1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/backing-dev.h> 21 #include <linux/dax.h> 22 #include <linux/mm_types.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/mman.h> 26 #include <linux/memremap.h> 27 #include <linux/pagemap.h> 28 #include <linux/debugfs.h> 29 #include <linux/migrate.h> 30 #include <linux/hashtable.h> 31 #include <linux/userfaultfd_k.h> 32 #include <linux/page_idle.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/oom.h> 35 #include <linux/numa.h> 36 #include <linux/page_owner.h> 37 #include <linux/sched/sysctl.h> 38 #include <linux/memory-tiers.h> 39 #include <linux/compat.h> 40 #include <linux/pgalloc_tag.h> 41 #include <linux/pagewalk.h> 42 43 #include <asm/tlb.h> 44 #include <asm/pgalloc.h> 45 #include "internal.h" 46 #include "swap.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/thp.h> 50 51 /* 52 * By default, transparent hugepage support is disabled in order to avoid 53 * risking an increased memory footprint for applications that are not 54 * guaranteed to benefit from it. When transparent hugepage support is 55 * enabled, it is for all mappings, and khugepaged scans all mappings. 56 * Defrag is invoked by khugepaged hugepage allocations and by page faults 57 * for all hugepage allocations. 58 */ 59 unsigned long transparent_hugepage_flags __read_mostly = 60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 61 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 62 #endif 63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 65 #endif 66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 69 70 static struct shrinker *deferred_split_shrinker; 71 static unsigned long deferred_split_count(struct shrinker *shrink, 72 struct shrink_control *sc); 73 static unsigned long deferred_split_scan(struct shrinker *shrink, 74 struct shrink_control *sc); 75 static bool split_underused_thp = true; 76 77 static atomic_t huge_zero_refcount; 78 struct folio *huge_zero_folio __read_mostly; 79 unsigned long huge_zero_pfn __read_mostly = ~0UL; 80 unsigned long huge_anon_orders_always __read_mostly; 81 unsigned long huge_anon_orders_madvise __read_mostly; 82 unsigned long huge_anon_orders_inherit __read_mostly; 83 static bool anon_orders_configured __initdata; 84 85 static inline bool file_thp_enabled(struct vm_area_struct *vma) 86 { 87 struct inode *inode; 88 89 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 90 return false; 91 92 if (!vma->vm_file) 93 return false; 94 95 inode = file_inode(vma->vm_file); 96 97 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); 98 } 99 100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 101 vm_flags_t vm_flags, 102 enum tva_type type, 103 unsigned long orders) 104 { 105 const bool smaps = type == TVA_SMAPS; 106 const bool in_pf = type == TVA_PAGEFAULT; 107 const bool forced_collapse = type == TVA_FORCED_COLLAPSE; 108 unsigned long supported_orders; 109 110 /* Check the intersection of requested and supported orders. */ 111 if (vma_is_anonymous(vma)) 112 supported_orders = THP_ORDERS_ALL_ANON; 113 else if (vma_is_special_huge(vma)) 114 supported_orders = THP_ORDERS_ALL_SPECIAL; 115 else 116 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 117 118 orders &= supported_orders; 119 if (!orders) 120 return 0; 121 122 if (!vma->vm_mm) /* vdso */ 123 return 0; 124 125 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags, forced_collapse)) 126 return 0; 127 128 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 129 if (vma_is_dax(vma)) 130 return in_pf ? orders : 0; 131 132 /* 133 * khugepaged special VMA and hugetlb VMA. 134 * Must be checked after dax since some dax mappings may have 135 * VM_MIXEDMAP set. 136 */ 137 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 138 return 0; 139 140 /* 141 * Check alignment for file vma and size for both file and anon vma by 142 * filtering out the unsuitable orders. 143 * 144 * Skip the check for page fault. Huge fault does the check in fault 145 * handlers. 146 */ 147 if (!in_pf) { 148 int order = highest_order(orders); 149 unsigned long addr; 150 151 while (orders) { 152 addr = vma->vm_end - (PAGE_SIZE << order); 153 if (thp_vma_suitable_order(vma, addr, order)) 154 break; 155 order = next_order(&orders, order); 156 } 157 158 if (!orders) 159 return 0; 160 } 161 162 /* 163 * Enabled via shmem mount options or sysfs settings. 164 * Must be done before hugepage flags check since shmem has its 165 * own flags. 166 */ 167 if (!in_pf && shmem_file(vma->vm_file)) 168 return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file), 169 vma, vma->vm_pgoff, 0, 170 forced_collapse); 171 172 if (!vma_is_anonymous(vma)) { 173 /* 174 * Enforce THP collapse requirements as necessary. Anonymous vmas 175 * were already handled in thp_vma_allowable_orders(). 176 */ 177 if (!forced_collapse && 178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 179 !hugepage_global_always()))) 180 return 0; 181 182 /* 183 * Trust that ->huge_fault() handlers know what they are doing 184 * in fault path. 185 */ 186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 187 return orders; 188 /* Only regular file is valid in collapse path */ 189 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 190 return orders; 191 return 0; 192 } 193 194 if (vma_is_temporary_stack(vma)) 195 return 0; 196 197 /* 198 * THPeligible bit of smaps should show 1 for proper VMAs even 199 * though anon_vma is not initialized yet. 200 * 201 * Allow page fault since anon_vma may be not initialized until 202 * the first page fault. 203 */ 204 if (!vma->anon_vma) 205 return (smaps || in_pf) ? orders : 0; 206 207 return orders; 208 } 209 210 static bool get_huge_zero_folio(void) 211 { 212 struct folio *zero_folio; 213 retry: 214 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 215 return true; 216 217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 218 HPAGE_PMD_ORDER); 219 if (!zero_folio) { 220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 221 return false; 222 } 223 /* Ensure zero folio won't have large_rmappable flag set. */ 224 folio_clear_large_rmappable(zero_folio); 225 preempt_disable(); 226 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 227 preempt_enable(); 228 folio_put(zero_folio); 229 goto retry; 230 } 231 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 232 233 /* We take additional reference here. It will be put back by shrinker */ 234 atomic_set(&huge_zero_refcount, 2); 235 preempt_enable(); 236 count_vm_event(THP_ZERO_PAGE_ALLOC); 237 return true; 238 } 239 240 static void put_huge_zero_folio(void) 241 { 242 /* 243 * Counter should never go to zero here. Only shrinker can put 244 * last reference. 245 */ 246 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 247 } 248 249 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 250 { 251 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 252 return huge_zero_folio; 253 254 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm)) 255 return READ_ONCE(huge_zero_folio); 256 257 if (!get_huge_zero_folio()) 258 return NULL; 259 260 if (mm_flags_test_and_set(MMF_HUGE_ZERO_FOLIO, mm)) 261 put_huge_zero_folio(); 262 263 return READ_ONCE(huge_zero_folio); 264 } 265 266 void mm_put_huge_zero_folio(struct mm_struct *mm) 267 { 268 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) 269 return; 270 271 if (mm_flags_test(MMF_HUGE_ZERO_FOLIO, mm)) 272 put_huge_zero_folio(); 273 } 274 275 static unsigned long shrink_huge_zero_folio_count(struct shrinker *shrink, 276 struct shrink_control *sc) 277 { 278 /* we can free zero page only if last reference remains */ 279 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 280 } 281 282 static unsigned long shrink_huge_zero_folio_scan(struct shrinker *shrink, 283 struct shrink_control *sc) 284 { 285 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 286 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 287 BUG_ON(zero_folio == NULL); 288 WRITE_ONCE(huge_zero_pfn, ~0UL); 289 folio_put(zero_folio); 290 return HPAGE_PMD_NR; 291 } 292 293 return 0; 294 } 295 296 static struct shrinker *huge_zero_folio_shrinker; 297 298 #ifdef CONFIG_SYSFS 299 static ssize_t enabled_show(struct kobject *kobj, 300 struct kobj_attribute *attr, char *buf) 301 { 302 const char *output; 303 304 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 305 output = "[always] madvise never"; 306 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 307 &transparent_hugepage_flags)) 308 output = "always [madvise] never"; 309 else 310 output = "always madvise [never]"; 311 312 return sysfs_emit(buf, "%s\n", output); 313 } 314 315 static ssize_t enabled_store(struct kobject *kobj, 316 struct kobj_attribute *attr, 317 const char *buf, size_t count) 318 { 319 ssize_t ret = count; 320 321 if (sysfs_streq(buf, "always")) { 322 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 323 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 324 } else if (sysfs_streq(buf, "madvise")) { 325 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 326 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 327 } else if (sysfs_streq(buf, "never")) { 328 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 329 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 330 } else 331 ret = -EINVAL; 332 333 if (ret > 0) { 334 int err = start_stop_khugepaged(); 335 if (err) 336 ret = err; 337 } 338 return ret; 339 } 340 341 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 342 343 ssize_t single_hugepage_flag_show(struct kobject *kobj, 344 struct kobj_attribute *attr, char *buf, 345 enum transparent_hugepage_flag flag) 346 { 347 return sysfs_emit(buf, "%d\n", 348 !!test_bit(flag, &transparent_hugepage_flags)); 349 } 350 351 ssize_t single_hugepage_flag_store(struct kobject *kobj, 352 struct kobj_attribute *attr, 353 const char *buf, size_t count, 354 enum transparent_hugepage_flag flag) 355 { 356 unsigned long value; 357 int ret; 358 359 ret = kstrtoul(buf, 10, &value); 360 if (ret < 0) 361 return ret; 362 if (value > 1) 363 return -EINVAL; 364 365 if (value) 366 set_bit(flag, &transparent_hugepage_flags); 367 else 368 clear_bit(flag, &transparent_hugepage_flags); 369 370 return count; 371 } 372 373 static ssize_t defrag_show(struct kobject *kobj, 374 struct kobj_attribute *attr, char *buf) 375 { 376 const char *output; 377 378 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 379 &transparent_hugepage_flags)) 380 output = "[always] defer defer+madvise madvise never"; 381 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 382 &transparent_hugepage_flags)) 383 output = "always [defer] defer+madvise madvise never"; 384 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 385 &transparent_hugepage_flags)) 386 output = "always defer [defer+madvise] madvise never"; 387 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 388 &transparent_hugepage_flags)) 389 output = "always defer defer+madvise [madvise] never"; 390 else 391 output = "always defer defer+madvise madvise [never]"; 392 393 return sysfs_emit(buf, "%s\n", output); 394 } 395 396 static ssize_t defrag_store(struct kobject *kobj, 397 struct kobj_attribute *attr, 398 const char *buf, size_t count) 399 { 400 if (sysfs_streq(buf, "always")) { 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 405 } else if (sysfs_streq(buf, "defer+madvise")) { 406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 410 } else if (sysfs_streq(buf, "defer")) { 411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 415 } else if (sysfs_streq(buf, "madvise")) { 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 419 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 420 } else if (sysfs_streq(buf, "never")) { 421 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 422 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 423 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 424 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 425 } else 426 return -EINVAL; 427 428 return count; 429 } 430 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 431 432 static ssize_t use_zero_page_show(struct kobject *kobj, 433 struct kobj_attribute *attr, char *buf) 434 { 435 return single_hugepage_flag_show(kobj, attr, buf, 436 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 437 } 438 static ssize_t use_zero_page_store(struct kobject *kobj, 439 struct kobj_attribute *attr, const char *buf, size_t count) 440 { 441 return single_hugepage_flag_store(kobj, attr, buf, count, 442 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 443 } 444 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 445 446 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 447 struct kobj_attribute *attr, char *buf) 448 { 449 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 450 } 451 static struct kobj_attribute hpage_pmd_size_attr = 452 __ATTR_RO(hpage_pmd_size); 453 454 static ssize_t split_underused_thp_show(struct kobject *kobj, 455 struct kobj_attribute *attr, char *buf) 456 { 457 return sysfs_emit(buf, "%d\n", split_underused_thp); 458 } 459 460 static ssize_t split_underused_thp_store(struct kobject *kobj, 461 struct kobj_attribute *attr, 462 const char *buf, size_t count) 463 { 464 int err = kstrtobool(buf, &split_underused_thp); 465 466 if (err < 0) 467 return err; 468 469 return count; 470 } 471 472 static struct kobj_attribute split_underused_thp_attr = __ATTR( 473 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); 474 475 static struct attribute *hugepage_attr[] = { 476 &enabled_attr.attr, 477 &defrag_attr.attr, 478 &use_zero_page_attr.attr, 479 &hpage_pmd_size_attr.attr, 480 #ifdef CONFIG_SHMEM 481 &shmem_enabled_attr.attr, 482 #endif 483 &split_underused_thp_attr.attr, 484 NULL, 485 }; 486 487 static const struct attribute_group hugepage_attr_group = { 488 .attrs = hugepage_attr, 489 }; 490 491 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 492 static void thpsize_release(struct kobject *kobj); 493 static DEFINE_SPINLOCK(huge_anon_orders_lock); 494 static LIST_HEAD(thpsize_list); 495 496 static ssize_t anon_enabled_show(struct kobject *kobj, 497 struct kobj_attribute *attr, char *buf) 498 { 499 int order = to_thpsize(kobj)->order; 500 const char *output; 501 502 if (test_bit(order, &huge_anon_orders_always)) 503 output = "[always] inherit madvise never"; 504 else if (test_bit(order, &huge_anon_orders_inherit)) 505 output = "always [inherit] madvise never"; 506 else if (test_bit(order, &huge_anon_orders_madvise)) 507 output = "always inherit [madvise] never"; 508 else 509 output = "always inherit madvise [never]"; 510 511 return sysfs_emit(buf, "%s\n", output); 512 } 513 514 static ssize_t anon_enabled_store(struct kobject *kobj, 515 struct kobj_attribute *attr, 516 const char *buf, size_t count) 517 { 518 int order = to_thpsize(kobj)->order; 519 ssize_t ret = count; 520 521 if (sysfs_streq(buf, "always")) { 522 spin_lock(&huge_anon_orders_lock); 523 clear_bit(order, &huge_anon_orders_inherit); 524 clear_bit(order, &huge_anon_orders_madvise); 525 set_bit(order, &huge_anon_orders_always); 526 spin_unlock(&huge_anon_orders_lock); 527 } else if (sysfs_streq(buf, "inherit")) { 528 spin_lock(&huge_anon_orders_lock); 529 clear_bit(order, &huge_anon_orders_always); 530 clear_bit(order, &huge_anon_orders_madvise); 531 set_bit(order, &huge_anon_orders_inherit); 532 spin_unlock(&huge_anon_orders_lock); 533 } else if (sysfs_streq(buf, "madvise")) { 534 spin_lock(&huge_anon_orders_lock); 535 clear_bit(order, &huge_anon_orders_always); 536 clear_bit(order, &huge_anon_orders_inherit); 537 set_bit(order, &huge_anon_orders_madvise); 538 spin_unlock(&huge_anon_orders_lock); 539 } else if (sysfs_streq(buf, "never")) { 540 spin_lock(&huge_anon_orders_lock); 541 clear_bit(order, &huge_anon_orders_always); 542 clear_bit(order, &huge_anon_orders_inherit); 543 clear_bit(order, &huge_anon_orders_madvise); 544 spin_unlock(&huge_anon_orders_lock); 545 } else 546 ret = -EINVAL; 547 548 if (ret > 0) { 549 int err; 550 551 err = start_stop_khugepaged(); 552 if (err) 553 ret = err; 554 } 555 return ret; 556 } 557 558 static struct kobj_attribute anon_enabled_attr = 559 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); 560 561 static struct attribute *anon_ctrl_attrs[] = { 562 &anon_enabled_attr.attr, 563 NULL, 564 }; 565 566 static const struct attribute_group anon_ctrl_attr_grp = { 567 .attrs = anon_ctrl_attrs, 568 }; 569 570 static struct attribute *file_ctrl_attrs[] = { 571 #ifdef CONFIG_SHMEM 572 &thpsize_shmem_enabled_attr.attr, 573 #endif 574 NULL, 575 }; 576 577 static const struct attribute_group file_ctrl_attr_grp = { 578 .attrs = file_ctrl_attrs, 579 }; 580 581 static struct attribute *any_ctrl_attrs[] = { 582 NULL, 583 }; 584 585 static const struct attribute_group any_ctrl_attr_grp = { 586 .attrs = any_ctrl_attrs, 587 }; 588 589 static const struct kobj_type thpsize_ktype = { 590 .release = &thpsize_release, 591 .sysfs_ops = &kobj_sysfs_ops, 592 }; 593 594 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 595 596 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 597 { 598 unsigned long sum = 0; 599 int cpu; 600 601 for_each_possible_cpu(cpu) { 602 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 603 604 sum += this->stats[order][item]; 605 } 606 607 return sum; 608 } 609 610 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 611 static ssize_t _name##_show(struct kobject *kobj, \ 612 struct kobj_attribute *attr, char *buf) \ 613 { \ 614 int order = to_thpsize(kobj)->order; \ 615 \ 616 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 617 } \ 618 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 619 620 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 621 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 622 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 623 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT); 624 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN); 625 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK); 626 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 627 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 628 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 629 #ifdef CONFIG_SHMEM 630 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 631 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 632 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 633 #endif 634 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 635 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 636 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 637 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); 638 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); 639 640 static struct attribute *anon_stats_attrs[] = { 641 &anon_fault_alloc_attr.attr, 642 &anon_fault_fallback_attr.attr, 643 &anon_fault_fallback_charge_attr.attr, 644 #ifndef CONFIG_SHMEM 645 &zswpout_attr.attr, 646 &swpin_attr.attr, 647 &swpin_fallback_attr.attr, 648 &swpin_fallback_charge_attr.attr, 649 &swpout_attr.attr, 650 &swpout_fallback_attr.attr, 651 #endif 652 &split_deferred_attr.attr, 653 &nr_anon_attr.attr, 654 &nr_anon_partially_mapped_attr.attr, 655 NULL, 656 }; 657 658 static struct attribute_group anon_stats_attr_grp = { 659 .name = "stats", 660 .attrs = anon_stats_attrs, 661 }; 662 663 static struct attribute *file_stats_attrs[] = { 664 #ifdef CONFIG_SHMEM 665 &shmem_alloc_attr.attr, 666 &shmem_fallback_attr.attr, 667 &shmem_fallback_charge_attr.attr, 668 #endif 669 NULL, 670 }; 671 672 static struct attribute_group file_stats_attr_grp = { 673 .name = "stats", 674 .attrs = file_stats_attrs, 675 }; 676 677 static struct attribute *any_stats_attrs[] = { 678 #ifdef CONFIG_SHMEM 679 &zswpout_attr.attr, 680 &swpin_attr.attr, 681 &swpin_fallback_attr.attr, 682 &swpin_fallback_charge_attr.attr, 683 &swpout_attr.attr, 684 &swpout_fallback_attr.attr, 685 #endif 686 &split_attr.attr, 687 &split_failed_attr.attr, 688 NULL, 689 }; 690 691 static struct attribute_group any_stats_attr_grp = { 692 .name = "stats", 693 .attrs = any_stats_attrs, 694 }; 695 696 static int sysfs_add_group(struct kobject *kobj, 697 const struct attribute_group *grp) 698 { 699 int ret = -ENOENT; 700 701 /* 702 * If the group is named, try to merge first, assuming the subdirectory 703 * was already created. This avoids the warning emitted by 704 * sysfs_create_group() if the directory already exists. 705 */ 706 if (grp->name) 707 ret = sysfs_merge_group(kobj, grp); 708 if (ret) 709 ret = sysfs_create_group(kobj, grp); 710 711 return ret; 712 } 713 714 static struct thpsize *thpsize_create(int order, struct kobject *parent) 715 { 716 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 717 struct thpsize *thpsize; 718 int ret = -ENOMEM; 719 720 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 721 if (!thpsize) 722 goto err; 723 724 thpsize->order = order; 725 726 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 727 "hugepages-%lukB", size); 728 if (ret) { 729 kfree(thpsize); 730 goto err; 731 } 732 733 734 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); 735 if (ret) 736 goto err_put; 737 738 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); 739 if (ret) 740 goto err_put; 741 742 if (BIT(order) & THP_ORDERS_ALL_ANON) { 743 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); 744 if (ret) 745 goto err_put; 746 747 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); 748 if (ret) 749 goto err_put; 750 } 751 752 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { 753 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); 754 if (ret) 755 goto err_put; 756 757 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); 758 if (ret) 759 goto err_put; 760 } 761 762 return thpsize; 763 err_put: 764 kobject_put(&thpsize->kobj); 765 err: 766 return ERR_PTR(ret); 767 } 768 769 static void thpsize_release(struct kobject *kobj) 770 { 771 kfree(to_thpsize(kobj)); 772 } 773 774 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 775 { 776 int err; 777 struct thpsize *thpsize; 778 unsigned long orders; 779 int order; 780 781 /* 782 * Default to setting PMD-sized THP to inherit the global setting and 783 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 784 * constant so we have to do this here. 785 */ 786 if (!anon_orders_configured) 787 huge_anon_orders_inherit = BIT(PMD_ORDER); 788 789 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 790 if (unlikely(!*hugepage_kobj)) { 791 pr_err("failed to create transparent hugepage kobject\n"); 792 return -ENOMEM; 793 } 794 795 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 796 if (err) { 797 pr_err("failed to register transparent hugepage group\n"); 798 goto delete_obj; 799 } 800 801 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 802 if (err) { 803 pr_err("failed to register transparent hugepage group\n"); 804 goto remove_hp_group; 805 } 806 807 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; 808 order = highest_order(orders); 809 while (orders) { 810 thpsize = thpsize_create(order, *hugepage_kobj); 811 if (IS_ERR(thpsize)) { 812 pr_err("failed to create thpsize for order %d\n", order); 813 err = PTR_ERR(thpsize); 814 goto remove_all; 815 } 816 list_add(&thpsize->node, &thpsize_list); 817 order = next_order(&orders, order); 818 } 819 820 return 0; 821 822 remove_all: 823 hugepage_exit_sysfs(*hugepage_kobj); 824 return err; 825 remove_hp_group: 826 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 827 delete_obj: 828 kobject_put(*hugepage_kobj); 829 return err; 830 } 831 832 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 833 { 834 struct thpsize *thpsize, *tmp; 835 836 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 837 list_del(&thpsize->node); 838 kobject_put(&thpsize->kobj); 839 } 840 841 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 842 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 843 kobject_put(hugepage_kobj); 844 } 845 #else 846 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 847 { 848 return 0; 849 } 850 851 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 852 { 853 } 854 #endif /* CONFIG_SYSFS */ 855 856 static int __init thp_shrinker_init(void) 857 { 858 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 859 SHRINKER_MEMCG_AWARE | 860 SHRINKER_NONSLAB, 861 "thp-deferred_split"); 862 if (!deferred_split_shrinker) 863 return -ENOMEM; 864 865 deferred_split_shrinker->count_objects = deferred_split_count; 866 deferred_split_shrinker->scan_objects = deferred_split_scan; 867 shrinker_register(deferred_split_shrinker); 868 869 if (IS_ENABLED(CONFIG_PERSISTENT_HUGE_ZERO_FOLIO)) { 870 /* 871 * Bump the reference of the huge_zero_folio and do not 872 * initialize the shrinker. 873 * 874 * huge_zero_folio will always be NULL on failure. We assume 875 * that get_huge_zero_folio() will most likely not fail as 876 * thp_shrinker_init() is invoked early on during boot. 877 */ 878 if (!get_huge_zero_folio()) 879 pr_warn("Allocating persistent huge zero folio failed\n"); 880 return 0; 881 } 882 883 huge_zero_folio_shrinker = shrinker_alloc(0, "thp-zero"); 884 if (!huge_zero_folio_shrinker) { 885 shrinker_free(deferred_split_shrinker); 886 return -ENOMEM; 887 } 888 889 huge_zero_folio_shrinker->count_objects = shrink_huge_zero_folio_count; 890 huge_zero_folio_shrinker->scan_objects = shrink_huge_zero_folio_scan; 891 shrinker_register(huge_zero_folio_shrinker); 892 893 return 0; 894 } 895 896 static void __init thp_shrinker_exit(void) 897 { 898 shrinker_free(huge_zero_folio_shrinker); 899 shrinker_free(deferred_split_shrinker); 900 } 901 902 static int __init hugepage_init(void) 903 { 904 int err; 905 struct kobject *hugepage_kobj; 906 907 if (!has_transparent_hugepage()) { 908 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 909 return -EINVAL; 910 } 911 912 /* 913 * hugepages can't be allocated by the buddy allocator 914 */ 915 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 916 917 err = hugepage_init_sysfs(&hugepage_kobj); 918 if (err) 919 goto err_sysfs; 920 921 err = khugepaged_init(); 922 if (err) 923 goto err_slab; 924 925 err = thp_shrinker_init(); 926 if (err) 927 goto err_shrinker; 928 929 /* 930 * By default disable transparent hugepages on smaller systems, 931 * where the extra memory used could hurt more than TLB overhead 932 * is likely to save. The admin can still enable it through /sys. 933 */ 934 if (totalram_pages() < MB_TO_PAGES(512)) { 935 transparent_hugepage_flags = 0; 936 return 0; 937 } 938 939 err = start_stop_khugepaged(); 940 if (err) 941 goto err_khugepaged; 942 943 return 0; 944 err_khugepaged: 945 thp_shrinker_exit(); 946 err_shrinker: 947 khugepaged_destroy(); 948 err_slab: 949 hugepage_exit_sysfs(hugepage_kobj); 950 err_sysfs: 951 return err; 952 } 953 subsys_initcall(hugepage_init); 954 955 static int __init setup_transparent_hugepage(char *str) 956 { 957 int ret = 0; 958 if (!str) 959 goto out; 960 if (!strcmp(str, "always")) { 961 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 962 &transparent_hugepage_flags); 963 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 964 &transparent_hugepage_flags); 965 ret = 1; 966 } else if (!strcmp(str, "madvise")) { 967 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 968 &transparent_hugepage_flags); 969 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 970 &transparent_hugepage_flags); 971 ret = 1; 972 } else if (!strcmp(str, "never")) { 973 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 974 &transparent_hugepage_flags); 975 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 976 &transparent_hugepage_flags); 977 ret = 1; 978 } 979 out: 980 if (!ret) 981 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 982 return ret; 983 } 984 __setup("transparent_hugepage=", setup_transparent_hugepage); 985 986 static char str_dup[PAGE_SIZE] __initdata; 987 static int __init setup_thp_anon(char *str) 988 { 989 char *token, *range, *policy, *subtoken; 990 unsigned long always, inherit, madvise; 991 char *start_size, *end_size; 992 int start, end, nr; 993 char *p; 994 995 if (!str || strlen(str) + 1 > PAGE_SIZE) 996 goto err; 997 strscpy(str_dup, str); 998 999 always = huge_anon_orders_always; 1000 madvise = huge_anon_orders_madvise; 1001 inherit = huge_anon_orders_inherit; 1002 p = str_dup; 1003 while ((token = strsep(&p, ";")) != NULL) { 1004 range = strsep(&token, ":"); 1005 policy = token; 1006 1007 if (!policy) 1008 goto err; 1009 1010 while ((subtoken = strsep(&range, ",")) != NULL) { 1011 if (strchr(subtoken, '-')) { 1012 start_size = strsep(&subtoken, "-"); 1013 end_size = subtoken; 1014 1015 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON); 1016 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON); 1017 } else { 1018 start_size = end_size = subtoken; 1019 start = end = get_order_from_str(subtoken, 1020 THP_ORDERS_ALL_ANON); 1021 } 1022 1023 if (start == -EINVAL) { 1024 pr_err("invalid size %s in thp_anon boot parameter\n", start_size); 1025 goto err; 1026 } 1027 1028 if (end == -EINVAL) { 1029 pr_err("invalid size %s in thp_anon boot parameter\n", end_size); 1030 goto err; 1031 } 1032 1033 if (start < 0 || end < 0 || start > end) 1034 goto err; 1035 1036 nr = end - start + 1; 1037 if (!strcmp(policy, "always")) { 1038 bitmap_set(&always, start, nr); 1039 bitmap_clear(&inherit, start, nr); 1040 bitmap_clear(&madvise, start, nr); 1041 } else if (!strcmp(policy, "madvise")) { 1042 bitmap_set(&madvise, start, nr); 1043 bitmap_clear(&inherit, start, nr); 1044 bitmap_clear(&always, start, nr); 1045 } else if (!strcmp(policy, "inherit")) { 1046 bitmap_set(&inherit, start, nr); 1047 bitmap_clear(&madvise, start, nr); 1048 bitmap_clear(&always, start, nr); 1049 } else if (!strcmp(policy, "never")) { 1050 bitmap_clear(&inherit, start, nr); 1051 bitmap_clear(&madvise, start, nr); 1052 bitmap_clear(&always, start, nr); 1053 } else { 1054 pr_err("invalid policy %s in thp_anon boot parameter\n", policy); 1055 goto err; 1056 } 1057 } 1058 } 1059 1060 huge_anon_orders_always = always; 1061 huge_anon_orders_madvise = madvise; 1062 huge_anon_orders_inherit = inherit; 1063 anon_orders_configured = true; 1064 return 1; 1065 1066 err: 1067 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); 1068 return 0; 1069 } 1070 __setup("thp_anon=", setup_thp_anon); 1071 1072 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 1073 { 1074 if (likely(vma->vm_flags & VM_WRITE)) 1075 pmd = pmd_mkwrite(pmd, vma); 1076 return pmd; 1077 } 1078 1079 #ifdef CONFIG_MEMCG 1080 static inline 1081 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1082 { 1083 struct mem_cgroup *memcg = folio_memcg(folio); 1084 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1085 1086 if (memcg) 1087 return &memcg->deferred_split_queue; 1088 else 1089 return &pgdat->deferred_split_queue; 1090 } 1091 #else 1092 static inline 1093 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1094 { 1095 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1096 1097 return &pgdat->deferred_split_queue; 1098 } 1099 #endif 1100 1101 static inline bool is_transparent_hugepage(const struct folio *folio) 1102 { 1103 if (!folio_test_large(folio)) 1104 return false; 1105 1106 return is_huge_zero_folio(folio) || 1107 folio_test_large_rmappable(folio); 1108 } 1109 1110 static unsigned long __thp_get_unmapped_area(struct file *filp, 1111 unsigned long addr, unsigned long len, 1112 loff_t off, unsigned long flags, unsigned long size, 1113 vm_flags_t vm_flags) 1114 { 1115 loff_t off_end = off + len; 1116 loff_t off_align = round_up(off, size); 1117 unsigned long len_pad, ret, off_sub; 1118 1119 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 1120 return 0; 1121 1122 if (off_end <= off_align || (off_end - off_align) < size) 1123 return 0; 1124 1125 len_pad = len + size; 1126 if (len_pad < len || (off + len_pad) < off) 1127 return 0; 1128 1129 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 1130 off >> PAGE_SHIFT, flags, vm_flags); 1131 1132 /* 1133 * The failure might be due to length padding. The caller will retry 1134 * without the padding. 1135 */ 1136 if (IS_ERR_VALUE(ret)) 1137 return 0; 1138 1139 /* 1140 * Do not try to align to THP boundary if allocation at the address 1141 * hint succeeds. 1142 */ 1143 if (ret == addr) 1144 return addr; 1145 1146 off_sub = (off - ret) & (size - 1); 1147 1148 if (mm_flags_test(MMF_TOPDOWN, current->mm) && !off_sub) 1149 return ret + size; 1150 1151 ret += off_sub; 1152 return ret; 1153 } 1154 1155 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 1156 unsigned long len, unsigned long pgoff, unsigned long flags, 1157 vm_flags_t vm_flags) 1158 { 1159 unsigned long ret; 1160 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 1161 1162 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 1163 if (ret) 1164 return ret; 1165 1166 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 1167 vm_flags); 1168 } 1169 1170 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 1171 unsigned long len, unsigned long pgoff, unsigned long flags) 1172 { 1173 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 1174 } 1175 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 1176 1177 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, 1178 unsigned long addr) 1179 { 1180 gfp_t gfp = vma_thp_gfp_mask(vma); 1181 const int order = HPAGE_PMD_ORDER; 1182 struct folio *folio; 1183 1184 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); 1185 1186 if (unlikely(!folio)) { 1187 count_vm_event(THP_FAULT_FALLBACK); 1188 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1189 return NULL; 1190 } 1191 1192 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1193 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 1194 folio_put(folio); 1195 count_vm_event(THP_FAULT_FALLBACK); 1196 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 1197 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1198 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 1199 return NULL; 1200 } 1201 folio_throttle_swaprate(folio, gfp); 1202 1203 /* 1204 * When a folio is not zeroed during allocation (__GFP_ZERO not used) 1205 * or user folios require special handling, folio_zero_user() is used to 1206 * make sure that the page corresponding to the faulting address will be 1207 * hot in the cache after zeroing. 1208 */ 1209 if (user_alloc_needs_zeroing()) 1210 folio_zero_user(folio, addr); 1211 /* 1212 * The memory barrier inside __folio_mark_uptodate makes sure that 1213 * folio_zero_user writes become visible before the set_pmd_at() 1214 * write. 1215 */ 1216 __folio_mark_uptodate(folio); 1217 return folio; 1218 } 1219 1220 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd, 1221 struct vm_area_struct *vma, unsigned long haddr) 1222 { 1223 pmd_t entry; 1224 1225 entry = folio_mk_pmd(folio, vma->vm_page_prot); 1226 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1227 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1228 folio_add_lru_vma(folio, vma); 1229 set_pmd_at(vma->vm_mm, haddr, pmd, entry); 1230 update_mmu_cache_pmd(vma, haddr, pmd); 1231 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1232 count_vm_event(THP_FAULT_ALLOC); 1233 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1234 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1235 } 1236 1237 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1238 { 1239 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1240 struct vm_area_struct *vma = vmf->vma; 1241 struct folio *folio; 1242 pgtable_t pgtable; 1243 vm_fault_t ret = 0; 1244 1245 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1246 if (unlikely(!folio)) 1247 return VM_FAULT_FALLBACK; 1248 1249 pgtable = pte_alloc_one(vma->vm_mm); 1250 if (unlikely(!pgtable)) { 1251 ret = VM_FAULT_OOM; 1252 goto release; 1253 } 1254 1255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1256 if (unlikely(!pmd_none(*vmf->pmd))) { 1257 goto unlock_release; 1258 } else { 1259 ret = check_stable_address_space(vma->vm_mm); 1260 if (ret) 1261 goto unlock_release; 1262 1263 /* Deliver the page fault to userland */ 1264 if (userfaultfd_missing(vma)) { 1265 spin_unlock(vmf->ptl); 1266 folio_put(folio); 1267 pte_free(vma->vm_mm, pgtable); 1268 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1269 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1270 return ret; 1271 } 1272 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1273 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1274 mm_inc_nr_ptes(vma->vm_mm); 1275 deferred_split_folio(folio, false); 1276 spin_unlock(vmf->ptl); 1277 } 1278 1279 return 0; 1280 unlock_release: 1281 spin_unlock(vmf->ptl); 1282 release: 1283 if (pgtable) 1284 pte_free(vma->vm_mm, pgtable); 1285 folio_put(folio); 1286 return ret; 1287 1288 } 1289 1290 /* 1291 * always: directly stall for all thp allocations 1292 * defer: wake kswapd and fail if not immediately available 1293 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1294 * fail if not immediately available 1295 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1296 * available 1297 * never: never stall for any thp allocation 1298 */ 1299 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1300 { 1301 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1302 1303 /* Always do synchronous compaction */ 1304 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1305 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1306 1307 /* Kick kcompactd and fail quickly */ 1308 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1309 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1310 1311 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1312 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1313 return GFP_TRANSHUGE_LIGHT | 1314 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1315 __GFP_KSWAPD_RECLAIM); 1316 1317 /* Only do synchronous compaction if madvised */ 1318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1319 return GFP_TRANSHUGE_LIGHT | 1320 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1321 1322 return GFP_TRANSHUGE_LIGHT; 1323 } 1324 1325 /* Caller must hold page table lock. */ 1326 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1327 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1328 struct folio *zero_folio) 1329 { 1330 pmd_t entry; 1331 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot); 1332 entry = pmd_mkspecial(entry); 1333 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1334 set_pmd_at(mm, haddr, pmd, entry); 1335 mm_inc_nr_ptes(mm); 1336 } 1337 1338 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1339 { 1340 struct vm_area_struct *vma = vmf->vma; 1341 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1342 vm_fault_t ret; 1343 1344 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1345 return VM_FAULT_FALLBACK; 1346 ret = vmf_anon_prepare(vmf); 1347 if (ret) 1348 return ret; 1349 khugepaged_enter_vma(vma, vma->vm_flags); 1350 1351 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1352 !mm_forbids_zeropage(vma->vm_mm) && 1353 transparent_hugepage_use_zero_page()) { 1354 pgtable_t pgtable; 1355 struct folio *zero_folio; 1356 vm_fault_t ret; 1357 1358 pgtable = pte_alloc_one(vma->vm_mm); 1359 if (unlikely(!pgtable)) 1360 return VM_FAULT_OOM; 1361 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1362 if (unlikely(!zero_folio)) { 1363 pte_free(vma->vm_mm, pgtable); 1364 count_vm_event(THP_FAULT_FALLBACK); 1365 return VM_FAULT_FALLBACK; 1366 } 1367 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1368 ret = 0; 1369 if (pmd_none(*vmf->pmd)) { 1370 ret = check_stable_address_space(vma->vm_mm); 1371 if (ret) { 1372 spin_unlock(vmf->ptl); 1373 pte_free(vma->vm_mm, pgtable); 1374 } else if (userfaultfd_missing(vma)) { 1375 spin_unlock(vmf->ptl); 1376 pte_free(vma->vm_mm, pgtable); 1377 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1378 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1379 } else { 1380 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1381 haddr, vmf->pmd, zero_folio); 1382 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1383 spin_unlock(vmf->ptl); 1384 } 1385 } else { 1386 spin_unlock(vmf->ptl); 1387 pte_free(vma->vm_mm, pgtable); 1388 } 1389 return ret; 1390 } 1391 1392 return __do_huge_pmd_anonymous_page(vmf); 1393 } 1394 1395 struct folio_or_pfn { 1396 union { 1397 struct folio *folio; 1398 unsigned long pfn; 1399 }; 1400 bool is_folio; 1401 }; 1402 1403 static vm_fault_t insert_pmd(struct vm_area_struct *vma, unsigned long addr, 1404 pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot, 1405 bool write) 1406 { 1407 struct mm_struct *mm = vma->vm_mm; 1408 pgtable_t pgtable = NULL; 1409 spinlock_t *ptl; 1410 pmd_t entry; 1411 1412 if (addr < vma->vm_start || addr >= vma->vm_end) 1413 return VM_FAULT_SIGBUS; 1414 1415 if (arch_needs_pgtable_deposit()) { 1416 pgtable = pte_alloc_one(vma->vm_mm); 1417 if (!pgtable) 1418 return VM_FAULT_OOM; 1419 } 1420 1421 ptl = pmd_lock(mm, pmd); 1422 if (!pmd_none(*pmd)) { 1423 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) : 1424 fop.pfn; 1425 1426 if (write) { 1427 if (pmd_pfn(*pmd) != pfn) { 1428 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1429 goto out_unlock; 1430 } 1431 entry = pmd_mkyoung(*pmd); 1432 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1433 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1434 update_mmu_cache_pmd(vma, addr, pmd); 1435 } 1436 goto out_unlock; 1437 } 1438 1439 if (fop.is_folio) { 1440 entry = folio_mk_pmd(fop.folio, vma->vm_page_prot); 1441 1442 if (is_huge_zero_folio(fop.folio)) { 1443 entry = pmd_mkspecial(entry); 1444 } else { 1445 folio_get(fop.folio); 1446 folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma); 1447 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR); 1448 } 1449 } else { 1450 entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot)); 1451 entry = pmd_mkspecial(entry); 1452 } 1453 if (write) { 1454 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1455 entry = maybe_pmd_mkwrite(entry, vma); 1456 } 1457 1458 if (pgtable) { 1459 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1460 mm_inc_nr_ptes(mm); 1461 pgtable = NULL; 1462 } 1463 1464 set_pmd_at(mm, addr, pmd, entry); 1465 update_mmu_cache_pmd(vma, addr, pmd); 1466 1467 out_unlock: 1468 spin_unlock(ptl); 1469 if (pgtable) 1470 pte_free(mm, pgtable); 1471 return VM_FAULT_NOPAGE; 1472 } 1473 1474 /** 1475 * vmf_insert_pfn_pmd - insert a pmd size pfn 1476 * @vmf: Structure describing the fault 1477 * @pfn: pfn to insert 1478 * @write: whether it's a write fault 1479 * 1480 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1481 * 1482 * Return: vm_fault_t value. 1483 */ 1484 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn, 1485 bool write) 1486 { 1487 unsigned long addr = vmf->address & PMD_MASK; 1488 struct vm_area_struct *vma = vmf->vma; 1489 pgprot_t pgprot = vma->vm_page_prot; 1490 struct folio_or_pfn fop = { 1491 .pfn = pfn, 1492 }; 1493 1494 /* 1495 * If we had pmd_special, we could avoid all these restrictions, 1496 * but we need to be consistent with PTEs and architectures that 1497 * can't support a 'special' bit. 1498 */ 1499 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1500 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1501 (VM_PFNMAP|VM_MIXEDMAP)); 1502 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1503 1504 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 1505 1506 return insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write); 1507 } 1508 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1509 1510 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio, 1511 bool write) 1512 { 1513 struct vm_area_struct *vma = vmf->vma; 1514 unsigned long addr = vmf->address & PMD_MASK; 1515 struct folio_or_pfn fop = { 1516 .folio = folio, 1517 .is_folio = true, 1518 }; 1519 1520 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER)) 1521 return VM_FAULT_SIGBUS; 1522 1523 return insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot, write); 1524 } 1525 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd); 1526 1527 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1528 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1529 { 1530 if (likely(vma->vm_flags & VM_WRITE)) 1531 pud = pud_mkwrite(pud); 1532 return pud; 1533 } 1534 1535 static vm_fault_t insert_pud(struct vm_area_struct *vma, unsigned long addr, 1536 pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write) 1537 { 1538 struct mm_struct *mm = vma->vm_mm; 1539 spinlock_t *ptl; 1540 pud_t entry; 1541 1542 if (addr < vma->vm_start || addr >= vma->vm_end) 1543 return VM_FAULT_SIGBUS; 1544 1545 ptl = pud_lock(mm, pud); 1546 if (!pud_none(*pud)) { 1547 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) : 1548 fop.pfn; 1549 1550 if (write) { 1551 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn)) 1552 goto out_unlock; 1553 entry = pud_mkyoung(*pud); 1554 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1555 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1556 update_mmu_cache_pud(vma, addr, pud); 1557 } 1558 goto out_unlock; 1559 } 1560 1561 if (fop.is_folio) { 1562 entry = folio_mk_pud(fop.folio, vma->vm_page_prot); 1563 1564 folio_get(fop.folio); 1565 folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma); 1566 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR); 1567 } else { 1568 entry = pud_mkhuge(pfn_pud(fop.pfn, prot)); 1569 entry = pud_mkspecial(entry); 1570 } 1571 if (write) { 1572 entry = pud_mkyoung(pud_mkdirty(entry)); 1573 entry = maybe_pud_mkwrite(entry, vma); 1574 } 1575 set_pud_at(mm, addr, pud, entry); 1576 update_mmu_cache_pud(vma, addr, pud); 1577 out_unlock: 1578 spin_unlock(ptl); 1579 return VM_FAULT_NOPAGE; 1580 } 1581 1582 /** 1583 * vmf_insert_pfn_pud - insert a pud size pfn 1584 * @vmf: Structure describing the fault 1585 * @pfn: pfn to insert 1586 * @write: whether it's a write fault 1587 * 1588 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1589 * 1590 * Return: vm_fault_t value. 1591 */ 1592 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn, 1593 bool write) 1594 { 1595 unsigned long addr = vmf->address & PUD_MASK; 1596 struct vm_area_struct *vma = vmf->vma; 1597 pgprot_t pgprot = vma->vm_page_prot; 1598 struct folio_or_pfn fop = { 1599 .pfn = pfn, 1600 }; 1601 1602 /* 1603 * If we had pud_special, we could avoid all these restrictions, 1604 * but we need to be consistent with PTEs and architectures that 1605 * can't support a 'special' bit. 1606 */ 1607 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1608 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1609 (VM_PFNMAP|VM_MIXEDMAP)); 1610 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1611 1612 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 1613 1614 return insert_pud(vma, addr, vmf->pud, fop, pgprot, write); 1615 } 1616 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1617 1618 /** 1619 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry 1620 * @vmf: Structure describing the fault 1621 * @folio: folio to insert 1622 * @write: whether it's a write fault 1623 * 1624 * Return: vm_fault_t value. 1625 */ 1626 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio, 1627 bool write) 1628 { 1629 struct vm_area_struct *vma = vmf->vma; 1630 unsigned long addr = vmf->address & PUD_MASK; 1631 struct folio_or_pfn fop = { 1632 .folio = folio, 1633 .is_folio = true, 1634 }; 1635 1636 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER)) 1637 return VM_FAULT_SIGBUS; 1638 1639 return insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write); 1640 } 1641 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud); 1642 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1643 1644 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1645 pmd_t *pmd, bool write) 1646 { 1647 pmd_t _pmd; 1648 1649 _pmd = pmd_mkyoung(*pmd); 1650 if (write) 1651 _pmd = pmd_mkdirty(_pmd); 1652 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1653 pmd, _pmd, write)) 1654 update_mmu_cache_pmd(vma, addr, pmd); 1655 } 1656 1657 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1658 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1659 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1660 { 1661 spinlock_t *dst_ptl, *src_ptl; 1662 struct page *src_page; 1663 struct folio *src_folio; 1664 pmd_t pmd; 1665 pgtable_t pgtable = NULL; 1666 int ret = -ENOMEM; 1667 1668 pmd = pmdp_get_lockless(src_pmd); 1669 if (unlikely(pmd_present(pmd) && pmd_special(pmd) && 1670 !is_huge_zero_pmd(pmd))) { 1671 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1672 src_ptl = pmd_lockptr(src_mm, src_pmd); 1673 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1674 /* 1675 * No need to recheck the pmd, it can't change with write 1676 * mmap lock held here. 1677 * 1678 * Meanwhile, making sure it's not a CoW VMA with writable 1679 * mapping, otherwise it means either the anon page wrongly 1680 * applied special bit, or we made the PRIVATE mapping be 1681 * able to wrongly write to the backend MMIO. 1682 */ 1683 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); 1684 goto set_pmd; 1685 } 1686 1687 /* Skip if can be re-fill on fault */ 1688 if (!vma_is_anonymous(dst_vma)) 1689 return 0; 1690 1691 pgtable = pte_alloc_one(dst_mm); 1692 if (unlikely(!pgtable)) 1693 goto out; 1694 1695 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1696 src_ptl = pmd_lockptr(src_mm, src_pmd); 1697 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1698 1699 ret = -EAGAIN; 1700 pmd = *src_pmd; 1701 1702 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1703 if (unlikely(is_swap_pmd(pmd))) { 1704 swp_entry_t entry = pmd_to_swp_entry(pmd); 1705 1706 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1707 if (!is_readable_migration_entry(entry)) { 1708 entry = make_readable_migration_entry( 1709 swp_offset(entry)); 1710 pmd = swp_entry_to_pmd(entry); 1711 if (pmd_swp_soft_dirty(*src_pmd)) 1712 pmd = pmd_swp_mksoft_dirty(pmd); 1713 if (pmd_swp_uffd_wp(*src_pmd)) 1714 pmd = pmd_swp_mkuffd_wp(pmd); 1715 set_pmd_at(src_mm, addr, src_pmd, pmd); 1716 } 1717 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1718 mm_inc_nr_ptes(dst_mm); 1719 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1720 if (!userfaultfd_wp(dst_vma)) 1721 pmd = pmd_swp_clear_uffd_wp(pmd); 1722 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1723 ret = 0; 1724 goto out_unlock; 1725 } 1726 #endif 1727 1728 if (unlikely(!pmd_trans_huge(pmd))) { 1729 pte_free(dst_mm, pgtable); 1730 goto out_unlock; 1731 } 1732 /* 1733 * When page table lock is held, the huge zero pmd should not be 1734 * under splitting since we don't split the page itself, only pmd to 1735 * a page table. 1736 */ 1737 if (is_huge_zero_pmd(pmd)) { 1738 /* 1739 * mm_get_huge_zero_folio() will never allocate a new 1740 * folio here, since we already have a zero page to 1741 * copy. It just takes a reference. 1742 */ 1743 mm_get_huge_zero_folio(dst_mm); 1744 goto out_zero_page; 1745 } 1746 1747 src_page = pmd_page(pmd); 1748 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1749 src_folio = page_folio(src_page); 1750 1751 folio_get(src_folio); 1752 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) { 1753 /* Page maybe pinned: split and retry the fault on PTEs. */ 1754 folio_put(src_folio); 1755 pte_free(dst_mm, pgtable); 1756 spin_unlock(src_ptl); 1757 spin_unlock(dst_ptl); 1758 __split_huge_pmd(src_vma, src_pmd, addr, false); 1759 return -EAGAIN; 1760 } 1761 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1762 out_zero_page: 1763 mm_inc_nr_ptes(dst_mm); 1764 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1765 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1766 if (!userfaultfd_wp(dst_vma)) 1767 pmd = pmd_clear_uffd_wp(pmd); 1768 pmd = pmd_wrprotect(pmd); 1769 set_pmd: 1770 pmd = pmd_mkold(pmd); 1771 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1772 1773 ret = 0; 1774 out_unlock: 1775 spin_unlock(src_ptl); 1776 spin_unlock(dst_ptl); 1777 out: 1778 return ret; 1779 } 1780 1781 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1782 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1783 pud_t *pud, bool write) 1784 { 1785 pud_t _pud; 1786 1787 _pud = pud_mkyoung(*pud); 1788 if (write) 1789 _pud = pud_mkdirty(_pud); 1790 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1791 pud, _pud, write)) 1792 update_mmu_cache_pud(vma, addr, pud); 1793 } 1794 1795 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1796 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1797 struct vm_area_struct *vma) 1798 { 1799 spinlock_t *dst_ptl, *src_ptl; 1800 pud_t pud; 1801 int ret; 1802 1803 dst_ptl = pud_lock(dst_mm, dst_pud); 1804 src_ptl = pud_lockptr(src_mm, src_pud); 1805 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1806 1807 ret = -EAGAIN; 1808 pud = *src_pud; 1809 if (unlikely(!pud_trans_huge(pud))) 1810 goto out_unlock; 1811 1812 /* 1813 * TODO: once we support anonymous pages, use 1814 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1815 */ 1816 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { 1817 pudp_set_wrprotect(src_mm, addr, src_pud); 1818 pud = pud_wrprotect(pud); 1819 } 1820 pud = pud_mkold(pud); 1821 set_pud_at(dst_mm, addr, dst_pud, pud); 1822 1823 ret = 0; 1824 out_unlock: 1825 spin_unlock(src_ptl); 1826 spin_unlock(dst_ptl); 1827 return ret; 1828 } 1829 1830 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1831 { 1832 bool write = vmf->flags & FAULT_FLAG_WRITE; 1833 1834 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1835 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1836 goto unlock; 1837 1838 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1839 unlock: 1840 spin_unlock(vmf->ptl); 1841 } 1842 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1843 1844 void huge_pmd_set_accessed(struct vm_fault *vmf) 1845 { 1846 bool write = vmf->flags & FAULT_FLAG_WRITE; 1847 1848 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1849 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1850 goto unlock; 1851 1852 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1853 1854 unlock: 1855 spin_unlock(vmf->ptl); 1856 } 1857 1858 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) 1859 { 1860 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1861 struct vm_area_struct *vma = vmf->vma; 1862 struct mmu_notifier_range range; 1863 struct folio *folio; 1864 vm_fault_t ret = 0; 1865 1866 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1867 if (unlikely(!folio)) 1868 return VM_FAULT_FALLBACK; 1869 1870 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, 1871 haddr + HPAGE_PMD_SIZE); 1872 mmu_notifier_invalidate_range_start(&range); 1873 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1874 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) 1875 goto release; 1876 ret = check_stable_address_space(vma->vm_mm); 1877 if (ret) 1878 goto release; 1879 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); 1880 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1881 goto unlock; 1882 release: 1883 folio_put(folio); 1884 unlock: 1885 spin_unlock(vmf->ptl); 1886 mmu_notifier_invalidate_range_end(&range); 1887 return ret; 1888 } 1889 1890 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1891 { 1892 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1893 struct vm_area_struct *vma = vmf->vma; 1894 struct folio *folio; 1895 struct page *page; 1896 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1897 pmd_t orig_pmd = vmf->orig_pmd; 1898 1899 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1900 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1901 1902 if (is_huge_zero_pmd(orig_pmd)) { 1903 vm_fault_t ret = do_huge_zero_wp_pmd(vmf); 1904 1905 if (!(ret & VM_FAULT_FALLBACK)) 1906 return ret; 1907 1908 /* Fallback to splitting PMD if THP cannot be allocated */ 1909 goto fallback; 1910 } 1911 1912 spin_lock(vmf->ptl); 1913 1914 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1915 spin_unlock(vmf->ptl); 1916 return 0; 1917 } 1918 1919 page = pmd_page(orig_pmd); 1920 folio = page_folio(page); 1921 VM_BUG_ON_PAGE(!PageHead(page), page); 1922 1923 /* Early check when only holding the PT lock. */ 1924 if (PageAnonExclusive(page)) 1925 goto reuse; 1926 1927 if (!folio_trylock(folio)) { 1928 folio_get(folio); 1929 spin_unlock(vmf->ptl); 1930 folio_lock(folio); 1931 spin_lock(vmf->ptl); 1932 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1933 spin_unlock(vmf->ptl); 1934 folio_unlock(folio); 1935 folio_put(folio); 1936 return 0; 1937 } 1938 folio_put(folio); 1939 } 1940 1941 /* Recheck after temporarily dropping the PT lock. */ 1942 if (PageAnonExclusive(page)) { 1943 folio_unlock(folio); 1944 goto reuse; 1945 } 1946 1947 /* 1948 * See do_wp_page(): we can only reuse the folio exclusively if 1949 * there are no additional references. Note that we always drain 1950 * the LRU cache immediately after adding a THP. 1951 */ 1952 if (folio_ref_count(folio) > 1953 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1954 goto unlock_fallback; 1955 if (folio_test_swapcache(folio)) 1956 folio_free_swap(folio); 1957 if (folio_ref_count(folio) == 1) { 1958 pmd_t entry; 1959 1960 folio_move_anon_rmap(folio, vma); 1961 SetPageAnonExclusive(page); 1962 folio_unlock(folio); 1963 reuse: 1964 if (unlikely(unshare)) { 1965 spin_unlock(vmf->ptl); 1966 return 0; 1967 } 1968 entry = pmd_mkyoung(orig_pmd); 1969 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1970 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1971 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1972 spin_unlock(vmf->ptl); 1973 return 0; 1974 } 1975 1976 unlock_fallback: 1977 folio_unlock(folio); 1978 spin_unlock(vmf->ptl); 1979 fallback: 1980 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 1981 return VM_FAULT_FALLBACK; 1982 } 1983 1984 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1985 unsigned long addr, pmd_t pmd) 1986 { 1987 struct page *page; 1988 1989 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1990 return false; 1991 1992 /* Don't touch entries that are not even readable (NUMA hinting). */ 1993 if (pmd_protnone(pmd)) 1994 return false; 1995 1996 /* Do we need write faults for softdirty tracking? */ 1997 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1998 return false; 1999 2000 /* Do we need write faults for uffd-wp tracking? */ 2001 if (userfaultfd_huge_pmd_wp(vma, pmd)) 2002 return false; 2003 2004 if (!(vma->vm_flags & VM_SHARED)) { 2005 /* See can_change_pte_writable(). */ 2006 page = vm_normal_page_pmd(vma, addr, pmd); 2007 return page && PageAnon(page) && PageAnonExclusive(page); 2008 } 2009 2010 /* See can_change_pte_writable(). */ 2011 return pmd_dirty(pmd); 2012 } 2013 2014 /* NUMA hinting page fault entry point for trans huge pmds */ 2015 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 2016 { 2017 struct vm_area_struct *vma = vmf->vma; 2018 struct folio *folio; 2019 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2020 int nid = NUMA_NO_NODE; 2021 int target_nid, last_cpupid; 2022 pmd_t pmd, old_pmd; 2023 bool writable = false; 2024 int flags = 0; 2025 2026 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2027 old_pmd = pmdp_get(vmf->pmd); 2028 2029 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { 2030 spin_unlock(vmf->ptl); 2031 return 0; 2032 } 2033 2034 pmd = pmd_modify(old_pmd, vma->vm_page_prot); 2035 2036 /* 2037 * Detect now whether the PMD could be writable; this information 2038 * is only valid while holding the PT lock. 2039 */ 2040 writable = pmd_write(pmd); 2041 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 2042 can_change_pmd_writable(vma, vmf->address, pmd)) 2043 writable = true; 2044 2045 folio = vm_normal_folio_pmd(vma, haddr, pmd); 2046 if (!folio) 2047 goto out_map; 2048 2049 nid = folio_nid(folio); 2050 2051 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, 2052 &last_cpupid); 2053 if (target_nid == NUMA_NO_NODE) 2054 goto out_map; 2055 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 2056 flags |= TNF_MIGRATE_FAIL; 2057 goto out_map; 2058 } 2059 /* The folio is isolated and isolation code holds a folio reference. */ 2060 spin_unlock(vmf->ptl); 2061 writable = false; 2062 2063 if (!migrate_misplaced_folio(folio, target_nid)) { 2064 flags |= TNF_MIGRATED; 2065 nid = target_nid; 2066 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2067 return 0; 2068 } 2069 2070 flags |= TNF_MIGRATE_FAIL; 2071 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2072 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { 2073 spin_unlock(vmf->ptl); 2074 return 0; 2075 } 2076 out_map: 2077 /* Restore the PMD */ 2078 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); 2079 pmd = pmd_mkyoung(pmd); 2080 if (writable) 2081 pmd = pmd_mkwrite(pmd, vma); 2082 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 2083 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2084 spin_unlock(vmf->ptl); 2085 2086 if (nid != NUMA_NO_NODE) 2087 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2088 return 0; 2089 } 2090 2091 /* 2092 * Return true if we do MADV_FREE successfully on entire pmd page. 2093 * Otherwise, return false. 2094 */ 2095 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2096 pmd_t *pmd, unsigned long addr, unsigned long next) 2097 { 2098 spinlock_t *ptl; 2099 pmd_t orig_pmd; 2100 struct folio *folio; 2101 struct mm_struct *mm = tlb->mm; 2102 bool ret = false; 2103 2104 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2105 2106 ptl = pmd_trans_huge_lock(pmd, vma); 2107 if (!ptl) 2108 goto out_unlocked; 2109 2110 orig_pmd = *pmd; 2111 if (is_huge_zero_pmd(orig_pmd)) 2112 goto out; 2113 2114 if (unlikely(!pmd_present(orig_pmd))) { 2115 VM_BUG_ON(thp_migration_supported() && 2116 !is_pmd_migration_entry(orig_pmd)); 2117 goto out; 2118 } 2119 2120 folio = pmd_folio(orig_pmd); 2121 /* 2122 * If other processes are mapping this folio, we couldn't discard 2123 * the folio unless they all do MADV_FREE so let's skip the folio. 2124 */ 2125 if (folio_maybe_mapped_shared(folio)) 2126 goto out; 2127 2128 if (!folio_trylock(folio)) 2129 goto out; 2130 2131 /* 2132 * If user want to discard part-pages of THP, split it so MADV_FREE 2133 * will deactivate only them. 2134 */ 2135 if (next - addr != HPAGE_PMD_SIZE) { 2136 folio_get(folio); 2137 spin_unlock(ptl); 2138 split_folio(folio); 2139 folio_unlock(folio); 2140 folio_put(folio); 2141 goto out_unlocked; 2142 } 2143 2144 if (folio_test_dirty(folio)) 2145 folio_clear_dirty(folio); 2146 folio_unlock(folio); 2147 2148 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 2149 pmdp_invalidate(vma, addr, pmd); 2150 orig_pmd = pmd_mkold(orig_pmd); 2151 orig_pmd = pmd_mkclean(orig_pmd); 2152 2153 set_pmd_at(mm, addr, pmd, orig_pmd); 2154 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2155 } 2156 2157 folio_mark_lazyfree(folio); 2158 ret = true; 2159 out: 2160 spin_unlock(ptl); 2161 out_unlocked: 2162 return ret; 2163 } 2164 2165 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 2166 { 2167 pgtable_t pgtable; 2168 2169 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2170 pte_free(mm, pgtable); 2171 mm_dec_nr_ptes(mm); 2172 } 2173 2174 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2175 pmd_t *pmd, unsigned long addr) 2176 { 2177 pmd_t orig_pmd; 2178 spinlock_t *ptl; 2179 2180 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2181 2182 ptl = __pmd_trans_huge_lock(pmd, vma); 2183 if (!ptl) 2184 return 0; 2185 /* 2186 * For architectures like ppc64 we look at deposited pgtable 2187 * when calling pmdp_huge_get_and_clear. So do the 2188 * pgtable_trans_huge_withdraw after finishing pmdp related 2189 * operations. 2190 */ 2191 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 2192 tlb->fullmm); 2193 arch_check_zapped_pmd(vma, orig_pmd); 2194 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2195 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2196 if (arch_needs_pgtable_deposit()) 2197 zap_deposited_table(tlb->mm, pmd); 2198 spin_unlock(ptl); 2199 } else if (is_huge_zero_pmd(orig_pmd)) { 2200 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit()) 2201 zap_deposited_table(tlb->mm, pmd); 2202 spin_unlock(ptl); 2203 } else { 2204 struct folio *folio = NULL; 2205 int flush_needed = 1; 2206 2207 if (pmd_present(orig_pmd)) { 2208 struct page *page = pmd_page(orig_pmd); 2209 2210 folio = page_folio(page); 2211 folio_remove_rmap_pmd(folio, page, vma); 2212 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2213 VM_BUG_ON_PAGE(!PageHead(page), page); 2214 } else if (thp_migration_supported()) { 2215 swp_entry_t entry; 2216 2217 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 2218 entry = pmd_to_swp_entry(orig_pmd); 2219 folio = pfn_swap_entry_folio(entry); 2220 flush_needed = 0; 2221 } else 2222 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 2223 2224 if (folio_test_anon(folio)) { 2225 zap_deposited_table(tlb->mm, pmd); 2226 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2227 } else { 2228 if (arch_needs_pgtable_deposit()) 2229 zap_deposited_table(tlb->mm, pmd); 2230 add_mm_counter(tlb->mm, mm_counter_file(folio), 2231 -HPAGE_PMD_NR); 2232 2233 /* 2234 * Use flush_needed to indicate whether the PMD entry 2235 * is present, instead of checking pmd_present() again. 2236 */ 2237 if (flush_needed && pmd_young(orig_pmd) && 2238 likely(vma_has_recency(vma))) 2239 folio_mark_accessed(folio); 2240 } 2241 2242 spin_unlock(ptl); 2243 if (flush_needed) 2244 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 2245 } 2246 return 1; 2247 } 2248 2249 #ifndef pmd_move_must_withdraw 2250 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 2251 spinlock_t *old_pmd_ptl, 2252 struct vm_area_struct *vma) 2253 { 2254 /* 2255 * With split pmd lock we also need to move preallocated 2256 * PTE page table if new_pmd is on different PMD page table. 2257 * 2258 * We also don't deposit and withdraw tables for file pages. 2259 */ 2260 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 2261 } 2262 #endif 2263 2264 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 2265 { 2266 #ifdef CONFIG_MEM_SOFT_DIRTY 2267 if (unlikely(is_pmd_migration_entry(pmd))) 2268 pmd = pmd_swp_mksoft_dirty(pmd); 2269 else if (pmd_present(pmd)) 2270 pmd = pmd_mksoft_dirty(pmd); 2271 #endif 2272 return pmd; 2273 } 2274 2275 static pmd_t clear_uffd_wp_pmd(pmd_t pmd) 2276 { 2277 if (pmd_present(pmd)) 2278 pmd = pmd_clear_uffd_wp(pmd); 2279 else if (is_swap_pmd(pmd)) 2280 pmd = pmd_swp_clear_uffd_wp(pmd); 2281 2282 return pmd; 2283 } 2284 2285 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 2286 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 2287 { 2288 spinlock_t *old_ptl, *new_ptl; 2289 pmd_t pmd; 2290 struct mm_struct *mm = vma->vm_mm; 2291 bool force_flush = false; 2292 2293 /* 2294 * The destination pmd shouldn't be established, free_pgtables() 2295 * should have released it; but move_page_tables() might have already 2296 * inserted a page table, if racing against shmem/file collapse. 2297 */ 2298 if (!pmd_none(*new_pmd)) { 2299 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 2300 return false; 2301 } 2302 2303 /* 2304 * We don't have to worry about the ordering of src and dst 2305 * ptlocks because exclusive mmap_lock prevents deadlock. 2306 */ 2307 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 2308 if (old_ptl) { 2309 new_ptl = pmd_lockptr(mm, new_pmd); 2310 if (new_ptl != old_ptl) 2311 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2312 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2313 if (pmd_present(pmd)) 2314 force_flush = true; 2315 VM_BUG_ON(!pmd_none(*new_pmd)); 2316 2317 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2318 pgtable_t pgtable; 2319 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2320 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2321 } 2322 pmd = move_soft_dirty_pmd(pmd); 2323 if (vma_has_uffd_without_event_remap(vma)) 2324 pmd = clear_uffd_wp_pmd(pmd); 2325 set_pmd_at(mm, new_addr, new_pmd, pmd); 2326 if (force_flush) 2327 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2328 if (new_ptl != old_ptl) 2329 spin_unlock(new_ptl); 2330 spin_unlock(old_ptl); 2331 return true; 2332 } 2333 return false; 2334 } 2335 2336 /* 2337 * Returns 2338 * - 0 if PMD could not be locked 2339 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2340 * or if prot_numa but THP migration is not supported 2341 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2342 */ 2343 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2344 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2345 unsigned long cp_flags) 2346 { 2347 struct mm_struct *mm = vma->vm_mm; 2348 spinlock_t *ptl; 2349 pmd_t oldpmd, entry; 2350 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2351 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2352 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2353 int ret = 1; 2354 2355 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2356 2357 if (prot_numa && !thp_migration_supported()) 2358 return 1; 2359 2360 ptl = __pmd_trans_huge_lock(pmd, vma); 2361 if (!ptl) 2362 return 0; 2363 2364 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2365 if (is_swap_pmd(*pmd)) { 2366 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2367 struct folio *folio = pfn_swap_entry_folio(entry); 2368 pmd_t newpmd; 2369 2370 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2371 if (is_writable_migration_entry(entry)) { 2372 /* 2373 * A protection check is difficult so 2374 * just be safe and disable write 2375 */ 2376 if (folio_test_anon(folio)) 2377 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2378 else 2379 entry = make_readable_migration_entry(swp_offset(entry)); 2380 newpmd = swp_entry_to_pmd(entry); 2381 if (pmd_swp_soft_dirty(*pmd)) 2382 newpmd = pmd_swp_mksoft_dirty(newpmd); 2383 } else { 2384 newpmd = *pmd; 2385 } 2386 2387 if (uffd_wp) 2388 newpmd = pmd_swp_mkuffd_wp(newpmd); 2389 else if (uffd_wp_resolve) 2390 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2391 if (!pmd_same(*pmd, newpmd)) 2392 set_pmd_at(mm, addr, pmd, newpmd); 2393 goto unlock; 2394 } 2395 #endif 2396 2397 if (prot_numa) { 2398 struct folio *folio; 2399 bool toptier; 2400 /* 2401 * Avoid trapping faults against the zero page. The read-only 2402 * data is likely to be read-cached on the local CPU and 2403 * local/remote hits to the zero page are not interesting. 2404 */ 2405 if (is_huge_zero_pmd(*pmd)) 2406 goto unlock; 2407 2408 if (pmd_protnone(*pmd)) 2409 goto unlock; 2410 2411 folio = pmd_folio(*pmd); 2412 toptier = node_is_toptier(folio_nid(folio)); 2413 /* 2414 * Skip scanning top tier node if normal numa 2415 * balancing is disabled 2416 */ 2417 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2418 toptier) 2419 goto unlock; 2420 2421 if (folio_use_access_time(folio)) 2422 folio_xchg_access_time(folio, 2423 jiffies_to_msecs(jiffies)); 2424 } 2425 /* 2426 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2427 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2428 * which is also under mmap_read_lock(mm): 2429 * 2430 * CPU0: CPU1: 2431 * change_huge_pmd(prot_numa=1) 2432 * pmdp_huge_get_and_clear_notify() 2433 * madvise_dontneed() 2434 * zap_pmd_range() 2435 * pmd_trans_huge(*pmd) == 0 (without ptl) 2436 * // skip the pmd 2437 * set_pmd_at(); 2438 * // pmd is re-established 2439 * 2440 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2441 * which may break userspace. 2442 * 2443 * pmdp_invalidate_ad() is required to make sure we don't miss 2444 * dirty/young flags set by hardware. 2445 */ 2446 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2447 2448 entry = pmd_modify(oldpmd, newprot); 2449 if (uffd_wp) 2450 entry = pmd_mkuffd_wp(entry); 2451 else if (uffd_wp_resolve) 2452 /* 2453 * Leave the write bit to be handled by PF interrupt 2454 * handler, then things like COW could be properly 2455 * handled. 2456 */ 2457 entry = pmd_clear_uffd_wp(entry); 2458 2459 /* See change_pte_range(). */ 2460 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2461 can_change_pmd_writable(vma, addr, entry)) 2462 entry = pmd_mkwrite(entry, vma); 2463 2464 ret = HPAGE_PMD_NR; 2465 set_pmd_at(mm, addr, pmd, entry); 2466 2467 if (huge_pmd_needs_flush(oldpmd, entry)) 2468 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2469 unlock: 2470 spin_unlock(ptl); 2471 return ret; 2472 } 2473 2474 /* 2475 * Returns: 2476 * 2477 * - 0: if pud leaf changed from under us 2478 * - 1: if pud can be skipped 2479 * - HPAGE_PUD_NR: if pud was successfully processed 2480 */ 2481 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2482 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2483 pud_t *pudp, unsigned long addr, pgprot_t newprot, 2484 unsigned long cp_flags) 2485 { 2486 struct mm_struct *mm = vma->vm_mm; 2487 pud_t oldpud, entry; 2488 spinlock_t *ptl; 2489 2490 tlb_change_page_size(tlb, HPAGE_PUD_SIZE); 2491 2492 /* NUMA balancing doesn't apply to dax */ 2493 if (cp_flags & MM_CP_PROT_NUMA) 2494 return 1; 2495 2496 /* 2497 * Huge entries on userfault-wp only works with anonymous, while we 2498 * don't have anonymous PUDs yet. 2499 */ 2500 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) 2501 return 1; 2502 2503 ptl = __pud_trans_huge_lock(pudp, vma); 2504 if (!ptl) 2505 return 0; 2506 2507 /* 2508 * Can't clear PUD or it can race with concurrent zapping. See 2509 * change_huge_pmd(). 2510 */ 2511 oldpud = pudp_invalidate(vma, addr, pudp); 2512 entry = pud_modify(oldpud, newprot); 2513 set_pud_at(mm, addr, pudp, entry); 2514 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); 2515 2516 spin_unlock(ptl); 2517 return HPAGE_PUD_NR; 2518 } 2519 #endif 2520 2521 #ifdef CONFIG_USERFAULTFD 2522 /* 2523 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2524 * the caller, but it must return after releasing the page_table_lock. 2525 * Just move the page from src_pmd to dst_pmd if possible. 2526 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2527 * repeated by the caller, or other errors in case of failure. 2528 */ 2529 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2530 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2531 unsigned long dst_addr, unsigned long src_addr) 2532 { 2533 pmd_t _dst_pmd, src_pmdval; 2534 struct page *src_page; 2535 struct folio *src_folio; 2536 struct anon_vma *src_anon_vma; 2537 spinlock_t *src_ptl, *dst_ptl; 2538 pgtable_t src_pgtable; 2539 struct mmu_notifier_range range; 2540 int err = 0; 2541 2542 src_pmdval = *src_pmd; 2543 src_ptl = pmd_lockptr(mm, src_pmd); 2544 2545 lockdep_assert_held(src_ptl); 2546 vma_assert_locked(src_vma); 2547 vma_assert_locked(dst_vma); 2548 2549 /* Sanity checks before the operation */ 2550 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2551 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2552 spin_unlock(src_ptl); 2553 return -EINVAL; 2554 } 2555 2556 if (!pmd_trans_huge(src_pmdval)) { 2557 spin_unlock(src_ptl); 2558 if (is_pmd_migration_entry(src_pmdval)) { 2559 pmd_migration_entry_wait(mm, &src_pmdval); 2560 return -EAGAIN; 2561 } 2562 return -ENOENT; 2563 } 2564 2565 src_page = pmd_page(src_pmdval); 2566 2567 if (!is_huge_zero_pmd(src_pmdval)) { 2568 if (unlikely(!PageAnonExclusive(src_page))) { 2569 spin_unlock(src_ptl); 2570 return -EBUSY; 2571 } 2572 2573 src_folio = page_folio(src_page); 2574 folio_get(src_folio); 2575 } else 2576 src_folio = NULL; 2577 2578 spin_unlock(src_ptl); 2579 2580 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2581 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2582 src_addr + HPAGE_PMD_SIZE); 2583 mmu_notifier_invalidate_range_start(&range); 2584 2585 if (src_folio) { 2586 folio_lock(src_folio); 2587 2588 /* 2589 * split_huge_page walks the anon_vma chain without the page 2590 * lock. Serialize against it with the anon_vma lock, the page 2591 * lock is not enough. 2592 */ 2593 src_anon_vma = folio_get_anon_vma(src_folio); 2594 if (!src_anon_vma) { 2595 err = -EAGAIN; 2596 goto unlock_folio; 2597 } 2598 anon_vma_lock_write(src_anon_vma); 2599 } else 2600 src_anon_vma = NULL; 2601 2602 dst_ptl = pmd_lockptr(mm, dst_pmd); 2603 double_pt_lock(src_ptl, dst_ptl); 2604 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2605 !pmd_same(*dst_pmd, dst_pmdval))) { 2606 err = -EAGAIN; 2607 goto unlock_ptls; 2608 } 2609 if (src_folio) { 2610 if (folio_maybe_dma_pinned(src_folio) || 2611 !PageAnonExclusive(&src_folio->page)) { 2612 err = -EBUSY; 2613 goto unlock_ptls; 2614 } 2615 2616 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2617 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2618 err = -EBUSY; 2619 goto unlock_ptls; 2620 } 2621 2622 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2623 /* Folio got pinned from under us. Put it back and fail the move. */ 2624 if (folio_maybe_dma_pinned(src_folio)) { 2625 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2626 err = -EBUSY; 2627 goto unlock_ptls; 2628 } 2629 2630 folio_move_anon_rmap(src_folio, dst_vma); 2631 src_folio->index = linear_page_index(dst_vma, dst_addr); 2632 2633 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2634 /* Follow mremap() behavior and treat the entry dirty after the move */ 2635 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2636 } else { 2637 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2638 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot); 2639 } 2640 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2641 2642 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2643 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2644 unlock_ptls: 2645 double_pt_unlock(src_ptl, dst_ptl); 2646 if (src_anon_vma) { 2647 anon_vma_unlock_write(src_anon_vma); 2648 put_anon_vma(src_anon_vma); 2649 } 2650 unlock_folio: 2651 /* unblock rmap walks */ 2652 if (src_folio) 2653 folio_unlock(src_folio); 2654 mmu_notifier_invalidate_range_end(&range); 2655 if (src_folio) 2656 folio_put(src_folio); 2657 return err; 2658 } 2659 #endif /* CONFIG_USERFAULTFD */ 2660 2661 /* 2662 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2663 * 2664 * Note that if it returns page table lock pointer, this routine returns without 2665 * unlocking page table lock. So callers must unlock it. 2666 */ 2667 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2668 { 2669 spinlock_t *ptl; 2670 ptl = pmd_lock(vma->vm_mm, pmd); 2671 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd))) 2672 return ptl; 2673 spin_unlock(ptl); 2674 return NULL; 2675 } 2676 2677 /* 2678 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2679 * 2680 * Note that if it returns page table lock pointer, this routine returns without 2681 * unlocking page table lock. So callers must unlock it. 2682 */ 2683 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2684 { 2685 spinlock_t *ptl; 2686 2687 ptl = pud_lock(vma->vm_mm, pud); 2688 if (likely(pud_trans_huge(*pud))) 2689 return ptl; 2690 spin_unlock(ptl); 2691 return NULL; 2692 } 2693 2694 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2695 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2696 pud_t *pud, unsigned long addr) 2697 { 2698 spinlock_t *ptl; 2699 pud_t orig_pud; 2700 2701 ptl = __pud_trans_huge_lock(pud, vma); 2702 if (!ptl) 2703 return 0; 2704 2705 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2706 arch_check_zapped_pud(vma, orig_pud); 2707 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2708 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) { 2709 spin_unlock(ptl); 2710 /* No zero page support yet */ 2711 } else { 2712 struct page *page = NULL; 2713 struct folio *folio; 2714 2715 /* No support for anonymous PUD pages or migration yet */ 2716 VM_WARN_ON_ONCE(vma_is_anonymous(vma) || 2717 !pud_present(orig_pud)); 2718 2719 page = pud_page(orig_pud); 2720 folio = page_folio(page); 2721 folio_remove_rmap_pud(folio, page, vma); 2722 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR); 2723 2724 spin_unlock(ptl); 2725 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE); 2726 } 2727 return 1; 2728 } 2729 2730 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2731 unsigned long haddr) 2732 { 2733 struct folio *folio; 2734 struct page *page; 2735 pud_t old_pud; 2736 2737 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2738 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2739 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2740 VM_BUG_ON(!pud_trans_huge(*pud)); 2741 2742 count_vm_event(THP_SPLIT_PUD); 2743 2744 old_pud = pudp_huge_clear_flush(vma, haddr, pud); 2745 2746 if (!vma_is_dax(vma)) 2747 return; 2748 2749 page = pud_page(old_pud); 2750 folio = page_folio(page); 2751 2752 if (!folio_test_dirty(folio) && pud_dirty(old_pud)) 2753 folio_mark_dirty(folio); 2754 if (!folio_test_referenced(folio) && pud_young(old_pud)) 2755 folio_set_referenced(folio); 2756 folio_remove_rmap_pud(folio, page, vma); 2757 folio_put(folio); 2758 add_mm_counter(vma->vm_mm, mm_counter_file(folio), 2759 -HPAGE_PUD_NR); 2760 } 2761 2762 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2763 unsigned long address) 2764 { 2765 spinlock_t *ptl; 2766 struct mmu_notifier_range range; 2767 2768 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2769 address & HPAGE_PUD_MASK, 2770 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2771 mmu_notifier_invalidate_range_start(&range); 2772 ptl = pud_lock(vma->vm_mm, pud); 2773 if (unlikely(!pud_trans_huge(*pud))) 2774 goto out; 2775 __split_huge_pud_locked(vma, pud, range.start); 2776 2777 out: 2778 spin_unlock(ptl); 2779 mmu_notifier_invalidate_range_end(&range); 2780 } 2781 #else 2782 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2783 unsigned long address) 2784 { 2785 } 2786 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2787 2788 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2789 unsigned long haddr, pmd_t *pmd) 2790 { 2791 struct mm_struct *mm = vma->vm_mm; 2792 pgtable_t pgtable; 2793 pmd_t _pmd, old_pmd; 2794 unsigned long addr; 2795 pte_t *pte; 2796 int i; 2797 2798 /* 2799 * Leave pmd empty until pte is filled note that it is fine to delay 2800 * notification until mmu_notifier_invalidate_range_end() as we are 2801 * replacing a zero pmd write protected page with a zero pte write 2802 * protected page. 2803 * 2804 * See Documentation/mm/mmu_notifier.rst 2805 */ 2806 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2807 2808 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2809 pmd_populate(mm, &_pmd, pgtable); 2810 2811 pte = pte_offset_map(&_pmd, haddr); 2812 VM_BUG_ON(!pte); 2813 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2814 pte_t entry; 2815 2816 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2817 entry = pte_mkspecial(entry); 2818 if (pmd_uffd_wp(old_pmd)) 2819 entry = pte_mkuffd_wp(entry); 2820 VM_BUG_ON(!pte_none(ptep_get(pte))); 2821 set_pte_at(mm, addr, pte, entry); 2822 pte++; 2823 } 2824 pte_unmap(pte - 1); 2825 smp_wmb(); /* make pte visible before pmd */ 2826 pmd_populate(mm, pmd, pgtable); 2827 } 2828 2829 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2830 unsigned long haddr, bool freeze) 2831 { 2832 struct mm_struct *mm = vma->vm_mm; 2833 struct folio *folio; 2834 struct page *page; 2835 pgtable_t pgtable; 2836 pmd_t old_pmd, _pmd; 2837 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2838 bool anon_exclusive = false, dirty = false; 2839 unsigned long addr; 2840 pte_t *pte; 2841 int i; 2842 2843 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2844 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2845 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2846 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)); 2847 2848 count_vm_event(THP_SPLIT_PMD); 2849 2850 if (!vma_is_anonymous(vma)) { 2851 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2852 /* 2853 * We are going to unmap this huge page. So 2854 * just go ahead and zap it 2855 */ 2856 if (arch_needs_pgtable_deposit()) 2857 zap_deposited_table(mm, pmd); 2858 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) 2859 return; 2860 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2861 swp_entry_t entry; 2862 2863 entry = pmd_to_swp_entry(old_pmd); 2864 folio = pfn_swap_entry_folio(entry); 2865 } else if (is_huge_zero_pmd(old_pmd)) { 2866 return; 2867 } else { 2868 page = pmd_page(old_pmd); 2869 folio = page_folio(page); 2870 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2871 folio_mark_dirty(folio); 2872 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2873 folio_set_referenced(folio); 2874 folio_remove_rmap_pmd(folio, page, vma); 2875 folio_put(folio); 2876 } 2877 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2878 return; 2879 } 2880 2881 if (is_huge_zero_pmd(*pmd)) { 2882 /* 2883 * FIXME: Do we want to invalidate secondary mmu by calling 2884 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2885 * inside __split_huge_pmd() ? 2886 * 2887 * We are going from a zero huge page write protected to zero 2888 * small page also write protected so it does not seems useful 2889 * to invalidate secondary mmu at this time. 2890 */ 2891 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2892 } 2893 2894 pmd_migration = is_pmd_migration_entry(*pmd); 2895 if (unlikely(pmd_migration)) { 2896 swp_entry_t entry; 2897 2898 old_pmd = *pmd; 2899 entry = pmd_to_swp_entry(old_pmd); 2900 page = pfn_swap_entry_to_page(entry); 2901 write = is_writable_migration_entry(entry); 2902 if (PageAnon(page)) 2903 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2904 young = is_migration_entry_young(entry); 2905 dirty = is_migration_entry_dirty(entry); 2906 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2907 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2908 } else { 2909 /* 2910 * Up to this point the pmd is present and huge and userland has 2911 * the whole access to the hugepage during the split (which 2912 * happens in place). If we overwrite the pmd with the not-huge 2913 * version pointing to the pte here (which of course we could if 2914 * all CPUs were bug free), userland could trigger a small page 2915 * size TLB miss on the small sized TLB while the hugepage TLB 2916 * entry is still established in the huge TLB. Some CPU doesn't 2917 * like that. See 2918 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2919 * 383 on page 105. Intel should be safe but is also warns that 2920 * it's only safe if the permission and cache attributes of the 2921 * two entries loaded in the two TLB is identical (which should 2922 * be the case here). But it is generally safer to never allow 2923 * small and huge TLB entries for the same virtual address to be 2924 * loaded simultaneously. So instead of doing "pmd_populate(); 2925 * flush_pmd_tlb_range();" we first mark the current pmd 2926 * notpresent (atomically because here the pmd_trans_huge must 2927 * remain set at all times on the pmd until the split is 2928 * complete for this pmd), then we flush the SMP TLB and finally 2929 * we write the non-huge version of the pmd entry with 2930 * pmd_populate. 2931 */ 2932 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2933 page = pmd_page(old_pmd); 2934 folio = page_folio(page); 2935 if (pmd_dirty(old_pmd)) { 2936 dirty = true; 2937 folio_set_dirty(folio); 2938 } 2939 write = pmd_write(old_pmd); 2940 young = pmd_young(old_pmd); 2941 soft_dirty = pmd_soft_dirty(old_pmd); 2942 uffd_wp = pmd_uffd_wp(old_pmd); 2943 2944 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2945 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2946 2947 /* 2948 * Without "freeze", we'll simply split the PMD, propagating the 2949 * PageAnonExclusive() flag for each PTE by setting it for 2950 * each subpage -- no need to (temporarily) clear. 2951 * 2952 * With "freeze" we want to replace mapped pages by 2953 * migration entries right away. This is only possible if we 2954 * managed to clear PageAnonExclusive() -- see 2955 * set_pmd_migration_entry(). 2956 * 2957 * In case we cannot clear PageAnonExclusive(), split the PMD 2958 * only and let try_to_migrate_one() fail later. 2959 * 2960 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2961 */ 2962 anon_exclusive = PageAnonExclusive(page); 2963 if (freeze && anon_exclusive && 2964 folio_try_share_anon_rmap_pmd(folio, page)) 2965 freeze = false; 2966 if (!freeze) { 2967 rmap_t rmap_flags = RMAP_NONE; 2968 2969 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2970 if (anon_exclusive) 2971 rmap_flags |= RMAP_EXCLUSIVE; 2972 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2973 vma, haddr, rmap_flags); 2974 } 2975 } 2976 2977 /* 2978 * Withdraw the table only after we mark the pmd entry invalid. 2979 * This's critical for some architectures (Power). 2980 */ 2981 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2982 pmd_populate(mm, &_pmd, pgtable); 2983 2984 pte = pte_offset_map(&_pmd, haddr); 2985 VM_BUG_ON(!pte); 2986 2987 /* 2988 * Note that NUMA hinting access restrictions are not transferred to 2989 * avoid any possibility of altering permissions across VMAs. 2990 */ 2991 if (freeze || pmd_migration) { 2992 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2993 pte_t entry; 2994 swp_entry_t swp_entry; 2995 2996 if (write) 2997 swp_entry = make_writable_migration_entry( 2998 page_to_pfn(page + i)); 2999 else if (anon_exclusive) 3000 swp_entry = make_readable_exclusive_migration_entry( 3001 page_to_pfn(page + i)); 3002 else 3003 swp_entry = make_readable_migration_entry( 3004 page_to_pfn(page + i)); 3005 if (young) 3006 swp_entry = make_migration_entry_young(swp_entry); 3007 if (dirty) 3008 swp_entry = make_migration_entry_dirty(swp_entry); 3009 entry = swp_entry_to_pte(swp_entry); 3010 if (soft_dirty) 3011 entry = pte_swp_mksoft_dirty(entry); 3012 if (uffd_wp) 3013 entry = pte_swp_mkuffd_wp(entry); 3014 3015 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3016 set_pte_at(mm, addr, pte + i, entry); 3017 } 3018 } else { 3019 pte_t entry; 3020 3021 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 3022 if (write) 3023 entry = pte_mkwrite(entry, vma); 3024 if (!young) 3025 entry = pte_mkold(entry); 3026 /* NOTE: this may set soft-dirty too on some archs */ 3027 if (dirty) 3028 entry = pte_mkdirty(entry); 3029 if (soft_dirty) 3030 entry = pte_mksoft_dirty(entry); 3031 if (uffd_wp) 3032 entry = pte_mkuffd_wp(entry); 3033 3034 for (i = 0; i < HPAGE_PMD_NR; i++) 3035 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 3036 3037 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 3038 } 3039 pte_unmap(pte); 3040 3041 if (!pmd_migration) 3042 folio_remove_rmap_pmd(folio, page, vma); 3043 if (freeze) 3044 put_page(page); 3045 3046 smp_wmb(); /* make pte visible before pmd */ 3047 pmd_populate(mm, pmd, pgtable); 3048 } 3049 3050 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 3051 pmd_t *pmd, bool freeze) 3052 { 3053 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 3054 if (pmd_trans_huge(*pmd) || is_pmd_migration_entry(*pmd)) 3055 __split_huge_pmd_locked(vma, pmd, address, freeze); 3056 } 3057 3058 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 3059 unsigned long address, bool freeze) 3060 { 3061 spinlock_t *ptl; 3062 struct mmu_notifier_range range; 3063 3064 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 3065 address & HPAGE_PMD_MASK, 3066 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 3067 mmu_notifier_invalidate_range_start(&range); 3068 ptl = pmd_lock(vma->vm_mm, pmd); 3069 split_huge_pmd_locked(vma, range.start, pmd, freeze); 3070 spin_unlock(ptl); 3071 mmu_notifier_invalidate_range_end(&range); 3072 } 3073 3074 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 3075 bool freeze) 3076 { 3077 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 3078 3079 if (!pmd) 3080 return; 3081 3082 __split_huge_pmd(vma, pmd, address, freeze); 3083 } 3084 3085 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 3086 { 3087 /* 3088 * If the new address isn't hpage aligned and it could previously 3089 * contain an hugepage: check if we need to split an huge pmd. 3090 */ 3091 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 3092 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 3093 ALIGN(address, HPAGE_PMD_SIZE))) 3094 split_huge_pmd_address(vma, address, false); 3095 } 3096 3097 void vma_adjust_trans_huge(struct vm_area_struct *vma, 3098 unsigned long start, 3099 unsigned long end, 3100 struct vm_area_struct *next) 3101 { 3102 /* Check if we need to split start first. */ 3103 split_huge_pmd_if_needed(vma, start); 3104 3105 /* Check if we need to split end next. */ 3106 split_huge_pmd_if_needed(vma, end); 3107 3108 /* If we're incrementing next->vm_start, we might need to split it. */ 3109 if (next) 3110 split_huge_pmd_if_needed(next, end); 3111 } 3112 3113 static void unmap_folio(struct folio *folio) 3114 { 3115 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 3116 TTU_BATCH_FLUSH; 3117 3118 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3119 3120 if (folio_test_pmd_mappable(folio)) 3121 ttu_flags |= TTU_SPLIT_HUGE_PMD; 3122 3123 /* 3124 * Anon pages need migration entries to preserve them, but file 3125 * pages can simply be left unmapped, then faulted back on demand. 3126 * If that is ever changed (perhaps for mlock), update remap_page(). 3127 */ 3128 if (folio_test_anon(folio)) 3129 try_to_migrate(folio, ttu_flags); 3130 else 3131 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 3132 3133 try_to_unmap_flush(); 3134 } 3135 3136 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 3137 unsigned long addr, pmd_t *pmdp, 3138 struct folio *folio) 3139 { 3140 struct mm_struct *mm = vma->vm_mm; 3141 int ref_count, map_count; 3142 pmd_t orig_pmd = *pmdp; 3143 3144 if (pmd_dirty(orig_pmd)) 3145 folio_set_dirty(folio); 3146 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3147 folio_set_swapbacked(folio); 3148 return false; 3149 } 3150 3151 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 3152 3153 /* 3154 * Syncing against concurrent GUP-fast: 3155 * - clear PMD; barrier; read refcount 3156 * - inc refcount; barrier; read PMD 3157 */ 3158 smp_mb(); 3159 3160 ref_count = folio_ref_count(folio); 3161 map_count = folio_mapcount(folio); 3162 3163 /* 3164 * Order reads for folio refcount and dirty flag 3165 * (see comments in __remove_mapping()). 3166 */ 3167 smp_rmb(); 3168 3169 /* 3170 * If the folio or its PMD is redirtied at this point, or if there 3171 * are unexpected references, we will give up to discard this folio 3172 * and remap it. 3173 * 3174 * The only folio refs must be one from isolation plus the rmap(s). 3175 */ 3176 if (pmd_dirty(orig_pmd)) 3177 folio_set_dirty(folio); 3178 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) { 3179 folio_set_swapbacked(folio); 3180 set_pmd_at(mm, addr, pmdp, orig_pmd); 3181 return false; 3182 } 3183 3184 if (ref_count != map_count + 1) { 3185 set_pmd_at(mm, addr, pmdp, orig_pmd); 3186 return false; 3187 } 3188 3189 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 3190 zap_deposited_table(mm, pmdp); 3191 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 3192 if (vma->vm_flags & VM_LOCKED) 3193 mlock_drain_local(); 3194 folio_put(folio); 3195 3196 return true; 3197 } 3198 3199 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 3200 pmd_t *pmdp, struct folio *folio) 3201 { 3202 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 3203 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3204 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 3205 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio); 3206 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 3207 3208 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 3209 } 3210 3211 static void remap_page(struct folio *folio, unsigned long nr, int flags) 3212 { 3213 int i = 0; 3214 3215 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 3216 if (!folio_test_anon(folio)) 3217 return; 3218 for (;;) { 3219 remove_migration_ptes(folio, folio, RMP_LOCKED | flags); 3220 i += folio_nr_pages(folio); 3221 if (i >= nr) 3222 break; 3223 folio = folio_next(folio); 3224 } 3225 } 3226 3227 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio, 3228 struct lruvec *lruvec, struct list_head *list) 3229 { 3230 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio); 3231 lockdep_assert_held(&lruvec->lru_lock); 3232 3233 if (list) { 3234 /* page reclaim is reclaiming a huge page */ 3235 VM_WARN_ON(folio_test_lru(folio)); 3236 folio_get(new_folio); 3237 list_add_tail(&new_folio->lru, list); 3238 } else { 3239 /* head is still on lru (and we have it frozen) */ 3240 VM_WARN_ON(!folio_test_lru(folio)); 3241 if (folio_test_unevictable(folio)) 3242 new_folio->mlock_count = 0; 3243 else 3244 list_add_tail(&new_folio->lru, &folio->lru); 3245 folio_set_lru(new_folio); 3246 } 3247 } 3248 3249 /* Racy check whether the huge page can be split */ 3250 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 3251 { 3252 int extra_pins; 3253 3254 /* Additional pins from page cache */ 3255 if (folio_test_anon(folio)) 3256 extra_pins = folio_test_swapcache(folio) ? 3257 folio_nr_pages(folio) : 0; 3258 else 3259 extra_pins = folio_nr_pages(folio); 3260 if (pextra_pins) 3261 *pextra_pins = extra_pins; 3262 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 3263 caller_pins; 3264 } 3265 3266 /* 3267 * It splits @folio into @new_order folios and copies the @folio metadata to 3268 * all the resulting folios. 3269 */ 3270 static void __split_folio_to_order(struct folio *folio, int old_order, 3271 int new_order) 3272 { 3273 long new_nr_pages = 1 << new_order; 3274 long nr_pages = 1 << old_order; 3275 long i; 3276 3277 /* 3278 * Skip the first new_nr_pages, since the new folio from them have all 3279 * the flags from the original folio. 3280 */ 3281 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) { 3282 struct page *new_head = &folio->page + i; 3283 3284 /* 3285 * Careful: new_folio is not a "real" folio before we cleared PageTail. 3286 * Don't pass it around before clear_compound_head(). 3287 */ 3288 struct folio *new_folio = (struct folio *)new_head; 3289 3290 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head); 3291 3292 /* 3293 * Clone page flags before unfreezing refcount. 3294 * 3295 * After successful get_page_unless_zero() might follow flags change, 3296 * for example lock_page() which set PG_waiters. 3297 * 3298 * Note that for mapped sub-pages of an anonymous THP, 3299 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 3300 * the migration entry instead from where remap_page() will restore it. 3301 * We can still have PG_anon_exclusive set on effectively unmapped and 3302 * unreferenced sub-pages of an anonymous THP: we can simply drop 3303 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 3304 */ 3305 new_folio->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 3306 new_folio->flags.f |= (folio->flags.f & 3307 ((1L << PG_referenced) | 3308 (1L << PG_swapbacked) | 3309 (1L << PG_swapcache) | 3310 (1L << PG_mlocked) | 3311 (1L << PG_uptodate) | 3312 (1L << PG_active) | 3313 (1L << PG_workingset) | 3314 (1L << PG_locked) | 3315 (1L << PG_unevictable) | 3316 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 3317 (1L << PG_arch_2) | 3318 #endif 3319 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 3320 (1L << PG_arch_3) | 3321 #endif 3322 (1L << PG_dirty) | 3323 LRU_GEN_MASK | LRU_REFS_MASK)); 3324 3325 new_folio->mapping = folio->mapping; 3326 new_folio->index = folio->index + i; 3327 3328 /* 3329 * page->private should not be set in tail pages. Fix up and warn once 3330 * if private is unexpectedly set. 3331 */ 3332 if (unlikely(new_folio->private)) { 3333 VM_WARN_ON_ONCE_PAGE(true, new_head); 3334 new_folio->private = NULL; 3335 } 3336 3337 if (folio_test_swapcache(folio)) 3338 new_folio->swap.val = folio->swap.val + i; 3339 3340 /* Page flags must be visible before we make the page non-compound. */ 3341 smp_wmb(); 3342 3343 /* 3344 * Clear PageTail before unfreezing page refcount. 3345 * 3346 * After successful get_page_unless_zero() might follow put_page() 3347 * which needs correct compound_head(). 3348 */ 3349 clear_compound_head(new_head); 3350 if (new_order) { 3351 prep_compound_page(new_head, new_order); 3352 folio_set_large_rmappable(new_folio); 3353 } 3354 3355 if (folio_test_young(folio)) 3356 folio_set_young(new_folio); 3357 if (folio_test_idle(folio)) 3358 folio_set_idle(new_folio); 3359 #ifdef CONFIG_MEMCG 3360 new_folio->memcg_data = folio->memcg_data; 3361 #endif 3362 3363 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 3364 } 3365 3366 if (new_order) 3367 folio_set_order(folio, new_order); 3368 else 3369 ClearPageCompound(&folio->page); 3370 } 3371 3372 /* 3373 * It splits an unmapped @folio to lower order smaller folios in two ways. 3374 * @folio: the to-be-split folio 3375 * @new_order: the smallest order of the after split folios (since buddy 3376 * allocator like split generates folios with orders from @folio's 3377 * order - 1 to new_order). 3378 * @split_at: in buddy allocator like split, the folio containing @split_at 3379 * will be split until its order becomes @new_order. 3380 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller 3381 * @mapping: @folio->mapping 3382 * @uniform_split: if the split is uniform or not (buddy allocator like split) 3383 * 3384 * 3385 * 1. uniform split: the given @folio into multiple @new_order small folios, 3386 * where all small folios have the same order. This is done when 3387 * uniform_split is true. 3388 * 2. buddy allocator like (non-uniform) split: the given @folio is split into 3389 * half and one of the half (containing the given page) is split into half 3390 * until the given @page's order becomes @new_order. This is done when 3391 * uniform_split is false. 3392 * 3393 * The high level flow for these two methods are: 3394 * 1. uniform split: a single __split_folio_to_order() is called to split the 3395 * @folio into @new_order, then we traverse all the resulting folios one by 3396 * one in PFN ascending order and perform stats, unfreeze, adding to list, 3397 * and file mapping index operations. 3398 * 2. non-uniform split: in general, folio_order - @new_order calls to 3399 * __split_folio_to_order() are made in a for loop to split the @folio 3400 * to one lower order at a time. The resulting small folios are processed 3401 * like what is done during the traversal in 1, except the one containing 3402 * @page, which is split in next for loop. 3403 * 3404 * After splitting, the caller's folio reference will be transferred to the 3405 * folio containing @page. The caller needs to unlock and/or free after-split 3406 * folios if necessary. 3407 * 3408 * For !uniform_split, when -ENOMEM is returned, the original folio might be 3409 * split. The caller needs to check the input folio. 3410 */ 3411 static int __split_unmapped_folio(struct folio *folio, int new_order, 3412 struct page *split_at, struct xa_state *xas, 3413 struct address_space *mapping, bool uniform_split) 3414 { 3415 int order = folio_order(folio); 3416 int start_order = uniform_split ? new_order : order - 1; 3417 bool stop_split = false; 3418 struct folio *next; 3419 int split_order; 3420 int ret = 0; 3421 3422 if (folio_test_anon(folio)) 3423 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 3424 3425 folio_clear_has_hwpoisoned(folio); 3426 3427 /* 3428 * split to new_order one order at a time. For uniform split, 3429 * folio is split to new_order directly. 3430 */ 3431 for (split_order = start_order; 3432 split_order >= new_order && !stop_split; 3433 split_order--) { 3434 struct folio *end_folio = folio_next(folio); 3435 int old_order = folio_order(folio); 3436 struct folio *new_folio; 3437 3438 /* order-1 anonymous folio is not supported */ 3439 if (folio_test_anon(folio) && split_order == 1) 3440 continue; 3441 if (uniform_split && split_order != new_order) 3442 continue; 3443 3444 if (mapping) { 3445 /* 3446 * uniform split has xas_split_alloc() called before 3447 * irq is disabled to allocate enough memory, whereas 3448 * non-uniform split can handle ENOMEM. 3449 */ 3450 if (uniform_split) 3451 xas_split(xas, folio, old_order); 3452 else { 3453 xas_set_order(xas, folio->index, split_order); 3454 xas_try_split(xas, folio, old_order); 3455 if (xas_error(xas)) { 3456 ret = xas_error(xas); 3457 stop_split = true; 3458 } 3459 } 3460 } 3461 3462 if (!stop_split) { 3463 folio_split_memcg_refs(folio, old_order, split_order); 3464 split_page_owner(&folio->page, old_order, split_order); 3465 pgalloc_tag_split(folio, old_order, split_order); 3466 3467 __split_folio_to_order(folio, old_order, split_order); 3468 } 3469 3470 /* 3471 * Iterate through after-split folios and update folio stats. 3472 * But in buddy allocator like split, the folio 3473 * containing the specified page is skipped until its order 3474 * is new_order, since the folio will be worked on in next 3475 * iteration. 3476 */ 3477 for (new_folio = folio; new_folio != end_folio; new_folio = next) { 3478 next = folio_next(new_folio); 3479 /* 3480 * for buddy allocator like split, new_folio containing 3481 * @split_at page could be split again, thus do not 3482 * change stats yet. Wait until new_folio's order is 3483 * @new_order or stop_split is set to true by the above 3484 * xas_split() failure. 3485 */ 3486 if (new_folio == page_folio(split_at)) { 3487 folio = new_folio; 3488 if (split_order != new_order && !stop_split) 3489 continue; 3490 } 3491 if (folio_test_anon(new_folio)) 3492 mod_mthp_stat(folio_order(new_folio), 3493 MTHP_STAT_NR_ANON, 1); 3494 } 3495 } 3496 3497 return ret; 3498 } 3499 3500 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order, 3501 bool warns) 3502 { 3503 if (folio_test_anon(folio)) { 3504 /* order-1 is not supported for anonymous THP. */ 3505 VM_WARN_ONCE(warns && new_order == 1, 3506 "Cannot split to order-1 folio"); 3507 return new_order != 1; 3508 } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3509 !mapping_large_folio_support(folio->mapping)) { 3510 /* 3511 * No split if the file system does not support large folio. 3512 * Note that we might still have THPs in such mappings due to 3513 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3514 * does not actually support large folios properly. 3515 */ 3516 VM_WARN_ONCE(warns, 3517 "Cannot split file folio to non-0 order"); 3518 return false; 3519 } 3520 3521 /* Only swapping a whole PMD-mapped folio is supported */ 3522 if (folio_test_swapcache(folio)) { 3523 VM_WARN_ONCE(warns, 3524 "Cannot split swapcache folio to non-0 order"); 3525 return false; 3526 } 3527 3528 return true; 3529 } 3530 3531 /* See comments in non_uniform_split_supported() */ 3532 bool uniform_split_supported(struct folio *folio, unsigned int new_order, 3533 bool warns) 3534 { 3535 if (folio_test_anon(folio)) { 3536 VM_WARN_ONCE(warns && new_order == 1, 3537 "Cannot split to order-1 folio"); 3538 return new_order != 1; 3539 } else if (new_order) { 3540 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3541 !mapping_large_folio_support(folio->mapping)) { 3542 VM_WARN_ONCE(warns, 3543 "Cannot split file folio to non-0 order"); 3544 return false; 3545 } 3546 } 3547 3548 if (new_order && folio_test_swapcache(folio)) { 3549 VM_WARN_ONCE(warns, 3550 "Cannot split swapcache folio to non-0 order"); 3551 return false; 3552 } 3553 3554 return true; 3555 } 3556 3557 /* 3558 * __folio_split: split a folio at @split_at to a @new_order folio 3559 * @folio: folio to split 3560 * @new_order: the order of the new folio 3561 * @split_at: a page within the new folio 3562 * @lock_at: a page within @folio to be left locked to caller 3563 * @list: after-split folios will be put on it if non NULL 3564 * @uniform_split: perform uniform split or not (non-uniform split) 3565 * 3566 * It calls __split_unmapped_folio() to perform uniform and non-uniform split. 3567 * It is in charge of checking whether the split is supported or not and 3568 * preparing @folio for __split_unmapped_folio(). 3569 * 3570 * After splitting, the after-split folio containing @lock_at remains locked 3571 * and others are unlocked: 3572 * 1. for uniform split, @lock_at points to one of @folio's subpages; 3573 * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio. 3574 * 3575 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be 3576 * split but not to @new_order, the caller needs to check) 3577 */ 3578 static int __folio_split(struct folio *folio, unsigned int new_order, 3579 struct page *split_at, struct page *lock_at, 3580 struct list_head *list, bool uniform_split) 3581 { 3582 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3583 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 3584 struct folio *end_folio = folio_next(folio); 3585 bool is_anon = folio_test_anon(folio); 3586 struct address_space *mapping = NULL; 3587 struct anon_vma *anon_vma = NULL; 3588 int order = folio_order(folio); 3589 struct folio *new_folio, *next; 3590 int nr_shmem_dropped = 0; 3591 int remap_flags = 0; 3592 int extra_pins, ret; 3593 pgoff_t end; 3594 bool is_hzp; 3595 3596 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio); 3597 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio); 3598 3599 if (folio != page_folio(split_at) || folio != page_folio(lock_at)) 3600 return -EINVAL; 3601 3602 if (new_order >= folio_order(folio)) 3603 return -EINVAL; 3604 3605 if (uniform_split && !uniform_split_supported(folio, new_order, true)) 3606 return -EINVAL; 3607 3608 if (!uniform_split && 3609 !non_uniform_split_supported(folio, new_order, true)) 3610 return -EINVAL; 3611 3612 is_hzp = is_huge_zero_folio(folio); 3613 if (is_hzp) { 3614 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3615 return -EBUSY; 3616 } 3617 3618 if (folio_test_writeback(folio)) 3619 return -EBUSY; 3620 3621 if (is_anon) { 3622 /* 3623 * The caller does not necessarily hold an mmap_lock that would 3624 * prevent the anon_vma disappearing so we first we take a 3625 * reference to it and then lock the anon_vma for write. This 3626 * is similar to folio_lock_anon_vma_read except the write lock 3627 * is taken to serialise against parallel split or collapse 3628 * operations. 3629 */ 3630 anon_vma = folio_get_anon_vma(folio); 3631 if (!anon_vma) { 3632 ret = -EBUSY; 3633 goto out; 3634 } 3635 mapping = NULL; 3636 anon_vma_lock_write(anon_vma); 3637 } else { 3638 unsigned int min_order; 3639 gfp_t gfp; 3640 3641 mapping = folio->mapping; 3642 3643 /* Truncated ? */ 3644 /* 3645 * TODO: add support for large shmem folio in swap cache. 3646 * When shmem is in swap cache, mapping is NULL and 3647 * folio_test_swapcache() is true. 3648 */ 3649 if (!mapping) { 3650 ret = -EBUSY; 3651 goto out; 3652 } 3653 3654 min_order = mapping_min_folio_order(folio->mapping); 3655 if (new_order < min_order) { 3656 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u", 3657 min_order); 3658 ret = -EINVAL; 3659 goto out; 3660 } 3661 3662 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3663 GFP_RECLAIM_MASK); 3664 3665 if (!filemap_release_folio(folio, gfp)) { 3666 ret = -EBUSY; 3667 goto out; 3668 } 3669 3670 if (uniform_split) { 3671 xas_set_order(&xas, folio->index, new_order); 3672 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3673 if (xas_error(&xas)) { 3674 ret = xas_error(&xas); 3675 goto out; 3676 } 3677 } 3678 3679 anon_vma = NULL; 3680 i_mmap_lock_read(mapping); 3681 3682 /* 3683 *__split_unmapped_folio() may need to trim off pages beyond 3684 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe 3685 * seqlock, which cannot be nested inside the page tree lock. 3686 * So note end now: i_size itself may be changed at any moment, 3687 * but folio lock is good enough to serialize the trimming. 3688 */ 3689 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3690 if (shmem_mapping(mapping)) 3691 end = shmem_fallocend(mapping->host, end); 3692 } 3693 3694 /* 3695 * Racy check if we can split the page, before unmap_folio() will 3696 * split PMDs 3697 */ 3698 if (!can_split_folio(folio, 1, &extra_pins)) { 3699 ret = -EAGAIN; 3700 goto out_unlock; 3701 } 3702 3703 unmap_folio(folio); 3704 3705 /* block interrupt reentry in xa_lock and spinlock */ 3706 local_irq_disable(); 3707 if (mapping) { 3708 /* 3709 * Check if the folio is present in page cache. 3710 * We assume all tail are present too, if folio is there. 3711 */ 3712 xas_lock(&xas); 3713 xas_reset(&xas); 3714 if (xas_load(&xas) != folio) { 3715 ret = -EAGAIN; 3716 goto fail; 3717 } 3718 } 3719 3720 /* Prevent deferred_split_scan() touching ->_refcount */ 3721 spin_lock(&ds_queue->split_queue_lock); 3722 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3723 struct swap_cluster_info *ci = NULL; 3724 struct lruvec *lruvec; 3725 int expected_refs; 3726 3727 if (folio_order(folio) > 1 && 3728 !list_empty(&folio->_deferred_list)) { 3729 ds_queue->split_queue_len--; 3730 if (folio_test_partially_mapped(folio)) { 3731 folio_clear_partially_mapped(folio); 3732 mod_mthp_stat(folio_order(folio), 3733 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3734 } 3735 /* 3736 * Reinitialize page_deferred_list after removing the 3737 * page from the split_queue, otherwise a subsequent 3738 * split will see list corruption when checking the 3739 * page_deferred_list. 3740 */ 3741 list_del_init(&folio->_deferred_list); 3742 } 3743 spin_unlock(&ds_queue->split_queue_lock); 3744 if (mapping) { 3745 int nr = folio_nr_pages(folio); 3746 3747 if (folio_test_pmd_mappable(folio) && 3748 new_order < HPAGE_PMD_ORDER) { 3749 if (folio_test_swapbacked(folio)) { 3750 __lruvec_stat_mod_folio(folio, 3751 NR_SHMEM_THPS, -nr); 3752 } else { 3753 __lruvec_stat_mod_folio(folio, 3754 NR_FILE_THPS, -nr); 3755 filemap_nr_thps_dec(mapping); 3756 } 3757 } 3758 } 3759 3760 if (folio_test_swapcache(folio)) { 3761 if (mapping) { 3762 VM_WARN_ON_ONCE_FOLIO(mapping, folio); 3763 ret = -EINVAL; 3764 goto fail; 3765 } 3766 3767 ci = swap_cluster_get_and_lock(folio); 3768 } 3769 3770 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 3771 lruvec = folio_lruvec_lock(folio); 3772 3773 ret = __split_unmapped_folio(folio, new_order, split_at, &xas, 3774 mapping, uniform_split); 3775 3776 /* 3777 * Unfreeze after-split folios and put them back to the right 3778 * list. @folio should be kept frozon until page cache 3779 * entries are updated with all the other after-split folios 3780 * to prevent others seeing stale page cache entries. 3781 * As a result, new_folio starts from the next folio of 3782 * @folio. 3783 */ 3784 for (new_folio = folio_next(folio); new_folio != end_folio; 3785 new_folio = next) { 3786 unsigned long nr_pages = folio_nr_pages(new_folio); 3787 3788 next = folio_next(new_folio); 3789 3790 expected_refs = folio_expected_ref_count(new_folio) + 1; 3791 folio_ref_unfreeze(new_folio, expected_refs); 3792 3793 lru_add_split_folio(folio, new_folio, lruvec, list); 3794 3795 /* 3796 * Anonymous folio with swap cache. 3797 * NOTE: shmem in swap cache is not supported yet. 3798 */ 3799 if (ci) { 3800 __swap_cache_replace_folio(ci, folio, new_folio); 3801 continue; 3802 } 3803 3804 /* Anonymous folio without swap cache */ 3805 if (!mapping) 3806 continue; 3807 3808 /* Add the new folio to the page cache. */ 3809 if (new_folio->index < end) { 3810 __xa_store(&mapping->i_pages, new_folio->index, 3811 new_folio, 0); 3812 continue; 3813 } 3814 3815 /* Drop folio beyond EOF: ->index >= end */ 3816 if (shmem_mapping(mapping)) 3817 nr_shmem_dropped += nr_pages; 3818 else if (folio_test_clear_dirty(new_folio)) 3819 folio_account_cleaned( 3820 new_folio, inode_to_wb(mapping->host)); 3821 __filemap_remove_folio(new_folio, NULL); 3822 folio_put_refs(new_folio, nr_pages); 3823 } 3824 /* 3825 * Unfreeze @folio only after all page cache entries, which 3826 * used to point to it, have been updated with new folios. 3827 * Otherwise, a parallel folio_try_get() can grab @folio 3828 * and its caller can see stale page cache entries. 3829 */ 3830 expected_refs = folio_expected_ref_count(folio) + 1; 3831 folio_ref_unfreeze(folio, expected_refs); 3832 3833 unlock_page_lruvec(lruvec); 3834 3835 if (ci) 3836 swap_cluster_unlock(ci); 3837 } else { 3838 spin_unlock(&ds_queue->split_queue_lock); 3839 ret = -EAGAIN; 3840 } 3841 fail: 3842 if (mapping) 3843 xas_unlock(&xas); 3844 3845 local_irq_enable(); 3846 3847 if (nr_shmem_dropped) 3848 shmem_uncharge(mapping->host, nr_shmem_dropped); 3849 3850 if (!ret && is_anon) 3851 remap_flags = RMP_USE_SHARED_ZEROPAGE; 3852 remap_page(folio, 1 << order, remap_flags); 3853 3854 /* 3855 * Unlock all after-split folios except the one containing 3856 * @lock_at page. If @folio is not split, it will be kept locked. 3857 */ 3858 for (new_folio = folio; new_folio != end_folio; new_folio = next) { 3859 next = folio_next(new_folio); 3860 if (new_folio == page_folio(lock_at)) 3861 continue; 3862 3863 folio_unlock(new_folio); 3864 /* 3865 * Subpages may be freed if there wasn't any mapping 3866 * like if add_to_swap() is running on a lru page that 3867 * had its mapping zapped. And freeing these pages 3868 * requires taking the lru_lock so we do the put_page 3869 * of the tail pages after the split is complete. 3870 */ 3871 free_folio_and_swap_cache(new_folio); 3872 } 3873 3874 out_unlock: 3875 if (anon_vma) { 3876 anon_vma_unlock_write(anon_vma); 3877 put_anon_vma(anon_vma); 3878 } 3879 if (mapping) 3880 i_mmap_unlock_read(mapping); 3881 out: 3882 xas_destroy(&xas); 3883 if (order == HPAGE_PMD_ORDER) 3884 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3885 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3886 return ret; 3887 } 3888 3889 /* 3890 * This function splits a large folio into smaller folios of order @new_order. 3891 * @page can point to any page of the large folio to split. The split operation 3892 * does not change the position of @page. 3893 * 3894 * Prerequisites: 3895 * 3896 * 1) The caller must hold a reference on the @page's owning folio, also known 3897 * as the large folio. 3898 * 3899 * 2) The large folio must be locked. 3900 * 3901 * 3) The folio must not be pinned. Any unexpected folio references, including 3902 * GUP pins, will result in the folio not getting split; instead, the caller 3903 * will receive an -EAGAIN. 3904 * 3905 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3906 * supported for non-file-backed folios, because folio->_deferred_list, which 3907 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3908 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3909 * since they do not use _deferred_list. 3910 * 3911 * After splitting, the caller's folio reference will be transferred to @page, 3912 * resulting in a raised refcount of @page after this call. The other pages may 3913 * be freed if they are not mapped. 3914 * 3915 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3916 * 3917 * Pages in @new_order will inherit the mapping, flags, and so on from the 3918 * huge page. 3919 * 3920 * Returns 0 if the huge page was split successfully. 3921 * 3922 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3923 * the folio was concurrently removed from the page cache. 3924 * 3925 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3926 * under writeback, if fs-specific folio metadata cannot currently be 3927 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3928 * truncation). 3929 * 3930 * Callers should ensure that the order respects the address space mapping 3931 * min-order if one is set for non-anonymous folios. 3932 * 3933 * Returns -EINVAL when trying to split to an order that is incompatible 3934 * with the folio. Splitting to order 0 is compatible with all folios. 3935 */ 3936 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3937 unsigned int new_order) 3938 { 3939 struct folio *folio = page_folio(page); 3940 3941 return __folio_split(folio, new_order, &folio->page, page, list, true); 3942 } 3943 3944 /* 3945 * folio_split: split a folio at @split_at to a @new_order folio 3946 * @folio: folio to split 3947 * @new_order: the order of the new folio 3948 * @split_at: a page within the new folio 3949 * 3950 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be 3951 * split but not to @new_order, the caller needs to check) 3952 * 3953 * It has the same prerequisites and returns as 3954 * split_huge_page_to_list_to_order(). 3955 * 3956 * Split a folio at @split_at to a new_order folio, leave the 3957 * remaining subpages of the original folio as large as possible. For example, 3958 * in the case of splitting an order-9 folio at its third order-3 subpages to 3959 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio. 3960 * After the split, there will be a group of folios with different orders and 3961 * the new folio containing @split_at is marked in bracket: 3962 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8]. 3963 * 3964 * After split, folio is left locked for caller. 3965 */ 3966 int folio_split(struct folio *folio, unsigned int new_order, 3967 struct page *split_at, struct list_head *list) 3968 { 3969 return __folio_split(folio, new_order, split_at, &folio->page, list, 3970 false); 3971 } 3972 3973 int min_order_for_split(struct folio *folio) 3974 { 3975 if (folio_test_anon(folio)) 3976 return 0; 3977 3978 if (!folio->mapping) { 3979 if (folio_test_pmd_mappable(folio)) 3980 count_vm_event(THP_SPLIT_PAGE_FAILED); 3981 return -EBUSY; 3982 } 3983 3984 return mapping_min_folio_order(folio->mapping); 3985 } 3986 3987 int split_folio_to_list(struct folio *folio, struct list_head *list) 3988 { 3989 int ret = min_order_for_split(folio); 3990 3991 if (ret < 0) 3992 return ret; 3993 3994 return split_huge_page_to_list_to_order(&folio->page, list, ret); 3995 } 3996 3997 /* 3998 * __folio_unqueue_deferred_split() is not to be called directly: 3999 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h 4000 * limits its calls to those folios which may have a _deferred_list for 4001 * queueing THP splits, and that list is (racily observed to be) non-empty. 4002 * 4003 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is 4004 * zero: because even when split_queue_lock is held, a non-empty _deferred_list 4005 * might be in use on deferred_split_scan()'s unlocked on-stack list. 4006 * 4007 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is 4008 * therefore important to unqueue deferred split before changing folio memcg. 4009 */ 4010 bool __folio_unqueue_deferred_split(struct folio *folio) 4011 { 4012 struct deferred_split *ds_queue; 4013 unsigned long flags; 4014 bool unqueued = false; 4015 4016 WARN_ON_ONCE(folio_ref_count(folio)); 4017 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio)); 4018 4019 ds_queue = get_deferred_split_queue(folio); 4020 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4021 if (!list_empty(&folio->_deferred_list)) { 4022 ds_queue->split_queue_len--; 4023 if (folio_test_partially_mapped(folio)) { 4024 folio_clear_partially_mapped(folio); 4025 mod_mthp_stat(folio_order(folio), 4026 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4027 } 4028 list_del_init(&folio->_deferred_list); 4029 unqueued = true; 4030 } 4031 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4032 4033 return unqueued; /* useful for debug warnings */ 4034 } 4035 4036 /* partially_mapped=false won't clear PG_partially_mapped folio flag */ 4037 void deferred_split_folio(struct folio *folio, bool partially_mapped) 4038 { 4039 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 4040 #ifdef CONFIG_MEMCG 4041 struct mem_cgroup *memcg = folio_memcg(folio); 4042 #endif 4043 unsigned long flags; 4044 4045 /* 4046 * Order 1 folios have no space for a deferred list, but we also 4047 * won't waste much memory by not adding them to the deferred list. 4048 */ 4049 if (folio_order(folio) <= 1) 4050 return; 4051 4052 if (!partially_mapped && !split_underused_thp) 4053 return; 4054 4055 /* 4056 * Exclude swapcache: originally to avoid a corrupt deferred split 4057 * queue. Nowadays that is fully prevented by memcg1_swapout(); 4058 * but if page reclaim is already handling the same folio, it is 4059 * unnecessary to handle it again in the shrinker, so excluding 4060 * swapcache here may still be a useful optimization. 4061 */ 4062 if (folio_test_swapcache(folio)) 4063 return; 4064 4065 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4066 if (partially_mapped) { 4067 if (!folio_test_partially_mapped(folio)) { 4068 folio_set_partially_mapped(folio); 4069 if (folio_test_pmd_mappable(folio)) 4070 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 4071 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 4072 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); 4073 4074 } 4075 } else { 4076 /* partially mapped folios cannot become non-partially mapped */ 4077 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); 4078 } 4079 if (list_empty(&folio->_deferred_list)) { 4080 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 4081 ds_queue->split_queue_len++; 4082 #ifdef CONFIG_MEMCG 4083 if (memcg) 4084 set_shrinker_bit(memcg, folio_nid(folio), 4085 deferred_split_shrinker->id); 4086 #endif 4087 } 4088 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4089 } 4090 4091 static unsigned long deferred_split_count(struct shrinker *shrink, 4092 struct shrink_control *sc) 4093 { 4094 struct pglist_data *pgdata = NODE_DATA(sc->nid); 4095 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 4096 4097 #ifdef CONFIG_MEMCG 4098 if (sc->memcg) 4099 ds_queue = &sc->memcg->deferred_split_queue; 4100 #endif 4101 return READ_ONCE(ds_queue->split_queue_len); 4102 } 4103 4104 static bool thp_underused(struct folio *folio) 4105 { 4106 int num_zero_pages = 0, num_filled_pages = 0; 4107 void *kaddr; 4108 int i; 4109 4110 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) 4111 return false; 4112 4113 for (i = 0; i < folio_nr_pages(folio); i++) { 4114 kaddr = kmap_local_folio(folio, i * PAGE_SIZE); 4115 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) { 4116 num_zero_pages++; 4117 if (num_zero_pages > khugepaged_max_ptes_none) { 4118 kunmap_local(kaddr); 4119 return true; 4120 } 4121 } else { 4122 /* 4123 * Another path for early exit once the number 4124 * of non-zero filled pages exceeds threshold. 4125 */ 4126 num_filled_pages++; 4127 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) { 4128 kunmap_local(kaddr); 4129 return false; 4130 } 4131 } 4132 kunmap_local(kaddr); 4133 } 4134 return false; 4135 } 4136 4137 static unsigned long deferred_split_scan(struct shrinker *shrink, 4138 struct shrink_control *sc) 4139 { 4140 struct pglist_data *pgdata = NODE_DATA(sc->nid); 4141 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 4142 unsigned long flags; 4143 LIST_HEAD(list); 4144 struct folio *folio, *next, *prev = NULL; 4145 int split = 0, removed = 0; 4146 4147 #ifdef CONFIG_MEMCG 4148 if (sc->memcg) 4149 ds_queue = &sc->memcg->deferred_split_queue; 4150 #endif 4151 4152 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4153 /* Take pin on all head pages to avoid freeing them under us */ 4154 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 4155 _deferred_list) { 4156 if (folio_try_get(folio)) { 4157 list_move(&folio->_deferred_list, &list); 4158 } else { 4159 /* We lost race with folio_put() */ 4160 if (folio_test_partially_mapped(folio)) { 4161 folio_clear_partially_mapped(folio); 4162 mod_mthp_stat(folio_order(folio), 4163 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 4164 } 4165 list_del_init(&folio->_deferred_list); 4166 ds_queue->split_queue_len--; 4167 } 4168 if (!--sc->nr_to_scan) 4169 break; 4170 } 4171 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4172 4173 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 4174 bool did_split = false; 4175 bool underused = false; 4176 4177 if (!folio_test_partially_mapped(folio)) { 4178 /* 4179 * See try_to_map_unused_to_zeropage(): we cannot 4180 * optimize zero-filled pages after splitting an 4181 * mlocked folio. 4182 */ 4183 if (folio_test_mlocked(folio)) 4184 goto next; 4185 underused = thp_underused(folio); 4186 if (!underused) 4187 goto next; 4188 } 4189 if (!folio_trylock(folio)) 4190 goto next; 4191 if (!split_folio(folio)) { 4192 did_split = true; 4193 if (underused) 4194 count_vm_event(THP_UNDERUSED_SPLIT_PAGE); 4195 split++; 4196 } 4197 folio_unlock(folio); 4198 next: 4199 /* 4200 * split_folio() removes folio from list on success. 4201 * Only add back to the queue if folio is partially mapped. 4202 * If thp_underused returns false, or if split_folio fails 4203 * in the case it was underused, then consider it used and 4204 * don't add it back to split_queue. 4205 */ 4206 if (did_split) { 4207 ; /* folio already removed from list */ 4208 } else if (!folio_test_partially_mapped(folio)) { 4209 list_del_init(&folio->_deferred_list); 4210 removed++; 4211 } else { 4212 /* 4213 * That unlocked list_del_init() above would be unsafe, 4214 * unless its folio is separated from any earlier folios 4215 * left on the list (which may be concurrently unqueued) 4216 * by one safe folio with refcount still raised. 4217 */ 4218 swap(folio, prev); 4219 } 4220 if (folio) 4221 folio_put(folio); 4222 } 4223 4224 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 4225 list_splice_tail(&list, &ds_queue->split_queue); 4226 ds_queue->split_queue_len -= removed; 4227 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 4228 4229 if (prev) 4230 folio_put(prev); 4231 4232 /* 4233 * Stop shrinker if we didn't split any page, but the queue is empty. 4234 * This can happen if pages were freed under us. 4235 */ 4236 if (!split && list_empty(&ds_queue->split_queue)) 4237 return SHRINK_STOP; 4238 return split; 4239 } 4240 4241 #ifdef CONFIG_DEBUG_FS 4242 static void split_huge_pages_all(void) 4243 { 4244 struct zone *zone; 4245 struct page *page; 4246 struct folio *folio; 4247 unsigned long pfn, max_zone_pfn; 4248 unsigned long total = 0, split = 0; 4249 4250 pr_debug("Split all THPs\n"); 4251 for_each_zone(zone) { 4252 if (!managed_zone(zone)) 4253 continue; 4254 max_zone_pfn = zone_end_pfn(zone); 4255 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 4256 int nr_pages; 4257 4258 page = pfn_to_online_page(pfn); 4259 if (!page || PageTail(page)) 4260 continue; 4261 folio = page_folio(page); 4262 if (!folio_try_get(folio)) 4263 continue; 4264 4265 if (unlikely(page_folio(page) != folio)) 4266 goto next; 4267 4268 if (zone != folio_zone(folio)) 4269 goto next; 4270 4271 if (!folio_test_large(folio) 4272 || folio_test_hugetlb(folio) 4273 || !folio_test_lru(folio)) 4274 goto next; 4275 4276 total++; 4277 folio_lock(folio); 4278 nr_pages = folio_nr_pages(folio); 4279 if (!split_folio(folio)) 4280 split++; 4281 pfn += nr_pages - 1; 4282 folio_unlock(folio); 4283 next: 4284 folio_put(folio); 4285 cond_resched(); 4286 } 4287 } 4288 4289 pr_debug("%lu of %lu THP split\n", split, total); 4290 } 4291 4292 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 4293 { 4294 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 4295 is_vm_hugetlb_page(vma); 4296 } 4297 4298 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 4299 unsigned long vaddr_end, unsigned int new_order, 4300 long in_folio_offset) 4301 { 4302 int ret = 0; 4303 struct task_struct *task; 4304 struct mm_struct *mm; 4305 unsigned long total = 0, split = 0; 4306 unsigned long addr; 4307 4308 vaddr_start &= PAGE_MASK; 4309 vaddr_end &= PAGE_MASK; 4310 4311 task = find_get_task_by_vpid(pid); 4312 if (!task) { 4313 ret = -ESRCH; 4314 goto out; 4315 } 4316 4317 /* Find the mm_struct */ 4318 mm = get_task_mm(task); 4319 put_task_struct(task); 4320 4321 if (!mm) { 4322 ret = -EINVAL; 4323 goto out; 4324 } 4325 4326 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n", 4327 pid, vaddr_start, vaddr_end, new_order, in_folio_offset); 4328 4329 mmap_read_lock(mm); 4330 /* 4331 * always increase addr by PAGE_SIZE, since we could have a PTE page 4332 * table filled with PTE-mapped THPs, each of which is distinct. 4333 */ 4334 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 4335 struct vm_area_struct *vma = vma_lookup(mm, addr); 4336 struct folio_walk fw; 4337 struct folio *folio; 4338 struct address_space *mapping; 4339 unsigned int target_order = new_order; 4340 4341 if (!vma) 4342 break; 4343 4344 /* skip special VMA and hugetlb VMA */ 4345 if (vma_not_suitable_for_thp_split(vma)) { 4346 addr = vma->vm_end; 4347 continue; 4348 } 4349 4350 folio = folio_walk_start(&fw, vma, addr, 0); 4351 if (!folio) 4352 continue; 4353 4354 if (!is_transparent_hugepage(folio)) 4355 goto next; 4356 4357 if (!folio_test_anon(folio)) { 4358 mapping = folio->mapping; 4359 target_order = max(new_order, 4360 mapping_min_folio_order(mapping)); 4361 } 4362 4363 if (target_order >= folio_order(folio)) 4364 goto next; 4365 4366 total++; 4367 /* 4368 * For folios with private, split_huge_page_to_list_to_order() 4369 * will try to drop it before split and then check if the folio 4370 * can be split or not. So skip the check here. 4371 */ 4372 if (!folio_test_private(folio) && 4373 !can_split_folio(folio, 0, NULL)) 4374 goto next; 4375 4376 if (!folio_trylock(folio)) 4377 goto next; 4378 folio_get(folio); 4379 folio_walk_end(&fw, vma); 4380 4381 if (!folio_test_anon(folio) && folio->mapping != mapping) 4382 goto unlock; 4383 4384 if (in_folio_offset < 0 || 4385 in_folio_offset >= folio_nr_pages(folio)) { 4386 if (!split_folio_to_order(folio, target_order)) 4387 split++; 4388 } else { 4389 struct page *split_at = folio_page(folio, 4390 in_folio_offset); 4391 if (!folio_split(folio, target_order, split_at, NULL)) 4392 split++; 4393 } 4394 4395 unlock: 4396 4397 folio_unlock(folio); 4398 folio_put(folio); 4399 4400 cond_resched(); 4401 continue; 4402 next: 4403 folio_walk_end(&fw, vma); 4404 cond_resched(); 4405 } 4406 mmap_read_unlock(mm); 4407 mmput(mm); 4408 4409 pr_debug("%lu of %lu THP split\n", split, total); 4410 4411 out: 4412 return ret; 4413 } 4414 4415 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 4416 pgoff_t off_end, unsigned int new_order, 4417 long in_folio_offset) 4418 { 4419 struct filename *file; 4420 struct file *candidate; 4421 struct address_space *mapping; 4422 int ret = -EINVAL; 4423 pgoff_t index; 4424 int nr_pages = 1; 4425 unsigned long total = 0, split = 0; 4426 unsigned int min_order; 4427 unsigned int target_order; 4428 4429 file = getname_kernel(file_path); 4430 if (IS_ERR(file)) 4431 return ret; 4432 4433 candidate = file_open_name(file, O_RDONLY, 0); 4434 if (IS_ERR(candidate)) 4435 goto out; 4436 4437 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx], new_order: %u, in_folio_offset: %ld\n", 4438 file_path, off_start, off_end, new_order, in_folio_offset); 4439 4440 mapping = candidate->f_mapping; 4441 min_order = mapping_min_folio_order(mapping); 4442 target_order = max(new_order, min_order); 4443 4444 for (index = off_start; index < off_end; index += nr_pages) { 4445 struct folio *folio = filemap_get_folio(mapping, index); 4446 4447 nr_pages = 1; 4448 if (IS_ERR(folio)) 4449 continue; 4450 4451 if (!folio_test_large(folio)) 4452 goto next; 4453 4454 total++; 4455 nr_pages = folio_nr_pages(folio); 4456 4457 if (target_order >= folio_order(folio)) 4458 goto next; 4459 4460 if (!folio_trylock(folio)) 4461 goto next; 4462 4463 if (folio->mapping != mapping) 4464 goto unlock; 4465 4466 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) { 4467 if (!split_folio_to_order(folio, target_order)) 4468 split++; 4469 } else { 4470 struct page *split_at = folio_page(folio, 4471 in_folio_offset); 4472 if (!folio_split(folio, target_order, split_at, NULL)) 4473 split++; 4474 } 4475 4476 unlock: 4477 folio_unlock(folio); 4478 next: 4479 folio_put(folio); 4480 cond_resched(); 4481 } 4482 4483 filp_close(candidate, NULL); 4484 ret = 0; 4485 4486 pr_debug("%lu of %lu file-backed THP split\n", split, total); 4487 out: 4488 putname(file); 4489 return ret; 4490 } 4491 4492 #define MAX_INPUT_BUF_SZ 255 4493 4494 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 4495 size_t count, loff_t *ppops) 4496 { 4497 static DEFINE_MUTEX(split_debug_mutex); 4498 ssize_t ret; 4499 /* 4500 * hold pid, start_vaddr, end_vaddr, new_order or 4501 * file_path, off_start, off_end, new_order 4502 */ 4503 char input_buf[MAX_INPUT_BUF_SZ]; 4504 int pid; 4505 unsigned long vaddr_start, vaddr_end; 4506 unsigned int new_order = 0; 4507 long in_folio_offset = -1; 4508 4509 ret = mutex_lock_interruptible(&split_debug_mutex); 4510 if (ret) 4511 return ret; 4512 4513 ret = -EFAULT; 4514 4515 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 4516 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 4517 goto out; 4518 4519 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 4520 4521 if (input_buf[0] == '/') { 4522 char *tok; 4523 char *tok_buf = input_buf; 4524 char file_path[MAX_INPUT_BUF_SZ]; 4525 pgoff_t off_start = 0, off_end = 0; 4526 size_t input_len = strlen(input_buf); 4527 4528 tok = strsep(&tok_buf, ","); 4529 if (tok && tok_buf) { 4530 strscpy(file_path, tok); 4531 } else { 4532 ret = -EINVAL; 4533 goto out; 4534 } 4535 4536 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end, 4537 &new_order, &in_folio_offset); 4538 if (ret != 2 && ret != 3 && ret != 4) { 4539 ret = -EINVAL; 4540 goto out; 4541 } 4542 ret = split_huge_pages_in_file(file_path, off_start, off_end, 4543 new_order, in_folio_offset); 4544 if (!ret) 4545 ret = input_len; 4546 4547 goto out; 4548 } 4549 4550 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start, 4551 &vaddr_end, &new_order, &in_folio_offset); 4552 if (ret == 1 && pid == 1) { 4553 split_huge_pages_all(); 4554 ret = strlen(input_buf); 4555 goto out; 4556 } else if (ret != 3 && ret != 4 && ret != 5) { 4557 ret = -EINVAL; 4558 goto out; 4559 } 4560 4561 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order, 4562 in_folio_offset); 4563 if (!ret) 4564 ret = strlen(input_buf); 4565 out: 4566 mutex_unlock(&split_debug_mutex); 4567 return ret; 4568 4569 } 4570 4571 static const struct file_operations split_huge_pages_fops = { 4572 .owner = THIS_MODULE, 4573 .write = split_huge_pages_write, 4574 }; 4575 4576 static int __init split_huge_pages_debugfs(void) 4577 { 4578 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 4579 &split_huge_pages_fops); 4580 return 0; 4581 } 4582 late_initcall(split_huge_pages_debugfs); 4583 #endif 4584 4585 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 4586 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 4587 struct page *page) 4588 { 4589 struct folio *folio = page_folio(page); 4590 struct vm_area_struct *vma = pvmw->vma; 4591 struct mm_struct *mm = vma->vm_mm; 4592 unsigned long address = pvmw->address; 4593 bool anon_exclusive; 4594 pmd_t pmdval; 4595 swp_entry_t entry; 4596 pmd_t pmdswp; 4597 4598 if (!(pvmw->pmd && !pvmw->pte)) 4599 return 0; 4600 4601 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 4602 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 4603 4604 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 4605 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 4606 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 4607 set_pmd_at(mm, address, pvmw->pmd, pmdval); 4608 return -EBUSY; 4609 } 4610 4611 if (pmd_dirty(pmdval)) 4612 folio_mark_dirty(folio); 4613 if (pmd_write(pmdval)) 4614 entry = make_writable_migration_entry(page_to_pfn(page)); 4615 else if (anon_exclusive) 4616 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 4617 else 4618 entry = make_readable_migration_entry(page_to_pfn(page)); 4619 if (pmd_young(pmdval)) 4620 entry = make_migration_entry_young(entry); 4621 if (pmd_dirty(pmdval)) 4622 entry = make_migration_entry_dirty(entry); 4623 pmdswp = swp_entry_to_pmd(entry); 4624 if (pmd_soft_dirty(pmdval)) 4625 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 4626 if (pmd_uffd_wp(pmdval)) 4627 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 4628 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 4629 folio_remove_rmap_pmd(folio, page, vma); 4630 folio_put(folio); 4631 trace_set_migration_pmd(address, pmd_val(pmdswp)); 4632 4633 return 0; 4634 } 4635 4636 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 4637 { 4638 struct folio *folio = page_folio(new); 4639 struct vm_area_struct *vma = pvmw->vma; 4640 struct mm_struct *mm = vma->vm_mm; 4641 unsigned long address = pvmw->address; 4642 unsigned long haddr = address & HPAGE_PMD_MASK; 4643 pmd_t pmde; 4644 swp_entry_t entry; 4645 4646 if (!(pvmw->pmd && !pvmw->pte)) 4647 return; 4648 4649 entry = pmd_to_swp_entry(*pvmw->pmd); 4650 folio_get(folio); 4651 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot)); 4652 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4653 pmde = pmd_mksoft_dirty(pmde); 4654 if (is_writable_migration_entry(entry)) 4655 pmde = pmd_mkwrite(pmde, vma); 4656 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4657 pmde = pmd_mkuffd_wp(pmde); 4658 if (!is_migration_entry_young(entry)) 4659 pmde = pmd_mkold(pmde); 4660 /* NOTE: this may contain setting soft-dirty on some archs */ 4661 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 4662 pmde = pmd_mkdirty(pmde); 4663 4664 if (folio_test_anon(folio)) { 4665 rmap_t rmap_flags = RMAP_NONE; 4666 4667 if (!is_readable_migration_entry(entry)) 4668 rmap_flags |= RMAP_EXCLUSIVE; 4669 4670 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 4671 } else { 4672 folio_add_file_rmap_pmd(folio, new, vma); 4673 } 4674 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 4675 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 4676 4677 /* No need to invalidate - it was non-present before */ 4678 update_mmu_cache_pmd(vma, address, pvmw->pmd); 4679 trace_remove_migration_pmd(address, pmd_val(pmde)); 4680 } 4681 #endif 4682