xref: /linux/mm/huge_memory.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/mm_types.h>
24 #include <linux/khugepaged.h>
25 #include <linux/freezer.h>
26 #include <linux/pfn_t.h>
27 #include <linux/mman.h>
28 #include <linux/memremap.h>
29 #include <linux/pagemap.h>
30 #include <linux/debugfs.h>
31 #include <linux/migrate.h>
32 #include <linux/hashtable.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/page_idle.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/oom.h>
37 #include <linux/numa.h>
38 #include <linux/page_owner.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/memory-tiers.h>
41 #include <linux/compat.h>
42 #include <linux/pgalloc_tag.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlb.h>
46 #include <asm/pgalloc.h>
47 #include "internal.h"
48 #include "swap.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/thp.h>
52 
53 /*
54  * By default, transparent hugepage support is disabled in order to avoid
55  * risking an increased memory footprint for applications that are not
56  * guaranteed to benefit from it. When transparent hugepage support is
57  * enabled, it is for all mappings, and khugepaged scans all mappings.
58  * Defrag is invoked by khugepaged hugepage allocations and by page faults
59  * for all hugepage allocations.
60  */
61 unsigned long transparent_hugepage_flags __read_mostly =
62 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
63 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
64 #endif
65 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
66 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
67 #endif
68 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
69 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
70 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
71 
72 static struct shrinker *deferred_split_shrinker;
73 static unsigned long deferred_split_count(struct shrinker *shrink,
74 					  struct shrink_control *sc);
75 static unsigned long deferred_split_scan(struct shrinker *shrink,
76 					 struct shrink_control *sc);
77 static bool split_underused_thp = true;
78 
79 static atomic_t huge_zero_refcount;
80 struct folio *huge_zero_folio __read_mostly;
81 unsigned long huge_zero_pfn __read_mostly = ~0UL;
82 unsigned long huge_anon_orders_always __read_mostly;
83 unsigned long huge_anon_orders_madvise __read_mostly;
84 unsigned long huge_anon_orders_inherit __read_mostly;
85 static bool anon_orders_configured __initdata;
86 
87 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
88 					 unsigned long vm_flags,
89 					 unsigned long tva_flags,
90 					 unsigned long orders)
91 {
92 	bool smaps = tva_flags & TVA_SMAPS;
93 	bool in_pf = tva_flags & TVA_IN_PF;
94 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
95 	unsigned long supported_orders;
96 
97 	/* Check the intersection of requested and supported orders. */
98 	if (vma_is_anonymous(vma))
99 		supported_orders = THP_ORDERS_ALL_ANON;
100 	else if (vma_is_special_huge(vma))
101 		supported_orders = THP_ORDERS_ALL_SPECIAL;
102 	else
103 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
104 
105 	orders &= supported_orders;
106 	if (!orders)
107 		return 0;
108 
109 	if (!vma->vm_mm)		/* vdso */
110 		return 0;
111 
112 	/*
113 	 * Explicitly disabled through madvise or prctl, or some
114 	 * architectures may disable THP for some mappings, for
115 	 * example, s390 kvm.
116 	 * */
117 	if ((vm_flags & VM_NOHUGEPAGE) ||
118 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
119 		return 0;
120 	/*
121 	 * If the hardware/firmware marked hugepage support disabled.
122 	 */
123 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
124 		return 0;
125 
126 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
127 	if (vma_is_dax(vma))
128 		return in_pf ? orders : 0;
129 
130 	/*
131 	 * khugepaged special VMA and hugetlb VMA.
132 	 * Must be checked after dax since some dax mappings may have
133 	 * VM_MIXEDMAP set.
134 	 */
135 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
136 		return 0;
137 
138 	/*
139 	 * Check alignment for file vma and size for both file and anon vma by
140 	 * filtering out the unsuitable orders.
141 	 *
142 	 * Skip the check for page fault. Huge fault does the check in fault
143 	 * handlers.
144 	 */
145 	if (!in_pf) {
146 		int order = highest_order(orders);
147 		unsigned long addr;
148 
149 		while (orders) {
150 			addr = vma->vm_end - (PAGE_SIZE << order);
151 			if (thp_vma_suitable_order(vma, addr, order))
152 				break;
153 			order = next_order(&orders, order);
154 		}
155 
156 		if (!orders)
157 			return 0;
158 	}
159 
160 	/*
161 	 * Enabled via shmem mount options or sysfs settings.
162 	 * Must be done before hugepage flags check since shmem has its
163 	 * own flags.
164 	 */
165 	if (!in_pf && shmem_file(vma->vm_file))
166 		return shmem_allowable_huge_orders(file_inode(vma->vm_file),
167 						   vma, vma->vm_pgoff, 0,
168 						   !enforce_sysfs);
169 
170 	if (!vma_is_anonymous(vma)) {
171 		/*
172 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
173 		 * were already handled in thp_vma_allowable_orders().
174 		 */
175 		if (enforce_sysfs &&
176 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
177 						    !hugepage_global_always())))
178 			return 0;
179 
180 		/*
181 		 * Trust that ->huge_fault() handlers know what they are doing
182 		 * in fault path.
183 		 */
184 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
185 			return orders;
186 		/* Only regular file is valid in collapse path */
187 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
188 			return orders;
189 		return 0;
190 	}
191 
192 	if (vma_is_temporary_stack(vma))
193 		return 0;
194 
195 	/*
196 	 * THPeligible bit of smaps should show 1 for proper VMAs even
197 	 * though anon_vma is not initialized yet.
198 	 *
199 	 * Allow page fault since anon_vma may be not initialized until
200 	 * the first page fault.
201 	 */
202 	if (!vma->anon_vma)
203 		return (smaps || in_pf) ? orders : 0;
204 
205 	return orders;
206 }
207 
208 static bool get_huge_zero_page(void)
209 {
210 	struct folio *zero_folio;
211 retry:
212 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
213 		return true;
214 
215 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
216 			HPAGE_PMD_ORDER);
217 	if (!zero_folio) {
218 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
219 		return false;
220 	}
221 	/* Ensure zero folio won't have large_rmappable flag set. */
222 	folio_clear_large_rmappable(zero_folio);
223 	preempt_disable();
224 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
225 		preempt_enable();
226 		folio_put(zero_folio);
227 		goto retry;
228 	}
229 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
230 
231 	/* We take additional reference here. It will be put back by shrinker */
232 	atomic_set(&huge_zero_refcount, 2);
233 	preempt_enable();
234 	count_vm_event(THP_ZERO_PAGE_ALLOC);
235 	return true;
236 }
237 
238 static void put_huge_zero_page(void)
239 {
240 	/*
241 	 * Counter should never go to zero here. Only shrinker can put
242 	 * last reference.
243 	 */
244 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246 
247 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
248 {
249 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
250 		return READ_ONCE(huge_zero_folio);
251 
252 	if (!get_huge_zero_page())
253 		return NULL;
254 
255 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
256 		put_huge_zero_page();
257 
258 	return READ_ONCE(huge_zero_folio);
259 }
260 
261 void mm_put_huge_zero_folio(struct mm_struct *mm)
262 {
263 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
264 		put_huge_zero_page();
265 }
266 
267 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
268 					struct shrink_control *sc)
269 {
270 	/* we can free zero page only if last reference remains */
271 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
272 }
273 
274 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
275 				       struct shrink_control *sc)
276 {
277 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
278 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
279 		BUG_ON(zero_folio == NULL);
280 		WRITE_ONCE(huge_zero_pfn, ~0UL);
281 		folio_put(zero_folio);
282 		return HPAGE_PMD_NR;
283 	}
284 
285 	return 0;
286 }
287 
288 static struct shrinker *huge_zero_page_shrinker;
289 
290 #ifdef CONFIG_SYSFS
291 static ssize_t enabled_show(struct kobject *kobj,
292 			    struct kobj_attribute *attr, char *buf)
293 {
294 	const char *output;
295 
296 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
297 		output = "[always] madvise never";
298 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
299 			  &transparent_hugepage_flags))
300 		output = "always [madvise] never";
301 	else
302 		output = "always madvise [never]";
303 
304 	return sysfs_emit(buf, "%s\n", output);
305 }
306 
307 static ssize_t enabled_store(struct kobject *kobj,
308 			     struct kobj_attribute *attr,
309 			     const char *buf, size_t count)
310 {
311 	ssize_t ret = count;
312 
313 	if (sysfs_streq(buf, "always")) {
314 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
315 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
316 	} else if (sysfs_streq(buf, "madvise")) {
317 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
318 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
319 	} else if (sysfs_streq(buf, "never")) {
320 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322 	} else
323 		ret = -EINVAL;
324 
325 	if (ret > 0) {
326 		int err = start_stop_khugepaged();
327 		if (err)
328 			ret = err;
329 	}
330 	return ret;
331 }
332 
333 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
334 
335 ssize_t single_hugepage_flag_show(struct kobject *kobj,
336 				  struct kobj_attribute *attr, char *buf,
337 				  enum transparent_hugepage_flag flag)
338 {
339 	return sysfs_emit(buf, "%d\n",
340 			  !!test_bit(flag, &transparent_hugepage_flags));
341 }
342 
343 ssize_t single_hugepage_flag_store(struct kobject *kobj,
344 				 struct kobj_attribute *attr,
345 				 const char *buf, size_t count,
346 				 enum transparent_hugepage_flag flag)
347 {
348 	unsigned long value;
349 	int ret;
350 
351 	ret = kstrtoul(buf, 10, &value);
352 	if (ret < 0)
353 		return ret;
354 	if (value > 1)
355 		return -EINVAL;
356 
357 	if (value)
358 		set_bit(flag, &transparent_hugepage_flags);
359 	else
360 		clear_bit(flag, &transparent_hugepage_flags);
361 
362 	return count;
363 }
364 
365 static ssize_t defrag_show(struct kobject *kobj,
366 			   struct kobj_attribute *attr, char *buf)
367 {
368 	const char *output;
369 
370 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
371 		     &transparent_hugepage_flags))
372 		output = "[always] defer defer+madvise madvise never";
373 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
374 			  &transparent_hugepage_flags))
375 		output = "always [defer] defer+madvise madvise never";
376 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
377 			  &transparent_hugepage_flags))
378 		output = "always defer [defer+madvise] madvise never";
379 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
380 			  &transparent_hugepage_flags))
381 		output = "always defer defer+madvise [madvise] never";
382 	else
383 		output = "always defer defer+madvise madvise [never]";
384 
385 	return sysfs_emit(buf, "%s\n", output);
386 }
387 
388 static ssize_t defrag_store(struct kobject *kobj,
389 			    struct kobj_attribute *attr,
390 			    const char *buf, size_t count)
391 {
392 	if (sysfs_streq(buf, "always")) {
393 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
394 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
396 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
397 	} else if (sysfs_streq(buf, "defer+madvise")) {
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
399 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
400 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
401 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
402 	} else if (sysfs_streq(buf, "defer")) {
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
404 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
406 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
407 	} else if (sysfs_streq(buf, "madvise")) {
408 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
409 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
411 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
412 	} else if (sysfs_streq(buf, "never")) {
413 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
414 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
415 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
416 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
417 	} else
418 		return -EINVAL;
419 
420 	return count;
421 }
422 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
423 
424 static ssize_t use_zero_page_show(struct kobject *kobj,
425 				  struct kobj_attribute *attr, char *buf)
426 {
427 	return single_hugepage_flag_show(kobj, attr, buf,
428 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
429 }
430 static ssize_t use_zero_page_store(struct kobject *kobj,
431 		struct kobj_attribute *attr, const char *buf, size_t count)
432 {
433 	return single_hugepage_flag_store(kobj, attr, buf, count,
434 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
435 }
436 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
437 
438 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
439 				   struct kobj_attribute *attr, char *buf)
440 {
441 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
442 }
443 static struct kobj_attribute hpage_pmd_size_attr =
444 	__ATTR_RO(hpage_pmd_size);
445 
446 static ssize_t split_underused_thp_show(struct kobject *kobj,
447 			    struct kobj_attribute *attr, char *buf)
448 {
449 	return sysfs_emit(buf, "%d\n", split_underused_thp);
450 }
451 
452 static ssize_t split_underused_thp_store(struct kobject *kobj,
453 			     struct kobj_attribute *attr,
454 			     const char *buf, size_t count)
455 {
456 	int err = kstrtobool(buf, &split_underused_thp);
457 
458 	if (err < 0)
459 		return err;
460 
461 	return count;
462 }
463 
464 static struct kobj_attribute split_underused_thp_attr = __ATTR(
465 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
466 
467 static struct attribute *hugepage_attr[] = {
468 	&enabled_attr.attr,
469 	&defrag_attr.attr,
470 	&use_zero_page_attr.attr,
471 	&hpage_pmd_size_attr.attr,
472 #ifdef CONFIG_SHMEM
473 	&shmem_enabled_attr.attr,
474 #endif
475 	&split_underused_thp_attr.attr,
476 	NULL,
477 };
478 
479 static const struct attribute_group hugepage_attr_group = {
480 	.attrs = hugepage_attr,
481 };
482 
483 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
484 static void thpsize_release(struct kobject *kobj);
485 static DEFINE_SPINLOCK(huge_anon_orders_lock);
486 static LIST_HEAD(thpsize_list);
487 
488 static ssize_t anon_enabled_show(struct kobject *kobj,
489 				 struct kobj_attribute *attr, char *buf)
490 {
491 	int order = to_thpsize(kobj)->order;
492 	const char *output;
493 
494 	if (test_bit(order, &huge_anon_orders_always))
495 		output = "[always] inherit madvise never";
496 	else if (test_bit(order, &huge_anon_orders_inherit))
497 		output = "always [inherit] madvise never";
498 	else if (test_bit(order, &huge_anon_orders_madvise))
499 		output = "always inherit [madvise] never";
500 	else
501 		output = "always inherit madvise [never]";
502 
503 	return sysfs_emit(buf, "%s\n", output);
504 }
505 
506 static ssize_t anon_enabled_store(struct kobject *kobj,
507 				  struct kobj_attribute *attr,
508 				  const char *buf, size_t count)
509 {
510 	int order = to_thpsize(kobj)->order;
511 	ssize_t ret = count;
512 
513 	if (sysfs_streq(buf, "always")) {
514 		spin_lock(&huge_anon_orders_lock);
515 		clear_bit(order, &huge_anon_orders_inherit);
516 		clear_bit(order, &huge_anon_orders_madvise);
517 		set_bit(order, &huge_anon_orders_always);
518 		spin_unlock(&huge_anon_orders_lock);
519 	} else if (sysfs_streq(buf, "inherit")) {
520 		spin_lock(&huge_anon_orders_lock);
521 		clear_bit(order, &huge_anon_orders_always);
522 		clear_bit(order, &huge_anon_orders_madvise);
523 		set_bit(order, &huge_anon_orders_inherit);
524 		spin_unlock(&huge_anon_orders_lock);
525 	} else if (sysfs_streq(buf, "madvise")) {
526 		spin_lock(&huge_anon_orders_lock);
527 		clear_bit(order, &huge_anon_orders_always);
528 		clear_bit(order, &huge_anon_orders_inherit);
529 		set_bit(order, &huge_anon_orders_madvise);
530 		spin_unlock(&huge_anon_orders_lock);
531 	} else if (sysfs_streq(buf, "never")) {
532 		spin_lock(&huge_anon_orders_lock);
533 		clear_bit(order, &huge_anon_orders_always);
534 		clear_bit(order, &huge_anon_orders_inherit);
535 		clear_bit(order, &huge_anon_orders_madvise);
536 		spin_unlock(&huge_anon_orders_lock);
537 	} else
538 		ret = -EINVAL;
539 
540 	if (ret > 0) {
541 		int err;
542 
543 		err = start_stop_khugepaged();
544 		if (err)
545 			ret = err;
546 	}
547 	return ret;
548 }
549 
550 static struct kobj_attribute anon_enabled_attr =
551 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
552 
553 static struct attribute *anon_ctrl_attrs[] = {
554 	&anon_enabled_attr.attr,
555 	NULL,
556 };
557 
558 static const struct attribute_group anon_ctrl_attr_grp = {
559 	.attrs = anon_ctrl_attrs,
560 };
561 
562 static struct attribute *file_ctrl_attrs[] = {
563 #ifdef CONFIG_SHMEM
564 	&thpsize_shmem_enabled_attr.attr,
565 #endif
566 	NULL,
567 };
568 
569 static const struct attribute_group file_ctrl_attr_grp = {
570 	.attrs = file_ctrl_attrs,
571 };
572 
573 static struct attribute *any_ctrl_attrs[] = {
574 	NULL,
575 };
576 
577 static const struct attribute_group any_ctrl_attr_grp = {
578 	.attrs = any_ctrl_attrs,
579 };
580 
581 static const struct kobj_type thpsize_ktype = {
582 	.release = &thpsize_release,
583 	.sysfs_ops = &kobj_sysfs_ops,
584 };
585 
586 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
587 
588 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
589 {
590 	unsigned long sum = 0;
591 	int cpu;
592 
593 	for_each_possible_cpu(cpu) {
594 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
595 
596 		sum += this->stats[order][item];
597 	}
598 
599 	return sum;
600 }
601 
602 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
603 static ssize_t _name##_show(struct kobject *kobj,			\
604 			struct kobj_attribute *attr, char *buf)		\
605 {									\
606 	int order = to_thpsize(kobj)->order;				\
607 									\
608 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
609 }									\
610 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
611 
612 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
613 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
614 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
615 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
616 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
617 #ifdef CONFIG_SHMEM
618 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
619 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
620 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
621 #endif
622 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
623 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
624 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
625 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
626 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
627 
628 static struct attribute *anon_stats_attrs[] = {
629 	&anon_fault_alloc_attr.attr,
630 	&anon_fault_fallback_attr.attr,
631 	&anon_fault_fallback_charge_attr.attr,
632 #ifndef CONFIG_SHMEM
633 	&swpout_attr.attr,
634 	&swpout_fallback_attr.attr,
635 #endif
636 	&split_deferred_attr.attr,
637 	&nr_anon_attr.attr,
638 	&nr_anon_partially_mapped_attr.attr,
639 	NULL,
640 };
641 
642 static struct attribute_group anon_stats_attr_grp = {
643 	.name = "stats",
644 	.attrs = anon_stats_attrs,
645 };
646 
647 static struct attribute *file_stats_attrs[] = {
648 #ifdef CONFIG_SHMEM
649 	&shmem_alloc_attr.attr,
650 	&shmem_fallback_attr.attr,
651 	&shmem_fallback_charge_attr.attr,
652 #endif
653 	NULL,
654 };
655 
656 static struct attribute_group file_stats_attr_grp = {
657 	.name = "stats",
658 	.attrs = file_stats_attrs,
659 };
660 
661 static struct attribute *any_stats_attrs[] = {
662 #ifdef CONFIG_SHMEM
663 	&swpout_attr.attr,
664 	&swpout_fallback_attr.attr,
665 #endif
666 	&split_attr.attr,
667 	&split_failed_attr.attr,
668 	NULL,
669 };
670 
671 static struct attribute_group any_stats_attr_grp = {
672 	.name = "stats",
673 	.attrs = any_stats_attrs,
674 };
675 
676 static int sysfs_add_group(struct kobject *kobj,
677 			   const struct attribute_group *grp)
678 {
679 	int ret = -ENOENT;
680 
681 	/*
682 	 * If the group is named, try to merge first, assuming the subdirectory
683 	 * was already created. This avoids the warning emitted by
684 	 * sysfs_create_group() if the directory already exists.
685 	 */
686 	if (grp->name)
687 		ret = sysfs_merge_group(kobj, grp);
688 	if (ret)
689 		ret = sysfs_create_group(kobj, grp);
690 
691 	return ret;
692 }
693 
694 static struct thpsize *thpsize_create(int order, struct kobject *parent)
695 {
696 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
697 	struct thpsize *thpsize;
698 	int ret = -ENOMEM;
699 
700 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
701 	if (!thpsize)
702 		goto err;
703 
704 	thpsize->order = order;
705 
706 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
707 				   "hugepages-%lukB", size);
708 	if (ret) {
709 		kfree(thpsize);
710 		goto err;
711 	}
712 
713 
714 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
715 	if (ret)
716 		goto err_put;
717 
718 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
719 	if (ret)
720 		goto err_put;
721 
722 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
723 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
724 		if (ret)
725 			goto err_put;
726 
727 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
728 		if (ret)
729 			goto err_put;
730 	}
731 
732 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
733 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
734 		if (ret)
735 			goto err_put;
736 
737 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
738 		if (ret)
739 			goto err_put;
740 	}
741 
742 	return thpsize;
743 err_put:
744 	kobject_put(&thpsize->kobj);
745 err:
746 	return ERR_PTR(ret);
747 }
748 
749 static void thpsize_release(struct kobject *kobj)
750 {
751 	kfree(to_thpsize(kobj));
752 }
753 
754 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
755 {
756 	int err;
757 	struct thpsize *thpsize;
758 	unsigned long orders;
759 	int order;
760 
761 	/*
762 	 * Default to setting PMD-sized THP to inherit the global setting and
763 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
764 	 * constant so we have to do this here.
765 	 */
766 	if (!anon_orders_configured)
767 		huge_anon_orders_inherit = BIT(PMD_ORDER);
768 
769 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
770 	if (unlikely(!*hugepage_kobj)) {
771 		pr_err("failed to create transparent hugepage kobject\n");
772 		return -ENOMEM;
773 	}
774 
775 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
776 	if (err) {
777 		pr_err("failed to register transparent hugepage group\n");
778 		goto delete_obj;
779 	}
780 
781 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
782 	if (err) {
783 		pr_err("failed to register transparent hugepage group\n");
784 		goto remove_hp_group;
785 	}
786 
787 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
788 	order = highest_order(orders);
789 	while (orders) {
790 		thpsize = thpsize_create(order, *hugepage_kobj);
791 		if (IS_ERR(thpsize)) {
792 			pr_err("failed to create thpsize for order %d\n", order);
793 			err = PTR_ERR(thpsize);
794 			goto remove_all;
795 		}
796 		list_add(&thpsize->node, &thpsize_list);
797 		order = next_order(&orders, order);
798 	}
799 
800 	return 0;
801 
802 remove_all:
803 	hugepage_exit_sysfs(*hugepage_kobj);
804 	return err;
805 remove_hp_group:
806 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
807 delete_obj:
808 	kobject_put(*hugepage_kobj);
809 	return err;
810 }
811 
812 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
813 {
814 	struct thpsize *thpsize, *tmp;
815 
816 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
817 		list_del(&thpsize->node);
818 		kobject_put(&thpsize->kobj);
819 	}
820 
821 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
822 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
823 	kobject_put(hugepage_kobj);
824 }
825 #else
826 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
827 {
828 	return 0;
829 }
830 
831 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
832 {
833 }
834 #endif /* CONFIG_SYSFS */
835 
836 static int __init thp_shrinker_init(void)
837 {
838 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
839 	if (!huge_zero_page_shrinker)
840 		return -ENOMEM;
841 
842 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
843 						 SHRINKER_MEMCG_AWARE |
844 						 SHRINKER_NONSLAB,
845 						 "thp-deferred_split");
846 	if (!deferred_split_shrinker) {
847 		shrinker_free(huge_zero_page_shrinker);
848 		return -ENOMEM;
849 	}
850 
851 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
852 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
853 	shrinker_register(huge_zero_page_shrinker);
854 
855 	deferred_split_shrinker->count_objects = deferred_split_count;
856 	deferred_split_shrinker->scan_objects = deferred_split_scan;
857 	shrinker_register(deferred_split_shrinker);
858 
859 	return 0;
860 }
861 
862 static void __init thp_shrinker_exit(void)
863 {
864 	shrinker_free(huge_zero_page_shrinker);
865 	shrinker_free(deferred_split_shrinker);
866 }
867 
868 static int __init hugepage_init(void)
869 {
870 	int err;
871 	struct kobject *hugepage_kobj;
872 
873 	if (!has_transparent_hugepage()) {
874 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
875 		return -EINVAL;
876 	}
877 
878 	/*
879 	 * hugepages can't be allocated by the buddy allocator
880 	 */
881 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
882 
883 	err = hugepage_init_sysfs(&hugepage_kobj);
884 	if (err)
885 		goto err_sysfs;
886 
887 	err = khugepaged_init();
888 	if (err)
889 		goto err_slab;
890 
891 	err = thp_shrinker_init();
892 	if (err)
893 		goto err_shrinker;
894 
895 	/*
896 	 * By default disable transparent hugepages on smaller systems,
897 	 * where the extra memory used could hurt more than TLB overhead
898 	 * is likely to save.  The admin can still enable it through /sys.
899 	 */
900 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
901 		transparent_hugepage_flags = 0;
902 		return 0;
903 	}
904 
905 	err = start_stop_khugepaged();
906 	if (err)
907 		goto err_khugepaged;
908 
909 	return 0;
910 err_khugepaged:
911 	thp_shrinker_exit();
912 err_shrinker:
913 	khugepaged_destroy();
914 err_slab:
915 	hugepage_exit_sysfs(hugepage_kobj);
916 err_sysfs:
917 	return err;
918 }
919 subsys_initcall(hugepage_init);
920 
921 static int __init setup_transparent_hugepage(char *str)
922 {
923 	int ret = 0;
924 	if (!str)
925 		goto out;
926 	if (!strcmp(str, "always")) {
927 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
928 			&transparent_hugepage_flags);
929 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
930 			  &transparent_hugepage_flags);
931 		ret = 1;
932 	} else if (!strcmp(str, "madvise")) {
933 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
934 			  &transparent_hugepage_flags);
935 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
936 			&transparent_hugepage_flags);
937 		ret = 1;
938 	} else if (!strcmp(str, "never")) {
939 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
940 			  &transparent_hugepage_flags);
941 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
942 			  &transparent_hugepage_flags);
943 		ret = 1;
944 	}
945 out:
946 	if (!ret)
947 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
948 	return ret;
949 }
950 __setup("transparent_hugepage=", setup_transparent_hugepage);
951 
952 static inline int get_order_from_str(const char *size_str)
953 {
954 	unsigned long size;
955 	char *endptr;
956 	int order;
957 
958 	size = memparse(size_str, &endptr);
959 
960 	if (!is_power_of_2(size))
961 		goto err;
962 	order = get_order(size);
963 	if (BIT(order) & ~THP_ORDERS_ALL_ANON)
964 		goto err;
965 
966 	return order;
967 err:
968 	pr_err("invalid size %s in thp_anon boot parameter\n", size_str);
969 	return -EINVAL;
970 }
971 
972 static char str_dup[PAGE_SIZE] __initdata;
973 static int __init setup_thp_anon(char *str)
974 {
975 	char *token, *range, *policy, *subtoken;
976 	unsigned long always, inherit, madvise;
977 	char *start_size, *end_size;
978 	int start, end, nr;
979 	char *p;
980 
981 	if (!str || strlen(str) + 1 > PAGE_SIZE)
982 		goto err;
983 	strcpy(str_dup, str);
984 
985 	always = huge_anon_orders_always;
986 	madvise = huge_anon_orders_madvise;
987 	inherit = huge_anon_orders_inherit;
988 	p = str_dup;
989 	while ((token = strsep(&p, ";")) != NULL) {
990 		range = strsep(&token, ":");
991 		policy = token;
992 
993 		if (!policy)
994 			goto err;
995 
996 		while ((subtoken = strsep(&range, ",")) != NULL) {
997 			if (strchr(subtoken, '-')) {
998 				start_size = strsep(&subtoken, "-");
999 				end_size = subtoken;
1000 
1001 				start = get_order_from_str(start_size);
1002 				end = get_order_from_str(end_size);
1003 			} else {
1004 				start = end = get_order_from_str(subtoken);
1005 			}
1006 
1007 			if (start < 0 || end < 0 || start > end)
1008 				goto err;
1009 
1010 			nr = end - start + 1;
1011 			if (!strcmp(policy, "always")) {
1012 				bitmap_set(&always, start, nr);
1013 				bitmap_clear(&inherit, start, nr);
1014 				bitmap_clear(&madvise, start, nr);
1015 			} else if (!strcmp(policy, "madvise")) {
1016 				bitmap_set(&madvise, start, nr);
1017 				bitmap_clear(&inherit, start, nr);
1018 				bitmap_clear(&always, start, nr);
1019 			} else if (!strcmp(policy, "inherit")) {
1020 				bitmap_set(&inherit, start, nr);
1021 				bitmap_clear(&madvise, start, nr);
1022 				bitmap_clear(&always, start, nr);
1023 			} else if (!strcmp(policy, "never")) {
1024 				bitmap_clear(&inherit, start, nr);
1025 				bitmap_clear(&madvise, start, nr);
1026 				bitmap_clear(&always, start, nr);
1027 			} else {
1028 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1029 				goto err;
1030 			}
1031 		}
1032 	}
1033 
1034 	huge_anon_orders_always = always;
1035 	huge_anon_orders_madvise = madvise;
1036 	huge_anon_orders_inherit = inherit;
1037 	anon_orders_configured = true;
1038 	return 1;
1039 
1040 err:
1041 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1042 	return 0;
1043 }
1044 __setup("thp_anon=", setup_thp_anon);
1045 
1046 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1047 {
1048 	if (likely(vma->vm_flags & VM_WRITE))
1049 		pmd = pmd_mkwrite(pmd, vma);
1050 	return pmd;
1051 }
1052 
1053 #ifdef CONFIG_MEMCG
1054 static inline
1055 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1056 {
1057 	struct mem_cgroup *memcg = folio_memcg(folio);
1058 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1059 
1060 	if (memcg)
1061 		return &memcg->deferred_split_queue;
1062 	else
1063 		return &pgdat->deferred_split_queue;
1064 }
1065 #else
1066 static inline
1067 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1068 {
1069 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1070 
1071 	return &pgdat->deferred_split_queue;
1072 }
1073 #endif
1074 
1075 static inline bool is_transparent_hugepage(const struct folio *folio)
1076 {
1077 	if (!folio_test_large(folio))
1078 		return false;
1079 
1080 	return is_huge_zero_folio(folio) ||
1081 		folio_test_large_rmappable(folio);
1082 }
1083 
1084 static unsigned long __thp_get_unmapped_area(struct file *filp,
1085 		unsigned long addr, unsigned long len,
1086 		loff_t off, unsigned long flags, unsigned long size,
1087 		vm_flags_t vm_flags)
1088 {
1089 	loff_t off_end = off + len;
1090 	loff_t off_align = round_up(off, size);
1091 	unsigned long len_pad, ret, off_sub;
1092 
1093 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1094 		return 0;
1095 
1096 	if (off_end <= off_align || (off_end - off_align) < size)
1097 		return 0;
1098 
1099 	len_pad = len + size;
1100 	if (len_pad < len || (off + len_pad) < off)
1101 		return 0;
1102 
1103 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1104 					   off >> PAGE_SHIFT, flags, vm_flags);
1105 
1106 	/*
1107 	 * The failure might be due to length padding. The caller will retry
1108 	 * without the padding.
1109 	 */
1110 	if (IS_ERR_VALUE(ret))
1111 		return 0;
1112 
1113 	/*
1114 	 * Do not try to align to THP boundary if allocation at the address
1115 	 * hint succeeds.
1116 	 */
1117 	if (ret == addr)
1118 		return addr;
1119 
1120 	off_sub = (off - ret) & (size - 1);
1121 
1122 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1123 		return ret + size;
1124 
1125 	ret += off_sub;
1126 	return ret;
1127 }
1128 
1129 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1130 		unsigned long len, unsigned long pgoff, unsigned long flags,
1131 		vm_flags_t vm_flags)
1132 {
1133 	unsigned long ret;
1134 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1135 
1136 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1137 	if (ret)
1138 		return ret;
1139 
1140 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1141 					    vm_flags);
1142 }
1143 
1144 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1145 		unsigned long len, unsigned long pgoff, unsigned long flags)
1146 {
1147 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1148 }
1149 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1150 
1151 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
1152 			struct page *page, gfp_t gfp)
1153 {
1154 	struct vm_area_struct *vma = vmf->vma;
1155 	struct folio *folio = page_folio(page);
1156 	pgtable_t pgtable;
1157 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1158 	vm_fault_t ret = 0;
1159 
1160 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1161 
1162 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1163 		folio_put(folio);
1164 		count_vm_event(THP_FAULT_FALLBACK);
1165 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1166 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1167 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1168 		return VM_FAULT_FALLBACK;
1169 	}
1170 	folio_throttle_swaprate(folio, gfp);
1171 
1172 	pgtable = pte_alloc_one(vma->vm_mm);
1173 	if (unlikely(!pgtable)) {
1174 		ret = VM_FAULT_OOM;
1175 		goto release;
1176 	}
1177 
1178 	folio_zero_user(folio, vmf->address);
1179 	/*
1180 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1181 	 * folio_zero_user writes become visible before the set_pmd_at()
1182 	 * write.
1183 	 */
1184 	__folio_mark_uptodate(folio);
1185 
1186 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1187 	if (unlikely(!pmd_none(*vmf->pmd))) {
1188 		goto unlock_release;
1189 	} else {
1190 		pmd_t entry;
1191 
1192 		ret = check_stable_address_space(vma->vm_mm);
1193 		if (ret)
1194 			goto unlock_release;
1195 
1196 		/* Deliver the page fault to userland */
1197 		if (userfaultfd_missing(vma)) {
1198 			spin_unlock(vmf->ptl);
1199 			folio_put(folio);
1200 			pte_free(vma->vm_mm, pgtable);
1201 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1202 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1203 			return ret;
1204 		}
1205 
1206 		entry = mk_huge_pmd(page, vma->vm_page_prot);
1207 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1208 		folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1209 		folio_add_lru_vma(folio, vma);
1210 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1211 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1212 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1213 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1214 		mm_inc_nr_ptes(vma->vm_mm);
1215 		deferred_split_folio(folio, false);
1216 		spin_unlock(vmf->ptl);
1217 		count_vm_event(THP_FAULT_ALLOC);
1218 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1219 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1220 	}
1221 
1222 	return 0;
1223 unlock_release:
1224 	spin_unlock(vmf->ptl);
1225 release:
1226 	if (pgtable)
1227 		pte_free(vma->vm_mm, pgtable);
1228 	folio_put(folio);
1229 	return ret;
1230 
1231 }
1232 
1233 /*
1234  * always: directly stall for all thp allocations
1235  * defer: wake kswapd and fail if not immediately available
1236  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1237  *		  fail if not immediately available
1238  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1239  *	    available
1240  * never: never stall for any thp allocation
1241  */
1242 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1243 {
1244 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1245 
1246 	/* Always do synchronous compaction */
1247 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1248 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1249 
1250 	/* Kick kcompactd and fail quickly */
1251 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1252 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1253 
1254 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1255 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1256 		return GFP_TRANSHUGE_LIGHT |
1257 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1258 					__GFP_KSWAPD_RECLAIM);
1259 
1260 	/* Only do synchronous compaction if madvised */
1261 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1262 		return GFP_TRANSHUGE_LIGHT |
1263 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1264 
1265 	return GFP_TRANSHUGE_LIGHT;
1266 }
1267 
1268 /* Caller must hold page table lock. */
1269 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1270 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1271 		struct folio *zero_folio)
1272 {
1273 	pmd_t entry;
1274 	if (!pmd_none(*pmd))
1275 		return;
1276 	entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1277 	entry = pmd_mkhuge(entry);
1278 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1279 	set_pmd_at(mm, haddr, pmd, entry);
1280 	mm_inc_nr_ptes(mm);
1281 }
1282 
1283 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1284 {
1285 	struct vm_area_struct *vma = vmf->vma;
1286 	gfp_t gfp;
1287 	struct folio *folio;
1288 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1289 	vm_fault_t ret;
1290 
1291 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1292 		return VM_FAULT_FALLBACK;
1293 	ret = vmf_anon_prepare(vmf);
1294 	if (ret)
1295 		return ret;
1296 	khugepaged_enter_vma(vma, vma->vm_flags);
1297 
1298 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1299 			!mm_forbids_zeropage(vma->vm_mm) &&
1300 			transparent_hugepage_use_zero_page()) {
1301 		pgtable_t pgtable;
1302 		struct folio *zero_folio;
1303 		vm_fault_t ret;
1304 
1305 		pgtable = pte_alloc_one(vma->vm_mm);
1306 		if (unlikely(!pgtable))
1307 			return VM_FAULT_OOM;
1308 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1309 		if (unlikely(!zero_folio)) {
1310 			pte_free(vma->vm_mm, pgtable);
1311 			count_vm_event(THP_FAULT_FALLBACK);
1312 			return VM_FAULT_FALLBACK;
1313 		}
1314 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1315 		ret = 0;
1316 		if (pmd_none(*vmf->pmd)) {
1317 			ret = check_stable_address_space(vma->vm_mm);
1318 			if (ret) {
1319 				spin_unlock(vmf->ptl);
1320 				pte_free(vma->vm_mm, pgtable);
1321 			} else if (userfaultfd_missing(vma)) {
1322 				spin_unlock(vmf->ptl);
1323 				pte_free(vma->vm_mm, pgtable);
1324 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1325 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1326 			} else {
1327 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1328 						   haddr, vmf->pmd, zero_folio);
1329 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1330 				spin_unlock(vmf->ptl);
1331 			}
1332 		} else {
1333 			spin_unlock(vmf->ptl);
1334 			pte_free(vma->vm_mm, pgtable);
1335 		}
1336 		return ret;
1337 	}
1338 	gfp = vma_thp_gfp_mask(vma);
1339 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1340 	if (unlikely(!folio)) {
1341 		count_vm_event(THP_FAULT_FALLBACK);
1342 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1343 		return VM_FAULT_FALLBACK;
1344 	}
1345 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1346 }
1347 
1348 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1349 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1350 		pgtable_t pgtable)
1351 {
1352 	struct mm_struct *mm = vma->vm_mm;
1353 	pmd_t entry;
1354 	spinlock_t *ptl;
1355 
1356 	ptl = pmd_lock(mm, pmd);
1357 	if (!pmd_none(*pmd)) {
1358 		if (write) {
1359 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1360 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1361 				goto out_unlock;
1362 			}
1363 			entry = pmd_mkyoung(*pmd);
1364 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1365 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1366 				update_mmu_cache_pmd(vma, addr, pmd);
1367 		}
1368 
1369 		goto out_unlock;
1370 	}
1371 
1372 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1373 	if (pfn_t_devmap(pfn))
1374 		entry = pmd_mkdevmap(entry);
1375 	else
1376 		entry = pmd_mkspecial(entry);
1377 	if (write) {
1378 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1379 		entry = maybe_pmd_mkwrite(entry, vma);
1380 	}
1381 
1382 	if (pgtable) {
1383 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1384 		mm_inc_nr_ptes(mm);
1385 		pgtable = NULL;
1386 	}
1387 
1388 	set_pmd_at(mm, addr, pmd, entry);
1389 	update_mmu_cache_pmd(vma, addr, pmd);
1390 
1391 out_unlock:
1392 	spin_unlock(ptl);
1393 	if (pgtable)
1394 		pte_free(mm, pgtable);
1395 }
1396 
1397 /**
1398  * vmf_insert_pfn_pmd - insert a pmd size pfn
1399  * @vmf: Structure describing the fault
1400  * @pfn: pfn to insert
1401  * @write: whether it's a write fault
1402  *
1403  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1404  *
1405  * Return: vm_fault_t value.
1406  */
1407 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1408 {
1409 	unsigned long addr = vmf->address & PMD_MASK;
1410 	struct vm_area_struct *vma = vmf->vma;
1411 	pgprot_t pgprot = vma->vm_page_prot;
1412 	pgtable_t pgtable = NULL;
1413 
1414 	/*
1415 	 * If we had pmd_special, we could avoid all these restrictions,
1416 	 * but we need to be consistent with PTEs and architectures that
1417 	 * can't support a 'special' bit.
1418 	 */
1419 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1420 			!pfn_t_devmap(pfn));
1421 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1422 						(VM_PFNMAP|VM_MIXEDMAP));
1423 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1424 
1425 	if (addr < vma->vm_start || addr >= vma->vm_end)
1426 		return VM_FAULT_SIGBUS;
1427 
1428 	if (arch_needs_pgtable_deposit()) {
1429 		pgtable = pte_alloc_one(vma->vm_mm);
1430 		if (!pgtable)
1431 			return VM_FAULT_OOM;
1432 	}
1433 
1434 	track_pfn_insert(vma, &pgprot, pfn);
1435 
1436 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1437 	return VM_FAULT_NOPAGE;
1438 }
1439 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1440 
1441 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1442 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1443 {
1444 	if (likely(vma->vm_flags & VM_WRITE))
1445 		pud = pud_mkwrite(pud);
1446 	return pud;
1447 }
1448 
1449 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1450 		pud_t *pud, pfn_t pfn, bool write)
1451 {
1452 	struct mm_struct *mm = vma->vm_mm;
1453 	pgprot_t prot = vma->vm_page_prot;
1454 	pud_t entry;
1455 	spinlock_t *ptl;
1456 
1457 	ptl = pud_lock(mm, pud);
1458 	if (!pud_none(*pud)) {
1459 		if (write) {
1460 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1461 				goto out_unlock;
1462 			entry = pud_mkyoung(*pud);
1463 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1464 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1465 				update_mmu_cache_pud(vma, addr, pud);
1466 		}
1467 		goto out_unlock;
1468 	}
1469 
1470 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1471 	if (pfn_t_devmap(pfn))
1472 		entry = pud_mkdevmap(entry);
1473 	else
1474 		entry = pud_mkspecial(entry);
1475 	if (write) {
1476 		entry = pud_mkyoung(pud_mkdirty(entry));
1477 		entry = maybe_pud_mkwrite(entry, vma);
1478 	}
1479 	set_pud_at(mm, addr, pud, entry);
1480 	update_mmu_cache_pud(vma, addr, pud);
1481 
1482 out_unlock:
1483 	spin_unlock(ptl);
1484 }
1485 
1486 /**
1487  * vmf_insert_pfn_pud - insert a pud size pfn
1488  * @vmf: Structure describing the fault
1489  * @pfn: pfn to insert
1490  * @write: whether it's a write fault
1491  *
1492  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1493  *
1494  * Return: vm_fault_t value.
1495  */
1496 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1497 {
1498 	unsigned long addr = vmf->address & PUD_MASK;
1499 	struct vm_area_struct *vma = vmf->vma;
1500 	pgprot_t pgprot = vma->vm_page_prot;
1501 
1502 	/*
1503 	 * If we had pud_special, we could avoid all these restrictions,
1504 	 * but we need to be consistent with PTEs and architectures that
1505 	 * can't support a 'special' bit.
1506 	 */
1507 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1508 			!pfn_t_devmap(pfn));
1509 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1510 						(VM_PFNMAP|VM_MIXEDMAP));
1511 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1512 
1513 	if (addr < vma->vm_start || addr >= vma->vm_end)
1514 		return VM_FAULT_SIGBUS;
1515 
1516 	track_pfn_insert(vma, &pgprot, pfn);
1517 
1518 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1519 	return VM_FAULT_NOPAGE;
1520 }
1521 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1522 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1523 
1524 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1525 	       pmd_t *pmd, bool write)
1526 {
1527 	pmd_t _pmd;
1528 
1529 	_pmd = pmd_mkyoung(*pmd);
1530 	if (write)
1531 		_pmd = pmd_mkdirty(_pmd);
1532 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1533 				  pmd, _pmd, write))
1534 		update_mmu_cache_pmd(vma, addr, pmd);
1535 }
1536 
1537 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1538 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1539 {
1540 	unsigned long pfn = pmd_pfn(*pmd);
1541 	struct mm_struct *mm = vma->vm_mm;
1542 	struct page *page;
1543 	int ret;
1544 
1545 	assert_spin_locked(pmd_lockptr(mm, pmd));
1546 
1547 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1548 		return NULL;
1549 
1550 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1551 		/* pass */;
1552 	else
1553 		return NULL;
1554 
1555 	if (flags & FOLL_TOUCH)
1556 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1557 
1558 	/*
1559 	 * device mapped pages can only be returned if the
1560 	 * caller will manage the page reference count.
1561 	 */
1562 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1563 		return ERR_PTR(-EEXIST);
1564 
1565 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1566 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1567 	if (!*pgmap)
1568 		return ERR_PTR(-EFAULT);
1569 	page = pfn_to_page(pfn);
1570 	ret = try_grab_folio(page_folio(page), 1, flags);
1571 	if (ret)
1572 		page = ERR_PTR(ret);
1573 
1574 	return page;
1575 }
1576 
1577 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1578 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1579 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1580 {
1581 	spinlock_t *dst_ptl, *src_ptl;
1582 	struct page *src_page;
1583 	struct folio *src_folio;
1584 	pmd_t pmd;
1585 	pgtable_t pgtable = NULL;
1586 	int ret = -ENOMEM;
1587 
1588 	pmd = pmdp_get_lockless(src_pmd);
1589 	if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1590 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1591 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1592 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1593 		/*
1594 		 * No need to recheck the pmd, it can't change with write
1595 		 * mmap lock held here.
1596 		 *
1597 		 * Meanwhile, making sure it's not a CoW VMA with writable
1598 		 * mapping, otherwise it means either the anon page wrongly
1599 		 * applied special bit, or we made the PRIVATE mapping be
1600 		 * able to wrongly write to the backend MMIO.
1601 		 */
1602 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1603 		goto set_pmd;
1604 	}
1605 
1606 	/* Skip if can be re-fill on fault */
1607 	if (!vma_is_anonymous(dst_vma))
1608 		return 0;
1609 
1610 	pgtable = pte_alloc_one(dst_mm);
1611 	if (unlikely(!pgtable))
1612 		goto out;
1613 
1614 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1615 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1616 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1617 
1618 	ret = -EAGAIN;
1619 	pmd = *src_pmd;
1620 
1621 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1622 	if (unlikely(is_swap_pmd(pmd))) {
1623 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1624 
1625 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1626 		if (!is_readable_migration_entry(entry)) {
1627 			entry = make_readable_migration_entry(
1628 							swp_offset(entry));
1629 			pmd = swp_entry_to_pmd(entry);
1630 			if (pmd_swp_soft_dirty(*src_pmd))
1631 				pmd = pmd_swp_mksoft_dirty(pmd);
1632 			if (pmd_swp_uffd_wp(*src_pmd))
1633 				pmd = pmd_swp_mkuffd_wp(pmd);
1634 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1635 		}
1636 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1637 		mm_inc_nr_ptes(dst_mm);
1638 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1639 		if (!userfaultfd_wp(dst_vma))
1640 			pmd = pmd_swp_clear_uffd_wp(pmd);
1641 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1642 		ret = 0;
1643 		goto out_unlock;
1644 	}
1645 #endif
1646 
1647 	if (unlikely(!pmd_trans_huge(pmd))) {
1648 		pte_free(dst_mm, pgtable);
1649 		goto out_unlock;
1650 	}
1651 	/*
1652 	 * When page table lock is held, the huge zero pmd should not be
1653 	 * under splitting since we don't split the page itself, only pmd to
1654 	 * a page table.
1655 	 */
1656 	if (is_huge_zero_pmd(pmd)) {
1657 		/*
1658 		 * mm_get_huge_zero_folio() will never allocate a new
1659 		 * folio here, since we already have a zero page to
1660 		 * copy. It just takes a reference.
1661 		 */
1662 		mm_get_huge_zero_folio(dst_mm);
1663 		goto out_zero_page;
1664 	}
1665 
1666 	src_page = pmd_page(pmd);
1667 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1668 	src_folio = page_folio(src_page);
1669 
1670 	folio_get(src_folio);
1671 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1672 		/* Page maybe pinned: split and retry the fault on PTEs. */
1673 		folio_put(src_folio);
1674 		pte_free(dst_mm, pgtable);
1675 		spin_unlock(src_ptl);
1676 		spin_unlock(dst_ptl);
1677 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1678 		return -EAGAIN;
1679 	}
1680 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1681 out_zero_page:
1682 	mm_inc_nr_ptes(dst_mm);
1683 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1684 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1685 	if (!userfaultfd_wp(dst_vma))
1686 		pmd = pmd_clear_uffd_wp(pmd);
1687 	pmd = pmd_wrprotect(pmd);
1688 set_pmd:
1689 	pmd = pmd_mkold(pmd);
1690 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1691 
1692 	ret = 0;
1693 out_unlock:
1694 	spin_unlock(src_ptl);
1695 	spin_unlock(dst_ptl);
1696 out:
1697 	return ret;
1698 }
1699 
1700 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1701 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1702 	       pud_t *pud, bool write)
1703 {
1704 	pud_t _pud;
1705 
1706 	_pud = pud_mkyoung(*pud);
1707 	if (write)
1708 		_pud = pud_mkdirty(_pud);
1709 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1710 				  pud, _pud, write))
1711 		update_mmu_cache_pud(vma, addr, pud);
1712 }
1713 
1714 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1715 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1716 		  struct vm_area_struct *vma)
1717 {
1718 	spinlock_t *dst_ptl, *src_ptl;
1719 	pud_t pud;
1720 	int ret;
1721 
1722 	dst_ptl = pud_lock(dst_mm, dst_pud);
1723 	src_ptl = pud_lockptr(src_mm, src_pud);
1724 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1725 
1726 	ret = -EAGAIN;
1727 	pud = *src_pud;
1728 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1729 		goto out_unlock;
1730 
1731 	/*
1732 	 * TODO: once we support anonymous pages, use
1733 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1734 	 */
1735 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1736 		pudp_set_wrprotect(src_mm, addr, src_pud);
1737 		pud = pud_wrprotect(pud);
1738 	}
1739 	pud = pud_mkold(pud);
1740 	set_pud_at(dst_mm, addr, dst_pud, pud);
1741 
1742 	ret = 0;
1743 out_unlock:
1744 	spin_unlock(src_ptl);
1745 	spin_unlock(dst_ptl);
1746 	return ret;
1747 }
1748 
1749 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1750 {
1751 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1752 
1753 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1754 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1755 		goto unlock;
1756 
1757 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1758 unlock:
1759 	spin_unlock(vmf->ptl);
1760 }
1761 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1762 
1763 void huge_pmd_set_accessed(struct vm_fault *vmf)
1764 {
1765 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1766 
1767 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1768 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1769 		goto unlock;
1770 
1771 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1772 
1773 unlock:
1774 	spin_unlock(vmf->ptl);
1775 }
1776 
1777 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1778 {
1779 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1780 	struct vm_area_struct *vma = vmf->vma;
1781 	struct folio *folio;
1782 	struct page *page;
1783 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1784 	pmd_t orig_pmd = vmf->orig_pmd;
1785 
1786 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1787 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1788 
1789 	if (is_huge_zero_pmd(orig_pmd))
1790 		goto fallback;
1791 
1792 	spin_lock(vmf->ptl);
1793 
1794 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1795 		spin_unlock(vmf->ptl);
1796 		return 0;
1797 	}
1798 
1799 	page = pmd_page(orig_pmd);
1800 	folio = page_folio(page);
1801 	VM_BUG_ON_PAGE(!PageHead(page), page);
1802 
1803 	/* Early check when only holding the PT lock. */
1804 	if (PageAnonExclusive(page))
1805 		goto reuse;
1806 
1807 	if (!folio_trylock(folio)) {
1808 		folio_get(folio);
1809 		spin_unlock(vmf->ptl);
1810 		folio_lock(folio);
1811 		spin_lock(vmf->ptl);
1812 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1813 			spin_unlock(vmf->ptl);
1814 			folio_unlock(folio);
1815 			folio_put(folio);
1816 			return 0;
1817 		}
1818 		folio_put(folio);
1819 	}
1820 
1821 	/* Recheck after temporarily dropping the PT lock. */
1822 	if (PageAnonExclusive(page)) {
1823 		folio_unlock(folio);
1824 		goto reuse;
1825 	}
1826 
1827 	/*
1828 	 * See do_wp_page(): we can only reuse the folio exclusively if
1829 	 * there are no additional references. Note that we always drain
1830 	 * the LRU cache immediately after adding a THP.
1831 	 */
1832 	if (folio_ref_count(folio) >
1833 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1834 		goto unlock_fallback;
1835 	if (folio_test_swapcache(folio))
1836 		folio_free_swap(folio);
1837 	if (folio_ref_count(folio) == 1) {
1838 		pmd_t entry;
1839 
1840 		folio_move_anon_rmap(folio, vma);
1841 		SetPageAnonExclusive(page);
1842 		folio_unlock(folio);
1843 reuse:
1844 		if (unlikely(unshare)) {
1845 			spin_unlock(vmf->ptl);
1846 			return 0;
1847 		}
1848 		entry = pmd_mkyoung(orig_pmd);
1849 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1850 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1851 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1852 		spin_unlock(vmf->ptl);
1853 		return 0;
1854 	}
1855 
1856 unlock_fallback:
1857 	folio_unlock(folio);
1858 	spin_unlock(vmf->ptl);
1859 fallback:
1860 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1861 	return VM_FAULT_FALLBACK;
1862 }
1863 
1864 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1865 					   unsigned long addr, pmd_t pmd)
1866 {
1867 	struct page *page;
1868 
1869 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1870 		return false;
1871 
1872 	/* Don't touch entries that are not even readable (NUMA hinting). */
1873 	if (pmd_protnone(pmd))
1874 		return false;
1875 
1876 	/* Do we need write faults for softdirty tracking? */
1877 	if (pmd_needs_soft_dirty_wp(vma, pmd))
1878 		return false;
1879 
1880 	/* Do we need write faults for uffd-wp tracking? */
1881 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1882 		return false;
1883 
1884 	if (!(vma->vm_flags & VM_SHARED)) {
1885 		/* See can_change_pte_writable(). */
1886 		page = vm_normal_page_pmd(vma, addr, pmd);
1887 		return page && PageAnon(page) && PageAnonExclusive(page);
1888 	}
1889 
1890 	/* See can_change_pte_writable(). */
1891 	return pmd_dirty(pmd);
1892 }
1893 
1894 /* NUMA hinting page fault entry point for trans huge pmds */
1895 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1896 {
1897 	struct vm_area_struct *vma = vmf->vma;
1898 	struct folio *folio;
1899 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1900 	int nid = NUMA_NO_NODE;
1901 	int target_nid, last_cpupid;
1902 	pmd_t pmd, old_pmd;
1903 	bool writable = false;
1904 	int flags = 0;
1905 
1906 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1907 	old_pmd = pmdp_get(vmf->pmd);
1908 
1909 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
1910 		spin_unlock(vmf->ptl);
1911 		return 0;
1912 	}
1913 
1914 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
1915 
1916 	/*
1917 	 * Detect now whether the PMD could be writable; this information
1918 	 * is only valid while holding the PT lock.
1919 	 */
1920 	writable = pmd_write(pmd);
1921 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1922 	    can_change_pmd_writable(vma, vmf->address, pmd))
1923 		writable = true;
1924 
1925 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1926 	if (!folio)
1927 		goto out_map;
1928 
1929 	nid = folio_nid(folio);
1930 
1931 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
1932 					&last_cpupid);
1933 	if (target_nid == NUMA_NO_NODE)
1934 		goto out_map;
1935 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
1936 		flags |= TNF_MIGRATE_FAIL;
1937 		goto out_map;
1938 	}
1939 	/* The folio is isolated and isolation code holds a folio reference. */
1940 	spin_unlock(vmf->ptl);
1941 	writable = false;
1942 
1943 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
1944 		flags |= TNF_MIGRATED;
1945 		nid = target_nid;
1946 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1947 		return 0;
1948 	}
1949 
1950 	flags |= TNF_MIGRATE_FAIL;
1951 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1952 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
1953 		spin_unlock(vmf->ptl);
1954 		return 0;
1955 	}
1956 out_map:
1957 	/* Restore the PMD */
1958 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
1959 	pmd = pmd_mkyoung(pmd);
1960 	if (writable)
1961 		pmd = pmd_mkwrite(pmd, vma);
1962 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1963 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1964 	spin_unlock(vmf->ptl);
1965 
1966 	if (nid != NUMA_NO_NODE)
1967 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1968 	return 0;
1969 }
1970 
1971 /*
1972  * Return true if we do MADV_FREE successfully on entire pmd page.
1973  * Otherwise, return false.
1974  */
1975 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1976 		pmd_t *pmd, unsigned long addr, unsigned long next)
1977 {
1978 	spinlock_t *ptl;
1979 	pmd_t orig_pmd;
1980 	struct folio *folio;
1981 	struct mm_struct *mm = tlb->mm;
1982 	bool ret = false;
1983 
1984 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1985 
1986 	ptl = pmd_trans_huge_lock(pmd, vma);
1987 	if (!ptl)
1988 		goto out_unlocked;
1989 
1990 	orig_pmd = *pmd;
1991 	if (is_huge_zero_pmd(orig_pmd))
1992 		goto out;
1993 
1994 	if (unlikely(!pmd_present(orig_pmd))) {
1995 		VM_BUG_ON(thp_migration_supported() &&
1996 				  !is_pmd_migration_entry(orig_pmd));
1997 		goto out;
1998 	}
1999 
2000 	folio = pmd_folio(orig_pmd);
2001 	/*
2002 	 * If other processes are mapping this folio, we couldn't discard
2003 	 * the folio unless they all do MADV_FREE so let's skip the folio.
2004 	 */
2005 	if (folio_likely_mapped_shared(folio))
2006 		goto out;
2007 
2008 	if (!folio_trylock(folio))
2009 		goto out;
2010 
2011 	/*
2012 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2013 	 * will deactivate only them.
2014 	 */
2015 	if (next - addr != HPAGE_PMD_SIZE) {
2016 		folio_get(folio);
2017 		spin_unlock(ptl);
2018 		split_folio(folio);
2019 		folio_unlock(folio);
2020 		folio_put(folio);
2021 		goto out_unlocked;
2022 	}
2023 
2024 	if (folio_test_dirty(folio))
2025 		folio_clear_dirty(folio);
2026 	folio_unlock(folio);
2027 
2028 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2029 		pmdp_invalidate(vma, addr, pmd);
2030 		orig_pmd = pmd_mkold(orig_pmd);
2031 		orig_pmd = pmd_mkclean(orig_pmd);
2032 
2033 		set_pmd_at(mm, addr, pmd, orig_pmd);
2034 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2035 	}
2036 
2037 	folio_mark_lazyfree(folio);
2038 	ret = true;
2039 out:
2040 	spin_unlock(ptl);
2041 out_unlocked:
2042 	return ret;
2043 }
2044 
2045 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2046 {
2047 	pgtable_t pgtable;
2048 
2049 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 	pte_free(mm, pgtable);
2051 	mm_dec_nr_ptes(mm);
2052 }
2053 
2054 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2055 		 pmd_t *pmd, unsigned long addr)
2056 {
2057 	pmd_t orig_pmd;
2058 	spinlock_t *ptl;
2059 
2060 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2061 
2062 	ptl = __pmd_trans_huge_lock(pmd, vma);
2063 	if (!ptl)
2064 		return 0;
2065 	/*
2066 	 * For architectures like ppc64 we look at deposited pgtable
2067 	 * when calling pmdp_huge_get_and_clear. So do the
2068 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2069 	 * operations.
2070 	 */
2071 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2072 						tlb->fullmm);
2073 	arch_check_zapped_pmd(vma, orig_pmd);
2074 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2075 	if (vma_is_special_huge(vma)) {
2076 		if (arch_needs_pgtable_deposit())
2077 			zap_deposited_table(tlb->mm, pmd);
2078 		spin_unlock(ptl);
2079 	} else if (is_huge_zero_pmd(orig_pmd)) {
2080 		zap_deposited_table(tlb->mm, pmd);
2081 		spin_unlock(ptl);
2082 	} else {
2083 		struct folio *folio = NULL;
2084 		int flush_needed = 1;
2085 
2086 		if (pmd_present(orig_pmd)) {
2087 			struct page *page = pmd_page(orig_pmd);
2088 
2089 			folio = page_folio(page);
2090 			folio_remove_rmap_pmd(folio, page, vma);
2091 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2092 			VM_BUG_ON_PAGE(!PageHead(page), page);
2093 		} else if (thp_migration_supported()) {
2094 			swp_entry_t entry;
2095 
2096 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2097 			entry = pmd_to_swp_entry(orig_pmd);
2098 			folio = pfn_swap_entry_folio(entry);
2099 			flush_needed = 0;
2100 		} else
2101 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2102 
2103 		if (folio_test_anon(folio)) {
2104 			zap_deposited_table(tlb->mm, pmd);
2105 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2106 		} else {
2107 			if (arch_needs_pgtable_deposit())
2108 				zap_deposited_table(tlb->mm, pmd);
2109 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2110 				       -HPAGE_PMD_NR);
2111 		}
2112 
2113 		spin_unlock(ptl);
2114 		if (flush_needed)
2115 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2116 	}
2117 	return 1;
2118 }
2119 
2120 #ifndef pmd_move_must_withdraw
2121 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2122 					 spinlock_t *old_pmd_ptl,
2123 					 struct vm_area_struct *vma)
2124 {
2125 	/*
2126 	 * With split pmd lock we also need to move preallocated
2127 	 * PTE page table if new_pmd is on different PMD page table.
2128 	 *
2129 	 * We also don't deposit and withdraw tables for file pages.
2130 	 */
2131 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2132 }
2133 #endif
2134 
2135 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2136 {
2137 #ifdef CONFIG_MEM_SOFT_DIRTY
2138 	if (unlikely(is_pmd_migration_entry(pmd)))
2139 		pmd = pmd_swp_mksoft_dirty(pmd);
2140 	else if (pmd_present(pmd))
2141 		pmd = pmd_mksoft_dirty(pmd);
2142 #endif
2143 	return pmd;
2144 }
2145 
2146 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2147 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2148 {
2149 	spinlock_t *old_ptl, *new_ptl;
2150 	pmd_t pmd;
2151 	struct mm_struct *mm = vma->vm_mm;
2152 	bool force_flush = false;
2153 
2154 	/*
2155 	 * The destination pmd shouldn't be established, free_pgtables()
2156 	 * should have released it; but move_page_tables() might have already
2157 	 * inserted a page table, if racing against shmem/file collapse.
2158 	 */
2159 	if (!pmd_none(*new_pmd)) {
2160 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2161 		return false;
2162 	}
2163 
2164 	/*
2165 	 * We don't have to worry about the ordering of src and dst
2166 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2167 	 */
2168 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2169 	if (old_ptl) {
2170 		new_ptl = pmd_lockptr(mm, new_pmd);
2171 		if (new_ptl != old_ptl)
2172 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2173 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2174 		if (pmd_present(pmd))
2175 			force_flush = true;
2176 		VM_BUG_ON(!pmd_none(*new_pmd));
2177 
2178 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2179 			pgtable_t pgtable;
2180 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2181 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2182 		}
2183 		pmd = move_soft_dirty_pmd(pmd);
2184 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2185 		if (force_flush)
2186 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2187 		if (new_ptl != old_ptl)
2188 			spin_unlock(new_ptl);
2189 		spin_unlock(old_ptl);
2190 		return true;
2191 	}
2192 	return false;
2193 }
2194 
2195 /*
2196  * Returns
2197  *  - 0 if PMD could not be locked
2198  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2199  *      or if prot_numa but THP migration is not supported
2200  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2201  */
2202 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2203 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2204 		    unsigned long cp_flags)
2205 {
2206 	struct mm_struct *mm = vma->vm_mm;
2207 	spinlock_t *ptl;
2208 	pmd_t oldpmd, entry;
2209 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2210 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2211 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2212 	int ret = 1;
2213 
2214 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2215 
2216 	if (prot_numa && !thp_migration_supported())
2217 		return 1;
2218 
2219 	ptl = __pmd_trans_huge_lock(pmd, vma);
2220 	if (!ptl)
2221 		return 0;
2222 
2223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2224 	if (is_swap_pmd(*pmd)) {
2225 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2226 		struct folio *folio = pfn_swap_entry_folio(entry);
2227 		pmd_t newpmd;
2228 
2229 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2230 		if (is_writable_migration_entry(entry)) {
2231 			/*
2232 			 * A protection check is difficult so
2233 			 * just be safe and disable write
2234 			 */
2235 			if (folio_test_anon(folio))
2236 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2237 			else
2238 				entry = make_readable_migration_entry(swp_offset(entry));
2239 			newpmd = swp_entry_to_pmd(entry);
2240 			if (pmd_swp_soft_dirty(*pmd))
2241 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2242 		} else {
2243 			newpmd = *pmd;
2244 		}
2245 
2246 		if (uffd_wp)
2247 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2248 		else if (uffd_wp_resolve)
2249 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2250 		if (!pmd_same(*pmd, newpmd))
2251 			set_pmd_at(mm, addr, pmd, newpmd);
2252 		goto unlock;
2253 	}
2254 #endif
2255 
2256 	if (prot_numa) {
2257 		struct folio *folio;
2258 		bool toptier;
2259 		/*
2260 		 * Avoid trapping faults against the zero page. The read-only
2261 		 * data is likely to be read-cached on the local CPU and
2262 		 * local/remote hits to the zero page are not interesting.
2263 		 */
2264 		if (is_huge_zero_pmd(*pmd))
2265 			goto unlock;
2266 
2267 		if (pmd_protnone(*pmd))
2268 			goto unlock;
2269 
2270 		folio = pmd_folio(*pmd);
2271 		toptier = node_is_toptier(folio_nid(folio));
2272 		/*
2273 		 * Skip scanning top tier node if normal numa
2274 		 * balancing is disabled
2275 		 */
2276 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2277 		    toptier)
2278 			goto unlock;
2279 
2280 		if (folio_use_access_time(folio))
2281 			folio_xchg_access_time(folio,
2282 					       jiffies_to_msecs(jiffies));
2283 	}
2284 	/*
2285 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2286 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2287 	 * which is also under mmap_read_lock(mm):
2288 	 *
2289 	 *	CPU0:				CPU1:
2290 	 *				change_huge_pmd(prot_numa=1)
2291 	 *				 pmdp_huge_get_and_clear_notify()
2292 	 * madvise_dontneed()
2293 	 *  zap_pmd_range()
2294 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2295 	 *   // skip the pmd
2296 	 *				 set_pmd_at();
2297 	 *				 // pmd is re-established
2298 	 *
2299 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2300 	 * which may break userspace.
2301 	 *
2302 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2303 	 * dirty/young flags set by hardware.
2304 	 */
2305 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2306 
2307 	entry = pmd_modify(oldpmd, newprot);
2308 	if (uffd_wp)
2309 		entry = pmd_mkuffd_wp(entry);
2310 	else if (uffd_wp_resolve)
2311 		/*
2312 		 * Leave the write bit to be handled by PF interrupt
2313 		 * handler, then things like COW could be properly
2314 		 * handled.
2315 		 */
2316 		entry = pmd_clear_uffd_wp(entry);
2317 
2318 	/* See change_pte_range(). */
2319 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2320 	    can_change_pmd_writable(vma, addr, entry))
2321 		entry = pmd_mkwrite(entry, vma);
2322 
2323 	ret = HPAGE_PMD_NR;
2324 	set_pmd_at(mm, addr, pmd, entry);
2325 
2326 	if (huge_pmd_needs_flush(oldpmd, entry))
2327 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2328 unlock:
2329 	spin_unlock(ptl);
2330 	return ret;
2331 }
2332 
2333 /*
2334  * Returns:
2335  *
2336  * - 0: if pud leaf changed from under us
2337  * - 1: if pud can be skipped
2338  * - HPAGE_PUD_NR: if pud was successfully processed
2339  */
2340 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2341 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2342 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2343 		    unsigned long cp_flags)
2344 {
2345 	struct mm_struct *mm = vma->vm_mm;
2346 	pud_t oldpud, entry;
2347 	spinlock_t *ptl;
2348 
2349 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2350 
2351 	/* NUMA balancing doesn't apply to dax */
2352 	if (cp_flags & MM_CP_PROT_NUMA)
2353 		return 1;
2354 
2355 	/*
2356 	 * Huge entries on userfault-wp only works with anonymous, while we
2357 	 * don't have anonymous PUDs yet.
2358 	 */
2359 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2360 		return 1;
2361 
2362 	ptl = __pud_trans_huge_lock(pudp, vma);
2363 	if (!ptl)
2364 		return 0;
2365 
2366 	/*
2367 	 * Can't clear PUD or it can race with concurrent zapping.  See
2368 	 * change_huge_pmd().
2369 	 */
2370 	oldpud = pudp_invalidate(vma, addr, pudp);
2371 	entry = pud_modify(oldpud, newprot);
2372 	set_pud_at(mm, addr, pudp, entry);
2373 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2374 
2375 	spin_unlock(ptl);
2376 	return HPAGE_PUD_NR;
2377 }
2378 #endif
2379 
2380 #ifdef CONFIG_USERFAULTFD
2381 /*
2382  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2383  * the caller, but it must return after releasing the page_table_lock.
2384  * Just move the page from src_pmd to dst_pmd if possible.
2385  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2386  * repeated by the caller, or other errors in case of failure.
2387  */
2388 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2389 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2390 			unsigned long dst_addr, unsigned long src_addr)
2391 {
2392 	pmd_t _dst_pmd, src_pmdval;
2393 	struct page *src_page;
2394 	struct folio *src_folio;
2395 	struct anon_vma *src_anon_vma;
2396 	spinlock_t *src_ptl, *dst_ptl;
2397 	pgtable_t src_pgtable;
2398 	struct mmu_notifier_range range;
2399 	int err = 0;
2400 
2401 	src_pmdval = *src_pmd;
2402 	src_ptl = pmd_lockptr(mm, src_pmd);
2403 
2404 	lockdep_assert_held(src_ptl);
2405 	vma_assert_locked(src_vma);
2406 	vma_assert_locked(dst_vma);
2407 
2408 	/* Sanity checks before the operation */
2409 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2410 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2411 		spin_unlock(src_ptl);
2412 		return -EINVAL;
2413 	}
2414 
2415 	if (!pmd_trans_huge(src_pmdval)) {
2416 		spin_unlock(src_ptl);
2417 		if (is_pmd_migration_entry(src_pmdval)) {
2418 			pmd_migration_entry_wait(mm, &src_pmdval);
2419 			return -EAGAIN;
2420 		}
2421 		return -ENOENT;
2422 	}
2423 
2424 	src_page = pmd_page(src_pmdval);
2425 
2426 	if (!is_huge_zero_pmd(src_pmdval)) {
2427 		if (unlikely(!PageAnonExclusive(src_page))) {
2428 			spin_unlock(src_ptl);
2429 			return -EBUSY;
2430 		}
2431 
2432 		src_folio = page_folio(src_page);
2433 		folio_get(src_folio);
2434 	} else
2435 		src_folio = NULL;
2436 
2437 	spin_unlock(src_ptl);
2438 
2439 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2440 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2441 				src_addr + HPAGE_PMD_SIZE);
2442 	mmu_notifier_invalidate_range_start(&range);
2443 
2444 	if (src_folio) {
2445 		folio_lock(src_folio);
2446 
2447 		/*
2448 		 * split_huge_page walks the anon_vma chain without the page
2449 		 * lock. Serialize against it with the anon_vma lock, the page
2450 		 * lock is not enough.
2451 		 */
2452 		src_anon_vma = folio_get_anon_vma(src_folio);
2453 		if (!src_anon_vma) {
2454 			err = -EAGAIN;
2455 			goto unlock_folio;
2456 		}
2457 		anon_vma_lock_write(src_anon_vma);
2458 	} else
2459 		src_anon_vma = NULL;
2460 
2461 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2462 	double_pt_lock(src_ptl, dst_ptl);
2463 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2464 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2465 		err = -EAGAIN;
2466 		goto unlock_ptls;
2467 	}
2468 	if (src_folio) {
2469 		if (folio_maybe_dma_pinned(src_folio) ||
2470 		    !PageAnonExclusive(&src_folio->page)) {
2471 			err = -EBUSY;
2472 			goto unlock_ptls;
2473 		}
2474 
2475 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2476 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2477 			err = -EBUSY;
2478 			goto unlock_ptls;
2479 		}
2480 
2481 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2482 		/* Folio got pinned from under us. Put it back and fail the move. */
2483 		if (folio_maybe_dma_pinned(src_folio)) {
2484 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2485 			err = -EBUSY;
2486 			goto unlock_ptls;
2487 		}
2488 
2489 		folio_move_anon_rmap(src_folio, dst_vma);
2490 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2491 
2492 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2493 		/* Follow mremap() behavior and treat the entry dirty after the move */
2494 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2495 	} else {
2496 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2497 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2498 	}
2499 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2500 
2501 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2502 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2503 unlock_ptls:
2504 	double_pt_unlock(src_ptl, dst_ptl);
2505 	if (src_anon_vma) {
2506 		anon_vma_unlock_write(src_anon_vma);
2507 		put_anon_vma(src_anon_vma);
2508 	}
2509 unlock_folio:
2510 	/* unblock rmap walks */
2511 	if (src_folio)
2512 		folio_unlock(src_folio);
2513 	mmu_notifier_invalidate_range_end(&range);
2514 	if (src_folio)
2515 		folio_put(src_folio);
2516 	return err;
2517 }
2518 #endif /* CONFIG_USERFAULTFD */
2519 
2520 /*
2521  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2522  *
2523  * Note that if it returns page table lock pointer, this routine returns without
2524  * unlocking page table lock. So callers must unlock it.
2525  */
2526 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2527 {
2528 	spinlock_t *ptl;
2529 	ptl = pmd_lock(vma->vm_mm, pmd);
2530 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2531 			pmd_devmap(*pmd)))
2532 		return ptl;
2533 	spin_unlock(ptl);
2534 	return NULL;
2535 }
2536 
2537 /*
2538  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2539  *
2540  * Note that if it returns page table lock pointer, this routine returns without
2541  * unlocking page table lock. So callers must unlock it.
2542  */
2543 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2544 {
2545 	spinlock_t *ptl;
2546 
2547 	ptl = pud_lock(vma->vm_mm, pud);
2548 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2549 		return ptl;
2550 	spin_unlock(ptl);
2551 	return NULL;
2552 }
2553 
2554 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2555 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2556 		 pud_t *pud, unsigned long addr)
2557 {
2558 	spinlock_t *ptl;
2559 	pud_t orig_pud;
2560 
2561 	ptl = __pud_trans_huge_lock(pud, vma);
2562 	if (!ptl)
2563 		return 0;
2564 
2565 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2566 	arch_check_zapped_pud(vma, orig_pud);
2567 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2568 	if (vma_is_special_huge(vma)) {
2569 		spin_unlock(ptl);
2570 		/* No zero page support yet */
2571 	} else {
2572 		/* No support for anonymous PUD pages yet */
2573 		BUG();
2574 	}
2575 	return 1;
2576 }
2577 
2578 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2579 		unsigned long haddr)
2580 {
2581 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2582 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2583 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2584 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2585 
2586 	count_vm_event(THP_SPLIT_PUD);
2587 
2588 	pudp_huge_clear_flush(vma, haddr, pud);
2589 }
2590 
2591 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2592 		unsigned long address)
2593 {
2594 	spinlock_t *ptl;
2595 	struct mmu_notifier_range range;
2596 
2597 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2598 				address & HPAGE_PUD_MASK,
2599 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2600 	mmu_notifier_invalidate_range_start(&range);
2601 	ptl = pud_lock(vma->vm_mm, pud);
2602 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2603 		goto out;
2604 	__split_huge_pud_locked(vma, pud, range.start);
2605 
2606 out:
2607 	spin_unlock(ptl);
2608 	mmu_notifier_invalidate_range_end(&range);
2609 }
2610 #else
2611 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2612 		unsigned long address)
2613 {
2614 }
2615 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2616 
2617 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2618 		unsigned long haddr, pmd_t *pmd)
2619 {
2620 	struct mm_struct *mm = vma->vm_mm;
2621 	pgtable_t pgtable;
2622 	pmd_t _pmd, old_pmd;
2623 	unsigned long addr;
2624 	pte_t *pte;
2625 	int i;
2626 
2627 	/*
2628 	 * Leave pmd empty until pte is filled note that it is fine to delay
2629 	 * notification until mmu_notifier_invalidate_range_end() as we are
2630 	 * replacing a zero pmd write protected page with a zero pte write
2631 	 * protected page.
2632 	 *
2633 	 * See Documentation/mm/mmu_notifier.rst
2634 	 */
2635 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2636 
2637 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2638 	pmd_populate(mm, &_pmd, pgtable);
2639 
2640 	pte = pte_offset_map(&_pmd, haddr);
2641 	VM_BUG_ON(!pte);
2642 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2643 		pte_t entry;
2644 
2645 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2646 		entry = pte_mkspecial(entry);
2647 		if (pmd_uffd_wp(old_pmd))
2648 			entry = pte_mkuffd_wp(entry);
2649 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2650 		set_pte_at(mm, addr, pte, entry);
2651 		pte++;
2652 	}
2653 	pte_unmap(pte - 1);
2654 	smp_wmb(); /* make pte visible before pmd */
2655 	pmd_populate(mm, pmd, pgtable);
2656 }
2657 
2658 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2659 		unsigned long haddr, bool freeze)
2660 {
2661 	struct mm_struct *mm = vma->vm_mm;
2662 	struct folio *folio;
2663 	struct page *page;
2664 	pgtable_t pgtable;
2665 	pmd_t old_pmd, _pmd;
2666 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2667 	bool anon_exclusive = false, dirty = false;
2668 	unsigned long addr;
2669 	pte_t *pte;
2670 	int i;
2671 
2672 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2673 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2674 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2675 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2676 				&& !pmd_devmap(*pmd));
2677 
2678 	count_vm_event(THP_SPLIT_PMD);
2679 
2680 	if (!vma_is_anonymous(vma)) {
2681 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2682 		/*
2683 		 * We are going to unmap this huge page. So
2684 		 * just go ahead and zap it
2685 		 */
2686 		if (arch_needs_pgtable_deposit())
2687 			zap_deposited_table(mm, pmd);
2688 		if (vma_is_special_huge(vma))
2689 			return;
2690 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2691 			swp_entry_t entry;
2692 
2693 			entry = pmd_to_swp_entry(old_pmd);
2694 			folio = pfn_swap_entry_folio(entry);
2695 		} else {
2696 			page = pmd_page(old_pmd);
2697 			folio = page_folio(page);
2698 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2699 				folio_mark_dirty(folio);
2700 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2701 				folio_set_referenced(folio);
2702 			folio_remove_rmap_pmd(folio, page, vma);
2703 			folio_put(folio);
2704 		}
2705 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2706 		return;
2707 	}
2708 
2709 	if (is_huge_zero_pmd(*pmd)) {
2710 		/*
2711 		 * FIXME: Do we want to invalidate secondary mmu by calling
2712 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2713 		 * inside __split_huge_pmd() ?
2714 		 *
2715 		 * We are going from a zero huge page write protected to zero
2716 		 * small page also write protected so it does not seems useful
2717 		 * to invalidate secondary mmu at this time.
2718 		 */
2719 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2720 	}
2721 
2722 	pmd_migration = is_pmd_migration_entry(*pmd);
2723 	if (unlikely(pmd_migration)) {
2724 		swp_entry_t entry;
2725 
2726 		old_pmd = *pmd;
2727 		entry = pmd_to_swp_entry(old_pmd);
2728 		page = pfn_swap_entry_to_page(entry);
2729 		write = is_writable_migration_entry(entry);
2730 		if (PageAnon(page))
2731 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2732 		young = is_migration_entry_young(entry);
2733 		dirty = is_migration_entry_dirty(entry);
2734 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2735 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2736 	} else {
2737 		/*
2738 		 * Up to this point the pmd is present and huge and userland has
2739 		 * the whole access to the hugepage during the split (which
2740 		 * happens in place). If we overwrite the pmd with the not-huge
2741 		 * version pointing to the pte here (which of course we could if
2742 		 * all CPUs were bug free), userland could trigger a small page
2743 		 * size TLB miss on the small sized TLB while the hugepage TLB
2744 		 * entry is still established in the huge TLB. Some CPU doesn't
2745 		 * like that. See
2746 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2747 		 * 383 on page 105. Intel should be safe but is also warns that
2748 		 * it's only safe if the permission and cache attributes of the
2749 		 * two entries loaded in the two TLB is identical (which should
2750 		 * be the case here). But it is generally safer to never allow
2751 		 * small and huge TLB entries for the same virtual address to be
2752 		 * loaded simultaneously. So instead of doing "pmd_populate();
2753 		 * flush_pmd_tlb_range();" we first mark the current pmd
2754 		 * notpresent (atomically because here the pmd_trans_huge must
2755 		 * remain set at all times on the pmd until the split is
2756 		 * complete for this pmd), then we flush the SMP TLB and finally
2757 		 * we write the non-huge version of the pmd entry with
2758 		 * pmd_populate.
2759 		 */
2760 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2761 		page = pmd_page(old_pmd);
2762 		folio = page_folio(page);
2763 		if (pmd_dirty(old_pmd)) {
2764 			dirty = true;
2765 			folio_set_dirty(folio);
2766 		}
2767 		write = pmd_write(old_pmd);
2768 		young = pmd_young(old_pmd);
2769 		soft_dirty = pmd_soft_dirty(old_pmd);
2770 		uffd_wp = pmd_uffd_wp(old_pmd);
2771 
2772 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2773 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2774 
2775 		/*
2776 		 * Without "freeze", we'll simply split the PMD, propagating the
2777 		 * PageAnonExclusive() flag for each PTE by setting it for
2778 		 * each subpage -- no need to (temporarily) clear.
2779 		 *
2780 		 * With "freeze" we want to replace mapped pages by
2781 		 * migration entries right away. This is only possible if we
2782 		 * managed to clear PageAnonExclusive() -- see
2783 		 * set_pmd_migration_entry().
2784 		 *
2785 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2786 		 * only and let try_to_migrate_one() fail later.
2787 		 *
2788 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2789 		 */
2790 		anon_exclusive = PageAnonExclusive(page);
2791 		if (freeze && anon_exclusive &&
2792 		    folio_try_share_anon_rmap_pmd(folio, page))
2793 			freeze = false;
2794 		if (!freeze) {
2795 			rmap_t rmap_flags = RMAP_NONE;
2796 
2797 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2798 			if (anon_exclusive)
2799 				rmap_flags |= RMAP_EXCLUSIVE;
2800 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2801 						 vma, haddr, rmap_flags);
2802 		}
2803 	}
2804 
2805 	/*
2806 	 * Withdraw the table only after we mark the pmd entry invalid.
2807 	 * This's critical for some architectures (Power).
2808 	 */
2809 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2810 	pmd_populate(mm, &_pmd, pgtable);
2811 
2812 	pte = pte_offset_map(&_pmd, haddr);
2813 	VM_BUG_ON(!pte);
2814 
2815 	/*
2816 	 * Note that NUMA hinting access restrictions are not transferred to
2817 	 * avoid any possibility of altering permissions across VMAs.
2818 	 */
2819 	if (freeze || pmd_migration) {
2820 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2821 			pte_t entry;
2822 			swp_entry_t swp_entry;
2823 
2824 			if (write)
2825 				swp_entry = make_writable_migration_entry(
2826 							page_to_pfn(page + i));
2827 			else if (anon_exclusive)
2828 				swp_entry = make_readable_exclusive_migration_entry(
2829 							page_to_pfn(page + i));
2830 			else
2831 				swp_entry = make_readable_migration_entry(
2832 							page_to_pfn(page + i));
2833 			if (young)
2834 				swp_entry = make_migration_entry_young(swp_entry);
2835 			if (dirty)
2836 				swp_entry = make_migration_entry_dirty(swp_entry);
2837 			entry = swp_entry_to_pte(swp_entry);
2838 			if (soft_dirty)
2839 				entry = pte_swp_mksoft_dirty(entry);
2840 			if (uffd_wp)
2841 				entry = pte_swp_mkuffd_wp(entry);
2842 
2843 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2844 			set_pte_at(mm, addr, pte + i, entry);
2845 		}
2846 	} else {
2847 		pte_t entry;
2848 
2849 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2850 		if (write)
2851 			entry = pte_mkwrite(entry, vma);
2852 		if (!young)
2853 			entry = pte_mkold(entry);
2854 		/* NOTE: this may set soft-dirty too on some archs */
2855 		if (dirty)
2856 			entry = pte_mkdirty(entry);
2857 		if (soft_dirty)
2858 			entry = pte_mksoft_dirty(entry);
2859 		if (uffd_wp)
2860 			entry = pte_mkuffd_wp(entry);
2861 
2862 		for (i = 0; i < HPAGE_PMD_NR; i++)
2863 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2864 
2865 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2866 	}
2867 	pte_unmap(pte);
2868 
2869 	if (!pmd_migration)
2870 		folio_remove_rmap_pmd(folio, page, vma);
2871 	if (freeze)
2872 		put_page(page);
2873 
2874 	smp_wmb(); /* make pte visible before pmd */
2875 	pmd_populate(mm, pmd, pgtable);
2876 }
2877 
2878 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
2879 			   pmd_t *pmd, bool freeze, struct folio *folio)
2880 {
2881 	VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
2882 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
2883 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2884 	VM_BUG_ON(freeze && !folio);
2885 
2886 	/*
2887 	 * When the caller requests to set up a migration entry, we
2888 	 * require a folio to check the PMD against. Otherwise, there
2889 	 * is a risk of replacing the wrong folio.
2890 	 */
2891 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2892 	    is_pmd_migration_entry(*pmd)) {
2893 		if (folio && folio != pmd_folio(*pmd))
2894 			return;
2895 		__split_huge_pmd_locked(vma, pmd, address, freeze);
2896 	}
2897 }
2898 
2899 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2900 		unsigned long address, bool freeze, struct folio *folio)
2901 {
2902 	spinlock_t *ptl;
2903 	struct mmu_notifier_range range;
2904 
2905 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2906 				address & HPAGE_PMD_MASK,
2907 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2908 	mmu_notifier_invalidate_range_start(&range);
2909 	ptl = pmd_lock(vma->vm_mm, pmd);
2910 	split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
2911 	spin_unlock(ptl);
2912 	mmu_notifier_invalidate_range_end(&range);
2913 }
2914 
2915 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2916 		bool freeze, struct folio *folio)
2917 {
2918 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2919 
2920 	if (!pmd)
2921 		return;
2922 
2923 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2924 }
2925 
2926 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2927 {
2928 	/*
2929 	 * If the new address isn't hpage aligned and it could previously
2930 	 * contain an hugepage: check if we need to split an huge pmd.
2931 	 */
2932 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2933 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2934 			 ALIGN(address, HPAGE_PMD_SIZE)))
2935 		split_huge_pmd_address(vma, address, false, NULL);
2936 }
2937 
2938 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2939 			     unsigned long start,
2940 			     unsigned long end,
2941 			     long adjust_next)
2942 {
2943 	/* Check if we need to split start first. */
2944 	split_huge_pmd_if_needed(vma, start);
2945 
2946 	/* Check if we need to split end next. */
2947 	split_huge_pmd_if_needed(vma, end);
2948 
2949 	/*
2950 	 * If we're also updating the next vma vm_start,
2951 	 * check if we need to split it.
2952 	 */
2953 	if (adjust_next > 0) {
2954 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2955 		unsigned long nstart = next->vm_start;
2956 		nstart += adjust_next;
2957 		split_huge_pmd_if_needed(next, nstart);
2958 	}
2959 }
2960 
2961 static void unmap_folio(struct folio *folio)
2962 {
2963 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2964 		TTU_BATCH_FLUSH;
2965 
2966 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2967 
2968 	if (folio_test_pmd_mappable(folio))
2969 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
2970 
2971 	/*
2972 	 * Anon pages need migration entries to preserve them, but file
2973 	 * pages can simply be left unmapped, then faulted back on demand.
2974 	 * If that is ever changed (perhaps for mlock), update remap_page().
2975 	 */
2976 	if (folio_test_anon(folio))
2977 		try_to_migrate(folio, ttu_flags);
2978 	else
2979 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2980 
2981 	try_to_unmap_flush();
2982 }
2983 
2984 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
2985 					    unsigned long addr, pmd_t *pmdp,
2986 					    struct folio *folio)
2987 {
2988 	struct mm_struct *mm = vma->vm_mm;
2989 	int ref_count, map_count;
2990 	pmd_t orig_pmd = *pmdp;
2991 
2992 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd))
2993 		return false;
2994 
2995 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
2996 
2997 	/*
2998 	 * Syncing against concurrent GUP-fast:
2999 	 * - clear PMD; barrier; read refcount
3000 	 * - inc refcount; barrier; read PMD
3001 	 */
3002 	smp_mb();
3003 
3004 	ref_count = folio_ref_count(folio);
3005 	map_count = folio_mapcount(folio);
3006 
3007 	/*
3008 	 * Order reads for folio refcount and dirty flag
3009 	 * (see comments in __remove_mapping()).
3010 	 */
3011 	smp_rmb();
3012 
3013 	/*
3014 	 * If the folio or its PMD is redirtied at this point, or if there
3015 	 * are unexpected references, we will give up to discard this folio
3016 	 * and remap it.
3017 	 *
3018 	 * The only folio refs must be one from isolation plus the rmap(s).
3019 	 */
3020 	if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) ||
3021 	    ref_count != map_count + 1) {
3022 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3023 		return false;
3024 	}
3025 
3026 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3027 	zap_deposited_table(mm, pmdp);
3028 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3029 	if (vma->vm_flags & VM_LOCKED)
3030 		mlock_drain_local();
3031 	folio_put(folio);
3032 
3033 	return true;
3034 }
3035 
3036 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3037 			   pmd_t *pmdp, struct folio *folio)
3038 {
3039 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3040 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3041 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3042 
3043 	if (folio_test_anon(folio) && !folio_test_swapbacked(folio))
3044 		return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3045 
3046 	return false;
3047 }
3048 
3049 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3050 {
3051 	int i = 0;
3052 
3053 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3054 	if (!folio_test_anon(folio))
3055 		return;
3056 	for (;;) {
3057 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3058 		i += folio_nr_pages(folio);
3059 		if (i >= nr)
3060 			break;
3061 		folio = folio_next(folio);
3062 	}
3063 }
3064 
3065 static void lru_add_page_tail(struct folio *folio, struct page *tail,
3066 		struct lruvec *lruvec, struct list_head *list)
3067 {
3068 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3069 	VM_BUG_ON_FOLIO(PageLRU(tail), folio);
3070 	lockdep_assert_held(&lruvec->lru_lock);
3071 
3072 	if (list) {
3073 		/* page reclaim is reclaiming a huge page */
3074 		VM_WARN_ON(folio_test_lru(folio));
3075 		get_page(tail);
3076 		list_add_tail(&tail->lru, list);
3077 	} else {
3078 		/* head is still on lru (and we have it frozen) */
3079 		VM_WARN_ON(!folio_test_lru(folio));
3080 		if (folio_test_unevictable(folio))
3081 			tail->mlock_count = 0;
3082 		else
3083 			list_add_tail(&tail->lru, &folio->lru);
3084 		SetPageLRU(tail);
3085 	}
3086 }
3087 
3088 static void __split_huge_page_tail(struct folio *folio, int tail,
3089 		struct lruvec *lruvec, struct list_head *list,
3090 		unsigned int new_order)
3091 {
3092 	struct page *head = &folio->page;
3093 	struct page *page_tail = head + tail;
3094 	/*
3095 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3096 	 * Don't pass it around before clear_compound_head().
3097 	 */
3098 	struct folio *new_folio = (struct folio *)page_tail;
3099 
3100 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3101 
3102 	/*
3103 	 * Clone page flags before unfreezing refcount.
3104 	 *
3105 	 * After successful get_page_unless_zero() might follow flags change,
3106 	 * for example lock_page() which set PG_waiters.
3107 	 *
3108 	 * Note that for mapped sub-pages of an anonymous THP,
3109 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3110 	 * the migration entry instead from where remap_page() will restore it.
3111 	 * We can still have PG_anon_exclusive set on effectively unmapped and
3112 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
3113 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3114 	 */
3115 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3116 	page_tail->flags |= (head->flags &
3117 			((1L << PG_referenced) |
3118 			 (1L << PG_swapbacked) |
3119 			 (1L << PG_swapcache) |
3120 			 (1L << PG_mlocked) |
3121 			 (1L << PG_uptodate) |
3122 			 (1L << PG_active) |
3123 			 (1L << PG_workingset) |
3124 			 (1L << PG_locked) |
3125 			 (1L << PG_unevictable) |
3126 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3127 			 (1L << PG_arch_2) |
3128 #endif
3129 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3130 			 (1L << PG_arch_3) |
3131 #endif
3132 			 (1L << PG_dirty) |
3133 			 LRU_GEN_MASK | LRU_REFS_MASK));
3134 
3135 	/* ->mapping in first and second tail page is replaced by other uses */
3136 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3137 			page_tail);
3138 	page_tail->mapping = head->mapping;
3139 	page_tail->index = head->index + tail;
3140 
3141 	/*
3142 	 * page->private should not be set in tail pages. Fix up and warn once
3143 	 * if private is unexpectedly set.
3144 	 */
3145 	if (unlikely(page_tail->private)) {
3146 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
3147 		page_tail->private = 0;
3148 	}
3149 	if (folio_test_swapcache(folio))
3150 		new_folio->swap.val = folio->swap.val + tail;
3151 
3152 	/* Page flags must be visible before we make the page non-compound. */
3153 	smp_wmb();
3154 
3155 	/*
3156 	 * Clear PageTail before unfreezing page refcount.
3157 	 *
3158 	 * After successful get_page_unless_zero() might follow put_page()
3159 	 * which needs correct compound_head().
3160 	 */
3161 	clear_compound_head(page_tail);
3162 	if (new_order) {
3163 		prep_compound_page(page_tail, new_order);
3164 		folio_set_large_rmappable(new_folio);
3165 	}
3166 
3167 	/* Finally unfreeze refcount. Additional reference from page cache. */
3168 	page_ref_unfreeze(page_tail,
3169 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
3170 			     folio_nr_pages(new_folio) : 0));
3171 
3172 	if (folio_test_young(folio))
3173 		folio_set_young(new_folio);
3174 	if (folio_test_idle(folio))
3175 		folio_set_idle(new_folio);
3176 
3177 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3178 
3179 	/*
3180 	 * always add to the tail because some iterators expect new
3181 	 * pages to show after the currently processed elements - e.g.
3182 	 * migrate_pages
3183 	 */
3184 	lru_add_page_tail(folio, page_tail, lruvec, list);
3185 }
3186 
3187 static void __split_huge_page(struct page *page, struct list_head *list,
3188 		pgoff_t end, unsigned int new_order)
3189 {
3190 	struct folio *folio = page_folio(page);
3191 	struct page *head = &folio->page;
3192 	struct lruvec *lruvec;
3193 	struct address_space *swap_cache = NULL;
3194 	unsigned long offset = 0;
3195 	int i, nr_dropped = 0;
3196 	unsigned int new_nr = 1 << new_order;
3197 	int order = folio_order(folio);
3198 	unsigned int nr = 1 << order;
3199 
3200 	/* complete memcg works before add pages to LRU */
3201 	split_page_memcg(head, order, new_order);
3202 
3203 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
3204 		offset = swap_cache_index(folio->swap);
3205 		swap_cache = swap_address_space(folio->swap);
3206 		xa_lock(&swap_cache->i_pages);
3207 	}
3208 
3209 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3210 	lruvec = folio_lruvec_lock(folio);
3211 
3212 	ClearPageHasHWPoisoned(head);
3213 
3214 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
3215 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
3216 		/* Some pages can be beyond EOF: drop them from page cache */
3217 		if (head[i].index >= end) {
3218 			struct folio *tail = page_folio(head + i);
3219 
3220 			if (shmem_mapping(folio->mapping))
3221 				nr_dropped++;
3222 			else if (folio_test_clear_dirty(tail))
3223 				folio_account_cleaned(tail,
3224 					inode_to_wb(folio->mapping->host));
3225 			__filemap_remove_folio(tail, NULL);
3226 			folio_put(tail);
3227 		} else if (!PageAnon(page)) {
3228 			__xa_store(&folio->mapping->i_pages, head[i].index,
3229 					head + i, 0);
3230 		} else if (swap_cache) {
3231 			__xa_store(&swap_cache->i_pages, offset + i,
3232 					head + i, 0);
3233 		}
3234 	}
3235 
3236 	if (!new_order)
3237 		ClearPageCompound(head);
3238 	else {
3239 		struct folio *new_folio = (struct folio *)head;
3240 
3241 		folio_set_order(new_folio, new_order);
3242 	}
3243 	unlock_page_lruvec(lruvec);
3244 	/* Caller disabled irqs, so they are still disabled here */
3245 
3246 	split_page_owner(head, order, new_order);
3247 	pgalloc_tag_split(folio, order, new_order);
3248 
3249 	/* See comment in __split_huge_page_tail() */
3250 	if (folio_test_anon(folio)) {
3251 		/* Additional pin to swap cache */
3252 		if (folio_test_swapcache(folio)) {
3253 			folio_ref_add(folio, 1 + new_nr);
3254 			xa_unlock(&swap_cache->i_pages);
3255 		} else {
3256 			folio_ref_inc(folio);
3257 		}
3258 	} else {
3259 		/* Additional pin to page cache */
3260 		folio_ref_add(folio, 1 + new_nr);
3261 		xa_unlock(&folio->mapping->i_pages);
3262 	}
3263 	local_irq_enable();
3264 
3265 	if (nr_dropped)
3266 		shmem_uncharge(folio->mapping->host, nr_dropped);
3267 	remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0);
3268 
3269 	/*
3270 	 * set page to its compound_head when split to non order-0 pages, so
3271 	 * we can skip unlocking it below, since PG_locked is transferred to
3272 	 * the compound_head of the page and the caller will unlock it.
3273 	 */
3274 	if (new_order)
3275 		page = compound_head(page);
3276 
3277 	for (i = 0; i < nr; i += new_nr) {
3278 		struct page *subpage = head + i;
3279 		struct folio *new_folio = page_folio(subpage);
3280 		if (subpage == page)
3281 			continue;
3282 		folio_unlock(new_folio);
3283 
3284 		/*
3285 		 * Subpages may be freed if there wasn't any mapping
3286 		 * like if add_to_swap() is running on a lru page that
3287 		 * had its mapping zapped. And freeing these pages
3288 		 * requires taking the lru_lock so we do the put_page
3289 		 * of the tail pages after the split is complete.
3290 		 */
3291 		free_page_and_swap_cache(subpage);
3292 	}
3293 }
3294 
3295 /* Racy check whether the huge page can be split */
3296 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3297 {
3298 	int extra_pins;
3299 
3300 	/* Additional pins from page cache */
3301 	if (folio_test_anon(folio))
3302 		extra_pins = folio_test_swapcache(folio) ?
3303 				folio_nr_pages(folio) : 0;
3304 	else
3305 		extra_pins = folio_nr_pages(folio);
3306 	if (pextra_pins)
3307 		*pextra_pins = extra_pins;
3308 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3309 					caller_pins;
3310 }
3311 
3312 /*
3313  * This function splits a large folio into smaller folios of order @new_order.
3314  * @page can point to any page of the large folio to split. The split operation
3315  * does not change the position of @page.
3316  *
3317  * Prerequisites:
3318  *
3319  * 1) The caller must hold a reference on the @page's owning folio, also known
3320  *    as the large folio.
3321  *
3322  * 2) The large folio must be locked.
3323  *
3324  * 3) The folio must not be pinned. Any unexpected folio references, including
3325  *    GUP pins, will result in the folio not getting split; instead, the caller
3326  *    will receive an -EAGAIN.
3327  *
3328  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3329  *    supported for non-file-backed folios, because folio->_deferred_list, which
3330  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3331  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3332  *    since they do not use _deferred_list.
3333  *
3334  * After splitting, the caller's folio reference will be transferred to @page,
3335  * resulting in a raised refcount of @page after this call. The other pages may
3336  * be freed if they are not mapped.
3337  *
3338  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3339  *
3340  * Pages in @new_order will inherit the mapping, flags, and so on from the
3341  * huge page.
3342  *
3343  * Returns 0 if the huge page was split successfully.
3344  *
3345  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3346  * the folio was concurrently removed from the page cache.
3347  *
3348  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3349  * under writeback, if fs-specific folio metadata cannot currently be
3350  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3351  * truncation).
3352  *
3353  * Callers should ensure that the order respects the address space mapping
3354  * min-order if one is set for non-anonymous folios.
3355  *
3356  * Returns -EINVAL when trying to split to an order that is incompatible
3357  * with the folio. Splitting to order 0 is compatible with all folios.
3358  */
3359 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3360 				     unsigned int new_order)
3361 {
3362 	struct folio *folio = page_folio(page);
3363 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3364 	/* reset xarray order to new order after split */
3365 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
3366 	bool is_anon = folio_test_anon(folio);
3367 	struct address_space *mapping = NULL;
3368 	struct anon_vma *anon_vma = NULL;
3369 	int order = folio_order(folio);
3370 	int extra_pins, ret;
3371 	pgoff_t end;
3372 	bool is_hzp;
3373 
3374 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3375 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3376 
3377 	if (new_order >= folio_order(folio))
3378 		return -EINVAL;
3379 
3380 	if (is_anon) {
3381 		/* order-1 is not supported for anonymous THP. */
3382 		if (new_order == 1) {
3383 			VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3384 			return -EINVAL;
3385 		}
3386 	} else if (new_order) {
3387 		/* Split shmem folio to non-zero order not supported */
3388 		if (shmem_mapping(folio->mapping)) {
3389 			VM_WARN_ONCE(1,
3390 				"Cannot split shmem folio to non-0 order");
3391 			return -EINVAL;
3392 		}
3393 		/*
3394 		 * No split if the file system does not support large folio.
3395 		 * Note that we might still have THPs in such mappings due to
3396 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3397 		 * does not actually support large folios properly.
3398 		 */
3399 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3400 		    !mapping_large_folio_support(folio->mapping)) {
3401 			VM_WARN_ONCE(1,
3402 				"Cannot split file folio to non-0 order");
3403 			return -EINVAL;
3404 		}
3405 	}
3406 
3407 	/* Only swapping a whole PMD-mapped folio is supported */
3408 	if (folio_test_swapcache(folio) && new_order)
3409 		return -EINVAL;
3410 
3411 	is_hzp = is_huge_zero_folio(folio);
3412 	if (is_hzp) {
3413 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3414 		return -EBUSY;
3415 	}
3416 
3417 	if (folio_test_writeback(folio))
3418 		return -EBUSY;
3419 
3420 	if (is_anon) {
3421 		/*
3422 		 * The caller does not necessarily hold an mmap_lock that would
3423 		 * prevent the anon_vma disappearing so we first we take a
3424 		 * reference to it and then lock the anon_vma for write. This
3425 		 * is similar to folio_lock_anon_vma_read except the write lock
3426 		 * is taken to serialise against parallel split or collapse
3427 		 * operations.
3428 		 */
3429 		anon_vma = folio_get_anon_vma(folio);
3430 		if (!anon_vma) {
3431 			ret = -EBUSY;
3432 			goto out;
3433 		}
3434 		end = -1;
3435 		mapping = NULL;
3436 		anon_vma_lock_write(anon_vma);
3437 	} else {
3438 		unsigned int min_order;
3439 		gfp_t gfp;
3440 
3441 		mapping = folio->mapping;
3442 
3443 		/* Truncated ? */
3444 		if (!mapping) {
3445 			ret = -EBUSY;
3446 			goto out;
3447 		}
3448 
3449 		min_order = mapping_min_folio_order(folio->mapping);
3450 		if (new_order < min_order) {
3451 			VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3452 				     min_order);
3453 			ret = -EINVAL;
3454 			goto out;
3455 		}
3456 
3457 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3458 							GFP_RECLAIM_MASK);
3459 
3460 		if (!filemap_release_folio(folio, gfp)) {
3461 			ret = -EBUSY;
3462 			goto out;
3463 		}
3464 
3465 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3466 		if (xas_error(&xas)) {
3467 			ret = xas_error(&xas);
3468 			goto out;
3469 		}
3470 
3471 		anon_vma = NULL;
3472 		i_mmap_lock_read(mapping);
3473 
3474 		/*
3475 		 *__split_huge_page() may need to trim off pages beyond EOF:
3476 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3477 		 * which cannot be nested inside the page tree lock. So note
3478 		 * end now: i_size itself may be changed at any moment, but
3479 		 * folio lock is good enough to serialize the trimming.
3480 		 */
3481 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3482 		if (shmem_mapping(mapping))
3483 			end = shmem_fallocend(mapping->host, end);
3484 	}
3485 
3486 	/*
3487 	 * Racy check if we can split the page, before unmap_folio() will
3488 	 * split PMDs
3489 	 */
3490 	if (!can_split_folio(folio, 1, &extra_pins)) {
3491 		ret = -EAGAIN;
3492 		goto out_unlock;
3493 	}
3494 
3495 	unmap_folio(folio);
3496 
3497 	/* block interrupt reentry in xa_lock and spinlock */
3498 	local_irq_disable();
3499 	if (mapping) {
3500 		/*
3501 		 * Check if the folio is present in page cache.
3502 		 * We assume all tail are present too, if folio is there.
3503 		 */
3504 		xas_lock(&xas);
3505 		xas_reset(&xas);
3506 		if (xas_load(&xas) != folio)
3507 			goto fail;
3508 	}
3509 
3510 	/* Prevent deferred_split_scan() touching ->_refcount */
3511 	spin_lock(&ds_queue->split_queue_lock);
3512 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3513 		if (folio_order(folio) > 1 &&
3514 		    !list_empty(&folio->_deferred_list)) {
3515 			ds_queue->split_queue_len--;
3516 			if (folio_test_partially_mapped(folio)) {
3517 				__folio_clear_partially_mapped(folio);
3518 				mod_mthp_stat(folio_order(folio),
3519 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3520 			}
3521 			/*
3522 			 * Reinitialize page_deferred_list after removing the
3523 			 * page from the split_queue, otherwise a subsequent
3524 			 * split will see list corruption when checking the
3525 			 * page_deferred_list.
3526 			 */
3527 			list_del_init(&folio->_deferred_list);
3528 		}
3529 		spin_unlock(&ds_queue->split_queue_lock);
3530 		if (mapping) {
3531 			int nr = folio_nr_pages(folio);
3532 
3533 			xas_split(&xas, folio, folio_order(folio));
3534 			if (folio_test_pmd_mappable(folio) &&
3535 			    new_order < HPAGE_PMD_ORDER) {
3536 				if (folio_test_swapbacked(folio)) {
3537 					__lruvec_stat_mod_folio(folio,
3538 							NR_SHMEM_THPS, -nr);
3539 				} else {
3540 					__lruvec_stat_mod_folio(folio,
3541 							NR_FILE_THPS, -nr);
3542 					filemap_nr_thps_dec(mapping);
3543 				}
3544 			}
3545 		}
3546 
3547 		if (is_anon) {
3548 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3549 			mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order));
3550 		}
3551 		__split_huge_page(page, list, end, new_order);
3552 		ret = 0;
3553 	} else {
3554 		spin_unlock(&ds_queue->split_queue_lock);
3555 fail:
3556 		if (mapping)
3557 			xas_unlock(&xas);
3558 		local_irq_enable();
3559 		remap_page(folio, folio_nr_pages(folio), 0);
3560 		ret = -EAGAIN;
3561 	}
3562 
3563 out_unlock:
3564 	if (anon_vma) {
3565 		anon_vma_unlock_write(anon_vma);
3566 		put_anon_vma(anon_vma);
3567 	}
3568 	if (mapping)
3569 		i_mmap_unlock_read(mapping);
3570 out:
3571 	xas_destroy(&xas);
3572 	if (order == HPAGE_PMD_ORDER)
3573 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3574 	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3575 	return ret;
3576 }
3577 
3578 int min_order_for_split(struct folio *folio)
3579 {
3580 	if (folio_test_anon(folio))
3581 		return 0;
3582 
3583 	if (!folio->mapping) {
3584 		if (folio_test_pmd_mappable(folio))
3585 			count_vm_event(THP_SPLIT_PAGE_FAILED);
3586 		return -EBUSY;
3587 	}
3588 
3589 	return mapping_min_folio_order(folio->mapping);
3590 }
3591 
3592 int split_folio_to_list(struct folio *folio, struct list_head *list)
3593 {
3594 	int ret = min_order_for_split(folio);
3595 
3596 	if (ret < 0)
3597 		return ret;
3598 
3599 	return split_huge_page_to_list_to_order(&folio->page, list, ret);
3600 }
3601 
3602 void __folio_undo_large_rmappable(struct folio *folio)
3603 {
3604 	struct deferred_split *ds_queue;
3605 	unsigned long flags;
3606 
3607 	ds_queue = get_deferred_split_queue(folio);
3608 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3609 	if (!list_empty(&folio->_deferred_list)) {
3610 		ds_queue->split_queue_len--;
3611 		if (folio_test_partially_mapped(folio)) {
3612 			__folio_clear_partially_mapped(folio);
3613 			mod_mthp_stat(folio_order(folio),
3614 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3615 		}
3616 		list_del_init(&folio->_deferred_list);
3617 	}
3618 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3619 }
3620 
3621 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
3622 void deferred_split_folio(struct folio *folio, bool partially_mapped)
3623 {
3624 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3625 #ifdef CONFIG_MEMCG
3626 	struct mem_cgroup *memcg = folio_memcg(folio);
3627 #endif
3628 	unsigned long flags;
3629 
3630 	/*
3631 	 * Order 1 folios have no space for a deferred list, but we also
3632 	 * won't waste much memory by not adding them to the deferred list.
3633 	 */
3634 	if (folio_order(folio) <= 1)
3635 		return;
3636 
3637 	if (!partially_mapped && !split_underused_thp)
3638 		return;
3639 
3640 	/*
3641 	 * The try_to_unmap() in page reclaim path might reach here too,
3642 	 * this may cause a race condition to corrupt deferred split queue.
3643 	 * And, if page reclaim is already handling the same folio, it is
3644 	 * unnecessary to handle it again in shrinker.
3645 	 *
3646 	 * Check the swapcache flag to determine if the folio is being
3647 	 * handled by page reclaim since THP swap would add the folio into
3648 	 * swap cache before calling try_to_unmap().
3649 	 */
3650 	if (folio_test_swapcache(folio))
3651 		return;
3652 
3653 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3654 	if (partially_mapped) {
3655 		if (!folio_test_partially_mapped(folio)) {
3656 			__folio_set_partially_mapped(folio);
3657 			if (folio_test_pmd_mappable(folio))
3658 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3659 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
3660 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
3661 
3662 		}
3663 	} else {
3664 		/* partially mapped folios cannot become non-partially mapped */
3665 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
3666 	}
3667 	if (list_empty(&folio->_deferred_list)) {
3668 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3669 		ds_queue->split_queue_len++;
3670 #ifdef CONFIG_MEMCG
3671 		if (memcg)
3672 			set_shrinker_bit(memcg, folio_nid(folio),
3673 					 deferred_split_shrinker->id);
3674 #endif
3675 	}
3676 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3677 }
3678 
3679 static unsigned long deferred_split_count(struct shrinker *shrink,
3680 		struct shrink_control *sc)
3681 {
3682 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3683 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3684 
3685 #ifdef CONFIG_MEMCG
3686 	if (sc->memcg)
3687 		ds_queue = &sc->memcg->deferred_split_queue;
3688 #endif
3689 	return READ_ONCE(ds_queue->split_queue_len);
3690 }
3691 
3692 static bool thp_underused(struct folio *folio)
3693 {
3694 	int num_zero_pages = 0, num_filled_pages = 0;
3695 	void *kaddr;
3696 	int i;
3697 
3698 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
3699 		return false;
3700 
3701 	for (i = 0; i < folio_nr_pages(folio); i++) {
3702 		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
3703 		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
3704 			num_zero_pages++;
3705 			if (num_zero_pages > khugepaged_max_ptes_none) {
3706 				kunmap_local(kaddr);
3707 				return true;
3708 			}
3709 		} else {
3710 			/*
3711 			 * Another path for early exit once the number
3712 			 * of non-zero filled pages exceeds threshold.
3713 			 */
3714 			num_filled_pages++;
3715 			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
3716 				kunmap_local(kaddr);
3717 				return false;
3718 			}
3719 		}
3720 		kunmap_local(kaddr);
3721 	}
3722 	return false;
3723 }
3724 
3725 static unsigned long deferred_split_scan(struct shrinker *shrink,
3726 		struct shrink_control *sc)
3727 {
3728 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3729 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3730 	unsigned long flags;
3731 	LIST_HEAD(list);
3732 	struct folio *folio, *next;
3733 	int split = 0;
3734 
3735 #ifdef CONFIG_MEMCG
3736 	if (sc->memcg)
3737 		ds_queue = &sc->memcg->deferred_split_queue;
3738 #endif
3739 
3740 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3741 	/* Take pin on all head pages to avoid freeing them under us */
3742 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3743 							_deferred_list) {
3744 		if (folio_try_get(folio)) {
3745 			list_move(&folio->_deferred_list, &list);
3746 		} else {
3747 			/* We lost race with folio_put() */
3748 			if (folio_test_partially_mapped(folio)) {
3749 				__folio_clear_partially_mapped(folio);
3750 				mod_mthp_stat(folio_order(folio),
3751 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3752 			}
3753 			list_del_init(&folio->_deferred_list);
3754 			ds_queue->split_queue_len--;
3755 		}
3756 		if (!--sc->nr_to_scan)
3757 			break;
3758 	}
3759 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3760 
3761 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3762 		bool did_split = false;
3763 		bool underused = false;
3764 
3765 		if (!folio_test_partially_mapped(folio)) {
3766 			underused = thp_underused(folio);
3767 			if (!underused)
3768 				goto next;
3769 		}
3770 		if (!folio_trylock(folio))
3771 			goto next;
3772 		if (!split_folio(folio)) {
3773 			did_split = true;
3774 			if (underused)
3775 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
3776 			split++;
3777 		}
3778 		folio_unlock(folio);
3779 next:
3780 		/*
3781 		 * split_folio() removes folio from list on success.
3782 		 * Only add back to the queue if folio is partially mapped.
3783 		 * If thp_underused returns false, or if split_folio fails
3784 		 * in the case it was underused, then consider it used and
3785 		 * don't add it back to split_queue.
3786 		 */
3787 		if (!did_split && !folio_test_partially_mapped(folio)) {
3788 			list_del_init(&folio->_deferred_list);
3789 			ds_queue->split_queue_len--;
3790 		}
3791 		folio_put(folio);
3792 	}
3793 
3794 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3795 	list_splice_tail(&list, &ds_queue->split_queue);
3796 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3797 
3798 	/*
3799 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3800 	 * This can happen if pages were freed under us.
3801 	 */
3802 	if (!split && list_empty(&ds_queue->split_queue))
3803 		return SHRINK_STOP;
3804 	return split;
3805 }
3806 
3807 #ifdef CONFIG_DEBUG_FS
3808 static void split_huge_pages_all(void)
3809 {
3810 	struct zone *zone;
3811 	struct page *page;
3812 	struct folio *folio;
3813 	unsigned long pfn, max_zone_pfn;
3814 	unsigned long total = 0, split = 0;
3815 
3816 	pr_debug("Split all THPs\n");
3817 	for_each_zone(zone) {
3818 		if (!managed_zone(zone))
3819 			continue;
3820 		max_zone_pfn = zone_end_pfn(zone);
3821 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3822 			int nr_pages;
3823 
3824 			page = pfn_to_online_page(pfn);
3825 			if (!page || PageTail(page))
3826 				continue;
3827 			folio = page_folio(page);
3828 			if (!folio_try_get(folio))
3829 				continue;
3830 
3831 			if (unlikely(page_folio(page) != folio))
3832 				goto next;
3833 
3834 			if (zone != folio_zone(folio))
3835 				goto next;
3836 
3837 			if (!folio_test_large(folio)
3838 				|| folio_test_hugetlb(folio)
3839 				|| !folio_test_lru(folio))
3840 				goto next;
3841 
3842 			total++;
3843 			folio_lock(folio);
3844 			nr_pages = folio_nr_pages(folio);
3845 			if (!split_folio(folio))
3846 				split++;
3847 			pfn += nr_pages - 1;
3848 			folio_unlock(folio);
3849 next:
3850 			folio_put(folio);
3851 			cond_resched();
3852 		}
3853 	}
3854 
3855 	pr_debug("%lu of %lu THP split\n", split, total);
3856 }
3857 
3858 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3859 {
3860 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3861 		    is_vm_hugetlb_page(vma);
3862 }
3863 
3864 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3865 				unsigned long vaddr_end, unsigned int new_order)
3866 {
3867 	int ret = 0;
3868 	struct task_struct *task;
3869 	struct mm_struct *mm;
3870 	unsigned long total = 0, split = 0;
3871 	unsigned long addr;
3872 
3873 	vaddr_start &= PAGE_MASK;
3874 	vaddr_end &= PAGE_MASK;
3875 
3876 	task = find_get_task_by_vpid(pid);
3877 	if (!task) {
3878 		ret = -ESRCH;
3879 		goto out;
3880 	}
3881 
3882 	/* Find the mm_struct */
3883 	mm = get_task_mm(task);
3884 	put_task_struct(task);
3885 
3886 	if (!mm) {
3887 		ret = -EINVAL;
3888 		goto out;
3889 	}
3890 
3891 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3892 		 pid, vaddr_start, vaddr_end);
3893 
3894 	mmap_read_lock(mm);
3895 	/*
3896 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3897 	 * table filled with PTE-mapped THPs, each of which is distinct.
3898 	 */
3899 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3900 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3901 		struct folio_walk fw;
3902 		struct folio *folio;
3903 		struct address_space *mapping;
3904 		unsigned int target_order = new_order;
3905 
3906 		if (!vma)
3907 			break;
3908 
3909 		/* skip special VMA and hugetlb VMA */
3910 		if (vma_not_suitable_for_thp_split(vma)) {
3911 			addr = vma->vm_end;
3912 			continue;
3913 		}
3914 
3915 		folio = folio_walk_start(&fw, vma, addr, 0);
3916 		if (!folio)
3917 			continue;
3918 
3919 		if (!is_transparent_hugepage(folio))
3920 			goto next;
3921 
3922 		if (!folio_test_anon(folio)) {
3923 			mapping = folio->mapping;
3924 			target_order = max(new_order,
3925 					   mapping_min_folio_order(mapping));
3926 		}
3927 
3928 		if (target_order >= folio_order(folio))
3929 			goto next;
3930 
3931 		total++;
3932 		/*
3933 		 * For folios with private, split_huge_page_to_list_to_order()
3934 		 * will try to drop it before split and then check if the folio
3935 		 * can be split or not. So skip the check here.
3936 		 */
3937 		if (!folio_test_private(folio) &&
3938 		    !can_split_folio(folio, 0, NULL))
3939 			goto next;
3940 
3941 		if (!folio_trylock(folio))
3942 			goto next;
3943 		folio_get(folio);
3944 		folio_walk_end(&fw, vma);
3945 
3946 		if (!folio_test_anon(folio) && folio->mapping != mapping)
3947 			goto unlock;
3948 
3949 		if (!split_folio_to_order(folio, target_order))
3950 			split++;
3951 
3952 unlock:
3953 
3954 		folio_unlock(folio);
3955 		folio_put(folio);
3956 
3957 		cond_resched();
3958 		continue;
3959 next:
3960 		folio_walk_end(&fw, vma);
3961 		cond_resched();
3962 	}
3963 	mmap_read_unlock(mm);
3964 	mmput(mm);
3965 
3966 	pr_debug("%lu of %lu THP split\n", split, total);
3967 
3968 out:
3969 	return ret;
3970 }
3971 
3972 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3973 				pgoff_t off_end, unsigned int new_order)
3974 {
3975 	struct filename *file;
3976 	struct file *candidate;
3977 	struct address_space *mapping;
3978 	int ret = -EINVAL;
3979 	pgoff_t index;
3980 	int nr_pages = 1;
3981 	unsigned long total = 0, split = 0;
3982 	unsigned int min_order;
3983 	unsigned int target_order;
3984 
3985 	file = getname_kernel(file_path);
3986 	if (IS_ERR(file))
3987 		return ret;
3988 
3989 	candidate = file_open_name(file, O_RDONLY, 0);
3990 	if (IS_ERR(candidate))
3991 		goto out;
3992 
3993 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3994 		 file_path, off_start, off_end);
3995 
3996 	mapping = candidate->f_mapping;
3997 	min_order = mapping_min_folio_order(mapping);
3998 	target_order = max(new_order, min_order);
3999 
4000 	for (index = off_start; index < off_end; index += nr_pages) {
4001 		struct folio *folio = filemap_get_folio(mapping, index);
4002 
4003 		nr_pages = 1;
4004 		if (IS_ERR(folio))
4005 			continue;
4006 
4007 		if (!folio_test_large(folio))
4008 			goto next;
4009 
4010 		total++;
4011 		nr_pages = folio_nr_pages(folio);
4012 
4013 		if (target_order >= folio_order(folio))
4014 			goto next;
4015 
4016 		if (!folio_trylock(folio))
4017 			goto next;
4018 
4019 		if (folio->mapping != mapping)
4020 			goto unlock;
4021 
4022 		if (!split_folio_to_order(folio, target_order))
4023 			split++;
4024 
4025 unlock:
4026 		folio_unlock(folio);
4027 next:
4028 		folio_put(folio);
4029 		cond_resched();
4030 	}
4031 
4032 	filp_close(candidate, NULL);
4033 	ret = 0;
4034 
4035 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4036 out:
4037 	putname(file);
4038 	return ret;
4039 }
4040 
4041 #define MAX_INPUT_BUF_SZ 255
4042 
4043 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4044 				size_t count, loff_t *ppops)
4045 {
4046 	static DEFINE_MUTEX(split_debug_mutex);
4047 	ssize_t ret;
4048 	/*
4049 	 * hold pid, start_vaddr, end_vaddr, new_order or
4050 	 * file_path, off_start, off_end, new_order
4051 	 */
4052 	char input_buf[MAX_INPUT_BUF_SZ];
4053 	int pid;
4054 	unsigned long vaddr_start, vaddr_end;
4055 	unsigned int new_order = 0;
4056 
4057 	ret = mutex_lock_interruptible(&split_debug_mutex);
4058 	if (ret)
4059 		return ret;
4060 
4061 	ret = -EFAULT;
4062 
4063 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4064 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4065 		goto out;
4066 
4067 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4068 
4069 	if (input_buf[0] == '/') {
4070 		char *tok;
4071 		char *buf = input_buf;
4072 		char file_path[MAX_INPUT_BUF_SZ];
4073 		pgoff_t off_start = 0, off_end = 0;
4074 		size_t input_len = strlen(input_buf);
4075 
4076 		tok = strsep(&buf, ",");
4077 		if (tok) {
4078 			strcpy(file_path, tok);
4079 		} else {
4080 			ret = -EINVAL;
4081 			goto out;
4082 		}
4083 
4084 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
4085 		if (ret != 2 && ret != 3) {
4086 			ret = -EINVAL;
4087 			goto out;
4088 		}
4089 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
4090 		if (!ret)
4091 			ret = input_len;
4092 
4093 		goto out;
4094 	}
4095 
4096 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
4097 	if (ret == 1 && pid == 1) {
4098 		split_huge_pages_all();
4099 		ret = strlen(input_buf);
4100 		goto out;
4101 	} else if (ret != 3 && ret != 4) {
4102 		ret = -EINVAL;
4103 		goto out;
4104 	}
4105 
4106 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
4107 	if (!ret)
4108 		ret = strlen(input_buf);
4109 out:
4110 	mutex_unlock(&split_debug_mutex);
4111 	return ret;
4112 
4113 }
4114 
4115 static const struct file_operations split_huge_pages_fops = {
4116 	.owner	 = THIS_MODULE,
4117 	.write	 = split_huge_pages_write,
4118 };
4119 
4120 static int __init split_huge_pages_debugfs(void)
4121 {
4122 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4123 			    &split_huge_pages_fops);
4124 	return 0;
4125 }
4126 late_initcall(split_huge_pages_debugfs);
4127 #endif
4128 
4129 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4130 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4131 		struct page *page)
4132 {
4133 	struct folio *folio = page_folio(page);
4134 	struct vm_area_struct *vma = pvmw->vma;
4135 	struct mm_struct *mm = vma->vm_mm;
4136 	unsigned long address = pvmw->address;
4137 	bool anon_exclusive;
4138 	pmd_t pmdval;
4139 	swp_entry_t entry;
4140 	pmd_t pmdswp;
4141 
4142 	if (!(pvmw->pmd && !pvmw->pte))
4143 		return 0;
4144 
4145 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4146 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4147 
4148 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4149 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4150 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4151 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4152 		return -EBUSY;
4153 	}
4154 
4155 	if (pmd_dirty(pmdval))
4156 		folio_mark_dirty(folio);
4157 	if (pmd_write(pmdval))
4158 		entry = make_writable_migration_entry(page_to_pfn(page));
4159 	else if (anon_exclusive)
4160 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4161 	else
4162 		entry = make_readable_migration_entry(page_to_pfn(page));
4163 	if (pmd_young(pmdval))
4164 		entry = make_migration_entry_young(entry);
4165 	if (pmd_dirty(pmdval))
4166 		entry = make_migration_entry_dirty(entry);
4167 	pmdswp = swp_entry_to_pmd(entry);
4168 	if (pmd_soft_dirty(pmdval))
4169 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4170 	if (pmd_uffd_wp(pmdval))
4171 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4172 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4173 	folio_remove_rmap_pmd(folio, page, vma);
4174 	folio_put(folio);
4175 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4176 
4177 	return 0;
4178 }
4179 
4180 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4181 {
4182 	struct folio *folio = page_folio(new);
4183 	struct vm_area_struct *vma = pvmw->vma;
4184 	struct mm_struct *mm = vma->vm_mm;
4185 	unsigned long address = pvmw->address;
4186 	unsigned long haddr = address & HPAGE_PMD_MASK;
4187 	pmd_t pmde;
4188 	swp_entry_t entry;
4189 
4190 	if (!(pvmw->pmd && !pvmw->pte))
4191 		return;
4192 
4193 	entry = pmd_to_swp_entry(*pvmw->pmd);
4194 	folio_get(folio);
4195 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
4196 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4197 		pmde = pmd_mksoft_dirty(pmde);
4198 	if (is_writable_migration_entry(entry))
4199 		pmde = pmd_mkwrite(pmde, vma);
4200 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4201 		pmde = pmd_mkuffd_wp(pmde);
4202 	if (!is_migration_entry_young(entry))
4203 		pmde = pmd_mkold(pmde);
4204 	/* NOTE: this may contain setting soft-dirty on some archs */
4205 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4206 		pmde = pmd_mkdirty(pmde);
4207 
4208 	if (folio_test_anon(folio)) {
4209 		rmap_t rmap_flags = RMAP_NONE;
4210 
4211 		if (!is_readable_migration_entry(entry))
4212 			rmap_flags |= RMAP_EXCLUSIVE;
4213 
4214 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4215 	} else {
4216 		folio_add_file_rmap_pmd(folio, new, vma);
4217 	}
4218 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4219 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4220 
4221 	/* No need to invalidate - it was non-present before */
4222 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4223 	trace_remove_migration_pmd(address, pmd_val(pmde));
4224 }
4225 #endif
4226