xref: /linux/mm/huge_memory.c (revision 7056741fd9fc14a65608549a4657cf5178f05f63)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!khugepaged_enabled())
106 		return 0;
107 
108 	for_each_populated_zone(zone)
109 		nr_zones++;
110 
111 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112 	recommended_min = pageblock_nr_pages * nr_zones * 2;
113 
114 	/*
115 	 * Make sure that on average at least two pageblocks are almost free
116 	 * of another type, one for a migratetype to fall back to and a
117 	 * second to avoid subsequent fallbacks of other types There are 3
118 	 * MIGRATE_TYPES we care about.
119 	 */
120 	recommended_min += pageblock_nr_pages * nr_zones *
121 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122 
123 	/* don't ever allow to reserve more than 5% of the lowmem */
124 	recommended_min = min(recommended_min,
125 			      (unsigned long) nr_free_buffer_pages() / 20);
126 	recommended_min <<= (PAGE_SHIFT-10);
127 
128 	if (recommended_min > min_free_kbytes)
129 		min_free_kbytes = recommended_min;
130 	setup_per_zone_wmarks();
131 	return 0;
132 }
133 late_initcall(set_recommended_min_free_kbytes);
134 
135 static int start_khugepaged(void)
136 {
137 	int err = 0;
138 	if (khugepaged_enabled()) {
139 		if (!khugepaged_thread)
140 			khugepaged_thread = kthread_run(khugepaged, NULL,
141 							"khugepaged");
142 		if (unlikely(IS_ERR(khugepaged_thread))) {
143 			printk(KERN_ERR
144 			       "khugepaged: kthread_run(khugepaged) failed\n");
145 			err = PTR_ERR(khugepaged_thread);
146 			khugepaged_thread = NULL;
147 		}
148 
149 		if (!list_empty(&khugepaged_scan.mm_head))
150 			wake_up_interruptible(&khugepaged_wait);
151 
152 		set_recommended_min_free_kbytes();
153 	} else if (khugepaged_thread) {
154 		kthread_stop(khugepaged_thread);
155 		khugepaged_thread = NULL;
156 	}
157 
158 	return err;
159 }
160 
161 #ifdef CONFIG_SYSFS
162 
163 static ssize_t double_flag_show(struct kobject *kobj,
164 				struct kobj_attribute *attr, char *buf,
165 				enum transparent_hugepage_flag enabled,
166 				enum transparent_hugepage_flag req_madv)
167 {
168 	if (test_bit(enabled, &transparent_hugepage_flags)) {
169 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170 		return sprintf(buf, "[always] madvise never\n");
171 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
172 		return sprintf(buf, "always [madvise] never\n");
173 	else
174 		return sprintf(buf, "always madvise [never]\n");
175 }
176 static ssize_t double_flag_store(struct kobject *kobj,
177 				 struct kobj_attribute *attr,
178 				 const char *buf, size_t count,
179 				 enum transparent_hugepage_flag enabled,
180 				 enum transparent_hugepage_flag req_madv)
181 {
182 	if (!memcmp("always", buf,
183 		    min(sizeof("always")-1, count))) {
184 		set_bit(enabled, &transparent_hugepage_flags);
185 		clear_bit(req_madv, &transparent_hugepage_flags);
186 	} else if (!memcmp("madvise", buf,
187 			   min(sizeof("madvise")-1, count))) {
188 		clear_bit(enabled, &transparent_hugepage_flags);
189 		set_bit(req_madv, &transparent_hugepage_flags);
190 	} else if (!memcmp("never", buf,
191 			   min(sizeof("never")-1, count))) {
192 		clear_bit(enabled, &transparent_hugepage_flags);
193 		clear_bit(req_madv, &transparent_hugepage_flags);
194 	} else
195 		return -EINVAL;
196 
197 	return count;
198 }
199 
200 static ssize_t enabled_show(struct kobject *kobj,
201 			    struct kobj_attribute *attr, char *buf)
202 {
203 	return double_flag_show(kobj, attr, buf,
204 				TRANSPARENT_HUGEPAGE_FLAG,
205 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206 }
207 static ssize_t enabled_store(struct kobject *kobj,
208 			     struct kobj_attribute *attr,
209 			     const char *buf, size_t count)
210 {
211 	ssize_t ret;
212 
213 	ret = double_flag_store(kobj, attr, buf, count,
214 				TRANSPARENT_HUGEPAGE_FLAG,
215 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216 
217 	if (ret > 0) {
218 		int err;
219 
220 		mutex_lock(&khugepaged_mutex);
221 		err = start_khugepaged();
222 		mutex_unlock(&khugepaged_mutex);
223 
224 		if (err)
225 			ret = err;
226 	}
227 
228 	return ret;
229 }
230 static struct kobj_attribute enabled_attr =
231 	__ATTR(enabled, 0644, enabled_show, enabled_store);
232 
233 static ssize_t single_flag_show(struct kobject *kobj,
234 				struct kobj_attribute *attr, char *buf,
235 				enum transparent_hugepage_flag flag)
236 {
237 	return sprintf(buf, "%d\n",
238 		       !!test_bit(flag, &transparent_hugepage_flags));
239 }
240 
241 static ssize_t single_flag_store(struct kobject *kobj,
242 				 struct kobj_attribute *attr,
243 				 const char *buf, size_t count,
244 				 enum transparent_hugepage_flag flag)
245 {
246 	unsigned long value;
247 	int ret;
248 
249 	ret = kstrtoul(buf, 10, &value);
250 	if (ret < 0)
251 		return ret;
252 	if (value > 1)
253 		return -EINVAL;
254 
255 	if (value)
256 		set_bit(flag, &transparent_hugepage_flags);
257 	else
258 		clear_bit(flag, &transparent_hugepage_flags);
259 
260 	return count;
261 }
262 
263 /*
264  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266  * memory just to allocate one more hugepage.
267  */
268 static ssize_t defrag_show(struct kobject *kobj,
269 			   struct kobj_attribute *attr, char *buf)
270 {
271 	return double_flag_show(kobj, attr, buf,
272 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274 }
275 static ssize_t defrag_store(struct kobject *kobj,
276 			    struct kobj_attribute *attr,
277 			    const char *buf, size_t count)
278 {
279 	return double_flag_store(kobj, attr, buf, count,
280 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282 }
283 static struct kobj_attribute defrag_attr =
284 	__ATTR(defrag, 0644, defrag_show, defrag_store);
285 
286 #ifdef CONFIG_DEBUG_VM
287 static ssize_t debug_cow_show(struct kobject *kobj,
288 				struct kobj_attribute *attr, char *buf)
289 {
290 	return single_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292 }
293 static ssize_t debug_cow_store(struct kobject *kobj,
294 			       struct kobj_attribute *attr,
295 			       const char *buf, size_t count)
296 {
297 	return single_flag_store(kobj, attr, buf, count,
298 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299 }
300 static struct kobj_attribute debug_cow_attr =
301 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302 #endif /* CONFIG_DEBUG_VM */
303 
304 static struct attribute *hugepage_attr[] = {
305 	&enabled_attr.attr,
306 	&defrag_attr.attr,
307 #ifdef CONFIG_DEBUG_VM
308 	&debug_cow_attr.attr,
309 #endif
310 	NULL,
311 };
312 
313 static struct attribute_group hugepage_attr_group = {
314 	.attrs = hugepage_attr,
315 };
316 
317 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318 					 struct kobj_attribute *attr,
319 					 char *buf)
320 {
321 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322 }
323 
324 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325 					  struct kobj_attribute *attr,
326 					  const char *buf, size_t count)
327 {
328 	unsigned long msecs;
329 	int err;
330 
331 	err = strict_strtoul(buf, 10, &msecs);
332 	if (err || msecs > UINT_MAX)
333 		return -EINVAL;
334 
335 	khugepaged_scan_sleep_millisecs = msecs;
336 	wake_up_interruptible(&khugepaged_wait);
337 
338 	return count;
339 }
340 static struct kobj_attribute scan_sleep_millisecs_attr =
341 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342 	       scan_sleep_millisecs_store);
343 
344 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345 					  struct kobj_attribute *attr,
346 					  char *buf)
347 {
348 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349 }
350 
351 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352 					   struct kobj_attribute *attr,
353 					   const char *buf, size_t count)
354 {
355 	unsigned long msecs;
356 	int err;
357 
358 	err = strict_strtoul(buf, 10, &msecs);
359 	if (err || msecs > UINT_MAX)
360 		return -EINVAL;
361 
362 	khugepaged_alloc_sleep_millisecs = msecs;
363 	wake_up_interruptible(&khugepaged_wait);
364 
365 	return count;
366 }
367 static struct kobj_attribute alloc_sleep_millisecs_attr =
368 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369 	       alloc_sleep_millisecs_store);
370 
371 static ssize_t pages_to_scan_show(struct kobject *kobj,
372 				  struct kobj_attribute *attr,
373 				  char *buf)
374 {
375 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376 }
377 static ssize_t pages_to_scan_store(struct kobject *kobj,
378 				   struct kobj_attribute *attr,
379 				   const char *buf, size_t count)
380 {
381 	int err;
382 	unsigned long pages;
383 
384 	err = strict_strtoul(buf, 10, &pages);
385 	if (err || !pages || pages > UINT_MAX)
386 		return -EINVAL;
387 
388 	khugepaged_pages_to_scan = pages;
389 
390 	return count;
391 }
392 static struct kobj_attribute pages_to_scan_attr =
393 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
394 	       pages_to_scan_store);
395 
396 static ssize_t pages_collapsed_show(struct kobject *kobj,
397 				    struct kobj_attribute *attr,
398 				    char *buf)
399 {
400 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401 }
402 static struct kobj_attribute pages_collapsed_attr =
403 	__ATTR_RO(pages_collapsed);
404 
405 static ssize_t full_scans_show(struct kobject *kobj,
406 			       struct kobj_attribute *attr,
407 			       char *buf)
408 {
409 	return sprintf(buf, "%u\n", khugepaged_full_scans);
410 }
411 static struct kobj_attribute full_scans_attr =
412 	__ATTR_RO(full_scans);
413 
414 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415 				      struct kobj_attribute *attr, char *buf)
416 {
417 	return single_flag_show(kobj, attr, buf,
418 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419 }
420 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421 				       struct kobj_attribute *attr,
422 				       const char *buf, size_t count)
423 {
424 	return single_flag_store(kobj, attr, buf, count,
425 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426 }
427 static struct kobj_attribute khugepaged_defrag_attr =
428 	__ATTR(defrag, 0644, khugepaged_defrag_show,
429 	       khugepaged_defrag_store);
430 
431 /*
432  * max_ptes_none controls if khugepaged should collapse hugepages over
433  * any unmapped ptes in turn potentially increasing the memory
434  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435  * reduce the available free memory in the system as it
436  * runs. Increasing max_ptes_none will instead potentially reduce the
437  * free memory in the system during the khugepaged scan.
438  */
439 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440 					     struct kobj_attribute *attr,
441 					     char *buf)
442 {
443 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444 }
445 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446 					      struct kobj_attribute *attr,
447 					      const char *buf, size_t count)
448 {
449 	int err;
450 	unsigned long max_ptes_none;
451 
452 	err = strict_strtoul(buf, 10, &max_ptes_none);
453 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
454 		return -EINVAL;
455 
456 	khugepaged_max_ptes_none = max_ptes_none;
457 
458 	return count;
459 }
460 static struct kobj_attribute khugepaged_max_ptes_none_attr =
461 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462 	       khugepaged_max_ptes_none_store);
463 
464 static struct attribute *khugepaged_attr[] = {
465 	&khugepaged_defrag_attr.attr,
466 	&khugepaged_max_ptes_none_attr.attr,
467 	&pages_to_scan_attr.attr,
468 	&pages_collapsed_attr.attr,
469 	&full_scans_attr.attr,
470 	&scan_sleep_millisecs_attr.attr,
471 	&alloc_sleep_millisecs_attr.attr,
472 	NULL,
473 };
474 
475 static struct attribute_group khugepaged_attr_group = {
476 	.attrs = khugepaged_attr,
477 	.name = "khugepaged",
478 };
479 
480 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
481 {
482 	int err;
483 
484 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485 	if (unlikely(!*hugepage_kobj)) {
486 		printk(KERN_ERR "hugepage: failed kobject create\n");
487 		return -ENOMEM;
488 	}
489 
490 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
491 	if (err) {
492 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
493 		goto delete_obj;
494 	}
495 
496 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
497 	if (err) {
498 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
499 		goto remove_hp_group;
500 	}
501 
502 	return 0;
503 
504 remove_hp_group:
505 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506 delete_obj:
507 	kobject_put(*hugepage_kobj);
508 	return err;
509 }
510 
511 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512 {
513 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515 	kobject_put(hugepage_kobj);
516 }
517 #else
518 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519 {
520 	return 0;
521 }
522 
523 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524 {
525 }
526 #endif /* CONFIG_SYSFS */
527 
528 static int __init hugepage_init(void)
529 {
530 	int err;
531 	struct kobject *hugepage_kobj;
532 
533 	if (!has_transparent_hugepage()) {
534 		transparent_hugepage_flags = 0;
535 		return -EINVAL;
536 	}
537 
538 	err = hugepage_init_sysfs(&hugepage_kobj);
539 	if (err)
540 		return err;
541 
542 	err = khugepaged_slab_init();
543 	if (err)
544 		goto out;
545 
546 	err = mm_slots_hash_init();
547 	if (err) {
548 		khugepaged_slab_free();
549 		goto out;
550 	}
551 
552 	/*
553 	 * By default disable transparent hugepages on smaller systems,
554 	 * where the extra memory used could hurt more than TLB overhead
555 	 * is likely to save.  The admin can still enable it through /sys.
556 	 */
557 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558 		transparent_hugepage_flags = 0;
559 
560 	start_khugepaged();
561 
562 	return 0;
563 out:
564 	hugepage_exit_sysfs(hugepage_kobj);
565 	return err;
566 }
567 module_init(hugepage_init)
568 
569 static int __init setup_transparent_hugepage(char *str)
570 {
571 	int ret = 0;
572 	if (!str)
573 		goto out;
574 	if (!strcmp(str, "always")) {
575 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576 			&transparent_hugepage_flags);
577 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578 			  &transparent_hugepage_flags);
579 		ret = 1;
580 	} else if (!strcmp(str, "madvise")) {
581 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582 			  &transparent_hugepage_flags);
583 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584 			&transparent_hugepage_flags);
585 		ret = 1;
586 	} else if (!strcmp(str, "never")) {
587 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 			  &transparent_hugepage_flags);
589 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 			  &transparent_hugepage_flags);
591 		ret = 1;
592 	}
593 out:
594 	if (!ret)
595 		printk(KERN_WARNING
596 		       "transparent_hugepage= cannot parse, ignored\n");
597 	return ret;
598 }
599 __setup("transparent_hugepage=", setup_transparent_hugepage);
600 
601 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
602 {
603 	if (likely(vma->vm_flags & VM_WRITE))
604 		pmd = pmd_mkwrite(pmd);
605 	return pmd;
606 }
607 
608 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
609 					struct vm_area_struct *vma,
610 					unsigned long haddr, pmd_t *pmd,
611 					struct page *page)
612 {
613 	pgtable_t pgtable;
614 
615 	VM_BUG_ON(!PageCompound(page));
616 	pgtable = pte_alloc_one(mm, haddr);
617 	if (unlikely(!pgtable))
618 		return VM_FAULT_OOM;
619 
620 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 	__SetPageUptodate(page);
622 
623 	spin_lock(&mm->page_table_lock);
624 	if (unlikely(!pmd_none(*pmd))) {
625 		spin_unlock(&mm->page_table_lock);
626 		mem_cgroup_uncharge_page(page);
627 		put_page(page);
628 		pte_free(mm, pgtable);
629 	} else {
630 		pmd_t entry;
631 		entry = mk_pmd(page, vma->vm_page_prot);
632 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 		entry = pmd_mkhuge(entry);
634 		/*
635 		 * The spinlocking to take the lru_lock inside
636 		 * page_add_new_anon_rmap() acts as a full memory
637 		 * barrier to be sure clear_huge_page writes become
638 		 * visible after the set_pmd_at() write.
639 		 */
640 		page_add_new_anon_rmap(page, vma, haddr);
641 		set_pmd_at(mm, haddr, pmd, entry);
642 		pgtable_trans_huge_deposit(mm, pgtable);
643 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
644 		mm->nr_ptes++;
645 		spin_unlock(&mm->page_table_lock);
646 	}
647 
648 	return 0;
649 }
650 
651 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
652 {
653 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
654 }
655 
656 static inline struct page *alloc_hugepage_vma(int defrag,
657 					      struct vm_area_struct *vma,
658 					      unsigned long haddr, int nd,
659 					      gfp_t extra_gfp)
660 {
661 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
662 			       HPAGE_PMD_ORDER, vma, haddr, nd);
663 }
664 
665 #ifndef CONFIG_NUMA
666 static inline struct page *alloc_hugepage(int defrag)
667 {
668 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
669 			   HPAGE_PMD_ORDER);
670 }
671 #endif
672 
673 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 			       unsigned long address, pmd_t *pmd,
675 			       unsigned int flags)
676 {
677 	struct page *page;
678 	unsigned long haddr = address & HPAGE_PMD_MASK;
679 	pte_t *pte;
680 
681 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 		if (unlikely(anon_vma_prepare(vma)))
683 			return VM_FAULT_OOM;
684 		if (unlikely(khugepaged_enter(vma)))
685 			return VM_FAULT_OOM;
686 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
687 					  vma, haddr, numa_node_id(), 0);
688 		if (unlikely(!page)) {
689 			count_vm_event(THP_FAULT_FALLBACK);
690 			goto out;
691 		}
692 		count_vm_event(THP_FAULT_ALLOC);
693 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 			put_page(page);
695 			goto out;
696 		}
697 		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
698 							  page))) {
699 			mem_cgroup_uncharge_page(page);
700 			put_page(page);
701 			goto out;
702 		}
703 
704 		return 0;
705 	}
706 out:
707 	/*
708 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
709 	 * run pte_offset_map on the pmd, if an huge pmd could
710 	 * materialize from under us from a different thread.
711 	 */
712 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
713 		return VM_FAULT_OOM;
714 	/* if an huge pmd materialized from under us just retry later */
715 	if (unlikely(pmd_trans_huge(*pmd)))
716 		return 0;
717 	/*
718 	 * A regular pmd is established and it can't morph into a huge pmd
719 	 * from under us anymore at this point because we hold the mmap_sem
720 	 * read mode and khugepaged takes it in write mode. So now it's
721 	 * safe to run pte_offset_map().
722 	 */
723 	pte = pte_offset_map(pmd, address);
724 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
725 }
726 
727 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
729 		  struct vm_area_struct *vma)
730 {
731 	struct page *src_page;
732 	pmd_t pmd;
733 	pgtable_t pgtable;
734 	int ret;
735 
736 	ret = -ENOMEM;
737 	pgtable = pte_alloc_one(dst_mm, addr);
738 	if (unlikely(!pgtable))
739 		goto out;
740 
741 	spin_lock(&dst_mm->page_table_lock);
742 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
743 
744 	ret = -EAGAIN;
745 	pmd = *src_pmd;
746 	if (unlikely(!pmd_trans_huge(pmd))) {
747 		pte_free(dst_mm, pgtable);
748 		goto out_unlock;
749 	}
750 	if (unlikely(pmd_trans_splitting(pmd))) {
751 		/* split huge page running from under us */
752 		spin_unlock(&src_mm->page_table_lock);
753 		spin_unlock(&dst_mm->page_table_lock);
754 		pte_free(dst_mm, pgtable);
755 
756 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
757 		goto out;
758 	}
759 	src_page = pmd_page(pmd);
760 	VM_BUG_ON(!PageHead(src_page));
761 	get_page(src_page);
762 	page_dup_rmap(src_page);
763 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
764 
765 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
766 	pmd = pmd_mkold(pmd_wrprotect(pmd));
767 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
768 	pgtable_trans_huge_deposit(dst_mm, pgtable);
769 	dst_mm->nr_ptes++;
770 
771 	ret = 0;
772 out_unlock:
773 	spin_unlock(&src_mm->page_table_lock);
774 	spin_unlock(&dst_mm->page_table_lock);
775 out:
776 	return ret;
777 }
778 
779 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
780 					struct vm_area_struct *vma,
781 					unsigned long address,
782 					pmd_t *pmd, pmd_t orig_pmd,
783 					struct page *page,
784 					unsigned long haddr)
785 {
786 	pgtable_t pgtable;
787 	pmd_t _pmd;
788 	int ret = 0, i;
789 	struct page **pages;
790 	unsigned long mmun_start;	/* For mmu_notifiers */
791 	unsigned long mmun_end;		/* For mmu_notifiers */
792 
793 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
794 			GFP_KERNEL);
795 	if (unlikely(!pages)) {
796 		ret |= VM_FAULT_OOM;
797 		goto out;
798 	}
799 
800 	for (i = 0; i < HPAGE_PMD_NR; i++) {
801 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
802 					       __GFP_OTHER_NODE,
803 					       vma, address, page_to_nid(page));
804 		if (unlikely(!pages[i] ||
805 			     mem_cgroup_newpage_charge(pages[i], mm,
806 						       GFP_KERNEL))) {
807 			if (pages[i])
808 				put_page(pages[i]);
809 			mem_cgroup_uncharge_start();
810 			while (--i >= 0) {
811 				mem_cgroup_uncharge_page(pages[i]);
812 				put_page(pages[i]);
813 			}
814 			mem_cgroup_uncharge_end();
815 			kfree(pages);
816 			ret |= VM_FAULT_OOM;
817 			goto out;
818 		}
819 	}
820 
821 	for (i = 0; i < HPAGE_PMD_NR; i++) {
822 		copy_user_highpage(pages[i], page + i,
823 				   haddr + PAGE_SIZE * i, vma);
824 		__SetPageUptodate(pages[i]);
825 		cond_resched();
826 	}
827 
828 	mmun_start = haddr;
829 	mmun_end   = haddr + HPAGE_PMD_SIZE;
830 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
831 
832 	spin_lock(&mm->page_table_lock);
833 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
834 		goto out_free_pages;
835 	VM_BUG_ON(!PageHead(page));
836 
837 	pmdp_clear_flush(vma, haddr, pmd);
838 	/* leave pmd empty until pte is filled */
839 
840 	pgtable = pgtable_trans_huge_withdraw(mm);
841 	pmd_populate(mm, &_pmd, pgtable);
842 
843 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
844 		pte_t *pte, entry;
845 		entry = mk_pte(pages[i], vma->vm_page_prot);
846 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
847 		page_add_new_anon_rmap(pages[i], vma, haddr);
848 		pte = pte_offset_map(&_pmd, haddr);
849 		VM_BUG_ON(!pte_none(*pte));
850 		set_pte_at(mm, haddr, pte, entry);
851 		pte_unmap(pte);
852 	}
853 	kfree(pages);
854 
855 	smp_wmb(); /* make pte visible before pmd */
856 	pmd_populate(mm, pmd, pgtable);
857 	page_remove_rmap(page);
858 	spin_unlock(&mm->page_table_lock);
859 
860 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
861 
862 	ret |= VM_FAULT_WRITE;
863 	put_page(page);
864 
865 out:
866 	return ret;
867 
868 out_free_pages:
869 	spin_unlock(&mm->page_table_lock);
870 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
871 	mem_cgroup_uncharge_start();
872 	for (i = 0; i < HPAGE_PMD_NR; i++) {
873 		mem_cgroup_uncharge_page(pages[i]);
874 		put_page(pages[i]);
875 	}
876 	mem_cgroup_uncharge_end();
877 	kfree(pages);
878 	goto out;
879 }
880 
881 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
882 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
883 {
884 	int ret = 0;
885 	struct page *page, *new_page;
886 	unsigned long haddr;
887 	unsigned long mmun_start;	/* For mmu_notifiers */
888 	unsigned long mmun_end;		/* For mmu_notifiers */
889 
890 	VM_BUG_ON(!vma->anon_vma);
891 	spin_lock(&mm->page_table_lock);
892 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
893 		goto out_unlock;
894 
895 	page = pmd_page(orig_pmd);
896 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
897 	haddr = address & HPAGE_PMD_MASK;
898 	if (page_mapcount(page) == 1) {
899 		pmd_t entry;
900 		entry = pmd_mkyoung(orig_pmd);
901 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
902 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
903 			update_mmu_cache_pmd(vma, address, pmd);
904 		ret |= VM_FAULT_WRITE;
905 		goto out_unlock;
906 	}
907 	get_page(page);
908 	spin_unlock(&mm->page_table_lock);
909 
910 	if (transparent_hugepage_enabled(vma) &&
911 	    !transparent_hugepage_debug_cow())
912 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
913 					      vma, haddr, numa_node_id(), 0);
914 	else
915 		new_page = NULL;
916 
917 	if (unlikely(!new_page)) {
918 		count_vm_event(THP_FAULT_FALLBACK);
919 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
920 						   pmd, orig_pmd, page, haddr);
921 		if (ret & VM_FAULT_OOM)
922 			split_huge_page(page);
923 		put_page(page);
924 		goto out;
925 	}
926 	count_vm_event(THP_FAULT_ALLOC);
927 
928 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 		put_page(new_page);
930 		split_huge_page(page);
931 		put_page(page);
932 		ret |= VM_FAULT_OOM;
933 		goto out;
934 	}
935 
936 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
937 	__SetPageUptodate(new_page);
938 
939 	mmun_start = haddr;
940 	mmun_end   = haddr + HPAGE_PMD_SIZE;
941 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
942 
943 	spin_lock(&mm->page_table_lock);
944 	put_page(page);
945 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
946 		spin_unlock(&mm->page_table_lock);
947 		mem_cgroup_uncharge_page(new_page);
948 		put_page(new_page);
949 		goto out_mn;
950 	} else {
951 		pmd_t entry;
952 		VM_BUG_ON(!PageHead(page));
953 		entry = mk_pmd(new_page, vma->vm_page_prot);
954 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
955 		entry = pmd_mkhuge(entry);
956 		pmdp_clear_flush(vma, haddr, pmd);
957 		page_add_new_anon_rmap(new_page, vma, haddr);
958 		set_pmd_at(mm, haddr, pmd, entry);
959 		update_mmu_cache_pmd(vma, address, pmd);
960 		page_remove_rmap(page);
961 		put_page(page);
962 		ret |= VM_FAULT_WRITE;
963 	}
964 	spin_unlock(&mm->page_table_lock);
965 out_mn:
966 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
967 out:
968 	return ret;
969 out_unlock:
970 	spin_unlock(&mm->page_table_lock);
971 	return ret;
972 }
973 
974 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
975 				   unsigned long addr,
976 				   pmd_t *pmd,
977 				   unsigned int flags)
978 {
979 	struct mm_struct *mm = vma->vm_mm;
980 	struct page *page = NULL;
981 
982 	assert_spin_locked(&mm->page_table_lock);
983 
984 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 		goto out;
986 
987 	page = pmd_page(*pmd);
988 	VM_BUG_ON(!PageHead(page));
989 	if (flags & FOLL_TOUCH) {
990 		pmd_t _pmd;
991 		/*
992 		 * We should set the dirty bit only for FOLL_WRITE but
993 		 * for now the dirty bit in the pmd is meaningless.
994 		 * And if the dirty bit will become meaningful and
995 		 * we'll only set it with FOLL_WRITE, an atomic
996 		 * set_bit will be required on the pmd to set the
997 		 * young bit, instead of the current set_pmd_at.
998 		 */
999 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1000 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1001 	}
1002 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1003 		if (page->mapping && trylock_page(page)) {
1004 			lru_add_drain();
1005 			if (page->mapping)
1006 				mlock_vma_page(page);
1007 			unlock_page(page);
1008 		}
1009 	}
1010 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1011 	VM_BUG_ON(!PageCompound(page));
1012 	if (flags & FOLL_GET)
1013 		get_page_foll(page);
1014 
1015 out:
1016 	return page;
1017 }
1018 
1019 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1020 		 pmd_t *pmd, unsigned long addr)
1021 {
1022 	int ret = 0;
1023 
1024 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1025 		struct page *page;
1026 		pgtable_t pgtable;
1027 		pmd_t orig_pmd;
1028 		pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1029 		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1030 		page = pmd_page(orig_pmd);
1031 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1032 		page_remove_rmap(page);
1033 		VM_BUG_ON(page_mapcount(page) < 0);
1034 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1035 		VM_BUG_ON(!PageHead(page));
1036 		tlb->mm->nr_ptes--;
1037 		spin_unlock(&tlb->mm->page_table_lock);
1038 		tlb_remove_page(tlb, page);
1039 		pte_free(tlb->mm, pgtable);
1040 		ret = 1;
1041 	}
1042 	return ret;
1043 }
1044 
1045 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1046 		unsigned long addr, unsigned long end,
1047 		unsigned char *vec)
1048 {
1049 	int ret = 0;
1050 
1051 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1052 		/*
1053 		 * All logical pages in the range are present
1054 		 * if backed by a huge page.
1055 		 */
1056 		spin_unlock(&vma->vm_mm->page_table_lock);
1057 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1058 		ret = 1;
1059 	}
1060 
1061 	return ret;
1062 }
1063 
1064 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1065 		  unsigned long old_addr,
1066 		  unsigned long new_addr, unsigned long old_end,
1067 		  pmd_t *old_pmd, pmd_t *new_pmd)
1068 {
1069 	int ret = 0;
1070 	pmd_t pmd;
1071 
1072 	struct mm_struct *mm = vma->vm_mm;
1073 
1074 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1075 	    (new_addr & ~HPAGE_PMD_MASK) ||
1076 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1077 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1078 		goto out;
1079 
1080 	/*
1081 	 * The destination pmd shouldn't be established, free_pgtables()
1082 	 * should have release it.
1083 	 */
1084 	if (WARN_ON(!pmd_none(*new_pmd))) {
1085 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1086 		goto out;
1087 	}
1088 
1089 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1090 	if (ret == 1) {
1091 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1092 		VM_BUG_ON(!pmd_none(*new_pmd));
1093 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1094 		spin_unlock(&mm->page_table_lock);
1095 	}
1096 out:
1097 	return ret;
1098 }
1099 
1100 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1101 		unsigned long addr, pgprot_t newprot)
1102 {
1103 	struct mm_struct *mm = vma->vm_mm;
1104 	int ret = 0;
1105 
1106 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1107 		pmd_t entry;
1108 		entry = pmdp_get_and_clear(mm, addr, pmd);
1109 		entry = pmd_modify(entry, newprot);
1110 		set_pmd_at(mm, addr, pmd, entry);
1111 		spin_unlock(&vma->vm_mm->page_table_lock);
1112 		ret = 1;
1113 	}
1114 
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1120  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1121  *
1122  * Note that if it returns 1, this routine returns without unlocking page
1123  * table locks. So callers must unlock them.
1124  */
1125 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1126 {
1127 	spin_lock(&vma->vm_mm->page_table_lock);
1128 	if (likely(pmd_trans_huge(*pmd))) {
1129 		if (unlikely(pmd_trans_splitting(*pmd))) {
1130 			spin_unlock(&vma->vm_mm->page_table_lock);
1131 			wait_split_huge_page(vma->anon_vma, pmd);
1132 			return -1;
1133 		} else {
1134 			/* Thp mapped by 'pmd' is stable, so we can
1135 			 * handle it as it is. */
1136 			return 1;
1137 		}
1138 	}
1139 	spin_unlock(&vma->vm_mm->page_table_lock);
1140 	return 0;
1141 }
1142 
1143 pmd_t *page_check_address_pmd(struct page *page,
1144 			      struct mm_struct *mm,
1145 			      unsigned long address,
1146 			      enum page_check_address_pmd_flag flag)
1147 {
1148 	pgd_t *pgd;
1149 	pud_t *pud;
1150 	pmd_t *pmd, *ret = NULL;
1151 
1152 	if (address & ~HPAGE_PMD_MASK)
1153 		goto out;
1154 
1155 	pgd = pgd_offset(mm, address);
1156 	if (!pgd_present(*pgd))
1157 		goto out;
1158 
1159 	pud = pud_offset(pgd, address);
1160 	if (!pud_present(*pud))
1161 		goto out;
1162 
1163 	pmd = pmd_offset(pud, address);
1164 	if (pmd_none(*pmd))
1165 		goto out;
1166 	if (pmd_page(*pmd) != page)
1167 		goto out;
1168 	/*
1169 	 * split_vma() may create temporary aliased mappings. There is
1170 	 * no risk as long as all huge pmd are found and have their
1171 	 * splitting bit set before __split_huge_page_refcount
1172 	 * runs. Finding the same huge pmd more than once during the
1173 	 * same rmap walk is not a problem.
1174 	 */
1175 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1176 	    pmd_trans_splitting(*pmd))
1177 		goto out;
1178 	if (pmd_trans_huge(*pmd)) {
1179 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1180 			  !pmd_trans_splitting(*pmd));
1181 		ret = pmd;
1182 	}
1183 out:
1184 	return ret;
1185 }
1186 
1187 static int __split_huge_page_splitting(struct page *page,
1188 				       struct vm_area_struct *vma,
1189 				       unsigned long address)
1190 {
1191 	struct mm_struct *mm = vma->vm_mm;
1192 	pmd_t *pmd;
1193 	int ret = 0;
1194 	/* For mmu_notifiers */
1195 	const unsigned long mmun_start = address;
1196 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1197 
1198 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1199 	spin_lock(&mm->page_table_lock);
1200 	pmd = page_check_address_pmd(page, mm, address,
1201 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1202 	if (pmd) {
1203 		/*
1204 		 * We can't temporarily set the pmd to null in order
1205 		 * to split it, the pmd must remain marked huge at all
1206 		 * times or the VM won't take the pmd_trans_huge paths
1207 		 * and it won't wait on the anon_vma->root->mutex to
1208 		 * serialize against split_huge_page*.
1209 		 */
1210 		pmdp_splitting_flush(vma, address, pmd);
1211 		ret = 1;
1212 	}
1213 	spin_unlock(&mm->page_table_lock);
1214 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1215 
1216 	return ret;
1217 }
1218 
1219 static void __split_huge_page_refcount(struct page *page)
1220 {
1221 	int i;
1222 	struct zone *zone = page_zone(page);
1223 	struct lruvec *lruvec;
1224 	int tail_count = 0;
1225 
1226 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1227 	spin_lock_irq(&zone->lru_lock);
1228 	lruvec = mem_cgroup_page_lruvec(page, zone);
1229 
1230 	compound_lock(page);
1231 	/* complete memcg works before add pages to LRU */
1232 	mem_cgroup_split_huge_fixup(page);
1233 
1234 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1235 		struct page *page_tail = page + i;
1236 
1237 		/* tail_page->_mapcount cannot change */
1238 		BUG_ON(page_mapcount(page_tail) < 0);
1239 		tail_count += page_mapcount(page_tail);
1240 		/* check for overflow */
1241 		BUG_ON(tail_count < 0);
1242 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1243 		/*
1244 		 * tail_page->_count is zero and not changing from
1245 		 * under us. But get_page_unless_zero() may be running
1246 		 * from under us on the tail_page. If we used
1247 		 * atomic_set() below instead of atomic_add(), we
1248 		 * would then run atomic_set() concurrently with
1249 		 * get_page_unless_zero(), and atomic_set() is
1250 		 * implemented in C not using locked ops. spin_unlock
1251 		 * on x86 sometime uses locked ops because of PPro
1252 		 * errata 66, 92, so unless somebody can guarantee
1253 		 * atomic_set() here would be safe on all archs (and
1254 		 * not only on x86), it's safer to use atomic_add().
1255 		 */
1256 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1257 			   &page_tail->_count);
1258 
1259 		/* after clearing PageTail the gup refcount can be released */
1260 		smp_mb();
1261 
1262 		/*
1263 		 * retain hwpoison flag of the poisoned tail page:
1264 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1265 		 *   by the memory-failure.
1266 		 */
1267 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1268 		page_tail->flags |= (page->flags &
1269 				     ((1L << PG_referenced) |
1270 				      (1L << PG_swapbacked) |
1271 				      (1L << PG_mlocked) |
1272 				      (1L << PG_uptodate)));
1273 		page_tail->flags |= (1L << PG_dirty);
1274 
1275 		/* clear PageTail before overwriting first_page */
1276 		smp_wmb();
1277 
1278 		/*
1279 		 * __split_huge_page_splitting() already set the
1280 		 * splitting bit in all pmd that could map this
1281 		 * hugepage, that will ensure no CPU can alter the
1282 		 * mapcount on the head page. The mapcount is only
1283 		 * accounted in the head page and it has to be
1284 		 * transferred to all tail pages in the below code. So
1285 		 * for this code to be safe, the split the mapcount
1286 		 * can't change. But that doesn't mean userland can't
1287 		 * keep changing and reading the page contents while
1288 		 * we transfer the mapcount, so the pmd splitting
1289 		 * status is achieved setting a reserved bit in the
1290 		 * pmd, not by clearing the present bit.
1291 		*/
1292 		page_tail->_mapcount = page->_mapcount;
1293 
1294 		BUG_ON(page_tail->mapping);
1295 		page_tail->mapping = page->mapping;
1296 
1297 		page_tail->index = page->index + i;
1298 
1299 		BUG_ON(!PageAnon(page_tail));
1300 		BUG_ON(!PageUptodate(page_tail));
1301 		BUG_ON(!PageDirty(page_tail));
1302 		BUG_ON(!PageSwapBacked(page_tail));
1303 
1304 		lru_add_page_tail(page, page_tail, lruvec);
1305 	}
1306 	atomic_sub(tail_count, &page->_count);
1307 	BUG_ON(atomic_read(&page->_count) <= 0);
1308 
1309 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1310 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1311 
1312 	ClearPageCompound(page);
1313 	compound_unlock(page);
1314 	spin_unlock_irq(&zone->lru_lock);
1315 
1316 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1317 		struct page *page_tail = page + i;
1318 		BUG_ON(page_count(page_tail) <= 0);
1319 		/*
1320 		 * Tail pages may be freed if there wasn't any mapping
1321 		 * like if add_to_swap() is running on a lru page that
1322 		 * had its mapping zapped. And freeing these pages
1323 		 * requires taking the lru_lock so we do the put_page
1324 		 * of the tail pages after the split is complete.
1325 		 */
1326 		put_page(page_tail);
1327 	}
1328 
1329 	/*
1330 	 * Only the head page (now become a regular page) is required
1331 	 * to be pinned by the caller.
1332 	 */
1333 	BUG_ON(page_count(page) <= 0);
1334 }
1335 
1336 static int __split_huge_page_map(struct page *page,
1337 				 struct vm_area_struct *vma,
1338 				 unsigned long address)
1339 {
1340 	struct mm_struct *mm = vma->vm_mm;
1341 	pmd_t *pmd, _pmd;
1342 	int ret = 0, i;
1343 	pgtable_t pgtable;
1344 	unsigned long haddr;
1345 
1346 	spin_lock(&mm->page_table_lock);
1347 	pmd = page_check_address_pmd(page, mm, address,
1348 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1349 	if (pmd) {
1350 		pgtable = pgtable_trans_huge_withdraw(mm);
1351 		pmd_populate(mm, &_pmd, pgtable);
1352 
1353 		haddr = address;
1354 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1355 			pte_t *pte, entry;
1356 			BUG_ON(PageCompound(page+i));
1357 			entry = mk_pte(page + i, vma->vm_page_prot);
1358 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1359 			if (!pmd_write(*pmd))
1360 				entry = pte_wrprotect(entry);
1361 			else
1362 				BUG_ON(page_mapcount(page) != 1);
1363 			if (!pmd_young(*pmd))
1364 				entry = pte_mkold(entry);
1365 			pte = pte_offset_map(&_pmd, haddr);
1366 			BUG_ON(!pte_none(*pte));
1367 			set_pte_at(mm, haddr, pte, entry);
1368 			pte_unmap(pte);
1369 		}
1370 
1371 		smp_wmb(); /* make pte visible before pmd */
1372 		/*
1373 		 * Up to this point the pmd is present and huge and
1374 		 * userland has the whole access to the hugepage
1375 		 * during the split (which happens in place). If we
1376 		 * overwrite the pmd with the not-huge version
1377 		 * pointing to the pte here (which of course we could
1378 		 * if all CPUs were bug free), userland could trigger
1379 		 * a small page size TLB miss on the small sized TLB
1380 		 * while the hugepage TLB entry is still established
1381 		 * in the huge TLB. Some CPU doesn't like that. See
1382 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1383 		 * Erratum 383 on page 93. Intel should be safe but is
1384 		 * also warns that it's only safe if the permission
1385 		 * and cache attributes of the two entries loaded in
1386 		 * the two TLB is identical (which should be the case
1387 		 * here). But it is generally safer to never allow
1388 		 * small and huge TLB entries for the same virtual
1389 		 * address to be loaded simultaneously. So instead of
1390 		 * doing "pmd_populate(); flush_tlb_range();" we first
1391 		 * mark the current pmd notpresent (atomically because
1392 		 * here the pmd_trans_huge and pmd_trans_splitting
1393 		 * must remain set at all times on the pmd until the
1394 		 * split is complete for this pmd), then we flush the
1395 		 * SMP TLB and finally we write the non-huge version
1396 		 * of the pmd entry with pmd_populate.
1397 		 */
1398 		pmdp_invalidate(vma, address, pmd);
1399 		pmd_populate(mm, pmd, pgtable);
1400 		ret = 1;
1401 	}
1402 	spin_unlock(&mm->page_table_lock);
1403 
1404 	return ret;
1405 }
1406 
1407 /* must be called with anon_vma->root->mutex hold */
1408 static void __split_huge_page(struct page *page,
1409 			      struct anon_vma *anon_vma)
1410 {
1411 	int mapcount, mapcount2;
1412 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1413 	struct anon_vma_chain *avc;
1414 
1415 	BUG_ON(!PageHead(page));
1416 	BUG_ON(PageTail(page));
1417 
1418 	mapcount = 0;
1419 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1420 		struct vm_area_struct *vma = avc->vma;
1421 		unsigned long addr = vma_address(page, vma);
1422 		BUG_ON(is_vma_temporary_stack(vma));
1423 		mapcount += __split_huge_page_splitting(page, vma, addr);
1424 	}
1425 	/*
1426 	 * It is critical that new vmas are added to the tail of the
1427 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1428 	 * and establishes a child pmd before
1429 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1430 	 * we fail to prevent copy_huge_pmd() from running until the
1431 	 * whole __split_huge_page() is complete), we will still see
1432 	 * the newly established pmd of the child later during the
1433 	 * walk, to be able to set it as pmd_trans_splitting too.
1434 	 */
1435 	if (mapcount != page_mapcount(page))
1436 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1437 		       mapcount, page_mapcount(page));
1438 	BUG_ON(mapcount != page_mapcount(page));
1439 
1440 	__split_huge_page_refcount(page);
1441 
1442 	mapcount2 = 0;
1443 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1444 		struct vm_area_struct *vma = avc->vma;
1445 		unsigned long addr = vma_address(page, vma);
1446 		BUG_ON(is_vma_temporary_stack(vma));
1447 		mapcount2 += __split_huge_page_map(page, vma, addr);
1448 	}
1449 	if (mapcount != mapcount2)
1450 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1451 		       mapcount, mapcount2, page_mapcount(page));
1452 	BUG_ON(mapcount != mapcount2);
1453 }
1454 
1455 int split_huge_page(struct page *page)
1456 {
1457 	struct anon_vma *anon_vma;
1458 	int ret = 1;
1459 
1460 	BUG_ON(!PageAnon(page));
1461 	anon_vma = page_lock_anon_vma(page);
1462 	if (!anon_vma)
1463 		goto out;
1464 	ret = 0;
1465 	if (!PageCompound(page))
1466 		goto out_unlock;
1467 
1468 	BUG_ON(!PageSwapBacked(page));
1469 	__split_huge_page(page, anon_vma);
1470 	count_vm_event(THP_SPLIT);
1471 
1472 	BUG_ON(PageCompound(page));
1473 out_unlock:
1474 	page_unlock_anon_vma(anon_vma);
1475 out:
1476 	return ret;
1477 }
1478 
1479 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1480 
1481 int hugepage_madvise(struct vm_area_struct *vma,
1482 		     unsigned long *vm_flags, int advice)
1483 {
1484 	struct mm_struct *mm = vma->vm_mm;
1485 
1486 	switch (advice) {
1487 	case MADV_HUGEPAGE:
1488 		/*
1489 		 * Be somewhat over-protective like KSM for now!
1490 		 */
1491 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1492 			return -EINVAL;
1493 		if (mm->def_flags & VM_NOHUGEPAGE)
1494 			return -EINVAL;
1495 		*vm_flags &= ~VM_NOHUGEPAGE;
1496 		*vm_flags |= VM_HUGEPAGE;
1497 		/*
1498 		 * If the vma become good for khugepaged to scan,
1499 		 * register it here without waiting a page fault that
1500 		 * may not happen any time soon.
1501 		 */
1502 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1503 			return -ENOMEM;
1504 		break;
1505 	case MADV_NOHUGEPAGE:
1506 		/*
1507 		 * Be somewhat over-protective like KSM for now!
1508 		 */
1509 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1510 			return -EINVAL;
1511 		*vm_flags &= ~VM_HUGEPAGE;
1512 		*vm_flags |= VM_NOHUGEPAGE;
1513 		/*
1514 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1515 		 * this vma even if we leave the mm registered in khugepaged if
1516 		 * it got registered before VM_NOHUGEPAGE was set.
1517 		 */
1518 		break;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static int __init khugepaged_slab_init(void)
1525 {
1526 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1527 					  sizeof(struct mm_slot),
1528 					  __alignof__(struct mm_slot), 0, NULL);
1529 	if (!mm_slot_cache)
1530 		return -ENOMEM;
1531 
1532 	return 0;
1533 }
1534 
1535 static void __init khugepaged_slab_free(void)
1536 {
1537 	kmem_cache_destroy(mm_slot_cache);
1538 	mm_slot_cache = NULL;
1539 }
1540 
1541 static inline struct mm_slot *alloc_mm_slot(void)
1542 {
1543 	if (!mm_slot_cache)	/* initialization failed */
1544 		return NULL;
1545 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1546 }
1547 
1548 static inline void free_mm_slot(struct mm_slot *mm_slot)
1549 {
1550 	kmem_cache_free(mm_slot_cache, mm_slot);
1551 }
1552 
1553 static int __init mm_slots_hash_init(void)
1554 {
1555 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1556 				GFP_KERNEL);
1557 	if (!mm_slots_hash)
1558 		return -ENOMEM;
1559 	return 0;
1560 }
1561 
1562 #if 0
1563 static void __init mm_slots_hash_free(void)
1564 {
1565 	kfree(mm_slots_hash);
1566 	mm_slots_hash = NULL;
1567 }
1568 #endif
1569 
1570 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1571 {
1572 	struct mm_slot *mm_slot;
1573 	struct hlist_head *bucket;
1574 	struct hlist_node *node;
1575 
1576 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1577 				% MM_SLOTS_HASH_HEADS];
1578 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1579 		if (mm == mm_slot->mm)
1580 			return mm_slot;
1581 	}
1582 	return NULL;
1583 }
1584 
1585 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1586 				    struct mm_slot *mm_slot)
1587 {
1588 	struct hlist_head *bucket;
1589 
1590 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1591 				% MM_SLOTS_HASH_HEADS];
1592 	mm_slot->mm = mm;
1593 	hlist_add_head(&mm_slot->hash, bucket);
1594 }
1595 
1596 static inline int khugepaged_test_exit(struct mm_struct *mm)
1597 {
1598 	return atomic_read(&mm->mm_users) == 0;
1599 }
1600 
1601 int __khugepaged_enter(struct mm_struct *mm)
1602 {
1603 	struct mm_slot *mm_slot;
1604 	int wakeup;
1605 
1606 	mm_slot = alloc_mm_slot();
1607 	if (!mm_slot)
1608 		return -ENOMEM;
1609 
1610 	/* __khugepaged_exit() must not run from under us */
1611 	VM_BUG_ON(khugepaged_test_exit(mm));
1612 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1613 		free_mm_slot(mm_slot);
1614 		return 0;
1615 	}
1616 
1617 	spin_lock(&khugepaged_mm_lock);
1618 	insert_to_mm_slots_hash(mm, mm_slot);
1619 	/*
1620 	 * Insert just behind the scanning cursor, to let the area settle
1621 	 * down a little.
1622 	 */
1623 	wakeup = list_empty(&khugepaged_scan.mm_head);
1624 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1625 	spin_unlock(&khugepaged_mm_lock);
1626 
1627 	atomic_inc(&mm->mm_count);
1628 	if (wakeup)
1629 		wake_up_interruptible(&khugepaged_wait);
1630 
1631 	return 0;
1632 }
1633 
1634 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1635 {
1636 	unsigned long hstart, hend;
1637 	if (!vma->anon_vma)
1638 		/*
1639 		 * Not yet faulted in so we will register later in the
1640 		 * page fault if needed.
1641 		 */
1642 		return 0;
1643 	if (vma->vm_ops)
1644 		/* khugepaged not yet working on file or special mappings */
1645 		return 0;
1646 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1647 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1648 	hend = vma->vm_end & HPAGE_PMD_MASK;
1649 	if (hstart < hend)
1650 		return khugepaged_enter(vma);
1651 	return 0;
1652 }
1653 
1654 void __khugepaged_exit(struct mm_struct *mm)
1655 {
1656 	struct mm_slot *mm_slot;
1657 	int free = 0;
1658 
1659 	spin_lock(&khugepaged_mm_lock);
1660 	mm_slot = get_mm_slot(mm);
1661 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1662 		hlist_del(&mm_slot->hash);
1663 		list_del(&mm_slot->mm_node);
1664 		free = 1;
1665 	}
1666 	spin_unlock(&khugepaged_mm_lock);
1667 
1668 	if (free) {
1669 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1670 		free_mm_slot(mm_slot);
1671 		mmdrop(mm);
1672 	} else if (mm_slot) {
1673 		/*
1674 		 * This is required to serialize against
1675 		 * khugepaged_test_exit() (which is guaranteed to run
1676 		 * under mmap sem read mode). Stop here (after we
1677 		 * return all pagetables will be destroyed) until
1678 		 * khugepaged has finished working on the pagetables
1679 		 * under the mmap_sem.
1680 		 */
1681 		down_write(&mm->mmap_sem);
1682 		up_write(&mm->mmap_sem);
1683 	}
1684 }
1685 
1686 static void release_pte_page(struct page *page)
1687 {
1688 	/* 0 stands for page_is_file_cache(page) == false */
1689 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1690 	unlock_page(page);
1691 	putback_lru_page(page);
1692 }
1693 
1694 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1695 {
1696 	while (--_pte >= pte) {
1697 		pte_t pteval = *_pte;
1698 		if (!pte_none(pteval))
1699 			release_pte_page(pte_page(pteval));
1700 	}
1701 }
1702 
1703 static void release_all_pte_pages(pte_t *pte)
1704 {
1705 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1706 }
1707 
1708 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1709 					unsigned long address,
1710 					pte_t *pte)
1711 {
1712 	struct page *page;
1713 	pte_t *_pte;
1714 	int referenced = 0, isolated = 0, none = 0;
1715 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1716 	     _pte++, address += PAGE_SIZE) {
1717 		pte_t pteval = *_pte;
1718 		if (pte_none(pteval)) {
1719 			if (++none <= khugepaged_max_ptes_none)
1720 				continue;
1721 			else {
1722 				release_pte_pages(pte, _pte);
1723 				goto out;
1724 			}
1725 		}
1726 		if (!pte_present(pteval) || !pte_write(pteval)) {
1727 			release_pte_pages(pte, _pte);
1728 			goto out;
1729 		}
1730 		page = vm_normal_page(vma, address, pteval);
1731 		if (unlikely(!page)) {
1732 			release_pte_pages(pte, _pte);
1733 			goto out;
1734 		}
1735 		VM_BUG_ON(PageCompound(page));
1736 		BUG_ON(!PageAnon(page));
1737 		VM_BUG_ON(!PageSwapBacked(page));
1738 
1739 		/* cannot use mapcount: can't collapse if there's a gup pin */
1740 		if (page_count(page) != 1) {
1741 			release_pte_pages(pte, _pte);
1742 			goto out;
1743 		}
1744 		/*
1745 		 * We can do it before isolate_lru_page because the
1746 		 * page can't be freed from under us. NOTE: PG_lock
1747 		 * is needed to serialize against split_huge_page
1748 		 * when invoked from the VM.
1749 		 */
1750 		if (!trylock_page(page)) {
1751 			release_pte_pages(pte, _pte);
1752 			goto out;
1753 		}
1754 		/*
1755 		 * Isolate the page to avoid collapsing an hugepage
1756 		 * currently in use by the VM.
1757 		 */
1758 		if (isolate_lru_page(page)) {
1759 			unlock_page(page);
1760 			release_pte_pages(pte, _pte);
1761 			goto out;
1762 		}
1763 		/* 0 stands for page_is_file_cache(page) == false */
1764 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1765 		VM_BUG_ON(!PageLocked(page));
1766 		VM_BUG_ON(PageLRU(page));
1767 
1768 		/* If there is no mapped pte young don't collapse the page */
1769 		if (pte_young(pteval) || PageReferenced(page) ||
1770 		    mmu_notifier_test_young(vma->vm_mm, address))
1771 			referenced = 1;
1772 	}
1773 	if (unlikely(!referenced))
1774 		release_all_pte_pages(pte);
1775 	else
1776 		isolated = 1;
1777 out:
1778 	return isolated;
1779 }
1780 
1781 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1782 				      struct vm_area_struct *vma,
1783 				      unsigned long address,
1784 				      spinlock_t *ptl)
1785 {
1786 	pte_t *_pte;
1787 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1788 		pte_t pteval = *_pte;
1789 		struct page *src_page;
1790 
1791 		if (pte_none(pteval)) {
1792 			clear_user_highpage(page, address);
1793 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1794 		} else {
1795 			src_page = pte_page(pteval);
1796 			copy_user_highpage(page, src_page, address, vma);
1797 			VM_BUG_ON(page_mapcount(src_page) != 1);
1798 			release_pte_page(src_page);
1799 			/*
1800 			 * ptl mostly unnecessary, but preempt has to
1801 			 * be disabled to update the per-cpu stats
1802 			 * inside page_remove_rmap().
1803 			 */
1804 			spin_lock(ptl);
1805 			/*
1806 			 * paravirt calls inside pte_clear here are
1807 			 * superfluous.
1808 			 */
1809 			pte_clear(vma->vm_mm, address, _pte);
1810 			page_remove_rmap(src_page);
1811 			spin_unlock(ptl);
1812 			free_page_and_swap_cache(src_page);
1813 		}
1814 
1815 		address += PAGE_SIZE;
1816 		page++;
1817 	}
1818 }
1819 
1820 static void khugepaged_alloc_sleep(void)
1821 {
1822 	wait_event_freezable_timeout(khugepaged_wait, false,
1823 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1824 }
1825 
1826 #ifdef CONFIG_NUMA
1827 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1828 {
1829 	if (IS_ERR(*hpage)) {
1830 		if (!*wait)
1831 			return false;
1832 
1833 		*wait = false;
1834 		*hpage = NULL;
1835 		khugepaged_alloc_sleep();
1836 	} else if (*hpage) {
1837 		put_page(*hpage);
1838 		*hpage = NULL;
1839 	}
1840 
1841 	return true;
1842 }
1843 
1844 static struct page
1845 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1846 		       struct vm_area_struct *vma, unsigned long address,
1847 		       int node)
1848 {
1849 	VM_BUG_ON(*hpage);
1850 	/*
1851 	 * Allocate the page while the vma is still valid and under
1852 	 * the mmap_sem read mode so there is no memory allocation
1853 	 * later when we take the mmap_sem in write mode. This is more
1854 	 * friendly behavior (OTOH it may actually hide bugs) to
1855 	 * filesystems in userland with daemons allocating memory in
1856 	 * the userland I/O paths.  Allocating memory with the
1857 	 * mmap_sem in read mode is good idea also to allow greater
1858 	 * scalability.
1859 	 */
1860 	*hpage  = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1861 				      node, __GFP_OTHER_NODE);
1862 
1863 	/*
1864 	 * After allocating the hugepage, release the mmap_sem read lock in
1865 	 * preparation for taking it in write mode.
1866 	 */
1867 	up_read(&mm->mmap_sem);
1868 	if (unlikely(!*hpage)) {
1869 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1870 		*hpage = ERR_PTR(-ENOMEM);
1871 		return NULL;
1872 	}
1873 
1874 	count_vm_event(THP_COLLAPSE_ALLOC);
1875 	return *hpage;
1876 }
1877 #else
1878 static struct page *khugepaged_alloc_hugepage(bool *wait)
1879 {
1880 	struct page *hpage;
1881 
1882 	do {
1883 		hpage = alloc_hugepage(khugepaged_defrag());
1884 		if (!hpage) {
1885 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1886 			if (!*wait)
1887 				return NULL;
1888 
1889 			*wait = false;
1890 			khugepaged_alloc_sleep();
1891 		} else
1892 			count_vm_event(THP_COLLAPSE_ALLOC);
1893 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
1894 
1895 	return hpage;
1896 }
1897 
1898 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1899 {
1900 	if (!*hpage)
1901 		*hpage = khugepaged_alloc_hugepage(wait);
1902 
1903 	if (unlikely(!*hpage))
1904 		return false;
1905 
1906 	return true;
1907 }
1908 
1909 static struct page
1910 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1911 		       struct vm_area_struct *vma, unsigned long address,
1912 		       int node)
1913 {
1914 	up_read(&mm->mmap_sem);
1915 	VM_BUG_ON(!*hpage);
1916 	return  *hpage;
1917 }
1918 #endif
1919 
1920 static void collapse_huge_page(struct mm_struct *mm,
1921 				   unsigned long address,
1922 				   struct page **hpage,
1923 				   struct vm_area_struct *vma,
1924 				   int node)
1925 {
1926 	pgd_t *pgd;
1927 	pud_t *pud;
1928 	pmd_t *pmd, _pmd;
1929 	pte_t *pte;
1930 	pgtable_t pgtable;
1931 	struct page *new_page;
1932 	spinlock_t *ptl;
1933 	int isolated;
1934 	unsigned long hstart, hend;
1935 	unsigned long mmun_start;	/* For mmu_notifiers */
1936 	unsigned long mmun_end;		/* For mmu_notifiers */
1937 
1938 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1939 
1940 	/* release the mmap_sem read lock. */
1941 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1942 	if (!new_page)
1943 		return;
1944 
1945 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
1946 		return;
1947 
1948 	/*
1949 	 * Prevent all access to pagetables with the exception of
1950 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1951 	 * handled by the anon_vma lock + PG_lock.
1952 	 */
1953 	down_write(&mm->mmap_sem);
1954 	if (unlikely(khugepaged_test_exit(mm)))
1955 		goto out;
1956 
1957 	vma = find_vma(mm, address);
1958 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1959 	hend = vma->vm_end & HPAGE_PMD_MASK;
1960 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1961 		goto out;
1962 
1963 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1964 	    (vma->vm_flags & VM_NOHUGEPAGE))
1965 		goto out;
1966 
1967 	if (!vma->anon_vma || vma->vm_ops)
1968 		goto out;
1969 	if (is_vma_temporary_stack(vma))
1970 		goto out;
1971 	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1972 
1973 	pgd = pgd_offset(mm, address);
1974 	if (!pgd_present(*pgd))
1975 		goto out;
1976 
1977 	pud = pud_offset(pgd, address);
1978 	if (!pud_present(*pud))
1979 		goto out;
1980 
1981 	pmd = pmd_offset(pud, address);
1982 	/* pmd can't go away or become huge under us */
1983 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1984 		goto out;
1985 
1986 	anon_vma_lock(vma->anon_vma);
1987 
1988 	pte = pte_offset_map(pmd, address);
1989 	ptl = pte_lockptr(mm, pmd);
1990 
1991 	mmun_start = address;
1992 	mmun_end   = address + HPAGE_PMD_SIZE;
1993 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1994 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1995 	/*
1996 	 * After this gup_fast can't run anymore. This also removes
1997 	 * any huge TLB entry from the CPU so we won't allow
1998 	 * huge and small TLB entries for the same virtual address
1999 	 * to avoid the risk of CPU bugs in that area.
2000 	 */
2001 	_pmd = pmdp_clear_flush(vma, address, pmd);
2002 	spin_unlock(&mm->page_table_lock);
2003 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2004 
2005 	spin_lock(ptl);
2006 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2007 	spin_unlock(ptl);
2008 
2009 	if (unlikely(!isolated)) {
2010 		pte_unmap(pte);
2011 		spin_lock(&mm->page_table_lock);
2012 		BUG_ON(!pmd_none(*pmd));
2013 		set_pmd_at(mm, address, pmd, _pmd);
2014 		spin_unlock(&mm->page_table_lock);
2015 		anon_vma_unlock(vma->anon_vma);
2016 		goto out;
2017 	}
2018 
2019 	/*
2020 	 * All pages are isolated and locked so anon_vma rmap
2021 	 * can't run anymore.
2022 	 */
2023 	anon_vma_unlock(vma->anon_vma);
2024 
2025 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2026 	pte_unmap(pte);
2027 	__SetPageUptodate(new_page);
2028 	pgtable = pmd_pgtable(_pmd);
2029 
2030 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
2031 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2032 	_pmd = pmd_mkhuge(_pmd);
2033 
2034 	/*
2035 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2036 	 * this is needed to avoid the copy_huge_page writes to become
2037 	 * visible after the set_pmd_at() write.
2038 	 */
2039 	smp_wmb();
2040 
2041 	spin_lock(&mm->page_table_lock);
2042 	BUG_ON(!pmd_none(*pmd));
2043 	page_add_new_anon_rmap(new_page, vma, address);
2044 	set_pmd_at(mm, address, pmd, _pmd);
2045 	update_mmu_cache_pmd(vma, address, pmd);
2046 	pgtable_trans_huge_deposit(mm, pgtable);
2047 	spin_unlock(&mm->page_table_lock);
2048 
2049 	*hpage = NULL;
2050 
2051 	khugepaged_pages_collapsed++;
2052 out_up_write:
2053 	up_write(&mm->mmap_sem);
2054 	return;
2055 
2056 out:
2057 	mem_cgroup_uncharge_page(new_page);
2058 	goto out_up_write;
2059 }
2060 
2061 static int khugepaged_scan_pmd(struct mm_struct *mm,
2062 			       struct vm_area_struct *vma,
2063 			       unsigned long address,
2064 			       struct page **hpage)
2065 {
2066 	pgd_t *pgd;
2067 	pud_t *pud;
2068 	pmd_t *pmd;
2069 	pte_t *pte, *_pte;
2070 	int ret = 0, referenced = 0, none = 0;
2071 	struct page *page;
2072 	unsigned long _address;
2073 	spinlock_t *ptl;
2074 	int node = -1;
2075 
2076 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2077 
2078 	pgd = pgd_offset(mm, address);
2079 	if (!pgd_present(*pgd))
2080 		goto out;
2081 
2082 	pud = pud_offset(pgd, address);
2083 	if (!pud_present(*pud))
2084 		goto out;
2085 
2086 	pmd = pmd_offset(pud, address);
2087 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2088 		goto out;
2089 
2090 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2091 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2092 	     _pte++, _address += PAGE_SIZE) {
2093 		pte_t pteval = *_pte;
2094 		if (pte_none(pteval)) {
2095 			if (++none <= khugepaged_max_ptes_none)
2096 				continue;
2097 			else
2098 				goto out_unmap;
2099 		}
2100 		if (!pte_present(pteval) || !pte_write(pteval))
2101 			goto out_unmap;
2102 		page = vm_normal_page(vma, _address, pteval);
2103 		if (unlikely(!page))
2104 			goto out_unmap;
2105 		/*
2106 		 * Chose the node of the first page. This could
2107 		 * be more sophisticated and look at more pages,
2108 		 * but isn't for now.
2109 		 */
2110 		if (node == -1)
2111 			node = page_to_nid(page);
2112 		VM_BUG_ON(PageCompound(page));
2113 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2114 			goto out_unmap;
2115 		/* cannot use mapcount: can't collapse if there's a gup pin */
2116 		if (page_count(page) != 1)
2117 			goto out_unmap;
2118 		if (pte_young(pteval) || PageReferenced(page) ||
2119 		    mmu_notifier_test_young(vma->vm_mm, address))
2120 			referenced = 1;
2121 	}
2122 	if (referenced)
2123 		ret = 1;
2124 out_unmap:
2125 	pte_unmap_unlock(pte, ptl);
2126 	if (ret)
2127 		/* collapse_huge_page will return with the mmap_sem released */
2128 		collapse_huge_page(mm, address, hpage, vma, node);
2129 out:
2130 	return ret;
2131 }
2132 
2133 static void collect_mm_slot(struct mm_slot *mm_slot)
2134 {
2135 	struct mm_struct *mm = mm_slot->mm;
2136 
2137 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2138 
2139 	if (khugepaged_test_exit(mm)) {
2140 		/* free mm_slot */
2141 		hlist_del(&mm_slot->hash);
2142 		list_del(&mm_slot->mm_node);
2143 
2144 		/*
2145 		 * Not strictly needed because the mm exited already.
2146 		 *
2147 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2148 		 */
2149 
2150 		/* khugepaged_mm_lock actually not necessary for the below */
2151 		free_mm_slot(mm_slot);
2152 		mmdrop(mm);
2153 	}
2154 }
2155 
2156 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2157 					    struct page **hpage)
2158 	__releases(&khugepaged_mm_lock)
2159 	__acquires(&khugepaged_mm_lock)
2160 {
2161 	struct mm_slot *mm_slot;
2162 	struct mm_struct *mm;
2163 	struct vm_area_struct *vma;
2164 	int progress = 0;
2165 
2166 	VM_BUG_ON(!pages);
2167 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2168 
2169 	if (khugepaged_scan.mm_slot)
2170 		mm_slot = khugepaged_scan.mm_slot;
2171 	else {
2172 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2173 				     struct mm_slot, mm_node);
2174 		khugepaged_scan.address = 0;
2175 		khugepaged_scan.mm_slot = mm_slot;
2176 	}
2177 	spin_unlock(&khugepaged_mm_lock);
2178 
2179 	mm = mm_slot->mm;
2180 	down_read(&mm->mmap_sem);
2181 	if (unlikely(khugepaged_test_exit(mm)))
2182 		vma = NULL;
2183 	else
2184 		vma = find_vma(mm, khugepaged_scan.address);
2185 
2186 	progress++;
2187 	for (; vma; vma = vma->vm_next) {
2188 		unsigned long hstart, hend;
2189 
2190 		cond_resched();
2191 		if (unlikely(khugepaged_test_exit(mm))) {
2192 			progress++;
2193 			break;
2194 		}
2195 
2196 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2197 		     !khugepaged_always()) ||
2198 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2199 		skip:
2200 			progress++;
2201 			continue;
2202 		}
2203 		if (!vma->anon_vma || vma->vm_ops)
2204 			goto skip;
2205 		if (is_vma_temporary_stack(vma))
2206 			goto skip;
2207 		VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2208 
2209 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2210 		hend = vma->vm_end & HPAGE_PMD_MASK;
2211 		if (hstart >= hend)
2212 			goto skip;
2213 		if (khugepaged_scan.address > hend)
2214 			goto skip;
2215 		if (khugepaged_scan.address < hstart)
2216 			khugepaged_scan.address = hstart;
2217 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2218 
2219 		while (khugepaged_scan.address < hend) {
2220 			int ret;
2221 			cond_resched();
2222 			if (unlikely(khugepaged_test_exit(mm)))
2223 				goto breakouterloop;
2224 
2225 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2226 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2227 				  hend);
2228 			ret = khugepaged_scan_pmd(mm, vma,
2229 						  khugepaged_scan.address,
2230 						  hpage);
2231 			/* move to next address */
2232 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2233 			progress += HPAGE_PMD_NR;
2234 			if (ret)
2235 				/* we released mmap_sem so break loop */
2236 				goto breakouterloop_mmap_sem;
2237 			if (progress >= pages)
2238 				goto breakouterloop;
2239 		}
2240 	}
2241 breakouterloop:
2242 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2243 breakouterloop_mmap_sem:
2244 
2245 	spin_lock(&khugepaged_mm_lock);
2246 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2247 	/*
2248 	 * Release the current mm_slot if this mm is about to die, or
2249 	 * if we scanned all vmas of this mm.
2250 	 */
2251 	if (khugepaged_test_exit(mm) || !vma) {
2252 		/*
2253 		 * Make sure that if mm_users is reaching zero while
2254 		 * khugepaged runs here, khugepaged_exit will find
2255 		 * mm_slot not pointing to the exiting mm.
2256 		 */
2257 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2258 			khugepaged_scan.mm_slot = list_entry(
2259 				mm_slot->mm_node.next,
2260 				struct mm_slot, mm_node);
2261 			khugepaged_scan.address = 0;
2262 		} else {
2263 			khugepaged_scan.mm_slot = NULL;
2264 			khugepaged_full_scans++;
2265 		}
2266 
2267 		collect_mm_slot(mm_slot);
2268 	}
2269 
2270 	return progress;
2271 }
2272 
2273 static int khugepaged_has_work(void)
2274 {
2275 	return !list_empty(&khugepaged_scan.mm_head) &&
2276 		khugepaged_enabled();
2277 }
2278 
2279 static int khugepaged_wait_event(void)
2280 {
2281 	return !list_empty(&khugepaged_scan.mm_head) ||
2282 		kthread_should_stop();
2283 }
2284 
2285 static void khugepaged_do_scan(void)
2286 {
2287 	struct page *hpage = NULL;
2288 	unsigned int progress = 0, pass_through_head = 0;
2289 	unsigned int pages = khugepaged_pages_to_scan;
2290 	bool wait = true;
2291 
2292 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2293 
2294 	while (progress < pages) {
2295 		if (!khugepaged_prealloc_page(&hpage, &wait))
2296 			break;
2297 
2298 		cond_resched();
2299 
2300 		if (unlikely(kthread_should_stop() || freezing(current)))
2301 			break;
2302 
2303 		spin_lock(&khugepaged_mm_lock);
2304 		if (!khugepaged_scan.mm_slot)
2305 			pass_through_head++;
2306 		if (khugepaged_has_work() &&
2307 		    pass_through_head < 2)
2308 			progress += khugepaged_scan_mm_slot(pages - progress,
2309 							    &hpage);
2310 		else
2311 			progress = pages;
2312 		spin_unlock(&khugepaged_mm_lock);
2313 	}
2314 
2315 	if (!IS_ERR_OR_NULL(hpage))
2316 		put_page(hpage);
2317 }
2318 
2319 static void khugepaged_wait_work(void)
2320 {
2321 	try_to_freeze();
2322 
2323 	if (khugepaged_has_work()) {
2324 		if (!khugepaged_scan_sleep_millisecs)
2325 			return;
2326 
2327 		wait_event_freezable_timeout(khugepaged_wait,
2328 					     kthread_should_stop(),
2329 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2330 		return;
2331 	}
2332 
2333 	if (khugepaged_enabled())
2334 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2335 }
2336 
2337 static int khugepaged(void *none)
2338 {
2339 	struct mm_slot *mm_slot;
2340 
2341 	set_freezable();
2342 	set_user_nice(current, 19);
2343 
2344 	while (!kthread_should_stop()) {
2345 		khugepaged_do_scan();
2346 		khugepaged_wait_work();
2347 	}
2348 
2349 	spin_lock(&khugepaged_mm_lock);
2350 	mm_slot = khugepaged_scan.mm_slot;
2351 	khugepaged_scan.mm_slot = NULL;
2352 	if (mm_slot)
2353 		collect_mm_slot(mm_slot);
2354 	spin_unlock(&khugepaged_mm_lock);
2355 	return 0;
2356 }
2357 
2358 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2359 {
2360 	struct page *page;
2361 
2362 	spin_lock(&mm->page_table_lock);
2363 	if (unlikely(!pmd_trans_huge(*pmd))) {
2364 		spin_unlock(&mm->page_table_lock);
2365 		return;
2366 	}
2367 	page = pmd_page(*pmd);
2368 	VM_BUG_ON(!page_count(page));
2369 	get_page(page);
2370 	spin_unlock(&mm->page_table_lock);
2371 
2372 	split_huge_page(page);
2373 
2374 	put_page(page);
2375 	BUG_ON(pmd_trans_huge(*pmd));
2376 }
2377 
2378 static void split_huge_page_address(struct mm_struct *mm,
2379 				    unsigned long address)
2380 {
2381 	pgd_t *pgd;
2382 	pud_t *pud;
2383 	pmd_t *pmd;
2384 
2385 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2386 
2387 	pgd = pgd_offset(mm, address);
2388 	if (!pgd_present(*pgd))
2389 		return;
2390 
2391 	pud = pud_offset(pgd, address);
2392 	if (!pud_present(*pud))
2393 		return;
2394 
2395 	pmd = pmd_offset(pud, address);
2396 	if (!pmd_present(*pmd))
2397 		return;
2398 	/*
2399 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2400 	 * materialize from under us.
2401 	 */
2402 	split_huge_page_pmd(mm, pmd);
2403 }
2404 
2405 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2406 			     unsigned long start,
2407 			     unsigned long end,
2408 			     long adjust_next)
2409 {
2410 	/*
2411 	 * If the new start address isn't hpage aligned and it could
2412 	 * previously contain an hugepage: check if we need to split
2413 	 * an huge pmd.
2414 	 */
2415 	if (start & ~HPAGE_PMD_MASK &&
2416 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2417 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2418 		split_huge_page_address(vma->vm_mm, start);
2419 
2420 	/*
2421 	 * If the new end address isn't hpage aligned and it could
2422 	 * previously contain an hugepage: check if we need to split
2423 	 * an huge pmd.
2424 	 */
2425 	if (end & ~HPAGE_PMD_MASK &&
2426 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2427 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2428 		split_huge_page_address(vma->vm_mm, end);
2429 
2430 	/*
2431 	 * If we're also updating the vma->vm_next->vm_start, if the new
2432 	 * vm_next->vm_start isn't page aligned and it could previously
2433 	 * contain an hugepage: check if we need to split an huge pmd.
2434 	 */
2435 	if (adjust_next > 0) {
2436 		struct vm_area_struct *next = vma->vm_next;
2437 		unsigned long nstart = next->vm_start;
2438 		nstart += adjust_next << PAGE_SHIFT;
2439 		if (nstart & ~HPAGE_PMD_MASK &&
2440 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2441 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2442 			split_huge_page_address(next->vm_mm, nstart);
2443 	}
2444 }
2445