xref: /linux/mm/huge_memory.c (revision 52ffe0ff02fc053a025c381d5808e9ecd3206dfe)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 enum scan_result {
39 	SCAN_FAIL,
40 	SCAN_SUCCEED,
41 	SCAN_PMD_NULL,
42 	SCAN_EXCEED_NONE_PTE,
43 	SCAN_PTE_NON_PRESENT,
44 	SCAN_PAGE_RO,
45 	SCAN_NO_REFERENCED_PAGE,
46 	SCAN_PAGE_NULL,
47 	SCAN_SCAN_ABORT,
48 	SCAN_PAGE_COUNT,
49 	SCAN_PAGE_LRU,
50 	SCAN_PAGE_LOCK,
51 	SCAN_PAGE_ANON,
52 	SCAN_PAGE_COMPOUND,
53 	SCAN_ANY_PROCESS,
54 	SCAN_VMA_NULL,
55 	SCAN_VMA_CHECK,
56 	SCAN_ADDRESS_RANGE,
57 	SCAN_SWAP_CACHE_PAGE,
58 	SCAN_DEL_PAGE_LRU,
59 	SCAN_ALLOC_HUGE_PAGE_FAIL,
60 	SCAN_CGROUP_CHARGE_FAIL
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84 
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static struct task_struct *khugepaged_thread __read_mostly;
93 static DEFINE_MUTEX(khugepaged_mutex);
94 static DEFINE_SPINLOCK(khugepaged_mm_lock);
95 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96 /*
97  * default collapse hugepages if there is at least one pte mapped like
98  * it would have happened if the vma was large enough during page
99  * fault.
100  */
101 static unsigned int khugepaged_max_ptes_none __read_mostly;
102 
103 static int khugepaged(void *none);
104 static int khugepaged_slab_init(void);
105 static void khugepaged_slab_exit(void);
106 
107 #define MM_SLOTS_HASH_BITS 10
108 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109 
110 static struct kmem_cache *mm_slot_cache __read_mostly;
111 
112 /**
113  * struct mm_slot - hash lookup from mm to mm_slot
114  * @hash: hash collision list
115  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116  * @mm: the mm that this information is valid for
117  */
118 struct mm_slot {
119 	struct hlist_node hash;
120 	struct list_head mm_node;
121 	struct mm_struct *mm;
122 };
123 
124 /**
125  * struct khugepaged_scan - cursor for scanning
126  * @mm_head: the head of the mm list to scan
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  *
130  * There is only the one khugepaged_scan instance of this cursor structure.
131  */
132 struct khugepaged_scan {
133 	struct list_head mm_head;
134 	struct mm_slot *mm_slot;
135 	unsigned long address;
136 };
137 static struct khugepaged_scan khugepaged_scan = {
138 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139 };
140 
141 static struct shrinker deferred_split_shrinker;
142 
143 static void set_recommended_min_free_kbytes(void)
144 {
145 	struct zone *zone;
146 	int nr_zones = 0;
147 	unsigned long recommended_min;
148 
149 	for_each_populated_zone(zone)
150 		nr_zones++;
151 
152 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
153 	recommended_min = pageblock_nr_pages * nr_zones * 2;
154 
155 	/*
156 	 * Make sure that on average at least two pageblocks are almost free
157 	 * of another type, one for a migratetype to fall back to and a
158 	 * second to avoid subsequent fallbacks of other types There are 3
159 	 * MIGRATE_TYPES we care about.
160 	 */
161 	recommended_min += pageblock_nr_pages * nr_zones *
162 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163 
164 	/* don't ever allow to reserve more than 5% of the lowmem */
165 	recommended_min = min(recommended_min,
166 			      (unsigned long) nr_free_buffer_pages() / 20);
167 	recommended_min <<= (PAGE_SHIFT-10);
168 
169 	if (recommended_min > min_free_kbytes) {
170 		if (user_min_free_kbytes >= 0)
171 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
172 				min_free_kbytes, recommended_min);
173 
174 		min_free_kbytes = recommended_min;
175 	}
176 	setup_per_zone_wmarks();
177 }
178 
179 static int start_stop_khugepaged(void)
180 {
181 	int err = 0;
182 	if (khugepaged_enabled()) {
183 		if (!khugepaged_thread)
184 			khugepaged_thread = kthread_run(khugepaged, NULL,
185 							"khugepaged");
186 		if (IS_ERR(khugepaged_thread)) {
187 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
188 			err = PTR_ERR(khugepaged_thread);
189 			khugepaged_thread = NULL;
190 			goto fail;
191 		}
192 
193 		if (!list_empty(&khugepaged_scan.mm_head))
194 			wake_up_interruptible(&khugepaged_wait);
195 
196 		set_recommended_min_free_kbytes();
197 	} else if (khugepaged_thread) {
198 		kthread_stop(khugepaged_thread);
199 		khugepaged_thread = NULL;
200 	}
201 fail:
202 	return err;
203 }
204 
205 static atomic_t huge_zero_refcount;
206 struct page *huge_zero_page __read_mostly;
207 
208 struct page *get_huge_zero_page(void)
209 {
210 	struct page *zero_page;
211 retry:
212 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
213 		return READ_ONCE(huge_zero_page);
214 
215 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
216 			HPAGE_PMD_ORDER);
217 	if (!zero_page) {
218 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
219 		return NULL;
220 	}
221 	count_vm_event(THP_ZERO_PAGE_ALLOC);
222 	preempt_disable();
223 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
224 		preempt_enable();
225 		__free_pages(zero_page, compound_order(zero_page));
226 		goto retry;
227 	}
228 
229 	/* We take additional reference here. It will be put back by shrinker */
230 	atomic_set(&huge_zero_refcount, 2);
231 	preempt_enable();
232 	return READ_ONCE(huge_zero_page);
233 }
234 
235 void put_huge_zero_page(void)
236 {
237 	/*
238 	 * Counter should never go to zero here. Only shrinker can put
239 	 * last reference.
240 	 */
241 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
242 }
243 
244 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
245 					struct shrink_control *sc)
246 {
247 	/* we can free zero page only if last reference remains */
248 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
249 }
250 
251 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
252 				       struct shrink_control *sc)
253 {
254 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
255 		struct page *zero_page = xchg(&huge_zero_page, NULL);
256 		BUG_ON(zero_page == NULL);
257 		__free_pages(zero_page, compound_order(zero_page));
258 		return HPAGE_PMD_NR;
259 	}
260 
261 	return 0;
262 }
263 
264 static struct shrinker huge_zero_page_shrinker = {
265 	.count_objects = shrink_huge_zero_page_count,
266 	.scan_objects = shrink_huge_zero_page_scan,
267 	.seeks = DEFAULT_SEEKS,
268 };
269 
270 #ifdef CONFIG_SYSFS
271 
272 static ssize_t triple_flag_store(struct kobject *kobj,
273 				 struct kobj_attribute *attr,
274 				 const char *buf, size_t count,
275 				 enum transparent_hugepage_flag enabled,
276 				 enum transparent_hugepage_flag deferred,
277 				 enum transparent_hugepage_flag req_madv)
278 {
279 	if (!memcmp("defer", buf,
280 		    min(sizeof("defer")-1, count))) {
281 		if (enabled == deferred)
282 			return -EINVAL;
283 		clear_bit(enabled, &transparent_hugepage_flags);
284 		clear_bit(req_madv, &transparent_hugepage_flags);
285 		set_bit(deferred, &transparent_hugepage_flags);
286 	} else if (!memcmp("always", buf,
287 		    min(sizeof("always")-1, count))) {
288 		clear_bit(deferred, &transparent_hugepage_flags);
289 		clear_bit(req_madv, &transparent_hugepage_flags);
290 		set_bit(enabled, &transparent_hugepage_flags);
291 	} else if (!memcmp("madvise", buf,
292 			   min(sizeof("madvise")-1, count))) {
293 		clear_bit(enabled, &transparent_hugepage_flags);
294 		clear_bit(deferred, &transparent_hugepage_flags);
295 		set_bit(req_madv, &transparent_hugepage_flags);
296 	} else if (!memcmp("never", buf,
297 			   min(sizeof("never")-1, count))) {
298 		clear_bit(enabled, &transparent_hugepage_flags);
299 		clear_bit(req_madv, &transparent_hugepage_flags);
300 		clear_bit(deferred, &transparent_hugepage_flags);
301 	} else
302 		return -EINVAL;
303 
304 	return count;
305 }
306 
307 static ssize_t enabled_show(struct kobject *kobj,
308 			    struct kobj_attribute *attr, char *buf)
309 {
310 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
311 		return sprintf(buf, "[always] madvise never\n");
312 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
313 		return sprintf(buf, "always [madvise] never\n");
314 	else
315 		return sprintf(buf, "always madvise [never]\n");
316 }
317 
318 static ssize_t enabled_store(struct kobject *kobj,
319 			     struct kobj_attribute *attr,
320 			     const char *buf, size_t count)
321 {
322 	ssize_t ret;
323 
324 	ret = triple_flag_store(kobj, attr, buf, count,
325 				TRANSPARENT_HUGEPAGE_FLAG,
326 				TRANSPARENT_HUGEPAGE_FLAG,
327 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
328 
329 	if (ret > 0) {
330 		int err;
331 
332 		mutex_lock(&khugepaged_mutex);
333 		err = start_stop_khugepaged();
334 		mutex_unlock(&khugepaged_mutex);
335 
336 		if (err)
337 			ret = err;
338 	}
339 
340 	return ret;
341 }
342 static struct kobj_attribute enabled_attr =
343 	__ATTR(enabled, 0644, enabled_show, enabled_store);
344 
345 static ssize_t single_flag_show(struct kobject *kobj,
346 				struct kobj_attribute *attr, char *buf,
347 				enum transparent_hugepage_flag flag)
348 {
349 	return sprintf(buf, "%d\n",
350 		       !!test_bit(flag, &transparent_hugepage_flags));
351 }
352 
353 static ssize_t single_flag_store(struct kobject *kobj,
354 				 struct kobj_attribute *attr,
355 				 const char *buf, size_t count,
356 				 enum transparent_hugepage_flag flag)
357 {
358 	unsigned long value;
359 	int ret;
360 
361 	ret = kstrtoul(buf, 10, &value);
362 	if (ret < 0)
363 		return ret;
364 	if (value > 1)
365 		return -EINVAL;
366 
367 	if (value)
368 		set_bit(flag, &transparent_hugepage_flags);
369 	else
370 		clear_bit(flag, &transparent_hugepage_flags);
371 
372 	return count;
373 }
374 
375 /*
376  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
377  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
378  * memory just to allocate one more hugepage.
379  */
380 static ssize_t defrag_show(struct kobject *kobj,
381 			   struct kobj_attribute *attr, char *buf)
382 {
383 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
384 		return sprintf(buf, "[always] defer madvise never\n");
385 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
386 		return sprintf(buf, "always [defer] madvise never\n");
387 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
388 		return sprintf(buf, "always defer [madvise] never\n");
389 	else
390 		return sprintf(buf, "always defer madvise [never]\n");
391 
392 }
393 static ssize_t defrag_store(struct kobject *kobj,
394 			    struct kobj_attribute *attr,
395 			    const char *buf, size_t count)
396 {
397 	return triple_flag_store(kobj, attr, buf, count,
398 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
399 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
400 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
401 }
402 static struct kobj_attribute defrag_attr =
403 	__ATTR(defrag, 0644, defrag_show, defrag_store);
404 
405 static ssize_t use_zero_page_show(struct kobject *kobj,
406 		struct kobj_attribute *attr, char *buf)
407 {
408 	return single_flag_show(kobj, attr, buf,
409 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410 }
411 static ssize_t use_zero_page_store(struct kobject *kobj,
412 		struct kobj_attribute *attr, const char *buf, size_t count)
413 {
414 	return single_flag_store(kobj, attr, buf, count,
415 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416 }
417 static struct kobj_attribute use_zero_page_attr =
418 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
419 #ifdef CONFIG_DEBUG_VM
420 static ssize_t debug_cow_show(struct kobject *kobj,
421 				struct kobj_attribute *attr, char *buf)
422 {
423 	return single_flag_show(kobj, attr, buf,
424 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
425 }
426 static ssize_t debug_cow_store(struct kobject *kobj,
427 			       struct kobj_attribute *attr,
428 			       const char *buf, size_t count)
429 {
430 	return single_flag_store(kobj, attr, buf, count,
431 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
432 }
433 static struct kobj_attribute debug_cow_attr =
434 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
435 #endif /* CONFIG_DEBUG_VM */
436 
437 static struct attribute *hugepage_attr[] = {
438 	&enabled_attr.attr,
439 	&defrag_attr.attr,
440 	&use_zero_page_attr.attr,
441 #ifdef CONFIG_DEBUG_VM
442 	&debug_cow_attr.attr,
443 #endif
444 	NULL,
445 };
446 
447 static struct attribute_group hugepage_attr_group = {
448 	.attrs = hugepage_attr,
449 };
450 
451 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
452 					 struct kobj_attribute *attr,
453 					 char *buf)
454 {
455 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
456 }
457 
458 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
459 					  struct kobj_attribute *attr,
460 					  const char *buf, size_t count)
461 {
462 	unsigned long msecs;
463 	int err;
464 
465 	err = kstrtoul(buf, 10, &msecs);
466 	if (err || msecs > UINT_MAX)
467 		return -EINVAL;
468 
469 	khugepaged_scan_sleep_millisecs = msecs;
470 	wake_up_interruptible(&khugepaged_wait);
471 
472 	return count;
473 }
474 static struct kobj_attribute scan_sleep_millisecs_attr =
475 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
476 	       scan_sleep_millisecs_store);
477 
478 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
479 					  struct kobj_attribute *attr,
480 					  char *buf)
481 {
482 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
483 }
484 
485 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
486 					   struct kobj_attribute *attr,
487 					   const char *buf, size_t count)
488 {
489 	unsigned long msecs;
490 	int err;
491 
492 	err = kstrtoul(buf, 10, &msecs);
493 	if (err || msecs > UINT_MAX)
494 		return -EINVAL;
495 
496 	khugepaged_alloc_sleep_millisecs = msecs;
497 	wake_up_interruptible(&khugepaged_wait);
498 
499 	return count;
500 }
501 static struct kobj_attribute alloc_sleep_millisecs_attr =
502 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
503 	       alloc_sleep_millisecs_store);
504 
505 static ssize_t pages_to_scan_show(struct kobject *kobj,
506 				  struct kobj_attribute *attr,
507 				  char *buf)
508 {
509 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
510 }
511 static ssize_t pages_to_scan_store(struct kobject *kobj,
512 				   struct kobj_attribute *attr,
513 				   const char *buf, size_t count)
514 {
515 	int err;
516 	unsigned long pages;
517 
518 	err = kstrtoul(buf, 10, &pages);
519 	if (err || !pages || pages > UINT_MAX)
520 		return -EINVAL;
521 
522 	khugepaged_pages_to_scan = pages;
523 
524 	return count;
525 }
526 static struct kobj_attribute pages_to_scan_attr =
527 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
528 	       pages_to_scan_store);
529 
530 static ssize_t pages_collapsed_show(struct kobject *kobj,
531 				    struct kobj_attribute *attr,
532 				    char *buf)
533 {
534 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
535 }
536 static struct kobj_attribute pages_collapsed_attr =
537 	__ATTR_RO(pages_collapsed);
538 
539 static ssize_t full_scans_show(struct kobject *kobj,
540 			       struct kobj_attribute *attr,
541 			       char *buf)
542 {
543 	return sprintf(buf, "%u\n", khugepaged_full_scans);
544 }
545 static struct kobj_attribute full_scans_attr =
546 	__ATTR_RO(full_scans);
547 
548 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
549 				      struct kobj_attribute *attr, char *buf)
550 {
551 	return single_flag_show(kobj, attr, buf,
552 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
553 }
554 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
555 				       struct kobj_attribute *attr,
556 				       const char *buf, size_t count)
557 {
558 	return single_flag_store(kobj, attr, buf, count,
559 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
560 }
561 static struct kobj_attribute khugepaged_defrag_attr =
562 	__ATTR(defrag, 0644, khugepaged_defrag_show,
563 	       khugepaged_defrag_store);
564 
565 /*
566  * max_ptes_none controls if khugepaged should collapse hugepages over
567  * any unmapped ptes in turn potentially increasing the memory
568  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
569  * reduce the available free memory in the system as it
570  * runs. Increasing max_ptes_none will instead potentially reduce the
571  * free memory in the system during the khugepaged scan.
572  */
573 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
574 					     struct kobj_attribute *attr,
575 					     char *buf)
576 {
577 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
578 }
579 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
580 					      struct kobj_attribute *attr,
581 					      const char *buf, size_t count)
582 {
583 	int err;
584 	unsigned long max_ptes_none;
585 
586 	err = kstrtoul(buf, 10, &max_ptes_none);
587 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
588 		return -EINVAL;
589 
590 	khugepaged_max_ptes_none = max_ptes_none;
591 
592 	return count;
593 }
594 static struct kobj_attribute khugepaged_max_ptes_none_attr =
595 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
596 	       khugepaged_max_ptes_none_store);
597 
598 static struct attribute *khugepaged_attr[] = {
599 	&khugepaged_defrag_attr.attr,
600 	&khugepaged_max_ptes_none_attr.attr,
601 	&pages_to_scan_attr.attr,
602 	&pages_collapsed_attr.attr,
603 	&full_scans_attr.attr,
604 	&scan_sleep_millisecs_attr.attr,
605 	&alloc_sleep_millisecs_attr.attr,
606 	NULL,
607 };
608 
609 static struct attribute_group khugepaged_attr_group = {
610 	.attrs = khugepaged_attr,
611 	.name = "khugepaged",
612 };
613 
614 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
615 {
616 	int err;
617 
618 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
619 	if (unlikely(!*hugepage_kobj)) {
620 		pr_err("failed to create transparent hugepage kobject\n");
621 		return -ENOMEM;
622 	}
623 
624 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
625 	if (err) {
626 		pr_err("failed to register transparent hugepage group\n");
627 		goto delete_obj;
628 	}
629 
630 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
631 	if (err) {
632 		pr_err("failed to register transparent hugepage group\n");
633 		goto remove_hp_group;
634 	}
635 
636 	return 0;
637 
638 remove_hp_group:
639 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
640 delete_obj:
641 	kobject_put(*hugepage_kobj);
642 	return err;
643 }
644 
645 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
646 {
647 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
648 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
649 	kobject_put(hugepage_kobj);
650 }
651 #else
652 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
653 {
654 	return 0;
655 }
656 
657 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
658 {
659 }
660 #endif /* CONFIG_SYSFS */
661 
662 static int __init hugepage_init(void)
663 {
664 	int err;
665 	struct kobject *hugepage_kobj;
666 
667 	if (!has_transparent_hugepage()) {
668 		transparent_hugepage_flags = 0;
669 		return -EINVAL;
670 	}
671 
672 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
673 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
674 	/*
675 	 * hugepages can't be allocated by the buddy allocator
676 	 */
677 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
678 	/*
679 	 * we use page->mapping and page->index in second tail page
680 	 * as list_head: assuming THP order >= 2
681 	 */
682 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
683 
684 	err = hugepage_init_sysfs(&hugepage_kobj);
685 	if (err)
686 		goto err_sysfs;
687 
688 	err = khugepaged_slab_init();
689 	if (err)
690 		goto err_slab;
691 
692 	err = register_shrinker(&huge_zero_page_shrinker);
693 	if (err)
694 		goto err_hzp_shrinker;
695 	err = register_shrinker(&deferred_split_shrinker);
696 	if (err)
697 		goto err_split_shrinker;
698 
699 	/*
700 	 * By default disable transparent hugepages on smaller systems,
701 	 * where the extra memory used could hurt more than TLB overhead
702 	 * is likely to save.  The admin can still enable it through /sys.
703 	 */
704 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
705 		transparent_hugepage_flags = 0;
706 		return 0;
707 	}
708 
709 	err = start_stop_khugepaged();
710 	if (err)
711 		goto err_khugepaged;
712 
713 	return 0;
714 err_khugepaged:
715 	unregister_shrinker(&deferred_split_shrinker);
716 err_split_shrinker:
717 	unregister_shrinker(&huge_zero_page_shrinker);
718 err_hzp_shrinker:
719 	khugepaged_slab_exit();
720 err_slab:
721 	hugepage_exit_sysfs(hugepage_kobj);
722 err_sysfs:
723 	return err;
724 }
725 subsys_initcall(hugepage_init);
726 
727 static int __init setup_transparent_hugepage(char *str)
728 {
729 	int ret = 0;
730 	if (!str)
731 		goto out;
732 	if (!strcmp(str, "always")) {
733 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
734 			&transparent_hugepage_flags);
735 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
736 			  &transparent_hugepage_flags);
737 		ret = 1;
738 	} else if (!strcmp(str, "madvise")) {
739 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
740 			  &transparent_hugepage_flags);
741 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
742 			&transparent_hugepage_flags);
743 		ret = 1;
744 	} else if (!strcmp(str, "never")) {
745 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
746 			  &transparent_hugepage_flags);
747 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
748 			  &transparent_hugepage_flags);
749 		ret = 1;
750 	}
751 out:
752 	if (!ret)
753 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
754 	return ret;
755 }
756 __setup("transparent_hugepage=", setup_transparent_hugepage);
757 
758 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
759 {
760 	if (likely(vma->vm_flags & VM_WRITE))
761 		pmd = pmd_mkwrite(pmd);
762 	return pmd;
763 }
764 
765 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
766 {
767 	pmd_t entry;
768 	entry = mk_pmd(page, prot);
769 	entry = pmd_mkhuge(entry);
770 	return entry;
771 }
772 
773 static inline struct list_head *page_deferred_list(struct page *page)
774 {
775 	/*
776 	 * ->lru in the tail pages is occupied by compound_head.
777 	 * Let's use ->mapping + ->index in the second tail page as list_head.
778 	 */
779 	return (struct list_head *)&page[2].mapping;
780 }
781 
782 void prep_transhuge_page(struct page *page)
783 {
784 	/*
785 	 * we use page->mapping and page->indexlru in second tail page
786 	 * as list_head: assuming THP order >= 2
787 	 */
788 
789 	INIT_LIST_HEAD(page_deferred_list(page));
790 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791 }
792 
793 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794 					struct vm_area_struct *vma,
795 					unsigned long address, pmd_t *pmd,
796 					struct page *page, gfp_t gfp,
797 					unsigned int flags)
798 {
799 	struct mem_cgroup *memcg;
800 	pgtable_t pgtable;
801 	spinlock_t *ptl;
802 	unsigned long haddr = address & HPAGE_PMD_MASK;
803 
804 	VM_BUG_ON_PAGE(!PageCompound(page), page);
805 
806 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
807 		put_page(page);
808 		count_vm_event(THP_FAULT_FALLBACK);
809 		return VM_FAULT_FALLBACK;
810 	}
811 
812 	pgtable = pte_alloc_one(mm, haddr);
813 	if (unlikely(!pgtable)) {
814 		mem_cgroup_cancel_charge(page, memcg, true);
815 		put_page(page);
816 		return VM_FAULT_OOM;
817 	}
818 
819 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
820 	/*
821 	 * The memory barrier inside __SetPageUptodate makes sure that
822 	 * clear_huge_page writes become visible before the set_pmd_at()
823 	 * write.
824 	 */
825 	__SetPageUptodate(page);
826 
827 	ptl = pmd_lock(mm, pmd);
828 	if (unlikely(!pmd_none(*pmd))) {
829 		spin_unlock(ptl);
830 		mem_cgroup_cancel_charge(page, memcg, true);
831 		put_page(page);
832 		pte_free(mm, pgtable);
833 	} else {
834 		pmd_t entry;
835 
836 		/* Deliver the page fault to userland */
837 		if (userfaultfd_missing(vma)) {
838 			int ret;
839 
840 			spin_unlock(ptl);
841 			mem_cgroup_cancel_charge(page, memcg, true);
842 			put_page(page);
843 			pte_free(mm, pgtable);
844 			ret = handle_userfault(vma, address, flags,
845 					       VM_UFFD_MISSING);
846 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 			return ret;
848 		}
849 
850 		entry = mk_huge_pmd(page, vma->vm_page_prot);
851 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 		page_add_new_anon_rmap(page, vma, haddr, true);
853 		mem_cgroup_commit_charge(page, memcg, false, true);
854 		lru_cache_add_active_or_unevictable(page, vma);
855 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
856 		set_pmd_at(mm, haddr, pmd, entry);
857 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
858 		atomic_long_inc(&mm->nr_ptes);
859 		spin_unlock(ptl);
860 		count_vm_event(THP_FAULT_ALLOC);
861 	}
862 
863 	return 0;
864 }
865 
866 /*
867  * If THP is set to always then directly reclaim/compact as necessary
868  * If set to defer then do no reclaim and defer to khugepaged
869  * If set to madvise and the VMA is flagged then directly reclaim/compact
870  */
871 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872 {
873 	gfp_t reclaim_flags = 0;
874 
875 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876 	    (vma->vm_flags & VM_HUGEPAGE))
877 		reclaim_flags = __GFP_DIRECT_RECLAIM;
878 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879 		reclaim_flags = __GFP_KSWAPD_RECLAIM;
880 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881 		reclaim_flags = __GFP_DIRECT_RECLAIM;
882 
883 	return GFP_TRANSHUGE | reclaim_flags;
884 }
885 
886 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
888 {
889 	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
890 }
891 
892 /* Caller must hold page table lock. */
893 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
894 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
895 		struct page *zero_page)
896 {
897 	pmd_t entry;
898 	if (!pmd_none(*pmd))
899 		return false;
900 	entry = mk_pmd(zero_page, vma->vm_page_prot);
901 	entry = pmd_mkhuge(entry);
902 	if (pgtable)
903 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
904 	set_pmd_at(mm, haddr, pmd, entry);
905 	atomic_long_inc(&mm->nr_ptes);
906 	return true;
907 }
908 
909 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910 			       unsigned long address, pmd_t *pmd,
911 			       unsigned int flags)
912 {
913 	gfp_t gfp;
914 	struct page *page;
915 	unsigned long haddr = address & HPAGE_PMD_MASK;
916 
917 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
918 		return VM_FAULT_FALLBACK;
919 	if (unlikely(anon_vma_prepare(vma)))
920 		return VM_FAULT_OOM;
921 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
922 		return VM_FAULT_OOM;
923 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
924 			transparent_hugepage_use_zero_page()) {
925 		spinlock_t *ptl;
926 		pgtable_t pgtable;
927 		struct page *zero_page;
928 		bool set;
929 		int ret;
930 		pgtable = pte_alloc_one(mm, haddr);
931 		if (unlikely(!pgtable))
932 			return VM_FAULT_OOM;
933 		zero_page = get_huge_zero_page();
934 		if (unlikely(!zero_page)) {
935 			pte_free(mm, pgtable);
936 			count_vm_event(THP_FAULT_FALLBACK);
937 			return VM_FAULT_FALLBACK;
938 		}
939 		ptl = pmd_lock(mm, pmd);
940 		ret = 0;
941 		set = false;
942 		if (pmd_none(*pmd)) {
943 			if (userfaultfd_missing(vma)) {
944 				spin_unlock(ptl);
945 				ret = handle_userfault(vma, address, flags,
946 						       VM_UFFD_MISSING);
947 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948 			} else {
949 				set_huge_zero_page(pgtable, mm, vma,
950 						   haddr, pmd,
951 						   zero_page);
952 				spin_unlock(ptl);
953 				set = true;
954 			}
955 		} else
956 			spin_unlock(ptl);
957 		if (!set) {
958 			pte_free(mm, pgtable);
959 			put_huge_zero_page();
960 		}
961 		return ret;
962 	}
963 	gfp = alloc_hugepage_direct_gfpmask(vma);
964 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
965 	if (unlikely(!page)) {
966 		count_vm_event(THP_FAULT_FALLBACK);
967 		return VM_FAULT_FALLBACK;
968 	}
969 	prep_transhuge_page(page);
970 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971 					    flags);
972 }
973 
974 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
975 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
976 {
977 	struct mm_struct *mm = vma->vm_mm;
978 	pmd_t entry;
979 	spinlock_t *ptl;
980 
981 	ptl = pmd_lock(mm, pmd);
982 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983 	if (pfn_t_devmap(pfn))
984 		entry = pmd_mkdevmap(entry);
985 	if (write) {
986 		entry = pmd_mkyoung(pmd_mkdirty(entry));
987 		entry = maybe_pmd_mkwrite(entry, vma);
988 	}
989 	set_pmd_at(mm, addr, pmd, entry);
990 	update_mmu_cache_pmd(vma, addr, pmd);
991 	spin_unlock(ptl);
992 }
993 
994 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
995 			pmd_t *pmd, pfn_t pfn, bool write)
996 {
997 	pgprot_t pgprot = vma->vm_page_prot;
998 	/*
999 	 * If we had pmd_special, we could avoid all these restrictions,
1000 	 * but we need to be consistent with PTEs and architectures that
1001 	 * can't support a 'special' bit.
1002 	 */
1003 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 	BUG_ON(!pfn_t_devmap(pfn));
1008 
1009 	if (addr < vma->vm_start || addr >= vma->vm_end)
1010 		return VM_FAULT_SIGBUS;
1011 	if (track_pfn_insert(vma, &pgprot, pfn))
1012 		return VM_FAULT_SIGBUS;
1013 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 
1017 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018 		pmd_t *pmd)
1019 {
1020 	pmd_t _pmd;
1021 
1022 	/*
1023 	 * We should set the dirty bit only for FOLL_WRITE but for now
1024 	 * the dirty bit in the pmd is meaningless.  And if the dirty
1025 	 * bit will become meaningful and we'll only set it with
1026 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027 	 * set the young bit, instead of the current set_pmd_at.
1028 	 */
1029 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 				pmd, _pmd,  1))
1032 		update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034 
1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036 		pmd_t *pmd, int flags)
1037 {
1038 	unsigned long pfn = pmd_pfn(*pmd);
1039 	struct mm_struct *mm = vma->vm_mm;
1040 	struct dev_pagemap *pgmap;
1041 	struct page *page;
1042 
1043 	assert_spin_locked(pmd_lockptr(mm, pmd));
1044 
1045 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046 		return NULL;
1047 
1048 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049 		/* pass */;
1050 	else
1051 		return NULL;
1052 
1053 	if (flags & FOLL_TOUCH)
1054 		touch_pmd(vma, addr, pmd);
1055 
1056 	/*
1057 	 * device mapped pages can only be returned if the
1058 	 * caller will manage the page reference count.
1059 	 */
1060 	if (!(flags & FOLL_GET))
1061 		return ERR_PTR(-EEXIST);
1062 
1063 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064 	pgmap = get_dev_pagemap(pfn, NULL);
1065 	if (!pgmap)
1066 		return ERR_PTR(-EFAULT);
1067 	page = pfn_to_page(pfn);
1068 	get_page(page);
1069 	put_dev_pagemap(pgmap);
1070 
1071 	return page;
1072 }
1073 
1074 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076 		  struct vm_area_struct *vma)
1077 {
1078 	spinlock_t *dst_ptl, *src_ptl;
1079 	struct page *src_page;
1080 	pmd_t pmd;
1081 	pgtable_t pgtable = NULL;
1082 	int ret;
1083 
1084 	if (!vma_is_dax(vma)) {
1085 		ret = -ENOMEM;
1086 		pgtable = pte_alloc_one(dst_mm, addr);
1087 		if (unlikely(!pgtable))
1088 			goto out;
1089 	}
1090 
1091 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1093 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094 
1095 	ret = -EAGAIN;
1096 	pmd = *src_pmd;
1097 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098 		pte_free(dst_mm, pgtable);
1099 		goto out_unlock;
1100 	}
1101 	/*
1102 	 * When page table lock is held, the huge zero pmd should not be
1103 	 * under splitting since we don't split the page itself, only pmd to
1104 	 * a page table.
1105 	 */
1106 	if (is_huge_zero_pmd(pmd)) {
1107 		struct page *zero_page;
1108 		/*
1109 		 * get_huge_zero_page() will never allocate a new page here,
1110 		 * since we already have a zero page to copy. It just takes a
1111 		 * reference.
1112 		 */
1113 		zero_page = get_huge_zero_page();
1114 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115 				zero_page);
1116 		ret = 0;
1117 		goto out_unlock;
1118 	}
1119 
1120 	if (!vma_is_dax(vma)) {
1121 		/* thp accounting separate from pmd_devmap accounting */
1122 		src_page = pmd_page(pmd);
1123 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124 		get_page(src_page);
1125 		page_dup_rmap(src_page, true);
1126 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127 		atomic_long_inc(&dst_mm->nr_ptes);
1128 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129 	}
1130 
1131 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1133 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134 
1135 	ret = 0;
1136 out_unlock:
1137 	spin_unlock(src_ptl);
1138 	spin_unlock(dst_ptl);
1139 out:
1140 	return ret;
1141 }
1142 
1143 void huge_pmd_set_accessed(struct mm_struct *mm,
1144 			   struct vm_area_struct *vma,
1145 			   unsigned long address,
1146 			   pmd_t *pmd, pmd_t orig_pmd,
1147 			   int dirty)
1148 {
1149 	spinlock_t *ptl;
1150 	pmd_t entry;
1151 	unsigned long haddr;
1152 
1153 	ptl = pmd_lock(mm, pmd);
1154 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155 		goto unlock;
1156 
1157 	entry = pmd_mkyoung(orig_pmd);
1158 	haddr = address & HPAGE_PMD_MASK;
1159 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160 		update_mmu_cache_pmd(vma, address, pmd);
1161 
1162 unlock:
1163 	spin_unlock(ptl);
1164 }
1165 
1166 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167 					struct vm_area_struct *vma,
1168 					unsigned long address,
1169 					pmd_t *pmd, pmd_t orig_pmd,
1170 					struct page *page,
1171 					unsigned long haddr)
1172 {
1173 	struct mem_cgroup *memcg;
1174 	spinlock_t *ptl;
1175 	pgtable_t pgtable;
1176 	pmd_t _pmd;
1177 	int ret = 0, i;
1178 	struct page **pages;
1179 	unsigned long mmun_start;	/* For mmu_notifiers */
1180 	unsigned long mmun_end;		/* For mmu_notifiers */
1181 
1182 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183 			GFP_KERNEL);
1184 	if (unlikely(!pages)) {
1185 		ret |= VM_FAULT_OOM;
1186 		goto out;
1187 	}
1188 
1189 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1190 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191 					       __GFP_OTHER_NODE,
1192 					       vma, address, page_to_nid(page));
1193 		if (unlikely(!pages[i] ||
1194 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195 						   &memcg, false))) {
1196 			if (pages[i])
1197 				put_page(pages[i]);
1198 			while (--i >= 0) {
1199 				memcg = (void *)page_private(pages[i]);
1200 				set_page_private(pages[i], 0);
1201 				mem_cgroup_cancel_charge(pages[i], memcg,
1202 						false);
1203 				put_page(pages[i]);
1204 			}
1205 			kfree(pages);
1206 			ret |= VM_FAULT_OOM;
1207 			goto out;
1208 		}
1209 		set_page_private(pages[i], (unsigned long)memcg);
1210 	}
1211 
1212 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213 		copy_user_highpage(pages[i], page + i,
1214 				   haddr + PAGE_SIZE * i, vma);
1215 		__SetPageUptodate(pages[i]);
1216 		cond_resched();
1217 	}
1218 
1219 	mmun_start = haddr;
1220 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1221 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222 
1223 	ptl = pmd_lock(mm, pmd);
1224 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225 		goto out_free_pages;
1226 	VM_BUG_ON_PAGE(!PageHead(page), page);
1227 
1228 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229 	/* leave pmd empty until pte is filled */
1230 
1231 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232 	pmd_populate(mm, &_pmd, pgtable);
1233 
1234 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235 		pte_t *pte, entry;
1236 		entry = mk_pte(pages[i], vma->vm_page_prot);
1237 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238 		memcg = (void *)page_private(pages[i]);
1239 		set_page_private(pages[i], 0);
1240 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242 		lru_cache_add_active_or_unevictable(pages[i], vma);
1243 		pte = pte_offset_map(&_pmd, haddr);
1244 		VM_BUG_ON(!pte_none(*pte));
1245 		set_pte_at(mm, haddr, pte, entry);
1246 		pte_unmap(pte);
1247 	}
1248 	kfree(pages);
1249 
1250 	smp_wmb(); /* make pte visible before pmd */
1251 	pmd_populate(mm, pmd, pgtable);
1252 	page_remove_rmap(page, true);
1253 	spin_unlock(ptl);
1254 
1255 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256 
1257 	ret |= VM_FAULT_WRITE;
1258 	put_page(page);
1259 
1260 out:
1261 	return ret;
1262 
1263 out_free_pages:
1264 	spin_unlock(ptl);
1265 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1267 		memcg = (void *)page_private(pages[i]);
1268 		set_page_private(pages[i], 0);
1269 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1270 		put_page(pages[i]);
1271 	}
1272 	kfree(pages);
1273 	goto out;
1274 }
1275 
1276 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278 {
1279 	spinlock_t *ptl;
1280 	int ret = 0;
1281 	struct page *page = NULL, *new_page;
1282 	struct mem_cgroup *memcg;
1283 	unsigned long haddr;
1284 	unsigned long mmun_start;	/* For mmu_notifiers */
1285 	unsigned long mmun_end;		/* For mmu_notifiers */
1286 	gfp_t huge_gfp;			/* for allocation and charge */
1287 
1288 	ptl = pmd_lockptr(mm, pmd);
1289 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290 	haddr = address & HPAGE_PMD_MASK;
1291 	if (is_huge_zero_pmd(orig_pmd))
1292 		goto alloc;
1293 	spin_lock(ptl);
1294 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295 		goto out_unlock;
1296 
1297 	page = pmd_page(orig_pmd);
1298 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299 	/*
1300 	 * We can only reuse the page if nobody else maps the huge page or it's
1301 	 * part.
1302 	 */
1303 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1304 		pmd_t entry;
1305 		entry = pmd_mkyoung(orig_pmd);
1306 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308 			update_mmu_cache_pmd(vma, address, pmd);
1309 		ret |= VM_FAULT_WRITE;
1310 		goto out_unlock;
1311 	}
1312 	get_page(page);
1313 	spin_unlock(ptl);
1314 alloc:
1315 	if (transparent_hugepage_enabled(vma) &&
1316 	    !transparent_hugepage_debug_cow()) {
1317 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319 	} else
1320 		new_page = NULL;
1321 
1322 	if (likely(new_page)) {
1323 		prep_transhuge_page(new_page);
1324 	} else {
1325 		if (!page) {
1326 			split_huge_pmd(vma, pmd, address);
1327 			ret |= VM_FAULT_FALLBACK;
1328 		} else {
1329 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330 					pmd, orig_pmd, page, haddr);
1331 			if (ret & VM_FAULT_OOM) {
1332 				split_huge_pmd(vma, pmd, address);
1333 				ret |= VM_FAULT_FALLBACK;
1334 			}
1335 			put_page(page);
1336 		}
1337 		count_vm_event(THP_FAULT_FALLBACK);
1338 		goto out;
1339 	}
1340 
1341 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342 					   true))) {
1343 		put_page(new_page);
1344 		if (page) {
1345 			split_huge_pmd(vma, pmd, address);
1346 			put_page(page);
1347 		} else
1348 			split_huge_pmd(vma, pmd, address);
1349 		ret |= VM_FAULT_FALLBACK;
1350 		count_vm_event(THP_FAULT_FALLBACK);
1351 		goto out;
1352 	}
1353 
1354 	count_vm_event(THP_FAULT_ALLOC);
1355 
1356 	if (!page)
1357 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358 	else
1359 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360 	__SetPageUptodate(new_page);
1361 
1362 	mmun_start = haddr;
1363 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1364 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365 
1366 	spin_lock(ptl);
1367 	if (page)
1368 		put_page(page);
1369 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370 		spin_unlock(ptl);
1371 		mem_cgroup_cancel_charge(new_page, memcg, true);
1372 		put_page(new_page);
1373 		goto out_mn;
1374 	} else {
1375 		pmd_t entry;
1376 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1380 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1381 		lru_cache_add_active_or_unevictable(new_page, vma);
1382 		set_pmd_at(mm, haddr, pmd, entry);
1383 		update_mmu_cache_pmd(vma, address, pmd);
1384 		if (!page) {
1385 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386 			put_huge_zero_page();
1387 		} else {
1388 			VM_BUG_ON_PAGE(!PageHead(page), page);
1389 			page_remove_rmap(page, true);
1390 			put_page(page);
1391 		}
1392 		ret |= VM_FAULT_WRITE;
1393 	}
1394 	spin_unlock(ptl);
1395 out_mn:
1396 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397 out:
1398 	return ret;
1399 out_unlock:
1400 	spin_unlock(ptl);
1401 	return ret;
1402 }
1403 
1404 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405 				   unsigned long addr,
1406 				   pmd_t *pmd,
1407 				   unsigned int flags)
1408 {
1409 	struct mm_struct *mm = vma->vm_mm;
1410 	struct page *page = NULL;
1411 
1412 	assert_spin_locked(pmd_lockptr(mm, pmd));
1413 
1414 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415 		goto out;
1416 
1417 	/* Avoid dumping huge zero page */
1418 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419 		return ERR_PTR(-EFAULT);
1420 
1421 	/* Full NUMA hinting faults to serialise migration in fault paths */
1422 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423 		goto out;
1424 
1425 	page = pmd_page(*pmd);
1426 	VM_BUG_ON_PAGE(!PageHead(page), page);
1427 	if (flags & FOLL_TOUCH)
1428 		touch_pmd(vma, addr, pmd);
1429 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430 		/*
1431 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 		 *
1434 		 * In most cases the pmd is the only mapping of the page as we
1435 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436 		 * writable private mappings in populate_vma_page_range().
1437 		 *
1438 		 * The only scenario when we have the page shared here is if we
1439 		 * mlocking read-only mapping shared over fork(). We skip
1440 		 * mlocking such pages.
1441 		 */
1442 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443 				page->mapping && trylock_page(page)) {
1444 			lru_add_drain();
1445 			if (page->mapping)
1446 				mlock_vma_page(page);
1447 			unlock_page(page);
1448 		}
1449 	}
1450 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1452 	if (flags & FOLL_GET)
1453 		get_page(page);
1454 
1455 out:
1456 	return page;
1457 }
1458 
1459 /* NUMA hinting page fault entry point for trans huge pmds */
1460 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462 {
1463 	spinlock_t *ptl;
1464 	struct anon_vma *anon_vma = NULL;
1465 	struct page *page;
1466 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1467 	int page_nid = -1, this_nid = numa_node_id();
1468 	int target_nid, last_cpupid = -1;
1469 	bool page_locked;
1470 	bool migrated = false;
1471 	bool was_writable;
1472 	int flags = 0;
1473 
1474 	/* A PROT_NONE fault should not end up here */
1475 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476 
1477 	ptl = pmd_lock(mm, pmdp);
1478 	if (unlikely(!pmd_same(pmd, *pmdp)))
1479 		goto out_unlock;
1480 
1481 	/*
1482 	 * If there are potential migrations, wait for completion and retry
1483 	 * without disrupting NUMA hinting information. Do not relock and
1484 	 * check_same as the page may no longer be mapped.
1485 	 */
1486 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1487 		page = pmd_page(*pmdp);
1488 		spin_unlock(ptl);
1489 		wait_on_page_locked(page);
1490 		goto out;
1491 	}
1492 
1493 	page = pmd_page(pmd);
1494 	BUG_ON(is_huge_zero_page(page));
1495 	page_nid = page_to_nid(page);
1496 	last_cpupid = page_cpupid_last(page);
1497 	count_vm_numa_event(NUMA_HINT_FAULTS);
1498 	if (page_nid == this_nid) {
1499 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500 		flags |= TNF_FAULT_LOCAL;
1501 	}
1502 
1503 	/* See similar comment in do_numa_page for explanation */
1504 	if (!(vma->vm_flags & VM_WRITE))
1505 		flags |= TNF_NO_GROUP;
1506 
1507 	/*
1508 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1509 	 * page_table_lock if at all possible
1510 	 */
1511 	page_locked = trylock_page(page);
1512 	target_nid = mpol_misplaced(page, vma, haddr);
1513 	if (target_nid == -1) {
1514 		/* If the page was locked, there are no parallel migrations */
1515 		if (page_locked)
1516 			goto clear_pmdnuma;
1517 	}
1518 
1519 	/* Migration could have started since the pmd_trans_migrating check */
1520 	if (!page_locked) {
1521 		spin_unlock(ptl);
1522 		wait_on_page_locked(page);
1523 		page_nid = -1;
1524 		goto out;
1525 	}
1526 
1527 	/*
1528 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529 	 * to serialises splits
1530 	 */
1531 	get_page(page);
1532 	spin_unlock(ptl);
1533 	anon_vma = page_lock_anon_vma_read(page);
1534 
1535 	/* Confirm the PMD did not change while page_table_lock was released */
1536 	spin_lock(ptl);
1537 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1538 		unlock_page(page);
1539 		put_page(page);
1540 		page_nid = -1;
1541 		goto out_unlock;
1542 	}
1543 
1544 	/* Bail if we fail to protect against THP splits for any reason */
1545 	if (unlikely(!anon_vma)) {
1546 		put_page(page);
1547 		page_nid = -1;
1548 		goto clear_pmdnuma;
1549 	}
1550 
1551 	/*
1552 	 * Migrate the THP to the requested node, returns with page unlocked
1553 	 * and access rights restored.
1554 	 */
1555 	spin_unlock(ptl);
1556 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1557 				pmdp, pmd, addr, page, target_nid);
1558 	if (migrated) {
1559 		flags |= TNF_MIGRATED;
1560 		page_nid = target_nid;
1561 	} else
1562 		flags |= TNF_MIGRATE_FAIL;
1563 
1564 	goto out;
1565 clear_pmdnuma:
1566 	BUG_ON(!PageLocked(page));
1567 	was_writable = pmd_write(pmd);
1568 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1569 	pmd = pmd_mkyoung(pmd);
1570 	if (was_writable)
1571 		pmd = pmd_mkwrite(pmd);
1572 	set_pmd_at(mm, haddr, pmdp, pmd);
1573 	update_mmu_cache_pmd(vma, addr, pmdp);
1574 	unlock_page(page);
1575 out_unlock:
1576 	spin_unlock(ptl);
1577 
1578 out:
1579 	if (anon_vma)
1580 		page_unlock_anon_vma_read(anon_vma);
1581 
1582 	if (page_nid != -1)
1583 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584 
1585 	return 0;
1586 }
1587 
1588 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589 		pmd_t *pmd, unsigned long addr, unsigned long next)
1590 
1591 {
1592 	spinlock_t *ptl;
1593 	pmd_t orig_pmd;
1594 	struct page *page;
1595 	struct mm_struct *mm = tlb->mm;
1596 	int ret = 0;
1597 
1598 	ptl = pmd_trans_huge_lock(pmd, vma);
1599 	if (!ptl)
1600 		goto out_unlocked;
1601 
1602 	orig_pmd = *pmd;
1603 	if (is_huge_zero_pmd(orig_pmd)) {
1604 		ret = 1;
1605 		goto out;
1606 	}
1607 
1608 	page = pmd_page(orig_pmd);
1609 	/*
1610 	 * If other processes are mapping this page, we couldn't discard
1611 	 * the page unless they all do MADV_FREE so let's skip the page.
1612 	 */
1613 	if (page_mapcount(page) != 1)
1614 		goto out;
1615 
1616 	if (!trylock_page(page))
1617 		goto out;
1618 
1619 	/*
1620 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1621 	 * will deactivate only them.
1622 	 */
1623 	if (next - addr != HPAGE_PMD_SIZE) {
1624 		get_page(page);
1625 		spin_unlock(ptl);
1626 		if (split_huge_page(page)) {
1627 			put_page(page);
1628 			unlock_page(page);
1629 			goto out_unlocked;
1630 		}
1631 		put_page(page);
1632 		unlock_page(page);
1633 		ret = 1;
1634 		goto out_unlocked;
1635 	}
1636 
1637 	if (PageDirty(page))
1638 		ClearPageDirty(page);
1639 	unlock_page(page);
1640 
1641 	if (PageActive(page))
1642 		deactivate_page(page);
1643 
1644 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646 			tlb->fullmm);
1647 		orig_pmd = pmd_mkold(orig_pmd);
1648 		orig_pmd = pmd_mkclean(orig_pmd);
1649 
1650 		set_pmd_at(mm, addr, pmd, orig_pmd);
1651 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652 	}
1653 	ret = 1;
1654 out:
1655 	spin_unlock(ptl);
1656 out_unlocked:
1657 	return ret;
1658 }
1659 
1660 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661 		 pmd_t *pmd, unsigned long addr)
1662 {
1663 	pmd_t orig_pmd;
1664 	spinlock_t *ptl;
1665 
1666 	ptl = __pmd_trans_huge_lock(pmd, vma);
1667 	if (!ptl)
1668 		return 0;
1669 	/*
1670 	 * For architectures like ppc64 we look at deposited pgtable
1671 	 * when calling pmdp_huge_get_and_clear. So do the
1672 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1673 	 * operations.
1674 	 */
1675 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676 			tlb->fullmm);
1677 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678 	if (vma_is_dax(vma)) {
1679 		spin_unlock(ptl);
1680 		if (is_huge_zero_pmd(orig_pmd))
1681 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1682 	} else if (is_huge_zero_pmd(orig_pmd)) {
1683 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684 		atomic_long_dec(&tlb->mm->nr_ptes);
1685 		spin_unlock(ptl);
1686 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1687 	} else {
1688 		struct page *page = pmd_page(orig_pmd);
1689 		page_remove_rmap(page, true);
1690 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 		VM_BUG_ON_PAGE(!PageHead(page), page);
1693 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694 		atomic_long_dec(&tlb->mm->nr_ptes);
1695 		spin_unlock(ptl);
1696 		tlb_remove_page(tlb, page);
1697 	}
1698 	return 1;
1699 }
1700 
1701 bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702 		  unsigned long old_addr,
1703 		  unsigned long new_addr, unsigned long old_end,
1704 		  pmd_t *old_pmd, pmd_t *new_pmd)
1705 {
1706 	spinlock_t *old_ptl, *new_ptl;
1707 	pmd_t pmd;
1708 
1709 	struct mm_struct *mm = vma->vm_mm;
1710 
1711 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1712 	    (new_addr & ~HPAGE_PMD_MASK) ||
1713 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1714 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1715 		return false;
1716 
1717 	/*
1718 	 * The destination pmd shouldn't be established, free_pgtables()
1719 	 * should have release it.
1720 	 */
1721 	if (WARN_ON(!pmd_none(*new_pmd))) {
1722 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723 		return false;
1724 	}
1725 
1726 	/*
1727 	 * We don't have to worry about the ordering of src and dst
1728 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1729 	 */
1730 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731 	if (old_ptl) {
1732 		new_ptl = pmd_lockptr(mm, new_pmd);
1733 		if (new_ptl != old_ptl)
1734 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1736 		VM_BUG_ON(!pmd_none(*new_pmd));
1737 
1738 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739 				vma_is_anonymous(vma)) {
1740 			pgtable_t pgtable;
1741 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743 		}
1744 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1745 		if (new_ptl != old_ptl)
1746 			spin_unlock(new_ptl);
1747 		spin_unlock(old_ptl);
1748 		return true;
1749 	}
1750 	return false;
1751 }
1752 
1753 /*
1754  * Returns
1755  *  - 0 if PMD could not be locked
1756  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758  */
1759 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760 		unsigned long addr, pgprot_t newprot, int prot_numa)
1761 {
1762 	struct mm_struct *mm = vma->vm_mm;
1763 	spinlock_t *ptl;
1764 	int ret = 0;
1765 
1766 	ptl = __pmd_trans_huge_lock(pmd, vma);
1767 	if (ptl) {
1768 		pmd_t entry;
1769 		bool preserve_write = prot_numa && pmd_write(*pmd);
1770 		ret = 1;
1771 
1772 		/*
1773 		 * Avoid trapping faults against the zero page. The read-only
1774 		 * data is likely to be read-cached on the local CPU and
1775 		 * local/remote hits to the zero page are not interesting.
1776 		 */
1777 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778 			spin_unlock(ptl);
1779 			return ret;
1780 		}
1781 
1782 		if (!prot_numa || !pmd_protnone(*pmd)) {
1783 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784 			entry = pmd_modify(entry, newprot);
1785 			if (preserve_write)
1786 				entry = pmd_mkwrite(entry);
1787 			ret = HPAGE_PMD_NR;
1788 			set_pmd_at(mm, addr, pmd, entry);
1789 			BUG_ON(!preserve_write && pmd_write(entry));
1790 		}
1791 		spin_unlock(ptl);
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Returns true if a given pmd maps a thp, false otherwise.
1799  *
1800  * Note that if it returns true, this routine returns without unlocking page
1801  * table lock. So callers must unlock it.
1802  */
1803 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1804 {
1805 	spinlock_t *ptl;
1806 	ptl = pmd_lock(vma->vm_mm, pmd);
1807 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1808 		return ptl;
1809 	spin_unlock(ptl);
1810 	return NULL;
1811 }
1812 
1813 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1814 
1815 int hugepage_madvise(struct vm_area_struct *vma,
1816 		     unsigned long *vm_flags, int advice)
1817 {
1818 	switch (advice) {
1819 	case MADV_HUGEPAGE:
1820 #ifdef CONFIG_S390
1821 		/*
1822 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823 		 * can't handle this properly after s390_enable_sie, so we simply
1824 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825 		 */
1826 		if (mm_has_pgste(vma->vm_mm))
1827 			return 0;
1828 #endif
1829 		/*
1830 		 * Be somewhat over-protective like KSM for now!
1831 		 */
1832 		if (*vm_flags & VM_NO_THP)
1833 			return -EINVAL;
1834 		*vm_flags &= ~VM_NOHUGEPAGE;
1835 		*vm_flags |= VM_HUGEPAGE;
1836 		/*
1837 		 * If the vma become good for khugepaged to scan,
1838 		 * register it here without waiting a page fault that
1839 		 * may not happen any time soon.
1840 		 */
1841 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842 			return -ENOMEM;
1843 		break;
1844 	case MADV_NOHUGEPAGE:
1845 		/*
1846 		 * Be somewhat over-protective like KSM for now!
1847 		 */
1848 		if (*vm_flags & VM_NO_THP)
1849 			return -EINVAL;
1850 		*vm_flags &= ~VM_HUGEPAGE;
1851 		*vm_flags |= VM_NOHUGEPAGE;
1852 		/*
1853 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854 		 * this vma even if we leave the mm registered in khugepaged if
1855 		 * it got registered before VM_NOHUGEPAGE was set.
1856 		 */
1857 		break;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 static int __init khugepaged_slab_init(void)
1864 {
1865 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866 					  sizeof(struct mm_slot),
1867 					  __alignof__(struct mm_slot), 0, NULL);
1868 	if (!mm_slot_cache)
1869 		return -ENOMEM;
1870 
1871 	return 0;
1872 }
1873 
1874 static void __init khugepaged_slab_exit(void)
1875 {
1876 	kmem_cache_destroy(mm_slot_cache);
1877 }
1878 
1879 static inline struct mm_slot *alloc_mm_slot(void)
1880 {
1881 	if (!mm_slot_cache)	/* initialization failed */
1882 		return NULL;
1883 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884 }
1885 
1886 static inline void free_mm_slot(struct mm_slot *mm_slot)
1887 {
1888 	kmem_cache_free(mm_slot_cache, mm_slot);
1889 }
1890 
1891 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892 {
1893 	struct mm_slot *mm_slot;
1894 
1895 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1896 		if (mm == mm_slot->mm)
1897 			return mm_slot;
1898 
1899 	return NULL;
1900 }
1901 
1902 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903 				    struct mm_slot *mm_slot)
1904 {
1905 	mm_slot->mm = mm;
1906 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907 }
1908 
1909 static inline int khugepaged_test_exit(struct mm_struct *mm)
1910 {
1911 	return atomic_read(&mm->mm_users) == 0;
1912 }
1913 
1914 int __khugepaged_enter(struct mm_struct *mm)
1915 {
1916 	struct mm_slot *mm_slot;
1917 	int wakeup;
1918 
1919 	mm_slot = alloc_mm_slot();
1920 	if (!mm_slot)
1921 		return -ENOMEM;
1922 
1923 	/* __khugepaged_exit() must not run from under us */
1924 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926 		free_mm_slot(mm_slot);
1927 		return 0;
1928 	}
1929 
1930 	spin_lock(&khugepaged_mm_lock);
1931 	insert_to_mm_slots_hash(mm, mm_slot);
1932 	/*
1933 	 * Insert just behind the scanning cursor, to let the area settle
1934 	 * down a little.
1935 	 */
1936 	wakeup = list_empty(&khugepaged_scan.mm_head);
1937 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938 	spin_unlock(&khugepaged_mm_lock);
1939 
1940 	atomic_inc(&mm->mm_count);
1941 	if (wakeup)
1942 		wake_up_interruptible(&khugepaged_wait);
1943 
1944 	return 0;
1945 }
1946 
1947 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948 			       unsigned long vm_flags)
1949 {
1950 	unsigned long hstart, hend;
1951 	if (!vma->anon_vma)
1952 		/*
1953 		 * Not yet faulted in so we will register later in the
1954 		 * page fault if needed.
1955 		 */
1956 		return 0;
1957 	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958 		/* khugepaged not yet working on file or special mappings */
1959 		return 0;
1960 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961 	hend = vma->vm_end & HPAGE_PMD_MASK;
1962 	if (hstart < hend)
1963 		return khugepaged_enter(vma, vm_flags);
1964 	return 0;
1965 }
1966 
1967 void __khugepaged_exit(struct mm_struct *mm)
1968 {
1969 	struct mm_slot *mm_slot;
1970 	int free = 0;
1971 
1972 	spin_lock(&khugepaged_mm_lock);
1973 	mm_slot = get_mm_slot(mm);
1974 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975 		hash_del(&mm_slot->hash);
1976 		list_del(&mm_slot->mm_node);
1977 		free = 1;
1978 	}
1979 	spin_unlock(&khugepaged_mm_lock);
1980 
1981 	if (free) {
1982 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983 		free_mm_slot(mm_slot);
1984 		mmdrop(mm);
1985 	} else if (mm_slot) {
1986 		/*
1987 		 * This is required to serialize against
1988 		 * khugepaged_test_exit() (which is guaranteed to run
1989 		 * under mmap sem read mode). Stop here (after we
1990 		 * return all pagetables will be destroyed) until
1991 		 * khugepaged has finished working on the pagetables
1992 		 * under the mmap_sem.
1993 		 */
1994 		down_write(&mm->mmap_sem);
1995 		up_write(&mm->mmap_sem);
1996 	}
1997 }
1998 
1999 static void release_pte_page(struct page *page)
2000 {
2001 	/* 0 stands for page_is_file_cache(page) == false */
2002 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003 	unlock_page(page);
2004 	putback_lru_page(page);
2005 }
2006 
2007 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008 {
2009 	while (--_pte >= pte) {
2010 		pte_t pteval = *_pte;
2011 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012 			release_pte_page(pte_page(pteval));
2013 	}
2014 }
2015 
2016 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017 					unsigned long address,
2018 					pte_t *pte)
2019 {
2020 	struct page *page = NULL;
2021 	pte_t *_pte;
2022 	int none_or_zero = 0, result = 0;
2023 	bool referenced = false, writable = false;
2024 
2025 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026 	     _pte++, address += PAGE_SIZE) {
2027 		pte_t pteval = *_pte;
2028 		if (pte_none(pteval) || (pte_present(pteval) &&
2029 				is_zero_pfn(pte_pfn(pteval)))) {
2030 			if (!userfaultfd_armed(vma) &&
2031 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2032 				continue;
2033 			} else {
2034 				result = SCAN_EXCEED_NONE_PTE;
2035 				goto out;
2036 			}
2037 		}
2038 		if (!pte_present(pteval)) {
2039 			result = SCAN_PTE_NON_PRESENT;
2040 			goto out;
2041 		}
2042 		page = vm_normal_page(vma, address, pteval);
2043 		if (unlikely(!page)) {
2044 			result = SCAN_PAGE_NULL;
2045 			goto out;
2046 		}
2047 
2048 		VM_BUG_ON_PAGE(PageCompound(page), page);
2049 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2050 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051 
2052 		/*
2053 		 * We can do it before isolate_lru_page because the
2054 		 * page can't be freed from under us. NOTE: PG_lock
2055 		 * is needed to serialize against split_huge_page
2056 		 * when invoked from the VM.
2057 		 */
2058 		if (!trylock_page(page)) {
2059 			result = SCAN_PAGE_LOCK;
2060 			goto out;
2061 		}
2062 
2063 		/*
2064 		 * cannot use mapcount: can't collapse if there's a gup pin.
2065 		 * The page must only be referenced by the scanned process
2066 		 * and page swap cache.
2067 		 */
2068 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069 			unlock_page(page);
2070 			result = SCAN_PAGE_COUNT;
2071 			goto out;
2072 		}
2073 		if (pte_write(pteval)) {
2074 			writable = true;
2075 		} else {
2076 			if (PageSwapCache(page) &&
2077 			    !reuse_swap_page(page, NULL)) {
2078 				unlock_page(page);
2079 				result = SCAN_SWAP_CACHE_PAGE;
2080 				goto out;
2081 			}
2082 			/*
2083 			 * Page is not in the swap cache. It can be collapsed
2084 			 * into a THP.
2085 			 */
2086 		}
2087 
2088 		/*
2089 		 * Isolate the page to avoid collapsing an hugepage
2090 		 * currently in use by the VM.
2091 		 */
2092 		if (isolate_lru_page(page)) {
2093 			unlock_page(page);
2094 			result = SCAN_DEL_PAGE_LRU;
2095 			goto out;
2096 		}
2097 		/* 0 stands for page_is_file_cache(page) == false */
2098 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2100 		VM_BUG_ON_PAGE(PageLRU(page), page);
2101 
2102 		/* If there is no mapped pte young don't collapse the page */
2103 		if (pte_young(pteval) ||
2104 		    page_is_young(page) || PageReferenced(page) ||
2105 		    mmu_notifier_test_young(vma->vm_mm, address))
2106 			referenced = true;
2107 	}
2108 	if (likely(writable)) {
2109 		if (likely(referenced)) {
2110 			result = SCAN_SUCCEED;
2111 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112 							    referenced, writable, result);
2113 			return 1;
2114 		}
2115 	} else {
2116 		result = SCAN_PAGE_RO;
2117 	}
2118 
2119 out:
2120 	release_pte_pages(pte, _pte);
2121 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122 					    referenced, writable, result);
2123 	return 0;
2124 }
2125 
2126 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127 				      struct vm_area_struct *vma,
2128 				      unsigned long address,
2129 				      spinlock_t *ptl)
2130 {
2131 	pte_t *_pte;
2132 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133 		pte_t pteval = *_pte;
2134 		struct page *src_page;
2135 
2136 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137 			clear_user_highpage(page, address);
2138 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139 			if (is_zero_pfn(pte_pfn(pteval))) {
2140 				/*
2141 				 * ptl mostly unnecessary.
2142 				 */
2143 				spin_lock(ptl);
2144 				/*
2145 				 * paravirt calls inside pte_clear here are
2146 				 * superfluous.
2147 				 */
2148 				pte_clear(vma->vm_mm, address, _pte);
2149 				spin_unlock(ptl);
2150 			}
2151 		} else {
2152 			src_page = pte_page(pteval);
2153 			copy_user_highpage(page, src_page, address, vma);
2154 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2155 			release_pte_page(src_page);
2156 			/*
2157 			 * ptl mostly unnecessary, but preempt has to
2158 			 * be disabled to update the per-cpu stats
2159 			 * inside page_remove_rmap().
2160 			 */
2161 			spin_lock(ptl);
2162 			/*
2163 			 * paravirt calls inside pte_clear here are
2164 			 * superfluous.
2165 			 */
2166 			pte_clear(vma->vm_mm, address, _pte);
2167 			page_remove_rmap(src_page, false);
2168 			spin_unlock(ptl);
2169 			free_page_and_swap_cache(src_page);
2170 		}
2171 
2172 		address += PAGE_SIZE;
2173 		page++;
2174 	}
2175 }
2176 
2177 static void khugepaged_alloc_sleep(void)
2178 {
2179 	DEFINE_WAIT(wait);
2180 
2181 	add_wait_queue(&khugepaged_wait, &wait);
2182 	freezable_schedule_timeout_interruptible(
2183 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184 	remove_wait_queue(&khugepaged_wait, &wait);
2185 }
2186 
2187 static int khugepaged_node_load[MAX_NUMNODES];
2188 
2189 static bool khugepaged_scan_abort(int nid)
2190 {
2191 	int i;
2192 
2193 	/*
2194 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2195 	 * allocate memory locally.
2196 	 */
2197 	if (!zone_reclaim_mode)
2198 		return false;
2199 
2200 	/* If there is a count for this node already, it must be acceptable */
2201 	if (khugepaged_node_load[nid])
2202 		return false;
2203 
2204 	for (i = 0; i < MAX_NUMNODES; i++) {
2205 		if (!khugepaged_node_load[i])
2206 			continue;
2207 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208 			return true;
2209 	}
2210 	return false;
2211 }
2212 
2213 #ifdef CONFIG_NUMA
2214 static int khugepaged_find_target_node(void)
2215 {
2216 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2217 	int nid, target_node = 0, max_value = 0;
2218 
2219 	/* find first node with max normal pages hit */
2220 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2221 		if (khugepaged_node_load[nid] > max_value) {
2222 			max_value = khugepaged_node_load[nid];
2223 			target_node = nid;
2224 		}
2225 
2226 	/* do some balance if several nodes have the same hit record */
2227 	if (target_node <= last_khugepaged_target_node)
2228 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229 				nid++)
2230 			if (max_value == khugepaged_node_load[nid]) {
2231 				target_node = nid;
2232 				break;
2233 			}
2234 
2235 	last_khugepaged_target_node = target_node;
2236 	return target_node;
2237 }
2238 
2239 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240 {
2241 	if (IS_ERR(*hpage)) {
2242 		if (!*wait)
2243 			return false;
2244 
2245 		*wait = false;
2246 		*hpage = NULL;
2247 		khugepaged_alloc_sleep();
2248 	} else if (*hpage) {
2249 		put_page(*hpage);
2250 		*hpage = NULL;
2251 	}
2252 
2253 	return true;
2254 }
2255 
2256 static struct page *
2257 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258 		       unsigned long address, int node)
2259 {
2260 	VM_BUG_ON_PAGE(*hpage, *hpage);
2261 
2262 	/*
2263 	 * Before allocating the hugepage, release the mmap_sem read lock.
2264 	 * The allocation can take potentially a long time if it involves
2265 	 * sync compaction, and we do not need to hold the mmap_sem during
2266 	 * that. We will recheck the vma after taking it again in write mode.
2267 	 */
2268 	up_read(&mm->mmap_sem);
2269 
2270 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271 	if (unlikely(!*hpage)) {
2272 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273 		*hpage = ERR_PTR(-ENOMEM);
2274 		return NULL;
2275 	}
2276 
2277 	prep_transhuge_page(*hpage);
2278 	count_vm_event(THP_COLLAPSE_ALLOC);
2279 	return *hpage;
2280 }
2281 #else
2282 static int khugepaged_find_target_node(void)
2283 {
2284 	return 0;
2285 }
2286 
2287 static inline struct page *alloc_khugepaged_hugepage(void)
2288 {
2289 	struct page *page;
2290 
2291 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292 			   HPAGE_PMD_ORDER);
2293 	if (page)
2294 		prep_transhuge_page(page);
2295 	return page;
2296 }
2297 
2298 static struct page *khugepaged_alloc_hugepage(bool *wait)
2299 {
2300 	struct page *hpage;
2301 
2302 	do {
2303 		hpage = alloc_khugepaged_hugepage();
2304 		if (!hpage) {
2305 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306 			if (!*wait)
2307 				return NULL;
2308 
2309 			*wait = false;
2310 			khugepaged_alloc_sleep();
2311 		} else
2312 			count_vm_event(THP_COLLAPSE_ALLOC);
2313 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314 
2315 	return hpage;
2316 }
2317 
2318 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319 {
2320 	if (!*hpage)
2321 		*hpage = khugepaged_alloc_hugepage(wait);
2322 
2323 	if (unlikely(!*hpage))
2324 		return false;
2325 
2326 	return true;
2327 }
2328 
2329 static struct page *
2330 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331 		       unsigned long address, int node)
2332 {
2333 	up_read(&mm->mmap_sem);
2334 	VM_BUG_ON(!*hpage);
2335 
2336 	return  *hpage;
2337 }
2338 #endif
2339 
2340 static bool hugepage_vma_check(struct vm_area_struct *vma)
2341 {
2342 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343 	    (vma->vm_flags & VM_NOHUGEPAGE))
2344 		return false;
2345 	if (!vma->anon_vma || vma->vm_ops)
2346 		return false;
2347 	if (is_vma_temporary_stack(vma))
2348 		return false;
2349 	return !(vma->vm_flags & VM_NO_THP);
2350 }
2351 
2352 static void collapse_huge_page(struct mm_struct *mm,
2353 				   unsigned long address,
2354 				   struct page **hpage,
2355 				   struct vm_area_struct *vma,
2356 				   int node)
2357 {
2358 	pmd_t *pmd, _pmd;
2359 	pte_t *pte;
2360 	pgtable_t pgtable;
2361 	struct page *new_page;
2362 	spinlock_t *pmd_ptl, *pte_ptl;
2363 	int isolated = 0, result = 0;
2364 	unsigned long hstart, hend;
2365 	struct mem_cgroup *memcg;
2366 	unsigned long mmun_start;	/* For mmu_notifiers */
2367 	unsigned long mmun_end;		/* For mmu_notifiers */
2368 	gfp_t gfp;
2369 
2370 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371 
2372 	/* Only allocate from the target node */
2373 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374 
2375 	/* release the mmap_sem read lock. */
2376 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377 	if (!new_page) {
2378 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379 		goto out_nolock;
2380 	}
2381 
2382 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383 		result = SCAN_CGROUP_CHARGE_FAIL;
2384 		goto out_nolock;
2385 	}
2386 
2387 	/*
2388 	 * Prevent all access to pagetables with the exception of
2389 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2390 	 * handled by the anon_vma lock + PG_lock.
2391 	 */
2392 	down_write(&mm->mmap_sem);
2393 	if (unlikely(khugepaged_test_exit(mm))) {
2394 		result = SCAN_ANY_PROCESS;
2395 		goto out;
2396 	}
2397 
2398 	vma = find_vma(mm, address);
2399 	if (!vma) {
2400 		result = SCAN_VMA_NULL;
2401 		goto out;
2402 	}
2403 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404 	hend = vma->vm_end & HPAGE_PMD_MASK;
2405 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406 		result = SCAN_ADDRESS_RANGE;
2407 		goto out;
2408 	}
2409 	if (!hugepage_vma_check(vma)) {
2410 		result = SCAN_VMA_CHECK;
2411 		goto out;
2412 	}
2413 	pmd = mm_find_pmd(mm, address);
2414 	if (!pmd) {
2415 		result = SCAN_PMD_NULL;
2416 		goto out;
2417 	}
2418 
2419 	anon_vma_lock_write(vma->anon_vma);
2420 
2421 	pte = pte_offset_map(pmd, address);
2422 	pte_ptl = pte_lockptr(mm, pmd);
2423 
2424 	mmun_start = address;
2425 	mmun_end   = address + HPAGE_PMD_SIZE;
2426 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428 	/*
2429 	 * After this gup_fast can't run anymore. This also removes
2430 	 * any huge TLB entry from the CPU so we won't allow
2431 	 * huge and small TLB entries for the same virtual address
2432 	 * to avoid the risk of CPU bugs in that area.
2433 	 */
2434 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2435 	spin_unlock(pmd_ptl);
2436 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437 
2438 	spin_lock(pte_ptl);
2439 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2440 	spin_unlock(pte_ptl);
2441 
2442 	if (unlikely(!isolated)) {
2443 		pte_unmap(pte);
2444 		spin_lock(pmd_ptl);
2445 		BUG_ON(!pmd_none(*pmd));
2446 		/*
2447 		 * We can only use set_pmd_at when establishing
2448 		 * hugepmds and never for establishing regular pmds that
2449 		 * points to regular pagetables. Use pmd_populate for that
2450 		 */
2451 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452 		spin_unlock(pmd_ptl);
2453 		anon_vma_unlock_write(vma->anon_vma);
2454 		result = SCAN_FAIL;
2455 		goto out;
2456 	}
2457 
2458 	/*
2459 	 * All pages are isolated and locked so anon_vma rmap
2460 	 * can't run anymore.
2461 	 */
2462 	anon_vma_unlock_write(vma->anon_vma);
2463 
2464 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465 	pte_unmap(pte);
2466 	__SetPageUptodate(new_page);
2467 	pgtable = pmd_pgtable(_pmd);
2468 
2469 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2471 
2472 	/*
2473 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2474 	 * this is needed to avoid the copy_huge_page writes to become
2475 	 * visible after the set_pmd_at() write.
2476 	 */
2477 	smp_wmb();
2478 
2479 	spin_lock(pmd_ptl);
2480 	BUG_ON(!pmd_none(*pmd));
2481 	page_add_new_anon_rmap(new_page, vma, address, true);
2482 	mem_cgroup_commit_charge(new_page, memcg, false, true);
2483 	lru_cache_add_active_or_unevictable(new_page, vma);
2484 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485 	set_pmd_at(mm, address, pmd, _pmd);
2486 	update_mmu_cache_pmd(vma, address, pmd);
2487 	spin_unlock(pmd_ptl);
2488 
2489 	*hpage = NULL;
2490 
2491 	khugepaged_pages_collapsed++;
2492 	result = SCAN_SUCCEED;
2493 out_up_write:
2494 	up_write(&mm->mmap_sem);
2495 	trace_mm_collapse_huge_page(mm, isolated, result);
2496 	return;
2497 
2498 out_nolock:
2499 	trace_mm_collapse_huge_page(mm, isolated, result);
2500 	return;
2501 out:
2502 	mem_cgroup_cancel_charge(new_page, memcg, true);
2503 	goto out_up_write;
2504 }
2505 
2506 static int khugepaged_scan_pmd(struct mm_struct *mm,
2507 			       struct vm_area_struct *vma,
2508 			       unsigned long address,
2509 			       struct page **hpage)
2510 {
2511 	pmd_t *pmd;
2512 	pte_t *pte, *_pte;
2513 	int ret = 0, none_or_zero = 0, result = 0;
2514 	struct page *page = NULL;
2515 	unsigned long _address;
2516 	spinlock_t *ptl;
2517 	int node = NUMA_NO_NODE;
2518 	bool writable = false, referenced = false;
2519 
2520 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521 
2522 	pmd = mm_find_pmd(mm, address);
2523 	if (!pmd) {
2524 		result = SCAN_PMD_NULL;
2525 		goto out;
2526 	}
2527 
2528 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531 	     _pte++, _address += PAGE_SIZE) {
2532 		pte_t pteval = *_pte;
2533 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534 			if (!userfaultfd_armed(vma) &&
2535 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2536 				continue;
2537 			} else {
2538 				result = SCAN_EXCEED_NONE_PTE;
2539 				goto out_unmap;
2540 			}
2541 		}
2542 		if (!pte_present(pteval)) {
2543 			result = SCAN_PTE_NON_PRESENT;
2544 			goto out_unmap;
2545 		}
2546 		if (pte_write(pteval))
2547 			writable = true;
2548 
2549 		page = vm_normal_page(vma, _address, pteval);
2550 		if (unlikely(!page)) {
2551 			result = SCAN_PAGE_NULL;
2552 			goto out_unmap;
2553 		}
2554 
2555 		/* TODO: teach khugepaged to collapse THP mapped with pte */
2556 		if (PageCompound(page)) {
2557 			result = SCAN_PAGE_COMPOUND;
2558 			goto out_unmap;
2559 		}
2560 
2561 		/*
2562 		 * Record which node the original page is from and save this
2563 		 * information to khugepaged_node_load[].
2564 		 * Khupaged will allocate hugepage from the node has the max
2565 		 * hit record.
2566 		 */
2567 		node = page_to_nid(page);
2568 		if (khugepaged_scan_abort(node)) {
2569 			result = SCAN_SCAN_ABORT;
2570 			goto out_unmap;
2571 		}
2572 		khugepaged_node_load[node]++;
2573 		if (!PageLRU(page)) {
2574 			result = SCAN_PAGE_LRU;
2575 			goto out_unmap;
2576 		}
2577 		if (PageLocked(page)) {
2578 			result = SCAN_PAGE_LOCK;
2579 			goto out_unmap;
2580 		}
2581 		if (!PageAnon(page)) {
2582 			result = SCAN_PAGE_ANON;
2583 			goto out_unmap;
2584 		}
2585 
2586 		/*
2587 		 * cannot use mapcount: can't collapse if there's a gup pin.
2588 		 * The page must only be referenced by the scanned process
2589 		 * and page swap cache.
2590 		 */
2591 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592 			result = SCAN_PAGE_COUNT;
2593 			goto out_unmap;
2594 		}
2595 		if (pte_young(pteval) ||
2596 		    page_is_young(page) || PageReferenced(page) ||
2597 		    mmu_notifier_test_young(vma->vm_mm, address))
2598 			referenced = true;
2599 	}
2600 	if (writable) {
2601 		if (referenced) {
2602 			result = SCAN_SUCCEED;
2603 			ret = 1;
2604 		} else {
2605 			result = SCAN_NO_REFERENCED_PAGE;
2606 		}
2607 	} else {
2608 		result = SCAN_PAGE_RO;
2609 	}
2610 out_unmap:
2611 	pte_unmap_unlock(pte, ptl);
2612 	if (ret) {
2613 		node = khugepaged_find_target_node();
2614 		/* collapse_huge_page will return with the mmap_sem released */
2615 		collapse_huge_page(mm, address, hpage, vma, node);
2616 	}
2617 out:
2618 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619 				     none_or_zero, result);
2620 	return ret;
2621 }
2622 
2623 static void collect_mm_slot(struct mm_slot *mm_slot)
2624 {
2625 	struct mm_struct *mm = mm_slot->mm;
2626 
2627 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628 
2629 	if (khugepaged_test_exit(mm)) {
2630 		/* free mm_slot */
2631 		hash_del(&mm_slot->hash);
2632 		list_del(&mm_slot->mm_node);
2633 
2634 		/*
2635 		 * Not strictly needed because the mm exited already.
2636 		 *
2637 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638 		 */
2639 
2640 		/* khugepaged_mm_lock actually not necessary for the below */
2641 		free_mm_slot(mm_slot);
2642 		mmdrop(mm);
2643 	}
2644 }
2645 
2646 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647 					    struct page **hpage)
2648 	__releases(&khugepaged_mm_lock)
2649 	__acquires(&khugepaged_mm_lock)
2650 {
2651 	struct mm_slot *mm_slot;
2652 	struct mm_struct *mm;
2653 	struct vm_area_struct *vma;
2654 	int progress = 0;
2655 
2656 	VM_BUG_ON(!pages);
2657 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658 
2659 	if (khugepaged_scan.mm_slot)
2660 		mm_slot = khugepaged_scan.mm_slot;
2661 	else {
2662 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663 				     struct mm_slot, mm_node);
2664 		khugepaged_scan.address = 0;
2665 		khugepaged_scan.mm_slot = mm_slot;
2666 	}
2667 	spin_unlock(&khugepaged_mm_lock);
2668 
2669 	mm = mm_slot->mm;
2670 	down_read(&mm->mmap_sem);
2671 	if (unlikely(khugepaged_test_exit(mm)))
2672 		vma = NULL;
2673 	else
2674 		vma = find_vma(mm, khugepaged_scan.address);
2675 
2676 	progress++;
2677 	for (; vma; vma = vma->vm_next) {
2678 		unsigned long hstart, hend;
2679 
2680 		cond_resched();
2681 		if (unlikely(khugepaged_test_exit(mm))) {
2682 			progress++;
2683 			break;
2684 		}
2685 		if (!hugepage_vma_check(vma)) {
2686 skip:
2687 			progress++;
2688 			continue;
2689 		}
2690 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691 		hend = vma->vm_end & HPAGE_PMD_MASK;
2692 		if (hstart >= hend)
2693 			goto skip;
2694 		if (khugepaged_scan.address > hend)
2695 			goto skip;
2696 		if (khugepaged_scan.address < hstart)
2697 			khugepaged_scan.address = hstart;
2698 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699 
2700 		while (khugepaged_scan.address < hend) {
2701 			int ret;
2702 			cond_resched();
2703 			if (unlikely(khugepaged_test_exit(mm)))
2704 				goto breakouterloop;
2705 
2706 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2707 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2708 				  hend);
2709 			ret = khugepaged_scan_pmd(mm, vma,
2710 						  khugepaged_scan.address,
2711 						  hpage);
2712 			/* move to next address */
2713 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2714 			progress += HPAGE_PMD_NR;
2715 			if (ret)
2716 				/* we released mmap_sem so break loop */
2717 				goto breakouterloop_mmap_sem;
2718 			if (progress >= pages)
2719 				goto breakouterloop;
2720 		}
2721 	}
2722 breakouterloop:
2723 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724 breakouterloop_mmap_sem:
2725 
2726 	spin_lock(&khugepaged_mm_lock);
2727 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728 	/*
2729 	 * Release the current mm_slot if this mm is about to die, or
2730 	 * if we scanned all vmas of this mm.
2731 	 */
2732 	if (khugepaged_test_exit(mm) || !vma) {
2733 		/*
2734 		 * Make sure that if mm_users is reaching zero while
2735 		 * khugepaged runs here, khugepaged_exit will find
2736 		 * mm_slot not pointing to the exiting mm.
2737 		 */
2738 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739 			khugepaged_scan.mm_slot = list_entry(
2740 				mm_slot->mm_node.next,
2741 				struct mm_slot, mm_node);
2742 			khugepaged_scan.address = 0;
2743 		} else {
2744 			khugepaged_scan.mm_slot = NULL;
2745 			khugepaged_full_scans++;
2746 		}
2747 
2748 		collect_mm_slot(mm_slot);
2749 	}
2750 
2751 	return progress;
2752 }
2753 
2754 static int khugepaged_has_work(void)
2755 {
2756 	return !list_empty(&khugepaged_scan.mm_head) &&
2757 		khugepaged_enabled();
2758 }
2759 
2760 static int khugepaged_wait_event(void)
2761 {
2762 	return !list_empty(&khugepaged_scan.mm_head) ||
2763 		kthread_should_stop();
2764 }
2765 
2766 static void khugepaged_do_scan(void)
2767 {
2768 	struct page *hpage = NULL;
2769 	unsigned int progress = 0, pass_through_head = 0;
2770 	unsigned int pages = khugepaged_pages_to_scan;
2771 	bool wait = true;
2772 
2773 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2774 
2775 	while (progress < pages) {
2776 		if (!khugepaged_prealloc_page(&hpage, &wait))
2777 			break;
2778 
2779 		cond_resched();
2780 
2781 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2782 			break;
2783 
2784 		spin_lock(&khugepaged_mm_lock);
2785 		if (!khugepaged_scan.mm_slot)
2786 			pass_through_head++;
2787 		if (khugepaged_has_work() &&
2788 		    pass_through_head < 2)
2789 			progress += khugepaged_scan_mm_slot(pages - progress,
2790 							    &hpage);
2791 		else
2792 			progress = pages;
2793 		spin_unlock(&khugepaged_mm_lock);
2794 	}
2795 
2796 	if (!IS_ERR_OR_NULL(hpage))
2797 		put_page(hpage);
2798 }
2799 
2800 static void khugepaged_wait_work(void)
2801 {
2802 	if (khugepaged_has_work()) {
2803 		if (!khugepaged_scan_sleep_millisecs)
2804 			return;
2805 
2806 		wait_event_freezable_timeout(khugepaged_wait,
2807 					     kthread_should_stop(),
2808 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809 		return;
2810 	}
2811 
2812 	if (khugepaged_enabled())
2813 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814 }
2815 
2816 static int khugepaged(void *none)
2817 {
2818 	struct mm_slot *mm_slot;
2819 
2820 	set_freezable();
2821 	set_user_nice(current, MAX_NICE);
2822 
2823 	while (!kthread_should_stop()) {
2824 		khugepaged_do_scan();
2825 		khugepaged_wait_work();
2826 	}
2827 
2828 	spin_lock(&khugepaged_mm_lock);
2829 	mm_slot = khugepaged_scan.mm_slot;
2830 	khugepaged_scan.mm_slot = NULL;
2831 	if (mm_slot)
2832 		collect_mm_slot(mm_slot);
2833 	spin_unlock(&khugepaged_mm_lock);
2834 	return 0;
2835 }
2836 
2837 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838 		unsigned long haddr, pmd_t *pmd)
2839 {
2840 	struct mm_struct *mm = vma->vm_mm;
2841 	pgtable_t pgtable;
2842 	pmd_t _pmd;
2843 	int i;
2844 
2845 	/* leave pmd empty until pte is filled */
2846 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2847 
2848 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849 	pmd_populate(mm, &_pmd, pgtable);
2850 
2851 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852 		pte_t *pte, entry;
2853 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854 		entry = pte_mkspecial(entry);
2855 		pte = pte_offset_map(&_pmd, haddr);
2856 		VM_BUG_ON(!pte_none(*pte));
2857 		set_pte_at(mm, haddr, pte, entry);
2858 		pte_unmap(pte);
2859 	}
2860 	smp_wmb(); /* make pte visible before pmd */
2861 	pmd_populate(mm, pmd, pgtable);
2862 	put_huge_zero_page();
2863 }
2864 
2865 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866 		unsigned long haddr, bool freeze)
2867 {
2868 	struct mm_struct *mm = vma->vm_mm;
2869 	struct page *page;
2870 	pgtable_t pgtable;
2871 	pmd_t _pmd;
2872 	bool young, write, dirty;
2873 	unsigned long addr;
2874 	int i;
2875 
2876 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2880 
2881 	count_vm_event(THP_SPLIT_PMD);
2882 
2883 	if (vma_is_dax(vma)) {
2884 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885 		if (is_huge_zero_pmd(_pmd))
2886 			put_huge_zero_page();
2887 		return;
2888 	} else if (is_huge_zero_pmd(*pmd)) {
2889 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890 	}
2891 
2892 	page = pmd_page(*pmd);
2893 	VM_BUG_ON_PAGE(!page_count(page), page);
2894 	page_ref_add(page, HPAGE_PMD_NR - 1);
2895 	write = pmd_write(*pmd);
2896 	young = pmd_young(*pmd);
2897 	dirty = pmd_dirty(*pmd);
2898 
2899 	pmdp_huge_split_prepare(vma, haddr, pmd);
2900 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901 	pmd_populate(mm, &_pmd, pgtable);
2902 
2903 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904 		pte_t entry, *pte;
2905 		/*
2906 		 * Note that NUMA hinting access restrictions are not
2907 		 * transferred to avoid any possibility of altering
2908 		 * permissions across VMAs.
2909 		 */
2910 		if (freeze) {
2911 			swp_entry_t swp_entry;
2912 			swp_entry = make_migration_entry(page + i, write);
2913 			entry = swp_entry_to_pte(swp_entry);
2914 		} else {
2915 			entry = mk_pte(page + i, vma->vm_page_prot);
2916 			entry = maybe_mkwrite(entry, vma);
2917 			if (!write)
2918 				entry = pte_wrprotect(entry);
2919 			if (!young)
2920 				entry = pte_mkold(entry);
2921 		}
2922 		if (dirty)
2923 			SetPageDirty(page + i);
2924 		pte = pte_offset_map(&_pmd, addr);
2925 		BUG_ON(!pte_none(*pte));
2926 		set_pte_at(mm, addr, pte, entry);
2927 		atomic_inc(&page[i]._mapcount);
2928 		pte_unmap(pte);
2929 	}
2930 
2931 	/*
2932 	 * Set PG_double_map before dropping compound_mapcount to avoid
2933 	 * false-negative page_mapped().
2934 	 */
2935 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936 		for (i = 0; i < HPAGE_PMD_NR; i++)
2937 			atomic_inc(&page[i]._mapcount);
2938 	}
2939 
2940 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941 		/* Last compound_mapcount is gone. */
2942 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943 		if (TestClearPageDoubleMap(page)) {
2944 			/* No need in mapcount reference anymore */
2945 			for (i = 0; i < HPAGE_PMD_NR; i++)
2946 				atomic_dec(&page[i]._mapcount);
2947 		}
2948 	}
2949 
2950 	smp_wmb(); /* make pte visible before pmd */
2951 	/*
2952 	 * Up to this point the pmd is present and huge and userland has the
2953 	 * whole access to the hugepage during the split (which happens in
2954 	 * place). If we overwrite the pmd with the not-huge version pointing
2955 	 * to the pte here (which of course we could if all CPUs were bug
2956 	 * free), userland could trigger a small page size TLB miss on the
2957 	 * small sized TLB while the hugepage TLB entry is still established in
2958 	 * the huge TLB. Some CPU doesn't like that.
2959 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960 	 * 383 on page 93. Intel should be safe but is also warns that it's
2961 	 * only safe if the permission and cache attributes of the two entries
2962 	 * loaded in the two TLB is identical (which should be the case here).
2963 	 * But it is generally safer to never allow small and huge TLB entries
2964 	 * for the same virtual address to be loaded simultaneously. So instead
2965 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2967 	 * and pmd_trans_splitting must remain set at all times on the pmd
2968 	 * until the split is complete for this pmd), then we flush the SMP TLB
2969 	 * and finally we write the non-huge version of the pmd entry with
2970 	 * pmd_populate.
2971 	 */
2972 	pmdp_invalidate(vma, haddr, pmd);
2973 	pmd_populate(mm, pmd, pgtable);
2974 
2975 	if (freeze) {
2976 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2977 			page_remove_rmap(page + i, false);
2978 			put_page(page + i);
2979 		}
2980 	}
2981 }
2982 
2983 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984 		unsigned long address, bool freeze)
2985 {
2986 	spinlock_t *ptl;
2987 	struct mm_struct *mm = vma->vm_mm;
2988 	unsigned long haddr = address & HPAGE_PMD_MASK;
2989 
2990 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991 	ptl = pmd_lock(mm, pmd);
2992 	if (pmd_trans_huge(*pmd)) {
2993 		struct page *page = pmd_page(*pmd);
2994 		if (PageMlocked(page))
2995 			clear_page_mlock(page);
2996 	} else if (!pmd_devmap(*pmd))
2997 		goto out;
2998 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999 out:
3000 	spin_unlock(ptl);
3001 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002 }
3003 
3004 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005 		bool freeze, struct page *page)
3006 {
3007 	pgd_t *pgd;
3008 	pud_t *pud;
3009 	pmd_t *pmd;
3010 
3011 	pgd = pgd_offset(vma->vm_mm, address);
3012 	if (!pgd_present(*pgd))
3013 		return;
3014 
3015 	pud = pud_offset(pgd, address);
3016 	if (!pud_present(*pud))
3017 		return;
3018 
3019 	pmd = pmd_offset(pud, address);
3020 	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021 		return;
3022 
3023 	/*
3024 	 * If caller asks to setup a migration entries, we need a page to check
3025 	 * pmd against. Otherwise we can end up replacing wrong page.
3026 	 */
3027 	VM_BUG_ON(freeze && !page);
3028 	if (page && page != pmd_page(*pmd))
3029 		return;
3030 
3031 	/*
3032 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033 	 * materialize from under us.
3034 	 */
3035 	__split_huge_pmd(vma, pmd, address, freeze);
3036 }
3037 
3038 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039 			     unsigned long start,
3040 			     unsigned long end,
3041 			     long adjust_next)
3042 {
3043 	/*
3044 	 * If the new start address isn't hpage aligned and it could
3045 	 * previously contain an hugepage: check if we need to split
3046 	 * an huge pmd.
3047 	 */
3048 	if (start & ~HPAGE_PMD_MASK &&
3049 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051 		split_huge_pmd_address(vma, start, false, NULL);
3052 
3053 	/*
3054 	 * If the new end address isn't hpage aligned and it could
3055 	 * previously contain an hugepage: check if we need to split
3056 	 * an huge pmd.
3057 	 */
3058 	if (end & ~HPAGE_PMD_MASK &&
3059 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061 		split_huge_pmd_address(vma, end, false, NULL);
3062 
3063 	/*
3064 	 * If we're also updating the vma->vm_next->vm_start, if the new
3065 	 * vm_next->vm_start isn't page aligned and it could previously
3066 	 * contain an hugepage: check if we need to split an huge pmd.
3067 	 */
3068 	if (adjust_next > 0) {
3069 		struct vm_area_struct *next = vma->vm_next;
3070 		unsigned long nstart = next->vm_start;
3071 		nstart += adjust_next << PAGE_SHIFT;
3072 		if (nstart & ~HPAGE_PMD_MASK &&
3073 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075 			split_huge_pmd_address(next, nstart, false, NULL);
3076 	}
3077 }
3078 
3079 static void freeze_page(struct page *page)
3080 {
3081 	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082 		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083 	int i, ret;
3084 
3085 	VM_BUG_ON_PAGE(!PageHead(page), page);
3086 
3087 	/* We only need TTU_SPLIT_HUGE_PMD once */
3088 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090 		/* Cut short if the page is unmapped */
3091 		if (page_count(page) == 1)
3092 			return;
3093 
3094 		ret = try_to_unmap(page + i, ttu_flags);
3095 	}
3096 	VM_BUG_ON(ret);
3097 }
3098 
3099 static void unfreeze_page(struct page *page)
3100 {
3101 	int i;
3102 
3103 	for (i = 0; i < HPAGE_PMD_NR; i++)
3104 		remove_migration_ptes(page + i, page + i, true);
3105 }
3106 
3107 static void __split_huge_page_tail(struct page *head, int tail,
3108 		struct lruvec *lruvec, struct list_head *list)
3109 {
3110 	struct page *page_tail = head + tail;
3111 
3112 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114 
3115 	/*
3116 	 * tail_page->_count is zero and not changing from under us. But
3117 	 * get_page_unless_zero() may be running from under us on the
3118 	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119 	 * would then run atomic_set() concurrently with
3120 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3121 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3122 	 * because of PPro errata 66, 92, so unless somebody can guarantee
3123 	 * atomic_set() here would be safe on all archs (and not only on x86),
3124 	 * it's safer to use atomic_inc().
3125 	 */
3126 	page_ref_inc(page_tail);
3127 
3128 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129 	page_tail->flags |= (head->flags &
3130 			((1L << PG_referenced) |
3131 			 (1L << PG_swapbacked) |
3132 			 (1L << PG_mlocked) |
3133 			 (1L << PG_uptodate) |
3134 			 (1L << PG_active) |
3135 			 (1L << PG_locked) |
3136 			 (1L << PG_unevictable) |
3137 			 (1L << PG_dirty)));
3138 
3139 	/*
3140 	 * After clearing PageTail the gup refcount can be released.
3141 	 * Page flags also must be visible before we make the page non-compound.
3142 	 */
3143 	smp_wmb();
3144 
3145 	clear_compound_head(page_tail);
3146 
3147 	if (page_is_young(head))
3148 		set_page_young(page_tail);
3149 	if (page_is_idle(head))
3150 		set_page_idle(page_tail);
3151 
3152 	/* ->mapping in first tail page is compound_mapcount */
3153 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154 			page_tail);
3155 	page_tail->mapping = head->mapping;
3156 
3157 	page_tail->index = head->index + tail;
3158 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3159 	lru_add_page_tail(head, page_tail, lruvec, list);
3160 }
3161 
3162 static void __split_huge_page(struct page *page, struct list_head *list)
3163 {
3164 	struct page *head = compound_head(page);
3165 	struct zone *zone = page_zone(head);
3166 	struct lruvec *lruvec;
3167 	int i;
3168 
3169 	/* prevent PageLRU to go away from under us, and freeze lru stats */
3170 	spin_lock_irq(&zone->lru_lock);
3171 	lruvec = mem_cgroup_page_lruvec(head, zone);
3172 
3173 	/* complete memcg works before add pages to LRU */
3174 	mem_cgroup_split_huge_fixup(head);
3175 
3176 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3177 		__split_huge_page_tail(head, i, lruvec, list);
3178 
3179 	ClearPageCompound(head);
3180 	spin_unlock_irq(&zone->lru_lock);
3181 
3182 	unfreeze_page(head);
3183 
3184 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3185 		struct page *subpage = head + i;
3186 		if (subpage == page)
3187 			continue;
3188 		unlock_page(subpage);
3189 
3190 		/*
3191 		 * Subpages may be freed if there wasn't any mapping
3192 		 * like if add_to_swap() is running on a lru page that
3193 		 * had its mapping zapped. And freeing these pages
3194 		 * requires taking the lru_lock so we do the put_page
3195 		 * of the tail pages after the split is complete.
3196 		 */
3197 		put_page(subpage);
3198 	}
3199 }
3200 
3201 int total_mapcount(struct page *page)
3202 {
3203 	int i, ret;
3204 
3205 	VM_BUG_ON_PAGE(PageTail(page), page);
3206 
3207 	if (likely(!PageCompound(page)))
3208 		return atomic_read(&page->_mapcount) + 1;
3209 
3210 	ret = compound_mapcount(page);
3211 	if (PageHuge(page))
3212 		return ret;
3213 	for (i = 0; i < HPAGE_PMD_NR; i++)
3214 		ret += atomic_read(&page[i]._mapcount) + 1;
3215 	if (PageDoubleMap(page))
3216 		ret -= HPAGE_PMD_NR;
3217 	return ret;
3218 }
3219 
3220 /*
3221  * This calculates accurately how many mappings a transparent hugepage
3222  * has (unlike page_mapcount() which isn't fully accurate). This full
3223  * accuracy is primarily needed to know if copy-on-write faults can
3224  * reuse the page and change the mapping to read-write instead of
3225  * copying them. At the same time this returns the total_mapcount too.
3226  *
3227  * The function returns the highest mapcount any one of the subpages
3228  * has. If the return value is one, even if different processes are
3229  * mapping different subpages of the transparent hugepage, they can
3230  * all reuse it, because each process is reusing a different subpage.
3231  *
3232  * The total_mapcount is instead counting all virtual mappings of the
3233  * subpages. If the total_mapcount is equal to "one", it tells the
3234  * caller all mappings belong to the same "mm" and in turn the
3235  * anon_vma of the transparent hugepage can become the vma->anon_vma
3236  * local one as no other process may be mapping any of the subpages.
3237  *
3238  * It would be more accurate to replace page_mapcount() with
3239  * page_trans_huge_mapcount(), however we only use
3240  * page_trans_huge_mapcount() in the copy-on-write faults where we
3241  * need full accuracy to avoid breaking page pinning, because
3242  * page_trans_huge_mapcount() is slower than page_mapcount().
3243  */
3244 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245 {
3246 	int i, ret, _total_mapcount, mapcount;
3247 
3248 	/* hugetlbfs shouldn't call it */
3249 	VM_BUG_ON_PAGE(PageHuge(page), page);
3250 
3251 	if (likely(!PageTransCompound(page))) {
3252 		mapcount = atomic_read(&page->_mapcount) + 1;
3253 		if (total_mapcount)
3254 			*total_mapcount = mapcount;
3255 		return mapcount;
3256 	}
3257 
3258 	page = compound_head(page);
3259 
3260 	_total_mapcount = ret = 0;
3261 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3262 		mapcount = atomic_read(&page[i]._mapcount) + 1;
3263 		ret = max(ret, mapcount);
3264 		_total_mapcount += mapcount;
3265 	}
3266 	if (PageDoubleMap(page)) {
3267 		ret -= 1;
3268 		_total_mapcount -= HPAGE_PMD_NR;
3269 	}
3270 	mapcount = compound_mapcount(page);
3271 	ret += mapcount;
3272 	_total_mapcount += mapcount;
3273 	if (total_mapcount)
3274 		*total_mapcount = _total_mapcount;
3275 	return ret;
3276 }
3277 
3278 /*
3279  * This function splits huge page into normal pages. @page can point to any
3280  * subpage of huge page to split. Split doesn't change the position of @page.
3281  *
3282  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283  * The huge page must be locked.
3284  *
3285  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286  *
3287  * Both head page and tail pages will inherit mapping, flags, and so on from
3288  * the hugepage.
3289  *
3290  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291  * they are not mapped.
3292  *
3293  * Returns 0 if the hugepage is split successfully.
3294  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295  * us.
3296  */
3297 int split_huge_page_to_list(struct page *page, struct list_head *list)
3298 {
3299 	struct page *head = compound_head(page);
3300 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301 	struct anon_vma *anon_vma;
3302 	int count, mapcount, ret;
3303 	bool mlocked;
3304 	unsigned long flags;
3305 
3306 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307 	VM_BUG_ON_PAGE(!PageAnon(page), page);
3308 	VM_BUG_ON_PAGE(!PageLocked(page), page);
3309 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3311 
3312 	/*
3313 	 * The caller does not necessarily hold an mmap_sem that would prevent
3314 	 * the anon_vma disappearing so we first we take a reference to it
3315 	 * and then lock the anon_vma for write. This is similar to
3316 	 * page_lock_anon_vma_read except the write lock is taken to serialise
3317 	 * against parallel split or collapse operations.
3318 	 */
3319 	anon_vma = page_get_anon_vma(head);
3320 	if (!anon_vma) {
3321 		ret = -EBUSY;
3322 		goto out;
3323 	}
3324 	anon_vma_lock_write(anon_vma);
3325 
3326 	/*
3327 	 * Racy check if we can split the page, before freeze_page() will
3328 	 * split PMDs
3329 	 */
3330 	if (total_mapcount(head) != page_count(head) - 1) {
3331 		ret = -EBUSY;
3332 		goto out_unlock;
3333 	}
3334 
3335 	mlocked = PageMlocked(page);
3336 	freeze_page(head);
3337 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338 
3339 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3340 	if (mlocked)
3341 		lru_add_drain();
3342 
3343 	/* Prevent deferred_split_scan() touching ->_count */
3344 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3345 	count = page_count(head);
3346 	mapcount = total_mapcount(head);
3347 	if (!mapcount && count == 1) {
3348 		if (!list_empty(page_deferred_list(head))) {
3349 			pgdata->split_queue_len--;
3350 			list_del(page_deferred_list(head));
3351 		}
3352 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353 		__split_huge_page(page, list);
3354 		ret = 0;
3355 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357 		pr_alert("total_mapcount: %u, page_count(): %u\n",
3358 				mapcount, count);
3359 		if (PageTail(page))
3360 			dump_page(head, NULL);
3361 		dump_page(page, "total_mapcount(head) > 0");
3362 		BUG();
3363 	} else {
3364 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3365 		unfreeze_page(head);
3366 		ret = -EBUSY;
3367 	}
3368 
3369 out_unlock:
3370 	anon_vma_unlock_write(anon_vma);
3371 	put_anon_vma(anon_vma);
3372 out:
3373 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374 	return ret;
3375 }
3376 
3377 void free_transhuge_page(struct page *page)
3378 {
3379 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380 	unsigned long flags;
3381 
3382 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383 	if (!list_empty(page_deferred_list(page))) {
3384 		pgdata->split_queue_len--;
3385 		list_del(page_deferred_list(page));
3386 	}
3387 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388 	free_compound_page(page);
3389 }
3390 
3391 void deferred_split_huge_page(struct page *page)
3392 {
3393 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394 	unsigned long flags;
3395 
3396 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397 
3398 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399 	if (list_empty(page_deferred_list(page))) {
3400 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402 		pgdata->split_queue_len++;
3403 	}
3404 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405 }
3406 
3407 static unsigned long deferred_split_count(struct shrinker *shrink,
3408 		struct shrink_control *sc)
3409 {
3410 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411 	return ACCESS_ONCE(pgdata->split_queue_len);
3412 }
3413 
3414 static unsigned long deferred_split_scan(struct shrinker *shrink,
3415 		struct shrink_control *sc)
3416 {
3417 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418 	unsigned long flags;
3419 	LIST_HEAD(list), *pos, *next;
3420 	struct page *page;
3421 	int split = 0;
3422 
3423 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424 	/* Take pin on all head pages to avoid freeing them under us */
3425 	list_for_each_safe(pos, next, &pgdata->split_queue) {
3426 		page = list_entry((void *)pos, struct page, mapping);
3427 		page = compound_head(page);
3428 		if (get_page_unless_zero(page)) {
3429 			list_move(page_deferred_list(page), &list);
3430 		} else {
3431 			/* We lost race with put_compound_page() */
3432 			list_del_init(page_deferred_list(page));
3433 			pgdata->split_queue_len--;
3434 		}
3435 		if (!--sc->nr_to_scan)
3436 			break;
3437 	}
3438 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439 
3440 	list_for_each_safe(pos, next, &list) {
3441 		page = list_entry((void *)pos, struct page, mapping);
3442 		lock_page(page);
3443 		/* split_huge_page() removes page from list on success */
3444 		if (!split_huge_page(page))
3445 			split++;
3446 		unlock_page(page);
3447 		put_page(page);
3448 	}
3449 
3450 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451 	list_splice_tail(&list, &pgdata->split_queue);
3452 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453 
3454 	/*
3455 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3456 	 * This can happen if pages were freed under us.
3457 	 */
3458 	if (!split && list_empty(&pgdata->split_queue))
3459 		return SHRINK_STOP;
3460 	return split;
3461 }
3462 
3463 static struct shrinker deferred_split_shrinker = {
3464 	.count_objects = deferred_split_count,
3465 	.scan_objects = deferred_split_scan,
3466 	.seeks = DEFAULT_SEEKS,
3467 	.flags = SHRINKER_NUMA_AWARE,
3468 };
3469 
3470 #ifdef CONFIG_DEBUG_FS
3471 static int split_huge_pages_set(void *data, u64 val)
3472 {
3473 	struct zone *zone;
3474 	struct page *page;
3475 	unsigned long pfn, max_zone_pfn;
3476 	unsigned long total = 0, split = 0;
3477 
3478 	if (val != 1)
3479 		return -EINVAL;
3480 
3481 	for_each_populated_zone(zone) {
3482 		max_zone_pfn = zone_end_pfn(zone);
3483 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484 			if (!pfn_valid(pfn))
3485 				continue;
3486 
3487 			page = pfn_to_page(pfn);
3488 			if (!get_page_unless_zero(page))
3489 				continue;
3490 
3491 			if (zone != page_zone(page))
3492 				goto next;
3493 
3494 			if (!PageHead(page) || !PageAnon(page) ||
3495 					PageHuge(page))
3496 				goto next;
3497 
3498 			total++;
3499 			lock_page(page);
3500 			if (!split_huge_page(page))
3501 				split++;
3502 			unlock_page(page);
3503 next:
3504 			put_page(page);
3505 		}
3506 	}
3507 
3508 	pr_info("%lu of %lu THP split\n", split, total);
3509 
3510 	return 0;
3511 }
3512 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513 		"%llu\n");
3514 
3515 static int __init split_huge_pages_debugfs(void)
3516 {
3517 	void *ret;
3518 
3519 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520 			&split_huge_pages_fops);
3521 	if (!ret)
3522 		pr_warn("Failed to create split_huge_pages in debugfs");
3523 	return 0;
3524 }
3525 late_initcall(split_huge_pages_debugfs);
3526 #endif
3527