xref: /linux/mm/huge_memory.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/sched/coredump.h>
13 #include <linux/sched/numa_balancing.h>
14 #include <linux/highmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/mmu_notifier.h>
17 #include <linux/rmap.h>
18 #include <linux/swap.h>
19 #include <linux/shrinker.h>
20 #include <linux/mm_inline.h>
21 #include <linux/swapops.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 
38 #include <asm/tlb.h>
39 #include <asm/pgalloc.h>
40 #include "internal.h"
41 
42 /*
43  * By default, transparent hugepage support is disabled in order to avoid
44  * risking an increased memory footprint for applications that are not
45  * guaranteed to benefit from it. When transparent hugepage support is
46  * enabled, it is for all mappings, and khugepaged scans all mappings.
47  * Defrag is invoked by khugepaged hugepage allocations and by page faults
48  * for all hugepage allocations.
49  */
50 unsigned long transparent_hugepage_flags __read_mostly =
51 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
52 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 #endif
54 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56 #endif
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
60 
61 static struct shrinker deferred_split_shrinker;
62 
63 static atomic_t huge_zero_refcount;
64 struct page *huge_zero_page __read_mostly;
65 
66 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
67 {
68 	if (vma_is_anonymous(vma))
69 		return __transparent_hugepage_enabled(vma);
70 	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
71 		return __transparent_hugepage_enabled(vma);
72 
73 	return false;
74 }
75 
76 static struct page *get_huge_zero_page(void)
77 {
78 	struct page *zero_page;
79 retry:
80 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
81 		return READ_ONCE(huge_zero_page);
82 
83 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
84 			HPAGE_PMD_ORDER);
85 	if (!zero_page) {
86 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
87 		return NULL;
88 	}
89 	count_vm_event(THP_ZERO_PAGE_ALLOC);
90 	preempt_disable();
91 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
92 		preempt_enable();
93 		__free_pages(zero_page, compound_order(zero_page));
94 		goto retry;
95 	}
96 
97 	/* We take additional reference here. It will be put back by shrinker */
98 	atomic_set(&huge_zero_refcount, 2);
99 	preempt_enable();
100 	return READ_ONCE(huge_zero_page);
101 }
102 
103 static void put_huge_zero_page(void)
104 {
105 	/*
106 	 * Counter should never go to zero here. Only shrinker can put
107 	 * last reference.
108 	 */
109 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
110 }
111 
112 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
113 {
114 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 		return READ_ONCE(huge_zero_page);
116 
117 	if (!get_huge_zero_page())
118 		return NULL;
119 
120 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
121 		put_huge_zero_page();
122 
123 	return READ_ONCE(huge_zero_page);
124 }
125 
126 void mm_put_huge_zero_page(struct mm_struct *mm)
127 {
128 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
129 		put_huge_zero_page();
130 }
131 
132 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
133 					struct shrink_control *sc)
134 {
135 	/* we can free zero page only if last reference remains */
136 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
137 }
138 
139 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
140 				       struct shrink_control *sc)
141 {
142 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
143 		struct page *zero_page = xchg(&huge_zero_page, NULL);
144 		BUG_ON(zero_page == NULL);
145 		__free_pages(zero_page, compound_order(zero_page));
146 		return HPAGE_PMD_NR;
147 	}
148 
149 	return 0;
150 }
151 
152 static struct shrinker huge_zero_page_shrinker = {
153 	.count_objects = shrink_huge_zero_page_count,
154 	.scan_objects = shrink_huge_zero_page_scan,
155 	.seeks = DEFAULT_SEEKS,
156 };
157 
158 #ifdef CONFIG_SYSFS
159 static ssize_t enabled_show(struct kobject *kobj,
160 			    struct kobj_attribute *attr, char *buf)
161 {
162 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
163 		return sprintf(buf, "[always] madvise never\n");
164 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
165 		return sprintf(buf, "always [madvise] never\n");
166 	else
167 		return sprintf(buf, "always madvise [never]\n");
168 }
169 
170 static ssize_t enabled_store(struct kobject *kobj,
171 			     struct kobj_attribute *attr,
172 			     const char *buf, size_t count)
173 {
174 	ssize_t ret = count;
175 
176 	if (!memcmp("always", buf,
177 		    min(sizeof("always")-1, count))) {
178 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
179 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
180 	} else if (!memcmp("madvise", buf,
181 			   min(sizeof("madvise")-1, count))) {
182 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
183 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
184 	} else if (!memcmp("never", buf,
185 			   min(sizeof("never")-1, count))) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
187 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
188 	} else
189 		ret = -EINVAL;
190 
191 	if (ret > 0) {
192 		int err = start_stop_khugepaged();
193 		if (err)
194 			ret = err;
195 	}
196 	return ret;
197 }
198 static struct kobj_attribute enabled_attr =
199 	__ATTR(enabled, 0644, enabled_show, enabled_store);
200 
201 ssize_t single_hugepage_flag_show(struct kobject *kobj,
202 				struct kobj_attribute *attr, char *buf,
203 				enum transparent_hugepage_flag flag)
204 {
205 	return sprintf(buf, "%d\n",
206 		       !!test_bit(flag, &transparent_hugepage_flags));
207 }
208 
209 ssize_t single_hugepage_flag_store(struct kobject *kobj,
210 				 struct kobj_attribute *attr,
211 				 const char *buf, size_t count,
212 				 enum transparent_hugepage_flag flag)
213 {
214 	unsigned long value;
215 	int ret;
216 
217 	ret = kstrtoul(buf, 10, &value);
218 	if (ret < 0)
219 		return ret;
220 	if (value > 1)
221 		return -EINVAL;
222 
223 	if (value)
224 		set_bit(flag, &transparent_hugepage_flags);
225 	else
226 		clear_bit(flag, &transparent_hugepage_flags);
227 
228 	return count;
229 }
230 
231 static ssize_t defrag_show(struct kobject *kobj,
232 			   struct kobj_attribute *attr, char *buf)
233 {
234 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
235 		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
236 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
237 		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
238 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
239 		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
240 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
241 		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
242 	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
243 }
244 
245 static ssize_t defrag_store(struct kobject *kobj,
246 			    struct kobj_attribute *attr,
247 			    const char *buf, size_t count)
248 {
249 	if (!memcmp("always", buf,
250 		    min(sizeof("always")-1, count))) {
251 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
255 	} else if (!memcmp("defer+madvise", buf,
256 		    min(sizeof("defer+madvise")-1, count))) {
257 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
258 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
259 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
260 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 	} else if (!memcmp("defer", buf,
262 		    min(sizeof("defer")-1, count))) {
263 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
264 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 	} else if (!memcmp("madvise", buf,
268 			   min(sizeof("madvise")-1, count))) {
269 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
272 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 	} else if (!memcmp("never", buf,
274 			   min(sizeof("never")-1, count))) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
278 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
279 	} else
280 		return -EINVAL;
281 
282 	return count;
283 }
284 static struct kobj_attribute defrag_attr =
285 	__ATTR(defrag, 0644, defrag_show, defrag_store);
286 
287 static ssize_t use_zero_page_show(struct kobject *kobj,
288 		struct kobj_attribute *attr, char *buf)
289 {
290 	return single_hugepage_flag_show(kobj, attr, buf,
291 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
292 }
293 static ssize_t use_zero_page_store(struct kobject *kobj,
294 		struct kobj_attribute *attr, const char *buf, size_t count)
295 {
296 	return single_hugepage_flag_store(kobj, attr, buf, count,
297 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
298 }
299 static struct kobj_attribute use_zero_page_attr =
300 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
301 
302 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
303 		struct kobj_attribute *attr, char *buf)
304 {
305 	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
306 }
307 static struct kobj_attribute hpage_pmd_size_attr =
308 	__ATTR_RO(hpage_pmd_size);
309 
310 #ifdef CONFIG_DEBUG_VM
311 static ssize_t debug_cow_show(struct kobject *kobj,
312 				struct kobj_attribute *attr, char *buf)
313 {
314 	return single_hugepage_flag_show(kobj, attr, buf,
315 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
316 }
317 static ssize_t debug_cow_store(struct kobject *kobj,
318 			       struct kobj_attribute *attr,
319 			       const char *buf, size_t count)
320 {
321 	return single_hugepage_flag_store(kobj, attr, buf, count,
322 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
323 }
324 static struct kobj_attribute debug_cow_attr =
325 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
326 #endif /* CONFIG_DEBUG_VM */
327 
328 static struct attribute *hugepage_attr[] = {
329 	&enabled_attr.attr,
330 	&defrag_attr.attr,
331 	&use_zero_page_attr.attr,
332 	&hpage_pmd_size_attr.attr,
333 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
334 	&shmem_enabled_attr.attr,
335 #endif
336 #ifdef CONFIG_DEBUG_VM
337 	&debug_cow_attr.attr,
338 #endif
339 	NULL,
340 };
341 
342 static const struct attribute_group hugepage_attr_group = {
343 	.attrs = hugepage_attr,
344 };
345 
346 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
347 {
348 	int err;
349 
350 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
351 	if (unlikely(!*hugepage_kobj)) {
352 		pr_err("failed to create transparent hugepage kobject\n");
353 		return -ENOMEM;
354 	}
355 
356 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
357 	if (err) {
358 		pr_err("failed to register transparent hugepage group\n");
359 		goto delete_obj;
360 	}
361 
362 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
363 	if (err) {
364 		pr_err("failed to register transparent hugepage group\n");
365 		goto remove_hp_group;
366 	}
367 
368 	return 0;
369 
370 remove_hp_group:
371 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
372 delete_obj:
373 	kobject_put(*hugepage_kobj);
374 	return err;
375 }
376 
377 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
378 {
379 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
380 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
381 	kobject_put(hugepage_kobj);
382 }
383 #else
384 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
385 {
386 	return 0;
387 }
388 
389 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
390 {
391 }
392 #endif /* CONFIG_SYSFS */
393 
394 static int __init hugepage_init(void)
395 {
396 	int err;
397 	struct kobject *hugepage_kobj;
398 
399 	if (!has_transparent_hugepage()) {
400 		transparent_hugepage_flags = 0;
401 		return -EINVAL;
402 	}
403 
404 	/*
405 	 * hugepages can't be allocated by the buddy allocator
406 	 */
407 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
408 	/*
409 	 * we use page->mapping and page->index in second tail page
410 	 * as list_head: assuming THP order >= 2
411 	 */
412 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
413 
414 	err = hugepage_init_sysfs(&hugepage_kobj);
415 	if (err)
416 		goto err_sysfs;
417 
418 	err = khugepaged_init();
419 	if (err)
420 		goto err_slab;
421 
422 	err = register_shrinker(&huge_zero_page_shrinker);
423 	if (err)
424 		goto err_hzp_shrinker;
425 	err = register_shrinker(&deferred_split_shrinker);
426 	if (err)
427 		goto err_split_shrinker;
428 
429 	/*
430 	 * By default disable transparent hugepages on smaller systems,
431 	 * where the extra memory used could hurt more than TLB overhead
432 	 * is likely to save.  The admin can still enable it through /sys.
433 	 */
434 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
435 		transparent_hugepage_flags = 0;
436 		return 0;
437 	}
438 
439 	err = start_stop_khugepaged();
440 	if (err)
441 		goto err_khugepaged;
442 
443 	return 0;
444 err_khugepaged:
445 	unregister_shrinker(&deferred_split_shrinker);
446 err_split_shrinker:
447 	unregister_shrinker(&huge_zero_page_shrinker);
448 err_hzp_shrinker:
449 	khugepaged_destroy();
450 err_slab:
451 	hugepage_exit_sysfs(hugepage_kobj);
452 err_sysfs:
453 	return err;
454 }
455 subsys_initcall(hugepage_init);
456 
457 static int __init setup_transparent_hugepage(char *str)
458 {
459 	int ret = 0;
460 	if (!str)
461 		goto out;
462 	if (!strcmp(str, "always")) {
463 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
464 			&transparent_hugepage_flags);
465 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
466 			  &transparent_hugepage_flags);
467 		ret = 1;
468 	} else if (!strcmp(str, "madvise")) {
469 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 			  &transparent_hugepage_flags);
471 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 			&transparent_hugepage_flags);
473 		ret = 1;
474 	} else if (!strcmp(str, "never")) {
475 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 			  &transparent_hugepage_flags);
477 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 			  &transparent_hugepage_flags);
479 		ret = 1;
480 	}
481 out:
482 	if (!ret)
483 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
484 	return ret;
485 }
486 __setup("transparent_hugepage=", setup_transparent_hugepage);
487 
488 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
489 {
490 	if (likely(vma->vm_flags & VM_WRITE))
491 		pmd = pmd_mkwrite(pmd);
492 	return pmd;
493 }
494 
495 static inline struct list_head *page_deferred_list(struct page *page)
496 {
497 	/* ->lru in the tail pages is occupied by compound_head. */
498 	return &page[2].deferred_list;
499 }
500 
501 void prep_transhuge_page(struct page *page)
502 {
503 	/*
504 	 * we use page->mapping and page->indexlru in second tail page
505 	 * as list_head: assuming THP order >= 2
506 	 */
507 
508 	INIT_LIST_HEAD(page_deferred_list(page));
509 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
510 }
511 
512 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
513 		loff_t off, unsigned long flags, unsigned long size)
514 {
515 	unsigned long addr;
516 	loff_t off_end = off + len;
517 	loff_t off_align = round_up(off, size);
518 	unsigned long len_pad;
519 
520 	if (off_end <= off_align || (off_end - off_align) < size)
521 		return 0;
522 
523 	len_pad = len + size;
524 	if (len_pad < len || (off + len_pad) < off)
525 		return 0;
526 
527 	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
528 					      off >> PAGE_SHIFT, flags);
529 	if (IS_ERR_VALUE(addr))
530 		return 0;
531 
532 	addr += (off - addr) & (size - 1);
533 	return addr;
534 }
535 
536 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
537 		unsigned long len, unsigned long pgoff, unsigned long flags)
538 {
539 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
540 
541 	if (addr)
542 		goto out;
543 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
544 		goto out;
545 
546 	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
547 	if (addr)
548 		return addr;
549 
550  out:
551 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
552 }
553 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
554 
555 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
556 			struct page *page, gfp_t gfp)
557 {
558 	struct vm_area_struct *vma = vmf->vma;
559 	struct mem_cgroup *memcg;
560 	pgtable_t pgtable;
561 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
562 	vm_fault_t ret = 0;
563 
564 	VM_BUG_ON_PAGE(!PageCompound(page), page);
565 
566 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
567 		put_page(page);
568 		count_vm_event(THP_FAULT_FALLBACK);
569 		return VM_FAULT_FALLBACK;
570 	}
571 
572 	pgtable = pte_alloc_one(vma->vm_mm);
573 	if (unlikely(!pgtable)) {
574 		ret = VM_FAULT_OOM;
575 		goto release;
576 	}
577 
578 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
579 	/*
580 	 * The memory barrier inside __SetPageUptodate makes sure that
581 	 * clear_huge_page writes become visible before the set_pmd_at()
582 	 * write.
583 	 */
584 	__SetPageUptodate(page);
585 
586 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
587 	if (unlikely(!pmd_none(*vmf->pmd))) {
588 		goto unlock_release;
589 	} else {
590 		pmd_t entry;
591 
592 		ret = check_stable_address_space(vma->vm_mm);
593 		if (ret)
594 			goto unlock_release;
595 
596 		/* Deliver the page fault to userland */
597 		if (userfaultfd_missing(vma)) {
598 			vm_fault_t ret2;
599 
600 			spin_unlock(vmf->ptl);
601 			mem_cgroup_cancel_charge(page, memcg, true);
602 			put_page(page);
603 			pte_free(vma->vm_mm, pgtable);
604 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
605 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
606 			return ret2;
607 		}
608 
609 		entry = mk_huge_pmd(page, vma->vm_page_prot);
610 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
611 		page_add_new_anon_rmap(page, vma, haddr, true);
612 		mem_cgroup_commit_charge(page, memcg, false, true);
613 		lru_cache_add_active_or_unevictable(page, vma);
614 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
615 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
616 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
617 		mm_inc_nr_ptes(vma->vm_mm);
618 		spin_unlock(vmf->ptl);
619 		count_vm_event(THP_FAULT_ALLOC);
620 	}
621 
622 	return 0;
623 unlock_release:
624 	spin_unlock(vmf->ptl);
625 release:
626 	if (pgtable)
627 		pte_free(vma->vm_mm, pgtable);
628 	mem_cgroup_cancel_charge(page, memcg, true);
629 	put_page(page);
630 	return ret;
631 
632 }
633 
634 /*
635  * always: directly stall for all thp allocations
636  * defer: wake kswapd and fail if not immediately available
637  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
638  *		  fail if not immediately available
639  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
640  *	    available
641  * never: never stall for any thp allocation
642  */
643 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
644 {
645 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
646 
647 	/* Always do synchronous compaction */
648 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
649 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
650 
651 	/* Kick kcompactd and fail quickly */
652 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
653 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
654 
655 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
656 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
657 		return GFP_TRANSHUGE_LIGHT |
658 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
659 					__GFP_KSWAPD_RECLAIM);
660 
661 	/* Only do synchronous compaction if madvised */
662 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
663 		return GFP_TRANSHUGE_LIGHT |
664 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
665 
666 	return GFP_TRANSHUGE_LIGHT;
667 }
668 
669 /* Caller must hold page table lock. */
670 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
671 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
672 		struct page *zero_page)
673 {
674 	pmd_t entry;
675 	if (!pmd_none(*pmd))
676 		return false;
677 	entry = mk_pmd(zero_page, vma->vm_page_prot);
678 	entry = pmd_mkhuge(entry);
679 	if (pgtable)
680 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
681 	set_pmd_at(mm, haddr, pmd, entry);
682 	mm_inc_nr_ptes(mm);
683 	return true;
684 }
685 
686 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
687 {
688 	struct vm_area_struct *vma = vmf->vma;
689 	gfp_t gfp;
690 	struct page *page;
691 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
692 
693 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
694 		return VM_FAULT_FALLBACK;
695 	if (unlikely(anon_vma_prepare(vma)))
696 		return VM_FAULT_OOM;
697 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
698 		return VM_FAULT_OOM;
699 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
700 			!mm_forbids_zeropage(vma->vm_mm) &&
701 			transparent_hugepage_use_zero_page()) {
702 		pgtable_t pgtable;
703 		struct page *zero_page;
704 		bool set;
705 		vm_fault_t ret;
706 		pgtable = pte_alloc_one(vma->vm_mm);
707 		if (unlikely(!pgtable))
708 			return VM_FAULT_OOM;
709 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
710 		if (unlikely(!zero_page)) {
711 			pte_free(vma->vm_mm, pgtable);
712 			count_vm_event(THP_FAULT_FALLBACK);
713 			return VM_FAULT_FALLBACK;
714 		}
715 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
716 		ret = 0;
717 		set = false;
718 		if (pmd_none(*vmf->pmd)) {
719 			ret = check_stable_address_space(vma->vm_mm);
720 			if (ret) {
721 				spin_unlock(vmf->ptl);
722 			} else if (userfaultfd_missing(vma)) {
723 				spin_unlock(vmf->ptl);
724 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
725 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
726 			} else {
727 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
728 						   haddr, vmf->pmd, zero_page);
729 				spin_unlock(vmf->ptl);
730 				set = true;
731 			}
732 		} else
733 			spin_unlock(vmf->ptl);
734 		if (!set)
735 			pte_free(vma->vm_mm, pgtable);
736 		return ret;
737 	}
738 	gfp = alloc_hugepage_direct_gfpmask(vma);
739 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
740 	if (unlikely(!page)) {
741 		count_vm_event(THP_FAULT_FALLBACK);
742 		return VM_FAULT_FALLBACK;
743 	}
744 	prep_transhuge_page(page);
745 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
746 }
747 
748 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
749 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
750 		pgtable_t pgtable)
751 {
752 	struct mm_struct *mm = vma->vm_mm;
753 	pmd_t entry;
754 	spinlock_t *ptl;
755 
756 	ptl = pmd_lock(mm, pmd);
757 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
758 	if (pfn_t_devmap(pfn))
759 		entry = pmd_mkdevmap(entry);
760 	if (write) {
761 		entry = pmd_mkyoung(pmd_mkdirty(entry));
762 		entry = maybe_pmd_mkwrite(entry, vma);
763 	}
764 
765 	if (pgtable) {
766 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
767 		mm_inc_nr_ptes(mm);
768 	}
769 
770 	set_pmd_at(mm, addr, pmd, entry);
771 	update_mmu_cache_pmd(vma, addr, pmd);
772 	spin_unlock(ptl);
773 }
774 
775 vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
776 			pmd_t *pmd, pfn_t pfn, bool write)
777 {
778 	pgprot_t pgprot = vma->vm_page_prot;
779 	pgtable_t pgtable = NULL;
780 	/*
781 	 * If we had pmd_special, we could avoid all these restrictions,
782 	 * but we need to be consistent with PTEs and architectures that
783 	 * can't support a 'special' bit.
784 	 */
785 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
786 			!pfn_t_devmap(pfn));
787 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
788 						(VM_PFNMAP|VM_MIXEDMAP));
789 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
790 
791 	if (addr < vma->vm_start || addr >= vma->vm_end)
792 		return VM_FAULT_SIGBUS;
793 
794 	if (arch_needs_pgtable_deposit()) {
795 		pgtable = pte_alloc_one(vma->vm_mm);
796 		if (!pgtable)
797 			return VM_FAULT_OOM;
798 	}
799 
800 	track_pfn_insert(vma, &pgprot, pfn);
801 
802 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
803 	return VM_FAULT_NOPAGE;
804 }
805 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
806 
807 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
808 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
809 {
810 	if (likely(vma->vm_flags & VM_WRITE))
811 		pud = pud_mkwrite(pud);
812 	return pud;
813 }
814 
815 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
816 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
817 {
818 	struct mm_struct *mm = vma->vm_mm;
819 	pud_t entry;
820 	spinlock_t *ptl;
821 
822 	ptl = pud_lock(mm, pud);
823 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
824 	if (pfn_t_devmap(pfn))
825 		entry = pud_mkdevmap(entry);
826 	if (write) {
827 		entry = pud_mkyoung(pud_mkdirty(entry));
828 		entry = maybe_pud_mkwrite(entry, vma);
829 	}
830 	set_pud_at(mm, addr, pud, entry);
831 	update_mmu_cache_pud(vma, addr, pud);
832 	spin_unlock(ptl);
833 }
834 
835 vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
836 			pud_t *pud, pfn_t pfn, bool write)
837 {
838 	pgprot_t pgprot = vma->vm_page_prot;
839 	/*
840 	 * If we had pud_special, we could avoid all these restrictions,
841 	 * but we need to be consistent with PTEs and architectures that
842 	 * can't support a 'special' bit.
843 	 */
844 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
845 			!pfn_t_devmap(pfn));
846 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
847 						(VM_PFNMAP|VM_MIXEDMAP));
848 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
849 
850 	if (addr < vma->vm_start || addr >= vma->vm_end)
851 		return VM_FAULT_SIGBUS;
852 
853 	track_pfn_insert(vma, &pgprot, pfn);
854 
855 	insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
856 	return VM_FAULT_NOPAGE;
857 }
858 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
859 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
860 
861 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
862 		pmd_t *pmd, int flags)
863 {
864 	pmd_t _pmd;
865 
866 	_pmd = pmd_mkyoung(*pmd);
867 	if (flags & FOLL_WRITE)
868 		_pmd = pmd_mkdirty(_pmd);
869 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
870 				pmd, _pmd, flags & FOLL_WRITE))
871 		update_mmu_cache_pmd(vma, addr, pmd);
872 }
873 
874 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
875 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
876 {
877 	unsigned long pfn = pmd_pfn(*pmd);
878 	struct mm_struct *mm = vma->vm_mm;
879 	struct page *page;
880 
881 	assert_spin_locked(pmd_lockptr(mm, pmd));
882 
883 	/*
884 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
885 	 * not be in this function with `flags & FOLL_COW` set.
886 	 */
887 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
888 
889 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
890 		return NULL;
891 
892 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
893 		/* pass */;
894 	else
895 		return NULL;
896 
897 	if (flags & FOLL_TOUCH)
898 		touch_pmd(vma, addr, pmd, flags);
899 
900 	/*
901 	 * device mapped pages can only be returned if the
902 	 * caller will manage the page reference count.
903 	 */
904 	if (!(flags & FOLL_GET))
905 		return ERR_PTR(-EEXIST);
906 
907 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
908 	*pgmap = get_dev_pagemap(pfn, *pgmap);
909 	if (!*pgmap)
910 		return ERR_PTR(-EFAULT);
911 	page = pfn_to_page(pfn);
912 	get_page(page);
913 
914 	return page;
915 }
916 
917 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
919 		  struct vm_area_struct *vma)
920 {
921 	spinlock_t *dst_ptl, *src_ptl;
922 	struct page *src_page;
923 	pmd_t pmd;
924 	pgtable_t pgtable = NULL;
925 	int ret = -ENOMEM;
926 
927 	/* Skip if can be re-fill on fault */
928 	if (!vma_is_anonymous(vma))
929 		return 0;
930 
931 	pgtable = pte_alloc_one(dst_mm);
932 	if (unlikely(!pgtable))
933 		goto out;
934 
935 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
936 	src_ptl = pmd_lockptr(src_mm, src_pmd);
937 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
938 
939 	ret = -EAGAIN;
940 	pmd = *src_pmd;
941 
942 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
943 	if (unlikely(is_swap_pmd(pmd))) {
944 		swp_entry_t entry = pmd_to_swp_entry(pmd);
945 
946 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
947 		if (is_write_migration_entry(entry)) {
948 			make_migration_entry_read(&entry);
949 			pmd = swp_entry_to_pmd(entry);
950 			if (pmd_swp_soft_dirty(*src_pmd))
951 				pmd = pmd_swp_mksoft_dirty(pmd);
952 			set_pmd_at(src_mm, addr, src_pmd, pmd);
953 		}
954 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
955 		mm_inc_nr_ptes(dst_mm);
956 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
957 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
958 		ret = 0;
959 		goto out_unlock;
960 	}
961 #endif
962 
963 	if (unlikely(!pmd_trans_huge(pmd))) {
964 		pte_free(dst_mm, pgtable);
965 		goto out_unlock;
966 	}
967 	/*
968 	 * When page table lock is held, the huge zero pmd should not be
969 	 * under splitting since we don't split the page itself, only pmd to
970 	 * a page table.
971 	 */
972 	if (is_huge_zero_pmd(pmd)) {
973 		struct page *zero_page;
974 		/*
975 		 * get_huge_zero_page() will never allocate a new page here,
976 		 * since we already have a zero page to copy. It just takes a
977 		 * reference.
978 		 */
979 		zero_page = mm_get_huge_zero_page(dst_mm);
980 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
981 				zero_page);
982 		ret = 0;
983 		goto out_unlock;
984 	}
985 
986 	src_page = pmd_page(pmd);
987 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
988 	get_page(src_page);
989 	page_dup_rmap(src_page, true);
990 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
991 	mm_inc_nr_ptes(dst_mm);
992 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
993 
994 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
995 	pmd = pmd_mkold(pmd_wrprotect(pmd));
996 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
997 
998 	ret = 0;
999 out_unlock:
1000 	spin_unlock(src_ptl);
1001 	spin_unlock(dst_ptl);
1002 out:
1003 	return ret;
1004 }
1005 
1006 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1007 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1008 		pud_t *pud, int flags)
1009 {
1010 	pud_t _pud;
1011 
1012 	_pud = pud_mkyoung(*pud);
1013 	if (flags & FOLL_WRITE)
1014 		_pud = pud_mkdirty(_pud);
1015 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1016 				pud, _pud, flags & FOLL_WRITE))
1017 		update_mmu_cache_pud(vma, addr, pud);
1018 }
1019 
1020 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1021 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1022 {
1023 	unsigned long pfn = pud_pfn(*pud);
1024 	struct mm_struct *mm = vma->vm_mm;
1025 	struct page *page;
1026 
1027 	assert_spin_locked(pud_lockptr(mm, pud));
1028 
1029 	if (flags & FOLL_WRITE && !pud_write(*pud))
1030 		return NULL;
1031 
1032 	if (pud_present(*pud) && pud_devmap(*pud))
1033 		/* pass */;
1034 	else
1035 		return NULL;
1036 
1037 	if (flags & FOLL_TOUCH)
1038 		touch_pud(vma, addr, pud, flags);
1039 
1040 	/*
1041 	 * device mapped pages can only be returned if the
1042 	 * caller will manage the page reference count.
1043 	 */
1044 	if (!(flags & FOLL_GET))
1045 		return ERR_PTR(-EEXIST);
1046 
1047 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1048 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1049 	if (!*pgmap)
1050 		return ERR_PTR(-EFAULT);
1051 	page = pfn_to_page(pfn);
1052 	get_page(page);
1053 
1054 	return page;
1055 }
1056 
1057 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1058 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1059 		  struct vm_area_struct *vma)
1060 {
1061 	spinlock_t *dst_ptl, *src_ptl;
1062 	pud_t pud;
1063 	int ret;
1064 
1065 	dst_ptl = pud_lock(dst_mm, dst_pud);
1066 	src_ptl = pud_lockptr(src_mm, src_pud);
1067 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1068 
1069 	ret = -EAGAIN;
1070 	pud = *src_pud;
1071 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1072 		goto out_unlock;
1073 
1074 	/*
1075 	 * When page table lock is held, the huge zero pud should not be
1076 	 * under splitting since we don't split the page itself, only pud to
1077 	 * a page table.
1078 	 */
1079 	if (is_huge_zero_pud(pud)) {
1080 		/* No huge zero pud yet */
1081 	}
1082 
1083 	pudp_set_wrprotect(src_mm, addr, src_pud);
1084 	pud = pud_mkold(pud_wrprotect(pud));
1085 	set_pud_at(dst_mm, addr, dst_pud, pud);
1086 
1087 	ret = 0;
1088 out_unlock:
1089 	spin_unlock(src_ptl);
1090 	spin_unlock(dst_ptl);
1091 	return ret;
1092 }
1093 
1094 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1095 {
1096 	pud_t entry;
1097 	unsigned long haddr;
1098 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1099 
1100 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1101 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1102 		goto unlock;
1103 
1104 	entry = pud_mkyoung(orig_pud);
1105 	if (write)
1106 		entry = pud_mkdirty(entry);
1107 	haddr = vmf->address & HPAGE_PUD_MASK;
1108 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1109 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1110 
1111 unlock:
1112 	spin_unlock(vmf->ptl);
1113 }
1114 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1115 
1116 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1117 {
1118 	pmd_t entry;
1119 	unsigned long haddr;
1120 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1121 
1122 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1123 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1124 		goto unlock;
1125 
1126 	entry = pmd_mkyoung(orig_pmd);
1127 	if (write)
1128 		entry = pmd_mkdirty(entry);
1129 	haddr = vmf->address & HPAGE_PMD_MASK;
1130 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1131 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1132 
1133 unlock:
1134 	spin_unlock(vmf->ptl);
1135 }
1136 
1137 static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1138 			pmd_t orig_pmd, struct page *page)
1139 {
1140 	struct vm_area_struct *vma = vmf->vma;
1141 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1142 	struct mem_cgroup *memcg;
1143 	pgtable_t pgtable;
1144 	pmd_t _pmd;
1145 	int i;
1146 	vm_fault_t ret = 0;
1147 	struct page **pages;
1148 	struct mmu_notifier_range range;
1149 
1150 	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1151 			      GFP_KERNEL);
1152 	if (unlikely(!pages)) {
1153 		ret |= VM_FAULT_OOM;
1154 		goto out;
1155 	}
1156 
1157 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1158 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1159 					       vmf->address, page_to_nid(page));
1160 		if (unlikely(!pages[i] ||
1161 			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1162 				     GFP_KERNEL, &memcg, false))) {
1163 			if (pages[i])
1164 				put_page(pages[i]);
1165 			while (--i >= 0) {
1166 				memcg = (void *)page_private(pages[i]);
1167 				set_page_private(pages[i], 0);
1168 				mem_cgroup_cancel_charge(pages[i], memcg,
1169 						false);
1170 				put_page(pages[i]);
1171 			}
1172 			kfree(pages);
1173 			ret |= VM_FAULT_OOM;
1174 			goto out;
1175 		}
1176 		set_page_private(pages[i], (unsigned long)memcg);
1177 	}
1178 
1179 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1180 		copy_user_highpage(pages[i], page + i,
1181 				   haddr + PAGE_SIZE * i, vma);
1182 		__SetPageUptodate(pages[i]);
1183 		cond_resched();
1184 	}
1185 
1186 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1187 				haddr + HPAGE_PMD_SIZE);
1188 	mmu_notifier_invalidate_range_start(&range);
1189 
1190 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1191 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1192 		goto out_free_pages;
1193 	VM_BUG_ON_PAGE(!PageHead(page), page);
1194 
1195 	/*
1196 	 * Leave pmd empty until pte is filled note we must notify here as
1197 	 * concurrent CPU thread might write to new page before the call to
1198 	 * mmu_notifier_invalidate_range_end() happens which can lead to a
1199 	 * device seeing memory write in different order than CPU.
1200 	 *
1201 	 * See Documentation/vm/mmu_notifier.rst
1202 	 */
1203 	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1204 
1205 	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1206 	pmd_populate(vma->vm_mm, &_pmd, pgtable);
1207 
1208 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1209 		pte_t entry;
1210 		entry = mk_pte(pages[i], vma->vm_page_prot);
1211 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1212 		memcg = (void *)page_private(pages[i]);
1213 		set_page_private(pages[i], 0);
1214 		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1215 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1216 		lru_cache_add_active_or_unevictable(pages[i], vma);
1217 		vmf->pte = pte_offset_map(&_pmd, haddr);
1218 		VM_BUG_ON(!pte_none(*vmf->pte));
1219 		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1220 		pte_unmap(vmf->pte);
1221 	}
1222 	kfree(pages);
1223 
1224 	smp_wmb(); /* make pte visible before pmd */
1225 	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1226 	page_remove_rmap(page, true);
1227 	spin_unlock(vmf->ptl);
1228 
1229 	/*
1230 	 * No need to double call mmu_notifier->invalidate_range() callback as
1231 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1232 	 */
1233 	mmu_notifier_invalidate_range_only_end(&range);
1234 
1235 	ret |= VM_FAULT_WRITE;
1236 	put_page(page);
1237 
1238 out:
1239 	return ret;
1240 
1241 out_free_pages:
1242 	spin_unlock(vmf->ptl);
1243 	mmu_notifier_invalidate_range_end(&range);
1244 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1245 		memcg = (void *)page_private(pages[i]);
1246 		set_page_private(pages[i], 0);
1247 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1248 		put_page(pages[i]);
1249 	}
1250 	kfree(pages);
1251 	goto out;
1252 }
1253 
1254 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1255 {
1256 	struct vm_area_struct *vma = vmf->vma;
1257 	struct page *page = NULL, *new_page;
1258 	struct mem_cgroup *memcg;
1259 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1260 	struct mmu_notifier_range range;
1261 	gfp_t huge_gfp;			/* for allocation and charge */
1262 	vm_fault_t ret = 0;
1263 
1264 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1265 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1266 	if (is_huge_zero_pmd(orig_pmd))
1267 		goto alloc;
1268 	spin_lock(vmf->ptl);
1269 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 		goto out_unlock;
1271 
1272 	page = pmd_page(orig_pmd);
1273 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1274 	/*
1275 	 * We can only reuse the page if nobody else maps the huge page or it's
1276 	 * part.
1277 	 */
1278 	if (!trylock_page(page)) {
1279 		get_page(page);
1280 		spin_unlock(vmf->ptl);
1281 		lock_page(page);
1282 		spin_lock(vmf->ptl);
1283 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1284 			unlock_page(page);
1285 			put_page(page);
1286 			goto out_unlock;
1287 		}
1288 		put_page(page);
1289 	}
1290 	if (reuse_swap_page(page, NULL)) {
1291 		pmd_t entry;
1292 		entry = pmd_mkyoung(orig_pmd);
1293 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1294 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1295 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1296 		ret |= VM_FAULT_WRITE;
1297 		unlock_page(page);
1298 		goto out_unlock;
1299 	}
1300 	unlock_page(page);
1301 	get_page(page);
1302 	spin_unlock(vmf->ptl);
1303 alloc:
1304 	if (__transparent_hugepage_enabled(vma) &&
1305 	    !transparent_hugepage_debug_cow()) {
1306 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1307 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1308 	} else
1309 		new_page = NULL;
1310 
1311 	if (likely(new_page)) {
1312 		prep_transhuge_page(new_page);
1313 	} else {
1314 		if (!page) {
1315 			split_huge_pmd(vma, vmf->pmd, vmf->address);
1316 			ret |= VM_FAULT_FALLBACK;
1317 		} else {
1318 			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1319 			if (ret & VM_FAULT_OOM) {
1320 				split_huge_pmd(vma, vmf->pmd, vmf->address);
1321 				ret |= VM_FAULT_FALLBACK;
1322 			}
1323 			put_page(page);
1324 		}
1325 		count_vm_event(THP_FAULT_FALLBACK);
1326 		goto out;
1327 	}
1328 
1329 	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1330 					huge_gfp, &memcg, true))) {
1331 		put_page(new_page);
1332 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1333 		if (page)
1334 			put_page(page);
1335 		ret |= VM_FAULT_FALLBACK;
1336 		count_vm_event(THP_FAULT_FALLBACK);
1337 		goto out;
1338 	}
1339 
1340 	count_vm_event(THP_FAULT_ALLOC);
1341 
1342 	if (!page)
1343 		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1344 	else
1345 		copy_user_huge_page(new_page, page, vmf->address,
1346 				    vma, HPAGE_PMD_NR);
1347 	__SetPageUptodate(new_page);
1348 
1349 	mmu_notifier_range_init(&range, vma->vm_mm, haddr,
1350 				haddr + HPAGE_PMD_SIZE);
1351 	mmu_notifier_invalidate_range_start(&range);
1352 
1353 	spin_lock(vmf->ptl);
1354 	if (page)
1355 		put_page(page);
1356 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1357 		spin_unlock(vmf->ptl);
1358 		mem_cgroup_cancel_charge(new_page, memcg, true);
1359 		put_page(new_page);
1360 		goto out_mn;
1361 	} else {
1362 		pmd_t entry;
1363 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1364 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1365 		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1366 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1367 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1368 		lru_cache_add_active_or_unevictable(new_page, vma);
1369 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1370 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1371 		if (!page) {
1372 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1373 		} else {
1374 			VM_BUG_ON_PAGE(!PageHead(page), page);
1375 			page_remove_rmap(page, true);
1376 			put_page(page);
1377 		}
1378 		ret |= VM_FAULT_WRITE;
1379 	}
1380 	spin_unlock(vmf->ptl);
1381 out_mn:
1382 	/*
1383 	 * No need to double call mmu_notifier->invalidate_range() callback as
1384 	 * the above pmdp_huge_clear_flush_notify() did already call it.
1385 	 */
1386 	mmu_notifier_invalidate_range_only_end(&range);
1387 out:
1388 	return ret;
1389 out_unlock:
1390 	spin_unlock(vmf->ptl);
1391 	return ret;
1392 }
1393 
1394 /*
1395  * FOLL_FORCE can write to even unwritable pmd's, but only
1396  * after we've gone through a COW cycle and they are dirty.
1397  */
1398 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1399 {
1400 	return pmd_write(pmd) ||
1401 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1402 }
1403 
1404 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405 				   unsigned long addr,
1406 				   pmd_t *pmd,
1407 				   unsigned int flags)
1408 {
1409 	struct mm_struct *mm = vma->vm_mm;
1410 	struct page *page = NULL;
1411 
1412 	assert_spin_locked(pmd_lockptr(mm, pmd));
1413 
1414 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1415 		goto out;
1416 
1417 	/* Avoid dumping huge zero page */
1418 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419 		return ERR_PTR(-EFAULT);
1420 
1421 	/* Full NUMA hinting faults to serialise migration in fault paths */
1422 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423 		goto out;
1424 
1425 	page = pmd_page(*pmd);
1426 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1427 	if (flags & FOLL_TOUCH)
1428 		touch_pmd(vma, addr, pmd, flags);
1429 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430 		/*
1431 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 		 *
1434 		 * For anon THP:
1435 		 *
1436 		 * In most cases the pmd is the only mapping of the page as we
1437 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1438 		 * writable private mappings in populate_vma_page_range().
1439 		 *
1440 		 * The only scenario when we have the page shared here is if we
1441 		 * mlocking read-only mapping shared over fork(). We skip
1442 		 * mlocking such pages.
1443 		 *
1444 		 * For file THP:
1445 		 *
1446 		 * We can expect PageDoubleMap() to be stable under page lock:
1447 		 * for file pages we set it in page_add_file_rmap(), which
1448 		 * requires page to be locked.
1449 		 */
1450 
1451 		if (PageAnon(page) && compound_mapcount(page) != 1)
1452 			goto skip_mlock;
1453 		if (PageDoubleMap(page) || !page->mapping)
1454 			goto skip_mlock;
1455 		if (!trylock_page(page))
1456 			goto skip_mlock;
1457 		lru_add_drain();
1458 		if (page->mapping && !PageDoubleMap(page))
1459 			mlock_vma_page(page);
1460 		unlock_page(page);
1461 	}
1462 skip_mlock:
1463 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1464 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1465 	if (flags & FOLL_GET)
1466 		get_page(page);
1467 
1468 out:
1469 	return page;
1470 }
1471 
1472 /* NUMA hinting page fault entry point for trans huge pmds */
1473 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1474 {
1475 	struct vm_area_struct *vma = vmf->vma;
1476 	struct anon_vma *anon_vma = NULL;
1477 	struct page *page;
1478 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1479 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1480 	int target_nid, last_cpupid = -1;
1481 	bool page_locked;
1482 	bool migrated = false;
1483 	bool was_writable;
1484 	int flags = 0;
1485 
1486 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1487 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1488 		goto out_unlock;
1489 
1490 	/*
1491 	 * If there are potential migrations, wait for completion and retry
1492 	 * without disrupting NUMA hinting information. Do not relock and
1493 	 * check_same as the page may no longer be mapped.
1494 	 */
1495 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1496 		page = pmd_page(*vmf->pmd);
1497 		if (!get_page_unless_zero(page))
1498 			goto out_unlock;
1499 		spin_unlock(vmf->ptl);
1500 		put_and_wait_on_page_locked(page);
1501 		goto out;
1502 	}
1503 
1504 	page = pmd_page(pmd);
1505 	BUG_ON(is_huge_zero_page(page));
1506 	page_nid = page_to_nid(page);
1507 	last_cpupid = page_cpupid_last(page);
1508 	count_vm_numa_event(NUMA_HINT_FAULTS);
1509 	if (page_nid == this_nid) {
1510 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1511 		flags |= TNF_FAULT_LOCAL;
1512 	}
1513 
1514 	/* See similar comment in do_numa_page for explanation */
1515 	if (!pmd_savedwrite(pmd))
1516 		flags |= TNF_NO_GROUP;
1517 
1518 	/*
1519 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 	 * page_table_lock if at all possible
1521 	 */
1522 	page_locked = trylock_page(page);
1523 	target_nid = mpol_misplaced(page, vma, haddr);
1524 	if (target_nid == NUMA_NO_NODE) {
1525 		/* If the page was locked, there are no parallel migrations */
1526 		if (page_locked)
1527 			goto clear_pmdnuma;
1528 	}
1529 
1530 	/* Migration could have started since the pmd_trans_migrating check */
1531 	if (!page_locked) {
1532 		page_nid = NUMA_NO_NODE;
1533 		if (!get_page_unless_zero(page))
1534 			goto out_unlock;
1535 		spin_unlock(vmf->ptl);
1536 		put_and_wait_on_page_locked(page);
1537 		goto out;
1538 	}
1539 
1540 	/*
1541 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1542 	 * to serialises splits
1543 	 */
1544 	get_page(page);
1545 	spin_unlock(vmf->ptl);
1546 	anon_vma = page_lock_anon_vma_read(page);
1547 
1548 	/* Confirm the PMD did not change while page_table_lock was released */
1549 	spin_lock(vmf->ptl);
1550 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1551 		unlock_page(page);
1552 		put_page(page);
1553 		page_nid = NUMA_NO_NODE;
1554 		goto out_unlock;
1555 	}
1556 
1557 	/* Bail if we fail to protect against THP splits for any reason */
1558 	if (unlikely(!anon_vma)) {
1559 		put_page(page);
1560 		page_nid = NUMA_NO_NODE;
1561 		goto clear_pmdnuma;
1562 	}
1563 
1564 	/*
1565 	 * Since we took the NUMA fault, we must have observed the !accessible
1566 	 * bit. Make sure all other CPUs agree with that, to avoid them
1567 	 * modifying the page we're about to migrate.
1568 	 *
1569 	 * Must be done under PTL such that we'll observe the relevant
1570 	 * inc_tlb_flush_pending().
1571 	 *
1572 	 * We are not sure a pending tlb flush here is for a huge page
1573 	 * mapping or not. Hence use the tlb range variant
1574 	 */
1575 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1576 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1577 		/*
1578 		 * change_huge_pmd() released the pmd lock before
1579 		 * invalidating the secondary MMUs sharing the primary
1580 		 * MMU pagetables (with ->invalidate_range()). The
1581 		 * mmu_notifier_invalidate_range_end() (which
1582 		 * internally calls ->invalidate_range()) in
1583 		 * change_pmd_range() will run after us, so we can't
1584 		 * rely on it here and we need an explicit invalidate.
1585 		 */
1586 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1587 					      haddr + HPAGE_PMD_SIZE);
1588 	}
1589 
1590 	/*
1591 	 * Migrate the THP to the requested node, returns with page unlocked
1592 	 * and access rights restored.
1593 	 */
1594 	spin_unlock(vmf->ptl);
1595 
1596 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1597 				vmf->pmd, pmd, vmf->address, page, target_nid);
1598 	if (migrated) {
1599 		flags |= TNF_MIGRATED;
1600 		page_nid = target_nid;
1601 	} else
1602 		flags |= TNF_MIGRATE_FAIL;
1603 
1604 	goto out;
1605 clear_pmdnuma:
1606 	BUG_ON(!PageLocked(page));
1607 	was_writable = pmd_savedwrite(pmd);
1608 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1609 	pmd = pmd_mkyoung(pmd);
1610 	if (was_writable)
1611 		pmd = pmd_mkwrite(pmd);
1612 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1613 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1614 	unlock_page(page);
1615 out_unlock:
1616 	spin_unlock(vmf->ptl);
1617 
1618 out:
1619 	if (anon_vma)
1620 		page_unlock_anon_vma_read(anon_vma);
1621 
1622 	if (page_nid != NUMA_NO_NODE)
1623 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1624 				flags);
1625 
1626 	return 0;
1627 }
1628 
1629 /*
1630  * Return true if we do MADV_FREE successfully on entire pmd page.
1631  * Otherwise, return false.
1632  */
1633 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1634 		pmd_t *pmd, unsigned long addr, unsigned long next)
1635 {
1636 	spinlock_t *ptl;
1637 	pmd_t orig_pmd;
1638 	struct page *page;
1639 	struct mm_struct *mm = tlb->mm;
1640 	bool ret = false;
1641 
1642 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1643 
1644 	ptl = pmd_trans_huge_lock(pmd, vma);
1645 	if (!ptl)
1646 		goto out_unlocked;
1647 
1648 	orig_pmd = *pmd;
1649 	if (is_huge_zero_pmd(orig_pmd))
1650 		goto out;
1651 
1652 	if (unlikely(!pmd_present(orig_pmd))) {
1653 		VM_BUG_ON(thp_migration_supported() &&
1654 				  !is_pmd_migration_entry(orig_pmd));
1655 		goto out;
1656 	}
1657 
1658 	page = pmd_page(orig_pmd);
1659 	/*
1660 	 * If other processes are mapping this page, we couldn't discard
1661 	 * the page unless they all do MADV_FREE so let's skip the page.
1662 	 */
1663 	if (page_mapcount(page) != 1)
1664 		goto out;
1665 
1666 	if (!trylock_page(page))
1667 		goto out;
1668 
1669 	/*
1670 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1671 	 * will deactivate only them.
1672 	 */
1673 	if (next - addr != HPAGE_PMD_SIZE) {
1674 		get_page(page);
1675 		spin_unlock(ptl);
1676 		split_huge_page(page);
1677 		unlock_page(page);
1678 		put_page(page);
1679 		goto out_unlocked;
1680 	}
1681 
1682 	if (PageDirty(page))
1683 		ClearPageDirty(page);
1684 	unlock_page(page);
1685 
1686 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1687 		pmdp_invalidate(vma, addr, pmd);
1688 		orig_pmd = pmd_mkold(orig_pmd);
1689 		orig_pmd = pmd_mkclean(orig_pmd);
1690 
1691 		set_pmd_at(mm, addr, pmd, orig_pmd);
1692 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1693 	}
1694 
1695 	mark_page_lazyfree(page);
1696 	ret = true;
1697 out:
1698 	spin_unlock(ptl);
1699 out_unlocked:
1700 	return ret;
1701 }
1702 
1703 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1704 {
1705 	pgtable_t pgtable;
1706 
1707 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1708 	pte_free(mm, pgtable);
1709 	mm_dec_nr_ptes(mm);
1710 }
1711 
1712 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1713 		 pmd_t *pmd, unsigned long addr)
1714 {
1715 	pmd_t orig_pmd;
1716 	spinlock_t *ptl;
1717 
1718 	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1719 
1720 	ptl = __pmd_trans_huge_lock(pmd, vma);
1721 	if (!ptl)
1722 		return 0;
1723 	/*
1724 	 * For architectures like ppc64 we look at deposited pgtable
1725 	 * when calling pmdp_huge_get_and_clear. So do the
1726 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1727 	 * operations.
1728 	 */
1729 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1730 			tlb->fullmm);
1731 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1732 	if (vma_is_dax(vma)) {
1733 		if (arch_needs_pgtable_deposit())
1734 			zap_deposited_table(tlb->mm, pmd);
1735 		spin_unlock(ptl);
1736 		if (is_huge_zero_pmd(orig_pmd))
1737 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1738 	} else if (is_huge_zero_pmd(orig_pmd)) {
1739 		zap_deposited_table(tlb->mm, pmd);
1740 		spin_unlock(ptl);
1741 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1742 	} else {
1743 		struct page *page = NULL;
1744 		int flush_needed = 1;
1745 
1746 		if (pmd_present(orig_pmd)) {
1747 			page = pmd_page(orig_pmd);
1748 			page_remove_rmap(page, true);
1749 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1750 			VM_BUG_ON_PAGE(!PageHead(page), page);
1751 		} else if (thp_migration_supported()) {
1752 			swp_entry_t entry;
1753 
1754 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1755 			entry = pmd_to_swp_entry(orig_pmd);
1756 			page = pfn_to_page(swp_offset(entry));
1757 			flush_needed = 0;
1758 		} else
1759 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1760 
1761 		if (PageAnon(page)) {
1762 			zap_deposited_table(tlb->mm, pmd);
1763 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1764 		} else {
1765 			if (arch_needs_pgtable_deposit())
1766 				zap_deposited_table(tlb->mm, pmd);
1767 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1768 		}
1769 
1770 		spin_unlock(ptl);
1771 		if (flush_needed)
1772 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1773 	}
1774 	return 1;
1775 }
1776 
1777 #ifndef pmd_move_must_withdraw
1778 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1779 					 spinlock_t *old_pmd_ptl,
1780 					 struct vm_area_struct *vma)
1781 {
1782 	/*
1783 	 * With split pmd lock we also need to move preallocated
1784 	 * PTE page table if new_pmd is on different PMD page table.
1785 	 *
1786 	 * We also don't deposit and withdraw tables for file pages.
1787 	 */
1788 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1789 }
1790 #endif
1791 
1792 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1793 {
1794 #ifdef CONFIG_MEM_SOFT_DIRTY
1795 	if (unlikely(is_pmd_migration_entry(pmd)))
1796 		pmd = pmd_swp_mksoft_dirty(pmd);
1797 	else if (pmd_present(pmd))
1798 		pmd = pmd_mksoft_dirty(pmd);
1799 #endif
1800 	return pmd;
1801 }
1802 
1803 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1804 		  unsigned long new_addr, unsigned long old_end,
1805 		  pmd_t *old_pmd, pmd_t *new_pmd)
1806 {
1807 	spinlock_t *old_ptl, *new_ptl;
1808 	pmd_t pmd;
1809 	struct mm_struct *mm = vma->vm_mm;
1810 	bool force_flush = false;
1811 
1812 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1813 	    (new_addr & ~HPAGE_PMD_MASK) ||
1814 	    old_end - old_addr < HPAGE_PMD_SIZE)
1815 		return false;
1816 
1817 	/*
1818 	 * The destination pmd shouldn't be established, free_pgtables()
1819 	 * should have release it.
1820 	 */
1821 	if (WARN_ON(!pmd_none(*new_pmd))) {
1822 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1823 		return false;
1824 	}
1825 
1826 	/*
1827 	 * We don't have to worry about the ordering of src and dst
1828 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1829 	 */
1830 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1831 	if (old_ptl) {
1832 		new_ptl = pmd_lockptr(mm, new_pmd);
1833 		if (new_ptl != old_ptl)
1834 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1835 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1836 		if (pmd_present(pmd))
1837 			force_flush = true;
1838 		VM_BUG_ON(!pmd_none(*new_pmd));
1839 
1840 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1841 			pgtable_t pgtable;
1842 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1843 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1844 		}
1845 		pmd = move_soft_dirty_pmd(pmd);
1846 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1847 		if (force_flush)
1848 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1849 		if (new_ptl != old_ptl)
1850 			spin_unlock(new_ptl);
1851 		spin_unlock(old_ptl);
1852 		return true;
1853 	}
1854 	return false;
1855 }
1856 
1857 /*
1858  * Returns
1859  *  - 0 if PMD could not be locked
1860  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1861  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1862  */
1863 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1864 		unsigned long addr, pgprot_t newprot, int prot_numa)
1865 {
1866 	struct mm_struct *mm = vma->vm_mm;
1867 	spinlock_t *ptl;
1868 	pmd_t entry;
1869 	bool preserve_write;
1870 	int ret;
1871 
1872 	ptl = __pmd_trans_huge_lock(pmd, vma);
1873 	if (!ptl)
1874 		return 0;
1875 
1876 	preserve_write = prot_numa && pmd_write(*pmd);
1877 	ret = 1;
1878 
1879 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1880 	if (is_swap_pmd(*pmd)) {
1881 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1882 
1883 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1884 		if (is_write_migration_entry(entry)) {
1885 			pmd_t newpmd;
1886 			/*
1887 			 * A protection check is difficult so
1888 			 * just be safe and disable write
1889 			 */
1890 			make_migration_entry_read(&entry);
1891 			newpmd = swp_entry_to_pmd(entry);
1892 			if (pmd_swp_soft_dirty(*pmd))
1893 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1894 			set_pmd_at(mm, addr, pmd, newpmd);
1895 		}
1896 		goto unlock;
1897 	}
1898 #endif
1899 
1900 	/*
1901 	 * Avoid trapping faults against the zero page. The read-only
1902 	 * data is likely to be read-cached on the local CPU and
1903 	 * local/remote hits to the zero page are not interesting.
1904 	 */
1905 	if (prot_numa && is_huge_zero_pmd(*pmd))
1906 		goto unlock;
1907 
1908 	if (prot_numa && pmd_protnone(*pmd))
1909 		goto unlock;
1910 
1911 	/*
1912 	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1913 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1914 	 * which is also under down_read(mmap_sem):
1915 	 *
1916 	 *	CPU0:				CPU1:
1917 	 *				change_huge_pmd(prot_numa=1)
1918 	 *				 pmdp_huge_get_and_clear_notify()
1919 	 * madvise_dontneed()
1920 	 *  zap_pmd_range()
1921 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1922 	 *   // skip the pmd
1923 	 *				 set_pmd_at();
1924 	 *				 // pmd is re-established
1925 	 *
1926 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1927 	 * which may break userspace.
1928 	 *
1929 	 * pmdp_invalidate() is required to make sure we don't miss
1930 	 * dirty/young flags set by hardware.
1931 	 */
1932 	entry = pmdp_invalidate(vma, addr, pmd);
1933 
1934 	entry = pmd_modify(entry, newprot);
1935 	if (preserve_write)
1936 		entry = pmd_mk_savedwrite(entry);
1937 	ret = HPAGE_PMD_NR;
1938 	set_pmd_at(mm, addr, pmd, entry);
1939 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1940 unlock:
1941 	spin_unlock(ptl);
1942 	return ret;
1943 }
1944 
1945 /*
1946  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1947  *
1948  * Note that if it returns page table lock pointer, this routine returns without
1949  * unlocking page table lock. So callers must unlock it.
1950  */
1951 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1952 {
1953 	spinlock_t *ptl;
1954 	ptl = pmd_lock(vma->vm_mm, pmd);
1955 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1956 			pmd_devmap(*pmd)))
1957 		return ptl;
1958 	spin_unlock(ptl);
1959 	return NULL;
1960 }
1961 
1962 /*
1963  * Returns true if a given pud maps a thp, false otherwise.
1964  *
1965  * Note that if it returns true, this routine returns without unlocking page
1966  * table lock. So callers must unlock it.
1967  */
1968 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1969 {
1970 	spinlock_t *ptl;
1971 
1972 	ptl = pud_lock(vma->vm_mm, pud);
1973 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1974 		return ptl;
1975 	spin_unlock(ptl);
1976 	return NULL;
1977 }
1978 
1979 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1980 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1981 		 pud_t *pud, unsigned long addr)
1982 {
1983 	pud_t orig_pud;
1984 	spinlock_t *ptl;
1985 
1986 	ptl = __pud_trans_huge_lock(pud, vma);
1987 	if (!ptl)
1988 		return 0;
1989 	/*
1990 	 * For architectures like ppc64 we look at deposited pgtable
1991 	 * when calling pudp_huge_get_and_clear. So do the
1992 	 * pgtable_trans_huge_withdraw after finishing pudp related
1993 	 * operations.
1994 	 */
1995 	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1996 			tlb->fullmm);
1997 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1998 	if (vma_is_dax(vma)) {
1999 		spin_unlock(ptl);
2000 		/* No zero page support yet */
2001 	} else {
2002 		/* No support for anonymous PUD pages yet */
2003 		BUG();
2004 	}
2005 	return 1;
2006 }
2007 
2008 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2009 		unsigned long haddr)
2010 {
2011 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2012 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2013 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2014 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2015 
2016 	count_vm_event(THP_SPLIT_PUD);
2017 
2018 	pudp_huge_clear_flush_notify(vma, haddr, pud);
2019 }
2020 
2021 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2022 		unsigned long address)
2023 {
2024 	spinlock_t *ptl;
2025 	struct mmu_notifier_range range;
2026 
2027 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PUD_MASK,
2028 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2029 	mmu_notifier_invalidate_range_start(&range);
2030 	ptl = pud_lock(vma->vm_mm, pud);
2031 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2032 		goto out;
2033 	__split_huge_pud_locked(vma, pud, range.start);
2034 
2035 out:
2036 	spin_unlock(ptl);
2037 	/*
2038 	 * No need to double call mmu_notifier->invalidate_range() callback as
2039 	 * the above pudp_huge_clear_flush_notify() did already call it.
2040 	 */
2041 	mmu_notifier_invalidate_range_only_end(&range);
2042 }
2043 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2044 
2045 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2046 		unsigned long haddr, pmd_t *pmd)
2047 {
2048 	struct mm_struct *mm = vma->vm_mm;
2049 	pgtable_t pgtable;
2050 	pmd_t _pmd;
2051 	int i;
2052 
2053 	/*
2054 	 * Leave pmd empty until pte is filled note that it is fine to delay
2055 	 * notification until mmu_notifier_invalidate_range_end() as we are
2056 	 * replacing a zero pmd write protected page with a zero pte write
2057 	 * protected page.
2058 	 *
2059 	 * See Documentation/vm/mmu_notifier.rst
2060 	 */
2061 	pmdp_huge_clear_flush(vma, haddr, pmd);
2062 
2063 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2064 	pmd_populate(mm, &_pmd, pgtable);
2065 
2066 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2067 		pte_t *pte, entry;
2068 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2069 		entry = pte_mkspecial(entry);
2070 		pte = pte_offset_map(&_pmd, haddr);
2071 		VM_BUG_ON(!pte_none(*pte));
2072 		set_pte_at(mm, haddr, pte, entry);
2073 		pte_unmap(pte);
2074 	}
2075 	smp_wmb(); /* make pte visible before pmd */
2076 	pmd_populate(mm, pmd, pgtable);
2077 }
2078 
2079 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2080 		unsigned long haddr, bool freeze)
2081 {
2082 	struct mm_struct *mm = vma->vm_mm;
2083 	struct page *page;
2084 	pgtable_t pgtable;
2085 	pmd_t old_pmd, _pmd;
2086 	bool young, write, soft_dirty, pmd_migration = false;
2087 	unsigned long addr;
2088 	int i;
2089 
2090 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2091 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2092 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2093 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2094 				&& !pmd_devmap(*pmd));
2095 
2096 	count_vm_event(THP_SPLIT_PMD);
2097 
2098 	if (!vma_is_anonymous(vma)) {
2099 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2100 		/*
2101 		 * We are going to unmap this huge page. So
2102 		 * just go ahead and zap it
2103 		 */
2104 		if (arch_needs_pgtable_deposit())
2105 			zap_deposited_table(mm, pmd);
2106 		if (vma_is_dax(vma))
2107 			return;
2108 		page = pmd_page(_pmd);
2109 		if (!PageDirty(page) && pmd_dirty(_pmd))
2110 			set_page_dirty(page);
2111 		if (!PageReferenced(page) && pmd_young(_pmd))
2112 			SetPageReferenced(page);
2113 		page_remove_rmap(page, true);
2114 		put_page(page);
2115 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2116 		return;
2117 	} else if (is_huge_zero_pmd(*pmd)) {
2118 		/*
2119 		 * FIXME: Do we want to invalidate secondary mmu by calling
2120 		 * mmu_notifier_invalidate_range() see comments below inside
2121 		 * __split_huge_pmd() ?
2122 		 *
2123 		 * We are going from a zero huge page write protected to zero
2124 		 * small page also write protected so it does not seems useful
2125 		 * to invalidate secondary mmu at this time.
2126 		 */
2127 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2128 	}
2129 
2130 	/*
2131 	 * Up to this point the pmd is present and huge and userland has the
2132 	 * whole access to the hugepage during the split (which happens in
2133 	 * place). If we overwrite the pmd with the not-huge version pointing
2134 	 * to the pte here (which of course we could if all CPUs were bug
2135 	 * free), userland could trigger a small page size TLB miss on the
2136 	 * small sized TLB while the hugepage TLB entry is still established in
2137 	 * the huge TLB. Some CPU doesn't like that.
2138 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2139 	 * 383 on page 93. Intel should be safe but is also warns that it's
2140 	 * only safe if the permission and cache attributes of the two entries
2141 	 * loaded in the two TLB is identical (which should be the case here).
2142 	 * But it is generally safer to never allow small and huge TLB entries
2143 	 * for the same virtual address to be loaded simultaneously. So instead
2144 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2145 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2146 	 * must remain set at all times on the pmd until the split is complete
2147 	 * for this pmd), then we flush the SMP TLB and finally we write the
2148 	 * non-huge version of the pmd entry with pmd_populate.
2149 	 */
2150 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2151 
2152 	pmd_migration = is_pmd_migration_entry(old_pmd);
2153 	if (unlikely(pmd_migration)) {
2154 		swp_entry_t entry;
2155 
2156 		entry = pmd_to_swp_entry(old_pmd);
2157 		page = pfn_to_page(swp_offset(entry));
2158 		write = is_write_migration_entry(entry);
2159 		young = false;
2160 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2161 	} else {
2162 		page = pmd_page(old_pmd);
2163 		if (pmd_dirty(old_pmd))
2164 			SetPageDirty(page);
2165 		write = pmd_write(old_pmd);
2166 		young = pmd_young(old_pmd);
2167 		soft_dirty = pmd_soft_dirty(old_pmd);
2168 	}
2169 	VM_BUG_ON_PAGE(!page_count(page), page);
2170 	page_ref_add(page, HPAGE_PMD_NR - 1);
2171 
2172 	/*
2173 	 * Withdraw the table only after we mark the pmd entry invalid.
2174 	 * This's critical for some architectures (Power).
2175 	 */
2176 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2177 	pmd_populate(mm, &_pmd, pgtable);
2178 
2179 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2180 		pte_t entry, *pte;
2181 		/*
2182 		 * Note that NUMA hinting access restrictions are not
2183 		 * transferred to avoid any possibility of altering
2184 		 * permissions across VMAs.
2185 		 */
2186 		if (freeze || pmd_migration) {
2187 			swp_entry_t swp_entry;
2188 			swp_entry = make_migration_entry(page + i, write);
2189 			entry = swp_entry_to_pte(swp_entry);
2190 			if (soft_dirty)
2191 				entry = pte_swp_mksoft_dirty(entry);
2192 		} else {
2193 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2194 			entry = maybe_mkwrite(entry, vma);
2195 			if (!write)
2196 				entry = pte_wrprotect(entry);
2197 			if (!young)
2198 				entry = pte_mkold(entry);
2199 			if (soft_dirty)
2200 				entry = pte_mksoft_dirty(entry);
2201 		}
2202 		pte = pte_offset_map(&_pmd, addr);
2203 		BUG_ON(!pte_none(*pte));
2204 		set_pte_at(mm, addr, pte, entry);
2205 		atomic_inc(&page[i]._mapcount);
2206 		pte_unmap(pte);
2207 	}
2208 
2209 	/*
2210 	 * Set PG_double_map before dropping compound_mapcount to avoid
2211 	 * false-negative page_mapped().
2212 	 */
2213 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2214 		for (i = 0; i < HPAGE_PMD_NR; i++)
2215 			atomic_inc(&page[i]._mapcount);
2216 	}
2217 
2218 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2219 		/* Last compound_mapcount is gone. */
2220 		__dec_node_page_state(page, NR_ANON_THPS);
2221 		if (TestClearPageDoubleMap(page)) {
2222 			/* No need in mapcount reference anymore */
2223 			for (i = 0; i < HPAGE_PMD_NR; i++)
2224 				atomic_dec(&page[i]._mapcount);
2225 		}
2226 	}
2227 
2228 	smp_wmb(); /* make pte visible before pmd */
2229 	pmd_populate(mm, pmd, pgtable);
2230 
2231 	if (freeze) {
2232 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2233 			page_remove_rmap(page + i, false);
2234 			put_page(page + i);
2235 		}
2236 	}
2237 }
2238 
2239 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2240 		unsigned long address, bool freeze, struct page *page)
2241 {
2242 	spinlock_t *ptl;
2243 	struct mmu_notifier_range range;
2244 
2245 	mmu_notifier_range_init(&range, vma->vm_mm, address & HPAGE_PMD_MASK,
2246 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2247 	mmu_notifier_invalidate_range_start(&range);
2248 	ptl = pmd_lock(vma->vm_mm, pmd);
2249 
2250 	/*
2251 	 * If caller asks to setup a migration entries, we need a page to check
2252 	 * pmd against. Otherwise we can end up replacing wrong page.
2253 	 */
2254 	VM_BUG_ON(freeze && !page);
2255 	if (page && page != pmd_page(*pmd))
2256 	        goto out;
2257 
2258 	if (pmd_trans_huge(*pmd)) {
2259 		page = pmd_page(*pmd);
2260 		if (PageMlocked(page))
2261 			clear_page_mlock(page);
2262 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2263 		goto out;
2264 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2265 out:
2266 	spin_unlock(ptl);
2267 	/*
2268 	 * No need to double call mmu_notifier->invalidate_range() callback.
2269 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2270 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2271 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2272 	 *    fault will trigger a flush_notify before pointing to a new page
2273 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2274 	 *    page in the meantime)
2275 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2276 	 *     to invalidate secondary tlb entry they are all still valid.
2277 	 *     any further changes to individual pte will notify. So no need
2278 	 *     to call mmu_notifier->invalidate_range()
2279 	 */
2280 	mmu_notifier_invalidate_range_only_end(&range);
2281 }
2282 
2283 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2284 		bool freeze, struct page *page)
2285 {
2286 	pgd_t *pgd;
2287 	p4d_t *p4d;
2288 	pud_t *pud;
2289 	pmd_t *pmd;
2290 
2291 	pgd = pgd_offset(vma->vm_mm, address);
2292 	if (!pgd_present(*pgd))
2293 		return;
2294 
2295 	p4d = p4d_offset(pgd, address);
2296 	if (!p4d_present(*p4d))
2297 		return;
2298 
2299 	pud = pud_offset(p4d, address);
2300 	if (!pud_present(*pud))
2301 		return;
2302 
2303 	pmd = pmd_offset(pud, address);
2304 
2305 	__split_huge_pmd(vma, pmd, address, freeze, page);
2306 }
2307 
2308 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2309 			     unsigned long start,
2310 			     unsigned long end,
2311 			     long adjust_next)
2312 {
2313 	/*
2314 	 * If the new start address isn't hpage aligned and it could
2315 	 * previously contain an hugepage: check if we need to split
2316 	 * an huge pmd.
2317 	 */
2318 	if (start & ~HPAGE_PMD_MASK &&
2319 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2320 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2321 		split_huge_pmd_address(vma, start, false, NULL);
2322 
2323 	/*
2324 	 * If the new end address isn't hpage aligned and it could
2325 	 * previously contain an hugepage: check if we need to split
2326 	 * an huge pmd.
2327 	 */
2328 	if (end & ~HPAGE_PMD_MASK &&
2329 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2330 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2331 		split_huge_pmd_address(vma, end, false, NULL);
2332 
2333 	/*
2334 	 * If we're also updating the vma->vm_next->vm_start, if the new
2335 	 * vm_next->vm_start isn't page aligned and it could previously
2336 	 * contain an hugepage: check if we need to split an huge pmd.
2337 	 */
2338 	if (adjust_next > 0) {
2339 		struct vm_area_struct *next = vma->vm_next;
2340 		unsigned long nstart = next->vm_start;
2341 		nstart += adjust_next << PAGE_SHIFT;
2342 		if (nstart & ~HPAGE_PMD_MASK &&
2343 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2344 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2345 			split_huge_pmd_address(next, nstart, false, NULL);
2346 	}
2347 }
2348 
2349 static void unmap_page(struct page *page)
2350 {
2351 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2352 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2353 	bool unmap_success;
2354 
2355 	VM_BUG_ON_PAGE(!PageHead(page), page);
2356 
2357 	if (PageAnon(page))
2358 		ttu_flags |= TTU_SPLIT_FREEZE;
2359 
2360 	unmap_success = try_to_unmap(page, ttu_flags);
2361 	VM_BUG_ON_PAGE(!unmap_success, page);
2362 }
2363 
2364 static void remap_page(struct page *page)
2365 {
2366 	int i;
2367 	if (PageTransHuge(page)) {
2368 		remove_migration_ptes(page, page, true);
2369 	} else {
2370 		for (i = 0; i < HPAGE_PMD_NR; i++)
2371 			remove_migration_ptes(page + i, page + i, true);
2372 	}
2373 }
2374 
2375 static void __split_huge_page_tail(struct page *head, int tail,
2376 		struct lruvec *lruvec, struct list_head *list)
2377 {
2378 	struct page *page_tail = head + tail;
2379 
2380 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2381 
2382 	/*
2383 	 * Clone page flags before unfreezing refcount.
2384 	 *
2385 	 * After successful get_page_unless_zero() might follow flags change,
2386 	 * for exmaple lock_page() which set PG_waiters.
2387 	 */
2388 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2389 	page_tail->flags |= (head->flags &
2390 			((1L << PG_referenced) |
2391 			 (1L << PG_swapbacked) |
2392 			 (1L << PG_swapcache) |
2393 			 (1L << PG_mlocked) |
2394 			 (1L << PG_uptodate) |
2395 			 (1L << PG_active) |
2396 			 (1L << PG_workingset) |
2397 			 (1L << PG_locked) |
2398 			 (1L << PG_unevictable) |
2399 			 (1L << PG_dirty)));
2400 
2401 	/* ->mapping in first tail page is compound_mapcount */
2402 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2403 			page_tail);
2404 	page_tail->mapping = head->mapping;
2405 	page_tail->index = head->index + tail;
2406 
2407 	/* Page flags must be visible before we make the page non-compound. */
2408 	smp_wmb();
2409 
2410 	/*
2411 	 * Clear PageTail before unfreezing page refcount.
2412 	 *
2413 	 * After successful get_page_unless_zero() might follow put_page()
2414 	 * which needs correct compound_head().
2415 	 */
2416 	clear_compound_head(page_tail);
2417 
2418 	/* Finally unfreeze refcount. Additional reference from page cache. */
2419 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2420 					  PageSwapCache(head)));
2421 
2422 	if (page_is_young(head))
2423 		set_page_young(page_tail);
2424 	if (page_is_idle(head))
2425 		set_page_idle(page_tail);
2426 
2427 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2428 
2429 	/*
2430 	 * always add to the tail because some iterators expect new
2431 	 * pages to show after the currently processed elements - e.g.
2432 	 * migrate_pages
2433 	 */
2434 	lru_add_page_tail(head, page_tail, lruvec, list);
2435 }
2436 
2437 static void __split_huge_page(struct page *page, struct list_head *list,
2438 		pgoff_t end, unsigned long flags)
2439 {
2440 	struct page *head = compound_head(page);
2441 	struct zone *zone = page_zone(head);
2442 	struct lruvec *lruvec;
2443 	int i;
2444 
2445 	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2446 
2447 	/* complete memcg works before add pages to LRU */
2448 	mem_cgroup_split_huge_fixup(head);
2449 
2450 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2451 		__split_huge_page_tail(head, i, lruvec, list);
2452 		/* Some pages can be beyond i_size: drop them from page cache */
2453 		if (head[i].index >= end) {
2454 			ClearPageDirty(head + i);
2455 			__delete_from_page_cache(head + i, NULL);
2456 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2457 				shmem_uncharge(head->mapping->host, 1);
2458 			put_page(head + i);
2459 		}
2460 	}
2461 
2462 	ClearPageCompound(head);
2463 	/* See comment in __split_huge_page_tail() */
2464 	if (PageAnon(head)) {
2465 		/* Additional pin to swap cache */
2466 		if (PageSwapCache(head))
2467 			page_ref_add(head, 2);
2468 		else
2469 			page_ref_inc(head);
2470 	} else {
2471 		/* Additional pin to page cache */
2472 		page_ref_add(head, 2);
2473 		xa_unlock(&head->mapping->i_pages);
2474 	}
2475 
2476 	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2477 
2478 	remap_page(head);
2479 
2480 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2481 		struct page *subpage = head + i;
2482 		if (subpage == page)
2483 			continue;
2484 		unlock_page(subpage);
2485 
2486 		/*
2487 		 * Subpages may be freed if there wasn't any mapping
2488 		 * like if add_to_swap() is running on a lru page that
2489 		 * had its mapping zapped. And freeing these pages
2490 		 * requires taking the lru_lock so we do the put_page
2491 		 * of the tail pages after the split is complete.
2492 		 */
2493 		put_page(subpage);
2494 	}
2495 }
2496 
2497 int total_mapcount(struct page *page)
2498 {
2499 	int i, compound, ret;
2500 
2501 	VM_BUG_ON_PAGE(PageTail(page), page);
2502 
2503 	if (likely(!PageCompound(page)))
2504 		return atomic_read(&page->_mapcount) + 1;
2505 
2506 	compound = compound_mapcount(page);
2507 	if (PageHuge(page))
2508 		return compound;
2509 	ret = compound;
2510 	for (i = 0; i < HPAGE_PMD_NR; i++)
2511 		ret += atomic_read(&page[i]._mapcount) + 1;
2512 	/* File pages has compound_mapcount included in _mapcount */
2513 	if (!PageAnon(page))
2514 		return ret - compound * HPAGE_PMD_NR;
2515 	if (PageDoubleMap(page))
2516 		ret -= HPAGE_PMD_NR;
2517 	return ret;
2518 }
2519 
2520 /*
2521  * This calculates accurately how many mappings a transparent hugepage
2522  * has (unlike page_mapcount() which isn't fully accurate). This full
2523  * accuracy is primarily needed to know if copy-on-write faults can
2524  * reuse the page and change the mapping to read-write instead of
2525  * copying them. At the same time this returns the total_mapcount too.
2526  *
2527  * The function returns the highest mapcount any one of the subpages
2528  * has. If the return value is one, even if different processes are
2529  * mapping different subpages of the transparent hugepage, they can
2530  * all reuse it, because each process is reusing a different subpage.
2531  *
2532  * The total_mapcount is instead counting all virtual mappings of the
2533  * subpages. If the total_mapcount is equal to "one", it tells the
2534  * caller all mappings belong to the same "mm" and in turn the
2535  * anon_vma of the transparent hugepage can become the vma->anon_vma
2536  * local one as no other process may be mapping any of the subpages.
2537  *
2538  * It would be more accurate to replace page_mapcount() with
2539  * page_trans_huge_mapcount(), however we only use
2540  * page_trans_huge_mapcount() in the copy-on-write faults where we
2541  * need full accuracy to avoid breaking page pinning, because
2542  * page_trans_huge_mapcount() is slower than page_mapcount().
2543  */
2544 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2545 {
2546 	int i, ret, _total_mapcount, mapcount;
2547 
2548 	/* hugetlbfs shouldn't call it */
2549 	VM_BUG_ON_PAGE(PageHuge(page), page);
2550 
2551 	if (likely(!PageTransCompound(page))) {
2552 		mapcount = atomic_read(&page->_mapcount) + 1;
2553 		if (total_mapcount)
2554 			*total_mapcount = mapcount;
2555 		return mapcount;
2556 	}
2557 
2558 	page = compound_head(page);
2559 
2560 	_total_mapcount = ret = 0;
2561 	for (i = 0; i < HPAGE_PMD_NR; i++) {
2562 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2563 		ret = max(ret, mapcount);
2564 		_total_mapcount += mapcount;
2565 	}
2566 	if (PageDoubleMap(page)) {
2567 		ret -= 1;
2568 		_total_mapcount -= HPAGE_PMD_NR;
2569 	}
2570 	mapcount = compound_mapcount(page);
2571 	ret += mapcount;
2572 	_total_mapcount += mapcount;
2573 	if (total_mapcount)
2574 		*total_mapcount = _total_mapcount;
2575 	return ret;
2576 }
2577 
2578 /* Racy check whether the huge page can be split */
2579 bool can_split_huge_page(struct page *page, int *pextra_pins)
2580 {
2581 	int extra_pins;
2582 
2583 	/* Additional pins from page cache */
2584 	if (PageAnon(page))
2585 		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2586 	else
2587 		extra_pins = HPAGE_PMD_NR;
2588 	if (pextra_pins)
2589 		*pextra_pins = extra_pins;
2590 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2591 }
2592 
2593 /*
2594  * This function splits huge page into normal pages. @page can point to any
2595  * subpage of huge page to split. Split doesn't change the position of @page.
2596  *
2597  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2598  * The huge page must be locked.
2599  *
2600  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2601  *
2602  * Both head page and tail pages will inherit mapping, flags, and so on from
2603  * the hugepage.
2604  *
2605  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2606  * they are not mapped.
2607  *
2608  * Returns 0 if the hugepage is split successfully.
2609  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2610  * us.
2611  */
2612 int split_huge_page_to_list(struct page *page, struct list_head *list)
2613 {
2614 	struct page *head = compound_head(page);
2615 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2616 	struct anon_vma *anon_vma = NULL;
2617 	struct address_space *mapping = NULL;
2618 	int count, mapcount, extra_pins, ret;
2619 	bool mlocked;
2620 	unsigned long flags;
2621 	pgoff_t end;
2622 
2623 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2624 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2625 	VM_BUG_ON_PAGE(!PageCompound(page), page);
2626 
2627 	if (PageWriteback(page))
2628 		return -EBUSY;
2629 
2630 	if (PageAnon(head)) {
2631 		/*
2632 		 * The caller does not necessarily hold an mmap_sem that would
2633 		 * prevent the anon_vma disappearing so we first we take a
2634 		 * reference to it and then lock the anon_vma for write. This
2635 		 * is similar to page_lock_anon_vma_read except the write lock
2636 		 * is taken to serialise against parallel split or collapse
2637 		 * operations.
2638 		 */
2639 		anon_vma = page_get_anon_vma(head);
2640 		if (!anon_vma) {
2641 			ret = -EBUSY;
2642 			goto out;
2643 		}
2644 		end = -1;
2645 		mapping = NULL;
2646 		anon_vma_lock_write(anon_vma);
2647 	} else {
2648 		mapping = head->mapping;
2649 
2650 		/* Truncated ? */
2651 		if (!mapping) {
2652 			ret = -EBUSY;
2653 			goto out;
2654 		}
2655 
2656 		anon_vma = NULL;
2657 		i_mmap_lock_read(mapping);
2658 
2659 		/*
2660 		 *__split_huge_page() may need to trim off pages beyond EOF:
2661 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2662 		 * which cannot be nested inside the page tree lock. So note
2663 		 * end now: i_size itself may be changed at any moment, but
2664 		 * head page lock is good enough to serialize the trimming.
2665 		 */
2666 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667 	}
2668 
2669 	/*
2670 	 * Racy check if we can split the page, before unmap_page() will
2671 	 * split PMDs
2672 	 */
2673 	if (!can_split_huge_page(head, &extra_pins)) {
2674 		ret = -EBUSY;
2675 		goto out_unlock;
2676 	}
2677 
2678 	mlocked = PageMlocked(page);
2679 	unmap_page(head);
2680 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2681 
2682 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
2683 	if (mlocked)
2684 		lru_add_drain();
2685 
2686 	/* prevent PageLRU to go away from under us, and freeze lru stats */
2687 	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2688 
2689 	if (mapping) {
2690 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2691 
2692 		/*
2693 		 * Check if the head page is present in page cache.
2694 		 * We assume all tail are present too, if head is there.
2695 		 */
2696 		xa_lock(&mapping->i_pages);
2697 		if (xas_load(&xas) != head)
2698 			goto fail;
2699 	}
2700 
2701 	/* Prevent deferred_split_scan() touching ->_refcount */
2702 	spin_lock(&pgdata->split_queue_lock);
2703 	count = page_count(head);
2704 	mapcount = total_mapcount(head);
2705 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2706 		if (!list_empty(page_deferred_list(head))) {
2707 			pgdata->split_queue_len--;
2708 			list_del(page_deferred_list(head));
2709 		}
2710 		if (mapping)
2711 			__dec_node_page_state(page, NR_SHMEM_THPS);
2712 		spin_unlock(&pgdata->split_queue_lock);
2713 		__split_huge_page(page, list, end, flags);
2714 		if (PageSwapCache(head)) {
2715 			swp_entry_t entry = { .val = page_private(head) };
2716 
2717 			ret = split_swap_cluster(entry);
2718 		} else
2719 			ret = 0;
2720 	} else {
2721 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2722 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2723 					mapcount, count);
2724 			if (PageTail(page))
2725 				dump_page(head, NULL);
2726 			dump_page(page, "total_mapcount(head) > 0");
2727 			BUG();
2728 		}
2729 		spin_unlock(&pgdata->split_queue_lock);
2730 fail:		if (mapping)
2731 			xa_unlock(&mapping->i_pages);
2732 		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2733 		remap_page(head);
2734 		ret = -EBUSY;
2735 	}
2736 
2737 out_unlock:
2738 	if (anon_vma) {
2739 		anon_vma_unlock_write(anon_vma);
2740 		put_anon_vma(anon_vma);
2741 	}
2742 	if (mapping)
2743 		i_mmap_unlock_read(mapping);
2744 out:
2745 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2746 	return ret;
2747 }
2748 
2749 void free_transhuge_page(struct page *page)
2750 {
2751 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2752 	unsigned long flags;
2753 
2754 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2755 	if (!list_empty(page_deferred_list(page))) {
2756 		pgdata->split_queue_len--;
2757 		list_del(page_deferred_list(page));
2758 	}
2759 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2760 	free_compound_page(page);
2761 }
2762 
2763 void deferred_split_huge_page(struct page *page)
2764 {
2765 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2766 	unsigned long flags;
2767 
2768 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2769 
2770 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2771 	if (list_empty(page_deferred_list(page))) {
2772 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2773 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2774 		pgdata->split_queue_len++;
2775 	}
2776 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2777 }
2778 
2779 static unsigned long deferred_split_count(struct shrinker *shrink,
2780 		struct shrink_control *sc)
2781 {
2782 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2783 	return READ_ONCE(pgdata->split_queue_len);
2784 }
2785 
2786 static unsigned long deferred_split_scan(struct shrinker *shrink,
2787 		struct shrink_control *sc)
2788 {
2789 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2790 	unsigned long flags;
2791 	LIST_HEAD(list), *pos, *next;
2792 	struct page *page;
2793 	int split = 0;
2794 
2795 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2796 	/* Take pin on all head pages to avoid freeing them under us */
2797 	list_for_each_safe(pos, next, &pgdata->split_queue) {
2798 		page = list_entry((void *)pos, struct page, mapping);
2799 		page = compound_head(page);
2800 		if (get_page_unless_zero(page)) {
2801 			list_move(page_deferred_list(page), &list);
2802 		} else {
2803 			/* We lost race with put_compound_page() */
2804 			list_del_init(page_deferred_list(page));
2805 			pgdata->split_queue_len--;
2806 		}
2807 		if (!--sc->nr_to_scan)
2808 			break;
2809 	}
2810 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2811 
2812 	list_for_each_safe(pos, next, &list) {
2813 		page = list_entry((void *)pos, struct page, mapping);
2814 		if (!trylock_page(page))
2815 			goto next;
2816 		/* split_huge_page() removes page from list on success */
2817 		if (!split_huge_page(page))
2818 			split++;
2819 		unlock_page(page);
2820 next:
2821 		put_page(page);
2822 	}
2823 
2824 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2825 	list_splice_tail(&list, &pgdata->split_queue);
2826 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2827 
2828 	/*
2829 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2830 	 * This can happen if pages were freed under us.
2831 	 */
2832 	if (!split && list_empty(&pgdata->split_queue))
2833 		return SHRINK_STOP;
2834 	return split;
2835 }
2836 
2837 static struct shrinker deferred_split_shrinker = {
2838 	.count_objects = deferred_split_count,
2839 	.scan_objects = deferred_split_scan,
2840 	.seeks = DEFAULT_SEEKS,
2841 	.flags = SHRINKER_NUMA_AWARE,
2842 };
2843 
2844 #ifdef CONFIG_DEBUG_FS
2845 static int split_huge_pages_set(void *data, u64 val)
2846 {
2847 	struct zone *zone;
2848 	struct page *page;
2849 	unsigned long pfn, max_zone_pfn;
2850 	unsigned long total = 0, split = 0;
2851 
2852 	if (val != 1)
2853 		return -EINVAL;
2854 
2855 	for_each_populated_zone(zone) {
2856 		max_zone_pfn = zone_end_pfn(zone);
2857 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2858 			if (!pfn_valid(pfn))
2859 				continue;
2860 
2861 			page = pfn_to_page(pfn);
2862 			if (!get_page_unless_zero(page))
2863 				continue;
2864 
2865 			if (zone != page_zone(page))
2866 				goto next;
2867 
2868 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2869 				goto next;
2870 
2871 			total++;
2872 			lock_page(page);
2873 			if (!split_huge_page(page))
2874 				split++;
2875 			unlock_page(page);
2876 next:
2877 			put_page(page);
2878 		}
2879 	}
2880 
2881 	pr_info("%lu of %lu THP split\n", split, total);
2882 
2883 	return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2886 		"%llu\n");
2887 
2888 static int __init split_huge_pages_debugfs(void)
2889 {
2890 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2891 			    &split_huge_pages_fops);
2892 	return 0;
2893 }
2894 late_initcall(split_huge_pages_debugfs);
2895 #endif
2896 
2897 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2898 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2899 		struct page *page)
2900 {
2901 	struct vm_area_struct *vma = pvmw->vma;
2902 	struct mm_struct *mm = vma->vm_mm;
2903 	unsigned long address = pvmw->address;
2904 	pmd_t pmdval;
2905 	swp_entry_t entry;
2906 	pmd_t pmdswp;
2907 
2908 	if (!(pvmw->pmd && !pvmw->pte))
2909 		return;
2910 
2911 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2912 	pmdval = *pvmw->pmd;
2913 	pmdp_invalidate(vma, address, pvmw->pmd);
2914 	if (pmd_dirty(pmdval))
2915 		set_page_dirty(page);
2916 	entry = make_migration_entry(page, pmd_write(pmdval));
2917 	pmdswp = swp_entry_to_pmd(entry);
2918 	if (pmd_soft_dirty(pmdval))
2919 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2920 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2921 	page_remove_rmap(page, true);
2922 	put_page(page);
2923 }
2924 
2925 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2926 {
2927 	struct vm_area_struct *vma = pvmw->vma;
2928 	struct mm_struct *mm = vma->vm_mm;
2929 	unsigned long address = pvmw->address;
2930 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2931 	pmd_t pmde;
2932 	swp_entry_t entry;
2933 
2934 	if (!(pvmw->pmd && !pvmw->pte))
2935 		return;
2936 
2937 	entry = pmd_to_swp_entry(*pvmw->pmd);
2938 	get_page(new);
2939 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2940 	if (pmd_swp_soft_dirty(*pvmw->pmd))
2941 		pmde = pmd_mksoft_dirty(pmde);
2942 	if (is_write_migration_entry(entry))
2943 		pmde = maybe_pmd_mkwrite(pmde, vma);
2944 
2945 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2946 	if (PageAnon(new))
2947 		page_add_anon_rmap(new, vma, mmun_start, true);
2948 	else
2949 		page_add_file_rmap(new, true);
2950 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2951 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2952 		mlock_vma_page(new);
2953 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
2954 }
2955 #endif
2956