prepare(vma)))
710 		return VM_FAULT_OOM;
711 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
712 		return VM_FAULT_OOM;
713 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
714 			!mm_forbids_zeropage(vma->vm_mm) &&
715 			transparent_hugepage_use_zero_page()) {
716 		pgtable_t pgtable;
717 		struct page *zero_page;
718 		bool set;
719 		vm_fault_t ret;
720 		pgtable = pte_alloc_one(vma->vm_mm);
721 		if (unlikely(!pgtable))
722 			return VM_FAULT_OOM;
723 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
724 		if (unlikely(!zero_page)) {
725 			pte_free(vma->vm_mm, pgtable);
726 			count_vm_event(THP_FAULT_FALLBACK);
727 			return VM_FAULT_FALLBACK;
728 		}
729 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
730 		ret = 0;
731 		set = false;
732 		if (pmd_none(*vmf->pmd)) {
733 			ret = check_stable_address_space(vma->vm_mm);
734 			if (ret) {
735 				spin_unlock(vmf->ptl);
736 			} else if (userfaultfd_missing(vma)) {
737 				spin_unlock(vmf->ptl);
738 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
739 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
740 			} else {
741 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
742 						   haddr, vmf->pmd, zero_page);
743 				spin_unlock(vmf->ptl);
744 				set = true;
745 			}
746 		} else
747 			spin_unlock(vmf->ptl);
748 		if (!set)
749 			pte_free(vma->vm_mm, pgtable);
750 		return ret;
751 	}
752 	gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
753 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
754 	if (unlikely(!page)) {
755 		count_vm_event(THP_FAULT_FALLBACK);
756 		return VM_FAULT_FALLBACK;
757 	}
758 	prep_transhuge_page(page);
759 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
760 }
761 
762 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
763 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
764 		pgtable_t pgtable)
765 {
766 	struct mm_struct *mm = vma->vm_mm;
767 	pmd_t entry;
768 	spinlock_t *ptl;
769 
770 	ptl = pmd_lock(mm, pmd);
771 	if (!pmd_none(*pmd)) {
772 		if (write) {
773 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
774 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
775 				goto out_unlock;
776 			}
777 			entry = pmd_mkyoung(*pmd);
778 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
779 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
780 				update_mmu_cache_pmd(vma, addr, pmd);
781 		}
782 
783 		goto out_unlock;
784 	}
785 
786 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
787 	if (pfn_t_devmap(pfn))
788 		entry = pmd_mkdevmap(entry);
789 	if (write) {
790 		entry = pmd_mkyoung(pmd_mkdirty(entry));
791 		entry = maybe_pmd_mkwrite(entry, vma);
792 	}
793 
794 	if (pgtable) {
795 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
796 		mm_inc_nr_ptes(mm);
797 		pgtable = NULL;
798 	}
799 
800 	set_pmd_at(mm, addr, pmd, entry);
801 	update_mmu_cache_pmd(vma, addr, pmd);
802 
803 out_unlock:
804 	spin_unlock(ptl);
805 	if (pgtable)
806 		pte_free(mm, pgtable);
807 }
808 
809 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
810 {
811 	unsigned long addr = vmf->address & PMD_MASK;
812 	struct vm_area_struct *vma = vmf->vma;
813 	pgprot_t pgprot = vma->vm_page_prot;
814 	pgtable_t pgtable = NULL;
815 
816 	/*
817 	 * If we had pmd_special, we could avoid all these restrictions,
818 	 * but we need to be consistent with PTEs and architectures that
819 	 * can't support a 'special' bit.
820 	 */
821 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
822 			!pfn_t_devmap(pfn));
823 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
824 						(VM_PFNMAP|VM_MIXEDMAP));
825 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
826 
827 	if (addr < vma->vm_start || addr >= vma->vm_end)
828 		return VM_FAULT_SIGBUS;
829 
830 	if (arch_needs_pgtable_deposit()) {
831 		pgtable = pte_alloc_one(vma->vm_mm);
832 		if (!pgtable)
833 			return VM_FAULT_OOM;
834 	}
835 
836 	track_pfn_insert(vma, &pgprot, pfn);
837 
838 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
839 	return VM_FAULT_NOPAGE;
840 }
841 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
842 
843 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
844 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
845 {
846 	if (likely(vma->vm_flags & VM_WRITE))
847 		pud = pud_mkwrite(pud);
848 	return pud;
849 }
850 
851 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
852 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
853 {
854 	struct mm_struct *mm = vma->vm_mm;
855 	pud_t entry;
856 	spinlock_t *ptl;
857 
858 	ptl = pud_lock(mm, pud);
859 	if (!pud_none(*pud)) {
860 		if (write) {
861 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
862 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
863 				goto out_unlock;
864 			}
865 			entry = pud_mkyoung(*pud);
866 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
867 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
868 				update_mmu_cache_pud(vma, addr, pud);
869 		}
870 		goto out_unlock;
871 	}
872 
873 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
874 	if (pfn_t_devmap(pfn))
875 		entry = pud_mkdevmap(entry);
876 	if (write) {
877 		entry = pud_mkyoung(pud_mkdirty(entry));
878 		entry = maybe_pud_mkwrite(entry, vma);
879 	}
880 	set_pud_at(mm, addr, pud, entry);
881 	update_mmu_cache_pud(vma, addr, pud);
882 
883 out_unlock:
884 	spin_unlock(ptl);
885 }
886 
887 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
888 {
889 	unsigned long addr = vmf->address & PUD_MASK;
890 	struct vm_area_struct *vma = vmf->vma;
891 	pgprot_t pgprot = vma->vm_page_prot;
892 
893 	/*
894 	 * If we had pud_special, we could avoid all these restrictions,
895 	 * but we need to be consistent with PTEs and architectures that
896 	 * can't support a 'special' bit.
897 	 */
898 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
899 			!pfn_t_devmap(pfn));
900 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
901 						(VM_PFNMAP|VM_MIXEDMAP));
902 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
903 
904 	if (addr < vma->vm_start || addr >= vma->vm_end)
905 		return VM_FAULT_SIGBUS;
906 
907 	track_pfn_insert(vma, &pgprot, pfn);
908 
909 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
910 	return VM_FAULT_NOPAGE;
911 }
912 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
913 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
914 
915 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
916 		pmd_t *pmd, int flags)
917 {
918 	pmd_t _pmd;
919 
920 	_pmd = pmd_mkyoung(*pmd);
921 	if (flags & FOLL_WRITE)
922 		_pmd = pmd_mkdirty(_pmd);
923 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
924 				pmd, _pmd, flags & FOLL_WRITE))
925 		update_mmu_cache_pmd(vma, addr, pmd);
926 }
927 
928 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
929 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
930 {
931 	unsigned long pfn = pmd_pfn(*pmd);
932 	struct mm_struct *mm = vma->vm_mm;
933 	struct page *page;
934 
935 	assert_spin_locked(pmd_lockptr(mm, pmd));
936 
937 	/*
938 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
939 	 * not be in this function with `flags & FOLL_COW` set.
940 	 */
941 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
942 
943 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
944 		return NULL;
945 
946 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
947 		/* pass */;
948 	else
949 		return NULL;
950 
951 	if (flags & FOLL_TOUCH)
952 		touch_pmd(vma, addr, pmd, flags);
953 
954 	/*
955 	 * device mapped pages can only be returned if the
956 	 * caller will manage the page reference count.
957 	 */
958 	if (!(flags & FOLL_GET))
959 		return ERR_PTR(-EEXIST);
960 
961 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
962 	*pgmap = get_dev_pagemap(pfn, *pgmap);
963 	if (!*pgmap)
964 		return ERR_PTR(-EFAULT);
965 	page = pfn_to_page(pfn);
966 	get_page(page);
967 
968 	return page;
969 }
970 
971 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973 		  struct vm_area_struct *vma)
974 {
975 	spinlock_t *dst_ptl, *src_ptl;
976 	struct page *src_page;
977 	pmd_t pmd;
978 	pgtable_t pgtable = NULL;
979 	int ret = -ENOMEM;
980 
981 	/* Skip if can be re-fill on fault */
982 	if (!vma_is_anonymous(vma))
983 		return 0;
984 
985 	pgtable = pte_alloc_one(dst_mm);
986 	if (unlikely(!pgtable))
987 		goto out;
988 
989 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
990 	src_ptl = pmd_lockptr(src_mm, src_pmd);
991 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
992 
993 	ret = -EAGAIN;
994 	pmd = *src_pmd;
995 
996 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
997 	if (unlikely(is_swap_pmd(pmd))) {
998 		swp_entry_t entry = pmd_to_swp_entry(pmd);
999 
1000 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1001 		if (is_write_migration_entry(entry)) {
1002 			make_migration_entry_read(&entry);
1003 			pmd = swp_entry_to_pmd(entry);
1004 			if (pmd_swp_soft_dirty(*src_pmd))
1005 				pmd = pmd_swp_mksoft_dirty(pmd);
1006 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1007 		}
1008 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1009 		mm_inc_nr_ptes(dst_mm);
1010 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1011 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1012 		ret = 0;
1013 		goto out_unlock;
1014 	}
1015 #endif
1016 
1017 	if (unlikely(!pmd_trans_huge(pmd))) {
1018 		pte_free(dst_mm, pgtable);
1019 		goto out_unlock;
1020 	}
1021 	/*
1022 	 * When page table lock is held, the huge zero pmd should not be
1023 	 * under splitting since we don't split the page itself, only pmd to
1024 	 * a page table.
1025 	 */
1026 	if (is_huge_zero_pmd(pmd)) {
1027 		struct page *zero_page;
1028 		/*
1029 		 * get_huge_zero_page() will never allocate a new page here,
1030 		 * since we already have a zero page to copy. It just takes a
1031 		 * reference.
1032 		 */
1033 		zero_page = mm_get_huge_zero_page(dst_mm);
1034 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1035 				zero_page);
1036 		ret = 0;
1037 		goto out_unlock;
1038 	}
1039 
1040 	src_page = pmd_page(pmd);
1041 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1042 	get_page(src_page);
1043 	page_dup_rmap(src_page, true);
1044 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1045 	mm_inc_nr_ptes(dst_mm);
1046 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1047 
1048 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1049 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1050 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1051 
1052 	ret = 0;
1053 out_unlock:
1054 	spin_unlock(src_ptl);
1055 	spin_unlock(dst_ptl);
1056 out:
1057 	return ret;
1058 }
1059 
1060 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1061 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1062 		pud_t *pud, int flags)
1063 {
1064 	pud_t _pud;
1065 
1066 	_pud = pud_mkyoung(*pud);
1067 	if (flags & FOLL_WRITE)
1068 		_pud = pud_mkdirty(_pud);
1069 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1070 				pud, _pud, flags & FOLL_WRITE))
1071 		update_mmu_cache_pud(vma, addr, pud);
1072 }
1073 
1074 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1075 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1076 {
1077 	unsigned long pfn = pud_pfn(*pud);
1078 	struct mm_struct *mm = vma->vm_mm;
1079 	struct page *page;
1080 
1081 	assert_spin_locked(pud_lockptr(mm, pud));
1082 
1083 	if (flags & FOLL_WRITE && !pud_write(*pud))
1084 		return NULL;
1085 
1086 	if (pud_present(*pud) && pud_devmap(*pud))
1087 		/* pass */;
1088 	else
1089 		return NULL;
1090 
1091 	if (flags & FOLL_TOUCH)
1092 		touch_pud(vma, addr, pud, flags);
1093 
1094 	/*
1095 	 * device mapped pages can only be returned if the
1096 	 * caller will manage the page reference count.
1097 	 */
1098 	if (!(flags & FOLL_GET))
1099 		return ERR_PTR(-EEXIST);
1100 
1101 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1102 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1103 	if (!*pgmap)
1104 		return ERR_PTR(-EFAULT);
1105 	page = pfn_to_page(pfn);
1106 	get_page(page);
1107 
1108 	return page;
1109 }
1110 
1111 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1112 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1113 		  struct vm_area_struct *vma)
1114 {
1115 	spinlock_t *dst_ptl, *src_ptl;
1116 	pud_t pud;
1117 	int ret;
1118 
1119 	dst_ptl = pud_lock(dst_mm, dst_pud);
1120 	src_ptl = pud_lockptr(src_mm, src_pud);
1121 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1122 
1123 	ret = -EAGAIN;
1124 	pud = *src_pud;
1125 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1126 		goto out_unlock;
1127 
1128 	/*
1129 	 * When page table lock is held, the huge zero pud should not be
1130 	 * under splitting since we don't split the page itself, only pud to
1131 	 * a page table.
1132 	 */
1133 	if (is_huge_zero_pud(pud)) {
1134 		/* No huge zero pud yet */
1135 	}
1136 
1137 	pudp_set_wrprotect(src_mm, addr, src_pud);
1138 	pud = pud_mkold(pud_wrprotect(pud));
1139 	set_pud_at(dst_mm, addr, dst_pud, pud);
1140 
1141 	ret = 0;
1142 out_unlock:
1143 	spin_unlock(src_ptl);
1144 	spin_unlock(dst_ptl);
1145 	return ret;
1146 }
1147 
1148 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1149 {
1150 	pud_t entry;
1151 	unsigned long haddr;
1152 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1153 
1154 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1155 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1156 		goto unlock;
1157 
1158 	entry = pud_mkyoung(orig_pud);
1159 	if (write)
1160 		entry = pud_mkdirty(entry);
1161 	haddr = vmf->address & HPAGE_PUD_MASK;
1162 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1163 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1164 
1165 unlock:
1166 	spin_unlock(vmf->ptl);
1167 }
1168 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1169 
1170 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1171 {
1172 	pmd_t entry;
1173 	unsigned long haddr;
1174 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1175 
1176 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1177 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1178 		goto unlock;
1179 
1180 	entry = pmd_mkyoung(orig_pmd);
1181 	if (write)
1182 		entry = pmd_mkdirty(entry);
1183 	haddr = vmf->address & HPAGE_PMD_MASK;
1184 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1185 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1186 
1187 unlock:
1188 	spin_unlock(vmf->ptl);
1189 }
1190 
1191 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1192 			pmd_t orig_pmd, struct page *page)
1193 {
1194 	struct vm_area_struct *vma = vmf->vma;
1195 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1196 	struct mem_cgroup *memcg;
1197 	pgtable_t pgtable;
1198 	pmd_t _pmd;
1199 	int i;
1200 	vm_fault_t ret = 0;
1201 	struct page **pages;
1202 	struct mmu_notifier_range range;
1203 
1204 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1205 			      GFP_KERNEL);
1206 	if (unlikely(!pages)) {
1207 		ret |= VM_FAULT_OOM;
1208 		goto out;
1209 	}
1210 
1211 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1212 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1213 					       vmf->address, page_to_nid(page));
1214 		if (unlikely(!pages[i] ||
1215 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1216 				     GFP_KERNEL, &memcg, false))) {
1217 			if (pages[i])
1218 				put_page(pages[i]);
1219 			while (--i >= 0) {
1220 				memcg = (void *)page_private(pages[i]);
1221 				set_page_private(pages[i], 0);
1222 				mem_cgroup_cancel_charge(pages[i], memcg,
1223 						false);
1224 				put_page(pages[i]);
1225 			}
1226 			kfree(pages);
1227 			ret |= VM_FAULT_OOM;
1228 			goto out;
1229 		}
1230 		set_page_private(pages[i], (unsigned long)memcg);
1231 	}
1232 
1233 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1234 		copy_user_highpage(pages[i], page + i,
1235 				   haddr + PAGE_SIZE * i, vma);
1236 		__SetPageUptodate(pages[i]);
1237 		cond_resched();
1238 	}
1239 
1240 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1241 				haddr, haddr + HPAGE_PMD_SIZE);
1242 	mmu_notifier_invalidate_range_start(&range);
1243 
1244 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1245 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1246 		goto out_free_pages;
1247 	VM_BUG_ON_PAGE(!PageHead(page), page);
1248 
1249 	/*
1250 	 * Leave pmd empty until pte is filled note we must notify here as
1251 	 * concurrent CPU thread might write to new page before the call to
1252 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1253 	 * device seeing memory write in different order than CPU.
1254 	 *
1255 	 * See Documentation/vm/mmu_notifier.rst
1256 	 */
1257 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1258 
1259 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1260 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1261 
1262 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1263 		pte_t entry;
1264 		entry = mk_pte(pages[i], vma->vm_page_prot);
1265 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1266 		memcg = (void *)page_private(pages[i]);
1267 		set_page_private(pages[i], 0);
1268 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1269 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1270 		lru_cache_add_active_or_unevictable(pages[i], vma);
1271 		vmf->pte = pte_offset_map(&_pmd, haddr);
1272 		VM_BUG_ON(!pte_none(*vmf->pte));
1273 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1274 		pte_unmap(vmf->pte);
1275 	}
1276 	kfree(pages);
1277 
1278 	smp_wmb(); /* make pte visible before pmd */
1279 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1280 	page_remove_rmap(page, true);
1281 	spin_unlock(vmf->ptl);
1282 
1283 	/*
1284 	 * No need to double call mmu_notifier->invalidate_range() callback as
1285 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1286 	 */
1287 	mmu_notifier_invalidate_range_only_end(&range);
1288 
1289 	ret |= VM_FAULT_WRITE;
1290 	put_page(page);
1291 
1292 out:
1293 	return ret;
1294 
1295 out_free_pages:
1296 	spin_unlock(vmf->ptl);
1297 	mmu_notifier_invalidate_range_end(&range);
1298 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1299 		memcg = (void *)page_private(pages[i]);
1300 		set_page_private(pages[i], 0);
1301 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1302 		put_page(pages[i]);
1303 	}
1304 	kfree(pages);
1305 	goto out;
1306 }
1307 
1308 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1309 {
1310 	struct vm_area_struct *vma = vmf->vma;
1311 	struct page *page = NULL, *new_page;
1312 	struct mem_cgroup *memcg;
1313 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1314 	struct mmu_notifier_range range;
1315 	gfp_t huge_gfp;			/* for allocation and charge */
1316 	vm_fault_t ret = 0;
1317 
1318 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1319 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1320 	if (is_huge_zero_pmd(orig_pmd))
1321 		goto alloc;
1322 	spin_lock(vmf->ptl);
1323 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1324 		goto out_unlock;
1325 
1326 	page = pmd_page(orig_pmd);
1327 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1328 	/*
1329 	 * We can only reuse the page if nobody else maps the huge page or it's
1330 	 * part.
1331 	 */
1332 	if (!trylock_page(page)) {
1333 		get_page(page);
1334 		spin_unlock(vmf->ptl);
1335 		lock_page(page);
1336 		spin_lock(vmf->ptl);
1337 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338 			unlock_page(page);
1339 			put_page(page);
1340 			goto out_unlock;
1341 		}
1342 		put_page(page);
1343 	}
1344 	if (reuse_swap_page(page, NULL)) {
1345 		pmd_t entry;
1346 		entry = pmd_mkyoung(orig_pmd);
1347 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1348 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1349 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1350 		ret |= VM_FAULT_WRITE;
1351 		unlock_page(page);
1352 		goto out_unlock;
1353 	}
1354 	unlock_page(page);
1355 	get_page(page);
1356 	spin_unlock(vmf->ptl);
1357 alloc:
1358 	if (__transparent_hugepage_enabled(vma) &&
1359 	    !transparent_hugepage_debug_cow()) {
1360 		huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1361 		new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1362 				haddr, numa_node_id());
1363 	} else
1364 		new_page = NULL;
1365 
1366 	if (likely(new_page)) {
1367 		prep_transhuge_page(new_page);
1368 	} else {
1369 		if (!page) {
1370 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1371 			ret |= VM_FAULT_FALLBACK;
1372 		} else {
1373 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1374 			if (ret & VM_FAULT_OOM) {
1375 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1376 				ret |= VM_FAULT_FALLBACK;
1377 			}
1378 			put_page(page);
1379 		}
1380 		count_vm_event(THP_FAULT_FALLBACK);
1381 		goto out;
1382 	}
1383 
1384 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1385 					huge_gfp, &memcg, true))) {
1386 		put_page(new_page);
1387 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1388 		if (page)
1389 			put_page(page);
1390 		ret |= VM_FAULT_FALLBACK;
1391 		count_vm_event(THP_FAULT_FALLBACK);
1392 		goto out;
1393 	}
1394 
1395 	count_vm_event(THP_FAULT_ALLOC);
1396 	count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1397 
1398 	if (!page)
1399 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1400 	else
1401 		copy_user_huge_page(new_page, page, vmf->address,
1402 				    vma, HPAGE_PMD_NR);
1403 	__SetPageUptodate(new_page);
1404 
1405 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1406 				haddr, haddr + HPAGE_PMD_SIZE);
1407 	mmu_notifier_invalidate_range_start(&range);
1408 
1409 	spin_lock(vmf->ptl);
1410 	if (page)
1411 		put_page(page);
1412 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1413 		spin_unlock(vmf->ptl);
1414 		mem_cgroup_cancel_charge(new_page, memcg, true);
1415 		put_page(new_page);
1416 		goto out_mn;
1417 	} else {
1418 		pmd_t entry;
1419 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1420 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1421 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1422 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1423 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1424 		lru_cache_add_active_or_unevictable(new_page, vma);
1425 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1426 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1427 		if (!page) {
1428 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1429 		} else {
1430 			VM_BUG_ON_PAGE(!PageHead(page), page);
1431 			page_remove_rmap(page, true);
1432 			put_page(page);
1433 		}
1434 		ret |= VM_FAULT_WRITE;
1435 	}
1436 	spin_unlock(vmf->ptl);
1437 out_mn:
1438 	/*
1439 	 * No need to double call mmu_notifier->invalidate_range() callback as
1440 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1441 	 */
1442 	mmu_notifier_invalidate_range_only_end(&range);
1443 out:
1444 	return ret;
1445 out_unlock:
1446 	spin_unlock(vmf->ptl);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * FOLL_FORCE can write to even unwritable pmd's, but only
1452  * after we've gone through a COW cycle and they are dirty.
1453  */
1454 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1455 {
1456 	return pmd_write(pmd) ||
1457 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1458 }
1459 
1460 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1461 				   unsigned long addr,
1462 				   pmd_t *pmd,
1463 				   unsigned int flags)
1464 {
1465 	struct mm_struct *mm = vma->vm_mm;
1466 	struct page *page = NULL;
1467 
1468 	assert_spin_locked(pmd_lockptr(mm, pmd));
1469 
1470 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1471 		goto out;
1472 
1473 	/* Avoid dumping huge zero page */
1474 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1475 		return ERR_PTR(-EFAULT);
1476 
1477 	/* Full NUMA hinting faults to serialise migration in fault paths */
1478 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1479 		goto out;
1480 
1481 	page = pmd_page(*pmd);
1482 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1483 	if (flags & FOLL_TOUCH)
1484 		touch_pmd(vma, addr, pmd, flags);
1485 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1486 		/*
1487 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1488 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1489 		 *
1490 		 * For anon THP:
1491 		 *
1492 		 * In most cases the pmd is the only mapping of the page as we
1493 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1494 		 * writable private mappings in populate_vma_page_range().
1495 		 *
1496 		 * The only scenario when we have the page shared here is if we
1497 		 * mlocking read-only mapping shared over fork(). We skip
1498 		 * mlocking such pages.
1499 		 *
1500 		 * For file THP:
1501 		 *
1502 		 * We can expect PageDoubleMap() to be stable under page lock:
1503 		 * for file pages we set it in page_add_file_rmap(), which
1504 		 * requires page to be locked.
1505 		 */
1506 
1507 		if (PageAnon(page) && compound_mapcount(page) != 1)
1508 			goto skip_mlock;
1509 		if (PageDoubleMap(page) || !page->mapping)
1510 			goto skip_mlock;
1511 		if (!trylock_page(page))
1512 			goto skip_mlock;
1513 		lru_add_drain();
1514 		if (page->mapping && !PageDoubleMap(page))
1515 			mlock_vma_page(page);
1516 		unlock_page(page);
1517 	}
1518 skip_mlock:
1519 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1520 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1521 	if (flags & FOLL_GET)
1522 		get_page(page);
1523 
1524 out:
1525 	return page;
1526 }
1527 
1528 /* NUMA hinting page fault entry point for trans huge pmds */
1529 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1530 {
1531 	struct vm_area_struct *vma = vmf->vma;
1532 	struct anon_vma *anon_vma = NULL;
1533 	struct page *page;
1534 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1535 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1536 	int target_nid, last_cpupid = -1;
1537 	bool page_locked;
1538 	bool migrated = false;
1539 	bool was_writable;
1540 	int flags = 0;
1541 
1542 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1543 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1544 		goto out_unlock;
1545 
1546 	/*
1547 	 * If there are potential migrations, wait for completion and retry
1548 	 * without disrupting NUMA hinting information. Do not relock and
1549 	 * check_same as the page may no longer be mapped.
1550 	 */
1551 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1552 		page = pmd_page(*vmf->pmd);
1553 		if (!get_page_unless_zero(page))
1554 			goto out_unlock;
1555 		spin_unlock(vmf->ptl);
1556 		put_and_wait_on_page_locked(page);
1557 		goto out;
1558 	}
1559 
1560 	page = pmd_page(pmd);
1561 	BUG_ON(is_huge_zero_page(page));
1562 	page_nid = page_to_nid(page);
1563 	last_cpupid = page_cpupid_last(page);
1564 	count_vm_numa_event(NUMA_HINT_FAULTS);
1565 	if (page_nid == this_nid) {
1566 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1567 		flags |= TNF_FAULT_LOCAL;
1568 	}
1569 
1570 	/* See similar comment in do_numa_page for explanation */
1571 	if (!pmd_savedwrite(pmd))
1572 		flags |= TNF_NO_GROUP;
1573 
1574 	/*
1575 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1576 	 * page_table_lock if at all possible
1577 	 */
1578 	page_locked = trylock_page(page);
1579 	target_nid = mpol_misplaced(page, vma, haddr);
1580 	if (target_nid == NUMA_NO_NODE) {
1581 		/* If the page was locked, there are no parallel migrations */
1582 		if (page_locked)
1583 			goto clear_pmdnuma;
1584 	}
1585 
1586 	/* Migration could have started since the pmd_trans_migrating check */
1587 	if (!page_locked) {
1588 		page_nid = NUMA_NO_NODE;
1589 		if (!get_page_unless_zero(page))
1590 			goto out_unlock;
1591 		spin_unlock(vmf->ptl);
1592 		put_and_wait_on_page_locked(page);
1593 		goto out;
1594 	}
1595 
1596 	/*
1597 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1598 	 * to serialises splits
1599 	 */
1600 	get_page(page);
1601 	spin_unlock(vmf->ptl);
1602 	anon_vma = page_lock_anon_vma_read(page);
1603 
1604 	/* Confirm the PMD did not change while page_table_lock was released */
1605 	spin_lock(vmf->ptl);
1606 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1607 		unlock_page(page);
1608 		put_page(page);
1609 		page_nid = NUMA_NO_NODE;
1610 		goto out_unlock;
1611 	}
1612 
1613 	/* Bail if we fail to protect against THP splits for any reason */
1614 	if (unlikely(!anon_vma)) {
1615 		put_page(page);
1616 		page_nid = NUMA_NO_NODE;
1617 		goto clear_pmdnuma;
1618 	}
1619 
1620 	/*
1621 	 * Since we took the NUMA fault, we must have observed the !accessible
1622 	 * bit. Make sure all other CPUs agree with that, to avoid them
1623 	 * modifying the page we're about to migrate.
1624 	 *
1625 	 * Must be done under PTL such that we'll observe the relevant
1626 	 * inc_tlb_flush_pending().
1627 	 *
1628 	 * We are not sure a pending tlb flush here is for a huge page
1629 	 * mapping or not. Hence use the tlb range variant
1630 	 */
1631 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1632 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1633 		/*
1634 		 * change_huge_pmd() released the pmd lock before
1635 		 * invalidating the secondary MMUs sharing the primary
1636 		 * MMU pagetables (with ->invalidate_range()). The
1637 		 * mmu_notifier_invalidate_range_end() (which
1638 		 * internally calls ->invalidate_range()) in
1639 		 * change_pmd_range() will run after us, so we can't
1640 		 * rely on it here and we need an explicit invalidate.
1641 		 */
1642 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1643 					      haddr + HPAGE_PMD_SIZE);
1644 	}
1645 
1646 	/*
1647 	 * Migrate the THP to the requested node, returns with page unlocked
1648 	 * and access rights restored.
1649 	 */
1650 	spin_unlock(vmf->ptl);
1651 
1652 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1653 				vmf->pmd, pmd, vmf->address, page, target_nid);
1654 	if (migrated) {
1655 		flags |= TNF_MIGRATED;
1656 		page_nid = target_nid;
1657 	} else
1658 		flags |= TNF_MIGRATE_FAIL;
1659 
1660 	goto out;
1661 clear_pmdnuma:
1662 	BUG_ON(!PageLocked(page));
1663 	was_writable = pmd_savedwrite(pmd);
1664 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1665 	pmd = pmd_mkyoung(pmd);
1666 	if (was_writable)
1667 		pmd = pmd_mkwrite(pmd);
1668 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1669 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1670 	unlock_page(page);
1671 out_unlock:
1672 	spin_unlock(vmf->ptl);
1673 
1674 out:
1675 	if (anon_vma)
1676 		page_unlock_anon_vma_read(anon_vma);
1677 
1678 	if (page_nid != NUMA_NO_NODE)
1679 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1680 				flags);
1681 
1682 	return 0;
1683 }
1684 
1685 /*
1686  * Return true if we do MADV_FREE successfully on entire pmd page.
1687  * Otherwise, return false.
1688  */
1689 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1690 		pmd_t *pmd, unsigned long addr, unsigned long next)
1691 {
1692 	spinlock_t *ptl;
1693 	pmd_t orig_pmd;
1694 	struct page *page;
1695 	struct mm_struct *mm = tlb->mm;
1696 	bool ret = false;
1697 
1698 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1699 
1700 	ptl = pmd_trans_huge_lock(pmd, vma);
1701 	if (!ptl)
1702 		goto out_unlocked;
1703 
1704 	orig_pmd = *pmd;
1705 	if (is_huge_zero_pmd(orig_pmd))
1706 		goto out;
1707 
1708 	if (unlikely(!pmd_present(orig_pmd))) {
1709 		VM_BUG_ON(thp_migration_supported() &&
1710 				  !is_pmd_migration_entry(orig_pmd));
1711 		goto out;
1712 	}
1713 
1714 	page = pmd_page(orig_pmd);
1715 	/*
1716 	 * If other processes are mapping this page, we couldn't discard
1717 	 * the page unless they all do MADV_FREE so let's skip the page.
1718 	 */
1719 	if (page_mapcount(page) != 1)
1720 		goto out;
1721 
1722 	if (!trylock_page(page))
1723 		goto out;
1724 
1725 	/*
1726 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1727 	 * will deactivate only them.
1728 	 */
1729 	if (next - addr != HPAGE_PMD_SIZE) {
1730 		get_page(page);
1731 		spin_unlock(ptl);
1732 		split_huge_page(page);
1733 		unlock_page(page);
1734 		put_page(page);
1735 		goto out_unlocked;
1736 	}
1737 
1738 	if (PageDirty(page))
1739 		ClearPageDirty(page);
1740 	unlock_page(page);
1741 
1742 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1743 		pmdp_invalidate(vma, addr, pmd);
1744 		orig_pmd = pmd_mkold(orig_pmd);
1745 		orig_pmd = pmd_mkclean(orig_pmd);
1746 
1747 		set_pmd_at(mm, addr, pmd, orig_pmd);
1748 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1749 	}
1750 
1751 	mark_page_lazyfree(page);
1752 	ret = true;
1753 out:
1754 	spin_unlock(ptl);
1755 out_unlocked:
1756 	return ret;
1757 }
1758 
1759 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1760 {
1761 	pgtable_t pgtable;
1762 
1763 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1764 	pte_free(mm, pgtable);
1765 	mm_dec_nr_ptes(mm);
1766 }
1767 
1768 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1769 		 pmd_t *pmd, unsigned long addr)
1770 {
1771 	pmd_t orig_pmd;
1772 	spinlock_t *ptl;
1773 
1774 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1775 
1776 	ptl = __pmd_trans_huge_lock(pmd, vma);
1777 	if (!ptl)
1778 		return 0;
1779 	/*
1780 	 * For architectures like ppc64 we look at deposited pgtable
1781 	 * when calling pmdp_huge_get_and_clear. So do the
1782 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1783 	 * operations.
1784 	 */
1785 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1786 			tlb->fullmm);
1787 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1788 	if (vma_is_dax(vma)) {
1789 		if (arch_needs_pgtable_deposit())
1790 			zap_deposited_table(tlb->mm, pmd);
1791 		spin_unlock(ptl);
1792 		if (is_huge_zero_pmd(orig_pmd))
1793 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1794 	} else if (is_huge_zero_pmd(orig_pmd)) {
1795 		zap_deposited_table(tlb->mm, pmd);
1796 		spin_unlock(ptl);
1797 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1798 	} else {
1799 		struct page *page = NULL;
1800 		int flush_needed = 1;
1801 
1802 		if (pmd_present(orig_pmd)) {
1803 			page = pmd_page(orig_pmd);
1804 			page_remove_rmap(page, true);
1805 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1806 			VM_BUG_ON_PAGE(!PageHead(page), page);
1807 		} else if (thp_migration_supported()) {
1808 			swp_entry_t entry;
1809 
1810 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1811 			entry = pmd_to_swp_entry(orig_pmd);
1812 			page = pfn_to_page(swp_offset(entry));
1813 			flush_needed = 0;
1814 		} else
1815 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1816 
1817 		if (PageAnon(page)) {
1818 			zap_deposited_table(tlb->mm, pmd);
1819 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1820 		} else {
1821 			if (arch_needs_pgtable_deposit())
1822 				zap_deposited_table(tlb->mm, pmd);
1823 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1824 		}
1825 
1826 		spin_unlock(ptl);
1827 		if (flush_needed)
1828 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1829 	}
1830 	return 1;
1831 }
1832 
1833 #ifndef pmd_move_must_withdraw
1834 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1835 					 spinlock_t *old_pmd_ptl,
1836 					 struct vm_area_struct *vma)
1837 {
1838 	/*
1839 	 * With split pmd lock we also need to move preallocated
1840 	 * PTE page table if new_pmd is on different PMD page table.
1841 	 *
1842 	 * We also don't deposit and withdraw tables for file pages.
1843 	 */
1844 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1845 }
1846 #endif
1847 
1848 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1849 {
1850 #ifdef CONFIG_MEM_SOFT_DIRTY
1851 	if (unlikely(is_pmd_migration_entry(pmd)))
1852 		pmd = pmd_swp_mksoft_dirty(pmd);
1853 	else if (pmd_present(pmd))
1854 		pmd = pmd_mksoft_dirty(pmd);
1855 #endif
1856 	return pmd;
1857 }
1858 
1859 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1860 		  unsigned long new_addr, unsigned long old_end,
1861 		  pmd_t *old_pmd, pmd_t *new_pmd)
1862 {
1863 	spinlock_t *old_ptl, *new_ptl;
1864 	pmd_t pmd;
1865 	struct mm_struct *mm = vma->vm_mm;
1866 	bool force_flush = false;
1867 
1868 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1869 	    (new_addr & ~HPAGE_PMD_MASK) ||
1870 	    old_end - old_addr < HPAGE_PMD_SIZE)
1871 		return false;
1872 
1873 	/*
1874 	 * The destination pmd shouldn't be established, free_pgtables()
1875 	 * should have release it.
1876 	 */
1877 	if (WARN_ON(!pmd_none(*new_pmd))) {
1878 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1879 		return false;
1880 	}
1881 
1882 	/*
1883 	 * We don't have to worry about the ordering of src and dst
1884 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1885 	 */
1886 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1887 	if (old_ptl) {
1888 		new_ptl = pmd_lockptr(mm, new_pmd);
1889 		if (new_ptl != old_ptl)
1890 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1891 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1892 		if (pmd_present(pmd))
1893 			force_flush = true;
1894 		VM_BUG_ON(!pmd_none(*new_pmd));
1895 
1896 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1897 			pgtable_t pgtable;
1898 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1899 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1900 		}
1901 		pmd = move_soft_dirty_pmd(pmd);
1902 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1903 		if (force_flush)
1904 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1905 		if (new_ptl != old_ptl)
1906 			spin_unlock(new_ptl);
1907 		spin_unlock(old_ptl);
1908 		return true;
1909 	}
1910 	return false;
1911 }
1912 
1913 /*
1914  * Returns
1915  *  - 0 if PMD could not be locked
1916  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1917  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1918  */
1919 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1920 		unsigned long addr, pgprot_t newprot, int prot_numa)
1921 {
1922 	struct mm_struct *mm = vma->vm_mm;
1923 	spinlock_t *ptl;
1924 	pmd_t entry;
1925 	bool preserve_write;
1926 	int ret;
1927 
1928 	ptl = __pmd_trans_huge_lock(pmd, vma);
1929 	if (!ptl)
1930 		return 0;
1931 
1932 	preserve_write = prot_numa && pmd_write(*pmd);
1933 	ret = 1;
1934 
1935 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1936 	if (is_swap_pmd(*pmd)) {
1937 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1938 
1939 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1940 		if (is_write_migration_entry(entry)) {
1941 			pmd_t newpmd;
1942 			/*
1943 			 * A protection check is difficult so
1944 			 * just be safe and disable write
1945 			 */
1946 			make_migration_entry_read(&entry);
1947 			newpmd = swp_entry_to_pmd(entry);
1948 			if (pmd_swp_soft_dirty(*pmd))
1949 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1950 			set_pmd_at(mm, addr, pmd, newpmd);
1951 		}
1952 		goto unlock;
1953 	}
1954 #endif
1955 
1956 	/*
1957 	 * Avoid trapping faults against the zero page. The read-only
1958 	 * data is likely to be read-cached on the local CPU and
1959 	 * local/remote hits to the zero page are not interesting.
1960 	 */
1961 	if (prot_numa && is_huge_zero_pmd(*pmd))
1962 		goto unlock;
1963 
1964 	if (prot_numa && pmd_protnone(*pmd))
1965 		goto unlock;
1966 
1967 	/*
1968 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1969 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1970 	 * which is also under down_read(mmap_sem):
1971 	 *
1972 	 *	CPU0:				CPU1:
1973 	 *				change_huge_pmd(prot_numa=1)
1974 	 *				 pmdp_huge_get_and_clear_notify()
1975 	 * madvise_dontneed()
1976 	 *  zap_pmd_range()
1977 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1978 	 *   // skip the pmd
1979 	 *				 set_pmd_at();
1980 	 *				 // pmd is re-established
1981 	 *
1982 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1983 	 * which may break userspace.
1984 	 *
1985 	 * pmdp_invalidate() is required to make sure we don't miss
1986 	 * dirty/young flags set by hardware.
1987 	 */
1988 	entry = pmdp_invalidate(vma, addr, pmd);
1989 
1990 	entry = pmd_modify(entry, newprot);
1991 	if (preserve_write)
1992 		entry = pmd_mk_savedwrite(entry);
1993 	ret = HPAGE_PMD_NR;
1994 	set_pmd_at(mm, addr, pmd, entry);
1995 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1996 unlock:
1997 	spin_unlock(ptl);
1998 	return ret;
1999 }
2000 
2001 /*
2002  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2003  *
2004  * Note that if it returns page table lock pointer, this routine returns without
2005  * unlocking page table lock. So callers must unlock it.
2006  */
2007 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2008 {
2009 	spinlock_t *ptl;
2010 	ptl = pmd_lock(vma->vm_mm, pmd);
2011 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2012 			pmd_devmap(*pmd)))
2013 		return ptl;
2014 	spin_unlock(ptl);
2015 	return NULL;
2016 }
2017 
2018 /*
2019  * Returns true if a given pud maps a thp, false otherwise.
2020  *
2021  * Note that if it returns true, this routine returns without unlocking page
2022  * table lock. So callers must unlock it.
2023  */
2024 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2025 {
2026 	spinlock_t *ptl;
2027 
2028 	ptl = pud_lock(vma->vm_mm, pud);
2029 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2030 		return ptl;
2031 	spin_unlock(ptl);
2032 	return NULL;
2033 }
2034 
2035 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2036 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2037 		 pud_t *pud, unsigned long addr)
2038 {
2039 	spinlock_t *ptl;
2040 
2041 	ptl = __pud_trans_huge_lock(pud, vma);
2042 	if (!ptl)
2043 		return 0;
2044 	/*
2045 	 * For architectures like ppc64 we look at deposited pgtable
2046 	 * when calling pudp_huge_get_and_clear. So do the
2047 	 * pgtable_trans_huge_withdraw after finishing pudp related
2048 	 * operations.
2049 	 */
2050 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2051 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2052 	if (vma_is_dax(vma)) {
2053 		spin_unlock(ptl);
2054 		/* No zero page support yet */
2055 	} else {
2056 		/* No support for anonymous PUD pages yet */
2057 		BUG();
2058 	}
2059 	return 1;
2060 }
2061 
2062 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2063 		unsigned long haddr)
2064 {
2065 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2066 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2067 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2068 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2069 
2070 	count_vm_event(THP_SPLIT_PUD);
2071 
2072 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2073 }
2074 
2075 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2076 		unsigned long address)
2077 {
2078 	spinlock_t *ptl;
2079 	struct mmu_notifier_range range;
2080 
2081 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2082 				address & HPAGE_PUD_MASK,
2083 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2084 	mmu_notifier_invalidate_range_start(&range);
2085 	ptl = pud_lock(vma->vm_mm, pud);
2086 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2087 		goto out;
2088 	__split_huge_pud_locked(vma, pud, range.start);
2089 
2090 out:
2091 	spin_unlock(ptl);
2092 	/*
2093 	 * No need to double call mmu_notifier->invalidate_range() callback as
2094 	 * the above pudp_huge_clear_flush_notify() did already call it.
2095 	 */
2096 	mmu_notifier_invalidate_range_only_end(&range);
2097 }
2098 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2099 
2100 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2101 		unsigned long haddr, pmd_t *pmd)
2102 {
2103 	struct mm_struct *mm = vma->vm_mm;
2104 	pgtable_t pgtable;
2105 	pmd_t _pmd;
2106 	int i;
2107 
2108 	/*
2109 	 * Leave pmd empty until pte is filled note that it is fine to delay
2110 	 * notification until mmu_notifier_invalidate_range_end() as we are
2111 	 * replacing a zero pmd write protected page with a zero pte write
2112 	 * protected page.
2113 	 *
2114 	 * See Documentation/vm/mmu_notifier.rst
2115 	 */
2116 	pmdp_huge_clear_flush(vma, haddr, pmd);
2117 
2118 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2119 	pmd_populate(mm, &_pmd, pgtable);
2120 
2121 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2122 		pte_t *pte, entry;
2123 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2124 		entry = pte_mkspecial(entry);
2125 		pte = pte_offset_map(&_pmd, haddr);
2126 		VM_BUG_ON(!pte_none(*pte));
2127 		set_pte_at(mm, haddr, pte, entry);
2128 		pte_unmap(pte);
2129 	}
2130 	smp_wmb(); /* make pte visible before pmd */
2131 	pmd_populate(mm, pmd, pgtable);
2132 }
2133 
2134 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2135 		unsigned long haddr, bool freeze)
2136 {
2137 	struct mm_struct *mm = vma->vm_mm;
2138 	struct page *page;
2139 	pgtable_t pgtable;
2140 	pmd_t old_pmd, _pmd;
2141 	bool young, write, soft_dirty, pmd_migration = false;
2142 	unsigned long addr;
2143 	int i;
2144 
2145 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2146 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2147 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2148 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2149 				&& !pmd_devmap(*pmd));
2150 
2151 	count_vm_event(THP_SPLIT_PMD);
2152 
2153 	if (!vma_is_anonymous(vma)) {
2154 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2155 		/*
2156 		 * We are going to unmap this huge page. So
2157 		 * just go ahead and zap it
2158 		 */
2159 		if (arch_needs_pgtable_deposit())
2160 			zap_deposited_table(mm, pmd);
2161 		if (vma_is_dax(vma))
2162 			return;
2163 		page = pmd_page(_pmd);
2164 		if (!PageDirty(page) && pmd_dirty(_pmd))
2165 			set_page_dirty(page);
2166 		if (!PageReferenced(page) && pmd_young(_pmd))
2167 			SetPageReferenced(page);
2168 		page_remove_rmap(page, true);
2169 		put_page(page);
2170 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2171 		return;
2172 	} else if (is_huge_zero_pmd(*pmd)) {
2173 		/*
2174 		 * FIXME: Do we want to invalidate secondary mmu by calling
2175 		 * mmu_notifier_invalidate_range() see comments below inside
2176 		 * __split_huge_pmd() ?
2177 		 *
2178 		 * We are going from a zero huge page write protected to zero
2179 		 * small page also write protected so it does not seems useful
2180 		 * to invalidate secondary mmu at this time.
2181 		 */
2182 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2183 	}
2184 
2185 	/*
2186 	 * Up to this point the pmd is present and huge and userland has the
2187 	 * whole access to the hugepage during the split (which happens in
2188 	 * place). If we overwrite the pmd with the not-huge version pointing
2189 	 * to the pte here (which of course we could if all CPUs were bug
2190 	 * free), userland could trigger a small page size TLB miss on the
2191 	 * small sized TLB while the hugepage TLB entry is still established in
2192 	 * the huge TLB. Some CPU doesn't like that.
2193 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2194 	 * 383 on page 93. Intel should be safe but is also warns that it's
2195 	 * only safe if the permission and cache attributes of the two entries
2196 	 * loaded in the two TLB is identical (which should be the case here).
2197 	 * But it is generally safer to never allow small and huge TLB entries
2198 	 * for the same virtual address to be loaded simultaneously. So instead
2199 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2200 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2201 	 * must remain set at all times on the pmd until the split is complete
2202 	 * for this pmd), then we flush the SMP TLB and finally we write the
2203 	 * non-huge version of the pmd entry with pmd_populate.
2204 	 */
2205 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2206 
2207 	pmd_migration = is_pmd_migration_entry(old_pmd);
2208 	if (unlikely(pmd_migration)) {
2209 		swp_entry_t entry;
2210 
2211 		entry = pmd_to_swp_entry(old_pmd);
2212 		page = pfn_to_page(swp_offset(entry));
2213 		write = is_write_migration_entry(entry);
2214 		young = false;
2215 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2216 	} else {
2217 		page = pmd_page(old_pmd);
2218 		if (pmd_dirty(old_pmd))
2219 			SetPageDirty(page);
2220 		write = pmd_write(old_pmd);
2221 		young = pmd_young(old_pmd);
2222 		soft_dirty = pmd_soft_dirty(old_pmd);
2223 	}
2224 	VM_BUG_ON_PAGE(!page_count(page), page);
2225 	page_ref_add(page, HPAGE_PMD_NR - 1);
2226 
2227 	/*
2228 	 * Withdraw the table only after we mark the pmd entry invalid.
2229 	 * This's critical for some architectures (Power).
2230 	 */
2231 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2232 	pmd_populate(mm, &_pmd, pgtable);
2233 
2234 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2235 		pte_t entry, *pte;
2236 		/*
2237 		 * Note that NUMA hinting access restrictions are not
2238 		 * transferred to avoid any possibility of altering
2239 		 * permissions across VMAs.
2240 		 */
2241 		if (freeze || pmd_migration) {
2242 			swp_entry_t swp_entry;
2243 			swp_entry = make_migration_entry(page + i, write);
2244 			entry = swp_entry_to_pte(swp_entry);
2245 			if (soft_dirty)
2246 				entry = pte_swp_mksoft_dirty(entry);
2247 		} else {
2248 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2249 			entry = maybe_mkwrite(entry, vma);
2250 			if (!write)
2251 				entry = pte_wrprotect(entry);
2252 			if (!young)
2253 				entry = pte_mkold(entry);
2254 			if (soft_dirty)
2255 				entry = pte_mksoft_dirty(entry);
2256 		}
2257 		pte = pte_offset_map(&_pmd, addr);
2258 		BUG_ON(!pte_none(*pte));
2259 		set_pte_at(mm, addr, pte, entry);
2260 		atomic_inc(&page[i]._mapcount);
2261 		pte_unmap(pte);
2262 	}
2263 
2264 	/*
2265 	 * Set PG_double_map before dropping compound_mapcount to avoid
2266 	 * false-negative page_mapped().
2267 	 */
2268 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2269 		for (i = 0; i < HPAGE_PMD_NR; i++)
2270 			atomic_inc(&page[i]._mapcount);
2271 	}
2272 
2273 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2274 		/* Last compound_mapcount is gone. */
2275 		__dec_node_page_state(page, NR_ANON_THPS);
2276 		if (TestClearPageDoubleMap(page)) {
2277 			/* No need in mapcount reference anymore */
2278 			for (i = 0; i < HPAGE_PMD_NR; i++)
2279 				atomic_dec(&page[i]._mapcount);
2280 		}
2281 	}
2282 
2283 	smp_wmb(); /* make pte visible before pmd */
2284 	pmd_populate(mm, pmd, pgtable);
2285 
2286 	if (freeze) {
2287 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2288 			page_remove_rmap(page + i, false);
2289 			put_page(page + i);
2290 		}
2291 	}
2292 }
2293 
2294 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2295 		unsigned long address, bool freeze, struct page *page)
2296 {
2297 	spinlock_t *ptl;
2298 	struct mmu_notifier_range range;
2299 
2300 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2301 				address & HPAGE_PMD_MASK,
2302 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2303 	mmu_notifier_invalidate_range_start(&range);
2304 	ptl = pmd_lock(vma->vm_mm, pmd);
2305 
2306 	/*
2307 	 * If caller asks to setup a migration entries, we need a page to check
2308 	 * pmd against. Otherwise we can end up replacing wrong page.
2309 	 */
2310 	VM_BUG_ON(freeze && !page);
2311 	if (page && page != pmd_page(*pmd))
2312 	        goto out;
2313 
2314 	if (pmd_trans_huge(*pmd)) {
2315 		page = pmd_page(*pmd);
2316 		if (PageMlocked(page))
2317 			clear_page_mlock(page);
2318 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2319 		goto out;
2320 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2321 out:
2322 	spin_unlock(ptl);
2323 	/*
2324 	 * No need to double call mmu_notifier->invalidate_range() callback.
2325 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2326 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2327 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2328 	 *    fault will trigger a flush_notify before pointing to a new page
2329 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2330 	 *    page in the meantime)
2331 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2332 	 *     to invalidate secondary tlb entry they are all still valid.
2333 	 *     any further changes to individual pte will notify. So no need
2334 	 *     to call mmu_notifier->invalidate_range()
2335 	 */
2336 	mmu_notifier_invalidate_range_only_end(&range);
2337 }
2338 
2339 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2340 		bool freeze, struct page *page)
2341 {
2342 	pgd_t *pgd;
2343 	p4d_t *p4d;
2344 	pud_t *pud;
2345 	pmd_t *pmd;
2346 
2347 	pgd = pgd_offset(vma->vm_mm, address);
2348 	if (!pgd_present(*pgd))
2349 		return;
2350 
2351 	p4d = p4d_offset(pgd, address);
2352 	if (!p4d_present(*p4d))
2353 		return;
2354 
2355 	pud = pud_offset(p4d, address);
2356 	if (!pud_present(*pud))
2357 		return;
2358 
2359 	pmd = pmd_offset(pud, address);
2360 
2361 	__split_huge_pmd(vma, pmd, address, freeze, page);
2362 }
2363 
2364 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2365 			     unsigned long start,
2366 			     unsigned long end,
2367 			     long adjust_next)
2368 {
2369 	/*
2370 	 * If the new start address isn't hpage aligned and it could
2371 	 * previously contain an hugepage: check if we need to split
2372 	 * an huge pmd.
2373 	 */
2374 	if (start & ~HPAGE_PMD_MASK &&
2375 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2376 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2377 		split_huge_pmd_address(vma, start, false, NULL);
2378 
2379 	/*
2380 	 * If the new end address isn't hpage aligned and it could
2381 	 * previously contain an hugepage: check if we need to split
2382 	 * an huge pmd.
2383 	 */
2384 	if (end & ~HPAGE_PMD_MASK &&
2385 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2386 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2387 		split_huge_pmd_address(vma, end, false, NULL);
2388 
2389 	/*
2390 	 * If we're also updating the vma->vm_next->vm_start, if the new
2391 	 * vm_next->vm_start isn't page aligned and it could previously
2392 	 * contain an hugepage: check if we need to split an huge pmd.
2393 	 */
2394 	if (adjust_next > 0) {
2395 		struct vm_area_struct *next = vma->vm_next;
2396 		unsigned long nstart = next->vm_start;
2397 		nstart += adjust_next << PAGE_SHIFT;
2398 		if (nstart & ~HPAGE_PMD_MASK &&
2399 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2400 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2401 			split_huge_pmd_address(next, nstart, false, NULL);
2402 	}
2403 }
2404 
2405 static void unmap_page(struct page *page)
2406 {
2407 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2408 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2409 	bool unmap_success;
2410 
2411 	VM_BUG_ON_PAGE(!PageHead(page), page);
2412 
2413 	if (PageAnon(page))
2414 		ttu_flags |= TTU_SPLIT_FREEZE;
2415 
2416 	unmap_success = try_to_unmap(page, ttu_flags);
2417 	VM_BUG_ON_PAGE(!unmap_success, page);
2418 }
2419 
2420 static void remap_page(struct page *page)
2421 {
2422 	int i;
2423 	if (PageTransHuge(page)) {
2424 		remove_migration_ptes(page, page, true);
2425 	} else {
2426 		for (i = 0; i < HPAGE_PMD_NR; i++)
2427 			remove_migration_ptes(page + i, page + i, true);
2428 	}
2429 }
2430 
2431 static void __split_huge_page_tail(struct page *head, int tail,
2432 		struct lruvec *lruvec, struct list_head *list)
2433 {
2434 	struct page *page_tail = head + tail;
2435 
2436 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2437 
2438 	/*
2439 	 * Clone page flags before unfreezing refcount.
2440 	 *
2441 	 * After successful get_page_unless_zero() might follow flags change,
2442 	 * for exmaple lock_page() which set PG_waiters.
2443 	 */
2444 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2445 	page_tail->flags |= (head->flags &
2446 			((1L << PG_referenced) |
2447 			 (1L << PG_swapbacked) |
2448 			 (1L << PG_swapcache) |
2449 			 (1L << PG_mlocked) |
2450 			 (1L << PG_uptodate) |
2451 			 (1L << PG_active) |
2452 			 (1L << PG_workingset) |
2453 			 (1L << PG_locked) |
2454 			 (1L << PG_unevictable) |
2455 			 (1L << PG_dirty)));
2456 
2457 	/* ->mapping in first tail page is compound_mapcount */
2458 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2459 			page_tail);
2460 	page_tail->mapping = head->mapping;
2461 	page_tail->index = head->index + tail;
2462 
2463 	/* Page flags must be visible before we make the page non-compound. */
2464 	smp_wmb();
2465 
2466 	/*
2467 	 * Clear PageTail before unfreezing page refcount.
2468 	 *
2469 	 * After successful get_page_unless_zero() might follow put_page()
2470 	 * which needs correct compound_head().
2471 	 */
2472 	clear_compound_head(page_tail);
2473 
2474 	/* Finally unfreeze refcount. Additional reference from page cache. */
2475 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2476 					  PageSwapCache(head)));
2477 
2478 	if (page_is_young(head))
2479 		set_page_young(page_tail);
2480 	if (page_is_idle(head))
2481 		set_page_idle(page_tail);
2482 
2483 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2484 
2485 	/*
2486 	 * always add to the tail because some iterators expect new
2487 	 * pages to show after the currently processed elements - e.g.
2488 	 * migrate_pages
2489 	 */
2490 	lru_add_page_tail(head, page_tail, lruvec, list);
2491 }
2492 
2493 static void __split_huge_page(struct page *page, struct list_head *list,
2494 		pgoff_t end, unsigned long flags)
2495 {
2496 	struct page *head = compound_head(page);
2497 	pg_data_t *pgdat = page_pgdat(head);
2498 	struct lruvec *lruvec;
2499 	int i;
2500 
2501 	lruvec = mem_cgroup_page_lruvec(head, pgdat);
2502 
2503 	/* complete memcg works before add pages to LRU */
2504 	mem_cgroup_split_huge_fixup(head);
2505 
2506 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2507 		__split_huge_page_tail(head, i, lruvec, list);
2508 		/* Some pages can be beyond i_size: drop them from page cache */
2509 		if (head[i].index >= end) {
2510 			ClearPageDirty(head + i);
2511 			__delete_from_page_cache(head + i, NULL);
2512 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2513 				shmem_uncharge(head->mapping->host, 1);
2514 			put_page(head + i);
2515 		}
2516 	}
2517 
2518 	ClearPageCompound(head);
2519 	/* See comment in __split_huge_page_tail() */
2520 	if (PageAnon(head)) {
2521 		/* Additional pin to swap cache */
2522 		if (PageSwapCache(head))
2523 			page_ref_add(head, 2);
2524 		else
2525 			page_ref_inc(head);
2526 	} else {
2527 		/* Additional pin to page cache */
2528 		page_ref_add(head, 2);
2529 		xa_unlock(&head->mapping->i_pages);
2530 	}
2531 
2532 	spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2533 
2534 	remap_page(head);
2535 
2536 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2537 		struct page *subpage = head + i;
2538 		if (subpage == page)
2539 			continue;
2540 		unlock_page(subpage);
2541 
2542 		/*
2543 		 * Subpages may be freed if there wasn't any mapping
2544 		 * like if add_to_swap() is running on a lru page that
2545 		 * had its mapping zapped. And freeing these pages
2546 		 * requires taking the lru_lock so we do the put_page
2547 		 * of the tail pages after the split is complete.
2548 		 */
2549 		put_page(subpage);
2550 	}
2551 }
2552 
2553 int total_mapcount(struct page *page)
2554 {
2555 	int i, compound, ret;
2556 
2557 	VM_BUG_ON_PAGE(PageTail(page), page);
2558 
2559 	if (likely(!PageCompound(page)))
2560 		return atomic_read(&page->_mapcount) + 1;
2561 
2562 	compound = compound_mapcount(page);
2563 	if (PageHuge(page))
2564 		return compound;
2565 	ret = compound;
2566 	for (i = 0; i < HPAGE_PMD_NR; i++)
2567 		ret += atomic_read(&page[i]._mapcount) + 1;
2568 	/* File pages has compound_mapcount included in _mapcount */
2569 	if (!PageAnon(page))
2570 		return ret - compound * HPAGE_PMD_NR;
2571 	if (PageDoubleMap(page))
2572 		ret -= HPAGE_PMD_NR;
2573 	return ret;
2574 }
2575 
2576 /*
2577  * This calculates accurately how many mappings a transparent hugepage
2578  * has (unlike page_mapcount() which isn't fully accurate). This full
2579  * accuracy is primarily needed to know if copy-on-write faults can
2580  * reuse the page and change the mapping to read-write instead of
2581  * copying them. At the same time this returns the total_mapcount too.
2582  *
2583  * The function returns the highest mapcount any one of the subpages
2584  * has. If the return value is one, even if different processes are
2585  * mapping different subpages of the transparent hugepage, they can
2586  * all reuse it, because each process is reusing a different subpage.
2587  *
2588  * The total_mapcount is instead counting all virtual mappings of the
2589  * subpages. If the total_mapcount is equal to "one", it tells the
2590  * caller all mappings belong to the same "mm" and in turn the
2591  * anon_vma of the transparent hugepage can become the vma->anon_vma
2592  * local one as no other process may be mapping any of the subpages.
2593  *
2594  * It would be more accurate to replace page_mapcount() with
2595  * page_trans_huge_mapcount(), however we only use
2596  * page_trans_huge_mapcount() in the copy-on-write faults where we
2597  * need full accuracy to avoid breaking page pinning, because
2598  * page_trans_huge_mapcount() is slower than page_mapcount().
2599  */
2600 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601 {
2602 	int i, ret, _total_mapcount, mapcount;
2603 
2604 	/* hugetlbfs shouldn't call it */
2605 	VM_BUG_ON_PAGE(PageHuge(page), page);
2606 
2607 	if (likely(!PageTransCompound(page))) {
2608 		mapcount = atomic_read(&page->_mapcount) + 1;
2609 		if (total_mapcount)
2610 			*total_mapcount = mapcount;
2611 		return mapcount;
2612 	}
2613 
2614 	page = compound_head(page);
2615 
2616 	_total_mapcount = ret = 0;
2617 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2618 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 		ret = max(ret, mapcount);
2620 		_total_mapcount += mapcount;
2621 	}
2622 	if (PageDoubleMap(page)) {
2623 		ret -= 1;
2624 		_total_mapcount -= HPAGE_PMD_NR;
2625 	}
2626 	mapcount = compound_mapcount(page);
2627 	ret += mapcount;
2628 	_total_mapcount += mapcount;
2629 	if (total_mapcount)
2630 		*total_mapcount = _total_mapcount;
2631 	return ret;
2632 }
2633 
2634 /* Racy check whether the huge page can be split */
2635 bool can_split_huge_page(struct page *page, int *pextra_pins)
2636 {
2637 	int extra_pins;
2638 
2639 	/* Additional pins from page cache */
2640 	if (PageAnon(page))
2641 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2642 	else
2643 		extra_pins = HPAGE_PMD_NR;
2644 	if (pextra_pins)
2645 		*pextra_pins = extra_pins;
2646 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647 }
2648 
2649 /*
2650  * This function splits huge page into normal pages. @page can point to any
2651  * subpage of huge page to split. Split doesn't change the position of @page.
2652  *
2653  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654  * The huge page must be locked.
2655  *
2656  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657  *
2658  * Both head page and tail pages will inherit mapping, flags, and so on from
2659  * the hugepage.
2660  *
2661  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662  * they are not mapped.
2663  *
2664  * Returns 0 if the hugepage is split successfully.
2665  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666  * us.
2667  */
2668 int split_huge_page_to_list(struct page *page, struct list_head *list)
2669 {
2670 	struct page *head = compound_head(page);
2671 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2672 	struct anon_vma *anon_vma = NULL;
2673 	struct address_space *mapping = NULL;
2674 	int count, mapcount, extra_pins, ret;
2675 	bool mlocked;
2676 	unsigned long flags;
2677 	pgoff_t end;
2678 
2679 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2680 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2681 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2682 
2683 	if (PageWriteback(page))
2684 		return -EBUSY;
2685 
2686 	if (PageAnon(head)) {
2687 		/*
2688 		 * The caller does not necessarily hold an mmap_sem that would
2689 		 * prevent the anon_vma disappearing so we first we take a
2690 		 * reference to it and then lock the anon_vma for write. This
2691 		 * is similar to page_lock_anon_vma_read except the write lock
2692 		 * is taken to serialise against parallel split or collapse
2693 		 * operations.
2694 		 */
2695 		anon_vma = page_get_anon_vma(head);
2696 		if (!anon_vma) {
2697 			ret = -EBUSY;
2698 			goto out;
2699 		}
2700 		end = -1;
2701 		mapping = NULL;
2702 		anon_vma_lock_write(anon_vma);
2703 	} else {
2704 		mapping = head->mapping;
2705 
2706 		/* Truncated ? */
2707 		if (!mapping) {
2708 			ret = -EBUSY;
2709 			goto out;
2710 		}
2711 
2712 		anon_vma = NULL;
2713 		i_mmap_lock_read(mapping);
2714 
2715 		/*
2716 		 *__split_huge_page() may need to trim off pages beyond EOF:
2717 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2718 		 * which cannot be nested inside the page tree lock. So note
2719 		 * end now: i_size itself may be changed at any moment, but
2720 		 * head page lock is good enough to serialize the trimming.
2721 		 */
2722 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2723 	}
2724 
2725 	/*
2726 	 * Racy check if we can split the page, before unmap_page() will
2727 	 * split PMDs
2728 	 */
2729 	if (!can_split_huge_page(head, &extra_pins)) {
2730 		ret = -EBUSY;
2731 		goto out_unlock;
2732 	}
2733 
2734 	mlocked = PageMlocked(page);
2735 	unmap_page(head);
2736 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2737 
2738 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2739 	if (mlocked)
2740 		lru_add_drain();
2741 
2742 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2743 	spin_lock_irqsave(&pgdata->lru_lock, flags);
2744 
2745 	if (mapping) {
2746 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2747 
2748 		/*
2749 		 * Check if the head page is present in page cache.
2750 		 * We assume all tail are present too, if head is there.
2751 		 */
2752 		xa_lock(&mapping->i_pages);
2753 		if (xas_load(&xas) != head)
2754 			goto fail;
2755 	}
2756 
2757 	/* Prevent deferred_split_scan() touching ->_refcount */
2758 	spin_lock(&pgdata->split_queue_lock);
2759 	count = page_count(head);
2760 	mapcount = total_mapcount(head);
2761 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2762 		if (!list_empty(page_deferred_list(head))) {
2763 			pgdata->split_queue_len--;
2764 			list_del(page_deferred_list(head));
2765 		}
2766 		if (mapping)
2767 			__dec_node_page_state(page, NR_SHMEM_THPS);
2768 		spin_unlock(&pgdata->split_queue_lock);
2769 		__split_huge_page(page, list, end, flags);
2770 		if (PageSwapCache(head)) {
2771 			swp_entry_t entry = { .val = page_private(head) };
2772 
2773 			ret = split_swap_cluster(entry);
2774 		} else
2775 			ret = 0;
2776 	} else {
2777 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2778 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2779 					mapcount, count);
2780 			if (PageTail(page))
2781 				dump_page(head, NULL);
2782 			dump_page(page, "total_mapcount(head) > 0");
2783 			BUG();
2784 		}
2785 		spin_unlock(&pgdata->split_queue_lock);
2786 fail:		if (mapping)
2787 			xa_unlock(&mapping->i_pages);
2788 		spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2789 		remap_page(head);
2790 		ret = -EBUSY;
2791 	}
2792 
2793 out_unlock:
2794 	if (anon_vma) {
2795 		anon_vma_unlock_write(anon_vma);
2796 		put_anon_vma(anon_vma);
2797 	}
2798 	if (mapping)
2799 		i_mmap_unlock_read(mapping);
2800 out:
2801 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2802 	return ret;
2803 }
2804 
2805 void free_transhuge_page(struct page *page)
2806 {
2807 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2808 	unsigned long flags;
2809 
2810 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2811 	if (!list_empty(page_deferred_list(page))) {
2812 		pgdata->split_queue_len--;
2813 		list_del(page_deferred_list(page));
2814 	}
2815 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2816 	free_compound_page(page);
2817 }
2818 
2819 void deferred_split_huge_page(struct page *page)
2820 {
2821 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2822 	unsigned long flags;
2823 
2824 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2825 
2826 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2827 	if (list_empty(page_deferred_list(page))) {
2828 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2829 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2830 		pgdata->split_queue_len++;
2831 	}
2832 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2833 }
2834 
2835 static unsigned long deferred_split_count(struct shrinker *shrink,
2836 		struct shrink_control *sc)
2837 {
2838 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2839 	return READ_ONCE(pgdata->split_queue_len);
2840 }
2841 
2842 static unsigned long deferred_split_scan(struct shrinker *shrink,
2843 		struct shrink_control *sc)
2844 {
2845 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2846 	unsigned long flags;
2847 	LIST_HEAD(list), *pos, *next;
2848 	struct page *page;
2849 	int split = 0;
2850 
2851 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2852 	/* Take pin on all head pages to avoid freeing them under us */
2853 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2854 		page = list_entry((void *)pos, struct page, mapping);
2855 		page = compound_head(page);
2856 		if (get_page_unless_zero(page)) {
2857 			list_move(page_deferred_list(page), &list);
2858 		} else {
2859 			/* We lost race with put_compound_page() */
2860 			list_del_init(page_deferred_list(page));
2861 			pgdata->split_queue_len--;
2862 		}
2863 		if (!--sc->nr_to_scan)
2864 			break;
2865 	}
2866 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2867 
2868 	list_for_each_safe(pos, next, &list) {
2869 		page = list_entry((void *)pos, struct page, mapping);
2870 		if (!trylock_page(page))
2871 			goto next;
2872 		/* split_huge_page() removes page from list on success */
2873 		if (!split_huge_page(page))
2874 			split++;
2875 		unlock_page(page);
2876 next:
2877 		put_page(page);
2878 	}
2879 
2880 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2881 	list_splice_tail(&list, &pgdata->split_queue);
2882 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2883 
2884 	/*
2885 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2886 	 * This can happen if pages were freed under us.
2887 	 */
2888 	if (!split && list_empty(&pgdata->split_queue))
2889 		return SHRINK_STOP;
2890 	return split;
2891 }
2892 
2893 static struct shrinker deferred_split_shrinker = {
2894 	.count_objects = deferred_split_count,
2895 	.scan_objects = deferred_split_scan,
2896 	.seeks = DEFAULT_SEEKS,
2897 	.flags = SHRINKER_NUMA_AWARE,
2898 };
2899 
2900 #ifdef CONFIG_DEBUG_FS
2901 static int split_huge_pages_set(void *data, u64 val)
2902 {
2903 	struct zone *zone;
2904 	struct page *page;
2905 	unsigned long pfn, max_zone_pfn;
2906 	unsigned long total = 0, split = 0;
2907 
2908 	if (val != 1)
2909 		return -EINVAL;
2910 
2911 	for_each_populated_zone(zone) {
2912 		max_zone_pfn = zone_end_pfn(zone);
2913 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2914 			if (!pfn_valid(pfn))
2915 				continue;
2916 
2917 			page = pfn_to_page(pfn);
2918 			if (!get_page_unless_zero(page))
2919 				continue;
2920 
2921 			if (zone != page_zone(page))
2922 				goto next;
2923 
2924 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2925 				goto next;
2926 
2927 			total++;
2928 			lock_page(page);
2929 			if (!split_huge_page(page))
2930 				split++;
2931 			unlock_page(page);
2932 next:
2933 			put_page(page);
2934 		}
2935 	}
2936 
2937 	pr_info("%lu of %lu THP split\n", split, total);
2938 
2939 	return 0;
2940 }
2941 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2942 		"%llu\n");
2943 
2944 static int __init split_huge_pages_debugfs(void)
2945 {
2946 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2947 			    &split_huge_pages_fops);
2948 	return 0;
2949 }
2950 late_initcall(split_huge_pages_debugfs);
2951 #endif
2952 
2953 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2954 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2955 		struct page *page)
2956 {
2957 	struct vm_area_struct *vma = pvmw->vma;
2958 	struct mm_struct *mm = vma->vm_mm;
2959 	unsigned long address = pvmw->address;
2960 	pmd_t pmdval;
2961 	swp_entry_t entry;
2962 	pmd_t pmdswp;
2963 
2964 	if (!(pvmw->pmd && !pvmw->pte))
2965 		return;
2966 
2967 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2968 	pmdval = *pvmw->pmd;
2969 	pmdp_invalidate(vma, address, pvmw->pmd);
2970 	if (pmd_dirty(pmdval))
2971 		set_page_dirty(page);
2972 	entry = make_migration_entry(page, pmd_write(pmdval));
2973 	pmdswp = swp_entry_to_pmd(entry);
2974 	if (pmd_soft_dirty(pmdval))
2975 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2976 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2977 	page_remove_rmap(page, true);
2978 	put_page(page);
2979 }
2980 
2981 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2982 {
2983 	struct vm_area_struct *vma = pvmw->vma;
2984 	struct mm_struct *mm = vma->vm_mm;
2985 	unsigned long address = pvmw->address;
2986 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2987 	pmd_t pmde;
2988 	swp_entry_t entry;
2989 
2990 	if (!(pvmw->pmd && !pvmw->pte))
2991 		return;
2992 
2993 	entry = pmd_to_swp_entry(*pvmw->pmd);
2994 	get_page(new);
2995 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2996 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2997 		pmde = pmd_mksoft_dirty(pmde);
2998 	if (is_write_migration_entry(entry))
2999 		pmde = maybe_pmd_mkwrite(pmde, vma);
3000 
3001 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3002 	if (PageAnon(new))
3003 		page_add_anon_rmap(new, vma, mmun_start, true);
3004 	else
3005 		page_add_file_rmap(new, true);
3006 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3007 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3008 		mlock_vma_page(new);
3009 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3010 }
3011 #endif
3012