xref: /linux/mm/huge_memory.c (revision 4fd18fc38757217c746aa063ba9e4729814dc737)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/coredump.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/oom.h>
34 #include <linux/numa.h>
35 #include <linux/page_owner.h>
36 
37 #include <asm/tlb.h>
38 #include <asm/pgalloc.h>
39 #include "internal.h"
40 
41 /*
42  * By default, transparent hugepage support is disabled in order to avoid
43  * risking an increased memory footprint for applications that are not
44  * guaranteed to benefit from it. When transparent hugepage support is
45  * enabled, it is for all mappings, and khugepaged scans all mappings.
46  * Defrag is invoked by khugepaged hugepage allocations and by page faults
47  * for all hugepage allocations.
48  */
49 unsigned long transparent_hugepage_flags __read_mostly =
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
51 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
52 #endif
53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55 #endif
56 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
57 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
59 
60 static struct shrinker deferred_split_shrinker;
61 
62 static atomic_t huge_zero_refcount;
63 struct page *huge_zero_page __read_mostly;
64 
65 bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66 {
67 	/* The addr is used to check if the vma size fits */
68 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69 
70 	if (!transhuge_vma_suitable(vma, addr))
71 		return false;
72 	if (vma_is_anonymous(vma))
73 		return __transparent_hugepage_enabled(vma);
74 	if (vma_is_shmem(vma))
75 		return shmem_huge_enabled(vma);
76 
77 	return false;
78 }
79 
80 static struct page *get_huge_zero_page(void)
81 {
82 	struct page *zero_page;
83 retry:
84 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
85 		return READ_ONCE(huge_zero_page);
86 
87 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
88 			HPAGE_PMD_ORDER);
89 	if (!zero_page) {
90 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
91 		return NULL;
92 	}
93 	count_vm_event(THP_ZERO_PAGE_ALLOC);
94 	preempt_disable();
95 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
96 		preempt_enable();
97 		__free_pages(zero_page, compound_order(zero_page));
98 		goto retry;
99 	}
100 
101 	/* We take additional reference here. It will be put back by shrinker */
102 	atomic_set(&huge_zero_refcount, 2);
103 	preempt_enable();
104 	return READ_ONCE(huge_zero_page);
105 }
106 
107 static void put_huge_zero_page(void)
108 {
109 	/*
110 	 * Counter should never go to zero here. Only shrinker can put
111 	 * last reference.
112 	 */
113 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
114 }
115 
116 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117 {
118 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 		return READ_ONCE(huge_zero_page);
120 
121 	if (!get_huge_zero_page())
122 		return NULL;
123 
124 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 		put_huge_zero_page();
126 
127 	return READ_ONCE(huge_zero_page);
128 }
129 
130 void mm_put_huge_zero_page(struct mm_struct *mm)
131 {
132 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 		put_huge_zero_page();
134 }
135 
136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 					struct shrink_control *sc)
138 {
139 	/* we can free zero page only if last reference remains */
140 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141 }
142 
143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 				       struct shrink_control *sc)
145 {
146 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
147 		struct page *zero_page = xchg(&huge_zero_page, NULL);
148 		BUG_ON(zero_page == NULL);
149 		__free_pages(zero_page, compound_order(zero_page));
150 		return HPAGE_PMD_NR;
151 	}
152 
153 	return 0;
154 }
155 
156 static struct shrinker huge_zero_page_shrinker = {
157 	.count_objects = shrink_huge_zero_page_count,
158 	.scan_objects = shrink_huge_zero_page_scan,
159 	.seeks = DEFAULT_SEEKS,
160 };
161 
162 #ifdef CONFIG_SYSFS
163 static ssize_t enabled_show(struct kobject *kobj,
164 			    struct kobj_attribute *attr, char *buf)
165 {
166 	const char *output;
167 
168 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
169 		output = "[always] madvise never";
170 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
171 			  &transparent_hugepage_flags))
172 		output = "always [madvise] never";
173 	else
174 		output = "always madvise [never]";
175 
176 	return sysfs_emit(buf, "%s\n", output);
177 }
178 
179 static ssize_t enabled_store(struct kobject *kobj,
180 			     struct kobj_attribute *attr,
181 			     const char *buf, size_t count)
182 {
183 	ssize_t ret = count;
184 
185 	if (sysfs_streq(buf, "always")) {
186 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
187 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 	} else if (sysfs_streq(buf, "madvise")) {
189 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
190 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 	} else if (sysfs_streq(buf, "never")) {
192 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
193 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
194 	} else
195 		ret = -EINVAL;
196 
197 	if (ret > 0) {
198 		int err = start_stop_khugepaged();
199 		if (err)
200 			ret = err;
201 	}
202 	return ret;
203 }
204 static struct kobj_attribute enabled_attr =
205 	__ATTR(enabled, 0644, enabled_show, enabled_store);
206 
207 ssize_t single_hugepage_flag_show(struct kobject *kobj,
208 				  struct kobj_attribute *attr, char *buf,
209 				  enum transparent_hugepage_flag flag)
210 {
211 	return sysfs_emit(buf, "%d\n",
212 			  !!test_bit(flag, &transparent_hugepage_flags));
213 }
214 
215 ssize_t single_hugepage_flag_store(struct kobject *kobj,
216 				 struct kobj_attribute *attr,
217 				 const char *buf, size_t count,
218 				 enum transparent_hugepage_flag flag)
219 {
220 	unsigned long value;
221 	int ret;
222 
223 	ret = kstrtoul(buf, 10, &value);
224 	if (ret < 0)
225 		return ret;
226 	if (value > 1)
227 		return -EINVAL;
228 
229 	if (value)
230 		set_bit(flag, &transparent_hugepage_flags);
231 	else
232 		clear_bit(flag, &transparent_hugepage_flags);
233 
234 	return count;
235 }
236 
237 static ssize_t defrag_show(struct kobject *kobj,
238 			   struct kobj_attribute *attr, char *buf)
239 {
240 	const char *output;
241 
242 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
243 		     &transparent_hugepage_flags))
244 		output = "[always] defer defer+madvise madvise never";
245 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
246 			  &transparent_hugepage_flags))
247 		output = "always [defer] defer+madvise madvise never";
248 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
249 			  &transparent_hugepage_flags))
250 		output = "always defer [defer+madvise] madvise never";
251 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
252 			  &transparent_hugepage_flags))
253 		output = "always defer defer+madvise [madvise] never";
254 	else
255 		output = "always defer defer+madvise madvise [never]";
256 
257 	return sysfs_emit(buf, "%s\n", output);
258 }
259 
260 static ssize_t defrag_store(struct kobject *kobj,
261 			    struct kobj_attribute *attr,
262 			    const char *buf, size_t count)
263 {
264 	if (sysfs_streq(buf, "always")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
269 	} else if (sysfs_streq(buf, "defer+madvise")) {
270 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
271 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
272 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
273 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 	} else if (sysfs_streq(buf, "defer")) {
275 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
276 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
277 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
278 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 	} else if (sysfs_streq(buf, "madvise")) {
280 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
283 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
284 	} else if (sysfs_streq(buf, "never")) {
285 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
289 	} else
290 		return -EINVAL;
291 
292 	return count;
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 static ssize_t use_zero_page_show(struct kobject *kobj,
298 				  struct kobj_attribute *attr, char *buf)
299 {
300 	return single_hugepage_flag_show(kobj, attr, buf,
301 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
302 }
303 static ssize_t use_zero_page_store(struct kobject *kobj,
304 		struct kobj_attribute *attr, const char *buf, size_t count)
305 {
306 	return single_hugepage_flag_store(kobj, attr, buf, count,
307 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
308 }
309 static struct kobj_attribute use_zero_page_attr =
310 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
311 
312 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
313 				   struct kobj_attribute *attr, char *buf)
314 {
315 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
316 }
317 static struct kobj_attribute hpage_pmd_size_attr =
318 	__ATTR_RO(hpage_pmd_size);
319 
320 static struct attribute *hugepage_attr[] = {
321 	&enabled_attr.attr,
322 	&defrag_attr.attr,
323 	&use_zero_page_attr.attr,
324 	&hpage_pmd_size_attr.attr,
325 #ifdef CONFIG_SHMEM
326 	&shmem_enabled_attr.attr,
327 #endif
328 	NULL,
329 };
330 
331 static const struct attribute_group hugepage_attr_group = {
332 	.attrs = hugepage_attr,
333 };
334 
335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
336 {
337 	int err;
338 
339 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 	if (unlikely(!*hugepage_kobj)) {
341 		pr_err("failed to create transparent hugepage kobject\n");
342 		return -ENOMEM;
343 	}
344 
345 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
346 	if (err) {
347 		pr_err("failed to register transparent hugepage group\n");
348 		goto delete_obj;
349 	}
350 
351 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
352 	if (err) {
353 		pr_err("failed to register transparent hugepage group\n");
354 		goto remove_hp_group;
355 	}
356 
357 	return 0;
358 
359 remove_hp_group:
360 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361 delete_obj:
362 	kobject_put(*hugepage_kobj);
363 	return err;
364 }
365 
366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367 {
368 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 	kobject_put(hugepage_kobj);
371 }
372 #else
373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374 {
375 	return 0;
376 }
377 
378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 }
381 #endif /* CONFIG_SYSFS */
382 
383 static int __init hugepage_init(void)
384 {
385 	int err;
386 	struct kobject *hugepage_kobj;
387 
388 	if (!has_transparent_hugepage()) {
389 		transparent_hugepage_flags = 0;
390 		return -EINVAL;
391 	}
392 
393 	/*
394 	 * hugepages can't be allocated by the buddy allocator
395 	 */
396 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 	/*
398 	 * we use page->mapping and page->index in second tail page
399 	 * as list_head: assuming THP order >= 2
400 	 */
401 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402 
403 	err = hugepage_init_sysfs(&hugepage_kobj);
404 	if (err)
405 		goto err_sysfs;
406 
407 	err = khugepaged_init();
408 	if (err)
409 		goto err_slab;
410 
411 	err = register_shrinker(&huge_zero_page_shrinker);
412 	if (err)
413 		goto err_hzp_shrinker;
414 	err = register_shrinker(&deferred_split_shrinker);
415 	if (err)
416 		goto err_split_shrinker;
417 
418 	/*
419 	 * By default disable transparent hugepages on smaller systems,
420 	 * where the extra memory used could hurt more than TLB overhead
421 	 * is likely to save.  The admin can still enable it through /sys.
422 	 */
423 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
424 		transparent_hugepage_flags = 0;
425 		return 0;
426 	}
427 
428 	err = start_stop_khugepaged();
429 	if (err)
430 		goto err_khugepaged;
431 
432 	return 0;
433 err_khugepaged:
434 	unregister_shrinker(&deferred_split_shrinker);
435 err_split_shrinker:
436 	unregister_shrinker(&huge_zero_page_shrinker);
437 err_hzp_shrinker:
438 	khugepaged_destroy();
439 err_slab:
440 	hugepage_exit_sysfs(hugepage_kobj);
441 err_sysfs:
442 	return err;
443 }
444 subsys_initcall(hugepage_init);
445 
446 static int __init setup_transparent_hugepage(char *str)
447 {
448 	int ret = 0;
449 	if (!str)
450 		goto out;
451 	if (!strcmp(str, "always")) {
452 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 			&transparent_hugepage_flags);
454 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 			  &transparent_hugepage_flags);
456 		ret = 1;
457 	} else if (!strcmp(str, "madvise")) {
458 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 			  &transparent_hugepage_flags);
460 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 			&transparent_hugepage_flags);
462 		ret = 1;
463 	} else if (!strcmp(str, "never")) {
464 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 			  &transparent_hugepage_flags);
466 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 			  &transparent_hugepage_flags);
468 		ret = 1;
469 	}
470 out:
471 	if (!ret)
472 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
473 	return ret;
474 }
475 __setup("transparent_hugepage=", setup_transparent_hugepage);
476 
477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
478 {
479 	if (likely(vma->vm_flags & VM_WRITE))
480 		pmd = pmd_mkwrite(pmd);
481 	return pmd;
482 }
483 
484 #ifdef CONFIG_MEMCG
485 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
486 {
487 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
488 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
489 
490 	if (memcg)
491 		return &memcg->deferred_split_queue;
492 	else
493 		return &pgdat->deferred_split_queue;
494 }
495 #else
496 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
497 {
498 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
499 
500 	return &pgdat->deferred_split_queue;
501 }
502 #endif
503 
504 void prep_transhuge_page(struct page *page)
505 {
506 	/*
507 	 * we use page->mapping and page->indexlru in second tail page
508 	 * as list_head: assuming THP order >= 2
509 	 */
510 
511 	INIT_LIST_HEAD(page_deferred_list(page));
512 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
513 }
514 
515 bool is_transparent_hugepage(struct page *page)
516 {
517 	if (!PageCompound(page))
518 		return false;
519 
520 	page = compound_head(page);
521 	return is_huge_zero_page(page) ||
522 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
523 }
524 EXPORT_SYMBOL_GPL(is_transparent_hugepage);
525 
526 static unsigned long __thp_get_unmapped_area(struct file *filp,
527 		unsigned long addr, unsigned long len,
528 		loff_t off, unsigned long flags, unsigned long size)
529 {
530 	loff_t off_end = off + len;
531 	loff_t off_align = round_up(off, size);
532 	unsigned long len_pad, ret;
533 
534 	if (off_end <= off_align || (off_end - off_align) < size)
535 		return 0;
536 
537 	len_pad = len + size;
538 	if (len_pad < len || (off + len_pad) < off)
539 		return 0;
540 
541 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
542 					      off >> PAGE_SHIFT, flags);
543 
544 	/*
545 	 * The failure might be due to length padding. The caller will retry
546 	 * without the padding.
547 	 */
548 	if (IS_ERR_VALUE(ret))
549 		return 0;
550 
551 	/*
552 	 * Do not try to align to THP boundary if allocation at the address
553 	 * hint succeeds.
554 	 */
555 	if (ret == addr)
556 		return addr;
557 
558 	ret += (off - ret) & (size - 1);
559 	return ret;
560 }
561 
562 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
563 		unsigned long len, unsigned long pgoff, unsigned long flags)
564 {
565 	unsigned long ret;
566 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
567 
568 	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
569 		goto out;
570 
571 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
572 	if (ret)
573 		return ret;
574 out:
575 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
576 }
577 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
578 
579 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
580 			struct page *page, gfp_t gfp)
581 {
582 	struct vm_area_struct *vma = vmf->vma;
583 	pgtable_t pgtable;
584 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
585 	vm_fault_t ret = 0;
586 
587 	VM_BUG_ON_PAGE(!PageCompound(page), page);
588 
589 	if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
590 		put_page(page);
591 		count_vm_event(THP_FAULT_FALLBACK);
592 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
593 		return VM_FAULT_FALLBACK;
594 	}
595 	cgroup_throttle_swaprate(page, gfp);
596 
597 	pgtable = pte_alloc_one(vma->vm_mm);
598 	if (unlikely(!pgtable)) {
599 		ret = VM_FAULT_OOM;
600 		goto release;
601 	}
602 
603 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
604 	/*
605 	 * The memory barrier inside __SetPageUptodate makes sure that
606 	 * clear_huge_page writes become visible before the set_pmd_at()
607 	 * write.
608 	 */
609 	__SetPageUptodate(page);
610 
611 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
612 	if (unlikely(!pmd_none(*vmf->pmd))) {
613 		goto unlock_release;
614 	} else {
615 		pmd_t entry;
616 
617 		ret = check_stable_address_space(vma->vm_mm);
618 		if (ret)
619 			goto unlock_release;
620 
621 		/* Deliver the page fault to userland */
622 		if (userfaultfd_missing(vma)) {
623 			vm_fault_t ret2;
624 
625 			spin_unlock(vmf->ptl);
626 			put_page(page);
627 			pte_free(vma->vm_mm, pgtable);
628 			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
629 			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
630 			return ret2;
631 		}
632 
633 		entry = mk_huge_pmd(page, vma->vm_page_prot);
634 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635 		page_add_new_anon_rmap(page, vma, haddr, true);
636 		lru_cache_add_inactive_or_unevictable(page, vma);
637 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
638 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
639 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
640 		mm_inc_nr_ptes(vma->vm_mm);
641 		spin_unlock(vmf->ptl);
642 		count_vm_event(THP_FAULT_ALLOC);
643 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
644 	}
645 
646 	return 0;
647 unlock_release:
648 	spin_unlock(vmf->ptl);
649 release:
650 	if (pgtable)
651 		pte_free(vma->vm_mm, pgtable);
652 	put_page(page);
653 	return ret;
654 
655 }
656 
657 /*
658  * always: directly stall for all thp allocations
659  * defer: wake kswapd and fail if not immediately available
660  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
661  *		  fail if not immediately available
662  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
663  *	    available
664  * never: never stall for any thp allocation
665  */
666 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
667 {
668 	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
669 
670 	/* Always do synchronous compaction */
671 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
672 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
673 
674 	/* Kick kcompactd and fail quickly */
675 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
676 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
677 
678 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
679 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
680 		return GFP_TRANSHUGE_LIGHT |
681 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
682 					__GFP_KSWAPD_RECLAIM);
683 
684 	/* Only do synchronous compaction if madvised */
685 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
686 		return GFP_TRANSHUGE_LIGHT |
687 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
688 
689 	return GFP_TRANSHUGE_LIGHT;
690 }
691 
692 /* Caller must hold page table lock. */
693 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
694 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
695 		struct page *zero_page)
696 {
697 	pmd_t entry;
698 	if (!pmd_none(*pmd))
699 		return false;
700 	entry = mk_pmd(zero_page, vma->vm_page_prot);
701 	entry = pmd_mkhuge(entry);
702 	if (pgtable)
703 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
704 	set_pmd_at(mm, haddr, pmd, entry);
705 	mm_inc_nr_ptes(mm);
706 	return true;
707 }
708 
709 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
710 {
711 	struct vm_area_struct *vma = vmf->vma;
712 	gfp_t gfp;
713 	struct page *page;
714 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
715 
716 	if (!transhuge_vma_suitable(vma, haddr))
717 		return VM_FAULT_FALLBACK;
718 	if (unlikely(anon_vma_prepare(vma)))
719 		return VM_FAULT_OOM;
720 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
721 		return VM_FAULT_OOM;
722 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
723 			!mm_forbids_zeropage(vma->vm_mm) &&
724 			transparent_hugepage_use_zero_page()) {
725 		pgtable_t pgtable;
726 		struct page *zero_page;
727 		vm_fault_t ret;
728 		pgtable = pte_alloc_one(vma->vm_mm);
729 		if (unlikely(!pgtable))
730 			return VM_FAULT_OOM;
731 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
732 		if (unlikely(!zero_page)) {
733 			pte_free(vma->vm_mm, pgtable);
734 			count_vm_event(THP_FAULT_FALLBACK);
735 			return VM_FAULT_FALLBACK;
736 		}
737 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
738 		ret = 0;
739 		if (pmd_none(*vmf->pmd)) {
740 			ret = check_stable_address_space(vma->vm_mm);
741 			if (ret) {
742 				spin_unlock(vmf->ptl);
743 				pte_free(vma->vm_mm, pgtable);
744 			} else if (userfaultfd_missing(vma)) {
745 				spin_unlock(vmf->ptl);
746 				pte_free(vma->vm_mm, pgtable);
747 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
748 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
749 			} else {
750 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
751 						   haddr, vmf->pmd, zero_page);
752 				spin_unlock(vmf->ptl);
753 			}
754 		} else {
755 			spin_unlock(vmf->ptl);
756 			pte_free(vma->vm_mm, pgtable);
757 		}
758 		return ret;
759 	}
760 	gfp = alloc_hugepage_direct_gfpmask(vma);
761 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
762 	if (unlikely(!page)) {
763 		count_vm_event(THP_FAULT_FALLBACK);
764 		return VM_FAULT_FALLBACK;
765 	}
766 	prep_transhuge_page(page);
767 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
768 }
769 
770 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
771 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
772 		pgtable_t pgtable)
773 {
774 	struct mm_struct *mm = vma->vm_mm;
775 	pmd_t entry;
776 	spinlock_t *ptl;
777 
778 	ptl = pmd_lock(mm, pmd);
779 	if (!pmd_none(*pmd)) {
780 		if (write) {
781 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
782 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
783 				goto out_unlock;
784 			}
785 			entry = pmd_mkyoung(*pmd);
786 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
787 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
788 				update_mmu_cache_pmd(vma, addr, pmd);
789 		}
790 
791 		goto out_unlock;
792 	}
793 
794 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
795 	if (pfn_t_devmap(pfn))
796 		entry = pmd_mkdevmap(entry);
797 	if (write) {
798 		entry = pmd_mkyoung(pmd_mkdirty(entry));
799 		entry = maybe_pmd_mkwrite(entry, vma);
800 	}
801 
802 	if (pgtable) {
803 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
804 		mm_inc_nr_ptes(mm);
805 		pgtable = NULL;
806 	}
807 
808 	set_pmd_at(mm, addr, pmd, entry);
809 	update_mmu_cache_pmd(vma, addr, pmd);
810 
811 out_unlock:
812 	spin_unlock(ptl);
813 	if (pgtable)
814 		pte_free(mm, pgtable);
815 }
816 
817 /**
818  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
819  * @vmf: Structure describing the fault
820  * @pfn: pfn to insert
821  * @pgprot: page protection to use
822  * @write: whether it's a write fault
823  *
824  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
825  * also consult the vmf_insert_mixed_prot() documentation when
826  * @pgprot != @vmf->vma->vm_page_prot.
827  *
828  * Return: vm_fault_t value.
829  */
830 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
831 				   pgprot_t pgprot, bool write)
832 {
833 	unsigned long addr = vmf->address & PMD_MASK;
834 	struct vm_area_struct *vma = vmf->vma;
835 	pgtable_t pgtable = NULL;
836 
837 	/*
838 	 * If we had pmd_special, we could avoid all these restrictions,
839 	 * but we need to be consistent with PTEs and architectures that
840 	 * can't support a 'special' bit.
841 	 */
842 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
843 			!pfn_t_devmap(pfn));
844 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
845 						(VM_PFNMAP|VM_MIXEDMAP));
846 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
847 
848 	if (addr < vma->vm_start || addr >= vma->vm_end)
849 		return VM_FAULT_SIGBUS;
850 
851 	if (arch_needs_pgtable_deposit()) {
852 		pgtable = pte_alloc_one(vma->vm_mm);
853 		if (!pgtable)
854 			return VM_FAULT_OOM;
855 	}
856 
857 	track_pfn_insert(vma, &pgprot, pfn);
858 
859 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
860 	return VM_FAULT_NOPAGE;
861 }
862 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
863 
864 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
865 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
866 {
867 	if (likely(vma->vm_flags & VM_WRITE))
868 		pud = pud_mkwrite(pud);
869 	return pud;
870 }
871 
872 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
873 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
874 {
875 	struct mm_struct *mm = vma->vm_mm;
876 	pud_t entry;
877 	spinlock_t *ptl;
878 
879 	ptl = pud_lock(mm, pud);
880 	if (!pud_none(*pud)) {
881 		if (write) {
882 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
883 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
884 				goto out_unlock;
885 			}
886 			entry = pud_mkyoung(*pud);
887 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
888 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
889 				update_mmu_cache_pud(vma, addr, pud);
890 		}
891 		goto out_unlock;
892 	}
893 
894 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
895 	if (pfn_t_devmap(pfn))
896 		entry = pud_mkdevmap(entry);
897 	if (write) {
898 		entry = pud_mkyoung(pud_mkdirty(entry));
899 		entry = maybe_pud_mkwrite(entry, vma);
900 	}
901 	set_pud_at(mm, addr, pud, entry);
902 	update_mmu_cache_pud(vma, addr, pud);
903 
904 out_unlock:
905 	spin_unlock(ptl);
906 }
907 
908 /**
909  * vmf_insert_pfn_pud_prot - insert a pud size pfn
910  * @vmf: Structure describing the fault
911  * @pfn: pfn to insert
912  * @pgprot: page protection to use
913  * @write: whether it's a write fault
914  *
915  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
916  * also consult the vmf_insert_mixed_prot() documentation when
917  * @pgprot != @vmf->vma->vm_page_prot.
918  *
919  * Return: vm_fault_t value.
920  */
921 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
922 				   pgprot_t pgprot, bool write)
923 {
924 	unsigned long addr = vmf->address & PUD_MASK;
925 	struct vm_area_struct *vma = vmf->vma;
926 
927 	/*
928 	 * If we had pud_special, we could avoid all these restrictions,
929 	 * but we need to be consistent with PTEs and architectures that
930 	 * can't support a 'special' bit.
931 	 */
932 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
933 			!pfn_t_devmap(pfn));
934 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
935 						(VM_PFNMAP|VM_MIXEDMAP));
936 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
937 
938 	if (addr < vma->vm_start || addr >= vma->vm_end)
939 		return VM_FAULT_SIGBUS;
940 
941 	track_pfn_insert(vma, &pgprot, pfn);
942 
943 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
944 	return VM_FAULT_NOPAGE;
945 }
946 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
947 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
948 
949 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
950 		pmd_t *pmd, int flags)
951 {
952 	pmd_t _pmd;
953 
954 	_pmd = pmd_mkyoung(*pmd);
955 	if (flags & FOLL_WRITE)
956 		_pmd = pmd_mkdirty(_pmd);
957 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
958 				pmd, _pmd, flags & FOLL_WRITE))
959 		update_mmu_cache_pmd(vma, addr, pmd);
960 }
961 
962 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
963 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
964 {
965 	unsigned long pfn = pmd_pfn(*pmd);
966 	struct mm_struct *mm = vma->vm_mm;
967 	struct page *page;
968 
969 	assert_spin_locked(pmd_lockptr(mm, pmd));
970 
971 	/*
972 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
973 	 * not be in this function with `flags & FOLL_COW` set.
974 	 */
975 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
976 
977 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
978 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
979 			 (FOLL_PIN | FOLL_GET)))
980 		return NULL;
981 
982 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
983 		return NULL;
984 
985 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
986 		/* pass */;
987 	else
988 		return NULL;
989 
990 	if (flags & FOLL_TOUCH)
991 		touch_pmd(vma, addr, pmd, flags);
992 
993 	/*
994 	 * device mapped pages can only be returned if the
995 	 * caller will manage the page reference count.
996 	 */
997 	if (!(flags & (FOLL_GET | FOLL_PIN)))
998 		return ERR_PTR(-EEXIST);
999 
1000 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1001 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1002 	if (!*pgmap)
1003 		return ERR_PTR(-EFAULT);
1004 	page = pfn_to_page(pfn);
1005 	if (!try_grab_page(page, flags))
1006 		page = ERR_PTR(-ENOMEM);
1007 
1008 	return page;
1009 }
1010 
1011 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1013 		  struct vm_area_struct *vma)
1014 {
1015 	spinlock_t *dst_ptl, *src_ptl;
1016 	struct page *src_page;
1017 	pmd_t pmd;
1018 	pgtable_t pgtable = NULL;
1019 	int ret = -ENOMEM;
1020 
1021 	/* Skip if can be re-fill on fault */
1022 	if (!vma_is_anonymous(vma))
1023 		return 0;
1024 
1025 	pgtable = pte_alloc_one(dst_mm);
1026 	if (unlikely(!pgtable))
1027 		goto out;
1028 
1029 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1030 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1031 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1032 
1033 	ret = -EAGAIN;
1034 	pmd = *src_pmd;
1035 
1036 	/*
1037 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1038 	 * does not have the VM_UFFD_WP, which means that the uffd
1039 	 * fork event is not enabled.
1040 	 */
1041 	if (!(vma->vm_flags & VM_UFFD_WP))
1042 		pmd = pmd_clear_uffd_wp(pmd);
1043 
1044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1045 	if (unlikely(is_swap_pmd(pmd))) {
1046 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1047 
1048 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1049 		if (is_write_migration_entry(entry)) {
1050 			make_migration_entry_read(&entry);
1051 			pmd = swp_entry_to_pmd(entry);
1052 			if (pmd_swp_soft_dirty(*src_pmd))
1053 				pmd = pmd_swp_mksoft_dirty(pmd);
1054 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1055 		}
1056 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1057 		mm_inc_nr_ptes(dst_mm);
1058 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1059 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1060 		ret = 0;
1061 		goto out_unlock;
1062 	}
1063 #endif
1064 
1065 	if (unlikely(!pmd_trans_huge(pmd))) {
1066 		pte_free(dst_mm, pgtable);
1067 		goto out_unlock;
1068 	}
1069 	/*
1070 	 * When page table lock is held, the huge zero pmd should not be
1071 	 * under splitting since we don't split the page itself, only pmd to
1072 	 * a page table.
1073 	 */
1074 	if (is_huge_zero_pmd(pmd)) {
1075 		struct page *zero_page;
1076 		/*
1077 		 * get_huge_zero_page() will never allocate a new page here,
1078 		 * since we already have a zero page to copy. It just takes a
1079 		 * reference.
1080 		 */
1081 		zero_page = mm_get_huge_zero_page(dst_mm);
1082 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1083 				zero_page);
1084 		ret = 0;
1085 		goto out_unlock;
1086 	}
1087 
1088 	src_page = pmd_page(pmd);
1089 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1090 
1091 	/*
1092 	 * If this page is a potentially pinned page, split and retry the fault
1093 	 * with smaller page size.  Normally this should not happen because the
1094 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1095 	 * best effort that the pinned pages won't be replaced by another
1096 	 * random page during the coming copy-on-write.
1097 	 */
1098 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1099 		     atomic_read(&src_mm->has_pinned) &&
1100 		     page_maybe_dma_pinned(src_page))) {
1101 		pte_free(dst_mm, pgtable);
1102 		spin_unlock(src_ptl);
1103 		spin_unlock(dst_ptl);
1104 		__split_huge_pmd(vma, src_pmd, addr, false, NULL);
1105 		return -EAGAIN;
1106 	}
1107 
1108 	get_page(src_page);
1109 	page_dup_rmap(src_page, true);
1110 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1111 	mm_inc_nr_ptes(dst_mm);
1112 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1113 
1114 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1115 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1116 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1117 
1118 	ret = 0;
1119 out_unlock:
1120 	spin_unlock(src_ptl);
1121 	spin_unlock(dst_ptl);
1122 out:
1123 	return ret;
1124 }
1125 
1126 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1127 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1128 		pud_t *pud, int flags)
1129 {
1130 	pud_t _pud;
1131 
1132 	_pud = pud_mkyoung(*pud);
1133 	if (flags & FOLL_WRITE)
1134 		_pud = pud_mkdirty(_pud);
1135 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1136 				pud, _pud, flags & FOLL_WRITE))
1137 		update_mmu_cache_pud(vma, addr, pud);
1138 }
1139 
1140 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1141 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1142 {
1143 	unsigned long pfn = pud_pfn(*pud);
1144 	struct mm_struct *mm = vma->vm_mm;
1145 	struct page *page;
1146 
1147 	assert_spin_locked(pud_lockptr(mm, pud));
1148 
1149 	if (flags & FOLL_WRITE && !pud_write(*pud))
1150 		return NULL;
1151 
1152 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1153 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1154 			 (FOLL_PIN | FOLL_GET)))
1155 		return NULL;
1156 
1157 	if (pud_present(*pud) && pud_devmap(*pud))
1158 		/* pass */;
1159 	else
1160 		return NULL;
1161 
1162 	if (flags & FOLL_TOUCH)
1163 		touch_pud(vma, addr, pud, flags);
1164 
1165 	/*
1166 	 * device mapped pages can only be returned if the
1167 	 * caller will manage the page reference count.
1168 	 *
1169 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1170 	 */
1171 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1172 		return ERR_PTR(-EEXIST);
1173 
1174 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1175 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1176 	if (!*pgmap)
1177 		return ERR_PTR(-EFAULT);
1178 	page = pfn_to_page(pfn);
1179 	if (!try_grab_page(page, flags))
1180 		page = ERR_PTR(-ENOMEM);
1181 
1182 	return page;
1183 }
1184 
1185 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1186 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1187 		  struct vm_area_struct *vma)
1188 {
1189 	spinlock_t *dst_ptl, *src_ptl;
1190 	pud_t pud;
1191 	int ret;
1192 
1193 	dst_ptl = pud_lock(dst_mm, dst_pud);
1194 	src_ptl = pud_lockptr(src_mm, src_pud);
1195 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1196 
1197 	ret = -EAGAIN;
1198 	pud = *src_pud;
1199 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1200 		goto out_unlock;
1201 
1202 	/*
1203 	 * When page table lock is held, the huge zero pud should not be
1204 	 * under splitting since we don't split the page itself, only pud to
1205 	 * a page table.
1206 	 */
1207 	if (is_huge_zero_pud(pud)) {
1208 		/* No huge zero pud yet */
1209 	}
1210 
1211 	/* Please refer to comments in copy_huge_pmd() */
1212 	if (unlikely(is_cow_mapping(vma->vm_flags) &&
1213 		     atomic_read(&src_mm->has_pinned) &&
1214 		     page_maybe_dma_pinned(pud_page(pud)))) {
1215 		spin_unlock(src_ptl);
1216 		spin_unlock(dst_ptl);
1217 		__split_huge_pud(vma, src_pud, addr);
1218 		return -EAGAIN;
1219 	}
1220 
1221 	pudp_set_wrprotect(src_mm, addr, src_pud);
1222 	pud = pud_mkold(pud_wrprotect(pud));
1223 	set_pud_at(dst_mm, addr, dst_pud, pud);
1224 
1225 	ret = 0;
1226 out_unlock:
1227 	spin_unlock(src_ptl);
1228 	spin_unlock(dst_ptl);
1229 	return ret;
1230 }
1231 
1232 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1233 {
1234 	pud_t entry;
1235 	unsigned long haddr;
1236 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1237 
1238 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1239 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1240 		goto unlock;
1241 
1242 	entry = pud_mkyoung(orig_pud);
1243 	if (write)
1244 		entry = pud_mkdirty(entry);
1245 	haddr = vmf->address & HPAGE_PUD_MASK;
1246 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1247 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1248 
1249 unlock:
1250 	spin_unlock(vmf->ptl);
1251 }
1252 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1253 
1254 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1255 {
1256 	pmd_t entry;
1257 	unsigned long haddr;
1258 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1259 
1260 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1261 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1262 		goto unlock;
1263 
1264 	entry = pmd_mkyoung(orig_pmd);
1265 	if (write)
1266 		entry = pmd_mkdirty(entry);
1267 	haddr = vmf->address & HPAGE_PMD_MASK;
1268 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1269 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1270 
1271 unlock:
1272 	spin_unlock(vmf->ptl);
1273 }
1274 
1275 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1276 {
1277 	struct vm_area_struct *vma = vmf->vma;
1278 	struct page *page;
1279 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1280 
1281 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1282 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1283 
1284 	if (is_huge_zero_pmd(orig_pmd))
1285 		goto fallback;
1286 
1287 	spin_lock(vmf->ptl);
1288 
1289 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1290 		spin_unlock(vmf->ptl);
1291 		return 0;
1292 	}
1293 
1294 	page = pmd_page(orig_pmd);
1295 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1296 
1297 	/* Lock page for reuse_swap_page() */
1298 	if (!trylock_page(page)) {
1299 		get_page(page);
1300 		spin_unlock(vmf->ptl);
1301 		lock_page(page);
1302 		spin_lock(vmf->ptl);
1303 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1304 			spin_unlock(vmf->ptl);
1305 			unlock_page(page);
1306 			put_page(page);
1307 			return 0;
1308 		}
1309 		put_page(page);
1310 	}
1311 
1312 	/*
1313 	 * We can only reuse the page if nobody else maps the huge page or it's
1314 	 * part.
1315 	 */
1316 	if (reuse_swap_page(page, NULL)) {
1317 		pmd_t entry;
1318 		entry = pmd_mkyoung(orig_pmd);
1319 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1320 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1321 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1322 		unlock_page(page);
1323 		spin_unlock(vmf->ptl);
1324 		return VM_FAULT_WRITE;
1325 	}
1326 
1327 	unlock_page(page);
1328 	spin_unlock(vmf->ptl);
1329 fallback:
1330 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1331 	return VM_FAULT_FALLBACK;
1332 }
1333 
1334 /*
1335  * FOLL_FORCE can write to even unwritable pmd's, but only
1336  * after we've gone through a COW cycle and they are dirty.
1337  */
1338 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1339 {
1340 	return pmd_write(pmd) ||
1341 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1342 }
1343 
1344 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1345 				   unsigned long addr,
1346 				   pmd_t *pmd,
1347 				   unsigned int flags)
1348 {
1349 	struct mm_struct *mm = vma->vm_mm;
1350 	struct page *page = NULL;
1351 
1352 	assert_spin_locked(pmd_lockptr(mm, pmd));
1353 
1354 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1355 		goto out;
1356 
1357 	/* Avoid dumping huge zero page */
1358 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1359 		return ERR_PTR(-EFAULT);
1360 
1361 	/* Full NUMA hinting faults to serialise migration in fault paths */
1362 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1363 		goto out;
1364 
1365 	page = pmd_page(*pmd);
1366 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1367 
1368 	if (!try_grab_page(page, flags))
1369 		return ERR_PTR(-ENOMEM);
1370 
1371 	if (flags & FOLL_TOUCH)
1372 		touch_pmd(vma, addr, pmd, flags);
1373 
1374 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1375 		/*
1376 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1377 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1378 		 *
1379 		 * For anon THP:
1380 		 *
1381 		 * In most cases the pmd is the only mapping of the page as we
1382 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1383 		 * writable private mappings in populate_vma_page_range().
1384 		 *
1385 		 * The only scenario when we have the page shared here is if we
1386 		 * mlocking read-only mapping shared over fork(). We skip
1387 		 * mlocking such pages.
1388 		 *
1389 		 * For file THP:
1390 		 *
1391 		 * We can expect PageDoubleMap() to be stable under page lock:
1392 		 * for file pages we set it in page_add_file_rmap(), which
1393 		 * requires page to be locked.
1394 		 */
1395 
1396 		if (PageAnon(page) && compound_mapcount(page) != 1)
1397 			goto skip_mlock;
1398 		if (PageDoubleMap(page) || !page->mapping)
1399 			goto skip_mlock;
1400 		if (!trylock_page(page))
1401 			goto skip_mlock;
1402 		if (page->mapping && !PageDoubleMap(page))
1403 			mlock_vma_page(page);
1404 		unlock_page(page);
1405 	}
1406 skip_mlock:
1407 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1408 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1409 
1410 out:
1411 	return page;
1412 }
1413 
1414 /* NUMA hinting page fault entry point for trans huge pmds */
1415 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1416 {
1417 	struct vm_area_struct *vma = vmf->vma;
1418 	struct anon_vma *anon_vma = NULL;
1419 	struct page *page;
1420 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1421 	int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1422 	int target_nid, last_cpupid = -1;
1423 	bool page_locked;
1424 	bool migrated = false;
1425 	bool was_writable;
1426 	int flags = 0;
1427 
1428 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1429 	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1430 		goto out_unlock;
1431 
1432 	/*
1433 	 * If there are potential migrations, wait for completion and retry
1434 	 * without disrupting NUMA hinting information. Do not relock and
1435 	 * check_same as the page may no longer be mapped.
1436 	 */
1437 	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1438 		page = pmd_page(*vmf->pmd);
1439 		if (!get_page_unless_zero(page))
1440 			goto out_unlock;
1441 		spin_unlock(vmf->ptl);
1442 		put_and_wait_on_page_locked(page);
1443 		goto out;
1444 	}
1445 
1446 	page = pmd_page(pmd);
1447 	BUG_ON(is_huge_zero_page(page));
1448 	page_nid = page_to_nid(page);
1449 	last_cpupid = page_cpupid_last(page);
1450 	count_vm_numa_event(NUMA_HINT_FAULTS);
1451 	if (page_nid == this_nid) {
1452 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1453 		flags |= TNF_FAULT_LOCAL;
1454 	}
1455 
1456 	/* See similar comment in do_numa_page for explanation */
1457 	if (!pmd_savedwrite(pmd))
1458 		flags |= TNF_NO_GROUP;
1459 
1460 	/*
1461 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1462 	 * page_table_lock if at all possible
1463 	 */
1464 	page_locked = trylock_page(page);
1465 	target_nid = mpol_misplaced(page, vma, haddr);
1466 	if (target_nid == NUMA_NO_NODE) {
1467 		/* If the page was locked, there are no parallel migrations */
1468 		if (page_locked)
1469 			goto clear_pmdnuma;
1470 	}
1471 
1472 	/* Migration could have started since the pmd_trans_migrating check */
1473 	if (!page_locked) {
1474 		page_nid = NUMA_NO_NODE;
1475 		if (!get_page_unless_zero(page))
1476 			goto out_unlock;
1477 		spin_unlock(vmf->ptl);
1478 		put_and_wait_on_page_locked(page);
1479 		goto out;
1480 	}
1481 
1482 	/*
1483 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1484 	 * to serialises splits
1485 	 */
1486 	get_page(page);
1487 	spin_unlock(vmf->ptl);
1488 	anon_vma = page_lock_anon_vma_read(page);
1489 
1490 	/* Confirm the PMD did not change while page_table_lock was released */
1491 	spin_lock(vmf->ptl);
1492 	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1493 		unlock_page(page);
1494 		put_page(page);
1495 		page_nid = NUMA_NO_NODE;
1496 		goto out_unlock;
1497 	}
1498 
1499 	/* Bail if we fail to protect against THP splits for any reason */
1500 	if (unlikely(!anon_vma)) {
1501 		put_page(page);
1502 		page_nid = NUMA_NO_NODE;
1503 		goto clear_pmdnuma;
1504 	}
1505 
1506 	/*
1507 	 * Since we took the NUMA fault, we must have observed the !accessible
1508 	 * bit. Make sure all other CPUs agree with that, to avoid them
1509 	 * modifying the page we're about to migrate.
1510 	 *
1511 	 * Must be done under PTL such that we'll observe the relevant
1512 	 * inc_tlb_flush_pending().
1513 	 *
1514 	 * We are not sure a pending tlb flush here is for a huge page
1515 	 * mapping or not. Hence use the tlb range variant
1516 	 */
1517 	if (mm_tlb_flush_pending(vma->vm_mm)) {
1518 		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1519 		/*
1520 		 * change_huge_pmd() released the pmd lock before
1521 		 * invalidating the secondary MMUs sharing the primary
1522 		 * MMU pagetables (with ->invalidate_range()). The
1523 		 * mmu_notifier_invalidate_range_end() (which
1524 		 * internally calls ->invalidate_range()) in
1525 		 * change_pmd_range() will run after us, so we can't
1526 		 * rely on it here and we need an explicit invalidate.
1527 		 */
1528 		mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1529 					      haddr + HPAGE_PMD_SIZE);
1530 	}
1531 
1532 	/*
1533 	 * Migrate the THP to the requested node, returns with page unlocked
1534 	 * and access rights restored.
1535 	 */
1536 	spin_unlock(vmf->ptl);
1537 
1538 	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1539 				vmf->pmd, pmd, vmf->address, page, target_nid);
1540 	if (migrated) {
1541 		flags |= TNF_MIGRATED;
1542 		page_nid = target_nid;
1543 	} else
1544 		flags |= TNF_MIGRATE_FAIL;
1545 
1546 	goto out;
1547 clear_pmdnuma:
1548 	BUG_ON(!PageLocked(page));
1549 	was_writable = pmd_savedwrite(pmd);
1550 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1551 	pmd = pmd_mkyoung(pmd);
1552 	if (was_writable)
1553 		pmd = pmd_mkwrite(pmd);
1554 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1555 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1556 	unlock_page(page);
1557 out_unlock:
1558 	spin_unlock(vmf->ptl);
1559 
1560 out:
1561 	if (anon_vma)
1562 		page_unlock_anon_vma_read(anon_vma);
1563 
1564 	if (page_nid != NUMA_NO_NODE)
1565 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1566 				flags);
1567 
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Return true if we do MADV_FREE successfully on entire pmd page.
1573  * Otherwise, return false.
1574  */
1575 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1576 		pmd_t *pmd, unsigned long addr, unsigned long next)
1577 {
1578 	spinlock_t *ptl;
1579 	pmd_t orig_pmd;
1580 	struct page *page;
1581 	struct mm_struct *mm = tlb->mm;
1582 	bool ret = false;
1583 
1584 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1585 
1586 	ptl = pmd_trans_huge_lock(pmd, vma);
1587 	if (!ptl)
1588 		goto out_unlocked;
1589 
1590 	orig_pmd = *pmd;
1591 	if (is_huge_zero_pmd(orig_pmd))
1592 		goto out;
1593 
1594 	if (unlikely(!pmd_present(orig_pmd))) {
1595 		VM_BUG_ON(thp_migration_supported() &&
1596 				  !is_pmd_migration_entry(orig_pmd));
1597 		goto out;
1598 	}
1599 
1600 	page = pmd_page(orig_pmd);
1601 	/*
1602 	 * If other processes are mapping this page, we couldn't discard
1603 	 * the page unless they all do MADV_FREE so let's skip the page.
1604 	 */
1605 	if (page_mapcount(page) != 1)
1606 		goto out;
1607 
1608 	if (!trylock_page(page))
1609 		goto out;
1610 
1611 	/*
1612 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1613 	 * will deactivate only them.
1614 	 */
1615 	if (next - addr != HPAGE_PMD_SIZE) {
1616 		get_page(page);
1617 		spin_unlock(ptl);
1618 		split_huge_page(page);
1619 		unlock_page(page);
1620 		put_page(page);
1621 		goto out_unlocked;
1622 	}
1623 
1624 	if (PageDirty(page))
1625 		ClearPageDirty(page);
1626 	unlock_page(page);
1627 
1628 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1629 		pmdp_invalidate(vma, addr, pmd);
1630 		orig_pmd = pmd_mkold(orig_pmd);
1631 		orig_pmd = pmd_mkclean(orig_pmd);
1632 
1633 		set_pmd_at(mm, addr, pmd, orig_pmd);
1634 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1635 	}
1636 
1637 	mark_page_lazyfree(page);
1638 	ret = true;
1639 out:
1640 	spin_unlock(ptl);
1641 out_unlocked:
1642 	return ret;
1643 }
1644 
1645 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1646 {
1647 	pgtable_t pgtable;
1648 
1649 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1650 	pte_free(mm, pgtable);
1651 	mm_dec_nr_ptes(mm);
1652 }
1653 
1654 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1655 		 pmd_t *pmd, unsigned long addr)
1656 {
1657 	pmd_t orig_pmd;
1658 	spinlock_t *ptl;
1659 
1660 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1661 
1662 	ptl = __pmd_trans_huge_lock(pmd, vma);
1663 	if (!ptl)
1664 		return 0;
1665 	/*
1666 	 * For architectures like ppc64 we look at deposited pgtable
1667 	 * when calling pmdp_huge_get_and_clear. So do the
1668 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 	 * operations.
1670 	 */
1671 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1672 						tlb->fullmm);
1673 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 	if (vma_is_special_huge(vma)) {
1675 		if (arch_needs_pgtable_deposit())
1676 			zap_deposited_table(tlb->mm, pmd);
1677 		spin_unlock(ptl);
1678 		if (is_huge_zero_pmd(orig_pmd))
1679 			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1680 	} else if (is_huge_zero_pmd(orig_pmd)) {
1681 		zap_deposited_table(tlb->mm, pmd);
1682 		spin_unlock(ptl);
1683 		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1684 	} else {
1685 		struct page *page = NULL;
1686 		int flush_needed = 1;
1687 
1688 		if (pmd_present(orig_pmd)) {
1689 			page = pmd_page(orig_pmd);
1690 			page_remove_rmap(page, true);
1691 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1692 			VM_BUG_ON_PAGE(!PageHead(page), page);
1693 		} else if (thp_migration_supported()) {
1694 			swp_entry_t entry;
1695 
1696 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1697 			entry = pmd_to_swp_entry(orig_pmd);
1698 			page = pfn_to_page(swp_offset(entry));
1699 			flush_needed = 0;
1700 		} else
1701 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1702 
1703 		if (PageAnon(page)) {
1704 			zap_deposited_table(tlb->mm, pmd);
1705 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1706 		} else {
1707 			if (arch_needs_pgtable_deposit())
1708 				zap_deposited_table(tlb->mm, pmd);
1709 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1710 		}
1711 
1712 		spin_unlock(ptl);
1713 		if (flush_needed)
1714 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1715 	}
1716 	return 1;
1717 }
1718 
1719 #ifndef pmd_move_must_withdraw
1720 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1721 					 spinlock_t *old_pmd_ptl,
1722 					 struct vm_area_struct *vma)
1723 {
1724 	/*
1725 	 * With split pmd lock we also need to move preallocated
1726 	 * PTE page table if new_pmd is on different PMD page table.
1727 	 *
1728 	 * We also don't deposit and withdraw tables for file pages.
1729 	 */
1730 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1731 }
1732 #endif
1733 
1734 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1735 {
1736 #ifdef CONFIG_MEM_SOFT_DIRTY
1737 	if (unlikely(is_pmd_migration_entry(pmd)))
1738 		pmd = pmd_swp_mksoft_dirty(pmd);
1739 	else if (pmd_present(pmd))
1740 		pmd = pmd_mksoft_dirty(pmd);
1741 #endif
1742 	return pmd;
1743 }
1744 
1745 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1746 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1747 {
1748 	spinlock_t *old_ptl, *new_ptl;
1749 	pmd_t pmd;
1750 	struct mm_struct *mm = vma->vm_mm;
1751 	bool force_flush = false;
1752 
1753 	/*
1754 	 * The destination pmd shouldn't be established, free_pgtables()
1755 	 * should have release it.
1756 	 */
1757 	if (WARN_ON(!pmd_none(*new_pmd))) {
1758 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1759 		return false;
1760 	}
1761 
1762 	/*
1763 	 * We don't have to worry about the ordering of src and dst
1764 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1765 	 */
1766 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1767 	if (old_ptl) {
1768 		new_ptl = pmd_lockptr(mm, new_pmd);
1769 		if (new_ptl != old_ptl)
1770 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1771 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1772 		if (pmd_present(pmd))
1773 			force_flush = true;
1774 		VM_BUG_ON(!pmd_none(*new_pmd));
1775 
1776 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1777 			pgtable_t pgtable;
1778 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1779 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1780 		}
1781 		pmd = move_soft_dirty_pmd(pmd);
1782 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1783 		if (force_flush)
1784 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1785 		if (new_ptl != old_ptl)
1786 			spin_unlock(new_ptl);
1787 		spin_unlock(old_ptl);
1788 		return true;
1789 	}
1790 	return false;
1791 }
1792 
1793 /*
1794  * Returns
1795  *  - 0 if PMD could not be locked
1796  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1797  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1798  */
1799 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1800 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1801 {
1802 	struct mm_struct *mm = vma->vm_mm;
1803 	spinlock_t *ptl;
1804 	pmd_t entry;
1805 	bool preserve_write;
1806 	int ret;
1807 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1808 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1809 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1810 
1811 	ptl = __pmd_trans_huge_lock(pmd, vma);
1812 	if (!ptl)
1813 		return 0;
1814 
1815 	preserve_write = prot_numa && pmd_write(*pmd);
1816 	ret = 1;
1817 
1818 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1819 	if (is_swap_pmd(*pmd)) {
1820 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1821 
1822 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1823 		if (is_write_migration_entry(entry)) {
1824 			pmd_t newpmd;
1825 			/*
1826 			 * A protection check is difficult so
1827 			 * just be safe and disable write
1828 			 */
1829 			make_migration_entry_read(&entry);
1830 			newpmd = swp_entry_to_pmd(entry);
1831 			if (pmd_swp_soft_dirty(*pmd))
1832 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1833 			set_pmd_at(mm, addr, pmd, newpmd);
1834 		}
1835 		goto unlock;
1836 	}
1837 #endif
1838 
1839 	/*
1840 	 * Avoid trapping faults against the zero page. The read-only
1841 	 * data is likely to be read-cached on the local CPU and
1842 	 * local/remote hits to the zero page are not interesting.
1843 	 */
1844 	if (prot_numa && is_huge_zero_pmd(*pmd))
1845 		goto unlock;
1846 
1847 	if (prot_numa && pmd_protnone(*pmd))
1848 		goto unlock;
1849 
1850 	/*
1851 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1852 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1853 	 * which is also under mmap_read_lock(mm):
1854 	 *
1855 	 *	CPU0:				CPU1:
1856 	 *				change_huge_pmd(prot_numa=1)
1857 	 *				 pmdp_huge_get_and_clear_notify()
1858 	 * madvise_dontneed()
1859 	 *  zap_pmd_range()
1860 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1861 	 *   // skip the pmd
1862 	 *				 set_pmd_at();
1863 	 *				 // pmd is re-established
1864 	 *
1865 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1866 	 * which may break userspace.
1867 	 *
1868 	 * pmdp_invalidate() is required to make sure we don't miss
1869 	 * dirty/young flags set by hardware.
1870 	 */
1871 	entry = pmdp_invalidate(vma, addr, pmd);
1872 
1873 	entry = pmd_modify(entry, newprot);
1874 	if (preserve_write)
1875 		entry = pmd_mk_savedwrite(entry);
1876 	if (uffd_wp) {
1877 		entry = pmd_wrprotect(entry);
1878 		entry = pmd_mkuffd_wp(entry);
1879 	} else if (uffd_wp_resolve) {
1880 		/*
1881 		 * Leave the write bit to be handled by PF interrupt
1882 		 * handler, then things like COW could be properly
1883 		 * handled.
1884 		 */
1885 		entry = pmd_clear_uffd_wp(entry);
1886 	}
1887 	ret = HPAGE_PMD_NR;
1888 	set_pmd_at(mm, addr, pmd, entry);
1889 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1890 unlock:
1891 	spin_unlock(ptl);
1892 	return ret;
1893 }
1894 
1895 /*
1896  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1897  *
1898  * Note that if it returns page table lock pointer, this routine returns without
1899  * unlocking page table lock. So callers must unlock it.
1900  */
1901 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1902 {
1903 	spinlock_t *ptl;
1904 	ptl = pmd_lock(vma->vm_mm, pmd);
1905 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1906 			pmd_devmap(*pmd)))
1907 		return ptl;
1908 	spin_unlock(ptl);
1909 	return NULL;
1910 }
1911 
1912 /*
1913  * Returns true if a given pud maps a thp, false otherwise.
1914  *
1915  * Note that if it returns true, this routine returns without unlocking page
1916  * table lock. So callers must unlock it.
1917  */
1918 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1919 {
1920 	spinlock_t *ptl;
1921 
1922 	ptl = pud_lock(vma->vm_mm, pud);
1923 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1924 		return ptl;
1925 	spin_unlock(ptl);
1926 	return NULL;
1927 }
1928 
1929 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1930 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1931 		 pud_t *pud, unsigned long addr)
1932 {
1933 	spinlock_t *ptl;
1934 
1935 	ptl = __pud_trans_huge_lock(pud, vma);
1936 	if (!ptl)
1937 		return 0;
1938 	/*
1939 	 * For architectures like ppc64 we look at deposited pgtable
1940 	 * when calling pudp_huge_get_and_clear. So do the
1941 	 * pgtable_trans_huge_withdraw after finishing pudp related
1942 	 * operations.
1943 	 */
1944 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1945 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1946 	if (vma_is_special_huge(vma)) {
1947 		spin_unlock(ptl);
1948 		/* No zero page support yet */
1949 	} else {
1950 		/* No support for anonymous PUD pages yet */
1951 		BUG();
1952 	}
1953 	return 1;
1954 }
1955 
1956 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1957 		unsigned long haddr)
1958 {
1959 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1960 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1961 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1962 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1963 
1964 	count_vm_event(THP_SPLIT_PUD);
1965 
1966 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1967 }
1968 
1969 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1970 		unsigned long address)
1971 {
1972 	spinlock_t *ptl;
1973 	struct mmu_notifier_range range;
1974 
1975 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1976 				address & HPAGE_PUD_MASK,
1977 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1978 	mmu_notifier_invalidate_range_start(&range);
1979 	ptl = pud_lock(vma->vm_mm, pud);
1980 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1981 		goto out;
1982 	__split_huge_pud_locked(vma, pud, range.start);
1983 
1984 out:
1985 	spin_unlock(ptl);
1986 	/*
1987 	 * No need to double call mmu_notifier->invalidate_range() callback as
1988 	 * the above pudp_huge_clear_flush_notify() did already call it.
1989 	 */
1990 	mmu_notifier_invalidate_range_only_end(&range);
1991 }
1992 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1993 
1994 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1995 		unsigned long haddr, pmd_t *pmd)
1996 {
1997 	struct mm_struct *mm = vma->vm_mm;
1998 	pgtable_t pgtable;
1999 	pmd_t _pmd;
2000 	int i;
2001 
2002 	/*
2003 	 * Leave pmd empty until pte is filled note that it is fine to delay
2004 	 * notification until mmu_notifier_invalidate_range_end() as we are
2005 	 * replacing a zero pmd write protected page with a zero pte write
2006 	 * protected page.
2007 	 *
2008 	 * See Documentation/vm/mmu_notifier.rst
2009 	 */
2010 	pmdp_huge_clear_flush(vma, haddr, pmd);
2011 
2012 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2013 	pmd_populate(mm, &_pmd, pgtable);
2014 
2015 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2016 		pte_t *pte, entry;
2017 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2018 		entry = pte_mkspecial(entry);
2019 		pte = pte_offset_map(&_pmd, haddr);
2020 		VM_BUG_ON(!pte_none(*pte));
2021 		set_pte_at(mm, haddr, pte, entry);
2022 		pte_unmap(pte);
2023 	}
2024 	smp_wmb(); /* make pte visible before pmd */
2025 	pmd_populate(mm, pmd, pgtable);
2026 }
2027 
2028 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2029 		unsigned long haddr, bool freeze)
2030 {
2031 	struct mm_struct *mm = vma->vm_mm;
2032 	struct page *page;
2033 	pgtable_t pgtable;
2034 	pmd_t old_pmd, _pmd;
2035 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2036 	unsigned long addr;
2037 	int i;
2038 
2039 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2040 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2041 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2042 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2043 				&& !pmd_devmap(*pmd));
2044 
2045 	count_vm_event(THP_SPLIT_PMD);
2046 
2047 	if (!vma_is_anonymous(vma)) {
2048 		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2049 		/*
2050 		 * We are going to unmap this huge page. So
2051 		 * just go ahead and zap it
2052 		 */
2053 		if (arch_needs_pgtable_deposit())
2054 			zap_deposited_table(mm, pmd);
2055 		if (vma_is_special_huge(vma))
2056 			return;
2057 		page = pmd_page(_pmd);
2058 		if (!PageDirty(page) && pmd_dirty(_pmd))
2059 			set_page_dirty(page);
2060 		if (!PageReferenced(page) && pmd_young(_pmd))
2061 			SetPageReferenced(page);
2062 		page_remove_rmap(page, true);
2063 		put_page(page);
2064 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2065 		return;
2066 	} else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
2067 		/*
2068 		 * FIXME: Do we want to invalidate secondary mmu by calling
2069 		 * mmu_notifier_invalidate_range() see comments below inside
2070 		 * __split_huge_pmd() ?
2071 		 *
2072 		 * We are going from a zero huge page write protected to zero
2073 		 * small page also write protected so it does not seems useful
2074 		 * to invalidate secondary mmu at this time.
2075 		 */
2076 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2077 	}
2078 
2079 	/*
2080 	 * Up to this point the pmd is present and huge and userland has the
2081 	 * whole access to the hugepage during the split (which happens in
2082 	 * place). If we overwrite the pmd with the not-huge version pointing
2083 	 * to the pte here (which of course we could if all CPUs were bug
2084 	 * free), userland could trigger a small page size TLB miss on the
2085 	 * small sized TLB while the hugepage TLB entry is still established in
2086 	 * the huge TLB. Some CPU doesn't like that.
2087 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2088 	 * 383 on page 105. Intel should be safe but is also warns that it's
2089 	 * only safe if the permission and cache attributes of the two entries
2090 	 * loaded in the two TLB is identical (which should be the case here).
2091 	 * But it is generally safer to never allow small and huge TLB entries
2092 	 * for the same virtual address to be loaded simultaneously. So instead
2093 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2094 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2095 	 * must remain set at all times on the pmd until the split is complete
2096 	 * for this pmd), then we flush the SMP TLB and finally we write the
2097 	 * non-huge version of the pmd entry with pmd_populate.
2098 	 */
2099 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2100 
2101 	pmd_migration = is_pmd_migration_entry(old_pmd);
2102 	if (unlikely(pmd_migration)) {
2103 		swp_entry_t entry;
2104 
2105 		entry = pmd_to_swp_entry(old_pmd);
2106 		page = pfn_to_page(swp_offset(entry));
2107 		write = is_write_migration_entry(entry);
2108 		young = false;
2109 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2110 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2111 	} else {
2112 		page = pmd_page(old_pmd);
2113 		if (pmd_dirty(old_pmd))
2114 			SetPageDirty(page);
2115 		write = pmd_write(old_pmd);
2116 		young = pmd_young(old_pmd);
2117 		soft_dirty = pmd_soft_dirty(old_pmd);
2118 		uffd_wp = pmd_uffd_wp(old_pmd);
2119 	}
2120 	VM_BUG_ON_PAGE(!page_count(page), page);
2121 	page_ref_add(page, HPAGE_PMD_NR - 1);
2122 
2123 	/*
2124 	 * Withdraw the table only after we mark the pmd entry invalid.
2125 	 * This's critical for some architectures (Power).
2126 	 */
2127 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2128 	pmd_populate(mm, &_pmd, pgtable);
2129 
2130 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2131 		pte_t entry, *pte;
2132 		/*
2133 		 * Note that NUMA hinting access restrictions are not
2134 		 * transferred to avoid any possibility of altering
2135 		 * permissions across VMAs.
2136 		 */
2137 		if (freeze || pmd_migration) {
2138 			swp_entry_t swp_entry;
2139 			swp_entry = make_migration_entry(page + i, write);
2140 			entry = swp_entry_to_pte(swp_entry);
2141 			if (soft_dirty)
2142 				entry = pte_swp_mksoft_dirty(entry);
2143 			if (uffd_wp)
2144 				entry = pte_swp_mkuffd_wp(entry);
2145 		} else {
2146 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2147 			entry = maybe_mkwrite(entry, vma);
2148 			if (!write)
2149 				entry = pte_wrprotect(entry);
2150 			if (!young)
2151 				entry = pte_mkold(entry);
2152 			if (soft_dirty)
2153 				entry = pte_mksoft_dirty(entry);
2154 			if (uffd_wp)
2155 				entry = pte_mkuffd_wp(entry);
2156 		}
2157 		pte = pte_offset_map(&_pmd, addr);
2158 		BUG_ON(!pte_none(*pte));
2159 		set_pte_at(mm, addr, pte, entry);
2160 		if (!pmd_migration)
2161 			atomic_inc(&page[i]._mapcount);
2162 		pte_unmap(pte);
2163 	}
2164 
2165 	if (!pmd_migration) {
2166 		/*
2167 		 * Set PG_double_map before dropping compound_mapcount to avoid
2168 		 * false-negative page_mapped().
2169 		 */
2170 		if (compound_mapcount(page) > 1 &&
2171 		    !TestSetPageDoubleMap(page)) {
2172 			for (i = 0; i < HPAGE_PMD_NR; i++)
2173 				atomic_inc(&page[i]._mapcount);
2174 		}
2175 
2176 		lock_page_memcg(page);
2177 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2178 			/* Last compound_mapcount is gone. */
2179 			__dec_lruvec_page_state(page, NR_ANON_THPS);
2180 			if (TestClearPageDoubleMap(page)) {
2181 				/* No need in mapcount reference anymore */
2182 				for (i = 0; i < HPAGE_PMD_NR; i++)
2183 					atomic_dec(&page[i]._mapcount);
2184 			}
2185 		}
2186 		unlock_page_memcg(page);
2187 	}
2188 
2189 	smp_wmb(); /* make pte visible before pmd */
2190 	pmd_populate(mm, pmd, pgtable);
2191 
2192 	if (freeze) {
2193 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2194 			page_remove_rmap(page + i, false);
2195 			put_page(page + i);
2196 		}
2197 	}
2198 }
2199 
2200 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2201 		unsigned long address, bool freeze, struct page *page)
2202 {
2203 	spinlock_t *ptl;
2204 	struct mmu_notifier_range range;
2205 	bool was_locked = false;
2206 	pmd_t _pmd;
2207 
2208 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2209 				address & HPAGE_PMD_MASK,
2210 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2211 	mmu_notifier_invalidate_range_start(&range);
2212 	ptl = pmd_lock(vma->vm_mm, pmd);
2213 
2214 	/*
2215 	 * If caller asks to setup a migration entries, we need a page to check
2216 	 * pmd against. Otherwise we can end up replacing wrong page.
2217 	 */
2218 	VM_BUG_ON(freeze && !page);
2219 	if (page) {
2220 		VM_WARN_ON_ONCE(!PageLocked(page));
2221 		was_locked = true;
2222 		if (page != pmd_page(*pmd))
2223 			goto out;
2224 	}
2225 
2226 repeat:
2227 	if (pmd_trans_huge(*pmd)) {
2228 		if (!page) {
2229 			page = pmd_page(*pmd);
2230 			if (unlikely(!trylock_page(page))) {
2231 				get_page(page);
2232 				_pmd = *pmd;
2233 				spin_unlock(ptl);
2234 				lock_page(page);
2235 				spin_lock(ptl);
2236 				if (unlikely(!pmd_same(*pmd, _pmd))) {
2237 					unlock_page(page);
2238 					put_page(page);
2239 					page = NULL;
2240 					goto repeat;
2241 				}
2242 				put_page(page);
2243 			}
2244 		}
2245 		if (PageMlocked(page))
2246 			clear_page_mlock(page);
2247 	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2248 		goto out;
2249 	__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2250 out:
2251 	spin_unlock(ptl);
2252 	if (!was_locked && page)
2253 		unlock_page(page);
2254 	/*
2255 	 * No need to double call mmu_notifier->invalidate_range() callback.
2256 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2257 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2258 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2259 	 *    fault will trigger a flush_notify before pointing to a new page
2260 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2261 	 *    page in the meantime)
2262 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2263 	 *     to invalidate secondary tlb entry they are all still valid.
2264 	 *     any further changes to individual pte will notify. So no need
2265 	 *     to call mmu_notifier->invalidate_range()
2266 	 */
2267 	mmu_notifier_invalidate_range_only_end(&range);
2268 }
2269 
2270 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2271 		bool freeze, struct page *page)
2272 {
2273 	pgd_t *pgd;
2274 	p4d_t *p4d;
2275 	pud_t *pud;
2276 	pmd_t *pmd;
2277 
2278 	pgd = pgd_offset(vma->vm_mm, address);
2279 	if (!pgd_present(*pgd))
2280 		return;
2281 
2282 	p4d = p4d_offset(pgd, address);
2283 	if (!p4d_present(*p4d))
2284 		return;
2285 
2286 	pud = pud_offset(p4d, address);
2287 	if (!pud_present(*pud))
2288 		return;
2289 
2290 	pmd = pmd_offset(pud, address);
2291 
2292 	__split_huge_pmd(vma, pmd, address, freeze, page);
2293 }
2294 
2295 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2296 			     unsigned long start,
2297 			     unsigned long end,
2298 			     long adjust_next)
2299 {
2300 	/*
2301 	 * If the new start address isn't hpage aligned and it could
2302 	 * previously contain an hugepage: check if we need to split
2303 	 * an huge pmd.
2304 	 */
2305 	if (start & ~HPAGE_PMD_MASK &&
2306 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2307 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2308 		split_huge_pmd_address(vma, start, false, NULL);
2309 
2310 	/*
2311 	 * If the new end address isn't hpage aligned and it could
2312 	 * previously contain an hugepage: check if we need to split
2313 	 * an huge pmd.
2314 	 */
2315 	if (end & ~HPAGE_PMD_MASK &&
2316 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2317 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2318 		split_huge_pmd_address(vma, end, false, NULL);
2319 
2320 	/*
2321 	 * If we're also updating the vma->vm_next->vm_start, if the new
2322 	 * vm_next->vm_start isn't hpage aligned and it could previously
2323 	 * contain an hugepage: check if we need to split an huge pmd.
2324 	 */
2325 	if (adjust_next > 0) {
2326 		struct vm_area_struct *next = vma->vm_next;
2327 		unsigned long nstart = next->vm_start;
2328 		nstart += adjust_next;
2329 		if (nstart & ~HPAGE_PMD_MASK &&
2330 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2331 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2332 			split_huge_pmd_address(next, nstart, false, NULL);
2333 	}
2334 }
2335 
2336 static void unmap_page(struct page *page)
2337 {
2338 	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK |
2339 		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2340 	bool unmap_success;
2341 
2342 	VM_BUG_ON_PAGE(!PageHead(page), page);
2343 
2344 	if (PageAnon(page))
2345 		ttu_flags |= TTU_SPLIT_FREEZE;
2346 
2347 	unmap_success = try_to_unmap(page, ttu_flags);
2348 	VM_BUG_ON_PAGE(!unmap_success, page);
2349 }
2350 
2351 static void remap_page(struct page *page, unsigned int nr)
2352 {
2353 	int i;
2354 	if (PageTransHuge(page)) {
2355 		remove_migration_ptes(page, page, true);
2356 	} else {
2357 		for (i = 0; i < nr; i++)
2358 			remove_migration_ptes(page + i, page + i, true);
2359 	}
2360 }
2361 
2362 static void lru_add_page_tail(struct page *head, struct page *tail,
2363 		struct lruvec *lruvec, struct list_head *list)
2364 {
2365 	VM_BUG_ON_PAGE(!PageHead(head), head);
2366 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2367 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2368 	lockdep_assert_held(&lruvec->lru_lock);
2369 
2370 	if (list) {
2371 		/* page reclaim is reclaiming a huge page */
2372 		VM_WARN_ON(PageLRU(head));
2373 		get_page(tail);
2374 		list_add_tail(&tail->lru, list);
2375 	} else {
2376 		/* head is still on lru (and we have it frozen) */
2377 		VM_WARN_ON(!PageLRU(head));
2378 		SetPageLRU(tail);
2379 		list_add_tail(&tail->lru, &head->lru);
2380 	}
2381 }
2382 
2383 static void __split_huge_page_tail(struct page *head, int tail,
2384 		struct lruvec *lruvec, struct list_head *list)
2385 {
2386 	struct page *page_tail = head + tail;
2387 
2388 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2389 
2390 	/*
2391 	 * Clone page flags before unfreezing refcount.
2392 	 *
2393 	 * After successful get_page_unless_zero() might follow flags change,
2394 	 * for example lock_page() which set PG_waiters.
2395 	 */
2396 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2397 	page_tail->flags |= (head->flags &
2398 			((1L << PG_referenced) |
2399 			 (1L << PG_swapbacked) |
2400 			 (1L << PG_swapcache) |
2401 			 (1L << PG_mlocked) |
2402 			 (1L << PG_uptodate) |
2403 			 (1L << PG_active) |
2404 			 (1L << PG_workingset) |
2405 			 (1L << PG_locked) |
2406 			 (1L << PG_unevictable) |
2407 #ifdef CONFIG_64BIT
2408 			 (1L << PG_arch_2) |
2409 #endif
2410 			 (1L << PG_dirty)));
2411 
2412 	/* ->mapping in first tail page is compound_mapcount */
2413 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2414 			page_tail);
2415 	page_tail->mapping = head->mapping;
2416 	page_tail->index = head->index + tail;
2417 
2418 	/* Page flags must be visible before we make the page non-compound. */
2419 	smp_wmb();
2420 
2421 	/*
2422 	 * Clear PageTail before unfreezing page refcount.
2423 	 *
2424 	 * After successful get_page_unless_zero() might follow put_page()
2425 	 * which needs correct compound_head().
2426 	 */
2427 	clear_compound_head(page_tail);
2428 
2429 	/* Finally unfreeze refcount. Additional reference from page cache. */
2430 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2431 					  PageSwapCache(head)));
2432 
2433 	if (page_is_young(head))
2434 		set_page_young(page_tail);
2435 	if (page_is_idle(head))
2436 		set_page_idle(page_tail);
2437 
2438 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2439 
2440 	/*
2441 	 * always add to the tail because some iterators expect new
2442 	 * pages to show after the currently processed elements - e.g.
2443 	 * migrate_pages
2444 	 */
2445 	lru_add_page_tail(head, page_tail, lruvec, list);
2446 }
2447 
2448 static void __split_huge_page(struct page *page, struct list_head *list,
2449 		pgoff_t end)
2450 {
2451 	struct page *head = compound_head(page);
2452 	struct lruvec *lruvec;
2453 	struct address_space *swap_cache = NULL;
2454 	unsigned long offset = 0;
2455 	unsigned int nr = thp_nr_pages(head);
2456 	int i;
2457 
2458 	/* complete memcg works before add pages to LRU */
2459 	mem_cgroup_split_huge_fixup(head);
2460 
2461 	if (PageAnon(head) && PageSwapCache(head)) {
2462 		swp_entry_t entry = { .val = page_private(head) };
2463 
2464 		offset = swp_offset(entry);
2465 		swap_cache = swap_address_space(entry);
2466 		xa_lock(&swap_cache->i_pages);
2467 	}
2468 
2469 	/* lock lru list/PageCompound, ref freezed by page_ref_freeze */
2470 	lruvec = lock_page_lruvec(head);
2471 
2472 	for (i = nr - 1; i >= 1; i--) {
2473 		__split_huge_page_tail(head, i, lruvec, list);
2474 		/* Some pages can be beyond i_size: drop them from page cache */
2475 		if (head[i].index >= end) {
2476 			ClearPageDirty(head + i);
2477 			__delete_from_page_cache(head + i, NULL);
2478 			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2479 				shmem_uncharge(head->mapping->host, 1);
2480 			put_page(head + i);
2481 		} else if (!PageAnon(page)) {
2482 			__xa_store(&head->mapping->i_pages, head[i].index,
2483 					head + i, 0);
2484 		} else if (swap_cache) {
2485 			__xa_store(&swap_cache->i_pages, offset + i,
2486 					head + i, 0);
2487 		}
2488 	}
2489 
2490 	ClearPageCompound(head);
2491 	unlock_page_lruvec(lruvec);
2492 	/* Caller disabled irqs, so they are still disabled here */
2493 
2494 	split_page_owner(head, nr);
2495 
2496 	/* See comment in __split_huge_page_tail() */
2497 	if (PageAnon(head)) {
2498 		/* Additional pin to swap cache */
2499 		if (PageSwapCache(head)) {
2500 			page_ref_add(head, 2);
2501 			xa_unlock(&swap_cache->i_pages);
2502 		} else {
2503 			page_ref_inc(head);
2504 		}
2505 	} else {
2506 		/* Additional pin to page cache */
2507 		page_ref_add(head, 2);
2508 		xa_unlock(&head->mapping->i_pages);
2509 	}
2510 	local_irq_enable();
2511 
2512 	remap_page(head, nr);
2513 
2514 	if (PageSwapCache(head)) {
2515 		swp_entry_t entry = { .val = page_private(head) };
2516 
2517 		split_swap_cluster(entry);
2518 	}
2519 
2520 	for (i = 0; i < nr; i++) {
2521 		struct page *subpage = head + i;
2522 		if (subpage == page)
2523 			continue;
2524 		unlock_page(subpage);
2525 
2526 		/*
2527 		 * Subpages may be freed if there wasn't any mapping
2528 		 * like if add_to_swap() is running on a lru page that
2529 		 * had its mapping zapped. And freeing these pages
2530 		 * requires taking the lru_lock so we do the put_page
2531 		 * of the tail pages after the split is complete.
2532 		 */
2533 		put_page(subpage);
2534 	}
2535 }
2536 
2537 int total_mapcount(struct page *page)
2538 {
2539 	int i, compound, nr, ret;
2540 
2541 	VM_BUG_ON_PAGE(PageTail(page), page);
2542 
2543 	if (likely(!PageCompound(page)))
2544 		return atomic_read(&page->_mapcount) + 1;
2545 
2546 	compound = compound_mapcount(page);
2547 	nr = compound_nr(page);
2548 	if (PageHuge(page))
2549 		return compound;
2550 	ret = compound;
2551 	for (i = 0; i < nr; i++)
2552 		ret += atomic_read(&page[i]._mapcount) + 1;
2553 	/* File pages has compound_mapcount included in _mapcount */
2554 	if (!PageAnon(page))
2555 		return ret - compound * nr;
2556 	if (PageDoubleMap(page))
2557 		ret -= nr;
2558 	return ret;
2559 }
2560 
2561 /*
2562  * This calculates accurately how many mappings a transparent hugepage
2563  * has (unlike page_mapcount() which isn't fully accurate). This full
2564  * accuracy is primarily needed to know if copy-on-write faults can
2565  * reuse the page and change the mapping to read-write instead of
2566  * copying them. At the same time this returns the total_mapcount too.
2567  *
2568  * The function returns the highest mapcount any one of the subpages
2569  * has. If the return value is one, even if different processes are
2570  * mapping different subpages of the transparent hugepage, they can
2571  * all reuse it, because each process is reusing a different subpage.
2572  *
2573  * The total_mapcount is instead counting all virtual mappings of the
2574  * subpages. If the total_mapcount is equal to "one", it tells the
2575  * caller all mappings belong to the same "mm" and in turn the
2576  * anon_vma of the transparent hugepage can become the vma->anon_vma
2577  * local one as no other process may be mapping any of the subpages.
2578  *
2579  * It would be more accurate to replace page_mapcount() with
2580  * page_trans_huge_mapcount(), however we only use
2581  * page_trans_huge_mapcount() in the copy-on-write faults where we
2582  * need full accuracy to avoid breaking page pinning, because
2583  * page_trans_huge_mapcount() is slower than page_mapcount().
2584  */
2585 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2586 {
2587 	int i, ret, _total_mapcount, mapcount;
2588 
2589 	/* hugetlbfs shouldn't call it */
2590 	VM_BUG_ON_PAGE(PageHuge(page), page);
2591 
2592 	if (likely(!PageTransCompound(page))) {
2593 		mapcount = atomic_read(&page->_mapcount) + 1;
2594 		if (total_mapcount)
2595 			*total_mapcount = mapcount;
2596 		return mapcount;
2597 	}
2598 
2599 	page = compound_head(page);
2600 
2601 	_total_mapcount = ret = 0;
2602 	for (i = 0; i < thp_nr_pages(page); i++) {
2603 		mapcount = atomic_read(&page[i]._mapcount) + 1;
2604 		ret = max(ret, mapcount);
2605 		_total_mapcount += mapcount;
2606 	}
2607 	if (PageDoubleMap(page)) {
2608 		ret -= 1;
2609 		_total_mapcount -= thp_nr_pages(page);
2610 	}
2611 	mapcount = compound_mapcount(page);
2612 	ret += mapcount;
2613 	_total_mapcount += mapcount;
2614 	if (total_mapcount)
2615 		*total_mapcount = _total_mapcount;
2616 	return ret;
2617 }
2618 
2619 /* Racy check whether the huge page can be split */
2620 bool can_split_huge_page(struct page *page, int *pextra_pins)
2621 {
2622 	int extra_pins;
2623 
2624 	/* Additional pins from page cache */
2625 	if (PageAnon(page))
2626 		extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
2627 	else
2628 		extra_pins = thp_nr_pages(page);
2629 	if (pextra_pins)
2630 		*pextra_pins = extra_pins;
2631 	return total_mapcount(page) == page_count(page) - extra_pins - 1;
2632 }
2633 
2634 /*
2635  * This function splits huge page into normal pages. @page can point to any
2636  * subpage of huge page to split. Split doesn't change the position of @page.
2637  *
2638  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2639  * The huge page must be locked.
2640  *
2641  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2642  *
2643  * Both head page and tail pages will inherit mapping, flags, and so on from
2644  * the hugepage.
2645  *
2646  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2647  * they are not mapped.
2648  *
2649  * Returns 0 if the hugepage is split successfully.
2650  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2651  * us.
2652  */
2653 int split_huge_page_to_list(struct page *page, struct list_head *list)
2654 {
2655 	struct page *head = compound_head(page);
2656 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2657 	struct anon_vma *anon_vma = NULL;
2658 	struct address_space *mapping = NULL;
2659 	int count, mapcount, extra_pins, ret;
2660 	pgoff_t end;
2661 
2662 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2663 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2664 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2665 
2666 	if (PageWriteback(head))
2667 		return -EBUSY;
2668 
2669 	if (PageAnon(head)) {
2670 		/*
2671 		 * The caller does not necessarily hold an mmap_lock that would
2672 		 * prevent the anon_vma disappearing so we first we take a
2673 		 * reference to it and then lock the anon_vma for write. This
2674 		 * is similar to page_lock_anon_vma_read except the write lock
2675 		 * is taken to serialise against parallel split or collapse
2676 		 * operations.
2677 		 */
2678 		anon_vma = page_get_anon_vma(head);
2679 		if (!anon_vma) {
2680 			ret = -EBUSY;
2681 			goto out;
2682 		}
2683 		end = -1;
2684 		mapping = NULL;
2685 		anon_vma_lock_write(anon_vma);
2686 	} else {
2687 		mapping = head->mapping;
2688 
2689 		/* Truncated ? */
2690 		if (!mapping) {
2691 			ret = -EBUSY;
2692 			goto out;
2693 		}
2694 
2695 		anon_vma = NULL;
2696 		i_mmap_lock_read(mapping);
2697 
2698 		/*
2699 		 *__split_huge_page() may need to trim off pages beyond EOF:
2700 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2701 		 * which cannot be nested inside the page tree lock. So note
2702 		 * end now: i_size itself may be changed at any moment, but
2703 		 * head page lock is good enough to serialize the trimming.
2704 		 */
2705 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2706 	}
2707 
2708 	/*
2709 	 * Racy check if we can split the page, before unmap_page() will
2710 	 * split PMDs
2711 	 */
2712 	if (!can_split_huge_page(head, &extra_pins)) {
2713 		ret = -EBUSY;
2714 		goto out_unlock;
2715 	}
2716 
2717 	unmap_page(head);
2718 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
2719 
2720 	/* block interrupt reentry in xa_lock and spinlock */
2721 	local_irq_disable();
2722 	if (mapping) {
2723 		XA_STATE(xas, &mapping->i_pages, page_index(head));
2724 
2725 		/*
2726 		 * Check if the head page is present in page cache.
2727 		 * We assume all tail are present too, if head is there.
2728 		 */
2729 		xa_lock(&mapping->i_pages);
2730 		if (xas_load(&xas) != head)
2731 			goto fail;
2732 	}
2733 
2734 	/* Prevent deferred_split_scan() touching ->_refcount */
2735 	spin_lock(&ds_queue->split_queue_lock);
2736 	count = page_count(head);
2737 	mapcount = total_mapcount(head);
2738 	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2739 		if (!list_empty(page_deferred_list(head))) {
2740 			ds_queue->split_queue_len--;
2741 			list_del(page_deferred_list(head));
2742 		}
2743 		spin_unlock(&ds_queue->split_queue_lock);
2744 		if (mapping) {
2745 			if (PageSwapBacked(head))
2746 				__dec_lruvec_page_state(head, NR_SHMEM_THPS);
2747 			else
2748 				__dec_lruvec_page_state(head, NR_FILE_THPS);
2749 		}
2750 
2751 		__split_huge_page(page, list, end);
2752 		ret = 0;
2753 	} else {
2754 		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2755 			pr_alert("total_mapcount: %u, page_count(): %u\n",
2756 					mapcount, count);
2757 			if (PageTail(page))
2758 				dump_page(head, NULL);
2759 			dump_page(page, "total_mapcount(head) > 0");
2760 			BUG();
2761 		}
2762 		spin_unlock(&ds_queue->split_queue_lock);
2763 fail:		if (mapping)
2764 			xa_unlock(&mapping->i_pages);
2765 		local_irq_enable();
2766 		remap_page(head, thp_nr_pages(head));
2767 		ret = -EBUSY;
2768 	}
2769 
2770 out_unlock:
2771 	if (anon_vma) {
2772 		anon_vma_unlock_write(anon_vma);
2773 		put_anon_vma(anon_vma);
2774 	}
2775 	if (mapping)
2776 		i_mmap_unlock_read(mapping);
2777 out:
2778 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2779 	return ret;
2780 }
2781 
2782 void free_transhuge_page(struct page *page)
2783 {
2784 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2785 	unsigned long flags;
2786 
2787 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2788 	if (!list_empty(page_deferred_list(page))) {
2789 		ds_queue->split_queue_len--;
2790 		list_del(page_deferred_list(page));
2791 	}
2792 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2793 	free_compound_page(page);
2794 }
2795 
2796 void deferred_split_huge_page(struct page *page)
2797 {
2798 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2799 #ifdef CONFIG_MEMCG
2800 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2801 #endif
2802 	unsigned long flags;
2803 
2804 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2805 
2806 	/*
2807 	 * The try_to_unmap() in page reclaim path might reach here too,
2808 	 * this may cause a race condition to corrupt deferred split queue.
2809 	 * And, if page reclaim is already handling the same page, it is
2810 	 * unnecessary to handle it again in shrinker.
2811 	 *
2812 	 * Check PageSwapCache to determine if the page is being
2813 	 * handled by page reclaim since THP swap would add the page into
2814 	 * swap cache before calling try_to_unmap().
2815 	 */
2816 	if (PageSwapCache(page))
2817 		return;
2818 
2819 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2820 	if (list_empty(page_deferred_list(page))) {
2821 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2822 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2823 		ds_queue->split_queue_len++;
2824 #ifdef CONFIG_MEMCG
2825 		if (memcg)
2826 			memcg_set_shrinker_bit(memcg, page_to_nid(page),
2827 					       deferred_split_shrinker.id);
2828 #endif
2829 	}
2830 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2831 }
2832 
2833 static unsigned long deferred_split_count(struct shrinker *shrink,
2834 		struct shrink_control *sc)
2835 {
2836 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2837 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2838 
2839 #ifdef CONFIG_MEMCG
2840 	if (sc->memcg)
2841 		ds_queue = &sc->memcg->deferred_split_queue;
2842 #endif
2843 	return READ_ONCE(ds_queue->split_queue_len);
2844 }
2845 
2846 static unsigned long deferred_split_scan(struct shrinker *shrink,
2847 		struct shrink_control *sc)
2848 {
2849 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2851 	unsigned long flags;
2852 	LIST_HEAD(list), *pos, *next;
2853 	struct page *page;
2854 	int split = 0;
2855 
2856 #ifdef CONFIG_MEMCG
2857 	if (sc->memcg)
2858 		ds_queue = &sc->memcg->deferred_split_queue;
2859 #endif
2860 
2861 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2862 	/* Take pin on all head pages to avoid freeing them under us */
2863 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2864 		page = list_entry((void *)pos, struct page, mapping);
2865 		page = compound_head(page);
2866 		if (get_page_unless_zero(page)) {
2867 			list_move(page_deferred_list(page), &list);
2868 		} else {
2869 			/* We lost race with put_compound_page() */
2870 			list_del_init(page_deferred_list(page));
2871 			ds_queue->split_queue_len--;
2872 		}
2873 		if (!--sc->nr_to_scan)
2874 			break;
2875 	}
2876 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2877 
2878 	list_for_each_safe(pos, next, &list) {
2879 		page = list_entry((void *)pos, struct page, mapping);
2880 		if (!trylock_page(page))
2881 			goto next;
2882 		/* split_huge_page() removes page from list on success */
2883 		if (!split_huge_page(page))
2884 			split++;
2885 		unlock_page(page);
2886 next:
2887 		put_page(page);
2888 	}
2889 
2890 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2891 	list_splice_tail(&list, &ds_queue->split_queue);
2892 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2893 
2894 	/*
2895 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2896 	 * This can happen if pages were freed under us.
2897 	 */
2898 	if (!split && list_empty(&ds_queue->split_queue))
2899 		return SHRINK_STOP;
2900 	return split;
2901 }
2902 
2903 static struct shrinker deferred_split_shrinker = {
2904 	.count_objects = deferred_split_count,
2905 	.scan_objects = deferred_split_scan,
2906 	.seeks = DEFAULT_SEEKS,
2907 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2908 		 SHRINKER_NONSLAB,
2909 };
2910 
2911 #ifdef CONFIG_DEBUG_FS
2912 static int split_huge_pages_set(void *data, u64 val)
2913 {
2914 	struct zone *zone;
2915 	struct page *page;
2916 	unsigned long pfn, max_zone_pfn;
2917 	unsigned long total = 0, split = 0;
2918 
2919 	if (val != 1)
2920 		return -EINVAL;
2921 
2922 	for_each_populated_zone(zone) {
2923 		max_zone_pfn = zone_end_pfn(zone);
2924 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2925 			if (!pfn_valid(pfn))
2926 				continue;
2927 
2928 			page = pfn_to_page(pfn);
2929 			if (!get_page_unless_zero(page))
2930 				continue;
2931 
2932 			if (zone != page_zone(page))
2933 				goto next;
2934 
2935 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2936 				goto next;
2937 
2938 			total++;
2939 			lock_page(page);
2940 			if (!split_huge_page(page))
2941 				split++;
2942 			unlock_page(page);
2943 next:
2944 			put_page(page);
2945 		}
2946 	}
2947 
2948 	pr_info("%lu of %lu THP split\n", split, total);
2949 
2950 	return 0;
2951 }
2952 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2953 		"%llu\n");
2954 
2955 static int __init split_huge_pages_debugfs(void)
2956 {
2957 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2958 			    &split_huge_pages_fops);
2959 	return 0;
2960 }
2961 late_initcall(split_huge_pages_debugfs);
2962 #endif
2963 
2964 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2965 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2966 		struct page *page)
2967 {
2968 	struct vm_area_struct *vma = pvmw->vma;
2969 	struct mm_struct *mm = vma->vm_mm;
2970 	unsigned long address = pvmw->address;
2971 	pmd_t pmdval;
2972 	swp_entry_t entry;
2973 	pmd_t pmdswp;
2974 
2975 	if (!(pvmw->pmd && !pvmw->pte))
2976 		return;
2977 
2978 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2979 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
2980 	if (pmd_dirty(pmdval))
2981 		set_page_dirty(page);
2982 	entry = make_migration_entry(page, pmd_write(pmdval));
2983 	pmdswp = swp_entry_to_pmd(entry);
2984 	if (pmd_soft_dirty(pmdval))
2985 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2986 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2987 	page_remove_rmap(page, true);
2988 	put_page(page);
2989 }
2990 
2991 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2992 {
2993 	struct vm_area_struct *vma = pvmw->vma;
2994 	struct mm_struct *mm = vma->vm_mm;
2995 	unsigned long address = pvmw->address;
2996 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
2997 	pmd_t pmde;
2998 	swp_entry_t entry;
2999 
3000 	if (!(pvmw->pmd && !pvmw->pte))
3001 		return;
3002 
3003 	entry = pmd_to_swp_entry(*pvmw->pmd);
3004 	get_page(new);
3005 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3006 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3007 		pmde = pmd_mksoft_dirty(pmde);
3008 	if (is_write_migration_entry(entry))
3009 		pmde = maybe_pmd_mkwrite(pmde, vma);
3010 
3011 	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3012 	if (PageAnon(new))
3013 		page_add_anon_rmap(new, vma, mmun_start, true);
3014 	else
3015 		page_add_file_rmap(new, true);
3016 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3017 	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3018 		mlock_vma_page(new);
3019 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3020 }
3021 #endif
3022