xref: /linux/mm/huge_memory.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/mm_inline.h>
16 #include <linux/kthread.h>
17 #include <linux/khugepaged.h>
18 #include <linux/freezer.h>
19 #include <linux/mman.h>
20 #include <asm/tlb.h>
21 #include <asm/pgalloc.h>
22 #include "internal.h"
23 
24 /*
25  * By default transparent hugepage support is enabled for all mappings
26  * and khugepaged scans all mappings. Defrag is only invoked by
27  * khugepaged hugepage allocations and by page faults inside
28  * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29  * allocations.
30  */
31 unsigned long transparent_hugepage_flags __read_mostly =
32 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
33 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
34 #endif
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37 #endif
38 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
39 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40 
41 /* default scan 8*512 pte (or vmas) every 30 second */
42 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43 static unsigned int khugepaged_pages_collapsed;
44 static unsigned int khugepaged_full_scans;
45 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46 /* during fragmentation poll the hugepage allocator once every minute */
47 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48 static struct task_struct *khugepaged_thread __read_mostly;
49 static DEFINE_MUTEX(khugepaged_mutex);
50 static DEFINE_SPINLOCK(khugepaged_mm_lock);
51 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52 /*
53  * default collapse hugepages if there is at least one pte mapped like
54  * it would have happened if the vma was large enough during page
55  * fault.
56  */
57 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58 
59 static int khugepaged(void *none);
60 static int mm_slots_hash_init(void);
61 static int khugepaged_slab_init(void);
62 static void khugepaged_slab_free(void);
63 
64 #define MM_SLOTS_HASH_HEADS 1024
65 static struct hlist_head *mm_slots_hash __read_mostly;
66 static struct kmem_cache *mm_slot_cache __read_mostly;
67 
68 /**
69  * struct mm_slot - hash lookup from mm to mm_slot
70  * @hash: hash collision list
71  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72  * @mm: the mm that this information is valid for
73  */
74 struct mm_slot {
75 	struct hlist_node hash;
76 	struct list_head mm_node;
77 	struct mm_struct *mm;
78 };
79 
80 /**
81  * struct khugepaged_scan - cursor for scanning
82  * @mm_head: the head of the mm list to scan
83  * @mm_slot: the current mm_slot we are scanning
84  * @address: the next address inside that to be scanned
85  *
86  * There is only the one khugepaged_scan instance of this cursor structure.
87  */
88 struct khugepaged_scan {
89 	struct list_head mm_head;
90 	struct mm_slot *mm_slot;
91 	unsigned long address;
92 };
93 static struct khugepaged_scan khugepaged_scan = {
94 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95 };
96 
97 
98 static int set_recommended_min_free_kbytes(void)
99 {
100 	struct zone *zone;
101 	int nr_zones = 0;
102 	unsigned long recommended_min;
103 	extern int min_free_kbytes;
104 
105 	if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 		      &transparent_hugepage_flags) &&
107 	    !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 		      &transparent_hugepage_flags))
109 		return 0;
110 
111 	for_each_populated_zone(zone)
112 		nr_zones++;
113 
114 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 	recommended_min = pageblock_nr_pages * nr_zones * 2;
116 
117 	/*
118 	 * Make sure that on average at least two pageblocks are almost free
119 	 * of another type, one for a migratetype to fall back to and a
120 	 * second to avoid subsequent fallbacks of other types There are 3
121 	 * MIGRATE_TYPES we care about.
122 	 */
123 	recommended_min += pageblock_nr_pages * nr_zones *
124 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125 
126 	/* don't ever allow to reserve more than 5% of the lowmem */
127 	recommended_min = min(recommended_min,
128 			      (unsigned long) nr_free_buffer_pages() / 20);
129 	recommended_min <<= (PAGE_SHIFT-10);
130 
131 	if (recommended_min > min_free_kbytes)
132 		min_free_kbytes = recommended_min;
133 	setup_per_zone_wmarks();
134 	return 0;
135 }
136 late_initcall(set_recommended_min_free_kbytes);
137 
138 static int start_khugepaged(void)
139 {
140 	int err = 0;
141 	if (khugepaged_enabled()) {
142 		int wakeup;
143 		if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 			err = -ENOMEM;
145 			goto out;
146 		}
147 		mutex_lock(&khugepaged_mutex);
148 		if (!khugepaged_thread)
149 			khugepaged_thread = kthread_run(khugepaged, NULL,
150 							"khugepaged");
151 		if (unlikely(IS_ERR(khugepaged_thread))) {
152 			printk(KERN_ERR
153 			       "khugepaged: kthread_run(khugepaged) failed\n");
154 			err = PTR_ERR(khugepaged_thread);
155 			khugepaged_thread = NULL;
156 		}
157 		wakeup = !list_empty(&khugepaged_scan.mm_head);
158 		mutex_unlock(&khugepaged_mutex);
159 		if (wakeup)
160 			wake_up_interruptible(&khugepaged_wait);
161 
162 		set_recommended_min_free_kbytes();
163 	} else
164 		/* wakeup to exit */
165 		wake_up_interruptible(&khugepaged_wait);
166 out:
167 	return err;
168 }
169 
170 #ifdef CONFIG_SYSFS
171 
172 static ssize_t double_flag_show(struct kobject *kobj,
173 				struct kobj_attribute *attr, char *buf,
174 				enum transparent_hugepage_flag enabled,
175 				enum transparent_hugepage_flag req_madv)
176 {
177 	if (test_bit(enabled, &transparent_hugepage_flags)) {
178 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 		return sprintf(buf, "[always] madvise never\n");
180 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
181 		return sprintf(buf, "always [madvise] never\n");
182 	else
183 		return sprintf(buf, "always madvise [never]\n");
184 }
185 static ssize_t double_flag_store(struct kobject *kobj,
186 				 struct kobj_attribute *attr,
187 				 const char *buf, size_t count,
188 				 enum transparent_hugepage_flag enabled,
189 				 enum transparent_hugepage_flag req_madv)
190 {
191 	if (!memcmp("always", buf,
192 		    min(sizeof("always")-1, count))) {
193 		set_bit(enabled, &transparent_hugepage_flags);
194 		clear_bit(req_madv, &transparent_hugepage_flags);
195 	} else if (!memcmp("madvise", buf,
196 			   min(sizeof("madvise")-1, count))) {
197 		clear_bit(enabled, &transparent_hugepage_flags);
198 		set_bit(req_madv, &transparent_hugepage_flags);
199 	} else if (!memcmp("never", buf,
200 			   min(sizeof("never")-1, count))) {
201 		clear_bit(enabled, &transparent_hugepage_flags);
202 		clear_bit(req_madv, &transparent_hugepage_flags);
203 	} else
204 		return -EINVAL;
205 
206 	return count;
207 }
208 
209 static ssize_t enabled_show(struct kobject *kobj,
210 			    struct kobj_attribute *attr, char *buf)
211 {
212 	return double_flag_show(kobj, attr, buf,
213 				TRANSPARENT_HUGEPAGE_FLAG,
214 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215 }
216 static ssize_t enabled_store(struct kobject *kobj,
217 			     struct kobj_attribute *attr,
218 			     const char *buf, size_t count)
219 {
220 	ssize_t ret;
221 
222 	ret = double_flag_store(kobj, attr, buf, count,
223 				TRANSPARENT_HUGEPAGE_FLAG,
224 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225 
226 	if (ret > 0) {
227 		int err = start_khugepaged();
228 		if (err)
229 			ret = err;
230 	}
231 
232 	if (ret > 0 &&
233 	    (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 		      &transparent_hugepage_flags) ||
235 	     test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 		      &transparent_hugepage_flags)))
237 		set_recommended_min_free_kbytes();
238 
239 	return ret;
240 }
241 static struct kobj_attribute enabled_attr =
242 	__ATTR(enabled, 0644, enabled_show, enabled_store);
243 
244 static ssize_t single_flag_show(struct kobject *kobj,
245 				struct kobj_attribute *attr, char *buf,
246 				enum transparent_hugepage_flag flag)
247 {
248 	return sprintf(buf, "%d\n",
249 		       !!test_bit(flag, &transparent_hugepage_flags));
250 }
251 
252 static ssize_t single_flag_store(struct kobject *kobj,
253 				 struct kobj_attribute *attr,
254 				 const char *buf, size_t count,
255 				 enum transparent_hugepage_flag flag)
256 {
257 	unsigned long value;
258 	int ret;
259 
260 	ret = kstrtoul(buf, 10, &value);
261 	if (ret < 0)
262 		return ret;
263 	if (value > 1)
264 		return -EINVAL;
265 
266 	if (value)
267 		set_bit(flag, &transparent_hugepage_flags);
268 	else
269 		clear_bit(flag, &transparent_hugepage_flags);
270 
271 	return count;
272 }
273 
274 /*
275  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277  * memory just to allocate one more hugepage.
278  */
279 static ssize_t defrag_show(struct kobject *kobj,
280 			   struct kobj_attribute *attr, char *buf)
281 {
282 	return double_flag_show(kobj, attr, buf,
283 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285 }
286 static ssize_t defrag_store(struct kobject *kobj,
287 			    struct kobj_attribute *attr,
288 			    const char *buf, size_t count)
289 {
290 	return double_flag_store(kobj, attr, buf, count,
291 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293 }
294 static struct kobj_attribute defrag_attr =
295 	__ATTR(defrag, 0644, defrag_show, defrag_store);
296 
297 #ifdef CONFIG_DEBUG_VM
298 static ssize_t debug_cow_show(struct kobject *kobj,
299 				struct kobj_attribute *attr, char *buf)
300 {
301 	return single_flag_show(kobj, attr, buf,
302 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303 }
304 static ssize_t debug_cow_store(struct kobject *kobj,
305 			       struct kobj_attribute *attr,
306 			       const char *buf, size_t count)
307 {
308 	return single_flag_store(kobj, attr, buf, count,
309 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310 }
311 static struct kobj_attribute debug_cow_attr =
312 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313 #endif /* CONFIG_DEBUG_VM */
314 
315 static struct attribute *hugepage_attr[] = {
316 	&enabled_attr.attr,
317 	&defrag_attr.attr,
318 #ifdef CONFIG_DEBUG_VM
319 	&debug_cow_attr.attr,
320 #endif
321 	NULL,
322 };
323 
324 static struct attribute_group hugepage_attr_group = {
325 	.attrs = hugepage_attr,
326 };
327 
328 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 					 struct kobj_attribute *attr,
330 					 char *buf)
331 {
332 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333 }
334 
335 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 					  struct kobj_attribute *attr,
337 					  const char *buf, size_t count)
338 {
339 	unsigned long msecs;
340 	int err;
341 
342 	err = strict_strtoul(buf, 10, &msecs);
343 	if (err || msecs > UINT_MAX)
344 		return -EINVAL;
345 
346 	khugepaged_scan_sleep_millisecs = msecs;
347 	wake_up_interruptible(&khugepaged_wait);
348 
349 	return count;
350 }
351 static struct kobj_attribute scan_sleep_millisecs_attr =
352 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 	       scan_sleep_millisecs_store);
354 
355 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 					  struct kobj_attribute *attr,
357 					  char *buf)
358 {
359 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360 }
361 
362 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 					   struct kobj_attribute *attr,
364 					   const char *buf, size_t count)
365 {
366 	unsigned long msecs;
367 	int err;
368 
369 	err = strict_strtoul(buf, 10, &msecs);
370 	if (err || msecs > UINT_MAX)
371 		return -EINVAL;
372 
373 	khugepaged_alloc_sleep_millisecs = msecs;
374 	wake_up_interruptible(&khugepaged_wait);
375 
376 	return count;
377 }
378 static struct kobj_attribute alloc_sleep_millisecs_attr =
379 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 	       alloc_sleep_millisecs_store);
381 
382 static ssize_t pages_to_scan_show(struct kobject *kobj,
383 				  struct kobj_attribute *attr,
384 				  char *buf)
385 {
386 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387 }
388 static ssize_t pages_to_scan_store(struct kobject *kobj,
389 				   struct kobj_attribute *attr,
390 				   const char *buf, size_t count)
391 {
392 	int err;
393 	unsigned long pages;
394 
395 	err = strict_strtoul(buf, 10, &pages);
396 	if (err || !pages || pages > UINT_MAX)
397 		return -EINVAL;
398 
399 	khugepaged_pages_to_scan = pages;
400 
401 	return count;
402 }
403 static struct kobj_attribute pages_to_scan_attr =
404 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 	       pages_to_scan_store);
406 
407 static ssize_t pages_collapsed_show(struct kobject *kobj,
408 				    struct kobj_attribute *attr,
409 				    char *buf)
410 {
411 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412 }
413 static struct kobj_attribute pages_collapsed_attr =
414 	__ATTR_RO(pages_collapsed);
415 
416 static ssize_t full_scans_show(struct kobject *kobj,
417 			       struct kobj_attribute *attr,
418 			       char *buf)
419 {
420 	return sprintf(buf, "%u\n", khugepaged_full_scans);
421 }
422 static struct kobj_attribute full_scans_attr =
423 	__ATTR_RO(full_scans);
424 
425 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 				      struct kobj_attribute *attr, char *buf)
427 {
428 	return single_flag_show(kobj, attr, buf,
429 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430 }
431 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 				       struct kobj_attribute *attr,
433 				       const char *buf, size_t count)
434 {
435 	return single_flag_store(kobj, attr, buf, count,
436 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437 }
438 static struct kobj_attribute khugepaged_defrag_attr =
439 	__ATTR(defrag, 0644, khugepaged_defrag_show,
440 	       khugepaged_defrag_store);
441 
442 /*
443  * max_ptes_none controls if khugepaged should collapse hugepages over
444  * any unmapped ptes in turn potentially increasing the memory
445  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446  * reduce the available free memory in the system as it
447  * runs. Increasing max_ptes_none will instead potentially reduce the
448  * free memory in the system during the khugepaged scan.
449  */
450 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 					     struct kobj_attribute *attr,
452 					     char *buf)
453 {
454 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455 }
456 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 					      struct kobj_attribute *attr,
458 					      const char *buf, size_t count)
459 {
460 	int err;
461 	unsigned long max_ptes_none;
462 
463 	err = strict_strtoul(buf, 10, &max_ptes_none);
464 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 		return -EINVAL;
466 
467 	khugepaged_max_ptes_none = max_ptes_none;
468 
469 	return count;
470 }
471 static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 	       khugepaged_max_ptes_none_store);
474 
475 static struct attribute *khugepaged_attr[] = {
476 	&khugepaged_defrag_attr.attr,
477 	&khugepaged_max_ptes_none_attr.attr,
478 	&pages_to_scan_attr.attr,
479 	&pages_collapsed_attr.attr,
480 	&full_scans_attr.attr,
481 	&scan_sleep_millisecs_attr.attr,
482 	&alloc_sleep_millisecs_attr.attr,
483 	NULL,
484 };
485 
486 static struct attribute_group khugepaged_attr_group = {
487 	.attrs = khugepaged_attr,
488 	.name = "khugepaged",
489 };
490 
491 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
492 {
493 	int err;
494 
495 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 	if (unlikely(!*hugepage_kobj)) {
497 		printk(KERN_ERR "hugepage: failed kobject create\n");
498 		return -ENOMEM;
499 	}
500 
501 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
502 	if (err) {
503 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
504 		goto delete_obj;
505 	}
506 
507 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
508 	if (err) {
509 		printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 		goto remove_hp_group;
511 	}
512 
513 	return 0;
514 
515 remove_hp_group:
516 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517 delete_obj:
518 	kobject_put(*hugepage_kobj);
519 	return err;
520 }
521 
522 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523 {
524 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 	kobject_put(hugepage_kobj);
527 }
528 #else
529 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530 {
531 	return 0;
532 }
533 
534 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535 {
536 }
537 #endif /* CONFIG_SYSFS */
538 
539 static int __init hugepage_init(void)
540 {
541 	int err;
542 	struct kobject *hugepage_kobj;
543 
544 	if (!has_transparent_hugepage()) {
545 		transparent_hugepage_flags = 0;
546 		return -EINVAL;
547 	}
548 
549 	err = hugepage_init_sysfs(&hugepage_kobj);
550 	if (err)
551 		return err;
552 
553 	err = khugepaged_slab_init();
554 	if (err)
555 		goto out;
556 
557 	err = mm_slots_hash_init();
558 	if (err) {
559 		khugepaged_slab_free();
560 		goto out;
561 	}
562 
563 	/*
564 	 * By default disable transparent hugepages on smaller systems,
565 	 * where the extra memory used could hurt more than TLB overhead
566 	 * is likely to save.  The admin can still enable it through /sys.
567 	 */
568 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 		transparent_hugepage_flags = 0;
570 
571 	start_khugepaged();
572 
573 	set_recommended_min_free_kbytes();
574 
575 	return 0;
576 out:
577 	hugepage_exit_sysfs(hugepage_kobj);
578 	return err;
579 }
580 module_init(hugepage_init)
581 
582 static int __init setup_transparent_hugepage(char *str)
583 {
584 	int ret = 0;
585 	if (!str)
586 		goto out;
587 	if (!strcmp(str, "always")) {
588 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 			&transparent_hugepage_flags);
590 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 			  &transparent_hugepage_flags);
592 		ret = 1;
593 	} else if (!strcmp(str, "madvise")) {
594 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 			  &transparent_hugepage_flags);
596 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 			&transparent_hugepage_flags);
598 		ret = 1;
599 	} else if (!strcmp(str, "never")) {
600 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 			  &transparent_hugepage_flags);
602 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 			  &transparent_hugepage_flags);
604 		ret = 1;
605 	}
606 out:
607 	if (!ret)
608 		printk(KERN_WARNING
609 		       "transparent_hugepage= cannot parse, ignored\n");
610 	return ret;
611 }
612 __setup("transparent_hugepage=", setup_transparent_hugepage);
613 
614 static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 				 struct mm_struct *mm)
616 {
617 	assert_spin_locked(&mm->page_table_lock);
618 
619 	/* FIFO */
620 	if (!mm->pmd_huge_pte)
621 		INIT_LIST_HEAD(&pgtable->lru);
622 	else
623 		list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 	mm->pmd_huge_pte = pgtable;
625 }
626 
627 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628 {
629 	if (likely(vma->vm_flags & VM_WRITE))
630 		pmd = pmd_mkwrite(pmd);
631 	return pmd;
632 }
633 
634 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 					struct vm_area_struct *vma,
636 					unsigned long haddr, pmd_t *pmd,
637 					struct page *page)
638 {
639 	pgtable_t pgtable;
640 
641 	VM_BUG_ON(!PageCompound(page));
642 	pgtable = pte_alloc_one(mm, haddr);
643 	if (unlikely(!pgtable))
644 		return VM_FAULT_OOM;
645 
646 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
647 	__SetPageUptodate(page);
648 
649 	spin_lock(&mm->page_table_lock);
650 	if (unlikely(!pmd_none(*pmd))) {
651 		spin_unlock(&mm->page_table_lock);
652 		mem_cgroup_uncharge_page(page);
653 		put_page(page);
654 		pte_free(mm, pgtable);
655 	} else {
656 		pmd_t entry;
657 		entry = mk_pmd(page, vma->vm_page_prot);
658 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
659 		entry = pmd_mkhuge(entry);
660 		/*
661 		 * The spinlocking to take the lru_lock inside
662 		 * page_add_new_anon_rmap() acts as a full memory
663 		 * barrier to be sure clear_huge_page writes become
664 		 * visible after the set_pmd_at() write.
665 		 */
666 		page_add_new_anon_rmap(page, vma, haddr);
667 		set_pmd_at(mm, haddr, pmd, entry);
668 		prepare_pmd_huge_pte(pgtable, mm);
669 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
670 		mm->nr_ptes++;
671 		spin_unlock(&mm->page_table_lock);
672 	}
673 
674 	return 0;
675 }
676 
677 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
678 {
679 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
680 }
681 
682 static inline struct page *alloc_hugepage_vma(int defrag,
683 					      struct vm_area_struct *vma,
684 					      unsigned long haddr, int nd,
685 					      gfp_t extra_gfp)
686 {
687 	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
688 			       HPAGE_PMD_ORDER, vma, haddr, nd);
689 }
690 
691 #ifndef CONFIG_NUMA
692 static inline struct page *alloc_hugepage(int defrag)
693 {
694 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
695 			   HPAGE_PMD_ORDER);
696 }
697 #endif
698 
699 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
700 			       unsigned long address, pmd_t *pmd,
701 			       unsigned int flags)
702 {
703 	struct page *page;
704 	unsigned long haddr = address & HPAGE_PMD_MASK;
705 	pte_t *pte;
706 
707 	if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
708 		if (unlikely(anon_vma_prepare(vma)))
709 			return VM_FAULT_OOM;
710 		if (unlikely(khugepaged_enter(vma)))
711 			return VM_FAULT_OOM;
712 		page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
713 					  vma, haddr, numa_node_id(), 0);
714 		if (unlikely(!page)) {
715 			count_vm_event(THP_FAULT_FALLBACK);
716 			goto out;
717 		}
718 		count_vm_event(THP_FAULT_ALLOC);
719 		if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
720 			put_page(page);
721 			goto out;
722 		}
723 		if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
724 							  page))) {
725 			mem_cgroup_uncharge_page(page);
726 			put_page(page);
727 			goto out;
728 		}
729 
730 		return 0;
731 	}
732 out:
733 	/*
734 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
735 	 * run pte_offset_map on the pmd, if an huge pmd could
736 	 * materialize from under us from a different thread.
737 	 */
738 	if (unlikely(__pte_alloc(mm, vma, pmd, address)))
739 		return VM_FAULT_OOM;
740 	/* if an huge pmd materialized from under us just retry later */
741 	if (unlikely(pmd_trans_huge(*pmd)))
742 		return 0;
743 	/*
744 	 * A regular pmd is established and it can't morph into a huge pmd
745 	 * from under us anymore at this point because we hold the mmap_sem
746 	 * read mode and khugepaged takes it in write mode. So now it's
747 	 * safe to run pte_offset_map().
748 	 */
749 	pte = pte_offset_map(pmd, address);
750 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
751 }
752 
753 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
754 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
755 		  struct vm_area_struct *vma)
756 {
757 	struct page *src_page;
758 	pmd_t pmd;
759 	pgtable_t pgtable;
760 	int ret;
761 
762 	ret = -ENOMEM;
763 	pgtable = pte_alloc_one(dst_mm, addr);
764 	if (unlikely(!pgtable))
765 		goto out;
766 
767 	spin_lock(&dst_mm->page_table_lock);
768 	spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
769 
770 	ret = -EAGAIN;
771 	pmd = *src_pmd;
772 	if (unlikely(!pmd_trans_huge(pmd))) {
773 		pte_free(dst_mm, pgtable);
774 		goto out_unlock;
775 	}
776 	if (unlikely(pmd_trans_splitting(pmd))) {
777 		/* split huge page running from under us */
778 		spin_unlock(&src_mm->page_table_lock);
779 		spin_unlock(&dst_mm->page_table_lock);
780 		pte_free(dst_mm, pgtable);
781 
782 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
783 		goto out;
784 	}
785 	src_page = pmd_page(pmd);
786 	VM_BUG_ON(!PageHead(src_page));
787 	get_page(src_page);
788 	page_dup_rmap(src_page);
789 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
790 
791 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
792 	pmd = pmd_mkold(pmd_wrprotect(pmd));
793 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
794 	prepare_pmd_huge_pte(pgtable, dst_mm);
795 	dst_mm->nr_ptes++;
796 
797 	ret = 0;
798 out_unlock:
799 	spin_unlock(&src_mm->page_table_lock);
800 	spin_unlock(&dst_mm->page_table_lock);
801 out:
802 	return ret;
803 }
804 
805 /* no "address" argument so destroys page coloring of some arch */
806 pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
807 {
808 	pgtable_t pgtable;
809 
810 	assert_spin_locked(&mm->page_table_lock);
811 
812 	/* FIFO */
813 	pgtable = mm->pmd_huge_pte;
814 	if (list_empty(&pgtable->lru))
815 		mm->pmd_huge_pte = NULL;
816 	else {
817 		mm->pmd_huge_pte = list_entry(pgtable->lru.next,
818 					      struct page, lru);
819 		list_del(&pgtable->lru);
820 	}
821 	return pgtable;
822 }
823 
824 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
825 					struct vm_area_struct *vma,
826 					unsigned long address,
827 					pmd_t *pmd, pmd_t orig_pmd,
828 					struct page *page,
829 					unsigned long haddr)
830 {
831 	pgtable_t pgtable;
832 	pmd_t _pmd;
833 	int ret = 0, i;
834 	struct page **pages;
835 
836 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
837 			GFP_KERNEL);
838 	if (unlikely(!pages)) {
839 		ret |= VM_FAULT_OOM;
840 		goto out;
841 	}
842 
843 	for (i = 0; i < HPAGE_PMD_NR; i++) {
844 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
845 					       __GFP_OTHER_NODE,
846 					       vma, address, page_to_nid(page));
847 		if (unlikely(!pages[i] ||
848 			     mem_cgroup_newpage_charge(pages[i], mm,
849 						       GFP_KERNEL))) {
850 			if (pages[i])
851 				put_page(pages[i]);
852 			mem_cgroup_uncharge_start();
853 			while (--i >= 0) {
854 				mem_cgroup_uncharge_page(pages[i]);
855 				put_page(pages[i]);
856 			}
857 			mem_cgroup_uncharge_end();
858 			kfree(pages);
859 			ret |= VM_FAULT_OOM;
860 			goto out;
861 		}
862 	}
863 
864 	for (i = 0; i < HPAGE_PMD_NR; i++) {
865 		copy_user_highpage(pages[i], page + i,
866 				   haddr + PAGE_SIZE * i, vma);
867 		__SetPageUptodate(pages[i]);
868 		cond_resched();
869 	}
870 
871 	spin_lock(&mm->page_table_lock);
872 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
873 		goto out_free_pages;
874 	VM_BUG_ON(!PageHead(page));
875 
876 	pmdp_clear_flush_notify(vma, haddr, pmd);
877 	/* leave pmd empty until pte is filled */
878 
879 	pgtable = get_pmd_huge_pte(mm);
880 	pmd_populate(mm, &_pmd, pgtable);
881 
882 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
883 		pte_t *pte, entry;
884 		entry = mk_pte(pages[i], vma->vm_page_prot);
885 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
886 		page_add_new_anon_rmap(pages[i], vma, haddr);
887 		pte = pte_offset_map(&_pmd, haddr);
888 		VM_BUG_ON(!pte_none(*pte));
889 		set_pte_at(mm, haddr, pte, entry);
890 		pte_unmap(pte);
891 	}
892 	kfree(pages);
893 
894 	smp_wmb(); /* make pte visible before pmd */
895 	pmd_populate(mm, pmd, pgtable);
896 	page_remove_rmap(page);
897 	spin_unlock(&mm->page_table_lock);
898 
899 	ret |= VM_FAULT_WRITE;
900 	put_page(page);
901 
902 out:
903 	return ret;
904 
905 out_free_pages:
906 	spin_unlock(&mm->page_table_lock);
907 	mem_cgroup_uncharge_start();
908 	for (i = 0; i < HPAGE_PMD_NR; i++) {
909 		mem_cgroup_uncharge_page(pages[i]);
910 		put_page(pages[i]);
911 	}
912 	mem_cgroup_uncharge_end();
913 	kfree(pages);
914 	goto out;
915 }
916 
917 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
918 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
919 {
920 	int ret = 0;
921 	struct page *page, *new_page;
922 	unsigned long haddr;
923 
924 	VM_BUG_ON(!vma->anon_vma);
925 	spin_lock(&mm->page_table_lock);
926 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 		goto out_unlock;
928 
929 	page = pmd_page(orig_pmd);
930 	VM_BUG_ON(!PageCompound(page) || !PageHead(page));
931 	haddr = address & HPAGE_PMD_MASK;
932 	if (page_mapcount(page) == 1) {
933 		pmd_t entry;
934 		entry = pmd_mkyoung(orig_pmd);
935 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
937 			update_mmu_cache(vma, address, entry);
938 		ret |= VM_FAULT_WRITE;
939 		goto out_unlock;
940 	}
941 	get_page(page);
942 	spin_unlock(&mm->page_table_lock);
943 
944 	if (transparent_hugepage_enabled(vma) &&
945 	    !transparent_hugepage_debug_cow())
946 		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
947 					      vma, haddr, numa_node_id(), 0);
948 	else
949 		new_page = NULL;
950 
951 	if (unlikely(!new_page)) {
952 		count_vm_event(THP_FAULT_FALLBACK);
953 		ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
954 						   pmd, orig_pmd, page, haddr);
955 		if (ret & VM_FAULT_OOM)
956 			split_huge_page(page);
957 		put_page(page);
958 		goto out;
959 	}
960 	count_vm_event(THP_FAULT_ALLOC);
961 
962 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
963 		put_page(new_page);
964 		split_huge_page(page);
965 		put_page(page);
966 		ret |= VM_FAULT_OOM;
967 		goto out;
968 	}
969 
970 	copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
971 	__SetPageUptodate(new_page);
972 
973 	spin_lock(&mm->page_table_lock);
974 	put_page(page);
975 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
976 		spin_unlock(&mm->page_table_lock);
977 		mem_cgroup_uncharge_page(new_page);
978 		put_page(new_page);
979 		goto out;
980 	} else {
981 		pmd_t entry;
982 		VM_BUG_ON(!PageHead(page));
983 		entry = mk_pmd(new_page, vma->vm_page_prot);
984 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
985 		entry = pmd_mkhuge(entry);
986 		pmdp_clear_flush_notify(vma, haddr, pmd);
987 		page_add_new_anon_rmap(new_page, vma, haddr);
988 		set_pmd_at(mm, haddr, pmd, entry);
989 		update_mmu_cache(vma, address, entry);
990 		page_remove_rmap(page);
991 		put_page(page);
992 		ret |= VM_FAULT_WRITE;
993 	}
994 out_unlock:
995 	spin_unlock(&mm->page_table_lock);
996 out:
997 	return ret;
998 }
999 
1000 struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1001 				   unsigned long addr,
1002 				   pmd_t *pmd,
1003 				   unsigned int flags)
1004 {
1005 	struct page *page = NULL;
1006 
1007 	assert_spin_locked(&mm->page_table_lock);
1008 
1009 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1010 		goto out;
1011 
1012 	page = pmd_page(*pmd);
1013 	VM_BUG_ON(!PageHead(page));
1014 	if (flags & FOLL_TOUCH) {
1015 		pmd_t _pmd;
1016 		/*
1017 		 * We should set the dirty bit only for FOLL_WRITE but
1018 		 * for now the dirty bit in the pmd is meaningless.
1019 		 * And if the dirty bit will become meaningful and
1020 		 * we'll only set it with FOLL_WRITE, an atomic
1021 		 * set_bit will be required on the pmd to set the
1022 		 * young bit, instead of the current set_pmd_at.
1023 		 */
1024 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1025 		set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1026 	}
1027 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1028 	VM_BUG_ON(!PageCompound(page));
1029 	if (flags & FOLL_GET)
1030 		get_page_foll(page);
1031 
1032 out:
1033 	return page;
1034 }
1035 
1036 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1037 		 pmd_t *pmd, unsigned long addr)
1038 {
1039 	int ret = 0;
1040 
1041 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1042 		struct page *page;
1043 		pgtable_t pgtable;
1044 		pgtable = get_pmd_huge_pte(tlb->mm);
1045 		page = pmd_page(*pmd);
1046 		pmd_clear(pmd);
1047 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1048 		page_remove_rmap(page);
1049 		VM_BUG_ON(page_mapcount(page) < 0);
1050 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1051 		VM_BUG_ON(!PageHead(page));
1052 		tlb->mm->nr_ptes--;
1053 		spin_unlock(&tlb->mm->page_table_lock);
1054 		tlb_remove_page(tlb, page);
1055 		pte_free(tlb->mm, pgtable);
1056 		ret = 1;
1057 	}
1058 	return ret;
1059 }
1060 
1061 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1062 		unsigned long addr, unsigned long end,
1063 		unsigned char *vec)
1064 {
1065 	int ret = 0;
1066 
1067 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1068 		/*
1069 		 * All logical pages in the range are present
1070 		 * if backed by a huge page.
1071 		 */
1072 		spin_unlock(&vma->vm_mm->page_table_lock);
1073 		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1074 		ret = 1;
1075 	}
1076 
1077 	return ret;
1078 }
1079 
1080 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1081 		  unsigned long old_addr,
1082 		  unsigned long new_addr, unsigned long old_end,
1083 		  pmd_t *old_pmd, pmd_t *new_pmd)
1084 {
1085 	int ret = 0;
1086 	pmd_t pmd;
1087 
1088 	struct mm_struct *mm = vma->vm_mm;
1089 
1090 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1091 	    (new_addr & ~HPAGE_PMD_MASK) ||
1092 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1093 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1094 		goto out;
1095 
1096 	/*
1097 	 * The destination pmd shouldn't be established, free_pgtables()
1098 	 * should have release it.
1099 	 */
1100 	if (WARN_ON(!pmd_none(*new_pmd))) {
1101 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1102 		goto out;
1103 	}
1104 
1105 	ret = __pmd_trans_huge_lock(old_pmd, vma);
1106 	if (ret == 1) {
1107 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1108 		VM_BUG_ON(!pmd_none(*new_pmd));
1109 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1110 		spin_unlock(&mm->page_table_lock);
1111 	}
1112 out:
1113 	return ret;
1114 }
1115 
1116 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1117 		unsigned long addr, pgprot_t newprot)
1118 {
1119 	struct mm_struct *mm = vma->vm_mm;
1120 	int ret = 0;
1121 
1122 	if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1123 		pmd_t entry;
1124 		entry = pmdp_get_and_clear(mm, addr, pmd);
1125 		entry = pmd_modify(entry, newprot);
1126 		set_pmd_at(mm, addr, pmd, entry);
1127 		spin_unlock(&vma->vm_mm->page_table_lock);
1128 		ret = 1;
1129 	}
1130 
1131 	return ret;
1132 }
1133 
1134 /*
1135  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1136  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1137  *
1138  * Note that if it returns 1, this routine returns without unlocking page
1139  * table locks. So callers must unlock them.
1140  */
1141 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1142 {
1143 	spin_lock(&vma->vm_mm->page_table_lock);
1144 	if (likely(pmd_trans_huge(*pmd))) {
1145 		if (unlikely(pmd_trans_splitting(*pmd))) {
1146 			spin_unlock(&vma->vm_mm->page_table_lock);
1147 			wait_split_huge_page(vma->anon_vma, pmd);
1148 			return -1;
1149 		} else {
1150 			/* Thp mapped by 'pmd' is stable, so we can
1151 			 * handle it as it is. */
1152 			return 1;
1153 		}
1154 	}
1155 	spin_unlock(&vma->vm_mm->page_table_lock);
1156 	return 0;
1157 }
1158 
1159 pmd_t *page_check_address_pmd(struct page *page,
1160 			      struct mm_struct *mm,
1161 			      unsigned long address,
1162 			      enum page_check_address_pmd_flag flag)
1163 {
1164 	pgd_t *pgd;
1165 	pud_t *pud;
1166 	pmd_t *pmd, *ret = NULL;
1167 
1168 	if (address & ~HPAGE_PMD_MASK)
1169 		goto out;
1170 
1171 	pgd = pgd_offset(mm, address);
1172 	if (!pgd_present(*pgd))
1173 		goto out;
1174 
1175 	pud = pud_offset(pgd, address);
1176 	if (!pud_present(*pud))
1177 		goto out;
1178 
1179 	pmd = pmd_offset(pud, address);
1180 	if (pmd_none(*pmd))
1181 		goto out;
1182 	if (pmd_page(*pmd) != page)
1183 		goto out;
1184 	/*
1185 	 * split_vma() may create temporary aliased mappings. There is
1186 	 * no risk as long as all huge pmd are found and have their
1187 	 * splitting bit set before __split_huge_page_refcount
1188 	 * runs. Finding the same huge pmd more than once during the
1189 	 * same rmap walk is not a problem.
1190 	 */
1191 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1192 	    pmd_trans_splitting(*pmd))
1193 		goto out;
1194 	if (pmd_trans_huge(*pmd)) {
1195 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1196 			  !pmd_trans_splitting(*pmd));
1197 		ret = pmd;
1198 	}
1199 out:
1200 	return ret;
1201 }
1202 
1203 static int __split_huge_page_splitting(struct page *page,
1204 				       struct vm_area_struct *vma,
1205 				       unsigned long address)
1206 {
1207 	struct mm_struct *mm = vma->vm_mm;
1208 	pmd_t *pmd;
1209 	int ret = 0;
1210 
1211 	spin_lock(&mm->page_table_lock);
1212 	pmd = page_check_address_pmd(page, mm, address,
1213 				     PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1214 	if (pmd) {
1215 		/*
1216 		 * We can't temporarily set the pmd to null in order
1217 		 * to split it, the pmd must remain marked huge at all
1218 		 * times or the VM won't take the pmd_trans_huge paths
1219 		 * and it won't wait on the anon_vma->root->mutex to
1220 		 * serialize against split_huge_page*.
1221 		 */
1222 		pmdp_splitting_flush_notify(vma, address, pmd);
1223 		ret = 1;
1224 	}
1225 	spin_unlock(&mm->page_table_lock);
1226 
1227 	return ret;
1228 }
1229 
1230 static void __split_huge_page_refcount(struct page *page)
1231 {
1232 	int i;
1233 	struct zone *zone = page_zone(page);
1234 	struct lruvec *lruvec;
1235 	int tail_count = 0;
1236 
1237 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1238 	spin_lock_irq(&zone->lru_lock);
1239 	lruvec = mem_cgroup_page_lruvec(page, zone);
1240 
1241 	compound_lock(page);
1242 	/* complete memcg works before add pages to LRU */
1243 	mem_cgroup_split_huge_fixup(page);
1244 
1245 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1246 		struct page *page_tail = page + i;
1247 
1248 		/* tail_page->_mapcount cannot change */
1249 		BUG_ON(page_mapcount(page_tail) < 0);
1250 		tail_count += page_mapcount(page_tail);
1251 		/* check for overflow */
1252 		BUG_ON(tail_count < 0);
1253 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1254 		/*
1255 		 * tail_page->_count is zero and not changing from
1256 		 * under us. But get_page_unless_zero() may be running
1257 		 * from under us on the tail_page. If we used
1258 		 * atomic_set() below instead of atomic_add(), we
1259 		 * would then run atomic_set() concurrently with
1260 		 * get_page_unless_zero(), and atomic_set() is
1261 		 * implemented in C not using locked ops. spin_unlock
1262 		 * on x86 sometime uses locked ops because of PPro
1263 		 * errata 66, 92, so unless somebody can guarantee
1264 		 * atomic_set() here would be safe on all archs (and
1265 		 * not only on x86), it's safer to use atomic_add().
1266 		 */
1267 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1268 			   &page_tail->_count);
1269 
1270 		/* after clearing PageTail the gup refcount can be released */
1271 		smp_mb();
1272 
1273 		/*
1274 		 * retain hwpoison flag of the poisoned tail page:
1275 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1276 		 *   by the memory-failure.
1277 		 */
1278 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1279 		page_tail->flags |= (page->flags &
1280 				     ((1L << PG_referenced) |
1281 				      (1L << PG_swapbacked) |
1282 				      (1L << PG_mlocked) |
1283 				      (1L << PG_uptodate)));
1284 		page_tail->flags |= (1L << PG_dirty);
1285 
1286 		/* clear PageTail before overwriting first_page */
1287 		smp_wmb();
1288 
1289 		/*
1290 		 * __split_huge_page_splitting() already set the
1291 		 * splitting bit in all pmd that could map this
1292 		 * hugepage, that will ensure no CPU can alter the
1293 		 * mapcount on the head page. The mapcount is only
1294 		 * accounted in the head page and it has to be
1295 		 * transferred to all tail pages in the below code. So
1296 		 * for this code to be safe, the split the mapcount
1297 		 * can't change. But that doesn't mean userland can't
1298 		 * keep changing and reading the page contents while
1299 		 * we transfer the mapcount, so the pmd splitting
1300 		 * status is achieved setting a reserved bit in the
1301 		 * pmd, not by clearing the present bit.
1302 		*/
1303 		page_tail->_mapcount = page->_mapcount;
1304 
1305 		BUG_ON(page_tail->mapping);
1306 		page_tail->mapping = page->mapping;
1307 
1308 		page_tail->index = page->index + i;
1309 
1310 		BUG_ON(!PageAnon(page_tail));
1311 		BUG_ON(!PageUptodate(page_tail));
1312 		BUG_ON(!PageDirty(page_tail));
1313 		BUG_ON(!PageSwapBacked(page_tail));
1314 
1315 		lru_add_page_tail(page, page_tail, lruvec);
1316 	}
1317 	atomic_sub(tail_count, &page->_count);
1318 	BUG_ON(atomic_read(&page->_count) <= 0);
1319 
1320 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1321 	__mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1322 
1323 	ClearPageCompound(page);
1324 	compound_unlock(page);
1325 	spin_unlock_irq(&zone->lru_lock);
1326 
1327 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1328 		struct page *page_tail = page + i;
1329 		BUG_ON(page_count(page_tail) <= 0);
1330 		/*
1331 		 * Tail pages may be freed if there wasn't any mapping
1332 		 * like if add_to_swap() is running on a lru page that
1333 		 * had its mapping zapped. And freeing these pages
1334 		 * requires taking the lru_lock so we do the put_page
1335 		 * of the tail pages after the split is complete.
1336 		 */
1337 		put_page(page_tail);
1338 	}
1339 
1340 	/*
1341 	 * Only the head page (now become a regular page) is required
1342 	 * to be pinned by the caller.
1343 	 */
1344 	BUG_ON(page_count(page) <= 0);
1345 }
1346 
1347 static int __split_huge_page_map(struct page *page,
1348 				 struct vm_area_struct *vma,
1349 				 unsigned long address)
1350 {
1351 	struct mm_struct *mm = vma->vm_mm;
1352 	pmd_t *pmd, _pmd;
1353 	int ret = 0, i;
1354 	pgtable_t pgtable;
1355 	unsigned long haddr;
1356 
1357 	spin_lock(&mm->page_table_lock);
1358 	pmd = page_check_address_pmd(page, mm, address,
1359 				     PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1360 	if (pmd) {
1361 		pgtable = get_pmd_huge_pte(mm);
1362 		pmd_populate(mm, &_pmd, pgtable);
1363 
1364 		for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1365 		     i++, haddr += PAGE_SIZE) {
1366 			pte_t *pte, entry;
1367 			BUG_ON(PageCompound(page+i));
1368 			entry = mk_pte(page + i, vma->vm_page_prot);
1369 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1370 			if (!pmd_write(*pmd))
1371 				entry = pte_wrprotect(entry);
1372 			else
1373 				BUG_ON(page_mapcount(page) != 1);
1374 			if (!pmd_young(*pmd))
1375 				entry = pte_mkold(entry);
1376 			pte = pte_offset_map(&_pmd, haddr);
1377 			BUG_ON(!pte_none(*pte));
1378 			set_pte_at(mm, haddr, pte, entry);
1379 			pte_unmap(pte);
1380 		}
1381 
1382 		smp_wmb(); /* make pte visible before pmd */
1383 		/*
1384 		 * Up to this point the pmd is present and huge and
1385 		 * userland has the whole access to the hugepage
1386 		 * during the split (which happens in place). If we
1387 		 * overwrite the pmd with the not-huge version
1388 		 * pointing to the pte here (which of course we could
1389 		 * if all CPUs were bug free), userland could trigger
1390 		 * a small page size TLB miss on the small sized TLB
1391 		 * while the hugepage TLB entry is still established
1392 		 * in the huge TLB. Some CPU doesn't like that. See
1393 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1394 		 * Erratum 383 on page 93. Intel should be safe but is
1395 		 * also warns that it's only safe if the permission
1396 		 * and cache attributes of the two entries loaded in
1397 		 * the two TLB is identical (which should be the case
1398 		 * here). But it is generally safer to never allow
1399 		 * small and huge TLB entries for the same virtual
1400 		 * address to be loaded simultaneously. So instead of
1401 		 * doing "pmd_populate(); flush_tlb_range();" we first
1402 		 * mark the current pmd notpresent (atomically because
1403 		 * here the pmd_trans_huge and pmd_trans_splitting
1404 		 * must remain set at all times on the pmd until the
1405 		 * split is complete for this pmd), then we flush the
1406 		 * SMP TLB and finally we write the non-huge version
1407 		 * of the pmd entry with pmd_populate.
1408 		 */
1409 		set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1410 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1411 		pmd_populate(mm, pmd, pgtable);
1412 		ret = 1;
1413 	}
1414 	spin_unlock(&mm->page_table_lock);
1415 
1416 	return ret;
1417 }
1418 
1419 /* must be called with anon_vma->root->mutex hold */
1420 static void __split_huge_page(struct page *page,
1421 			      struct anon_vma *anon_vma)
1422 {
1423 	int mapcount, mapcount2;
1424 	struct anon_vma_chain *avc;
1425 
1426 	BUG_ON(!PageHead(page));
1427 	BUG_ON(PageTail(page));
1428 
1429 	mapcount = 0;
1430 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1431 		struct vm_area_struct *vma = avc->vma;
1432 		unsigned long addr = vma_address(page, vma);
1433 		BUG_ON(is_vma_temporary_stack(vma));
1434 		if (addr == -EFAULT)
1435 			continue;
1436 		mapcount += __split_huge_page_splitting(page, vma, addr);
1437 	}
1438 	/*
1439 	 * It is critical that new vmas are added to the tail of the
1440 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1441 	 * and establishes a child pmd before
1442 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1443 	 * we fail to prevent copy_huge_pmd() from running until the
1444 	 * whole __split_huge_page() is complete), we will still see
1445 	 * the newly established pmd of the child later during the
1446 	 * walk, to be able to set it as pmd_trans_splitting too.
1447 	 */
1448 	if (mapcount != page_mapcount(page))
1449 		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1450 		       mapcount, page_mapcount(page));
1451 	BUG_ON(mapcount != page_mapcount(page));
1452 
1453 	__split_huge_page_refcount(page);
1454 
1455 	mapcount2 = 0;
1456 	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1457 		struct vm_area_struct *vma = avc->vma;
1458 		unsigned long addr = vma_address(page, vma);
1459 		BUG_ON(is_vma_temporary_stack(vma));
1460 		if (addr == -EFAULT)
1461 			continue;
1462 		mapcount2 += __split_huge_page_map(page, vma, addr);
1463 	}
1464 	if (mapcount != mapcount2)
1465 		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1466 		       mapcount, mapcount2, page_mapcount(page));
1467 	BUG_ON(mapcount != mapcount2);
1468 }
1469 
1470 int split_huge_page(struct page *page)
1471 {
1472 	struct anon_vma *anon_vma;
1473 	int ret = 1;
1474 
1475 	BUG_ON(!PageAnon(page));
1476 	anon_vma = page_lock_anon_vma(page);
1477 	if (!anon_vma)
1478 		goto out;
1479 	ret = 0;
1480 	if (!PageCompound(page))
1481 		goto out_unlock;
1482 
1483 	BUG_ON(!PageSwapBacked(page));
1484 	__split_huge_page(page, anon_vma);
1485 	count_vm_event(THP_SPLIT);
1486 
1487 	BUG_ON(PageCompound(page));
1488 out_unlock:
1489 	page_unlock_anon_vma(anon_vma);
1490 out:
1491 	return ret;
1492 }
1493 
1494 #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1495 		   VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1496 
1497 int hugepage_madvise(struct vm_area_struct *vma,
1498 		     unsigned long *vm_flags, int advice)
1499 {
1500 	switch (advice) {
1501 	case MADV_HUGEPAGE:
1502 		/*
1503 		 * Be somewhat over-protective like KSM for now!
1504 		 */
1505 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1506 			return -EINVAL;
1507 		*vm_flags &= ~VM_NOHUGEPAGE;
1508 		*vm_flags |= VM_HUGEPAGE;
1509 		/*
1510 		 * If the vma become good for khugepaged to scan,
1511 		 * register it here without waiting a page fault that
1512 		 * may not happen any time soon.
1513 		 */
1514 		if (unlikely(khugepaged_enter_vma_merge(vma)))
1515 			return -ENOMEM;
1516 		break;
1517 	case MADV_NOHUGEPAGE:
1518 		/*
1519 		 * Be somewhat over-protective like KSM for now!
1520 		 */
1521 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1522 			return -EINVAL;
1523 		*vm_flags &= ~VM_HUGEPAGE;
1524 		*vm_flags |= VM_NOHUGEPAGE;
1525 		/*
1526 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1527 		 * this vma even if we leave the mm registered in khugepaged if
1528 		 * it got registered before VM_NOHUGEPAGE was set.
1529 		 */
1530 		break;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 static int __init khugepaged_slab_init(void)
1537 {
1538 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1539 					  sizeof(struct mm_slot),
1540 					  __alignof__(struct mm_slot), 0, NULL);
1541 	if (!mm_slot_cache)
1542 		return -ENOMEM;
1543 
1544 	return 0;
1545 }
1546 
1547 static void __init khugepaged_slab_free(void)
1548 {
1549 	kmem_cache_destroy(mm_slot_cache);
1550 	mm_slot_cache = NULL;
1551 }
1552 
1553 static inline struct mm_slot *alloc_mm_slot(void)
1554 {
1555 	if (!mm_slot_cache)	/* initialization failed */
1556 		return NULL;
1557 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1558 }
1559 
1560 static inline void free_mm_slot(struct mm_slot *mm_slot)
1561 {
1562 	kmem_cache_free(mm_slot_cache, mm_slot);
1563 }
1564 
1565 static int __init mm_slots_hash_init(void)
1566 {
1567 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1568 				GFP_KERNEL);
1569 	if (!mm_slots_hash)
1570 		return -ENOMEM;
1571 	return 0;
1572 }
1573 
1574 #if 0
1575 static void __init mm_slots_hash_free(void)
1576 {
1577 	kfree(mm_slots_hash);
1578 	mm_slots_hash = NULL;
1579 }
1580 #endif
1581 
1582 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1583 {
1584 	struct mm_slot *mm_slot;
1585 	struct hlist_head *bucket;
1586 	struct hlist_node *node;
1587 
1588 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1589 				% MM_SLOTS_HASH_HEADS];
1590 	hlist_for_each_entry(mm_slot, node, bucket, hash) {
1591 		if (mm == mm_slot->mm)
1592 			return mm_slot;
1593 	}
1594 	return NULL;
1595 }
1596 
1597 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1598 				    struct mm_slot *mm_slot)
1599 {
1600 	struct hlist_head *bucket;
1601 
1602 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1603 				% MM_SLOTS_HASH_HEADS];
1604 	mm_slot->mm = mm;
1605 	hlist_add_head(&mm_slot->hash, bucket);
1606 }
1607 
1608 static inline int khugepaged_test_exit(struct mm_struct *mm)
1609 {
1610 	return atomic_read(&mm->mm_users) == 0;
1611 }
1612 
1613 int __khugepaged_enter(struct mm_struct *mm)
1614 {
1615 	struct mm_slot *mm_slot;
1616 	int wakeup;
1617 
1618 	mm_slot = alloc_mm_slot();
1619 	if (!mm_slot)
1620 		return -ENOMEM;
1621 
1622 	/* __khugepaged_exit() must not run from under us */
1623 	VM_BUG_ON(khugepaged_test_exit(mm));
1624 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1625 		free_mm_slot(mm_slot);
1626 		return 0;
1627 	}
1628 
1629 	spin_lock(&khugepaged_mm_lock);
1630 	insert_to_mm_slots_hash(mm, mm_slot);
1631 	/*
1632 	 * Insert just behind the scanning cursor, to let the area settle
1633 	 * down a little.
1634 	 */
1635 	wakeup = list_empty(&khugepaged_scan.mm_head);
1636 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1637 	spin_unlock(&khugepaged_mm_lock);
1638 
1639 	atomic_inc(&mm->mm_count);
1640 	if (wakeup)
1641 		wake_up_interruptible(&khugepaged_wait);
1642 
1643 	return 0;
1644 }
1645 
1646 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1647 {
1648 	unsigned long hstart, hend;
1649 	if (!vma->anon_vma)
1650 		/*
1651 		 * Not yet faulted in so we will register later in the
1652 		 * page fault if needed.
1653 		 */
1654 		return 0;
1655 	if (vma->vm_ops)
1656 		/* khugepaged not yet working on file or special mappings */
1657 		return 0;
1658 	/*
1659 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1660 	 * true too, verify it here.
1661 	 */
1662 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1663 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1664 	hend = vma->vm_end & HPAGE_PMD_MASK;
1665 	if (hstart < hend)
1666 		return khugepaged_enter(vma);
1667 	return 0;
1668 }
1669 
1670 void __khugepaged_exit(struct mm_struct *mm)
1671 {
1672 	struct mm_slot *mm_slot;
1673 	int free = 0;
1674 
1675 	spin_lock(&khugepaged_mm_lock);
1676 	mm_slot = get_mm_slot(mm);
1677 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1678 		hlist_del(&mm_slot->hash);
1679 		list_del(&mm_slot->mm_node);
1680 		free = 1;
1681 	}
1682 	spin_unlock(&khugepaged_mm_lock);
1683 
1684 	if (free) {
1685 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1686 		free_mm_slot(mm_slot);
1687 		mmdrop(mm);
1688 	} else if (mm_slot) {
1689 		/*
1690 		 * This is required to serialize against
1691 		 * khugepaged_test_exit() (which is guaranteed to run
1692 		 * under mmap sem read mode). Stop here (after we
1693 		 * return all pagetables will be destroyed) until
1694 		 * khugepaged has finished working on the pagetables
1695 		 * under the mmap_sem.
1696 		 */
1697 		down_write(&mm->mmap_sem);
1698 		up_write(&mm->mmap_sem);
1699 	}
1700 }
1701 
1702 static void release_pte_page(struct page *page)
1703 {
1704 	/* 0 stands for page_is_file_cache(page) == false */
1705 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1706 	unlock_page(page);
1707 	putback_lru_page(page);
1708 }
1709 
1710 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1711 {
1712 	while (--_pte >= pte) {
1713 		pte_t pteval = *_pte;
1714 		if (!pte_none(pteval))
1715 			release_pte_page(pte_page(pteval));
1716 	}
1717 }
1718 
1719 static void release_all_pte_pages(pte_t *pte)
1720 {
1721 	release_pte_pages(pte, pte + HPAGE_PMD_NR);
1722 }
1723 
1724 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1725 					unsigned long address,
1726 					pte_t *pte)
1727 {
1728 	struct page *page;
1729 	pte_t *_pte;
1730 	int referenced = 0, isolated = 0, none = 0;
1731 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1732 	     _pte++, address += PAGE_SIZE) {
1733 		pte_t pteval = *_pte;
1734 		if (pte_none(pteval)) {
1735 			if (++none <= khugepaged_max_ptes_none)
1736 				continue;
1737 			else {
1738 				release_pte_pages(pte, _pte);
1739 				goto out;
1740 			}
1741 		}
1742 		if (!pte_present(pteval) || !pte_write(pteval)) {
1743 			release_pte_pages(pte, _pte);
1744 			goto out;
1745 		}
1746 		page = vm_normal_page(vma, address, pteval);
1747 		if (unlikely(!page)) {
1748 			release_pte_pages(pte, _pte);
1749 			goto out;
1750 		}
1751 		VM_BUG_ON(PageCompound(page));
1752 		BUG_ON(!PageAnon(page));
1753 		VM_BUG_ON(!PageSwapBacked(page));
1754 
1755 		/* cannot use mapcount: can't collapse if there's a gup pin */
1756 		if (page_count(page) != 1) {
1757 			release_pte_pages(pte, _pte);
1758 			goto out;
1759 		}
1760 		/*
1761 		 * We can do it before isolate_lru_page because the
1762 		 * page can't be freed from under us. NOTE: PG_lock
1763 		 * is needed to serialize against split_huge_page
1764 		 * when invoked from the VM.
1765 		 */
1766 		if (!trylock_page(page)) {
1767 			release_pte_pages(pte, _pte);
1768 			goto out;
1769 		}
1770 		/*
1771 		 * Isolate the page to avoid collapsing an hugepage
1772 		 * currently in use by the VM.
1773 		 */
1774 		if (isolate_lru_page(page)) {
1775 			unlock_page(page);
1776 			release_pte_pages(pte, _pte);
1777 			goto out;
1778 		}
1779 		/* 0 stands for page_is_file_cache(page) == false */
1780 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1781 		VM_BUG_ON(!PageLocked(page));
1782 		VM_BUG_ON(PageLRU(page));
1783 
1784 		/* If there is no mapped pte young don't collapse the page */
1785 		if (pte_young(pteval) || PageReferenced(page) ||
1786 		    mmu_notifier_test_young(vma->vm_mm, address))
1787 			referenced = 1;
1788 	}
1789 	if (unlikely(!referenced))
1790 		release_all_pte_pages(pte);
1791 	else
1792 		isolated = 1;
1793 out:
1794 	return isolated;
1795 }
1796 
1797 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1798 				      struct vm_area_struct *vma,
1799 				      unsigned long address,
1800 				      spinlock_t *ptl)
1801 {
1802 	pte_t *_pte;
1803 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1804 		pte_t pteval = *_pte;
1805 		struct page *src_page;
1806 
1807 		if (pte_none(pteval)) {
1808 			clear_user_highpage(page, address);
1809 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1810 		} else {
1811 			src_page = pte_page(pteval);
1812 			copy_user_highpage(page, src_page, address, vma);
1813 			VM_BUG_ON(page_mapcount(src_page) != 1);
1814 			release_pte_page(src_page);
1815 			/*
1816 			 * ptl mostly unnecessary, but preempt has to
1817 			 * be disabled to update the per-cpu stats
1818 			 * inside page_remove_rmap().
1819 			 */
1820 			spin_lock(ptl);
1821 			/*
1822 			 * paravirt calls inside pte_clear here are
1823 			 * superfluous.
1824 			 */
1825 			pte_clear(vma->vm_mm, address, _pte);
1826 			page_remove_rmap(src_page);
1827 			spin_unlock(ptl);
1828 			free_page_and_swap_cache(src_page);
1829 		}
1830 
1831 		address += PAGE_SIZE;
1832 		page++;
1833 	}
1834 }
1835 
1836 static void collapse_huge_page(struct mm_struct *mm,
1837 			       unsigned long address,
1838 			       struct page **hpage,
1839 			       struct vm_area_struct *vma,
1840 			       int node)
1841 {
1842 	pgd_t *pgd;
1843 	pud_t *pud;
1844 	pmd_t *pmd, _pmd;
1845 	pte_t *pte;
1846 	pgtable_t pgtable;
1847 	struct page *new_page;
1848 	spinlock_t *ptl;
1849 	int isolated;
1850 	unsigned long hstart, hend;
1851 
1852 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1853 #ifndef CONFIG_NUMA
1854 	up_read(&mm->mmap_sem);
1855 	VM_BUG_ON(!*hpage);
1856 	new_page = *hpage;
1857 #else
1858 	VM_BUG_ON(*hpage);
1859 	/*
1860 	 * Allocate the page while the vma is still valid and under
1861 	 * the mmap_sem read mode so there is no memory allocation
1862 	 * later when we take the mmap_sem in write mode. This is more
1863 	 * friendly behavior (OTOH it may actually hide bugs) to
1864 	 * filesystems in userland with daemons allocating memory in
1865 	 * the userland I/O paths.  Allocating memory with the
1866 	 * mmap_sem in read mode is good idea also to allow greater
1867 	 * scalability.
1868 	 */
1869 	new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
1870 				      node, __GFP_OTHER_NODE);
1871 
1872 	/*
1873 	 * After allocating the hugepage, release the mmap_sem read lock in
1874 	 * preparation for taking it in write mode.
1875 	 */
1876 	up_read(&mm->mmap_sem);
1877 	if (unlikely(!new_page)) {
1878 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1879 		*hpage = ERR_PTR(-ENOMEM);
1880 		return;
1881 	}
1882 #endif
1883 
1884 	count_vm_event(THP_COLLAPSE_ALLOC);
1885 	if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1886 #ifdef CONFIG_NUMA
1887 		put_page(new_page);
1888 #endif
1889 		return;
1890 	}
1891 
1892 	/*
1893 	 * Prevent all access to pagetables with the exception of
1894 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
1895 	 * handled by the anon_vma lock + PG_lock.
1896 	 */
1897 	down_write(&mm->mmap_sem);
1898 	if (unlikely(khugepaged_test_exit(mm)))
1899 		goto out;
1900 
1901 	vma = find_vma(mm, address);
1902 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1903 	hend = vma->vm_end & HPAGE_PMD_MASK;
1904 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1905 		goto out;
1906 
1907 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1908 	    (vma->vm_flags & VM_NOHUGEPAGE))
1909 		goto out;
1910 
1911 	if (!vma->anon_vma || vma->vm_ops)
1912 		goto out;
1913 	if (is_vma_temporary_stack(vma))
1914 		goto out;
1915 	/*
1916 	 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1917 	 * true too, verify it here.
1918 	 */
1919 	VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
1920 
1921 	pgd = pgd_offset(mm, address);
1922 	if (!pgd_present(*pgd))
1923 		goto out;
1924 
1925 	pud = pud_offset(pgd, address);
1926 	if (!pud_present(*pud))
1927 		goto out;
1928 
1929 	pmd = pmd_offset(pud, address);
1930 	/* pmd can't go away or become huge under us */
1931 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1932 		goto out;
1933 
1934 	anon_vma_lock(vma->anon_vma);
1935 
1936 	pte = pte_offset_map(pmd, address);
1937 	ptl = pte_lockptr(mm, pmd);
1938 
1939 	spin_lock(&mm->page_table_lock); /* probably unnecessary */
1940 	/*
1941 	 * After this gup_fast can't run anymore. This also removes
1942 	 * any huge TLB entry from the CPU so we won't allow
1943 	 * huge and small TLB entries for the same virtual address
1944 	 * to avoid the risk of CPU bugs in that area.
1945 	 */
1946 	_pmd = pmdp_clear_flush_notify(vma, address, pmd);
1947 	spin_unlock(&mm->page_table_lock);
1948 
1949 	spin_lock(ptl);
1950 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1951 	spin_unlock(ptl);
1952 
1953 	if (unlikely(!isolated)) {
1954 		pte_unmap(pte);
1955 		spin_lock(&mm->page_table_lock);
1956 		BUG_ON(!pmd_none(*pmd));
1957 		set_pmd_at(mm, address, pmd, _pmd);
1958 		spin_unlock(&mm->page_table_lock);
1959 		anon_vma_unlock(vma->anon_vma);
1960 		goto out;
1961 	}
1962 
1963 	/*
1964 	 * All pages are isolated and locked so anon_vma rmap
1965 	 * can't run anymore.
1966 	 */
1967 	anon_vma_unlock(vma->anon_vma);
1968 
1969 	__collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1970 	pte_unmap(pte);
1971 	__SetPageUptodate(new_page);
1972 	pgtable = pmd_pgtable(_pmd);
1973 	VM_BUG_ON(page_count(pgtable) != 1);
1974 	VM_BUG_ON(page_mapcount(pgtable) != 0);
1975 
1976 	_pmd = mk_pmd(new_page, vma->vm_page_prot);
1977 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1978 	_pmd = pmd_mkhuge(_pmd);
1979 
1980 	/*
1981 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1982 	 * this is needed to avoid the copy_huge_page writes to become
1983 	 * visible after the set_pmd_at() write.
1984 	 */
1985 	smp_wmb();
1986 
1987 	spin_lock(&mm->page_table_lock);
1988 	BUG_ON(!pmd_none(*pmd));
1989 	page_add_new_anon_rmap(new_page, vma, address);
1990 	set_pmd_at(mm, address, pmd, _pmd);
1991 	update_mmu_cache(vma, address, _pmd);
1992 	prepare_pmd_huge_pte(pgtable, mm);
1993 	spin_unlock(&mm->page_table_lock);
1994 
1995 #ifndef CONFIG_NUMA
1996 	*hpage = NULL;
1997 #endif
1998 	khugepaged_pages_collapsed++;
1999 out_up_write:
2000 	up_write(&mm->mmap_sem);
2001 	return;
2002 
2003 out:
2004 	mem_cgroup_uncharge_page(new_page);
2005 #ifdef CONFIG_NUMA
2006 	put_page(new_page);
2007 #endif
2008 	goto out_up_write;
2009 }
2010 
2011 static int khugepaged_scan_pmd(struct mm_struct *mm,
2012 			       struct vm_area_struct *vma,
2013 			       unsigned long address,
2014 			       struct page **hpage)
2015 {
2016 	pgd_t *pgd;
2017 	pud_t *pud;
2018 	pmd_t *pmd;
2019 	pte_t *pte, *_pte;
2020 	int ret = 0, referenced = 0, none = 0;
2021 	struct page *page;
2022 	unsigned long _address;
2023 	spinlock_t *ptl;
2024 	int node = -1;
2025 
2026 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2027 
2028 	pgd = pgd_offset(mm, address);
2029 	if (!pgd_present(*pgd))
2030 		goto out;
2031 
2032 	pud = pud_offset(pgd, address);
2033 	if (!pud_present(*pud))
2034 		goto out;
2035 
2036 	pmd = pmd_offset(pud, address);
2037 	if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2038 		goto out;
2039 
2040 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2041 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2042 	     _pte++, _address += PAGE_SIZE) {
2043 		pte_t pteval = *_pte;
2044 		if (pte_none(pteval)) {
2045 			if (++none <= khugepaged_max_ptes_none)
2046 				continue;
2047 			else
2048 				goto out_unmap;
2049 		}
2050 		if (!pte_present(pteval) || !pte_write(pteval))
2051 			goto out_unmap;
2052 		page = vm_normal_page(vma, _address, pteval);
2053 		if (unlikely(!page))
2054 			goto out_unmap;
2055 		/*
2056 		 * Chose the node of the first page. This could
2057 		 * be more sophisticated and look at more pages,
2058 		 * but isn't for now.
2059 		 */
2060 		if (node == -1)
2061 			node = page_to_nid(page);
2062 		VM_BUG_ON(PageCompound(page));
2063 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2064 			goto out_unmap;
2065 		/* cannot use mapcount: can't collapse if there's a gup pin */
2066 		if (page_count(page) != 1)
2067 			goto out_unmap;
2068 		if (pte_young(pteval) || PageReferenced(page) ||
2069 		    mmu_notifier_test_young(vma->vm_mm, address))
2070 			referenced = 1;
2071 	}
2072 	if (referenced)
2073 		ret = 1;
2074 out_unmap:
2075 	pte_unmap_unlock(pte, ptl);
2076 	if (ret)
2077 		/* collapse_huge_page will return with the mmap_sem released */
2078 		collapse_huge_page(mm, address, hpage, vma, node);
2079 out:
2080 	return ret;
2081 }
2082 
2083 static void collect_mm_slot(struct mm_slot *mm_slot)
2084 {
2085 	struct mm_struct *mm = mm_slot->mm;
2086 
2087 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2088 
2089 	if (khugepaged_test_exit(mm)) {
2090 		/* free mm_slot */
2091 		hlist_del(&mm_slot->hash);
2092 		list_del(&mm_slot->mm_node);
2093 
2094 		/*
2095 		 * Not strictly needed because the mm exited already.
2096 		 *
2097 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2098 		 */
2099 
2100 		/* khugepaged_mm_lock actually not necessary for the below */
2101 		free_mm_slot(mm_slot);
2102 		mmdrop(mm);
2103 	}
2104 }
2105 
2106 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2107 					    struct page **hpage)
2108 	__releases(&khugepaged_mm_lock)
2109 	__acquires(&khugepaged_mm_lock)
2110 {
2111 	struct mm_slot *mm_slot;
2112 	struct mm_struct *mm;
2113 	struct vm_area_struct *vma;
2114 	int progress = 0;
2115 
2116 	VM_BUG_ON(!pages);
2117 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2118 
2119 	if (khugepaged_scan.mm_slot)
2120 		mm_slot = khugepaged_scan.mm_slot;
2121 	else {
2122 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2123 				     struct mm_slot, mm_node);
2124 		khugepaged_scan.address = 0;
2125 		khugepaged_scan.mm_slot = mm_slot;
2126 	}
2127 	spin_unlock(&khugepaged_mm_lock);
2128 
2129 	mm = mm_slot->mm;
2130 	down_read(&mm->mmap_sem);
2131 	if (unlikely(khugepaged_test_exit(mm)))
2132 		vma = NULL;
2133 	else
2134 		vma = find_vma(mm, khugepaged_scan.address);
2135 
2136 	progress++;
2137 	for (; vma; vma = vma->vm_next) {
2138 		unsigned long hstart, hend;
2139 
2140 		cond_resched();
2141 		if (unlikely(khugepaged_test_exit(mm))) {
2142 			progress++;
2143 			break;
2144 		}
2145 
2146 		if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2147 		     !khugepaged_always()) ||
2148 		    (vma->vm_flags & VM_NOHUGEPAGE)) {
2149 		skip:
2150 			progress++;
2151 			continue;
2152 		}
2153 		if (!vma->anon_vma || vma->vm_ops)
2154 			goto skip;
2155 		if (is_vma_temporary_stack(vma))
2156 			goto skip;
2157 		/*
2158 		 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2159 		 * must be true too, verify it here.
2160 		 */
2161 		VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2162 			  vma->vm_flags & VM_NO_THP);
2163 
2164 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2165 		hend = vma->vm_end & HPAGE_PMD_MASK;
2166 		if (hstart >= hend)
2167 			goto skip;
2168 		if (khugepaged_scan.address > hend)
2169 			goto skip;
2170 		if (khugepaged_scan.address < hstart)
2171 			khugepaged_scan.address = hstart;
2172 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2173 
2174 		while (khugepaged_scan.address < hend) {
2175 			int ret;
2176 			cond_resched();
2177 			if (unlikely(khugepaged_test_exit(mm)))
2178 				goto breakouterloop;
2179 
2180 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2181 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2182 				  hend);
2183 			ret = khugepaged_scan_pmd(mm, vma,
2184 						  khugepaged_scan.address,
2185 						  hpage);
2186 			/* move to next address */
2187 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2188 			progress += HPAGE_PMD_NR;
2189 			if (ret)
2190 				/* we released mmap_sem so break loop */
2191 				goto breakouterloop_mmap_sem;
2192 			if (progress >= pages)
2193 				goto breakouterloop;
2194 		}
2195 	}
2196 breakouterloop:
2197 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2198 breakouterloop_mmap_sem:
2199 
2200 	spin_lock(&khugepaged_mm_lock);
2201 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2202 	/*
2203 	 * Release the current mm_slot if this mm is about to die, or
2204 	 * if we scanned all vmas of this mm.
2205 	 */
2206 	if (khugepaged_test_exit(mm) || !vma) {
2207 		/*
2208 		 * Make sure that if mm_users is reaching zero while
2209 		 * khugepaged runs here, khugepaged_exit will find
2210 		 * mm_slot not pointing to the exiting mm.
2211 		 */
2212 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2213 			khugepaged_scan.mm_slot = list_entry(
2214 				mm_slot->mm_node.next,
2215 				struct mm_slot, mm_node);
2216 			khugepaged_scan.address = 0;
2217 		} else {
2218 			khugepaged_scan.mm_slot = NULL;
2219 			khugepaged_full_scans++;
2220 		}
2221 
2222 		collect_mm_slot(mm_slot);
2223 	}
2224 
2225 	return progress;
2226 }
2227 
2228 static int khugepaged_has_work(void)
2229 {
2230 	return !list_empty(&khugepaged_scan.mm_head) &&
2231 		khugepaged_enabled();
2232 }
2233 
2234 static int khugepaged_wait_event(void)
2235 {
2236 	return !list_empty(&khugepaged_scan.mm_head) ||
2237 		!khugepaged_enabled();
2238 }
2239 
2240 static void khugepaged_do_scan(struct page **hpage)
2241 {
2242 	unsigned int progress = 0, pass_through_head = 0;
2243 	unsigned int pages = khugepaged_pages_to_scan;
2244 
2245 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2246 
2247 	while (progress < pages) {
2248 		cond_resched();
2249 
2250 #ifndef CONFIG_NUMA
2251 		if (!*hpage) {
2252 			*hpage = alloc_hugepage(khugepaged_defrag());
2253 			if (unlikely(!*hpage)) {
2254 				count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2255 				break;
2256 			}
2257 			count_vm_event(THP_COLLAPSE_ALLOC);
2258 		}
2259 #else
2260 		if (IS_ERR(*hpage))
2261 			break;
2262 #endif
2263 
2264 		if (unlikely(kthread_should_stop() || freezing(current)))
2265 			break;
2266 
2267 		spin_lock(&khugepaged_mm_lock);
2268 		if (!khugepaged_scan.mm_slot)
2269 			pass_through_head++;
2270 		if (khugepaged_has_work() &&
2271 		    pass_through_head < 2)
2272 			progress += khugepaged_scan_mm_slot(pages - progress,
2273 							    hpage);
2274 		else
2275 			progress = pages;
2276 		spin_unlock(&khugepaged_mm_lock);
2277 	}
2278 }
2279 
2280 static void khugepaged_alloc_sleep(void)
2281 {
2282 	wait_event_freezable_timeout(khugepaged_wait, false,
2283 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2284 }
2285 
2286 #ifndef CONFIG_NUMA
2287 static struct page *khugepaged_alloc_hugepage(void)
2288 {
2289 	struct page *hpage;
2290 
2291 	do {
2292 		hpage = alloc_hugepage(khugepaged_defrag());
2293 		if (!hpage) {
2294 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2295 			khugepaged_alloc_sleep();
2296 		} else
2297 			count_vm_event(THP_COLLAPSE_ALLOC);
2298 	} while (unlikely(!hpage) &&
2299 		 likely(khugepaged_enabled()));
2300 	return hpage;
2301 }
2302 #endif
2303 
2304 static void khugepaged_loop(void)
2305 {
2306 	struct page *hpage;
2307 
2308 #ifdef CONFIG_NUMA
2309 	hpage = NULL;
2310 #endif
2311 	while (likely(khugepaged_enabled())) {
2312 #ifndef CONFIG_NUMA
2313 		hpage = khugepaged_alloc_hugepage();
2314 		if (unlikely(!hpage))
2315 			break;
2316 #else
2317 		if (IS_ERR(hpage)) {
2318 			khugepaged_alloc_sleep();
2319 			hpage = NULL;
2320 		}
2321 #endif
2322 
2323 		khugepaged_do_scan(&hpage);
2324 #ifndef CONFIG_NUMA
2325 		if (hpage)
2326 			put_page(hpage);
2327 #endif
2328 		try_to_freeze();
2329 		if (unlikely(kthread_should_stop()))
2330 			break;
2331 		if (khugepaged_has_work()) {
2332 			if (!khugepaged_scan_sleep_millisecs)
2333 				continue;
2334 			wait_event_freezable_timeout(khugepaged_wait, false,
2335 			    msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2336 		} else if (khugepaged_enabled())
2337 			wait_event_freezable(khugepaged_wait,
2338 					     khugepaged_wait_event());
2339 	}
2340 }
2341 
2342 static int khugepaged(void *none)
2343 {
2344 	struct mm_slot *mm_slot;
2345 
2346 	set_freezable();
2347 	set_user_nice(current, 19);
2348 
2349 	/* serialize with start_khugepaged() */
2350 	mutex_lock(&khugepaged_mutex);
2351 
2352 	for (;;) {
2353 		mutex_unlock(&khugepaged_mutex);
2354 		VM_BUG_ON(khugepaged_thread != current);
2355 		khugepaged_loop();
2356 		VM_BUG_ON(khugepaged_thread != current);
2357 
2358 		mutex_lock(&khugepaged_mutex);
2359 		if (!khugepaged_enabled())
2360 			break;
2361 		if (unlikely(kthread_should_stop()))
2362 			break;
2363 	}
2364 
2365 	spin_lock(&khugepaged_mm_lock);
2366 	mm_slot = khugepaged_scan.mm_slot;
2367 	khugepaged_scan.mm_slot = NULL;
2368 	if (mm_slot)
2369 		collect_mm_slot(mm_slot);
2370 	spin_unlock(&khugepaged_mm_lock);
2371 
2372 	khugepaged_thread = NULL;
2373 	mutex_unlock(&khugepaged_mutex);
2374 
2375 	return 0;
2376 }
2377 
2378 void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2379 {
2380 	struct page *page;
2381 
2382 	spin_lock(&mm->page_table_lock);
2383 	if (unlikely(!pmd_trans_huge(*pmd))) {
2384 		spin_unlock(&mm->page_table_lock);
2385 		return;
2386 	}
2387 	page = pmd_page(*pmd);
2388 	VM_BUG_ON(!page_count(page));
2389 	get_page(page);
2390 	spin_unlock(&mm->page_table_lock);
2391 
2392 	split_huge_page(page);
2393 
2394 	put_page(page);
2395 	BUG_ON(pmd_trans_huge(*pmd));
2396 }
2397 
2398 static void split_huge_page_address(struct mm_struct *mm,
2399 				    unsigned long address)
2400 {
2401 	pgd_t *pgd;
2402 	pud_t *pud;
2403 	pmd_t *pmd;
2404 
2405 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2406 
2407 	pgd = pgd_offset(mm, address);
2408 	if (!pgd_present(*pgd))
2409 		return;
2410 
2411 	pud = pud_offset(pgd, address);
2412 	if (!pud_present(*pud))
2413 		return;
2414 
2415 	pmd = pmd_offset(pud, address);
2416 	if (!pmd_present(*pmd))
2417 		return;
2418 	/*
2419 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2420 	 * materialize from under us.
2421 	 */
2422 	split_huge_page_pmd(mm, pmd);
2423 }
2424 
2425 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2426 			     unsigned long start,
2427 			     unsigned long end,
2428 			     long adjust_next)
2429 {
2430 	/*
2431 	 * If the new start address isn't hpage aligned and it could
2432 	 * previously contain an hugepage: check if we need to split
2433 	 * an huge pmd.
2434 	 */
2435 	if (start & ~HPAGE_PMD_MASK &&
2436 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2437 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2438 		split_huge_page_address(vma->vm_mm, start);
2439 
2440 	/*
2441 	 * If the new end address isn't hpage aligned and it could
2442 	 * previously contain an hugepage: check if we need to split
2443 	 * an huge pmd.
2444 	 */
2445 	if (end & ~HPAGE_PMD_MASK &&
2446 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2447 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2448 		split_huge_page_address(vma->vm_mm, end);
2449 
2450 	/*
2451 	 * If we're also updating the vma->vm_next->vm_start, if the new
2452 	 * vm_next->vm_start isn't page aligned and it could previously
2453 	 * contain an hugepage: check if we need to split an huge pmd.
2454 	 */
2455 	if (adjust_next > 0) {
2456 		struct vm_area_struct *next = vma->vm_next;
2457 		unsigned long nstart = next->vm_start;
2458 		nstart += adjust_next << PAGE_SHIFT;
2459 		if (nstart & ~HPAGE_PMD_MASK &&
2460 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2461 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2462 			split_huge_page_address(next->vm_mm, nstart);
2463 	}
2464 }
2465