1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/mm_types.h> 24 #include <linux/khugepaged.h> 25 #include <linux/freezer.h> 26 #include <linux/pfn_t.h> 27 #include <linux/mman.h> 28 #include <linux/memremap.h> 29 #include <linux/pagemap.h> 30 #include <linux/debugfs.h> 31 #include <linux/migrate.h> 32 #include <linux/hashtable.h> 33 #include <linux/userfaultfd_k.h> 34 #include <linux/page_idle.h> 35 #include <linux/shmem_fs.h> 36 #include <linux/oom.h> 37 #include <linux/numa.h> 38 #include <linux/page_owner.h> 39 #include <linux/sched/sysctl.h> 40 #include <linux/memory-tiers.h> 41 #include <linux/compat.h> 42 #include <linux/pgalloc_tag.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 84 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 85 unsigned long vm_flags, 86 unsigned long tva_flags, 87 unsigned long orders) 88 { 89 bool smaps = tva_flags & TVA_SMAPS; 90 bool in_pf = tva_flags & TVA_IN_PF; 91 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 92 /* Check the intersection of requested and supported orders. */ 93 orders &= vma_is_anonymous(vma) ? 94 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 95 if (!orders) 96 return 0; 97 98 if (!vma->vm_mm) /* vdso */ 99 return 0; 100 101 /* 102 * Explicitly disabled through madvise or prctl, or some 103 * architectures may disable THP for some mappings, for 104 * example, s390 kvm. 105 * */ 106 if ((vm_flags & VM_NOHUGEPAGE) || 107 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 108 return 0; 109 /* 110 * If the hardware/firmware marked hugepage support disabled. 111 */ 112 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 113 return 0; 114 115 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 116 if (vma_is_dax(vma)) 117 return in_pf ? orders : 0; 118 119 /* 120 * khugepaged special VMA and hugetlb VMA. 121 * Must be checked after dax since some dax mappings may have 122 * VM_MIXEDMAP set. 123 */ 124 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 125 return 0; 126 127 /* 128 * Check alignment for file vma and size for both file and anon vma by 129 * filtering out the unsuitable orders. 130 * 131 * Skip the check for page fault. Huge fault does the check in fault 132 * handlers. 133 */ 134 if (!in_pf) { 135 int order = highest_order(orders); 136 unsigned long addr; 137 138 while (orders) { 139 addr = vma->vm_end - (PAGE_SIZE << order); 140 if (thp_vma_suitable_order(vma, addr, order)) 141 break; 142 order = next_order(&orders, order); 143 } 144 145 if (!orders) 146 return 0; 147 } 148 149 /* 150 * Enabled via shmem mount options or sysfs settings. 151 * Must be done before hugepage flags check since shmem has its 152 * own flags. 153 */ 154 if (!in_pf && shmem_file(vma->vm_file)) 155 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 156 !enforce_sysfs, vma->vm_mm, vm_flags) 157 ? orders : 0; 158 159 if (!vma_is_anonymous(vma)) { 160 /* 161 * Enforce sysfs THP requirements as necessary. Anonymous vmas 162 * were already handled in thp_vma_allowable_orders(). 163 */ 164 if (enforce_sysfs && 165 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 166 !hugepage_global_always()))) 167 return 0; 168 169 /* 170 * Trust that ->huge_fault() handlers know what they are doing 171 * in fault path. 172 */ 173 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 174 return orders; 175 /* Only regular file is valid in collapse path */ 176 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 177 return orders; 178 return 0; 179 } 180 181 if (vma_is_temporary_stack(vma)) 182 return 0; 183 184 /* 185 * THPeligible bit of smaps should show 1 for proper VMAs even 186 * though anon_vma is not initialized yet. 187 * 188 * Allow page fault since anon_vma may be not initialized until 189 * the first page fault. 190 */ 191 if (!vma->anon_vma) 192 return (smaps || in_pf) ? orders : 0; 193 194 return orders; 195 } 196 197 static bool get_huge_zero_page(void) 198 { 199 struct folio *zero_folio; 200 retry: 201 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 202 return true; 203 204 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 205 HPAGE_PMD_ORDER); 206 if (!zero_folio) { 207 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 208 return false; 209 } 210 preempt_disable(); 211 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 212 preempt_enable(); 213 folio_put(zero_folio); 214 goto retry; 215 } 216 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 217 218 /* We take additional reference here. It will be put back by shrinker */ 219 atomic_set(&huge_zero_refcount, 2); 220 preempt_enable(); 221 count_vm_event(THP_ZERO_PAGE_ALLOC); 222 return true; 223 } 224 225 static void put_huge_zero_page(void) 226 { 227 /* 228 * Counter should never go to zero here. Only shrinker can put 229 * last reference. 230 */ 231 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 232 } 233 234 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 235 { 236 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 237 return READ_ONCE(huge_zero_folio); 238 239 if (!get_huge_zero_page()) 240 return NULL; 241 242 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 243 put_huge_zero_page(); 244 245 return READ_ONCE(huge_zero_folio); 246 } 247 248 void mm_put_huge_zero_folio(struct mm_struct *mm) 249 { 250 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 251 put_huge_zero_page(); 252 } 253 254 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 255 struct shrink_control *sc) 256 { 257 /* we can free zero page only if last reference remains */ 258 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 259 } 260 261 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 262 struct shrink_control *sc) 263 { 264 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 265 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 266 BUG_ON(zero_folio == NULL); 267 WRITE_ONCE(huge_zero_pfn, ~0UL); 268 folio_put(zero_folio); 269 return HPAGE_PMD_NR; 270 } 271 272 return 0; 273 } 274 275 static struct shrinker *huge_zero_page_shrinker; 276 277 #ifdef CONFIG_SYSFS 278 static ssize_t enabled_show(struct kobject *kobj, 279 struct kobj_attribute *attr, char *buf) 280 { 281 const char *output; 282 283 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 284 output = "[always] madvise never"; 285 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 286 &transparent_hugepage_flags)) 287 output = "always [madvise] never"; 288 else 289 output = "always madvise [never]"; 290 291 return sysfs_emit(buf, "%s\n", output); 292 } 293 294 static ssize_t enabled_store(struct kobject *kobj, 295 struct kobj_attribute *attr, 296 const char *buf, size_t count) 297 { 298 ssize_t ret = count; 299 300 if (sysfs_streq(buf, "always")) { 301 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 302 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 303 } else if (sysfs_streq(buf, "madvise")) { 304 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 305 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 306 } else if (sysfs_streq(buf, "never")) { 307 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 308 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 309 } else 310 ret = -EINVAL; 311 312 if (ret > 0) { 313 int err = start_stop_khugepaged(); 314 if (err) 315 ret = err; 316 } 317 return ret; 318 } 319 320 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 321 322 ssize_t single_hugepage_flag_show(struct kobject *kobj, 323 struct kobj_attribute *attr, char *buf, 324 enum transparent_hugepage_flag flag) 325 { 326 return sysfs_emit(buf, "%d\n", 327 !!test_bit(flag, &transparent_hugepage_flags)); 328 } 329 330 ssize_t single_hugepage_flag_store(struct kobject *kobj, 331 struct kobj_attribute *attr, 332 const char *buf, size_t count, 333 enum transparent_hugepage_flag flag) 334 { 335 unsigned long value; 336 int ret; 337 338 ret = kstrtoul(buf, 10, &value); 339 if (ret < 0) 340 return ret; 341 if (value > 1) 342 return -EINVAL; 343 344 if (value) 345 set_bit(flag, &transparent_hugepage_flags); 346 else 347 clear_bit(flag, &transparent_hugepage_flags); 348 349 return count; 350 } 351 352 static ssize_t defrag_show(struct kobject *kobj, 353 struct kobj_attribute *attr, char *buf) 354 { 355 const char *output; 356 357 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 358 &transparent_hugepage_flags)) 359 output = "[always] defer defer+madvise madvise never"; 360 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 361 &transparent_hugepage_flags)) 362 output = "always [defer] defer+madvise madvise never"; 363 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 364 &transparent_hugepage_flags)) 365 output = "always defer [defer+madvise] madvise never"; 366 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 367 &transparent_hugepage_flags)) 368 output = "always defer defer+madvise [madvise] never"; 369 else 370 output = "always defer defer+madvise madvise [never]"; 371 372 return sysfs_emit(buf, "%s\n", output); 373 } 374 375 static ssize_t defrag_store(struct kobject *kobj, 376 struct kobj_attribute *attr, 377 const char *buf, size_t count) 378 { 379 if (sysfs_streq(buf, "always")) { 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 382 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 383 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 384 } else if (sysfs_streq(buf, "defer+madvise")) { 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 387 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 388 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 389 } else if (sysfs_streq(buf, "defer")) { 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 392 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 393 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 394 } else if (sysfs_streq(buf, "madvise")) { 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 } else if (sysfs_streq(buf, "never")) { 400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 404 } else 405 return -EINVAL; 406 407 return count; 408 } 409 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 410 411 static ssize_t use_zero_page_show(struct kobject *kobj, 412 struct kobj_attribute *attr, char *buf) 413 { 414 return single_hugepage_flag_show(kobj, attr, buf, 415 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 416 } 417 static ssize_t use_zero_page_store(struct kobject *kobj, 418 struct kobj_attribute *attr, const char *buf, size_t count) 419 { 420 return single_hugepage_flag_store(kobj, attr, buf, count, 421 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 422 } 423 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 424 425 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 426 struct kobj_attribute *attr, char *buf) 427 { 428 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 429 } 430 static struct kobj_attribute hpage_pmd_size_attr = 431 __ATTR_RO(hpage_pmd_size); 432 433 static struct attribute *hugepage_attr[] = { 434 &enabled_attr.attr, 435 &defrag_attr.attr, 436 &use_zero_page_attr.attr, 437 &hpage_pmd_size_attr.attr, 438 #ifdef CONFIG_SHMEM 439 &shmem_enabled_attr.attr, 440 #endif 441 NULL, 442 }; 443 444 static const struct attribute_group hugepage_attr_group = { 445 .attrs = hugepage_attr, 446 }; 447 448 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 449 static void thpsize_release(struct kobject *kobj); 450 static DEFINE_SPINLOCK(huge_anon_orders_lock); 451 static LIST_HEAD(thpsize_list); 452 453 static ssize_t thpsize_enabled_show(struct kobject *kobj, 454 struct kobj_attribute *attr, char *buf) 455 { 456 int order = to_thpsize(kobj)->order; 457 const char *output; 458 459 if (test_bit(order, &huge_anon_orders_always)) 460 output = "[always] inherit madvise never"; 461 else if (test_bit(order, &huge_anon_orders_inherit)) 462 output = "always [inherit] madvise never"; 463 else if (test_bit(order, &huge_anon_orders_madvise)) 464 output = "always inherit [madvise] never"; 465 else 466 output = "always inherit madvise [never]"; 467 468 return sysfs_emit(buf, "%s\n", output); 469 } 470 471 static ssize_t thpsize_enabled_store(struct kobject *kobj, 472 struct kobj_attribute *attr, 473 const char *buf, size_t count) 474 { 475 int order = to_thpsize(kobj)->order; 476 ssize_t ret = count; 477 478 if (sysfs_streq(buf, "always")) { 479 spin_lock(&huge_anon_orders_lock); 480 clear_bit(order, &huge_anon_orders_inherit); 481 clear_bit(order, &huge_anon_orders_madvise); 482 set_bit(order, &huge_anon_orders_always); 483 spin_unlock(&huge_anon_orders_lock); 484 } else if (sysfs_streq(buf, "inherit")) { 485 spin_lock(&huge_anon_orders_lock); 486 clear_bit(order, &huge_anon_orders_always); 487 clear_bit(order, &huge_anon_orders_madvise); 488 set_bit(order, &huge_anon_orders_inherit); 489 spin_unlock(&huge_anon_orders_lock); 490 } else if (sysfs_streq(buf, "madvise")) { 491 spin_lock(&huge_anon_orders_lock); 492 clear_bit(order, &huge_anon_orders_always); 493 clear_bit(order, &huge_anon_orders_inherit); 494 set_bit(order, &huge_anon_orders_madvise); 495 spin_unlock(&huge_anon_orders_lock); 496 } else if (sysfs_streq(buf, "never")) { 497 spin_lock(&huge_anon_orders_lock); 498 clear_bit(order, &huge_anon_orders_always); 499 clear_bit(order, &huge_anon_orders_inherit); 500 clear_bit(order, &huge_anon_orders_madvise); 501 spin_unlock(&huge_anon_orders_lock); 502 } else 503 ret = -EINVAL; 504 505 return ret; 506 } 507 508 static struct kobj_attribute thpsize_enabled_attr = 509 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 510 511 static struct attribute *thpsize_attrs[] = { 512 &thpsize_enabled_attr.attr, 513 #ifdef CONFIG_SHMEM 514 &thpsize_shmem_enabled_attr.attr, 515 #endif 516 NULL, 517 }; 518 519 static const struct attribute_group thpsize_attr_group = { 520 .attrs = thpsize_attrs, 521 }; 522 523 static const struct kobj_type thpsize_ktype = { 524 .release = &thpsize_release, 525 .sysfs_ops = &kobj_sysfs_ops, 526 }; 527 528 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 529 530 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 531 { 532 unsigned long sum = 0; 533 int cpu; 534 535 for_each_possible_cpu(cpu) { 536 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 537 538 sum += this->stats[order][item]; 539 } 540 541 return sum; 542 } 543 544 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 545 static ssize_t _name##_show(struct kobject *kobj, \ 546 struct kobj_attribute *attr, char *buf) \ 547 { \ 548 int order = to_thpsize(kobj)->order; \ 549 \ 550 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 551 } \ 552 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 553 554 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 555 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 556 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 557 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 558 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 559 DEFINE_MTHP_STAT_ATTR(file_alloc, MTHP_STAT_FILE_ALLOC); 560 DEFINE_MTHP_STAT_ATTR(file_fallback, MTHP_STAT_FILE_FALLBACK); 561 DEFINE_MTHP_STAT_ATTR(file_fallback_charge, MTHP_STAT_FILE_FALLBACK_CHARGE); 562 563 static struct attribute *stats_attrs[] = { 564 &anon_fault_alloc_attr.attr, 565 &anon_fault_fallback_attr.attr, 566 &anon_fault_fallback_charge_attr.attr, 567 &swpout_attr.attr, 568 &swpout_fallback_attr.attr, 569 &file_alloc_attr.attr, 570 &file_fallback_attr.attr, 571 &file_fallback_charge_attr.attr, 572 NULL, 573 }; 574 575 static struct attribute_group stats_attr_group = { 576 .name = "stats", 577 .attrs = stats_attrs, 578 }; 579 580 static struct thpsize *thpsize_create(int order, struct kobject *parent) 581 { 582 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 583 struct thpsize *thpsize; 584 int ret; 585 586 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 587 if (!thpsize) 588 return ERR_PTR(-ENOMEM); 589 590 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 591 "hugepages-%lukB", size); 592 if (ret) { 593 kfree(thpsize); 594 return ERR_PTR(ret); 595 } 596 597 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 598 if (ret) { 599 kobject_put(&thpsize->kobj); 600 return ERR_PTR(ret); 601 } 602 603 ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group); 604 if (ret) { 605 kobject_put(&thpsize->kobj); 606 return ERR_PTR(ret); 607 } 608 609 thpsize->order = order; 610 return thpsize; 611 } 612 613 static void thpsize_release(struct kobject *kobj) 614 { 615 kfree(to_thpsize(kobj)); 616 } 617 618 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 619 { 620 int err; 621 struct thpsize *thpsize; 622 unsigned long orders; 623 int order; 624 625 /* 626 * Default to setting PMD-sized THP to inherit the global setting and 627 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 628 * constant so we have to do this here. 629 */ 630 huge_anon_orders_inherit = BIT(PMD_ORDER); 631 632 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 633 if (unlikely(!*hugepage_kobj)) { 634 pr_err("failed to create transparent hugepage kobject\n"); 635 return -ENOMEM; 636 } 637 638 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 639 if (err) { 640 pr_err("failed to register transparent hugepage group\n"); 641 goto delete_obj; 642 } 643 644 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 645 if (err) { 646 pr_err("failed to register transparent hugepage group\n"); 647 goto remove_hp_group; 648 } 649 650 orders = THP_ORDERS_ALL_ANON; 651 order = highest_order(orders); 652 while (orders) { 653 thpsize = thpsize_create(order, *hugepage_kobj); 654 if (IS_ERR(thpsize)) { 655 pr_err("failed to create thpsize for order %d\n", order); 656 err = PTR_ERR(thpsize); 657 goto remove_all; 658 } 659 list_add(&thpsize->node, &thpsize_list); 660 order = next_order(&orders, order); 661 } 662 663 return 0; 664 665 remove_all: 666 hugepage_exit_sysfs(*hugepage_kobj); 667 return err; 668 remove_hp_group: 669 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 670 delete_obj: 671 kobject_put(*hugepage_kobj); 672 return err; 673 } 674 675 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 676 { 677 struct thpsize *thpsize, *tmp; 678 679 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 680 list_del(&thpsize->node); 681 kobject_put(&thpsize->kobj); 682 } 683 684 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 685 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 686 kobject_put(hugepage_kobj); 687 } 688 #else 689 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 690 { 691 return 0; 692 } 693 694 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 695 { 696 } 697 #endif /* CONFIG_SYSFS */ 698 699 static int __init thp_shrinker_init(void) 700 { 701 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 702 if (!huge_zero_page_shrinker) 703 return -ENOMEM; 704 705 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 706 SHRINKER_MEMCG_AWARE | 707 SHRINKER_NONSLAB, 708 "thp-deferred_split"); 709 if (!deferred_split_shrinker) { 710 shrinker_free(huge_zero_page_shrinker); 711 return -ENOMEM; 712 } 713 714 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 715 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 716 shrinker_register(huge_zero_page_shrinker); 717 718 deferred_split_shrinker->count_objects = deferred_split_count; 719 deferred_split_shrinker->scan_objects = deferred_split_scan; 720 shrinker_register(deferred_split_shrinker); 721 722 return 0; 723 } 724 725 static void __init thp_shrinker_exit(void) 726 { 727 shrinker_free(huge_zero_page_shrinker); 728 shrinker_free(deferred_split_shrinker); 729 } 730 731 static int __init hugepage_init(void) 732 { 733 int err; 734 struct kobject *hugepage_kobj; 735 736 if (!has_transparent_hugepage()) { 737 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 738 return -EINVAL; 739 } 740 741 /* 742 * hugepages can't be allocated by the buddy allocator 743 */ 744 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 745 746 err = hugepage_init_sysfs(&hugepage_kobj); 747 if (err) 748 goto err_sysfs; 749 750 err = khugepaged_init(); 751 if (err) 752 goto err_slab; 753 754 err = thp_shrinker_init(); 755 if (err) 756 goto err_shrinker; 757 758 /* 759 * By default disable transparent hugepages on smaller systems, 760 * where the extra memory used could hurt more than TLB overhead 761 * is likely to save. The admin can still enable it through /sys. 762 */ 763 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 764 transparent_hugepage_flags = 0; 765 return 0; 766 } 767 768 err = start_stop_khugepaged(); 769 if (err) 770 goto err_khugepaged; 771 772 return 0; 773 err_khugepaged: 774 thp_shrinker_exit(); 775 err_shrinker: 776 khugepaged_destroy(); 777 err_slab: 778 hugepage_exit_sysfs(hugepage_kobj); 779 err_sysfs: 780 return err; 781 } 782 subsys_initcall(hugepage_init); 783 784 static int __init setup_transparent_hugepage(char *str) 785 { 786 int ret = 0; 787 if (!str) 788 goto out; 789 if (!strcmp(str, "always")) { 790 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 791 &transparent_hugepage_flags); 792 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 793 &transparent_hugepage_flags); 794 ret = 1; 795 } else if (!strcmp(str, "madvise")) { 796 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 797 &transparent_hugepage_flags); 798 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 799 &transparent_hugepage_flags); 800 ret = 1; 801 } else if (!strcmp(str, "never")) { 802 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 803 &transparent_hugepage_flags); 804 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 805 &transparent_hugepage_flags); 806 ret = 1; 807 } 808 out: 809 if (!ret) 810 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 811 return ret; 812 } 813 __setup("transparent_hugepage=", setup_transparent_hugepage); 814 815 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 816 { 817 if (likely(vma->vm_flags & VM_WRITE)) 818 pmd = pmd_mkwrite(pmd, vma); 819 return pmd; 820 } 821 822 #ifdef CONFIG_MEMCG 823 static inline 824 struct deferred_split *get_deferred_split_queue(struct folio *folio) 825 { 826 struct mem_cgroup *memcg = folio_memcg(folio); 827 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 828 829 if (memcg) 830 return &memcg->deferred_split_queue; 831 else 832 return &pgdat->deferred_split_queue; 833 } 834 #else 835 static inline 836 struct deferred_split *get_deferred_split_queue(struct folio *folio) 837 { 838 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 839 840 return &pgdat->deferred_split_queue; 841 } 842 #endif 843 844 static inline bool is_transparent_hugepage(const struct folio *folio) 845 { 846 if (!folio_test_large(folio)) 847 return false; 848 849 return is_huge_zero_folio(folio) || 850 folio_test_large_rmappable(folio); 851 } 852 853 static unsigned long __thp_get_unmapped_area(struct file *filp, 854 unsigned long addr, unsigned long len, 855 loff_t off, unsigned long flags, unsigned long size, 856 vm_flags_t vm_flags) 857 { 858 loff_t off_end = off + len; 859 loff_t off_align = round_up(off, size); 860 unsigned long len_pad, ret, off_sub; 861 862 if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall()) 863 return 0; 864 865 if (off_end <= off_align || (off_end - off_align) < size) 866 return 0; 867 868 len_pad = len + size; 869 if (len_pad < len || (off + len_pad) < off) 870 return 0; 871 872 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 873 off >> PAGE_SHIFT, flags, vm_flags); 874 875 /* 876 * The failure might be due to length padding. The caller will retry 877 * without the padding. 878 */ 879 if (IS_ERR_VALUE(ret)) 880 return 0; 881 882 /* 883 * Do not try to align to THP boundary if allocation at the address 884 * hint succeeds. 885 */ 886 if (ret == addr) 887 return addr; 888 889 off_sub = (off - ret) & (size - 1); 890 891 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 892 return ret + size; 893 894 ret += off_sub; 895 return ret; 896 } 897 898 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 899 unsigned long len, unsigned long pgoff, unsigned long flags, 900 vm_flags_t vm_flags) 901 { 902 unsigned long ret; 903 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 904 905 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 906 if (ret) 907 return ret; 908 909 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 910 vm_flags); 911 } 912 913 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 914 unsigned long len, unsigned long pgoff, unsigned long flags) 915 { 916 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 917 } 918 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 919 920 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 921 struct page *page, gfp_t gfp) 922 { 923 struct vm_area_struct *vma = vmf->vma; 924 struct folio *folio = page_folio(page); 925 pgtable_t pgtable; 926 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 927 vm_fault_t ret = 0; 928 929 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 930 931 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 932 folio_put(folio); 933 count_vm_event(THP_FAULT_FALLBACK); 934 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 935 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 936 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 937 return VM_FAULT_FALLBACK; 938 } 939 folio_throttle_swaprate(folio, gfp); 940 941 pgtable = pte_alloc_one(vma->vm_mm); 942 if (unlikely(!pgtable)) { 943 ret = VM_FAULT_OOM; 944 goto release; 945 } 946 947 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 948 /* 949 * The memory barrier inside __folio_mark_uptodate makes sure that 950 * clear_huge_page writes become visible before the set_pmd_at() 951 * write. 952 */ 953 __folio_mark_uptodate(folio); 954 955 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 956 if (unlikely(!pmd_none(*vmf->pmd))) { 957 goto unlock_release; 958 } else { 959 pmd_t entry; 960 961 ret = check_stable_address_space(vma->vm_mm); 962 if (ret) 963 goto unlock_release; 964 965 /* Deliver the page fault to userland */ 966 if (userfaultfd_missing(vma)) { 967 spin_unlock(vmf->ptl); 968 folio_put(folio); 969 pte_free(vma->vm_mm, pgtable); 970 ret = handle_userfault(vmf, VM_UFFD_MISSING); 971 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 972 return ret; 973 } 974 975 entry = mk_huge_pmd(page, vma->vm_page_prot); 976 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 977 folio_add_new_anon_rmap(folio, vma, haddr); 978 folio_add_lru_vma(folio, vma); 979 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 980 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 981 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 982 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 983 mm_inc_nr_ptes(vma->vm_mm); 984 spin_unlock(vmf->ptl); 985 count_vm_event(THP_FAULT_ALLOC); 986 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 987 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 988 } 989 990 return 0; 991 unlock_release: 992 spin_unlock(vmf->ptl); 993 release: 994 if (pgtable) 995 pte_free(vma->vm_mm, pgtable); 996 folio_put(folio); 997 return ret; 998 999 } 1000 1001 /* 1002 * always: directly stall for all thp allocations 1003 * defer: wake kswapd and fail if not immediately available 1004 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1005 * fail if not immediately available 1006 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1007 * available 1008 * never: never stall for any thp allocation 1009 */ 1010 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1011 { 1012 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1013 1014 /* Always do synchronous compaction */ 1015 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1016 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1017 1018 /* Kick kcompactd and fail quickly */ 1019 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1020 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1021 1022 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1023 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1024 return GFP_TRANSHUGE_LIGHT | 1025 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1026 __GFP_KSWAPD_RECLAIM); 1027 1028 /* Only do synchronous compaction if madvised */ 1029 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1030 return GFP_TRANSHUGE_LIGHT | 1031 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1032 1033 return GFP_TRANSHUGE_LIGHT; 1034 } 1035 1036 /* Caller must hold page table lock. */ 1037 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1038 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1039 struct folio *zero_folio) 1040 { 1041 pmd_t entry; 1042 if (!pmd_none(*pmd)) 1043 return; 1044 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1045 entry = pmd_mkhuge(entry); 1046 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1047 set_pmd_at(mm, haddr, pmd, entry); 1048 mm_inc_nr_ptes(mm); 1049 } 1050 1051 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1052 { 1053 struct vm_area_struct *vma = vmf->vma; 1054 gfp_t gfp; 1055 struct folio *folio; 1056 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1057 vm_fault_t ret; 1058 1059 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1060 return VM_FAULT_FALLBACK; 1061 ret = vmf_anon_prepare(vmf); 1062 if (ret) 1063 return ret; 1064 khugepaged_enter_vma(vma, vma->vm_flags); 1065 1066 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1067 !mm_forbids_zeropage(vma->vm_mm) && 1068 transparent_hugepage_use_zero_page()) { 1069 pgtable_t pgtable; 1070 struct folio *zero_folio; 1071 vm_fault_t ret; 1072 1073 pgtable = pte_alloc_one(vma->vm_mm); 1074 if (unlikely(!pgtable)) 1075 return VM_FAULT_OOM; 1076 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1077 if (unlikely(!zero_folio)) { 1078 pte_free(vma->vm_mm, pgtable); 1079 count_vm_event(THP_FAULT_FALLBACK); 1080 return VM_FAULT_FALLBACK; 1081 } 1082 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1083 ret = 0; 1084 if (pmd_none(*vmf->pmd)) { 1085 ret = check_stable_address_space(vma->vm_mm); 1086 if (ret) { 1087 spin_unlock(vmf->ptl); 1088 pte_free(vma->vm_mm, pgtable); 1089 } else if (userfaultfd_missing(vma)) { 1090 spin_unlock(vmf->ptl); 1091 pte_free(vma->vm_mm, pgtable); 1092 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1093 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1094 } else { 1095 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1096 haddr, vmf->pmd, zero_folio); 1097 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1098 spin_unlock(vmf->ptl); 1099 } 1100 } else { 1101 spin_unlock(vmf->ptl); 1102 pte_free(vma->vm_mm, pgtable); 1103 } 1104 return ret; 1105 } 1106 gfp = vma_thp_gfp_mask(vma); 1107 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1108 if (unlikely(!folio)) { 1109 count_vm_event(THP_FAULT_FALLBACK); 1110 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK); 1111 return VM_FAULT_FALLBACK; 1112 } 1113 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1114 } 1115 1116 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1117 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1118 pgtable_t pgtable) 1119 { 1120 struct mm_struct *mm = vma->vm_mm; 1121 pmd_t entry; 1122 spinlock_t *ptl; 1123 1124 ptl = pmd_lock(mm, pmd); 1125 if (!pmd_none(*pmd)) { 1126 if (write) { 1127 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1128 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1129 goto out_unlock; 1130 } 1131 entry = pmd_mkyoung(*pmd); 1132 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1133 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1134 update_mmu_cache_pmd(vma, addr, pmd); 1135 } 1136 1137 goto out_unlock; 1138 } 1139 1140 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1141 if (pfn_t_devmap(pfn)) 1142 entry = pmd_mkdevmap(entry); 1143 if (write) { 1144 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1145 entry = maybe_pmd_mkwrite(entry, vma); 1146 } 1147 1148 if (pgtable) { 1149 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1150 mm_inc_nr_ptes(mm); 1151 pgtable = NULL; 1152 } 1153 1154 set_pmd_at(mm, addr, pmd, entry); 1155 update_mmu_cache_pmd(vma, addr, pmd); 1156 1157 out_unlock: 1158 spin_unlock(ptl); 1159 if (pgtable) 1160 pte_free(mm, pgtable); 1161 } 1162 1163 /** 1164 * vmf_insert_pfn_pmd - insert a pmd size pfn 1165 * @vmf: Structure describing the fault 1166 * @pfn: pfn to insert 1167 * @write: whether it's a write fault 1168 * 1169 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1170 * 1171 * Return: vm_fault_t value. 1172 */ 1173 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1174 { 1175 unsigned long addr = vmf->address & PMD_MASK; 1176 struct vm_area_struct *vma = vmf->vma; 1177 pgprot_t pgprot = vma->vm_page_prot; 1178 pgtable_t pgtable = NULL; 1179 1180 /* 1181 * If we had pmd_special, we could avoid all these restrictions, 1182 * but we need to be consistent with PTEs and architectures that 1183 * can't support a 'special' bit. 1184 */ 1185 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1186 !pfn_t_devmap(pfn)); 1187 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1188 (VM_PFNMAP|VM_MIXEDMAP)); 1189 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1190 1191 if (addr < vma->vm_start || addr >= vma->vm_end) 1192 return VM_FAULT_SIGBUS; 1193 1194 if (arch_needs_pgtable_deposit()) { 1195 pgtable = pte_alloc_one(vma->vm_mm); 1196 if (!pgtable) 1197 return VM_FAULT_OOM; 1198 } 1199 1200 track_pfn_insert(vma, &pgprot, pfn); 1201 1202 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1203 return VM_FAULT_NOPAGE; 1204 } 1205 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1206 1207 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1208 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1209 { 1210 if (likely(vma->vm_flags & VM_WRITE)) 1211 pud = pud_mkwrite(pud); 1212 return pud; 1213 } 1214 1215 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1216 pud_t *pud, pfn_t pfn, bool write) 1217 { 1218 struct mm_struct *mm = vma->vm_mm; 1219 pgprot_t prot = vma->vm_page_prot; 1220 pud_t entry; 1221 spinlock_t *ptl; 1222 1223 ptl = pud_lock(mm, pud); 1224 if (!pud_none(*pud)) { 1225 if (write) { 1226 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1227 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1228 goto out_unlock; 1229 } 1230 entry = pud_mkyoung(*pud); 1231 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1232 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1233 update_mmu_cache_pud(vma, addr, pud); 1234 } 1235 goto out_unlock; 1236 } 1237 1238 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1239 if (pfn_t_devmap(pfn)) 1240 entry = pud_mkdevmap(entry); 1241 if (write) { 1242 entry = pud_mkyoung(pud_mkdirty(entry)); 1243 entry = maybe_pud_mkwrite(entry, vma); 1244 } 1245 set_pud_at(mm, addr, pud, entry); 1246 update_mmu_cache_pud(vma, addr, pud); 1247 1248 out_unlock: 1249 spin_unlock(ptl); 1250 } 1251 1252 /** 1253 * vmf_insert_pfn_pud - insert a pud size pfn 1254 * @vmf: Structure describing the fault 1255 * @pfn: pfn to insert 1256 * @write: whether it's a write fault 1257 * 1258 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1259 * 1260 * Return: vm_fault_t value. 1261 */ 1262 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1263 { 1264 unsigned long addr = vmf->address & PUD_MASK; 1265 struct vm_area_struct *vma = vmf->vma; 1266 pgprot_t pgprot = vma->vm_page_prot; 1267 1268 /* 1269 * If we had pud_special, we could avoid all these restrictions, 1270 * but we need to be consistent with PTEs and architectures that 1271 * can't support a 'special' bit. 1272 */ 1273 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1274 !pfn_t_devmap(pfn)); 1275 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1276 (VM_PFNMAP|VM_MIXEDMAP)); 1277 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1278 1279 if (addr < vma->vm_start || addr >= vma->vm_end) 1280 return VM_FAULT_SIGBUS; 1281 1282 track_pfn_insert(vma, &pgprot, pfn); 1283 1284 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1285 return VM_FAULT_NOPAGE; 1286 } 1287 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1288 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1289 1290 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1291 pmd_t *pmd, bool write) 1292 { 1293 pmd_t _pmd; 1294 1295 _pmd = pmd_mkyoung(*pmd); 1296 if (write) 1297 _pmd = pmd_mkdirty(_pmd); 1298 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1299 pmd, _pmd, write)) 1300 update_mmu_cache_pmd(vma, addr, pmd); 1301 } 1302 1303 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1304 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1305 { 1306 unsigned long pfn = pmd_pfn(*pmd); 1307 struct mm_struct *mm = vma->vm_mm; 1308 struct page *page; 1309 int ret; 1310 1311 assert_spin_locked(pmd_lockptr(mm, pmd)); 1312 1313 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1314 return NULL; 1315 1316 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1317 /* pass */; 1318 else 1319 return NULL; 1320 1321 if (flags & FOLL_TOUCH) 1322 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1323 1324 /* 1325 * device mapped pages can only be returned if the 1326 * caller will manage the page reference count. 1327 */ 1328 if (!(flags & (FOLL_GET | FOLL_PIN))) 1329 return ERR_PTR(-EEXIST); 1330 1331 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1332 *pgmap = get_dev_pagemap(pfn, *pgmap); 1333 if (!*pgmap) 1334 return ERR_PTR(-EFAULT); 1335 page = pfn_to_page(pfn); 1336 ret = try_grab_page(page, flags); 1337 if (ret) 1338 page = ERR_PTR(ret); 1339 1340 return page; 1341 } 1342 1343 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1344 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1345 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1346 { 1347 spinlock_t *dst_ptl, *src_ptl; 1348 struct page *src_page; 1349 struct folio *src_folio; 1350 pmd_t pmd; 1351 pgtable_t pgtable = NULL; 1352 int ret = -ENOMEM; 1353 1354 /* Skip if can be re-fill on fault */ 1355 if (!vma_is_anonymous(dst_vma)) 1356 return 0; 1357 1358 pgtable = pte_alloc_one(dst_mm); 1359 if (unlikely(!pgtable)) 1360 goto out; 1361 1362 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1363 src_ptl = pmd_lockptr(src_mm, src_pmd); 1364 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1365 1366 ret = -EAGAIN; 1367 pmd = *src_pmd; 1368 1369 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1370 if (unlikely(is_swap_pmd(pmd))) { 1371 swp_entry_t entry = pmd_to_swp_entry(pmd); 1372 1373 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1374 if (!is_readable_migration_entry(entry)) { 1375 entry = make_readable_migration_entry( 1376 swp_offset(entry)); 1377 pmd = swp_entry_to_pmd(entry); 1378 if (pmd_swp_soft_dirty(*src_pmd)) 1379 pmd = pmd_swp_mksoft_dirty(pmd); 1380 if (pmd_swp_uffd_wp(*src_pmd)) 1381 pmd = pmd_swp_mkuffd_wp(pmd); 1382 set_pmd_at(src_mm, addr, src_pmd, pmd); 1383 } 1384 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1385 mm_inc_nr_ptes(dst_mm); 1386 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1387 if (!userfaultfd_wp(dst_vma)) 1388 pmd = pmd_swp_clear_uffd_wp(pmd); 1389 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1390 ret = 0; 1391 goto out_unlock; 1392 } 1393 #endif 1394 1395 if (unlikely(!pmd_trans_huge(pmd))) { 1396 pte_free(dst_mm, pgtable); 1397 goto out_unlock; 1398 } 1399 /* 1400 * When page table lock is held, the huge zero pmd should not be 1401 * under splitting since we don't split the page itself, only pmd to 1402 * a page table. 1403 */ 1404 if (is_huge_zero_pmd(pmd)) { 1405 /* 1406 * mm_get_huge_zero_folio() will never allocate a new 1407 * folio here, since we already have a zero page to 1408 * copy. It just takes a reference. 1409 */ 1410 mm_get_huge_zero_folio(dst_mm); 1411 goto out_zero_page; 1412 } 1413 1414 src_page = pmd_page(pmd); 1415 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1416 src_folio = page_folio(src_page); 1417 1418 folio_get(src_folio); 1419 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1420 /* Page maybe pinned: split and retry the fault on PTEs. */ 1421 folio_put(src_folio); 1422 pte_free(dst_mm, pgtable); 1423 spin_unlock(src_ptl); 1424 spin_unlock(dst_ptl); 1425 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1426 return -EAGAIN; 1427 } 1428 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1429 out_zero_page: 1430 mm_inc_nr_ptes(dst_mm); 1431 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1432 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1433 if (!userfaultfd_wp(dst_vma)) 1434 pmd = pmd_clear_uffd_wp(pmd); 1435 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1436 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1437 1438 ret = 0; 1439 out_unlock: 1440 spin_unlock(src_ptl); 1441 spin_unlock(dst_ptl); 1442 out: 1443 return ret; 1444 } 1445 1446 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1447 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1448 pud_t *pud, bool write) 1449 { 1450 pud_t _pud; 1451 1452 _pud = pud_mkyoung(*pud); 1453 if (write) 1454 _pud = pud_mkdirty(_pud); 1455 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1456 pud, _pud, write)) 1457 update_mmu_cache_pud(vma, addr, pud); 1458 } 1459 1460 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1461 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1462 struct vm_area_struct *vma) 1463 { 1464 spinlock_t *dst_ptl, *src_ptl; 1465 pud_t pud; 1466 int ret; 1467 1468 dst_ptl = pud_lock(dst_mm, dst_pud); 1469 src_ptl = pud_lockptr(src_mm, src_pud); 1470 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1471 1472 ret = -EAGAIN; 1473 pud = *src_pud; 1474 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1475 goto out_unlock; 1476 1477 /* 1478 * When page table lock is held, the huge zero pud should not be 1479 * under splitting since we don't split the page itself, only pud to 1480 * a page table. 1481 */ 1482 if (is_huge_zero_pud(pud)) { 1483 /* No huge zero pud yet */ 1484 } 1485 1486 /* 1487 * TODO: once we support anonymous pages, use 1488 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1489 */ 1490 pudp_set_wrprotect(src_mm, addr, src_pud); 1491 pud = pud_mkold(pud_wrprotect(pud)); 1492 set_pud_at(dst_mm, addr, dst_pud, pud); 1493 1494 ret = 0; 1495 out_unlock: 1496 spin_unlock(src_ptl); 1497 spin_unlock(dst_ptl); 1498 return ret; 1499 } 1500 1501 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1502 { 1503 bool write = vmf->flags & FAULT_FLAG_WRITE; 1504 1505 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1506 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1507 goto unlock; 1508 1509 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1510 unlock: 1511 spin_unlock(vmf->ptl); 1512 } 1513 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1514 1515 void huge_pmd_set_accessed(struct vm_fault *vmf) 1516 { 1517 bool write = vmf->flags & FAULT_FLAG_WRITE; 1518 1519 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1520 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1521 goto unlock; 1522 1523 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1524 1525 unlock: 1526 spin_unlock(vmf->ptl); 1527 } 1528 1529 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1530 { 1531 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1532 struct vm_area_struct *vma = vmf->vma; 1533 struct folio *folio; 1534 struct page *page; 1535 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1536 pmd_t orig_pmd = vmf->orig_pmd; 1537 1538 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1539 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1540 1541 if (is_huge_zero_pmd(orig_pmd)) 1542 goto fallback; 1543 1544 spin_lock(vmf->ptl); 1545 1546 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1547 spin_unlock(vmf->ptl); 1548 return 0; 1549 } 1550 1551 page = pmd_page(orig_pmd); 1552 folio = page_folio(page); 1553 VM_BUG_ON_PAGE(!PageHead(page), page); 1554 1555 /* Early check when only holding the PT lock. */ 1556 if (PageAnonExclusive(page)) 1557 goto reuse; 1558 1559 if (!folio_trylock(folio)) { 1560 folio_get(folio); 1561 spin_unlock(vmf->ptl); 1562 folio_lock(folio); 1563 spin_lock(vmf->ptl); 1564 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1565 spin_unlock(vmf->ptl); 1566 folio_unlock(folio); 1567 folio_put(folio); 1568 return 0; 1569 } 1570 folio_put(folio); 1571 } 1572 1573 /* Recheck after temporarily dropping the PT lock. */ 1574 if (PageAnonExclusive(page)) { 1575 folio_unlock(folio); 1576 goto reuse; 1577 } 1578 1579 /* 1580 * See do_wp_page(): we can only reuse the folio exclusively if 1581 * there are no additional references. Note that we always drain 1582 * the LRU cache immediately after adding a THP. 1583 */ 1584 if (folio_ref_count(folio) > 1585 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1586 goto unlock_fallback; 1587 if (folio_test_swapcache(folio)) 1588 folio_free_swap(folio); 1589 if (folio_ref_count(folio) == 1) { 1590 pmd_t entry; 1591 1592 folio_move_anon_rmap(folio, vma); 1593 SetPageAnonExclusive(page); 1594 folio_unlock(folio); 1595 reuse: 1596 if (unlikely(unshare)) { 1597 spin_unlock(vmf->ptl); 1598 return 0; 1599 } 1600 entry = pmd_mkyoung(orig_pmd); 1601 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1602 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1603 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1604 spin_unlock(vmf->ptl); 1605 return 0; 1606 } 1607 1608 unlock_fallback: 1609 folio_unlock(folio); 1610 spin_unlock(vmf->ptl); 1611 fallback: 1612 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1613 return VM_FAULT_FALLBACK; 1614 } 1615 1616 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1617 unsigned long addr, pmd_t pmd) 1618 { 1619 struct page *page; 1620 1621 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1622 return false; 1623 1624 /* Don't touch entries that are not even readable (NUMA hinting). */ 1625 if (pmd_protnone(pmd)) 1626 return false; 1627 1628 /* Do we need write faults for softdirty tracking? */ 1629 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1630 return false; 1631 1632 /* Do we need write faults for uffd-wp tracking? */ 1633 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1634 return false; 1635 1636 if (!(vma->vm_flags & VM_SHARED)) { 1637 /* See can_change_pte_writable(). */ 1638 page = vm_normal_page_pmd(vma, addr, pmd); 1639 return page && PageAnon(page) && PageAnonExclusive(page); 1640 } 1641 1642 /* See can_change_pte_writable(). */ 1643 return pmd_dirty(pmd); 1644 } 1645 1646 /* NUMA hinting page fault entry point for trans huge pmds */ 1647 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1648 { 1649 struct vm_area_struct *vma = vmf->vma; 1650 pmd_t oldpmd = vmf->orig_pmd; 1651 pmd_t pmd; 1652 struct folio *folio; 1653 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1654 int nid = NUMA_NO_NODE; 1655 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1656 bool migrated = false, writable = false; 1657 int flags = 0; 1658 1659 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1660 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1661 spin_unlock(vmf->ptl); 1662 goto out; 1663 } 1664 1665 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1666 1667 /* 1668 * Detect now whether the PMD could be writable; this information 1669 * is only valid while holding the PT lock. 1670 */ 1671 writable = pmd_write(pmd); 1672 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1673 can_change_pmd_writable(vma, vmf->address, pmd)) 1674 writable = true; 1675 1676 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1677 if (!folio) 1678 goto out_map; 1679 1680 /* See similar comment in do_numa_page for explanation */ 1681 if (!writable) 1682 flags |= TNF_NO_GROUP; 1683 1684 nid = folio_nid(folio); 1685 /* 1686 * For memory tiering mode, cpupid of slow memory page is used 1687 * to record page access time. So use default value. 1688 */ 1689 if (node_is_toptier(nid)) 1690 last_cpupid = folio_last_cpupid(folio); 1691 target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags); 1692 if (target_nid == NUMA_NO_NODE) { 1693 folio_put(folio); 1694 goto out_map; 1695 } 1696 1697 spin_unlock(vmf->ptl); 1698 writable = false; 1699 1700 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1701 if (migrated) { 1702 flags |= TNF_MIGRATED; 1703 nid = target_nid; 1704 } else { 1705 flags |= TNF_MIGRATE_FAIL; 1706 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1707 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1708 spin_unlock(vmf->ptl); 1709 goto out; 1710 } 1711 goto out_map; 1712 } 1713 1714 out: 1715 if (nid != NUMA_NO_NODE) 1716 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1717 1718 return 0; 1719 1720 out_map: 1721 /* Restore the PMD */ 1722 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1723 pmd = pmd_mkyoung(pmd); 1724 if (writable) 1725 pmd = pmd_mkwrite(pmd, vma); 1726 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1727 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1728 spin_unlock(vmf->ptl); 1729 goto out; 1730 } 1731 1732 /* 1733 * Return true if we do MADV_FREE successfully on entire pmd page. 1734 * Otherwise, return false. 1735 */ 1736 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1737 pmd_t *pmd, unsigned long addr, unsigned long next) 1738 { 1739 spinlock_t *ptl; 1740 pmd_t orig_pmd; 1741 struct folio *folio; 1742 struct mm_struct *mm = tlb->mm; 1743 bool ret = false; 1744 1745 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1746 1747 ptl = pmd_trans_huge_lock(pmd, vma); 1748 if (!ptl) 1749 goto out_unlocked; 1750 1751 orig_pmd = *pmd; 1752 if (is_huge_zero_pmd(orig_pmd)) 1753 goto out; 1754 1755 if (unlikely(!pmd_present(orig_pmd))) { 1756 VM_BUG_ON(thp_migration_supported() && 1757 !is_pmd_migration_entry(orig_pmd)); 1758 goto out; 1759 } 1760 1761 folio = pmd_folio(orig_pmd); 1762 /* 1763 * If other processes are mapping this folio, we couldn't discard 1764 * the folio unless they all do MADV_FREE so let's skip the folio. 1765 */ 1766 if (folio_likely_mapped_shared(folio)) 1767 goto out; 1768 1769 if (!folio_trylock(folio)) 1770 goto out; 1771 1772 /* 1773 * If user want to discard part-pages of THP, split it so MADV_FREE 1774 * will deactivate only them. 1775 */ 1776 if (next - addr != HPAGE_PMD_SIZE) { 1777 folio_get(folio); 1778 spin_unlock(ptl); 1779 split_folio(folio); 1780 folio_unlock(folio); 1781 folio_put(folio); 1782 goto out_unlocked; 1783 } 1784 1785 if (folio_test_dirty(folio)) 1786 folio_clear_dirty(folio); 1787 folio_unlock(folio); 1788 1789 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1790 pmdp_invalidate(vma, addr, pmd); 1791 orig_pmd = pmd_mkold(orig_pmd); 1792 orig_pmd = pmd_mkclean(orig_pmd); 1793 1794 set_pmd_at(mm, addr, pmd, orig_pmd); 1795 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1796 } 1797 1798 folio_mark_lazyfree(folio); 1799 ret = true; 1800 out: 1801 spin_unlock(ptl); 1802 out_unlocked: 1803 return ret; 1804 } 1805 1806 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1807 { 1808 pgtable_t pgtable; 1809 1810 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1811 pte_free(mm, pgtable); 1812 mm_dec_nr_ptes(mm); 1813 } 1814 1815 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1816 pmd_t *pmd, unsigned long addr) 1817 { 1818 pmd_t orig_pmd; 1819 spinlock_t *ptl; 1820 1821 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1822 1823 ptl = __pmd_trans_huge_lock(pmd, vma); 1824 if (!ptl) 1825 return 0; 1826 /* 1827 * For architectures like ppc64 we look at deposited pgtable 1828 * when calling pmdp_huge_get_and_clear. So do the 1829 * pgtable_trans_huge_withdraw after finishing pmdp related 1830 * operations. 1831 */ 1832 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1833 tlb->fullmm); 1834 arch_check_zapped_pmd(vma, orig_pmd); 1835 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1836 if (vma_is_special_huge(vma)) { 1837 if (arch_needs_pgtable_deposit()) 1838 zap_deposited_table(tlb->mm, pmd); 1839 spin_unlock(ptl); 1840 } else if (is_huge_zero_pmd(orig_pmd)) { 1841 zap_deposited_table(tlb->mm, pmd); 1842 spin_unlock(ptl); 1843 } else { 1844 struct folio *folio = NULL; 1845 int flush_needed = 1; 1846 1847 if (pmd_present(orig_pmd)) { 1848 struct page *page = pmd_page(orig_pmd); 1849 1850 folio = page_folio(page); 1851 folio_remove_rmap_pmd(folio, page, vma); 1852 WARN_ON_ONCE(folio_mapcount(folio) < 0); 1853 VM_BUG_ON_PAGE(!PageHead(page), page); 1854 } else if (thp_migration_supported()) { 1855 swp_entry_t entry; 1856 1857 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1858 entry = pmd_to_swp_entry(orig_pmd); 1859 folio = pfn_swap_entry_folio(entry); 1860 flush_needed = 0; 1861 } else 1862 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1863 1864 if (folio_test_anon(folio)) { 1865 zap_deposited_table(tlb->mm, pmd); 1866 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1867 } else { 1868 if (arch_needs_pgtable_deposit()) 1869 zap_deposited_table(tlb->mm, pmd); 1870 add_mm_counter(tlb->mm, mm_counter_file(folio), 1871 -HPAGE_PMD_NR); 1872 } 1873 1874 spin_unlock(ptl); 1875 if (flush_needed) 1876 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 1877 } 1878 return 1; 1879 } 1880 1881 #ifndef pmd_move_must_withdraw 1882 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1883 spinlock_t *old_pmd_ptl, 1884 struct vm_area_struct *vma) 1885 { 1886 /* 1887 * With split pmd lock we also need to move preallocated 1888 * PTE page table if new_pmd is on different PMD page table. 1889 * 1890 * We also don't deposit and withdraw tables for file pages. 1891 */ 1892 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1893 } 1894 #endif 1895 1896 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1897 { 1898 #ifdef CONFIG_MEM_SOFT_DIRTY 1899 if (unlikely(is_pmd_migration_entry(pmd))) 1900 pmd = pmd_swp_mksoft_dirty(pmd); 1901 else if (pmd_present(pmd)) 1902 pmd = pmd_mksoft_dirty(pmd); 1903 #endif 1904 return pmd; 1905 } 1906 1907 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1908 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1909 { 1910 spinlock_t *old_ptl, *new_ptl; 1911 pmd_t pmd; 1912 struct mm_struct *mm = vma->vm_mm; 1913 bool force_flush = false; 1914 1915 /* 1916 * The destination pmd shouldn't be established, free_pgtables() 1917 * should have released it; but move_page_tables() might have already 1918 * inserted a page table, if racing against shmem/file collapse. 1919 */ 1920 if (!pmd_none(*new_pmd)) { 1921 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1922 return false; 1923 } 1924 1925 /* 1926 * We don't have to worry about the ordering of src and dst 1927 * ptlocks because exclusive mmap_lock prevents deadlock. 1928 */ 1929 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1930 if (old_ptl) { 1931 new_ptl = pmd_lockptr(mm, new_pmd); 1932 if (new_ptl != old_ptl) 1933 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1934 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1935 if (pmd_present(pmd)) 1936 force_flush = true; 1937 VM_BUG_ON(!pmd_none(*new_pmd)); 1938 1939 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1940 pgtable_t pgtable; 1941 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1942 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1943 } 1944 pmd = move_soft_dirty_pmd(pmd); 1945 set_pmd_at(mm, new_addr, new_pmd, pmd); 1946 if (force_flush) 1947 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1948 if (new_ptl != old_ptl) 1949 spin_unlock(new_ptl); 1950 spin_unlock(old_ptl); 1951 return true; 1952 } 1953 return false; 1954 } 1955 1956 /* 1957 * Returns 1958 * - 0 if PMD could not be locked 1959 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1960 * or if prot_numa but THP migration is not supported 1961 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1962 */ 1963 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1964 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1965 unsigned long cp_flags) 1966 { 1967 struct mm_struct *mm = vma->vm_mm; 1968 spinlock_t *ptl; 1969 pmd_t oldpmd, entry; 1970 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1971 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1972 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1973 int ret = 1; 1974 1975 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1976 1977 if (prot_numa && !thp_migration_supported()) 1978 return 1; 1979 1980 ptl = __pmd_trans_huge_lock(pmd, vma); 1981 if (!ptl) 1982 return 0; 1983 1984 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1985 if (is_swap_pmd(*pmd)) { 1986 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1987 struct folio *folio = pfn_swap_entry_folio(entry); 1988 pmd_t newpmd; 1989 1990 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1991 if (is_writable_migration_entry(entry)) { 1992 /* 1993 * A protection check is difficult so 1994 * just be safe and disable write 1995 */ 1996 if (folio_test_anon(folio)) 1997 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1998 else 1999 entry = make_readable_migration_entry(swp_offset(entry)); 2000 newpmd = swp_entry_to_pmd(entry); 2001 if (pmd_swp_soft_dirty(*pmd)) 2002 newpmd = pmd_swp_mksoft_dirty(newpmd); 2003 } else { 2004 newpmd = *pmd; 2005 } 2006 2007 if (uffd_wp) 2008 newpmd = pmd_swp_mkuffd_wp(newpmd); 2009 else if (uffd_wp_resolve) 2010 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2011 if (!pmd_same(*pmd, newpmd)) 2012 set_pmd_at(mm, addr, pmd, newpmd); 2013 goto unlock; 2014 } 2015 #endif 2016 2017 if (prot_numa) { 2018 struct folio *folio; 2019 bool toptier; 2020 /* 2021 * Avoid trapping faults against the zero page. The read-only 2022 * data is likely to be read-cached on the local CPU and 2023 * local/remote hits to the zero page are not interesting. 2024 */ 2025 if (is_huge_zero_pmd(*pmd)) 2026 goto unlock; 2027 2028 if (pmd_protnone(*pmd)) 2029 goto unlock; 2030 2031 folio = pmd_folio(*pmd); 2032 toptier = node_is_toptier(folio_nid(folio)); 2033 /* 2034 * Skip scanning top tier node if normal numa 2035 * balancing is disabled 2036 */ 2037 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2038 toptier) 2039 goto unlock; 2040 2041 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2042 !toptier) 2043 folio_xchg_access_time(folio, 2044 jiffies_to_msecs(jiffies)); 2045 } 2046 /* 2047 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2048 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2049 * which is also under mmap_read_lock(mm): 2050 * 2051 * CPU0: CPU1: 2052 * change_huge_pmd(prot_numa=1) 2053 * pmdp_huge_get_and_clear_notify() 2054 * madvise_dontneed() 2055 * zap_pmd_range() 2056 * pmd_trans_huge(*pmd) == 0 (without ptl) 2057 * // skip the pmd 2058 * set_pmd_at(); 2059 * // pmd is re-established 2060 * 2061 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2062 * which may break userspace. 2063 * 2064 * pmdp_invalidate_ad() is required to make sure we don't miss 2065 * dirty/young flags set by hardware. 2066 */ 2067 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2068 2069 entry = pmd_modify(oldpmd, newprot); 2070 if (uffd_wp) 2071 entry = pmd_mkuffd_wp(entry); 2072 else if (uffd_wp_resolve) 2073 /* 2074 * Leave the write bit to be handled by PF interrupt 2075 * handler, then things like COW could be properly 2076 * handled. 2077 */ 2078 entry = pmd_clear_uffd_wp(entry); 2079 2080 /* See change_pte_range(). */ 2081 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2082 can_change_pmd_writable(vma, addr, entry)) 2083 entry = pmd_mkwrite(entry, vma); 2084 2085 ret = HPAGE_PMD_NR; 2086 set_pmd_at(mm, addr, pmd, entry); 2087 2088 if (huge_pmd_needs_flush(oldpmd, entry)) 2089 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2090 unlock: 2091 spin_unlock(ptl); 2092 return ret; 2093 } 2094 2095 #ifdef CONFIG_USERFAULTFD 2096 /* 2097 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2098 * the caller, but it must return after releasing the page_table_lock. 2099 * Just move the page from src_pmd to dst_pmd if possible. 2100 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2101 * repeated by the caller, or other errors in case of failure. 2102 */ 2103 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2104 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2105 unsigned long dst_addr, unsigned long src_addr) 2106 { 2107 pmd_t _dst_pmd, src_pmdval; 2108 struct page *src_page; 2109 struct folio *src_folio; 2110 struct anon_vma *src_anon_vma; 2111 spinlock_t *src_ptl, *dst_ptl; 2112 pgtable_t src_pgtable; 2113 struct mmu_notifier_range range; 2114 int err = 0; 2115 2116 src_pmdval = *src_pmd; 2117 src_ptl = pmd_lockptr(mm, src_pmd); 2118 2119 lockdep_assert_held(src_ptl); 2120 vma_assert_locked(src_vma); 2121 vma_assert_locked(dst_vma); 2122 2123 /* Sanity checks before the operation */ 2124 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2125 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2126 spin_unlock(src_ptl); 2127 return -EINVAL; 2128 } 2129 2130 if (!pmd_trans_huge(src_pmdval)) { 2131 spin_unlock(src_ptl); 2132 if (is_pmd_migration_entry(src_pmdval)) { 2133 pmd_migration_entry_wait(mm, &src_pmdval); 2134 return -EAGAIN; 2135 } 2136 return -ENOENT; 2137 } 2138 2139 src_page = pmd_page(src_pmdval); 2140 2141 if (!is_huge_zero_pmd(src_pmdval)) { 2142 if (unlikely(!PageAnonExclusive(src_page))) { 2143 spin_unlock(src_ptl); 2144 return -EBUSY; 2145 } 2146 2147 src_folio = page_folio(src_page); 2148 folio_get(src_folio); 2149 } else 2150 src_folio = NULL; 2151 2152 spin_unlock(src_ptl); 2153 2154 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2155 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2156 src_addr + HPAGE_PMD_SIZE); 2157 mmu_notifier_invalidate_range_start(&range); 2158 2159 if (src_folio) { 2160 folio_lock(src_folio); 2161 2162 /* 2163 * split_huge_page walks the anon_vma chain without the page 2164 * lock. Serialize against it with the anon_vma lock, the page 2165 * lock is not enough. 2166 */ 2167 src_anon_vma = folio_get_anon_vma(src_folio); 2168 if (!src_anon_vma) { 2169 err = -EAGAIN; 2170 goto unlock_folio; 2171 } 2172 anon_vma_lock_write(src_anon_vma); 2173 } else 2174 src_anon_vma = NULL; 2175 2176 dst_ptl = pmd_lockptr(mm, dst_pmd); 2177 double_pt_lock(src_ptl, dst_ptl); 2178 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2179 !pmd_same(*dst_pmd, dst_pmdval))) { 2180 err = -EAGAIN; 2181 goto unlock_ptls; 2182 } 2183 if (src_folio) { 2184 if (folio_maybe_dma_pinned(src_folio) || 2185 !PageAnonExclusive(&src_folio->page)) { 2186 err = -EBUSY; 2187 goto unlock_ptls; 2188 } 2189 2190 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2191 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2192 err = -EBUSY; 2193 goto unlock_ptls; 2194 } 2195 2196 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2197 /* Folio got pinned from under us. Put it back and fail the move. */ 2198 if (folio_maybe_dma_pinned(src_folio)) { 2199 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2200 err = -EBUSY; 2201 goto unlock_ptls; 2202 } 2203 2204 folio_move_anon_rmap(src_folio, dst_vma); 2205 src_folio->index = linear_page_index(dst_vma, dst_addr); 2206 2207 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2208 /* Follow mremap() behavior and treat the entry dirty after the move */ 2209 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2210 } else { 2211 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2212 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2213 } 2214 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2215 2216 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2217 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2218 unlock_ptls: 2219 double_pt_unlock(src_ptl, dst_ptl); 2220 if (src_anon_vma) { 2221 anon_vma_unlock_write(src_anon_vma); 2222 put_anon_vma(src_anon_vma); 2223 } 2224 unlock_folio: 2225 /* unblock rmap walks */ 2226 if (src_folio) 2227 folio_unlock(src_folio); 2228 mmu_notifier_invalidate_range_end(&range); 2229 if (src_folio) 2230 folio_put(src_folio); 2231 return err; 2232 } 2233 #endif /* CONFIG_USERFAULTFD */ 2234 2235 /* 2236 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2237 * 2238 * Note that if it returns page table lock pointer, this routine returns without 2239 * unlocking page table lock. So callers must unlock it. 2240 */ 2241 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2242 { 2243 spinlock_t *ptl; 2244 ptl = pmd_lock(vma->vm_mm, pmd); 2245 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2246 pmd_devmap(*pmd))) 2247 return ptl; 2248 spin_unlock(ptl); 2249 return NULL; 2250 } 2251 2252 /* 2253 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2254 * 2255 * Note that if it returns page table lock pointer, this routine returns without 2256 * unlocking page table lock. So callers must unlock it. 2257 */ 2258 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2259 { 2260 spinlock_t *ptl; 2261 2262 ptl = pud_lock(vma->vm_mm, pud); 2263 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2264 return ptl; 2265 spin_unlock(ptl); 2266 return NULL; 2267 } 2268 2269 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2270 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2271 pud_t *pud, unsigned long addr) 2272 { 2273 spinlock_t *ptl; 2274 2275 ptl = __pud_trans_huge_lock(pud, vma); 2276 if (!ptl) 2277 return 0; 2278 2279 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2280 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2281 if (vma_is_special_huge(vma)) { 2282 spin_unlock(ptl); 2283 /* No zero page support yet */ 2284 } else { 2285 /* No support for anonymous PUD pages yet */ 2286 BUG(); 2287 } 2288 return 1; 2289 } 2290 2291 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2292 unsigned long haddr) 2293 { 2294 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2295 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2296 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2297 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2298 2299 count_vm_event(THP_SPLIT_PUD); 2300 2301 pudp_huge_clear_flush(vma, haddr, pud); 2302 } 2303 2304 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2305 unsigned long address) 2306 { 2307 spinlock_t *ptl; 2308 struct mmu_notifier_range range; 2309 2310 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2311 address & HPAGE_PUD_MASK, 2312 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2313 mmu_notifier_invalidate_range_start(&range); 2314 ptl = pud_lock(vma->vm_mm, pud); 2315 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2316 goto out; 2317 __split_huge_pud_locked(vma, pud, range.start); 2318 2319 out: 2320 spin_unlock(ptl); 2321 mmu_notifier_invalidate_range_end(&range); 2322 } 2323 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2324 2325 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2326 unsigned long haddr, pmd_t *pmd) 2327 { 2328 struct mm_struct *mm = vma->vm_mm; 2329 pgtable_t pgtable; 2330 pmd_t _pmd, old_pmd; 2331 unsigned long addr; 2332 pte_t *pte; 2333 int i; 2334 2335 /* 2336 * Leave pmd empty until pte is filled note that it is fine to delay 2337 * notification until mmu_notifier_invalidate_range_end() as we are 2338 * replacing a zero pmd write protected page with a zero pte write 2339 * protected page. 2340 * 2341 * See Documentation/mm/mmu_notifier.rst 2342 */ 2343 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2344 2345 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2346 pmd_populate(mm, &_pmd, pgtable); 2347 2348 pte = pte_offset_map(&_pmd, haddr); 2349 VM_BUG_ON(!pte); 2350 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2351 pte_t entry; 2352 2353 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2354 entry = pte_mkspecial(entry); 2355 if (pmd_uffd_wp(old_pmd)) 2356 entry = pte_mkuffd_wp(entry); 2357 VM_BUG_ON(!pte_none(ptep_get(pte))); 2358 set_pte_at(mm, addr, pte, entry); 2359 pte++; 2360 } 2361 pte_unmap(pte - 1); 2362 smp_wmb(); /* make pte visible before pmd */ 2363 pmd_populate(mm, pmd, pgtable); 2364 } 2365 2366 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2367 unsigned long haddr, bool freeze) 2368 { 2369 struct mm_struct *mm = vma->vm_mm; 2370 struct folio *folio; 2371 struct page *page; 2372 pgtable_t pgtable; 2373 pmd_t old_pmd, _pmd; 2374 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2375 bool anon_exclusive = false, dirty = false; 2376 unsigned long addr; 2377 pte_t *pte; 2378 int i; 2379 2380 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2381 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2382 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2383 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2384 && !pmd_devmap(*pmd)); 2385 2386 count_vm_event(THP_SPLIT_PMD); 2387 2388 if (!vma_is_anonymous(vma)) { 2389 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2390 /* 2391 * We are going to unmap this huge page. So 2392 * just go ahead and zap it 2393 */ 2394 if (arch_needs_pgtable_deposit()) 2395 zap_deposited_table(mm, pmd); 2396 if (vma_is_special_huge(vma)) 2397 return; 2398 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2399 swp_entry_t entry; 2400 2401 entry = pmd_to_swp_entry(old_pmd); 2402 folio = pfn_swap_entry_folio(entry); 2403 } else { 2404 page = pmd_page(old_pmd); 2405 folio = page_folio(page); 2406 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2407 folio_mark_dirty(folio); 2408 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2409 folio_set_referenced(folio); 2410 folio_remove_rmap_pmd(folio, page, vma); 2411 folio_put(folio); 2412 } 2413 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2414 return; 2415 } 2416 2417 if (is_huge_zero_pmd(*pmd)) { 2418 /* 2419 * FIXME: Do we want to invalidate secondary mmu by calling 2420 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2421 * inside __split_huge_pmd() ? 2422 * 2423 * We are going from a zero huge page write protected to zero 2424 * small page also write protected so it does not seems useful 2425 * to invalidate secondary mmu at this time. 2426 */ 2427 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2428 } 2429 2430 pmd_migration = is_pmd_migration_entry(*pmd); 2431 if (unlikely(pmd_migration)) { 2432 swp_entry_t entry; 2433 2434 old_pmd = *pmd; 2435 entry = pmd_to_swp_entry(old_pmd); 2436 page = pfn_swap_entry_to_page(entry); 2437 write = is_writable_migration_entry(entry); 2438 if (PageAnon(page)) 2439 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2440 young = is_migration_entry_young(entry); 2441 dirty = is_migration_entry_dirty(entry); 2442 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2443 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2444 } else { 2445 /* 2446 * Up to this point the pmd is present and huge and userland has 2447 * the whole access to the hugepage during the split (which 2448 * happens in place). If we overwrite the pmd with the not-huge 2449 * version pointing to the pte here (which of course we could if 2450 * all CPUs were bug free), userland could trigger a small page 2451 * size TLB miss on the small sized TLB while the hugepage TLB 2452 * entry is still established in the huge TLB. Some CPU doesn't 2453 * like that. See 2454 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2455 * 383 on page 105. Intel should be safe but is also warns that 2456 * it's only safe if the permission and cache attributes of the 2457 * two entries loaded in the two TLB is identical (which should 2458 * be the case here). But it is generally safer to never allow 2459 * small and huge TLB entries for the same virtual address to be 2460 * loaded simultaneously. So instead of doing "pmd_populate(); 2461 * flush_pmd_tlb_range();" we first mark the current pmd 2462 * notpresent (atomically because here the pmd_trans_huge must 2463 * remain set at all times on the pmd until the split is 2464 * complete for this pmd), then we flush the SMP TLB and finally 2465 * we write the non-huge version of the pmd entry with 2466 * pmd_populate. 2467 */ 2468 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2469 page = pmd_page(old_pmd); 2470 folio = page_folio(page); 2471 if (pmd_dirty(old_pmd)) { 2472 dirty = true; 2473 folio_set_dirty(folio); 2474 } 2475 write = pmd_write(old_pmd); 2476 young = pmd_young(old_pmd); 2477 soft_dirty = pmd_soft_dirty(old_pmd); 2478 uffd_wp = pmd_uffd_wp(old_pmd); 2479 2480 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2481 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2482 2483 /* 2484 * Without "freeze", we'll simply split the PMD, propagating the 2485 * PageAnonExclusive() flag for each PTE by setting it for 2486 * each subpage -- no need to (temporarily) clear. 2487 * 2488 * With "freeze" we want to replace mapped pages by 2489 * migration entries right away. This is only possible if we 2490 * managed to clear PageAnonExclusive() -- see 2491 * set_pmd_migration_entry(). 2492 * 2493 * In case we cannot clear PageAnonExclusive(), split the PMD 2494 * only and let try_to_migrate_one() fail later. 2495 * 2496 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2497 */ 2498 anon_exclusive = PageAnonExclusive(page); 2499 if (freeze && anon_exclusive && 2500 folio_try_share_anon_rmap_pmd(folio, page)) 2501 freeze = false; 2502 if (!freeze) { 2503 rmap_t rmap_flags = RMAP_NONE; 2504 2505 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2506 if (anon_exclusive) 2507 rmap_flags |= RMAP_EXCLUSIVE; 2508 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2509 vma, haddr, rmap_flags); 2510 } 2511 } 2512 2513 /* 2514 * Withdraw the table only after we mark the pmd entry invalid. 2515 * This's critical for some architectures (Power). 2516 */ 2517 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2518 pmd_populate(mm, &_pmd, pgtable); 2519 2520 pte = pte_offset_map(&_pmd, haddr); 2521 VM_BUG_ON(!pte); 2522 2523 /* 2524 * Note that NUMA hinting access restrictions are not transferred to 2525 * avoid any possibility of altering permissions across VMAs. 2526 */ 2527 if (freeze || pmd_migration) { 2528 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2529 pte_t entry; 2530 swp_entry_t swp_entry; 2531 2532 if (write) 2533 swp_entry = make_writable_migration_entry( 2534 page_to_pfn(page + i)); 2535 else if (anon_exclusive) 2536 swp_entry = make_readable_exclusive_migration_entry( 2537 page_to_pfn(page + i)); 2538 else 2539 swp_entry = make_readable_migration_entry( 2540 page_to_pfn(page + i)); 2541 if (young) 2542 swp_entry = make_migration_entry_young(swp_entry); 2543 if (dirty) 2544 swp_entry = make_migration_entry_dirty(swp_entry); 2545 entry = swp_entry_to_pte(swp_entry); 2546 if (soft_dirty) 2547 entry = pte_swp_mksoft_dirty(entry); 2548 if (uffd_wp) 2549 entry = pte_swp_mkuffd_wp(entry); 2550 2551 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2552 set_pte_at(mm, addr, pte + i, entry); 2553 } 2554 } else { 2555 pte_t entry; 2556 2557 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2558 if (write) 2559 entry = pte_mkwrite(entry, vma); 2560 if (!young) 2561 entry = pte_mkold(entry); 2562 /* NOTE: this may set soft-dirty too on some archs */ 2563 if (dirty) 2564 entry = pte_mkdirty(entry); 2565 if (soft_dirty) 2566 entry = pte_mksoft_dirty(entry); 2567 if (uffd_wp) 2568 entry = pte_mkuffd_wp(entry); 2569 2570 for (i = 0; i < HPAGE_PMD_NR; i++) 2571 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2572 2573 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2574 } 2575 pte_unmap(pte); 2576 2577 if (!pmd_migration) 2578 folio_remove_rmap_pmd(folio, page, vma); 2579 if (freeze) 2580 put_page(page); 2581 2582 smp_wmb(); /* make pte visible before pmd */ 2583 pmd_populate(mm, pmd, pgtable); 2584 } 2585 2586 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2587 unsigned long address, bool freeze, struct folio *folio) 2588 { 2589 spinlock_t *ptl; 2590 struct mmu_notifier_range range; 2591 2592 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2593 address & HPAGE_PMD_MASK, 2594 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2595 mmu_notifier_invalidate_range_start(&range); 2596 ptl = pmd_lock(vma->vm_mm, pmd); 2597 2598 /* 2599 * If caller asks to setup a migration entry, we need a folio to check 2600 * pmd against. Otherwise we can end up replacing wrong folio. 2601 */ 2602 VM_BUG_ON(freeze && !folio); 2603 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2604 2605 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2606 is_pmd_migration_entry(*pmd)) { 2607 /* 2608 * It's safe to call pmd_page when folio is set because it's 2609 * guaranteed that pmd is present. 2610 */ 2611 if (folio && folio != pmd_folio(*pmd)) 2612 goto out; 2613 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2614 } 2615 2616 out: 2617 spin_unlock(ptl); 2618 mmu_notifier_invalidate_range_end(&range); 2619 } 2620 2621 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2622 bool freeze, struct folio *folio) 2623 { 2624 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2625 2626 if (!pmd) 2627 return; 2628 2629 __split_huge_pmd(vma, pmd, address, freeze, folio); 2630 } 2631 2632 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2633 { 2634 /* 2635 * If the new address isn't hpage aligned and it could previously 2636 * contain an hugepage: check if we need to split an huge pmd. 2637 */ 2638 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2639 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2640 ALIGN(address, HPAGE_PMD_SIZE))) 2641 split_huge_pmd_address(vma, address, false, NULL); 2642 } 2643 2644 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2645 unsigned long start, 2646 unsigned long end, 2647 long adjust_next) 2648 { 2649 /* Check if we need to split start first. */ 2650 split_huge_pmd_if_needed(vma, start); 2651 2652 /* Check if we need to split end next. */ 2653 split_huge_pmd_if_needed(vma, end); 2654 2655 /* 2656 * If we're also updating the next vma vm_start, 2657 * check if we need to split it. 2658 */ 2659 if (adjust_next > 0) { 2660 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2661 unsigned long nstart = next->vm_start; 2662 nstart += adjust_next; 2663 split_huge_pmd_if_needed(next, nstart); 2664 } 2665 } 2666 2667 static void unmap_folio(struct folio *folio) 2668 { 2669 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 2670 TTU_BATCH_FLUSH; 2671 2672 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2673 2674 if (folio_test_pmd_mappable(folio)) 2675 ttu_flags |= TTU_SPLIT_HUGE_PMD; 2676 2677 /* 2678 * Anon pages need migration entries to preserve them, but file 2679 * pages can simply be left unmapped, then faulted back on demand. 2680 * If that is ever changed (perhaps for mlock), update remap_page(). 2681 */ 2682 if (folio_test_anon(folio)) 2683 try_to_migrate(folio, ttu_flags); 2684 else 2685 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2686 2687 try_to_unmap_flush(); 2688 } 2689 2690 static void remap_page(struct folio *folio, unsigned long nr) 2691 { 2692 int i = 0; 2693 2694 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2695 if (!folio_test_anon(folio)) 2696 return; 2697 for (;;) { 2698 remove_migration_ptes(folio, folio, true); 2699 i += folio_nr_pages(folio); 2700 if (i >= nr) 2701 break; 2702 folio = folio_next(folio); 2703 } 2704 } 2705 2706 static void lru_add_page_tail(struct page *head, struct page *tail, 2707 struct lruvec *lruvec, struct list_head *list) 2708 { 2709 VM_BUG_ON_PAGE(!PageHead(head), head); 2710 VM_BUG_ON_PAGE(PageLRU(tail), head); 2711 lockdep_assert_held(&lruvec->lru_lock); 2712 2713 if (list) { 2714 /* page reclaim is reclaiming a huge page */ 2715 VM_WARN_ON(PageLRU(head)); 2716 get_page(tail); 2717 list_add_tail(&tail->lru, list); 2718 } else { 2719 /* head is still on lru (and we have it frozen) */ 2720 VM_WARN_ON(!PageLRU(head)); 2721 if (PageUnevictable(tail)) 2722 tail->mlock_count = 0; 2723 else 2724 list_add_tail(&tail->lru, &head->lru); 2725 SetPageLRU(tail); 2726 } 2727 } 2728 2729 static void __split_huge_page_tail(struct folio *folio, int tail, 2730 struct lruvec *lruvec, struct list_head *list, 2731 unsigned int new_order) 2732 { 2733 struct page *head = &folio->page; 2734 struct page *page_tail = head + tail; 2735 /* 2736 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2737 * Don't pass it around before clear_compound_head(). 2738 */ 2739 struct folio *new_folio = (struct folio *)page_tail; 2740 2741 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2742 2743 /* 2744 * Clone page flags before unfreezing refcount. 2745 * 2746 * After successful get_page_unless_zero() might follow flags change, 2747 * for example lock_page() which set PG_waiters. 2748 * 2749 * Note that for mapped sub-pages of an anonymous THP, 2750 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2751 * the migration entry instead from where remap_page() will restore it. 2752 * We can still have PG_anon_exclusive set on effectively unmapped and 2753 * unreferenced sub-pages of an anonymous THP: we can simply drop 2754 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2755 */ 2756 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2757 page_tail->flags |= (head->flags & 2758 ((1L << PG_referenced) | 2759 (1L << PG_swapbacked) | 2760 (1L << PG_swapcache) | 2761 (1L << PG_mlocked) | 2762 (1L << PG_uptodate) | 2763 (1L << PG_active) | 2764 (1L << PG_workingset) | 2765 (1L << PG_locked) | 2766 (1L << PG_unevictable) | 2767 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2768 (1L << PG_arch_2) | 2769 (1L << PG_arch_3) | 2770 #endif 2771 (1L << PG_dirty) | 2772 LRU_GEN_MASK | LRU_REFS_MASK)); 2773 2774 /* ->mapping in first and second tail page is replaced by other uses */ 2775 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2776 page_tail); 2777 page_tail->mapping = head->mapping; 2778 page_tail->index = head->index + tail; 2779 2780 /* 2781 * page->private should not be set in tail pages. Fix up and warn once 2782 * if private is unexpectedly set. 2783 */ 2784 if (unlikely(page_tail->private)) { 2785 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2786 page_tail->private = 0; 2787 } 2788 if (folio_test_swapcache(folio)) 2789 new_folio->swap.val = folio->swap.val + tail; 2790 2791 /* Page flags must be visible before we make the page non-compound. */ 2792 smp_wmb(); 2793 2794 /* 2795 * Clear PageTail before unfreezing page refcount. 2796 * 2797 * After successful get_page_unless_zero() might follow put_page() 2798 * which needs correct compound_head(). 2799 */ 2800 clear_compound_head(page_tail); 2801 if (new_order) { 2802 prep_compound_page(page_tail, new_order); 2803 folio_set_large_rmappable(new_folio); 2804 } 2805 2806 /* Finally unfreeze refcount. Additional reference from page cache. */ 2807 page_ref_unfreeze(page_tail, 2808 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 2809 folio_nr_pages(new_folio) : 0)); 2810 2811 if (folio_test_young(folio)) 2812 folio_set_young(new_folio); 2813 if (folio_test_idle(folio)) 2814 folio_set_idle(new_folio); 2815 2816 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2817 2818 /* 2819 * always add to the tail because some iterators expect new 2820 * pages to show after the currently processed elements - e.g. 2821 * migrate_pages 2822 */ 2823 lru_add_page_tail(head, page_tail, lruvec, list); 2824 } 2825 2826 static void __split_huge_page(struct page *page, struct list_head *list, 2827 pgoff_t end, unsigned int new_order) 2828 { 2829 struct folio *folio = page_folio(page); 2830 struct page *head = &folio->page; 2831 struct lruvec *lruvec; 2832 struct address_space *swap_cache = NULL; 2833 unsigned long offset = 0; 2834 int i, nr_dropped = 0; 2835 unsigned int new_nr = 1 << new_order; 2836 int order = folio_order(folio); 2837 unsigned int nr = 1 << order; 2838 2839 /* complete memcg works before add pages to LRU */ 2840 split_page_memcg(head, order, new_order); 2841 2842 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2843 offset = swap_cache_index(folio->swap); 2844 swap_cache = swap_address_space(folio->swap); 2845 xa_lock(&swap_cache->i_pages); 2846 } 2847 2848 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2849 lruvec = folio_lruvec_lock(folio); 2850 2851 ClearPageHasHWPoisoned(head); 2852 2853 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 2854 __split_huge_page_tail(folio, i, lruvec, list, new_order); 2855 /* Some pages can be beyond EOF: drop them from page cache */ 2856 if (head[i].index >= end) { 2857 struct folio *tail = page_folio(head + i); 2858 2859 if (shmem_mapping(folio->mapping)) 2860 nr_dropped++; 2861 else if (folio_test_clear_dirty(tail)) 2862 folio_account_cleaned(tail, 2863 inode_to_wb(folio->mapping->host)); 2864 __filemap_remove_folio(tail, NULL); 2865 folio_put(tail); 2866 } else if (!PageAnon(page)) { 2867 __xa_store(&folio->mapping->i_pages, head[i].index, 2868 head + i, 0); 2869 } else if (swap_cache) { 2870 __xa_store(&swap_cache->i_pages, offset + i, 2871 head + i, 0); 2872 } 2873 } 2874 2875 if (!new_order) 2876 ClearPageCompound(head); 2877 else { 2878 struct folio *new_folio = (struct folio *)head; 2879 2880 folio_set_order(new_folio, new_order); 2881 } 2882 unlock_page_lruvec(lruvec); 2883 /* Caller disabled irqs, so they are still disabled here */ 2884 2885 split_page_owner(head, order, new_order); 2886 pgalloc_tag_split(head, 1 << order); 2887 2888 /* See comment in __split_huge_page_tail() */ 2889 if (folio_test_anon(folio)) { 2890 /* Additional pin to swap cache */ 2891 if (folio_test_swapcache(folio)) { 2892 folio_ref_add(folio, 1 + new_nr); 2893 xa_unlock(&swap_cache->i_pages); 2894 } else { 2895 folio_ref_inc(folio); 2896 } 2897 } else { 2898 /* Additional pin to page cache */ 2899 folio_ref_add(folio, 1 + new_nr); 2900 xa_unlock(&folio->mapping->i_pages); 2901 } 2902 local_irq_enable(); 2903 2904 if (nr_dropped) 2905 shmem_uncharge(folio->mapping->host, nr_dropped); 2906 remap_page(folio, nr); 2907 2908 /* 2909 * set page to its compound_head when split to non order-0 pages, so 2910 * we can skip unlocking it below, since PG_locked is transferred to 2911 * the compound_head of the page and the caller will unlock it. 2912 */ 2913 if (new_order) 2914 page = compound_head(page); 2915 2916 for (i = 0; i < nr; i += new_nr) { 2917 struct page *subpage = head + i; 2918 struct folio *new_folio = page_folio(subpage); 2919 if (subpage == page) 2920 continue; 2921 folio_unlock(new_folio); 2922 2923 /* 2924 * Subpages may be freed if there wasn't any mapping 2925 * like if add_to_swap() is running on a lru page that 2926 * had its mapping zapped. And freeing these pages 2927 * requires taking the lru_lock so we do the put_page 2928 * of the tail pages after the split is complete. 2929 */ 2930 free_page_and_swap_cache(subpage); 2931 } 2932 } 2933 2934 /* Racy check whether the huge page can be split */ 2935 bool can_split_folio(struct folio *folio, int *pextra_pins) 2936 { 2937 int extra_pins; 2938 2939 /* Additional pins from page cache */ 2940 if (folio_test_anon(folio)) 2941 extra_pins = folio_test_swapcache(folio) ? 2942 folio_nr_pages(folio) : 0; 2943 else 2944 extra_pins = folio_nr_pages(folio); 2945 if (pextra_pins) 2946 *pextra_pins = extra_pins; 2947 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2948 } 2949 2950 /* 2951 * This function splits a large folio into smaller folios of order @new_order. 2952 * @page can point to any page of the large folio to split. The split operation 2953 * does not change the position of @page. 2954 * 2955 * Prerequisites: 2956 * 2957 * 1) The caller must hold a reference on the @page's owning folio, also known 2958 * as the large folio. 2959 * 2960 * 2) The large folio must be locked. 2961 * 2962 * 3) The folio must not be pinned. Any unexpected folio references, including 2963 * GUP pins, will result in the folio not getting split; instead, the caller 2964 * will receive an -EAGAIN. 2965 * 2966 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 2967 * supported for non-file-backed folios, because folio->_deferred_list, which 2968 * is used by partially mapped folios, is stored in subpage 2, but an order-1 2969 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 2970 * since they do not use _deferred_list. 2971 * 2972 * After splitting, the caller's folio reference will be transferred to @page, 2973 * resulting in a raised refcount of @page after this call. The other pages may 2974 * be freed if they are not mapped. 2975 * 2976 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2977 * 2978 * Pages in @new_order will inherit the mapping, flags, and so on from the 2979 * huge page. 2980 * 2981 * Returns 0 if the huge page was split successfully. 2982 * 2983 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 2984 * the folio was concurrently removed from the page cache. 2985 * 2986 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 2987 * under writeback, if fs-specific folio metadata cannot currently be 2988 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 2989 * truncation). 2990 * 2991 * Returns -EINVAL when trying to split to an order that is incompatible 2992 * with the folio. Splitting to order 0 is compatible with all folios. 2993 */ 2994 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 2995 unsigned int new_order) 2996 { 2997 struct folio *folio = page_folio(page); 2998 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2999 /* reset xarray order to new order after split */ 3000 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3001 struct anon_vma *anon_vma = NULL; 3002 struct address_space *mapping = NULL; 3003 bool is_thp = folio_test_pmd_mappable(folio); 3004 int extra_pins, ret; 3005 pgoff_t end; 3006 bool is_hzp; 3007 3008 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3009 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3010 3011 if (new_order >= folio_order(folio)) 3012 return -EINVAL; 3013 3014 if (folio_test_anon(folio)) { 3015 /* order-1 is not supported for anonymous THP. */ 3016 if (new_order == 1) { 3017 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3018 return -EINVAL; 3019 } 3020 } else if (new_order) { 3021 /* Split shmem folio to non-zero order not supported */ 3022 if (shmem_mapping(folio->mapping)) { 3023 VM_WARN_ONCE(1, 3024 "Cannot split shmem folio to non-0 order"); 3025 return -EINVAL; 3026 } 3027 /* 3028 * No split if the file system does not support large folio. 3029 * Note that we might still have THPs in such mappings due to 3030 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3031 * does not actually support large folios properly. 3032 */ 3033 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3034 !mapping_large_folio_support(folio->mapping)) { 3035 VM_WARN_ONCE(1, 3036 "Cannot split file folio to non-0 order"); 3037 return -EINVAL; 3038 } 3039 } 3040 3041 /* Only swapping a whole PMD-mapped folio is supported */ 3042 if (folio_test_swapcache(folio) && new_order) 3043 return -EINVAL; 3044 3045 is_hzp = is_huge_zero_folio(folio); 3046 if (is_hzp) { 3047 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3048 return -EBUSY; 3049 } 3050 3051 if (folio_test_writeback(folio)) 3052 return -EBUSY; 3053 3054 if (folio_test_anon(folio)) { 3055 /* 3056 * The caller does not necessarily hold an mmap_lock that would 3057 * prevent the anon_vma disappearing so we first we take a 3058 * reference to it and then lock the anon_vma for write. This 3059 * is similar to folio_lock_anon_vma_read except the write lock 3060 * is taken to serialise against parallel split or collapse 3061 * operations. 3062 */ 3063 anon_vma = folio_get_anon_vma(folio); 3064 if (!anon_vma) { 3065 ret = -EBUSY; 3066 goto out; 3067 } 3068 end = -1; 3069 mapping = NULL; 3070 anon_vma_lock_write(anon_vma); 3071 } else { 3072 gfp_t gfp; 3073 3074 mapping = folio->mapping; 3075 3076 /* Truncated ? */ 3077 if (!mapping) { 3078 ret = -EBUSY; 3079 goto out; 3080 } 3081 3082 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3083 GFP_RECLAIM_MASK); 3084 3085 if (!filemap_release_folio(folio, gfp)) { 3086 ret = -EBUSY; 3087 goto out; 3088 } 3089 3090 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3091 if (xas_error(&xas)) { 3092 ret = xas_error(&xas); 3093 goto out; 3094 } 3095 3096 anon_vma = NULL; 3097 i_mmap_lock_read(mapping); 3098 3099 /* 3100 *__split_huge_page() may need to trim off pages beyond EOF: 3101 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3102 * which cannot be nested inside the page tree lock. So note 3103 * end now: i_size itself may be changed at any moment, but 3104 * folio lock is good enough to serialize the trimming. 3105 */ 3106 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3107 if (shmem_mapping(mapping)) 3108 end = shmem_fallocend(mapping->host, end); 3109 } 3110 3111 /* 3112 * Racy check if we can split the page, before unmap_folio() will 3113 * split PMDs 3114 */ 3115 if (!can_split_folio(folio, &extra_pins)) { 3116 ret = -EAGAIN; 3117 goto out_unlock; 3118 } 3119 3120 unmap_folio(folio); 3121 3122 /* block interrupt reentry in xa_lock and spinlock */ 3123 local_irq_disable(); 3124 if (mapping) { 3125 /* 3126 * Check if the folio is present in page cache. 3127 * We assume all tail are present too, if folio is there. 3128 */ 3129 xas_lock(&xas); 3130 xas_reset(&xas); 3131 if (xas_load(&xas) != folio) 3132 goto fail; 3133 } 3134 3135 /* Prevent deferred_split_scan() touching ->_refcount */ 3136 spin_lock(&ds_queue->split_queue_lock); 3137 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3138 if (folio_order(folio) > 1 && 3139 !list_empty(&folio->_deferred_list)) { 3140 ds_queue->split_queue_len--; 3141 /* 3142 * Reinitialize page_deferred_list after removing the 3143 * page from the split_queue, otherwise a subsequent 3144 * split will see list corruption when checking the 3145 * page_deferred_list. 3146 */ 3147 list_del_init(&folio->_deferred_list); 3148 } 3149 spin_unlock(&ds_queue->split_queue_lock); 3150 if (mapping) { 3151 int nr = folio_nr_pages(folio); 3152 3153 xas_split(&xas, folio, folio_order(folio)); 3154 if (folio_test_pmd_mappable(folio) && 3155 new_order < HPAGE_PMD_ORDER) { 3156 if (folio_test_swapbacked(folio)) { 3157 __lruvec_stat_mod_folio(folio, 3158 NR_SHMEM_THPS, -nr); 3159 } else { 3160 __lruvec_stat_mod_folio(folio, 3161 NR_FILE_THPS, -nr); 3162 filemap_nr_thps_dec(mapping); 3163 } 3164 } 3165 } 3166 3167 __split_huge_page(page, list, end, new_order); 3168 ret = 0; 3169 } else { 3170 spin_unlock(&ds_queue->split_queue_lock); 3171 fail: 3172 if (mapping) 3173 xas_unlock(&xas); 3174 local_irq_enable(); 3175 remap_page(folio, folio_nr_pages(folio)); 3176 ret = -EAGAIN; 3177 } 3178 3179 out_unlock: 3180 if (anon_vma) { 3181 anon_vma_unlock_write(anon_vma); 3182 put_anon_vma(anon_vma); 3183 } 3184 if (mapping) 3185 i_mmap_unlock_read(mapping); 3186 out: 3187 xas_destroy(&xas); 3188 if (is_thp) 3189 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3190 return ret; 3191 } 3192 3193 void folio_undo_large_rmappable(struct folio *folio) 3194 { 3195 struct deferred_split *ds_queue; 3196 unsigned long flags; 3197 3198 if (folio_order(folio) <= 1) 3199 return; 3200 3201 /* 3202 * At this point, there is no one trying to add the folio to 3203 * deferred_list. If folio is not in deferred_list, it's safe 3204 * to check without acquiring the split_queue_lock. 3205 */ 3206 if (data_race(list_empty(&folio->_deferred_list))) 3207 return; 3208 3209 ds_queue = get_deferred_split_queue(folio); 3210 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3211 if (!list_empty(&folio->_deferred_list)) { 3212 ds_queue->split_queue_len--; 3213 list_del_init(&folio->_deferred_list); 3214 } 3215 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3216 } 3217 3218 void deferred_split_folio(struct folio *folio) 3219 { 3220 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3221 #ifdef CONFIG_MEMCG 3222 struct mem_cgroup *memcg = folio_memcg(folio); 3223 #endif 3224 unsigned long flags; 3225 3226 /* 3227 * Order 1 folios have no space for a deferred list, but we also 3228 * won't waste much memory by not adding them to the deferred list. 3229 */ 3230 if (folio_order(folio) <= 1) 3231 return; 3232 3233 /* 3234 * The try_to_unmap() in page reclaim path might reach here too, 3235 * this may cause a race condition to corrupt deferred split queue. 3236 * And, if page reclaim is already handling the same folio, it is 3237 * unnecessary to handle it again in shrinker. 3238 * 3239 * Check the swapcache flag to determine if the folio is being 3240 * handled by page reclaim since THP swap would add the folio into 3241 * swap cache before calling try_to_unmap(). 3242 */ 3243 if (folio_test_swapcache(folio)) 3244 return; 3245 3246 if (!list_empty(&folio->_deferred_list)) 3247 return; 3248 3249 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3250 if (list_empty(&folio->_deferred_list)) { 3251 if (folio_test_pmd_mappable(folio)) 3252 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3253 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3254 ds_queue->split_queue_len++; 3255 #ifdef CONFIG_MEMCG 3256 if (memcg) 3257 set_shrinker_bit(memcg, folio_nid(folio), 3258 deferred_split_shrinker->id); 3259 #endif 3260 } 3261 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3262 } 3263 3264 static unsigned long deferred_split_count(struct shrinker *shrink, 3265 struct shrink_control *sc) 3266 { 3267 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3268 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3269 3270 #ifdef CONFIG_MEMCG 3271 if (sc->memcg) 3272 ds_queue = &sc->memcg->deferred_split_queue; 3273 #endif 3274 return READ_ONCE(ds_queue->split_queue_len); 3275 } 3276 3277 static unsigned long deferred_split_scan(struct shrinker *shrink, 3278 struct shrink_control *sc) 3279 { 3280 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3281 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3282 unsigned long flags; 3283 LIST_HEAD(list); 3284 struct folio *folio, *next; 3285 int split = 0; 3286 3287 #ifdef CONFIG_MEMCG 3288 if (sc->memcg) 3289 ds_queue = &sc->memcg->deferred_split_queue; 3290 #endif 3291 3292 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3293 /* Take pin on all head pages to avoid freeing them under us */ 3294 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3295 _deferred_list) { 3296 if (folio_try_get(folio)) { 3297 list_move(&folio->_deferred_list, &list); 3298 } else { 3299 /* We lost race with folio_put() */ 3300 list_del_init(&folio->_deferred_list); 3301 ds_queue->split_queue_len--; 3302 } 3303 if (!--sc->nr_to_scan) 3304 break; 3305 } 3306 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3307 3308 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3309 if (!folio_trylock(folio)) 3310 goto next; 3311 /* split_huge_page() removes page from list on success */ 3312 if (!split_folio(folio)) 3313 split++; 3314 folio_unlock(folio); 3315 next: 3316 folio_put(folio); 3317 } 3318 3319 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3320 list_splice_tail(&list, &ds_queue->split_queue); 3321 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3322 3323 /* 3324 * Stop shrinker if we didn't split any page, but the queue is empty. 3325 * This can happen if pages were freed under us. 3326 */ 3327 if (!split && list_empty(&ds_queue->split_queue)) 3328 return SHRINK_STOP; 3329 return split; 3330 } 3331 3332 #ifdef CONFIG_DEBUG_FS 3333 static void split_huge_pages_all(void) 3334 { 3335 struct zone *zone; 3336 struct page *page; 3337 struct folio *folio; 3338 unsigned long pfn, max_zone_pfn; 3339 unsigned long total = 0, split = 0; 3340 3341 pr_debug("Split all THPs\n"); 3342 for_each_zone(zone) { 3343 if (!managed_zone(zone)) 3344 continue; 3345 max_zone_pfn = zone_end_pfn(zone); 3346 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3347 int nr_pages; 3348 3349 page = pfn_to_online_page(pfn); 3350 if (!page || PageTail(page)) 3351 continue; 3352 folio = page_folio(page); 3353 if (!folio_try_get(folio)) 3354 continue; 3355 3356 if (unlikely(page_folio(page) != folio)) 3357 goto next; 3358 3359 if (zone != folio_zone(folio)) 3360 goto next; 3361 3362 if (!folio_test_large(folio) 3363 || folio_test_hugetlb(folio) 3364 || !folio_test_lru(folio)) 3365 goto next; 3366 3367 total++; 3368 folio_lock(folio); 3369 nr_pages = folio_nr_pages(folio); 3370 if (!split_folio(folio)) 3371 split++; 3372 pfn += nr_pages - 1; 3373 folio_unlock(folio); 3374 next: 3375 folio_put(folio); 3376 cond_resched(); 3377 } 3378 } 3379 3380 pr_debug("%lu of %lu THP split\n", split, total); 3381 } 3382 3383 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3384 { 3385 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3386 is_vm_hugetlb_page(vma); 3387 } 3388 3389 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3390 unsigned long vaddr_end, unsigned int new_order) 3391 { 3392 int ret = 0; 3393 struct task_struct *task; 3394 struct mm_struct *mm; 3395 unsigned long total = 0, split = 0; 3396 unsigned long addr; 3397 3398 vaddr_start &= PAGE_MASK; 3399 vaddr_end &= PAGE_MASK; 3400 3401 /* Find the task_struct from pid */ 3402 rcu_read_lock(); 3403 task = find_task_by_vpid(pid); 3404 if (!task) { 3405 rcu_read_unlock(); 3406 ret = -ESRCH; 3407 goto out; 3408 } 3409 get_task_struct(task); 3410 rcu_read_unlock(); 3411 3412 /* Find the mm_struct */ 3413 mm = get_task_mm(task); 3414 put_task_struct(task); 3415 3416 if (!mm) { 3417 ret = -EINVAL; 3418 goto out; 3419 } 3420 3421 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3422 pid, vaddr_start, vaddr_end); 3423 3424 mmap_read_lock(mm); 3425 /* 3426 * always increase addr by PAGE_SIZE, since we could have a PTE page 3427 * table filled with PTE-mapped THPs, each of which is distinct. 3428 */ 3429 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3430 struct vm_area_struct *vma = vma_lookup(mm, addr); 3431 struct page *page; 3432 struct folio *folio; 3433 3434 if (!vma) 3435 break; 3436 3437 /* skip special VMA and hugetlb VMA */ 3438 if (vma_not_suitable_for_thp_split(vma)) { 3439 addr = vma->vm_end; 3440 continue; 3441 } 3442 3443 /* FOLL_DUMP to ignore special (like zero) pages */ 3444 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3445 3446 if (IS_ERR_OR_NULL(page)) 3447 continue; 3448 3449 folio = page_folio(page); 3450 if (!is_transparent_hugepage(folio)) 3451 goto next; 3452 3453 if (new_order >= folio_order(folio)) 3454 goto next; 3455 3456 total++; 3457 /* 3458 * For folios with private, split_huge_page_to_list_to_order() 3459 * will try to drop it before split and then check if the folio 3460 * can be split or not. So skip the check here. 3461 */ 3462 if (!folio_test_private(folio) && 3463 !can_split_folio(folio, NULL)) 3464 goto next; 3465 3466 if (!folio_trylock(folio)) 3467 goto next; 3468 3469 if (!split_folio_to_order(folio, new_order)) 3470 split++; 3471 3472 folio_unlock(folio); 3473 next: 3474 folio_put(folio); 3475 cond_resched(); 3476 } 3477 mmap_read_unlock(mm); 3478 mmput(mm); 3479 3480 pr_debug("%lu of %lu THP split\n", split, total); 3481 3482 out: 3483 return ret; 3484 } 3485 3486 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3487 pgoff_t off_end, unsigned int new_order) 3488 { 3489 struct filename *file; 3490 struct file *candidate; 3491 struct address_space *mapping; 3492 int ret = -EINVAL; 3493 pgoff_t index; 3494 int nr_pages = 1; 3495 unsigned long total = 0, split = 0; 3496 3497 file = getname_kernel(file_path); 3498 if (IS_ERR(file)) 3499 return ret; 3500 3501 candidate = file_open_name(file, O_RDONLY, 0); 3502 if (IS_ERR(candidate)) 3503 goto out; 3504 3505 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3506 file_path, off_start, off_end); 3507 3508 mapping = candidate->f_mapping; 3509 3510 for (index = off_start; index < off_end; index += nr_pages) { 3511 struct folio *folio = filemap_get_folio(mapping, index); 3512 3513 nr_pages = 1; 3514 if (IS_ERR(folio)) 3515 continue; 3516 3517 if (!folio_test_large(folio)) 3518 goto next; 3519 3520 total++; 3521 nr_pages = folio_nr_pages(folio); 3522 3523 if (new_order >= folio_order(folio)) 3524 goto next; 3525 3526 if (!folio_trylock(folio)) 3527 goto next; 3528 3529 if (!split_folio_to_order(folio, new_order)) 3530 split++; 3531 3532 folio_unlock(folio); 3533 next: 3534 folio_put(folio); 3535 cond_resched(); 3536 } 3537 3538 filp_close(candidate, NULL); 3539 ret = 0; 3540 3541 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3542 out: 3543 putname(file); 3544 return ret; 3545 } 3546 3547 #define MAX_INPUT_BUF_SZ 255 3548 3549 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3550 size_t count, loff_t *ppops) 3551 { 3552 static DEFINE_MUTEX(split_debug_mutex); 3553 ssize_t ret; 3554 /* 3555 * hold pid, start_vaddr, end_vaddr, new_order or 3556 * file_path, off_start, off_end, new_order 3557 */ 3558 char input_buf[MAX_INPUT_BUF_SZ]; 3559 int pid; 3560 unsigned long vaddr_start, vaddr_end; 3561 unsigned int new_order = 0; 3562 3563 ret = mutex_lock_interruptible(&split_debug_mutex); 3564 if (ret) 3565 return ret; 3566 3567 ret = -EFAULT; 3568 3569 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3570 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3571 goto out; 3572 3573 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3574 3575 if (input_buf[0] == '/') { 3576 char *tok; 3577 char *buf = input_buf; 3578 char file_path[MAX_INPUT_BUF_SZ]; 3579 pgoff_t off_start = 0, off_end = 0; 3580 size_t input_len = strlen(input_buf); 3581 3582 tok = strsep(&buf, ","); 3583 if (tok) { 3584 strcpy(file_path, tok); 3585 } else { 3586 ret = -EINVAL; 3587 goto out; 3588 } 3589 3590 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 3591 if (ret != 2 && ret != 3) { 3592 ret = -EINVAL; 3593 goto out; 3594 } 3595 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 3596 if (!ret) 3597 ret = input_len; 3598 3599 goto out; 3600 } 3601 3602 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 3603 if (ret == 1 && pid == 1) { 3604 split_huge_pages_all(); 3605 ret = strlen(input_buf); 3606 goto out; 3607 } else if (ret != 3 && ret != 4) { 3608 ret = -EINVAL; 3609 goto out; 3610 } 3611 3612 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 3613 if (!ret) 3614 ret = strlen(input_buf); 3615 out: 3616 mutex_unlock(&split_debug_mutex); 3617 return ret; 3618 3619 } 3620 3621 static const struct file_operations split_huge_pages_fops = { 3622 .owner = THIS_MODULE, 3623 .write = split_huge_pages_write, 3624 .llseek = no_llseek, 3625 }; 3626 3627 static int __init split_huge_pages_debugfs(void) 3628 { 3629 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3630 &split_huge_pages_fops); 3631 return 0; 3632 } 3633 late_initcall(split_huge_pages_debugfs); 3634 #endif 3635 3636 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3637 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3638 struct page *page) 3639 { 3640 struct folio *folio = page_folio(page); 3641 struct vm_area_struct *vma = pvmw->vma; 3642 struct mm_struct *mm = vma->vm_mm; 3643 unsigned long address = pvmw->address; 3644 bool anon_exclusive; 3645 pmd_t pmdval; 3646 swp_entry_t entry; 3647 pmd_t pmdswp; 3648 3649 if (!(pvmw->pmd && !pvmw->pte)) 3650 return 0; 3651 3652 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3653 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3654 3655 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3656 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3657 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3658 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3659 return -EBUSY; 3660 } 3661 3662 if (pmd_dirty(pmdval)) 3663 folio_mark_dirty(folio); 3664 if (pmd_write(pmdval)) 3665 entry = make_writable_migration_entry(page_to_pfn(page)); 3666 else if (anon_exclusive) 3667 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3668 else 3669 entry = make_readable_migration_entry(page_to_pfn(page)); 3670 if (pmd_young(pmdval)) 3671 entry = make_migration_entry_young(entry); 3672 if (pmd_dirty(pmdval)) 3673 entry = make_migration_entry_dirty(entry); 3674 pmdswp = swp_entry_to_pmd(entry); 3675 if (pmd_soft_dirty(pmdval)) 3676 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3677 if (pmd_uffd_wp(pmdval)) 3678 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3679 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3680 folio_remove_rmap_pmd(folio, page, vma); 3681 folio_put(folio); 3682 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3683 3684 return 0; 3685 } 3686 3687 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3688 { 3689 struct folio *folio = page_folio(new); 3690 struct vm_area_struct *vma = pvmw->vma; 3691 struct mm_struct *mm = vma->vm_mm; 3692 unsigned long address = pvmw->address; 3693 unsigned long haddr = address & HPAGE_PMD_MASK; 3694 pmd_t pmde; 3695 swp_entry_t entry; 3696 3697 if (!(pvmw->pmd && !pvmw->pte)) 3698 return; 3699 3700 entry = pmd_to_swp_entry(*pvmw->pmd); 3701 folio_get(folio); 3702 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3703 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3704 pmde = pmd_mksoft_dirty(pmde); 3705 if (is_writable_migration_entry(entry)) 3706 pmde = pmd_mkwrite(pmde, vma); 3707 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3708 pmde = pmd_mkuffd_wp(pmde); 3709 if (!is_migration_entry_young(entry)) 3710 pmde = pmd_mkold(pmde); 3711 /* NOTE: this may contain setting soft-dirty on some archs */ 3712 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3713 pmde = pmd_mkdirty(pmde); 3714 3715 if (folio_test_anon(folio)) { 3716 rmap_t rmap_flags = RMAP_NONE; 3717 3718 if (!is_readable_migration_entry(entry)) 3719 rmap_flags |= RMAP_EXCLUSIVE; 3720 3721 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3722 } else { 3723 folio_add_file_rmap_pmd(folio, new, vma); 3724 } 3725 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3726 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3727 3728 /* No need to invalidate - it was non-present before */ 3729 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3730 trace_remove_migration_pmd(address, pmd_val(pmde)); 3731 } 3732 #endif 3733