xref: /linux/mm/huge_memory.c (revision 5ff328836dfde0cef9f28c8b8791a90a36d7a183)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	if (vma_is_anonymous(vma))
68 		return __transparent_hugepage_enabled(vma);
69 	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
70 		return __transparent_hugepage_enabled(vma);
71 
72 	return false;
73 }
74 
75 static struct page *get_huge_zero_page(void)
76 {
77 	struct page *zero_page;
78 retry:
79 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
80 		return READ_ONCE(huge_zero_page);
81 
82 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
83 			HPAGE_PMD_ORDER);
84 	if (!zero_page) {
85 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
86 		return NULL;
87 	}
88 	count_vm_event(THP_ZERO_PAGE_ALLOC);
89 	preempt_disable();
90 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
91 		preempt_enable();
92 		__free_pages(zero_page, compound_order(zero_page));
93 		goto retry;
94 	}
95 
96 	/* We take additional reference here. It will be put back by shrinker */
97 	atomic_set(&huge_zero_refcount, 2);
98 	preempt_enable();
99 	return READ_ONCE(huge_zero_page);
100 }
101 
102 static void put_huge_zero_page(void)
103 {
104 	/*
105 	 * Counter should never go to zero here. Only shrinker can put
106 	 * last reference.
107 	 */
108 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
109 }
110 
111 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
112 {
113 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
114 		return READ_ONCE(huge_zero_page);
115 
116 	if (!get_huge_zero_page())
117 		return NULL;
118 
119 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
120 		put_huge_zero_page();
121 
122 	return READ_ONCE(huge_zero_page);
123 }
124 
125 void mm_put_huge_zero_page(struct mm_struct *mm)
126 {
127 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 		put_huge_zero_page();
129 }
130 
131 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
132 					struct shrink_control *sc)
133 {
134 	/* we can free zero page only if last reference remains */
135 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
136 }
137 
138 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
139 				       struct shrink_control *sc)
140 {
141 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
142 		struct page *zero_page = xchg(&huge_zero_page, NULL);
143 		BUG_ON(zero_page == NULL);
144 		__free_pages(zero_page, compound_order(zero_page));
145 		return HPAGE_PMD_NR;
146 	}
147 
148 	return 0;
149 }
150 
151 static struct shrinker huge_zero_page_shrinker = {
152 	.count_objects = shrink_huge_zero_page_count,
153 	.scan_objects = shrink_huge_zero_page_scan,
154 	.seeks = DEFAULT_SEEKS,
155 };
156 
157 #ifdef CONFIG_SYSFS
158 static ssize_t enabled_show(struct kobject *kobj,
159 			    struct kobj_attribute *attr, char *buf)
160 {
161 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
162 		return sprintf(buf, "[always] madvise never\n");
163 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
164 		return sprintf(buf, "always [madvise] never\n");
165 	else
166 		return sprintf(buf, "always madvise [never]\n");
167 }
168 
169 static ssize_t enabled_store(struct kobject *kobj,
170 			     struct kobj_attribute *attr,
171 			     const char *buf, size_t count)
172 {
173 	ssize_t ret = count;
174 
175 	if (!memcmp("always", buf,
176 		    min(sizeof("always")-1, count))) {
177 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
179 	} else if (!memcmp("madvise", buf,
180 			   min(sizeof("madvise")-1, count))) {
181 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
182 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
183 	} else if (!memcmp("never", buf,
184 			   min(sizeof("never")-1, count))) {
185 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
186 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 	} else
188 		ret = -EINVAL;
189 
190 	if (ret > 0) {
191 		int err = start_stop_khugepaged();
192 		if (err)
193 			ret = err;
194 	}
195 	return ret;
196 }
197 static struct kobj_attribute enabled_attr =
198 	__ATTR(enabled, 0644, enabled_show, enabled_store);
199 
200 ssize_t single_hugepage_flag_show(struct kobject *kobj,
201 				struct kobj_attribute *attr, char *buf,
202 				enum transparent_hugepage_flag flag)
203 {
204 	return sprintf(buf, "%d\n",
205 		       !!test_bit(flag, &transparent_hugepage_flags));
206 }
207 
208 ssize_t single_hugepage_flag_store(struct kobject *kobj,
209 				 struct kobj_attribute *attr,
210 				 const char *buf, size_t count,
211 				 enum transparent_hugepage_flag flag)
212 {
213 	unsigned long value;
214 	int ret;
215 
216 	ret = kstrtoul(buf, 10, &value);
217 	if (ret < 0)
218 		return ret;
219 	if (value > 1)
220 		return -EINVAL;
221 
222 	if (value)
223 		set_bit(flag, &transparent_hugepage_flags);
224 	else
225 		clear_bit(flag, &transparent_hugepage_flags);
226 
227 	return count;
228 }
229 
230 static ssize_t defrag_show(struct kobject *kobj,
231 			   struct kobj_attribute *attr, char *buf)
232 {
233 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
234 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
235 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
236 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
237 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
238 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
239 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
240 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
241 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
242 }
243 
244 static ssize_t defrag_store(struct kobject *kobj,
245 			    struct kobj_attribute *attr,
246 			    const char *buf, size_t count)
247 {
248 	if (!memcmp("always", buf,
249 		    min(sizeof("always")-1, count))) {
250 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
253 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 	} else if (!memcmp("defer+madvise", buf,
255 		    min(sizeof("defer+madvise")-1, count))) {
256 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
260 	} else if (!memcmp("defer", buf,
261 		    min(sizeof("defer")-1, count))) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
265 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 	} else if (!memcmp("madvise", buf,
267 			   min(sizeof("madvise")-1, count))) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 	} else if (!memcmp("never", buf,
273 			   min(sizeof("never")-1, count))) {
274 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 	} else
279 		return -EINVAL;
280 
281 	return count;
282 }
283 static struct kobj_attribute defrag_attr =
284 	__ATTR(defrag, 0644, defrag_show, defrag_store);
285 
286 static ssize_t use_zero_page_show(struct kobject *kobj,
287 		struct kobj_attribute *attr, char *buf)
288 {
289 	return single_hugepage_flag_show(kobj, attr, buf,
290 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
291 }
292 static ssize_t use_zero_page_store(struct kobject *kobj,
293 		struct kobj_attribute *attr, const char *buf, size_t count)
294 {
295 	return single_hugepage_flag_store(kobj, attr, buf, count,
296 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
297 }
298 static struct kobj_attribute use_zero_page_attr =
299 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
300 
301 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
302 		struct kobj_attribute *attr, char *buf)
303 {
304 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
305 }
306 static struct kobj_attribute hpage_pmd_size_attr =
307 	__ATTR_RO(hpage_pmd_size);
308 
309 #ifdef CONFIG_DEBUG_VM
310 static ssize_t debug_cow_show(struct kobject *kobj,
311 				struct kobj_attribute *attr, char *buf)
312 {
313 	return single_hugepage_flag_show(kobj, attr, buf,
314 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
315 }
316 static ssize_t debug_cow_store(struct kobject *kobj,
317 			       struct kobj_attribute *attr,
318 			       const char *buf, size_t count)
319 {
320 	return single_hugepage_flag_store(kobj, attr, buf, count,
321 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
322 }
323 static struct kobj_attribute debug_cow_attr =
324 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
325 #endif /* CONFIG_DEBUG_VM */
326 
327 static struct attribute *hugepage_attr[] = {
328 	&enabled_attr.attr,
329 	&defrag_attr.attr,
330 	&use_zero_page_attr.attr,
331 	&hpage_pmd_size_attr.attr,
332 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
333 	&shmem_enabled_attr.attr,
334 #endif
335 #ifdef CONFIG_DEBUG_VM
336 	&debug_cow_attr.attr,
337 #endif
338 	NULL,
339 };
340 
341 static const struct attribute_group hugepage_attr_group = {
342 	.attrs = hugepage_attr,
343 };
344 
345 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
346 {
347 	int err;
348 
349 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
350 	if (unlikely(!*hugepage_kobj)) {
351 		pr_err("failed to create transparent hugepage kobject\n");
352 		return -ENOMEM;
353 	}
354 
355 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
356 	if (err) {
357 		pr_err("failed to register transparent hugepage group\n");
358 		goto delete_obj;
359 	}
360 
361 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
362 	if (err) {
363 		pr_err("failed to register transparent hugepage group\n");
364 		goto remove_hp_group;
365 	}
366 
367 	return 0;
368 
369 remove_hp_group:
370 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
371 delete_obj:
372 	kobject_put(*hugepage_kobj);
373 	return err;
374 }
375 
376 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377 {
378 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
379 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
380 	kobject_put(hugepage_kobj);
381 }
382 #else
383 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
384 {
385 	return 0;
386 }
387 
388 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
389 {
390 }
391 #endif /* CONFIG_SYSFS */
392 
393 static int __init hugepage_init(void)
394 {
395 	int err;
396 	struct kobject *hugepage_kobj;
397 
398 	if (!has_transparent_hugepage()) {
399 		transparent_hugepage_flags = 0;
400 		return -EINVAL;
401 	}
402 
403 	/*
404 	 * hugepages can't be allocated by the buddy allocator
405 	 */
406 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
407 	/*
408 	 * we use page->mapping and page->index in second tail page
409 	 * as list_head: assuming THP order >= 2
410 	 */
411 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
412 
413 	err = hugepage_init_sysfs(&hugepage_kobj);
414 	if (err)
415 		goto err_sysfs;
416 
417 	err = khugepaged_init();
418 	if (err)
419 		goto err_slab;
420 
421 	err = register_shrinker(&huge_zero_page_shrinker);
422 	if (err)
423 		goto err_hzp_shrinker;
424 	err = register_shrinker(&deferred_split_shrinker);
425 	if (err)
426 		goto err_split_shrinker;
427 
428 	/*
429 	 * By default disable transparent hugepages on smaller systems,
430 	 * where the extra memory used could hurt more than TLB overhead
431 	 * is likely to save.  The admin can still enable it through /sys.
432 	 */
433 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
434 		transparent_hugepage_flags = 0;
435 		return 0;
436 	}
437 
438 	err = start_stop_khugepaged();
439 	if (err)
440 		goto err_khugepaged;
441 
442 	return 0;
443 err_khugepaged:
444 	unregister_shrinker(&deferred_split_shrinker);
445 err_split_shrinker:
446 	unregister_shrinker(&huge_zero_page_shrinker);
447 err_hzp_shrinker:
448 	khugepaged_destroy();
449 err_slab:
450 	hugepage_exit_sysfs(hugepage_kobj);
451 err_sysfs:
452 	return err;
453 }
454 subsys_initcall(hugepage_init);
455 
456 static int __init setup_transparent_hugepage(char *str)
457 {
458 	int ret = 0;
459 	if (!str)
460 		goto out;
461 	if (!strcmp(str, "always")) {
462 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 			&transparent_hugepage_flags);
464 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 			  &transparent_hugepage_flags);
466 		ret = 1;
467 	} else if (!strcmp(str, "madvise")) {
468 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 			  &transparent_hugepage_flags);
470 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 			&transparent_hugepage_flags);
472 		ret = 1;
473 	} else if (!strcmp(str, "never")) {
474 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 			  &transparent_hugepage_flags);
476 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 			  &transparent_hugepage_flags);
478 		ret = 1;
479 	}
480 out:
481 	if (!ret)
482 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
483 	return ret;
484 }
485 __setup("transparent_hugepage=", setup_transparent_hugepage);
486 
487 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
488 {
489 	if (likely(vma->vm_flags & VM_WRITE))
490 		pmd = pmd_mkwrite(pmd);
491 	return pmd;
492 }
493 
494 static inline struct list_head *page_deferred_list(struct page *page)
495 {
496 	/* ->lru in the tail pages is occupied by compound_head. */
497 	return &page[2].deferred_list;
498 }
499 
500 void prep_transhuge_page(struct page *page)
501 {
502 	/*
503 	 * we use page->mapping and page->indexlru in second tail page
504 	 * as list_head: assuming THP order >= 2
505 	 */
506 
507 	INIT_LIST_HEAD(page_deferred_list(page));
508 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
509 }
510 
511 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
512 		loff_t off, unsigned long flags, unsigned long size)
513 {
514 	unsigned long addr;
515 	loff_t off_end = off + len;
516 	loff_t off_align = round_up(off, size);
517 	unsigned long len_pad;
518 
519 	if (off_end <= off_align || (off_end - off_align) < size)
520 		return 0;
521 
522 	len_pad = len + size;
523 	if (len_pad < len || (off + len_pad) < off)
524 		return 0;
525 
526 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
527 					      off >> PAGE_SHIFT, flags);
528 	if (IS_ERR_VALUE(addr))
529 		return 0;
530 
531 	addr += (off - addr) & (size - 1);
532 	return addr;
533 }
534 
535 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
536 		unsigned long len, unsigned long pgoff, unsigned long flags)
537 {
538 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
539 
540 	if (addr)
541 		goto out;
542 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
543 		goto out;
544 
545 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
546 	if (addr)
547 		return addr;
548 
549  out:
550 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
551 }
552 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
553 
554 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
555 			struct page *page, gfp_t gfp)
556 {
557 	struct vm_area_struct *vma = vmf->vma;
558 	struct mem_cgroup *memcg;
559 	pgtable_t pgtable;
560 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
561 	vm_fault_t ret = 0;
562 
563 	VM_BUG_ON_PAGE(!PageCompound(page), page);
564 
565 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
566 		put_page(page);
567 		count_vm_event(THP_FAULT_FALLBACK);
568 		return VM_FAULT_FALLBACK;
569 	}
570 
571 	pgtable = pte_alloc_one(vma->vm_mm);
572 	if (unlikely(!pgtable)) {
573 		ret = VM_FAULT_OOM;
574 		goto release;
575 	}
576 
577 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
578 	/*
579 	 * The memory barrier inside __SetPageUptodate makes sure that
580 	 * clear_huge_page writes become visible before the set_pmd_at()
581 	 * write.
582 	 */
583 	__SetPageUptodate(page);
584 
585 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
586 	if (unlikely(!pmd_none(*vmf->pmd))) {
587 		goto unlock_release;
588 	} else {
589 		pmd_t entry;
590 
591 		ret = check_stable_address_space(vma->vm_mm);
592 		if (ret)
593 			goto unlock_release;
594 
595 		/* Deliver the page fault to userland */
596 		if (userfaultfd_missing(vma)) {
597 			vm_fault_t ret2;
598 
599 			spin_unlock(vmf->ptl);
600 			mem_cgroup_cancel_charge(page, memcg, true);
601 			put_page(page);
602 			pte_free(vma->vm_mm, pgtable);
603 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
604 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
605 			return ret2;
606 		}
607 
608 		entry = mk_huge_pmd(page, vma->vm_page_prot);
609 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
610 		page_add_new_anon_rmap(page, vma, haddr, true);
611 		mem_cgroup_commit_charge(page, memcg, false, true);
612 		lru_cache_add_active_or_unevictable(page, vma);
613 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
614 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
615 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
616 		mm_inc_nr_ptes(vma->vm_mm);
617 		spin_unlock(vmf->ptl);
618 		count_vm_event(THP_FAULT_ALLOC);
619 	}
620 
621 	return 0;
622 unlock_release:
623 	spin_unlock(vmf->ptl);
624 release:
625 	if (pgtable)
626 		pte_free(vma->vm_mm, pgtable);
627 	mem_cgroup_cancel_charge(page, memcg, true);
628 	put_page(page);
629 	return ret;
630 
631 }
632 
633 /*
634  * always: directly stall for all thp allocations
635  * defer: wake kswapd and fail if not immediately available
636  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
637  *		  fail if not immediately available
638  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
639  *	    available
640  * never: never stall for any thp allocation
641  */
642 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
643 {
644 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
645 
646 	/* Always do synchronous compaction */
647 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
648 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
649 
650 	/* Kick kcompactd and fail quickly */
651 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
652 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
653 
654 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
655 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
656 		return GFP_TRANSHUGE_LIGHT |
657 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
658 					__GFP_KSWAPD_RECLAIM);
659 
660 	/* Only do synchronous compaction if madvised */
661 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
662 		return GFP_TRANSHUGE_LIGHT |
663 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
664 
665 	return GFP_TRANSHUGE_LIGHT;
666 }
667 
668 /* Caller must hold page table lock. */
669 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
670 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
671 		struct page *zero_page)
672 {
673 	pmd_t entry;
674 	if (!pmd_none(*pmd))
675 		return false;
676 	entry = mk_pmd(zero_page, vma->vm_page_prot);
677 	entry = pmd_mkhuge(entry);
678 	if (pgtable)
679 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
680 	set_pmd_at(mm, haddr, pmd, entry);
681 	mm_inc_nr_ptes(mm);
682 	return true;
683 }
684 
685 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
686 {
687 	struct vm_area_struct *vma = vmf->vma;
688 	gfp_t gfp;
689 	struct page *page;
690 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
691 
692 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
693 		return VM_FAULT_FALLBACK;
694 	if (unlikely(anon_vma_prepare(vma)))
695 		return VM_FAULT_OOM;
696 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
697 		return VM_FAULT_OOM;
698 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
699 			!mm_forbids_zeropage(vma->vm_mm) &&
700 			transparent_hugepage_use_zero_page()) {
701 		pgtable_t pgtable;
702 		struct page *zero_page;
703 		bool set;
704 		vm_fault_t ret;
705 		pgtable = pte_alloc_one(vma->vm_mm);
706 		if (unlikely(!pgtable))
707 			return VM_FAULT_OOM;
708 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
709 		if (unlikely(!zero_page)) {
710 			pte_free(vma->vm_mm, pgtable);
711 			count_vm_event(THP_FAULT_FALLBACK);
712 			return VM_FAULT_FALLBACK;
713 		}
714 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
715 		ret = 0;
716 		set = false;
717 		if (pmd_none(*vmf->pmd)) {
718 			ret = check_stable_address_space(vma->vm_mm);
719 			if (ret) {
720 				spin_unlock(vmf->ptl);
721 			} else if (userfaultfd_missing(vma)) {
722 				spin_unlock(vmf->ptl);
723 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
724 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
725 			} else {
726 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
727 						   haddr, vmf->pmd, zero_page);
728 				spin_unlock(vmf->ptl);
729 				set = true;
730 			}
731 		} else
732 			spin_unlock(vmf->ptl);
733 		if (!set)
734 			pte_free(vma->vm_mm, pgtable);
735 		return ret;
736 	}
737 	gfp = alloc_hugepage_direct_gfpmask(vma);
738 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
739 	if (unlikely(!page)) {
740 		count_vm_event(THP_FAULT_FALLBACK);
741 		return VM_FAULT_FALLBACK;
742 	}
743 	prep_transhuge_page(page);
744 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
745 }
746 
747 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
748 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
749 		pgtable_t pgtable)
750 {
751 	struct mm_struct *mm = vma->vm_mm;
752 	pmd_t entry;
753 	spinlock_t *ptl;
754 
755 	ptl = pmd_lock(mm, pmd);
756 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
757 	if (pfn_t_devmap(pfn))
758 		entry = pmd_mkdevmap(entry);
759 	if (write) {
760 		entry = pmd_mkyoung(pmd_mkdirty(entry));
761 		entry = maybe_pmd_mkwrite(entry, vma);
762 	}
763 
764 	if (pgtable) {
765 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
766 		mm_inc_nr_ptes(mm);
767 	}
768 
769 	set_pmd_at(mm, addr, pmd, entry);
770 	update_mmu_cache_pmd(vma, addr, pmd);
771 	spin_unlock(ptl);
772 }
773 
774 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
775 			pmd_t *pmd, pfn_t pfn, bool write)
776 {
777 	pgprot_t pgprot = vma->vm_page_prot;
778 	pgtable_t pgtable = NULL;
779 	/*
780 	 * If we had pmd_special, we could avoid all these restrictions,
781 	 * but we need to be consistent with PTEs and architectures that
782 	 * can't support a 'special' bit.
783 	 */
784 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
785 			!pfn_t_devmap(pfn));
786 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
787 						(VM_PFNMAP|VM_MIXEDMAP));
788 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
789 
790 	if (addr < vma->vm_start || addr >= vma->vm_end)
791 		return VM_FAULT_SIGBUS;
792 
793 	if (arch_needs_pgtable_deposit()) {
794 		pgtable = pte_alloc_one(vma->vm_mm);
795 		if (!pgtable)
796 			return VM_FAULT_OOM;
797 	}
798 
799 	track_pfn_insert(vma, &pgprot, pfn);
800 
801 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
802 	return VM_FAULT_NOPAGE;
803 }
804 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
805 
806 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
807 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
808 {
809 	if (likely(vma->vm_flags & VM_WRITE))
810 		pud = pud_mkwrite(pud);
811 	return pud;
812 }
813 
814 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
815 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
816 {
817 	struct mm_struct *mm = vma->vm_mm;
818 	pud_t entry;
819 	spinlock_t *ptl;
820 
821 	ptl = pud_lock(mm, pud);
822 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
823 	if (pfn_t_devmap(pfn))
824 		entry = pud_mkdevmap(entry);
825 	if (write) {
826 		entry = pud_mkyoung(pud_mkdirty(entry));
827 		entry = maybe_pud_mkwrite(entry, vma);
828 	}
829 	set_pud_at(mm, addr, pud, entry);
830 	update_mmu_cache_pud(vma, addr, pud);
831 	spin_unlock(ptl);
832 }
833 
834 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
835 			pud_t *pud, pfn_t pfn, bool write)
836 {
837 	pgprot_t pgprot = vma->vm_page_prot;
838 	/*
839 	 * If we had pud_special, we could avoid all these restrictions,
840 	 * but we need to be consistent with PTEs and architectures that
841 	 * can't support a 'special' bit.
842 	 */
843 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
844 			!pfn_t_devmap(pfn));
845 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
846 						(VM_PFNMAP|VM_MIXEDMAP));
847 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
848 
849 	if (addr < vma->vm_start || addr >= vma->vm_end)
850 		return VM_FAULT_SIGBUS;
851 
852 	track_pfn_insert(vma, &pgprot, pfn);
853 
854 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
855 	return VM_FAULT_NOPAGE;
856 }
857 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
858 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
859 
860 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
861 		pmd_t *pmd, int flags)
862 {
863 	pmd_t _pmd;
864 
865 	_pmd = pmd_mkyoung(*pmd);
866 	if (flags & FOLL_WRITE)
867 		_pmd = pmd_mkdirty(_pmd);
868 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
869 				pmd, _pmd, flags & FOLL_WRITE))
870 		update_mmu_cache_pmd(vma, addr, pmd);
871 }
872 
873 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
874 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
875 {
876 	unsigned long pfn = pmd_pfn(*pmd);
877 	struct mm_struct *mm = vma->vm_mm;
878 	struct page *page;
879 
880 	assert_spin_locked(pmd_lockptr(mm, pmd));
881 
882 	/*
883 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
884 	 * not be in this function with `flags & FOLL_COW` set.
885 	 */
886 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
887 
888 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
889 		return NULL;
890 
891 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
892 		/* pass */;
893 	else
894 		return NULL;
895 
896 	if (flags & FOLL_TOUCH)
897 		touch_pmd(vma, addr, pmd, flags);
898 
899 	/*
900 	 * device mapped pages can only be returned if the
901 	 * caller will manage the page reference count.
902 	 */
903 	if (!(flags & FOLL_GET))
904 		return ERR_PTR(-EEXIST);
905 
906 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
907 	*pgmap = get_dev_pagemap(pfn, *pgmap);
908 	if (!*pgmap)
909 		return ERR_PTR(-EFAULT);
910 	page = pfn_to_page(pfn);
911 	get_page(page);
912 
913 	return page;
914 }
915 
916 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
917 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
918 		  struct vm_area_struct *vma)
919 {
920 	spinlock_t *dst_ptl, *src_ptl;
921 	struct page *src_page;
922 	pmd_t pmd;
923 	pgtable_t pgtable = NULL;
924 	int ret = -ENOMEM;
925 
926 	/* Skip if can be re-fill on fault */
927 	if (!vma_is_anonymous(vma))
928 		return 0;
929 
930 	pgtable = pte_alloc_one(dst_mm);
931 	if (unlikely(!pgtable))
932 		goto out;
933 
934 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
935 	src_ptl = pmd_lockptr(src_mm, src_pmd);
936 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 
938 	ret = -EAGAIN;
939 	pmd = *src_pmd;
940 
941 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
942 	if (unlikely(is_swap_pmd(pmd))) {
943 		swp_entry_t entry = pmd_to_swp_entry(pmd);
944 
945 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
946 		if (is_write_migration_entry(entry)) {
947 			make_migration_entry_read(&entry);
948 			pmd = swp_entry_to_pmd(entry);
949 			if (pmd_swp_soft_dirty(*src_pmd))
950 				pmd = pmd_swp_mksoft_dirty(pmd);
951 			set_pmd_at(src_mm, addr, src_pmd, pmd);
952 		}
953 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
954 		mm_inc_nr_ptes(dst_mm);
955 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
956 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
957 		ret = 0;
958 		goto out_unlock;
959 	}
960 #endif
961 
962 	if (unlikely(!pmd_trans_huge(pmd))) {
963 		pte_free(dst_mm, pgtable);
964 		goto out_unlock;
965 	}
966 	/*
967 	 * When page table lock is held, the huge zero pmd should not be
968 	 * under splitting since we don't split the page itself, only pmd to
969 	 * a page table.
970 	 */
971 	if (is_huge_zero_pmd(pmd)) {
972 		struct page *zero_page;
973 		/*
974 		 * get_huge_zero_page() will never allocate a new page here,
975 		 * since we already have a zero page to copy. It just takes a
976 		 * reference.
977 		 */
978 		zero_page = mm_get_huge_zero_page(dst_mm);
979 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
980 				zero_page);
981 		ret = 0;
982 		goto out_unlock;
983 	}
984 
985 	src_page = pmd_page(pmd);
986 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
987 	get_page(src_page);
988 	page_dup_rmap(src_page, true);
989 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
990 	mm_inc_nr_ptes(dst_mm);
991 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
992 
993 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
994 	pmd = pmd_mkold(pmd_wrprotect(pmd));
995 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
996 
997 	ret = 0;
998 out_unlock:
999 	spin_unlock(src_ptl);
1000 	spin_unlock(dst_ptl);
1001 out:
1002 	return ret;
1003 }
1004 
1005 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1006 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1007 		pud_t *pud, int flags)
1008 {
1009 	pud_t _pud;
1010 
1011 	_pud = pud_mkyoung(*pud);
1012 	if (flags & FOLL_WRITE)
1013 		_pud = pud_mkdirty(_pud);
1014 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1015 				pud, _pud, flags & FOLL_WRITE))
1016 		update_mmu_cache_pud(vma, addr, pud);
1017 }
1018 
1019 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1020 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1021 {
1022 	unsigned long pfn = pud_pfn(*pud);
1023 	struct mm_struct *mm = vma->vm_mm;
1024 	struct page *page;
1025 
1026 	assert_spin_locked(pud_lockptr(mm, pud));
1027 
1028 	if (flags & FOLL_WRITE && !pud_write(*pud))
1029 		return NULL;
1030 
1031 	if (pud_present(*pud) && pud_devmap(*pud))
1032 		/* pass */;
1033 	else
1034 		return NULL;
1035 
1036 	if (flags & FOLL_TOUCH)
1037 		touch_pud(vma, addr, pud, flags);
1038 
1039 	/*
1040 	 * device mapped pages can only be returned if the
1041 	 * caller will manage the page reference count.
1042 	 */
1043 	if (!(flags & FOLL_GET))
1044 		return ERR_PTR(-EEXIST);
1045 
1046 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1047 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1048 	if (!*pgmap)
1049 		return ERR_PTR(-EFAULT);
1050 	page = pfn_to_page(pfn);
1051 	get_page(page);
1052 
1053 	return page;
1054 }
1055 
1056 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1057 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1058 		  struct vm_area_struct *vma)
1059 {
1060 	spinlock_t *dst_ptl, *src_ptl;
1061 	pud_t pud;
1062 	int ret;
1063 
1064 	dst_ptl = pud_lock(dst_mm, dst_pud);
1065 	src_ptl = pud_lockptr(src_mm, src_pud);
1066 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1067 
1068 	ret = -EAGAIN;
1069 	pud = *src_pud;
1070 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1071 		goto out_unlock;
1072 
1073 	/*
1074 	 * When page table lock is held, the huge zero pud should not be
1075 	 * under splitting since we don't split the page itself, only pud to
1076 	 * a page table.
1077 	 */
1078 	if (is_huge_zero_pud(pud)) {
1079 		/* No huge zero pud yet */
1080 	}
1081 
1082 	pudp_set_wrprotect(src_mm, addr, src_pud);
1083 	pud = pud_mkold(pud_wrprotect(pud));
1084 	set_pud_at(dst_mm, addr, dst_pud, pud);
1085 
1086 	ret = 0;
1087 out_unlock:
1088 	spin_unlock(src_ptl);
1089 	spin_unlock(dst_ptl);
1090 	return ret;
1091 }
1092 
1093 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1094 {
1095 	pud_t entry;
1096 	unsigned long haddr;
1097 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1098 
1099 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1100 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1101 		goto unlock;
1102 
1103 	entry = pud_mkyoung(orig_pud);
1104 	if (write)
1105 		entry = pud_mkdirty(entry);
1106 	haddr = vmf->address & HPAGE_PUD_MASK;
1107 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1108 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1109 
1110 unlock:
1111 	spin_unlock(vmf->ptl);
1112 }
1113 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1114 
1115 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1116 {
1117 	pmd_t entry;
1118 	unsigned long haddr;
1119 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1120 
1121 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1122 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1123 		goto unlock;
1124 
1125 	entry = pmd_mkyoung(orig_pmd);
1126 	if (write)
1127 		entry = pmd_mkdirty(entry);
1128 	haddr = vmf->address & HPAGE_PMD_MASK;
1129 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1130 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1131 
1132 unlock:
1133 	spin_unlock(vmf->ptl);
1134 }
1135 
1136 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1137 			pmd_t orig_pmd, struct page *page)
1138 {
1139 	struct vm_area_struct *vma = vmf->vma;
1140 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1141 	struct mem_cgroup *memcg;
1142 	pgtable_t pgtable;
1143 	pmd_t _pmd;
1144 	int i;
1145 	vm_fault_t ret = 0;
1146 	struct page **pages;
1147 	struct mmu_notifier_range range;
1148 
1149 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1150 			      GFP_KERNEL);
1151 	if (unlikely(!pages)) {
1152 		ret |= VM_FAULT_OOM;
1153 		goto out;
1154 	}
1155 
1156 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1157 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1158 					       vmf->address, page_to_nid(page));
1159 		if (unlikely(!pages[i] ||
1160 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1161 				     GFP_KERNEL, &memcg, false))) {
1162 			if (pages[i])
1163 				put_page(pages[i]);
1164 			while (--i >= 0) {
1165 				memcg = (void *)page_private(pages[i]);
1166 				set_page_private(pages[i], 0);
1167 				mem_cgroup_cancel_charge(pages[i], memcg,
1168 						false);
1169 				put_page(pages[i]);
1170 			}
1171 			kfree(pages);
1172 			ret |= VM_FAULT_OOM;
1173 			goto out;
1174 		}
1175 		set_page_private(pages[i], (unsigned long)memcg);
1176 	}
1177 
1178 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1179 		copy_user_highpage(pages[i], page + i,
1180 				   haddr + PAGE_SIZE * i, vma);
1181 		__SetPageUptodate(pages[i]);
1182 		cond_resched();
1183 	}
1184 
1185 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1186 				haddr + HPAGE_PMD_SIZE);
1187 	mmu_notifier_invalidate_range_start(&range);
1188 
1189 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1190 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1191 		goto out_free_pages;
1192 	VM_BUG_ON_PAGE(!PageHead(page), page);
1193 
1194 	/*
1195 	 * Leave pmd empty until pte is filled note we must notify here as
1196 	 * concurrent CPU thread might write to new page before the call to
1197 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1198 	 * device seeing memory write in different order than CPU.
1199 	 *
1200 	 * See Documentation/vm/mmu_notifier.rst
1201 	 */
1202 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1203 
1204 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1205 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1206 
1207 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1208 		pte_t entry;
1209 		entry = mk_pte(pages[i], vma->vm_page_prot);
1210 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1211 		memcg = (void *)page_private(pages[i]);
1212 		set_page_private(pages[i], 0);
1213 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1214 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1215 		lru_cache_add_active_or_unevictable(pages[i], vma);
1216 		vmf->pte = pte_offset_map(&_pmd, haddr);
1217 		VM_BUG_ON(!pte_none(*vmf->pte));
1218 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1219 		pte_unmap(vmf->pte);
1220 	}
1221 	kfree(pages);
1222 
1223 	smp_wmb(); /* make pte visible before pmd */
1224 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1225 	page_remove_rmap(page, true);
1226 	spin_unlock(vmf->ptl);
1227 
1228 	/*
1229 	 * No need to double call mmu_notifier->invalidate_range() callback as
1230 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1231 	 */
1232 	mmu_notifier_invalidate_range_only_end(&range);
1233 
1234 	ret |= VM_FAULT_WRITE;
1235 	put_page(page);
1236 
1237 out:
1238 	return ret;
1239 
1240 out_free_pages:
1241 	spin_unlock(vmf->ptl);
1242 	mmu_notifier_invalidate_range_end(&range);
1243 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1244 		memcg = (void *)page_private(pages[i]);
1245 		set_page_private(pages[i], 0);
1246 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1247 		put_page(pages[i]);
1248 	}
1249 	kfree(pages);
1250 	goto out;
1251 }
1252 
1253 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1254 {
1255 	struct vm_area_struct *vma = vmf->vma;
1256 	struct page *page = NULL, *new_page;
1257 	struct mem_cgroup *memcg;
1258 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1259 	struct mmu_notifier_range range;
1260 	gfp_t huge_gfp;			/* for allocation and charge */
1261 	vm_fault_t ret = 0;
1262 
1263 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1264 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1265 	if (is_huge_zero_pmd(orig_pmd))
1266 		goto alloc;
1267 	spin_lock(vmf->ptl);
1268 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1269 		goto out_unlock;
1270 
1271 	page = pmd_page(orig_pmd);
1272 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1273 	/*
1274 	 * We can only reuse the page if nobody else maps the huge page or it's
1275 	 * part.
1276 	 */
1277 	if (!trylock_page(page)) {
1278 		get_page(page);
1279 		spin_unlock(vmf->ptl);
1280 		lock_page(page);
1281 		spin_lock(vmf->ptl);
1282 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1283 			unlock_page(page);
1284 			put_page(page);
1285 			goto out_unlock;
1286 		}
1287 		put_page(page);
1288 	}
1289 	if (reuse_swap_page(page, NULL)) {
1290 		pmd_t entry;
1291 		entry = pmd_mkyoung(orig_pmd);
1292 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1293 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1294 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1295 		ret |= VM_FAULT_WRITE;
1296 		unlock_page(page);
1297 		goto out_unlock;
1298 	}
1299 	unlock_page(page);
1300 	get_page(page);
1301 	spin_unlock(vmf->ptl);
1302 alloc:
1303 	if (__transparent_hugepage_enabled(vma) &&
1304 	    !transparent_hugepage_debug_cow()) {
1305 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1306 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1307 	} else
1308 		new_page = NULL;
1309 
1310 	if (likely(new_page)) {
1311 		prep_transhuge_page(new_page);
1312 	} else {
1313 		if (!page) {
1314 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1315 			ret |= VM_FAULT_FALLBACK;
1316 		} else {
1317 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1318 			if (ret & VM_FAULT_OOM) {
1319 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1320 				ret |= VM_FAULT_FALLBACK;
1321 			}
1322 			put_page(page);
1323 		}
1324 		count_vm_event(THP_FAULT_FALLBACK);
1325 		goto out;
1326 	}
1327 
1328 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1329 					huge_gfp, &memcg, true))) {
1330 		put_page(new_page);
1331 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1332 		if (page)
1333 			put_page(page);
1334 		ret |= VM_FAULT_FALLBACK;
1335 		count_vm_event(THP_FAULT_FALLBACK);
1336 		goto out;
1337 	}
1338 
1339 	count_vm_event(THP_FAULT_ALLOC);
1340 
1341 	if (!page)
1342 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1343 	else
1344 		copy_user_huge_page(new_page, page, vmf->address,
1345 				    vma, HPAGE_PMD_NR);
1346 	__SetPageUptodate(new_page);
1347 
1348 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1349 				haddr + HPAGE_PMD_SIZE);
1350 	mmu_notifier_invalidate_range_start(&range);
1351 
1352 	spin_lock(vmf->ptl);
1353 	if (page)
1354 		put_page(page);
1355 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1356 		spin_unlock(vmf->ptl);
1357 		mem_cgroup_cancel_charge(new_page, memcg, true);
1358 		put_page(new_page);
1359 		goto out_mn;
1360 	} else {
1361 		pmd_t entry;
1362 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1363 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1364 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1365 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1366 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1367 		lru_cache_add_active_or_unevictable(new_page, vma);
1368 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1369 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1370 		if (!page) {
1371 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1372 		} else {
1373 			VM_BUG_ON_PAGE(!PageHead(page), page);
1374 			page_remove_rmap(page, true);
1375 			put_page(page);
1376 		}
1377 		ret |= VM_FAULT_WRITE;
1378 	}
1379 	spin_unlock(vmf->ptl);
1380 out_mn:
1381 	/*
1382 	 * No need to double call mmu_notifier->invalidate_range() callback as
1383 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1384 	 */
1385 	mmu_notifier_invalidate_range_only_end(&range);
1386 out:
1387 	return ret;
1388 out_unlock:
1389 	spin_unlock(vmf->ptl);
1390 	return ret;
1391 }
1392 
1393 /*
1394  * FOLL_FORCE can write to even unwritable pmd's, but only
1395  * after we've gone through a COW cycle and they are dirty.
1396  */
1397 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1398 {
1399 	return pmd_write(pmd) ||
1400 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1401 }
1402 
1403 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1404 				   unsigned long addr,
1405 				   pmd_t *pmd,
1406 				   unsigned int flags)
1407 {
1408 	struct mm_struct *mm = vma->vm_mm;
1409 	struct page *page = NULL;
1410 
1411 	assert_spin_locked(pmd_lockptr(mm, pmd));
1412 
1413 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1414 		goto out;
1415 
1416 	/* Avoid dumping huge zero page */
1417 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1418 		return ERR_PTR(-EFAULT);
1419 
1420 	/* Full NUMA hinting faults to serialise migration in fault paths */
1421 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1422 		goto out;
1423 
1424 	page = pmd_page(*pmd);
1425 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1426 	if (flags & FOLL_TOUCH)
1427 		touch_pmd(vma, addr, pmd, flags);
1428 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1429 		/*
1430 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1431 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1432 		 *
1433 		 * For anon THP:
1434 		 *
1435 		 * In most cases the pmd is the only mapping of the page as we
1436 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1437 		 * writable private mappings in populate_vma_page_range().
1438 		 *
1439 		 * The only scenario when we have the page shared here is if we
1440 		 * mlocking read-only mapping shared over fork(). We skip
1441 		 * mlocking such pages.
1442 		 *
1443 		 * For file THP:
1444 		 *
1445 		 * We can expect PageDoubleMap() to be stable under page lock:
1446 		 * for file pages we set it in page_add_file_rmap(), which
1447 		 * requires page to be locked.
1448 		 */
1449 
1450 		if (PageAnon(page) && compound_mapcount(page) != 1)
1451 			goto skip_mlock;
1452 		if (PageDoubleMap(page) || !page->mapping)
1453 			goto skip_mlock;
1454 		if (!trylock_page(page))
1455 			goto skip_mlock;
1456 		lru_add_drain();
1457 		if (page->mapping && !PageDoubleMap(page))
1458 			mlock_vma_page(page);
1459 		unlock_page(page);
1460 	}
1461 skip_mlock:
1462 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1463 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1464 	if (flags & FOLL_GET)
1465 		get_page(page);
1466 
1467 out:
1468 	return page;
1469 }
1470 
1471 /* NUMA hinting page fault entry point for trans huge pmds */
1472 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1473 {
1474 	struct vm_area_struct *vma = vmf->vma;
1475 	struct anon_vma *anon_vma = NULL;
1476 	struct page *page;
1477 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1478 	int page_nid = -1, this_nid = numa_node_id();
1479 	int target_nid, last_cpupid = -1;
1480 	bool page_locked;
1481 	bool migrated = false;
1482 	bool was_writable;
1483 	int flags = 0;
1484 
1485 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1486 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1487 		goto out_unlock;
1488 
1489 	/*
1490 	 * If there are potential migrations, wait for completion and retry
1491 	 * without disrupting NUMA hinting information. Do not relock and
1492 	 * check_same as the page may no longer be mapped.
1493 	 */
1494 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1495 		page = pmd_page(*vmf->pmd);
1496 		if (!get_page_unless_zero(page))
1497 			goto out_unlock;
1498 		spin_unlock(vmf->ptl);
1499 		put_and_wait_on_page_locked(page);
1500 		goto out;
1501 	}
1502 
1503 	page = pmd_page(pmd);
1504 	BUG_ON(is_huge_zero_page(page));
1505 	page_nid = page_to_nid(page);
1506 	last_cpupid = page_cpupid_last(page);
1507 	count_vm_numa_event(NUMA_HINT_FAULTS);
1508 	if (page_nid == this_nid) {
1509 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1510 		flags |= TNF_FAULT_LOCAL;
1511 	}
1512 
1513 	/* See similar comment in do_numa_page for explanation */
1514 	if (!pmd_savedwrite(pmd))
1515 		flags |= TNF_NO_GROUP;
1516 
1517 	/*
1518 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1519 	 * page_table_lock if at all possible
1520 	 */
1521 	page_locked = trylock_page(page);
1522 	target_nid = mpol_misplaced(page, vma, haddr);
1523 	if (target_nid == -1) {
1524 		/* If the page was locked, there are no parallel migrations */
1525 		if (page_locked)
1526 			goto clear_pmdnuma;
1527 	}
1528 
1529 	/* Migration could have started since the pmd_trans_migrating check */
1530 	if (!page_locked) {
1531 		page_nid = -1;
1532 		if (!get_page_unless_zero(page))
1533 			goto out_unlock;
1534 		spin_unlock(vmf->ptl);
1535 		put_and_wait_on_page_locked(page);
1536 		goto out;
1537 	}
1538 
1539 	/*
1540 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1541 	 * to serialises splits
1542 	 */
1543 	get_page(page);
1544 	spin_unlock(vmf->ptl);
1545 	anon_vma = page_lock_anon_vma_read(page);
1546 
1547 	/* Confirm the PMD did not change while page_table_lock was released */
1548 	spin_lock(vmf->ptl);
1549 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1550 		unlock_page(page);
1551 		put_page(page);
1552 		page_nid = -1;
1553 		goto out_unlock;
1554 	}
1555 
1556 	/* Bail if we fail to protect against THP splits for any reason */
1557 	if (unlikely(!anon_vma)) {
1558 		put_page(page);
1559 		page_nid = -1;
1560 		goto clear_pmdnuma;
1561 	}
1562 
1563 	/*
1564 	 * Since we took the NUMA fault, we must have observed the !accessible
1565 	 * bit. Make sure all other CPUs agree with that, to avoid them
1566 	 * modifying the page we're about to migrate.
1567 	 *
1568 	 * Must be done under PTL such that we'll observe the relevant
1569 	 * inc_tlb_flush_pending().
1570 	 *
1571 	 * We are not sure a pending tlb flush here is for a huge page
1572 	 * mapping or not. Hence use the tlb range variant
1573 	 */
1574 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1575 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1576 		/*
1577 		 * change_huge_pmd() released the pmd lock before
1578 		 * invalidating the secondary MMUs sharing the primary
1579 		 * MMU pagetables (with ->invalidate_range()). The
1580 		 * mmu_notifier_invalidate_range_end() (which
1581 		 * internally calls ->invalidate_range()) in
1582 		 * change_pmd_range() will run after us, so we can't
1583 		 * rely on it here and we need an explicit invalidate.
1584 		 */
1585 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1586 					      haddr + HPAGE_PMD_SIZE);
1587 	}
1588 
1589 	/*
1590 	 * Migrate the THP to the requested node, returns with page unlocked
1591 	 * and access rights restored.
1592 	 */
1593 	spin_unlock(vmf->ptl);
1594 
1595 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1596 				vmf->pmd, pmd, vmf->address, page, target_nid);
1597 	if (migrated) {
1598 		flags |= TNF_MIGRATED;
1599 		page_nid = target_nid;
1600 	} else
1601 		flags |= TNF_MIGRATE_FAIL;
1602 
1603 	goto out;
1604 clear_pmdnuma:
1605 	BUG_ON(!PageLocked(page));
1606 	was_writable = pmd_savedwrite(pmd);
1607 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1608 	pmd = pmd_mkyoung(pmd);
1609 	if (was_writable)
1610 		pmd = pmd_mkwrite(pmd);
1611 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1612 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1613 	unlock_page(page);
1614 out_unlock:
1615 	spin_unlock(vmf->ptl);
1616 
1617 out:
1618 	if (anon_vma)
1619 		page_unlock_anon_vma_read(anon_vma);
1620 
1621 	if (page_nid != -1)
1622 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1623 				flags);
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Return true if we do MADV_FREE successfully on entire pmd page.
1630  * Otherwise, return false.
1631  */
1632 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1633 		pmd_t *pmd, unsigned long addr, unsigned long next)
1634 {
1635 	spinlock_t *ptl;
1636 	pmd_t orig_pmd;
1637 	struct page *page;
1638 	struct mm_struct *mm = tlb->mm;
1639 	bool ret = false;
1640 
1641 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1642 
1643 	ptl = pmd_trans_huge_lock(pmd, vma);
1644 	if (!ptl)
1645 		goto out_unlocked;
1646 
1647 	orig_pmd = *pmd;
1648 	if (is_huge_zero_pmd(orig_pmd))
1649 		goto out;
1650 
1651 	if (unlikely(!pmd_present(orig_pmd))) {
1652 		VM_BUG_ON(thp_migration_supported() &&
1653 				  !is_pmd_migration_entry(orig_pmd));
1654 		goto out;
1655 	}
1656 
1657 	page = pmd_page(orig_pmd);
1658 	/*
1659 	 * If other processes are mapping this page, we couldn't discard
1660 	 * the page unless they all do MADV_FREE so let's skip the page.
1661 	 */
1662 	if (page_mapcount(page) != 1)
1663 		goto out;
1664 
1665 	if (!trylock_page(page))
1666 		goto out;
1667 
1668 	/*
1669 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1670 	 * will deactivate only them.
1671 	 */
1672 	if (next - addr != HPAGE_PMD_SIZE) {
1673 		get_page(page);
1674 		spin_unlock(ptl);
1675 		split_huge_page(page);
1676 		unlock_page(page);
1677 		put_page(page);
1678 		goto out_unlocked;
1679 	}
1680 
1681 	if (PageDirty(page))
1682 		ClearPageDirty(page);
1683 	unlock_page(page);
1684 
1685 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1686 		pmdp_invalidate(vma, addr, pmd);
1687 		orig_pmd = pmd_mkold(orig_pmd);
1688 		orig_pmd = pmd_mkclean(orig_pmd);
1689 
1690 		set_pmd_at(mm, addr, pmd, orig_pmd);
1691 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1692 	}
1693 
1694 	mark_page_lazyfree(page);
1695 	ret = true;
1696 out:
1697 	spin_unlock(ptl);
1698 out_unlocked:
1699 	return ret;
1700 }
1701 
1702 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1703 {
1704 	pgtable_t pgtable;
1705 
1706 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1707 	pte_free(mm, pgtable);
1708 	mm_dec_nr_ptes(mm);
1709 }
1710 
1711 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1712 		 pmd_t *pmd, unsigned long addr)
1713 {
1714 	pmd_t orig_pmd;
1715 	spinlock_t *ptl;
1716 
1717 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1718 
1719 	ptl = __pmd_trans_huge_lock(pmd, vma);
1720 	if (!ptl)
1721 		return 0;
1722 	/*
1723 	 * For architectures like ppc64 we look at deposited pgtable
1724 	 * when calling pmdp_huge_get_and_clear. So do the
1725 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1726 	 * operations.
1727 	 */
1728 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1729 			tlb->fullmm);
1730 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1731 	if (vma_is_dax(vma)) {
1732 		if (arch_needs_pgtable_deposit())
1733 			zap_deposited_table(tlb->mm, pmd);
1734 		spin_unlock(ptl);
1735 		if (is_huge_zero_pmd(orig_pmd))
1736 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1737 	} else if (is_huge_zero_pmd(orig_pmd)) {
1738 		zap_deposited_table(tlb->mm, pmd);
1739 		spin_unlock(ptl);
1740 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1741 	} else {
1742 		struct page *page = NULL;
1743 		int flush_needed = 1;
1744 
1745 		if (pmd_present(orig_pmd)) {
1746 			page = pmd_page(orig_pmd);
1747 			page_remove_rmap(page, true);
1748 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1749 			VM_BUG_ON_PAGE(!PageHead(page), page);
1750 		} else if (thp_migration_supported()) {
1751 			swp_entry_t entry;
1752 
1753 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1754 			entry = pmd_to_swp_entry(orig_pmd);
1755 			page = pfn_to_page(swp_offset(entry));
1756 			flush_needed = 0;
1757 		} else
1758 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1759 
1760 		if (PageAnon(page)) {
1761 			zap_deposited_table(tlb->mm, pmd);
1762 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1763 		} else {
1764 			if (arch_needs_pgtable_deposit())
1765 				zap_deposited_table(tlb->mm, pmd);
1766 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1767 		}
1768 
1769 		spin_unlock(ptl);
1770 		if (flush_needed)
1771 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1772 	}
1773 	return 1;
1774 }
1775 
1776 #ifndef pmd_move_must_withdraw
1777 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1778 					 spinlock_t *old_pmd_ptl,
1779 					 struct vm_area_struct *vma)
1780 {
1781 	/*
1782 	 * With split pmd lock we also need to move preallocated
1783 	 * PTE page table if new_pmd is on different PMD page table.
1784 	 *
1785 	 * We also don't deposit and withdraw tables for file pages.
1786 	 */
1787 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1788 }
1789 #endif
1790 
1791 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1792 {
1793 #ifdef CONFIG_MEM_SOFT_DIRTY
1794 	if (unlikely(is_pmd_migration_entry(pmd)))
1795 		pmd = pmd_swp_mksoft_dirty(pmd);
1796 	else if (pmd_present(pmd))
1797 		pmd = pmd_mksoft_dirty(pmd);
1798 #endif
1799 	return pmd;
1800 }
1801 
1802 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1803 		  unsigned long new_addr, unsigned long old_end,
1804 		  pmd_t *old_pmd, pmd_t *new_pmd)
1805 {
1806 	spinlock_t *old_ptl, *new_ptl;
1807 	pmd_t pmd;
1808 	struct mm_struct *mm = vma->vm_mm;
1809 	bool force_flush = false;
1810 
1811 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1812 	    (new_addr & ~HPAGE_PMD_MASK) ||
1813 	    old_end - old_addr < HPAGE_PMD_SIZE)
1814 		return false;
1815 
1816 	/*
1817 	 * The destination pmd shouldn't be established, free_pgtables()
1818 	 * should have release it.
1819 	 */
1820 	if (WARN_ON(!pmd_none(*new_pmd))) {
1821 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1822 		return false;
1823 	}
1824 
1825 	/*
1826 	 * We don't have to worry about the ordering of src and dst
1827 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1828 	 */
1829 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1830 	if (old_ptl) {
1831 		new_ptl = pmd_lockptr(mm, new_pmd);
1832 		if (new_ptl != old_ptl)
1833 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1834 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1835 		if (pmd_present(pmd))
1836 			force_flush = true;
1837 		VM_BUG_ON(!pmd_none(*new_pmd));
1838 
1839 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1840 			pgtable_t pgtable;
1841 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1842 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1843 		}
1844 		pmd = move_soft_dirty_pmd(pmd);
1845 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1846 		if (force_flush)
1847 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1848 		if (new_ptl != old_ptl)
1849 			spin_unlock(new_ptl);
1850 		spin_unlock(old_ptl);
1851 		return true;
1852 	}
1853 	return false;
1854 }
1855 
1856 /*
1857  * Returns
1858  *  - 0 if PMD could not be locked
1859  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1860  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1861  */
1862 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1863 		unsigned long addr, pgprot_t newprot, int prot_numa)
1864 {
1865 	struct mm_struct *mm = vma->vm_mm;
1866 	spinlock_t *ptl;
1867 	pmd_t entry;
1868 	bool preserve_write;
1869 	int ret;
1870 
1871 	ptl = __pmd_trans_huge_lock(pmd, vma);
1872 	if (!ptl)
1873 		return 0;
1874 
1875 	preserve_write = prot_numa && pmd_write(*pmd);
1876 	ret = 1;
1877 
1878 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1879 	if (is_swap_pmd(*pmd)) {
1880 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1881 
1882 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1883 		if (is_write_migration_entry(entry)) {
1884 			pmd_t newpmd;
1885 			/*
1886 			 * A protection check is difficult so
1887 			 * just be safe and disable write
1888 			 */
1889 			make_migration_entry_read(&entry);
1890 			newpmd = swp_entry_to_pmd(entry);
1891 			if (pmd_swp_soft_dirty(*pmd))
1892 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1893 			set_pmd_at(mm, addr, pmd, newpmd);
1894 		}
1895 		goto unlock;
1896 	}
1897 #endif
1898 
1899 	/*
1900 	 * Avoid trapping faults against the zero page. The read-only
1901 	 * data is likely to be read-cached on the local CPU and
1902 	 * local/remote hits to the zero page are not interesting.
1903 	 */
1904 	if (prot_numa && is_huge_zero_pmd(*pmd))
1905 		goto unlock;
1906 
1907 	if (prot_numa && pmd_protnone(*pmd))
1908 		goto unlock;
1909 
1910 	/*
1911 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1912 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1913 	 * which is also under down_read(mmap_sem):
1914 	 *
1915 	 *	CPU0:				CPU1:
1916 	 *				change_huge_pmd(prot_numa=1)
1917 	 *				 pmdp_huge_get_and_clear_notify()
1918 	 * madvise_dontneed()
1919 	 *  zap_pmd_range()
1920 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1921 	 *   // skip the pmd
1922 	 *				 set_pmd_at();
1923 	 *				 // pmd is re-established
1924 	 *
1925 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1926 	 * which may break userspace.
1927 	 *
1928 	 * pmdp_invalidate() is required to make sure we don't miss
1929 	 * dirty/young flags set by hardware.
1930 	 */
1931 	entry = pmdp_invalidate(vma, addr, pmd);
1932 
1933 	entry = pmd_modify(entry, newprot);
1934 	if (preserve_write)
1935 		entry = pmd_mk_savedwrite(entry);
1936 	ret = HPAGE_PMD_NR;
1937 	set_pmd_at(mm, addr, pmd, entry);
1938 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1939 unlock:
1940 	spin_unlock(ptl);
1941 	return ret;
1942 }
1943 
1944 /*
1945  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1946  *
1947  * Note that if it returns page table lock pointer, this routine returns without
1948  * unlocking page table lock. So callers must unlock it.
1949  */
1950 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1951 {
1952 	spinlock_t *ptl;
1953 	ptl = pmd_lock(vma->vm_mm, pmd);
1954 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1955 			pmd_devmap(*pmd)))
1956 		return ptl;
1957 	spin_unlock(ptl);
1958 	return NULL;
1959 }
1960 
1961 /*
1962  * Returns true if a given pud maps a thp, false otherwise.
1963  *
1964  * Note that if it returns true, this routine returns without unlocking page
1965  * table lock. So callers must unlock it.
1966  */
1967 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1968 {
1969 	spinlock_t *ptl;
1970 
1971 	ptl = pud_lock(vma->vm_mm, pud);
1972 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1973 		return ptl;
1974 	spin_unlock(ptl);
1975 	return NULL;
1976 }
1977 
1978 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1979 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1980 		 pud_t *pud, unsigned long addr)
1981 {
1982 	pud_t orig_pud;
1983 	spinlock_t *ptl;
1984 
1985 	ptl = __pud_trans_huge_lock(pud, vma);
1986 	if (!ptl)
1987 		return 0;
1988 	/*
1989 	 * For architectures like ppc64 we look at deposited pgtable
1990 	 * when calling pudp_huge_get_and_clear. So do the
1991 	 * pgtable_trans_huge_withdraw after finishing pudp related
1992 	 * operations.
1993 	 */
1994 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1995 			tlb->fullmm);
1996 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1997 	if (vma_is_dax(vma)) {
1998 		spin_unlock(ptl);
1999 		/* No zero page support yet */
2000 	} else {
2001 		/* No support for anonymous PUD pages yet */
2002 		BUG();
2003 	}
2004 	return 1;
2005 }
2006 
2007 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2008 		unsigned long haddr)
2009 {
2010 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2011 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2012 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2013 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2014 
2015 	count_vm_event(THP_SPLIT_PUD);
2016 
2017 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2018 }
2019 
2020 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2021 		unsigned long address)
2022 {
2023 	spinlock_t *ptl;
2024 	struct mmu_notifier_range range;
2025 
2026 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2027 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2028 	mmu_notifier_invalidate_range_start(&range);
2029 	ptl = pud_lock(vma->vm_mm, pud);
2030 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2031 		goto out;
2032 	__split_huge_pud_locked(vma, pud, range.start);
2033 
2034 out:
2035 	spin_unlock(ptl);
2036 	/*
2037 	 * No need to double call mmu_notifier->invalidate_range() callback as
2038 	 * the above pudp_huge_clear_flush_notify() did already call it.
2039 	 */
2040 	mmu_notifier_invalidate_range_only_end(&range);
2041 }
2042 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2043 
2044 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2045 		unsigned long haddr, pmd_t *pmd)
2046 {
2047 	struct mm_struct *mm = vma->vm_mm;
2048 	pgtable_t pgtable;
2049 	pmd_t _pmd;
2050 	int i;
2051 
2052 	/*
2053 	 * Leave pmd empty until pte is filled note that it is fine to delay
2054 	 * notification until mmu_notifier_invalidate_range_end() as we are
2055 	 * replacing a zero pmd write protected page with a zero pte write
2056 	 * protected page.
2057 	 *
2058 	 * See Documentation/vm/mmu_notifier.rst
2059 	 */
2060 	pmdp_huge_clear_flush(vma, haddr, pmd);
2061 
2062 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2063 	pmd_populate(mm, &_pmd, pgtable);
2064 
2065 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2066 		pte_t *pte, entry;
2067 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2068 		entry = pte_mkspecial(entry);
2069 		pte = pte_offset_map(&_pmd, haddr);
2070 		VM_BUG_ON(!pte_none(*pte));
2071 		set_pte_at(mm, haddr, pte, entry);
2072 		pte_unmap(pte);
2073 	}
2074 	smp_wmb(); /* make pte visible before pmd */
2075 	pmd_populate(mm, pmd, pgtable);
2076 }
2077 
2078 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2079 		unsigned long haddr, bool freeze)
2080 {
2081 	struct mm_struct *mm = vma->vm_mm;
2082 	struct page *page;
2083 	pgtable_t pgtable;
2084 	pmd_t old_pmd, _pmd;
2085 	bool young, write, soft_dirty, pmd_migration = false;
2086 	unsigned long addr;
2087 	int i;
2088 
2089 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2090 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2091 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2092 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2093 				&& !pmd_devmap(*pmd));
2094 
2095 	count_vm_event(THP_SPLIT_PMD);
2096 
2097 	if (!vma_is_anonymous(vma)) {
2098 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2099 		/*
2100 		 * We are going to unmap this huge page. So
2101 		 * just go ahead and zap it
2102 		 */
2103 		if (arch_needs_pgtable_deposit())
2104 			zap_deposited_table(mm, pmd);
2105 		if (vma_is_dax(vma))
2106 			return;
2107 		page = pmd_page(_pmd);
2108 		if (!PageDirty(page) && pmd_dirty(_pmd))
2109 			set_page_dirty(page);
2110 		if (!PageReferenced(page) && pmd_young(_pmd))
2111 			SetPageReferenced(page);
2112 		page_remove_rmap(page, true);
2113 		put_page(page);
2114 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2115 		return;
2116 	} else if (is_huge_zero_pmd(*pmd)) {
2117 		/*
2118 		 * FIXME: Do we want to invalidate secondary mmu by calling
2119 		 * mmu_notifier_invalidate_range() see comments below inside
2120 		 * __split_huge_pmd() ?
2121 		 *
2122 		 * We are going from a zero huge page write protected to zero
2123 		 * small page also write protected so it does not seems useful
2124 		 * to invalidate secondary mmu at this time.
2125 		 */
2126 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2127 	}
2128 
2129 	/*
2130 	 * Up to this point the pmd is present and huge and userland has the
2131 	 * whole access to the hugepage during the split (which happens in
2132 	 * place). If we overwrite the pmd with the not-huge version pointing
2133 	 * to the pte here (which of course we could if all CPUs were bug
2134 	 * free), userland could trigger a small page size TLB miss on the
2135 	 * small sized TLB while the hugepage TLB entry is still established in
2136 	 * the huge TLB. Some CPU doesn't like that.
2137 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2138 	 * 383 on page 93. Intel should be safe but is also warns that it's
2139 	 * only safe if the permission and cache attributes of the two entries
2140 	 * loaded in the two TLB is identical (which should be the case here).
2141 	 * But it is generally safer to never allow small and huge TLB entries
2142 	 * for the same virtual address to be loaded simultaneously. So instead
2143 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2144 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2145 	 * must remain set at all times on the pmd until the split is complete
2146 	 * for this pmd), then we flush the SMP TLB and finally we write the
2147 	 * non-huge version of the pmd entry with pmd_populate.
2148 	 */
2149 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2150 
2151 	pmd_migration = is_pmd_migration_entry(old_pmd);
2152 	if (unlikely(pmd_migration)) {
2153 		swp_entry_t entry;
2154 
2155 		entry = pmd_to_swp_entry(old_pmd);
2156 		page = pfn_to_page(swp_offset(entry));
2157 		write = is_write_migration_entry(entry);
2158 		young = false;
2159 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2160 	} else {
2161 		page = pmd_page(old_pmd);
2162 		if (pmd_dirty(old_pmd))
2163 			SetPageDirty(page);
2164 		write = pmd_write(old_pmd);
2165 		young = pmd_young(old_pmd);
2166 		soft_dirty = pmd_soft_dirty(old_pmd);
2167 	}
2168 	VM_BUG_ON_PAGE(!page_count(page), page);
2169 	page_ref_add(page, HPAGE_PMD_NR - 1);
2170 
2171 	/*
2172 	 * Withdraw the table only after we mark the pmd entry invalid.
2173 	 * This's critical for some architectures (Power).
2174 	 */
2175 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2176 	pmd_populate(mm, &_pmd, pgtable);
2177 
2178 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2179 		pte_t entry, *pte;
2180 		/*
2181 		 * Note that NUMA hinting access restrictions are not
2182 		 * transferred to avoid any possibility of altering
2183 		 * permissions across VMAs.
2184 		 */
2185 		if (freeze || pmd_migration) {
2186 			swp_entry_t swp_entry;
2187 			swp_entry = make_migration_entry(page + i, write);
2188 			entry = swp_entry_to_pte(swp_entry);
2189 			if (soft_dirty)
2190 				entry = pte_swp_mksoft_dirty(entry);
2191 		} else {
2192 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2193 			entry = maybe_mkwrite(entry, vma);
2194 			if (!write)
2195 				entry = pte_wrprotect(entry);
2196 			if (!young)
2197 				entry = pte_mkold(entry);
2198 			if (soft_dirty)
2199 				entry = pte_mksoft_dirty(entry);
2200 		}
2201 		pte = pte_offset_map(&_pmd, addr);
2202 		BUG_ON(!pte_none(*pte));
2203 		set_pte_at(mm, addr, pte, entry);
2204 		atomic_inc(&page[i]._mapcount);
2205 		pte_unmap(pte);
2206 	}
2207 
2208 	/*
2209 	 * Set PG_double_map before dropping compound_mapcount to avoid
2210 	 * false-negative page_mapped().
2211 	 */
2212 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2213 		for (i = 0; i < HPAGE_PMD_NR; i++)
2214 			atomic_inc(&page[i]._mapcount);
2215 	}
2216 
2217 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2218 		/* Last compound_mapcount is gone. */
2219 		__dec_node_page_state(page, NR_ANON_THPS);
2220 		if (TestClearPageDoubleMap(page)) {
2221 			/* No need in mapcount reference anymore */
2222 			for (i = 0; i < HPAGE_PMD_NR; i++)
2223 				atomic_dec(&page[i]._mapcount);
2224 		}
2225 	}
2226 
2227 	smp_wmb(); /* make pte visible before pmd */
2228 	pmd_populate(mm, pmd, pgtable);
2229 
2230 	if (freeze) {
2231 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2232 			page_remove_rmap(page + i, false);
2233 			put_page(page + i);
2234 		}
2235 	}
2236 }
2237 
2238 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2239 		unsigned long address, bool freeze, struct page *page)
2240 {
2241 	spinlock_t *ptl;
2242 	struct mmu_notifier_range range;
2243 
2244 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2245 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2246 	mmu_notifier_invalidate_range_start(&range);
2247 	ptl = pmd_lock(vma->vm_mm, pmd);
2248 
2249 	/*
2250 	 * If caller asks to setup a migration entries, we need a page to check
2251 	 * pmd against. Otherwise we can end up replacing wrong page.
2252 	 */
2253 	VM_BUG_ON(freeze && !page);
2254 	if (page && page != pmd_page(*pmd))
2255 	        goto out;
2256 
2257 	if (pmd_trans_huge(*pmd)) {
2258 		page = pmd_page(*pmd);
2259 		if (PageMlocked(page))
2260 			clear_page_mlock(page);
2261 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2262 		goto out;
2263 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2264 out:
2265 	spin_unlock(ptl);
2266 	/*
2267 	 * No need to double call mmu_notifier->invalidate_range() callback.
2268 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2269 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2270 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2271 	 *    fault will trigger a flush_notify before pointing to a new page
2272 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2273 	 *    page in the meantime)
2274 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2275 	 *     to invalidate secondary tlb entry they are all still valid.
2276 	 *     any further changes to individual pte will notify. So no need
2277 	 *     to call mmu_notifier->invalidate_range()
2278 	 */
2279 	mmu_notifier_invalidate_range_only_end(&range);
2280 }
2281 
2282 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2283 		bool freeze, struct page *page)
2284 {
2285 	pgd_t *pgd;
2286 	p4d_t *p4d;
2287 	pud_t *pud;
2288 	pmd_t *pmd;
2289 
2290 	pgd = pgd_offset(vma->vm_mm, address);
2291 	if (!pgd_present(*pgd))
2292 		return;
2293 
2294 	p4d = p4d_offset(pgd, address);
2295 	if (!p4d_present(*p4d))
2296 		return;
2297 
2298 	pud = pud_offset(p4d, address);
2299 	if (!pud_present(*pud))
2300 		return;
2301 
2302 	pmd = pmd_offset(pud, address);
2303 
2304 	__split_huge_pmd(vma, pmd, address, freeze, page);
2305 }
2306 
2307 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2308 			     unsigned long start,
2309 			     unsigned long end,
2310 			     long adjust_next)
2311 {
2312 	/*
2313 	 * If the new start address isn't hpage aligned and it could
2314 	 * previously contain an hugepage: check if we need to split
2315 	 * an huge pmd.
2316 	 */
2317 	if (start & ~HPAGE_PMD_MASK &&
2318 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2319 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2320 		split_huge_pmd_address(vma, start, false, NULL);
2321 
2322 	/*
2323 	 * If the new end address isn't hpage aligned and it could
2324 	 * previously contain an hugepage: check if we need to split
2325 	 * an huge pmd.
2326 	 */
2327 	if (end & ~HPAGE_PMD_MASK &&
2328 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2329 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2330 		split_huge_pmd_address(vma, end, false, NULL);
2331 
2332 	/*
2333 	 * If we're also updating the vma->vm_next->vm_start, if the new
2334 	 * vm_next->vm_start isn't page aligned and it could previously
2335 	 * contain an hugepage: check if we need to split an huge pmd.
2336 	 */
2337 	if (adjust_next > 0) {
2338 		struct vm_area_struct *next = vma->vm_next;
2339 		unsigned long nstart = next->vm_start;
2340 		nstart += adjust_next << PAGE_SHIFT;
2341 		if (nstart & ~HPAGE_PMD_MASK &&
2342 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2343 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2344 			split_huge_pmd_address(next, nstart, false, NULL);
2345 	}
2346 }
2347 
2348 static void unmap_page(struct page *page)
2349 {
2350 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2351 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2352 	bool unmap_success;
2353 
2354 	VM_BUG_ON_PAGE(!PageHead(page), page);
2355 
2356 	if (PageAnon(page))
2357 		ttu_flags |= TTU_SPLIT_FREEZE;
2358 
2359 	unmap_success = try_to_unmap(page, ttu_flags);
2360 	VM_BUG_ON_PAGE(!unmap_success, page);
2361 }
2362 
2363 static void remap_page(struct page *page)
2364 {
2365 	int i;
2366 	if (PageTransHuge(page)) {
2367 		remove_migration_ptes(page, page, true);
2368 	} else {
2369 		for (i = 0; i < HPAGE_PMD_NR; i++)
2370 			remove_migration_ptes(page + i, page + i, true);
2371 	}
2372 }
2373 
2374 static void __split_huge_page_tail(struct page *head, int tail,
2375 		struct lruvec *lruvec, struct list_head *list)
2376 {
2377 	struct page *page_tail = head + tail;
2378 
2379 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2380 
2381 	/*
2382 	 * Clone page flags before unfreezing refcount.
2383 	 *
2384 	 * After successful get_page_unless_zero() might follow flags change,
2385 	 * for exmaple lock_page() which set PG_waiters.
2386 	 */
2387 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2388 	page_tail->flags |= (head->flags &
2389 			((1L << PG_referenced) |
2390 			 (1L << PG_swapbacked) |
2391 			 (1L << PG_swapcache) |
2392 			 (1L << PG_mlocked) |
2393 			 (1L << PG_uptodate) |
2394 			 (1L << PG_active) |
2395 			 (1L << PG_workingset) |
2396 			 (1L << PG_locked) |
2397 			 (1L << PG_unevictable) |
2398 			 (1L << PG_dirty)));
2399 
2400 	/* ->mapping in first tail page is compound_mapcount */
2401 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2402 			page_tail);
2403 	page_tail->mapping = head->mapping;
2404 	page_tail->index = head->index + tail;
2405 
2406 	/* Page flags must be visible before we make the page non-compound. */
2407 	smp_wmb();
2408 
2409 	/*
2410 	 * Clear PageTail before unfreezing page refcount.
2411 	 *
2412 	 * After successful get_page_unless_zero() might follow put_page()
2413 	 * which needs correct compound_head().
2414 	 */
2415 	clear_compound_head(page_tail);
2416 
2417 	/* Finally unfreeze refcount. Additional reference from page cache. */
2418 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2419 					  PageSwapCache(head)));
2420 
2421 	if (page_is_young(head))
2422 		set_page_young(page_tail);
2423 	if (page_is_idle(head))
2424 		set_page_idle(page_tail);
2425 
2426 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2427 
2428 	/*
2429 	 * always add to the tail because some iterators expect new
2430 	 * pages to show after the currently processed elements - e.g.
2431 	 * migrate_pages
2432 	 */
2433 	lru_add_page_tail(head, page_tail, lruvec, list);
2434 }
2435 
2436 static void __split_huge_page(struct page *page, struct list_head *list,
2437 		pgoff_t end, unsigned long flags)
2438 {
2439 	struct page *head = compound_head(page);
2440 	struct zone *zone = page_zone(head);
2441 	struct lruvec *lruvec;
2442 	int i;
2443 
2444 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2445 
2446 	/* complete memcg works before add pages to LRU */
2447 	mem_cgroup_split_huge_fixup(head);
2448 
2449 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2450 		__split_huge_page_tail(head, i, lruvec, list);
2451 		/* Some pages can be beyond i_size: drop them from page cache */
2452 		if (head[i].index >= end) {
2453 			ClearPageDirty(head + i);
2454 			__delete_from_page_cache(head + i, NULL);
2455 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2456 				shmem_uncharge(head->mapping->host, 1);
2457 			put_page(head + i);
2458 		}
2459 	}
2460 
2461 	ClearPageCompound(head);
2462 	/* See comment in __split_huge_page_tail() */
2463 	if (PageAnon(head)) {
2464 		/* Additional pin to swap cache */
2465 		if (PageSwapCache(head))
2466 			page_ref_add(head, 2);
2467 		else
2468 			page_ref_inc(head);
2469 	} else {
2470 		/* Additional pin to page cache */
2471 		page_ref_add(head, 2);
2472 		xa_unlock(&head->mapping->i_pages);
2473 	}
2474 
2475 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2476 
2477 	remap_page(head);
2478 
2479 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2480 		struct page *subpage = head + i;
2481 		if (subpage == page)
2482 			continue;
2483 		unlock_page(subpage);
2484 
2485 		/*
2486 		 * Subpages may be freed if there wasn't any mapping
2487 		 * like if add_to_swap() is running on a lru page that
2488 		 * had its mapping zapped. And freeing these pages
2489 		 * requires taking the lru_lock so we do the put_page
2490 		 * of the tail pages after the split is complete.
2491 		 */
2492 		put_page(subpage);
2493 	}
2494 }
2495 
2496 int total_mapcount(struct page *page)
2497 {
2498 	int i, compound, ret;
2499 
2500 	VM_BUG_ON_PAGE(PageTail(page), page);
2501 
2502 	if (likely(!PageCompound(page)))
2503 		return atomic_read(&page->_mapcount) + 1;
2504 
2505 	compound = compound_mapcount(page);
2506 	if (PageHuge(page))
2507 		return compound;
2508 	ret = compound;
2509 	for (i = 0; i < HPAGE_PMD_NR; i++)
2510 		ret += atomic_read(&page[i]._mapcount) + 1;
2511 	/* File pages has compound_mapcount included in _mapcount */
2512 	if (!PageAnon(page))
2513 		return ret - compound * HPAGE_PMD_NR;
2514 	if (PageDoubleMap(page))
2515 		ret -= HPAGE_PMD_NR;
2516 	return ret;
2517 }
2518 
2519 /*
2520  * This calculates accurately how many mappings a transparent hugepage
2521  * has (unlike page_mapcount() which isn't fully accurate). This full
2522  * accuracy is primarily needed to know if copy-on-write faults can
2523  * reuse the page and change the mapping to read-write instead of
2524  * copying them. At the same time this returns the total_mapcount too.
2525  *
2526  * The function returns the highest mapcount any one of the subpages
2527  * has. If the return value is one, even if different processes are
2528  * mapping different subpages of the transparent hugepage, they can
2529  * all reuse it, because each process is reusing a different subpage.
2530  *
2531  * The total_mapcount is instead counting all virtual mappings of the
2532  * subpages. If the total_mapcount is equal to "one", it tells the
2533  * caller all mappings belong to the same "mm" and in turn the
2534  * anon_vma of the transparent hugepage can become the vma->anon_vma
2535  * local one as no other process may be mapping any of the subpages.
2536  *
2537  * It would be more accurate to replace page_mapcount() with
2538  * page_trans_huge_mapcount(), however we only use
2539  * page_trans_huge_mapcount() in the copy-on-write faults where we
2540  * need full accuracy to avoid breaking page pinning, because
2541  * page_trans_huge_mapcount() is slower than page_mapcount().
2542  */
2543 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2544 {
2545 	int i, ret, _total_mapcount, mapcount;
2546 
2547 	/* hugetlbfs shouldn't call it */
2548 	VM_BUG_ON_PAGE(PageHuge(page), page);
2549 
2550 	if (likely(!PageTransCompound(page))) {
2551 		mapcount = atomic_read(&page->_mapcount) + 1;
2552 		if (total_mapcount)
2553 			*total_mapcount = mapcount;
2554 		return mapcount;
2555 	}
2556 
2557 	page = compound_head(page);
2558 
2559 	_total_mapcount = ret = 0;
2560 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2561 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2562 		ret = max(ret, mapcount);
2563 		_total_mapcount += mapcount;
2564 	}
2565 	if (PageDoubleMap(page)) {
2566 		ret -= 1;
2567 		_total_mapcount -= HPAGE_PMD_NR;
2568 	}
2569 	mapcount = compound_mapcount(page);
2570 	ret += mapcount;
2571 	_total_mapcount += mapcount;
2572 	if (total_mapcount)
2573 		*total_mapcount = _total_mapcount;
2574 	return ret;
2575 }
2576 
2577 /* Racy check whether the huge page can be split */
2578 bool can_split_huge_page(struct page *page, int *pextra_pins)
2579 {
2580 	int extra_pins;
2581 
2582 	/* Additional pins from page cache */
2583 	if (PageAnon(page))
2584 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2585 	else
2586 		extra_pins = HPAGE_PMD_NR;
2587 	if (pextra_pins)
2588 		*pextra_pins = extra_pins;
2589 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2590 }
2591 
2592 /*
2593  * This function splits huge page into normal pages. @page can point to any
2594  * subpage of huge page to split. Split doesn't change the position of @page.
2595  *
2596  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2597  * The huge page must be locked.
2598  *
2599  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2600  *
2601  * Both head page and tail pages will inherit mapping, flags, and so on from
2602  * the hugepage.
2603  *
2604  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2605  * they are not mapped.
2606  *
2607  * Returns 0 if the hugepage is split successfully.
2608  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2609  * us.
2610  */
2611 int split_huge_page_to_list(struct page *page, struct list_head *list)
2612 {
2613 	struct page *head = compound_head(page);
2614 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2615 	struct anon_vma *anon_vma = NULL;
2616 	struct address_space *mapping = NULL;
2617 	int count, mapcount, extra_pins, ret;
2618 	bool mlocked;
2619 	unsigned long flags;
2620 	pgoff_t end;
2621 
2622 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2623 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2624 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2625 
2626 	if (PageWriteback(page))
2627 		return -EBUSY;
2628 
2629 	if (PageAnon(head)) {
2630 		/*
2631 		 * The caller does not necessarily hold an mmap_sem that would
2632 		 * prevent the anon_vma disappearing so we first we take a
2633 		 * reference to it and then lock the anon_vma for write. This
2634 		 * is similar to page_lock_anon_vma_read except the write lock
2635 		 * is taken to serialise against parallel split or collapse
2636 		 * operations.
2637 		 */
2638 		anon_vma = page_get_anon_vma(head);
2639 		if (!anon_vma) {
2640 			ret = -EBUSY;
2641 			goto out;
2642 		}
2643 		end = -1;
2644 		mapping = NULL;
2645 		anon_vma_lock_write(anon_vma);
2646 	} else {
2647 		mapping = head->mapping;
2648 
2649 		/* Truncated ? */
2650 		if (!mapping) {
2651 			ret = -EBUSY;
2652 			goto out;
2653 		}
2654 
2655 		anon_vma = NULL;
2656 		i_mmap_lock_read(mapping);
2657 
2658 		/*
2659 		 *__split_huge_page() may need to trim off pages beyond EOF:
2660 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2661 		 * which cannot be nested inside the page tree lock. So note
2662 		 * end now: i_size itself may be changed at any moment, but
2663 		 * head page lock is good enough to serialize the trimming.
2664 		 */
2665 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2666 	}
2667 
2668 	/*
2669 	 * Racy check if we can split the page, before unmap_page() will
2670 	 * split PMDs
2671 	 */
2672 	if (!can_split_huge_page(head, &extra_pins)) {
2673 		ret = -EBUSY;
2674 		goto out_unlock;
2675 	}
2676 
2677 	mlocked = PageMlocked(page);
2678 	unmap_page(head);
2679 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2680 
2681 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2682 	if (mlocked)
2683 		lru_add_drain();
2684 
2685 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2686 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2687 
2688 	if (mapping) {
2689 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2690 
2691 		/*
2692 		 * Check if the head page is present in page cache.
2693 		 * We assume all tail are present too, if head is there.
2694 		 */
2695 		xa_lock(&mapping->i_pages);
2696 		if (xas_load(&xas) != head)
2697 			goto fail;
2698 	}
2699 
2700 	/* Prevent deferred_split_scan() touching ->_refcount */
2701 	spin_lock(&pgdata->split_queue_lock);
2702 	count = page_count(head);
2703 	mapcount = total_mapcount(head);
2704 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2705 		if (!list_empty(page_deferred_list(head))) {
2706 			pgdata->split_queue_len--;
2707 			list_del(page_deferred_list(head));
2708 		}
2709 		if (mapping)
2710 			__dec_node_page_state(page, NR_SHMEM_THPS);
2711 		spin_unlock(&pgdata->split_queue_lock);
2712 		__split_huge_page(page, list, end, flags);
2713 		if (PageSwapCache(head)) {
2714 			swp_entry_t entry = { .val = page_private(head) };
2715 
2716 			ret = split_swap_cluster(entry);
2717 		} else
2718 			ret = 0;
2719 	} else {
2720 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2721 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2722 					mapcount, count);
2723 			if (PageTail(page))
2724 				dump_page(head, NULL);
2725 			dump_page(page, "total_mapcount(head) > 0");
2726 			BUG();
2727 		}
2728 		spin_unlock(&pgdata->split_queue_lock);
2729 fail:		if (mapping)
2730 			xa_unlock(&mapping->i_pages);
2731 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2732 		remap_page(head);
2733 		ret = -EBUSY;
2734 	}
2735 
2736 out_unlock:
2737 	if (anon_vma) {
2738 		anon_vma_unlock_write(anon_vma);
2739 		put_anon_vma(anon_vma);
2740 	}
2741 	if (mapping)
2742 		i_mmap_unlock_read(mapping);
2743 out:
2744 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2745 	return ret;
2746 }
2747 
2748 void free_transhuge_page(struct page *page)
2749 {
2750 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2751 	unsigned long flags;
2752 
2753 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2754 	if (!list_empty(page_deferred_list(page))) {
2755 		pgdata->split_queue_len--;
2756 		list_del(page_deferred_list(page));
2757 	}
2758 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2759 	free_compound_page(page);
2760 }
2761 
2762 void deferred_split_huge_page(struct page *page)
2763 {
2764 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2765 	unsigned long flags;
2766 
2767 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2768 
2769 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2770 	if (list_empty(page_deferred_list(page))) {
2771 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2772 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2773 		pgdata->split_queue_len++;
2774 	}
2775 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2776 }
2777 
2778 static unsigned long deferred_split_count(struct shrinker *shrink,
2779 		struct shrink_control *sc)
2780 {
2781 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2782 	return READ_ONCE(pgdata->split_queue_len);
2783 }
2784 
2785 static unsigned long deferred_split_scan(struct shrinker *shrink,
2786 		struct shrink_control *sc)
2787 {
2788 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2789 	unsigned long flags;
2790 	LIST_HEAD(list), *pos, *next;
2791 	struct page *page;
2792 	int split = 0;
2793 
2794 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2795 	/* Take pin on all head pages to avoid freeing them under us */
2796 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2797 		page = list_entry((void *)pos, struct page, mapping);
2798 		page = compound_head(page);
2799 		if (get_page_unless_zero(page)) {
2800 			list_move(page_deferred_list(page), &list);
2801 		} else {
2802 			/* We lost race with put_compound_page() */
2803 			list_del_init(page_deferred_list(page));
2804 			pgdata->split_queue_len--;
2805 		}
2806 		if (!--sc->nr_to_scan)
2807 			break;
2808 	}
2809 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2810 
2811 	list_for_each_safe(pos, next, &list) {
2812 		page = list_entry((void *)pos, struct page, mapping);
2813 		if (!trylock_page(page))
2814 			goto next;
2815 		/* split_huge_page() removes page from list on success */
2816 		if (!split_huge_page(page))
2817 			split++;
2818 		unlock_page(page);
2819 next:
2820 		put_page(page);
2821 	}
2822 
2823 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2824 	list_splice_tail(&list, &pgdata->split_queue);
2825 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2826 
2827 	/*
2828 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2829 	 * This can happen if pages were freed under us.
2830 	 */
2831 	if (!split && list_empty(&pgdata->split_queue))
2832 		return SHRINK_STOP;
2833 	return split;
2834 }
2835 
2836 static struct shrinker deferred_split_shrinker = {
2837 	.count_objects = deferred_split_count,
2838 	.scan_objects = deferred_split_scan,
2839 	.seeks = DEFAULT_SEEKS,
2840 	.flags = SHRINKER_NUMA_AWARE,
2841 };
2842 
2843 #ifdef CONFIG_DEBUG_FS
2844 static int split_huge_pages_set(void *data, u64 val)
2845 {
2846 	struct zone *zone;
2847 	struct page *page;
2848 	unsigned long pfn, max_zone_pfn;
2849 	unsigned long total = 0, split = 0;
2850 
2851 	if (val != 1)
2852 		return -EINVAL;
2853 
2854 	for_each_populated_zone(zone) {
2855 		max_zone_pfn = zone_end_pfn(zone);
2856 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2857 			if (!pfn_valid(pfn))
2858 				continue;
2859 
2860 			page = pfn_to_page(pfn);
2861 			if (!get_page_unless_zero(page))
2862 				continue;
2863 
2864 			if (zone != page_zone(page))
2865 				goto next;
2866 
2867 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2868 				goto next;
2869 
2870 			total++;
2871 			lock_page(page);
2872 			if (!split_huge_page(page))
2873 				split++;
2874 			unlock_page(page);
2875 next:
2876 			put_page(page);
2877 		}
2878 	}
2879 
2880 	pr_info("%lu of %lu THP split\n", split, total);
2881 
2882 	return 0;
2883 }
2884 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2885 		"%llu\n");
2886 
2887 static int __init split_huge_pages_debugfs(void)
2888 {
2889 	void *ret;
2890 
2891 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2892 			&split_huge_pages_fops);
2893 	if (!ret)
2894 		pr_warn("Failed to create split_huge_pages in debugfs");
2895 	return 0;
2896 }
2897 late_initcall(split_huge_pages_debugfs);
2898 #endif
2899 
2900 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2901 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2902 		struct page *page)
2903 {
2904 	struct vm_area_struct *vma = pvmw->vma;
2905 	struct mm_struct *mm = vma->vm_mm;
2906 	unsigned long address = pvmw->address;
2907 	pmd_t pmdval;
2908 	swp_entry_t entry;
2909 	pmd_t pmdswp;
2910 
2911 	if (!(pvmw->pmd && !pvmw->pte))
2912 		return;
2913 
2914 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2915 	pmdval = *pvmw->pmd;
2916 	pmdp_invalidate(vma, address, pvmw->pmd);
2917 	if (pmd_dirty(pmdval))
2918 		set_page_dirty(page);
2919 	entry = make_migration_entry(page, pmd_write(pmdval));
2920 	pmdswp = swp_entry_to_pmd(entry);
2921 	if (pmd_soft_dirty(pmdval))
2922 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2923 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2924 	page_remove_rmap(page, true);
2925 	put_page(page);
2926 }
2927 
2928 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2929 {
2930 	struct vm_area_struct *vma = pvmw->vma;
2931 	struct mm_struct *mm = vma->vm_mm;
2932 	unsigned long address = pvmw->address;
2933 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2934 	pmd_t pmde;
2935 	swp_entry_t entry;
2936 
2937 	if (!(pvmw->pmd && !pvmw->pte))
2938 		return;
2939 
2940 	entry = pmd_to_swp_entry(*pvmw->pmd);
2941 	get_page(new);
2942 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2943 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2944 		pmde = pmd_mksoft_dirty(pmde);
2945 	if (is_write_migration_entry(entry))
2946 		pmde = maybe_pmd_mkwrite(pmde, vma);
2947 
2948 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2949 	if (PageAnon(new))
2950 		page_add_anon_rmap(new, vma, mmun_start, true);
2951 	else
2952 		page_add_file_rmap(new, true);
2953 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2954 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2955 		mlock_vma_page(new);
2956 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2957 }
2958 #endif
2959