xref: /linux/mm/huge_memory.c (revision 41fd3cacd29f47f6b9c6474b27c5b0513786c4e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
123 				     !enforce_sysfs, vma->vm_mm, vm_flags);
124 
125 	/* Enforce sysfs THP requirements as necessary */
126 	if (enforce_sysfs &&
127 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
128 					   !hugepage_flags_always())))
129 		return false;
130 
131 	/* Only regular file is valid */
132 	if (!in_pf && file_thp_enabled(vma))
133 		return true;
134 
135 	if (!vma_is_anonymous(vma))
136 		return false;
137 
138 	if (vma_is_temporary_stack(vma))
139 		return false;
140 
141 	/*
142 	 * THPeligible bit of smaps should show 1 for proper VMAs even
143 	 * though anon_vma is not initialized yet.
144 	 *
145 	 * Allow page fault since anon_vma may be not initialized until
146 	 * the first page fault.
147 	 */
148 	if (!vma->anon_vma)
149 		return (smaps || in_pf);
150 
151 	return true;
152 }
153 
154 static bool get_huge_zero_page(void)
155 {
156 	struct page *zero_page;
157 retry:
158 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
159 		return true;
160 
161 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
162 			HPAGE_PMD_ORDER);
163 	if (!zero_page) {
164 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
165 		return false;
166 	}
167 	preempt_disable();
168 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
169 		preempt_enable();
170 		__free_pages(zero_page, compound_order(zero_page));
171 		goto retry;
172 	}
173 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
174 
175 	/* We take additional reference here. It will be put back by shrinker */
176 	atomic_set(&huge_zero_refcount, 2);
177 	preempt_enable();
178 	count_vm_event(THP_ZERO_PAGE_ALLOC);
179 	return true;
180 }
181 
182 static void put_huge_zero_page(void)
183 {
184 	/*
185 	 * Counter should never go to zero here. Only shrinker can put
186 	 * last reference.
187 	 */
188 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
189 }
190 
191 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
192 {
193 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
194 		return READ_ONCE(huge_zero_page);
195 
196 	if (!get_huge_zero_page())
197 		return NULL;
198 
199 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
200 		put_huge_zero_page();
201 
202 	return READ_ONCE(huge_zero_page);
203 }
204 
205 void mm_put_huge_zero_page(struct mm_struct *mm)
206 {
207 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
208 		put_huge_zero_page();
209 }
210 
211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
212 					struct shrink_control *sc)
213 {
214 	/* we can free zero page only if last reference remains */
215 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
216 }
217 
218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
219 				       struct shrink_control *sc)
220 {
221 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
222 		struct page *zero_page = xchg(&huge_zero_page, NULL);
223 		BUG_ON(zero_page == NULL);
224 		WRITE_ONCE(huge_zero_pfn, ~0UL);
225 		__free_pages(zero_page, compound_order(zero_page));
226 		return HPAGE_PMD_NR;
227 	}
228 
229 	return 0;
230 }
231 
232 static struct shrinker huge_zero_page_shrinker = {
233 	.count_objects = shrink_huge_zero_page_count,
234 	.scan_objects = shrink_huge_zero_page_scan,
235 	.seeks = DEFAULT_SEEKS,
236 };
237 
238 #ifdef CONFIG_SYSFS
239 static ssize_t enabled_show(struct kobject *kobj,
240 			    struct kobj_attribute *attr, char *buf)
241 {
242 	const char *output;
243 
244 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
245 		output = "[always] madvise never";
246 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
247 			  &transparent_hugepage_flags))
248 		output = "always [madvise] never";
249 	else
250 		output = "always madvise [never]";
251 
252 	return sysfs_emit(buf, "%s\n", output);
253 }
254 
255 static ssize_t enabled_store(struct kobject *kobj,
256 			     struct kobj_attribute *attr,
257 			     const char *buf, size_t count)
258 {
259 	ssize_t ret = count;
260 
261 	if (sysfs_streq(buf, "always")) {
262 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
264 	} else if (sysfs_streq(buf, "madvise")) {
265 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
266 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
267 	} else if (sysfs_streq(buf, "never")) {
268 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
269 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
270 	} else
271 		ret = -EINVAL;
272 
273 	if (ret > 0) {
274 		int err = start_stop_khugepaged();
275 		if (err)
276 			ret = err;
277 	}
278 	return ret;
279 }
280 
281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
282 
283 ssize_t single_hugepage_flag_show(struct kobject *kobj,
284 				  struct kobj_attribute *attr, char *buf,
285 				  enum transparent_hugepage_flag flag)
286 {
287 	return sysfs_emit(buf, "%d\n",
288 			  !!test_bit(flag, &transparent_hugepage_flags));
289 }
290 
291 ssize_t single_hugepage_flag_store(struct kobject *kobj,
292 				 struct kobj_attribute *attr,
293 				 const char *buf, size_t count,
294 				 enum transparent_hugepage_flag flag)
295 {
296 	unsigned long value;
297 	int ret;
298 
299 	ret = kstrtoul(buf, 10, &value);
300 	if (ret < 0)
301 		return ret;
302 	if (value > 1)
303 		return -EINVAL;
304 
305 	if (value)
306 		set_bit(flag, &transparent_hugepage_flags);
307 	else
308 		clear_bit(flag, &transparent_hugepage_flags);
309 
310 	return count;
311 }
312 
313 static ssize_t defrag_show(struct kobject *kobj,
314 			   struct kobj_attribute *attr, char *buf)
315 {
316 	const char *output;
317 
318 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
319 		     &transparent_hugepage_flags))
320 		output = "[always] defer defer+madvise madvise never";
321 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
322 			  &transparent_hugepage_flags))
323 		output = "always [defer] defer+madvise madvise never";
324 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
325 			  &transparent_hugepage_flags))
326 		output = "always defer [defer+madvise] madvise never";
327 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
328 			  &transparent_hugepage_flags))
329 		output = "always defer defer+madvise [madvise] never";
330 	else
331 		output = "always defer defer+madvise madvise [never]";
332 
333 	return sysfs_emit(buf, "%s\n", output);
334 }
335 
336 static ssize_t defrag_store(struct kobject *kobj,
337 			    struct kobj_attribute *attr,
338 			    const char *buf, size_t count)
339 {
340 	if (sysfs_streq(buf, "always")) {
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
343 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
344 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
345 	} else if (sysfs_streq(buf, "defer+madvise")) {
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
348 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
349 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
350 	} else if (sysfs_streq(buf, "defer")) {
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
353 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
354 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
355 	} else if (sysfs_streq(buf, "madvise")) {
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
358 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
359 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
360 	} else if (sysfs_streq(buf, "never")) {
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
364 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
365 	} else
366 		return -EINVAL;
367 
368 	return count;
369 }
370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
371 
372 static ssize_t use_zero_page_show(struct kobject *kobj,
373 				  struct kobj_attribute *attr, char *buf)
374 {
375 	return single_hugepage_flag_show(kobj, attr, buf,
376 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static ssize_t use_zero_page_store(struct kobject *kobj,
379 		struct kobj_attribute *attr, const char *buf, size_t count)
380 {
381 	return single_hugepage_flag_store(kobj, attr, buf, count,
382 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
383 }
384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
385 
386 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
387 				   struct kobj_attribute *attr, char *buf)
388 {
389 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
390 }
391 static struct kobj_attribute hpage_pmd_size_attr =
392 	__ATTR_RO(hpage_pmd_size);
393 
394 static struct attribute *hugepage_attr[] = {
395 	&enabled_attr.attr,
396 	&defrag_attr.attr,
397 	&use_zero_page_attr.attr,
398 	&hpage_pmd_size_attr.attr,
399 #ifdef CONFIG_SHMEM
400 	&shmem_enabled_attr.attr,
401 #endif
402 	NULL,
403 };
404 
405 static const struct attribute_group hugepage_attr_group = {
406 	.attrs = hugepage_attr,
407 };
408 
409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
410 {
411 	int err;
412 
413 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
414 	if (unlikely(!*hugepage_kobj)) {
415 		pr_err("failed to create transparent hugepage kobject\n");
416 		return -ENOMEM;
417 	}
418 
419 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
420 	if (err) {
421 		pr_err("failed to register transparent hugepage group\n");
422 		goto delete_obj;
423 	}
424 
425 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
426 	if (err) {
427 		pr_err("failed to register transparent hugepage group\n");
428 		goto remove_hp_group;
429 	}
430 
431 	return 0;
432 
433 remove_hp_group:
434 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
435 delete_obj:
436 	kobject_put(*hugepage_kobj);
437 	return err;
438 }
439 
440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
441 {
442 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
443 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
444 	kobject_put(hugepage_kobj);
445 }
446 #else
447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
448 {
449 	return 0;
450 }
451 
452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
453 {
454 }
455 #endif /* CONFIG_SYSFS */
456 
457 static int __init hugepage_init(void)
458 {
459 	int err;
460 	struct kobject *hugepage_kobj;
461 
462 	if (!has_transparent_hugepage()) {
463 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
464 		return -EINVAL;
465 	}
466 
467 	/*
468 	 * hugepages can't be allocated by the buddy allocator
469 	 */
470 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER);
471 	/*
472 	 * we use page->mapping and page->index in second tail page
473 	 * as list_head: assuming THP order >= 2
474 	 */
475 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
476 
477 	err = hugepage_init_sysfs(&hugepage_kobj);
478 	if (err)
479 		goto err_sysfs;
480 
481 	err = khugepaged_init();
482 	if (err)
483 		goto err_slab;
484 
485 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
486 	if (err)
487 		goto err_hzp_shrinker;
488 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
489 	if (err)
490 		goto err_split_shrinker;
491 
492 	/*
493 	 * By default disable transparent hugepages on smaller systems,
494 	 * where the extra memory used could hurt more than TLB overhead
495 	 * is likely to save.  The admin can still enable it through /sys.
496 	 */
497 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
498 		transparent_hugepage_flags = 0;
499 		return 0;
500 	}
501 
502 	err = start_stop_khugepaged();
503 	if (err)
504 		goto err_khugepaged;
505 
506 	return 0;
507 err_khugepaged:
508 	unregister_shrinker(&deferred_split_shrinker);
509 err_split_shrinker:
510 	unregister_shrinker(&huge_zero_page_shrinker);
511 err_hzp_shrinker:
512 	khugepaged_destroy();
513 err_slab:
514 	hugepage_exit_sysfs(hugepage_kobj);
515 err_sysfs:
516 	return err;
517 }
518 subsys_initcall(hugepage_init);
519 
520 static int __init setup_transparent_hugepage(char *str)
521 {
522 	int ret = 0;
523 	if (!str)
524 		goto out;
525 	if (!strcmp(str, "always")) {
526 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
527 			&transparent_hugepage_flags);
528 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
529 			  &transparent_hugepage_flags);
530 		ret = 1;
531 	} else if (!strcmp(str, "madvise")) {
532 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
533 			  &transparent_hugepage_flags);
534 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
535 			&transparent_hugepage_flags);
536 		ret = 1;
537 	} else if (!strcmp(str, "never")) {
538 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
539 			  &transparent_hugepage_flags);
540 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
541 			  &transparent_hugepage_flags);
542 		ret = 1;
543 	}
544 out:
545 	if (!ret)
546 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
547 	return ret;
548 }
549 __setup("transparent_hugepage=", setup_transparent_hugepage);
550 
551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
552 {
553 	if (likely(vma->vm_flags & VM_WRITE))
554 		pmd = pmd_mkwrite(pmd, vma);
555 	return pmd;
556 }
557 
558 #ifdef CONFIG_MEMCG
559 static inline
560 struct deferred_split *get_deferred_split_queue(struct folio *folio)
561 {
562 	struct mem_cgroup *memcg = folio_memcg(folio);
563 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
564 
565 	if (memcg)
566 		return &memcg->deferred_split_queue;
567 	else
568 		return &pgdat->deferred_split_queue;
569 }
570 #else
571 static inline
572 struct deferred_split *get_deferred_split_queue(struct folio *folio)
573 {
574 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
575 
576 	return &pgdat->deferred_split_queue;
577 }
578 #endif
579 
580 void folio_prep_large_rmappable(struct folio *folio)
581 {
582 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
583 	INIT_LIST_HEAD(&folio->_deferred_list);
584 	folio_set_large_rmappable(folio);
585 }
586 
587 static inline bool is_transparent_hugepage(struct folio *folio)
588 {
589 	if (!folio_test_large(folio))
590 		return false;
591 
592 	return is_huge_zero_page(&folio->page) ||
593 		folio_test_large_rmappable(folio);
594 }
595 
596 static unsigned long __thp_get_unmapped_area(struct file *filp,
597 		unsigned long addr, unsigned long len,
598 		loff_t off, unsigned long flags, unsigned long size)
599 {
600 	loff_t off_end = off + len;
601 	loff_t off_align = round_up(off, size);
602 	unsigned long len_pad, ret;
603 
604 	if (off_end <= off_align || (off_end - off_align) < size)
605 		return 0;
606 
607 	len_pad = len + size;
608 	if (len_pad < len || (off + len_pad) < off)
609 		return 0;
610 
611 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
612 					      off >> PAGE_SHIFT, flags);
613 
614 	/*
615 	 * The failure might be due to length padding. The caller will retry
616 	 * without the padding.
617 	 */
618 	if (IS_ERR_VALUE(ret))
619 		return 0;
620 
621 	/*
622 	 * Do not try to align to THP boundary if allocation at the address
623 	 * hint succeeds.
624 	 */
625 	if (ret == addr)
626 		return addr;
627 
628 	ret += (off - ret) & (size - 1);
629 	return ret;
630 }
631 
632 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
633 		unsigned long len, unsigned long pgoff, unsigned long flags)
634 {
635 	unsigned long ret;
636 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
637 
638 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
639 	if (ret)
640 		return ret;
641 
642 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
643 }
644 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
645 
646 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
647 			struct page *page, gfp_t gfp)
648 {
649 	struct vm_area_struct *vma = vmf->vma;
650 	struct folio *folio = page_folio(page);
651 	pgtable_t pgtable;
652 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
653 	vm_fault_t ret = 0;
654 
655 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
656 
657 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
658 		folio_put(folio);
659 		count_vm_event(THP_FAULT_FALLBACK);
660 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
661 		return VM_FAULT_FALLBACK;
662 	}
663 	folio_throttle_swaprate(folio, gfp);
664 
665 	pgtable = pte_alloc_one(vma->vm_mm);
666 	if (unlikely(!pgtable)) {
667 		ret = VM_FAULT_OOM;
668 		goto release;
669 	}
670 
671 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
672 	/*
673 	 * The memory barrier inside __folio_mark_uptodate makes sure that
674 	 * clear_huge_page writes become visible before the set_pmd_at()
675 	 * write.
676 	 */
677 	__folio_mark_uptodate(folio);
678 
679 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
680 	if (unlikely(!pmd_none(*vmf->pmd))) {
681 		goto unlock_release;
682 	} else {
683 		pmd_t entry;
684 
685 		ret = check_stable_address_space(vma->vm_mm);
686 		if (ret)
687 			goto unlock_release;
688 
689 		/* Deliver the page fault to userland */
690 		if (userfaultfd_missing(vma)) {
691 			spin_unlock(vmf->ptl);
692 			folio_put(folio);
693 			pte_free(vma->vm_mm, pgtable);
694 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
695 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
696 			return ret;
697 		}
698 
699 		entry = mk_huge_pmd(page, vma->vm_page_prot);
700 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
701 		folio_add_new_anon_rmap(folio, vma, haddr);
702 		folio_add_lru_vma(folio, vma);
703 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
704 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
705 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
706 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
707 		mm_inc_nr_ptes(vma->vm_mm);
708 		spin_unlock(vmf->ptl);
709 		count_vm_event(THP_FAULT_ALLOC);
710 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
711 	}
712 
713 	return 0;
714 unlock_release:
715 	spin_unlock(vmf->ptl);
716 release:
717 	if (pgtable)
718 		pte_free(vma->vm_mm, pgtable);
719 	folio_put(folio);
720 	return ret;
721 
722 }
723 
724 /*
725  * always: directly stall for all thp allocations
726  * defer: wake kswapd and fail if not immediately available
727  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
728  *		  fail if not immediately available
729  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
730  *	    available
731  * never: never stall for any thp allocation
732  */
733 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
734 {
735 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
736 
737 	/* Always do synchronous compaction */
738 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
739 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
740 
741 	/* Kick kcompactd and fail quickly */
742 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
743 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
744 
745 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
746 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
747 		return GFP_TRANSHUGE_LIGHT |
748 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
749 					__GFP_KSWAPD_RECLAIM);
750 
751 	/* Only do synchronous compaction if madvised */
752 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
753 		return GFP_TRANSHUGE_LIGHT |
754 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
755 
756 	return GFP_TRANSHUGE_LIGHT;
757 }
758 
759 /* Caller must hold page table lock. */
760 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
761 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
762 		struct page *zero_page)
763 {
764 	pmd_t entry;
765 	if (!pmd_none(*pmd))
766 		return;
767 	entry = mk_pmd(zero_page, vma->vm_page_prot);
768 	entry = pmd_mkhuge(entry);
769 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
770 	set_pmd_at(mm, haddr, pmd, entry);
771 	mm_inc_nr_ptes(mm);
772 }
773 
774 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
775 {
776 	struct vm_area_struct *vma = vmf->vma;
777 	gfp_t gfp;
778 	struct folio *folio;
779 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
780 
781 	if (!transhuge_vma_suitable(vma, haddr))
782 		return VM_FAULT_FALLBACK;
783 	if (unlikely(anon_vma_prepare(vma)))
784 		return VM_FAULT_OOM;
785 	khugepaged_enter_vma(vma, vma->vm_flags);
786 
787 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
788 			!mm_forbids_zeropage(vma->vm_mm) &&
789 			transparent_hugepage_use_zero_page()) {
790 		pgtable_t pgtable;
791 		struct page *zero_page;
792 		vm_fault_t ret;
793 		pgtable = pte_alloc_one(vma->vm_mm);
794 		if (unlikely(!pgtable))
795 			return VM_FAULT_OOM;
796 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
797 		if (unlikely(!zero_page)) {
798 			pte_free(vma->vm_mm, pgtable);
799 			count_vm_event(THP_FAULT_FALLBACK);
800 			return VM_FAULT_FALLBACK;
801 		}
802 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
803 		ret = 0;
804 		if (pmd_none(*vmf->pmd)) {
805 			ret = check_stable_address_space(vma->vm_mm);
806 			if (ret) {
807 				spin_unlock(vmf->ptl);
808 				pte_free(vma->vm_mm, pgtable);
809 			} else if (userfaultfd_missing(vma)) {
810 				spin_unlock(vmf->ptl);
811 				pte_free(vma->vm_mm, pgtable);
812 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
813 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
814 			} else {
815 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
816 						   haddr, vmf->pmd, zero_page);
817 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
818 				spin_unlock(vmf->ptl);
819 			}
820 		} else {
821 			spin_unlock(vmf->ptl);
822 			pte_free(vma->vm_mm, pgtable);
823 		}
824 		return ret;
825 	}
826 	gfp = vma_thp_gfp_mask(vma);
827 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
828 	if (unlikely(!folio)) {
829 		count_vm_event(THP_FAULT_FALLBACK);
830 		return VM_FAULT_FALLBACK;
831 	}
832 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
833 }
834 
835 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
836 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
837 		pgtable_t pgtable)
838 {
839 	struct mm_struct *mm = vma->vm_mm;
840 	pmd_t entry;
841 	spinlock_t *ptl;
842 
843 	ptl = pmd_lock(mm, pmd);
844 	if (!pmd_none(*pmd)) {
845 		if (write) {
846 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
847 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
848 				goto out_unlock;
849 			}
850 			entry = pmd_mkyoung(*pmd);
851 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
853 				update_mmu_cache_pmd(vma, addr, pmd);
854 		}
855 
856 		goto out_unlock;
857 	}
858 
859 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
860 	if (pfn_t_devmap(pfn))
861 		entry = pmd_mkdevmap(entry);
862 	if (write) {
863 		entry = pmd_mkyoung(pmd_mkdirty(entry));
864 		entry = maybe_pmd_mkwrite(entry, vma);
865 	}
866 
867 	if (pgtable) {
868 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
869 		mm_inc_nr_ptes(mm);
870 		pgtable = NULL;
871 	}
872 
873 	set_pmd_at(mm, addr, pmd, entry);
874 	update_mmu_cache_pmd(vma, addr, pmd);
875 
876 out_unlock:
877 	spin_unlock(ptl);
878 	if (pgtable)
879 		pte_free(mm, pgtable);
880 }
881 
882 /**
883  * vmf_insert_pfn_pmd - insert a pmd size pfn
884  * @vmf: Structure describing the fault
885  * @pfn: pfn to insert
886  * @write: whether it's a write fault
887  *
888  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
889  *
890  * Return: vm_fault_t value.
891  */
892 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
893 {
894 	unsigned long addr = vmf->address & PMD_MASK;
895 	struct vm_area_struct *vma = vmf->vma;
896 	pgprot_t pgprot = vma->vm_page_prot;
897 	pgtable_t pgtable = NULL;
898 
899 	/*
900 	 * If we had pmd_special, we could avoid all these restrictions,
901 	 * but we need to be consistent with PTEs and architectures that
902 	 * can't support a 'special' bit.
903 	 */
904 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
905 			!pfn_t_devmap(pfn));
906 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
907 						(VM_PFNMAP|VM_MIXEDMAP));
908 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
909 
910 	if (addr < vma->vm_start || addr >= vma->vm_end)
911 		return VM_FAULT_SIGBUS;
912 
913 	if (arch_needs_pgtable_deposit()) {
914 		pgtable = pte_alloc_one(vma->vm_mm);
915 		if (!pgtable)
916 			return VM_FAULT_OOM;
917 	}
918 
919 	track_pfn_insert(vma, &pgprot, pfn);
920 
921 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
922 	return VM_FAULT_NOPAGE;
923 }
924 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
925 
926 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
927 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
928 {
929 	if (likely(vma->vm_flags & VM_WRITE))
930 		pud = pud_mkwrite(pud);
931 	return pud;
932 }
933 
934 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
935 		pud_t *pud, pfn_t pfn, bool write)
936 {
937 	struct mm_struct *mm = vma->vm_mm;
938 	pgprot_t prot = vma->vm_page_prot;
939 	pud_t entry;
940 	spinlock_t *ptl;
941 
942 	ptl = pud_lock(mm, pud);
943 	if (!pud_none(*pud)) {
944 		if (write) {
945 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
946 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
947 				goto out_unlock;
948 			}
949 			entry = pud_mkyoung(*pud);
950 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
951 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
952 				update_mmu_cache_pud(vma, addr, pud);
953 		}
954 		goto out_unlock;
955 	}
956 
957 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
958 	if (pfn_t_devmap(pfn))
959 		entry = pud_mkdevmap(entry);
960 	if (write) {
961 		entry = pud_mkyoung(pud_mkdirty(entry));
962 		entry = maybe_pud_mkwrite(entry, vma);
963 	}
964 	set_pud_at(mm, addr, pud, entry);
965 	update_mmu_cache_pud(vma, addr, pud);
966 
967 out_unlock:
968 	spin_unlock(ptl);
969 }
970 
971 /**
972  * vmf_insert_pfn_pud - insert a pud size pfn
973  * @vmf: Structure describing the fault
974  * @pfn: pfn to insert
975  * @write: whether it's a write fault
976  *
977  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
978  *
979  * Return: vm_fault_t value.
980  */
981 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
982 {
983 	unsigned long addr = vmf->address & PUD_MASK;
984 	struct vm_area_struct *vma = vmf->vma;
985 	pgprot_t pgprot = vma->vm_page_prot;
986 
987 	/*
988 	 * If we had pud_special, we could avoid all these restrictions,
989 	 * but we need to be consistent with PTEs and architectures that
990 	 * can't support a 'special' bit.
991 	 */
992 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
993 			!pfn_t_devmap(pfn));
994 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
995 						(VM_PFNMAP|VM_MIXEDMAP));
996 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
997 
998 	if (addr < vma->vm_start || addr >= vma->vm_end)
999 		return VM_FAULT_SIGBUS;
1000 
1001 	track_pfn_insert(vma, &pgprot, pfn);
1002 
1003 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1004 	return VM_FAULT_NOPAGE;
1005 }
1006 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1007 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1008 
1009 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1010 		      pmd_t *pmd, bool write)
1011 {
1012 	pmd_t _pmd;
1013 
1014 	_pmd = pmd_mkyoung(*pmd);
1015 	if (write)
1016 		_pmd = pmd_mkdirty(_pmd);
1017 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1018 				  pmd, _pmd, write))
1019 		update_mmu_cache_pmd(vma, addr, pmd);
1020 }
1021 
1022 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1023 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1024 {
1025 	unsigned long pfn = pmd_pfn(*pmd);
1026 	struct mm_struct *mm = vma->vm_mm;
1027 	struct page *page;
1028 	int ret;
1029 
1030 	assert_spin_locked(pmd_lockptr(mm, pmd));
1031 
1032 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1033 		return NULL;
1034 
1035 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1036 		/* pass */;
1037 	else
1038 		return NULL;
1039 
1040 	if (flags & FOLL_TOUCH)
1041 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1042 
1043 	/*
1044 	 * device mapped pages can only be returned if the
1045 	 * caller will manage the page reference count.
1046 	 */
1047 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1048 		return ERR_PTR(-EEXIST);
1049 
1050 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1051 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1052 	if (!*pgmap)
1053 		return ERR_PTR(-EFAULT);
1054 	page = pfn_to_page(pfn);
1055 	ret = try_grab_page(page, flags);
1056 	if (ret)
1057 		page = ERR_PTR(ret);
1058 
1059 	return page;
1060 }
1061 
1062 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1063 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1064 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1065 {
1066 	spinlock_t *dst_ptl, *src_ptl;
1067 	struct page *src_page;
1068 	pmd_t pmd;
1069 	pgtable_t pgtable = NULL;
1070 	int ret = -ENOMEM;
1071 
1072 	/* Skip if can be re-fill on fault */
1073 	if (!vma_is_anonymous(dst_vma))
1074 		return 0;
1075 
1076 	pgtable = pte_alloc_one(dst_mm);
1077 	if (unlikely(!pgtable))
1078 		goto out;
1079 
1080 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1081 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1082 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083 
1084 	ret = -EAGAIN;
1085 	pmd = *src_pmd;
1086 
1087 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1088 	if (unlikely(is_swap_pmd(pmd))) {
1089 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1090 
1091 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1092 		if (!is_readable_migration_entry(entry)) {
1093 			entry = make_readable_migration_entry(
1094 							swp_offset(entry));
1095 			pmd = swp_entry_to_pmd(entry);
1096 			if (pmd_swp_soft_dirty(*src_pmd))
1097 				pmd = pmd_swp_mksoft_dirty(pmd);
1098 			if (pmd_swp_uffd_wp(*src_pmd))
1099 				pmd = pmd_swp_mkuffd_wp(pmd);
1100 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1101 		}
1102 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1103 		mm_inc_nr_ptes(dst_mm);
1104 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1105 		if (!userfaultfd_wp(dst_vma))
1106 			pmd = pmd_swp_clear_uffd_wp(pmd);
1107 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1108 		ret = 0;
1109 		goto out_unlock;
1110 	}
1111 #endif
1112 
1113 	if (unlikely(!pmd_trans_huge(pmd))) {
1114 		pte_free(dst_mm, pgtable);
1115 		goto out_unlock;
1116 	}
1117 	/*
1118 	 * When page table lock is held, the huge zero pmd should not be
1119 	 * under splitting since we don't split the page itself, only pmd to
1120 	 * a page table.
1121 	 */
1122 	if (is_huge_zero_pmd(pmd)) {
1123 		/*
1124 		 * get_huge_zero_page() will never allocate a new page here,
1125 		 * since we already have a zero page to copy. It just takes a
1126 		 * reference.
1127 		 */
1128 		mm_get_huge_zero_page(dst_mm);
1129 		goto out_zero_page;
1130 	}
1131 
1132 	src_page = pmd_page(pmd);
1133 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1134 
1135 	get_page(src_page);
1136 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1137 		/* Page maybe pinned: split and retry the fault on PTEs. */
1138 		put_page(src_page);
1139 		pte_free(dst_mm, pgtable);
1140 		spin_unlock(src_ptl);
1141 		spin_unlock(dst_ptl);
1142 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1143 		return -EAGAIN;
1144 	}
1145 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 out_zero_page:
1147 	mm_inc_nr_ptes(dst_mm);
1148 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1149 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1150 	if (!userfaultfd_wp(dst_vma))
1151 		pmd = pmd_clear_uffd_wp(pmd);
1152 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1153 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1154 
1155 	ret = 0;
1156 out_unlock:
1157 	spin_unlock(src_ptl);
1158 	spin_unlock(dst_ptl);
1159 out:
1160 	return ret;
1161 }
1162 
1163 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1164 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1165 		      pud_t *pud, bool write)
1166 {
1167 	pud_t _pud;
1168 
1169 	_pud = pud_mkyoung(*pud);
1170 	if (write)
1171 		_pud = pud_mkdirty(_pud);
1172 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1173 				  pud, _pud, write))
1174 		update_mmu_cache_pud(vma, addr, pud);
1175 }
1176 
1177 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1178 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1179 {
1180 	unsigned long pfn = pud_pfn(*pud);
1181 	struct mm_struct *mm = vma->vm_mm;
1182 	struct page *page;
1183 	int ret;
1184 
1185 	assert_spin_locked(pud_lockptr(mm, pud));
1186 
1187 	if (flags & FOLL_WRITE && !pud_write(*pud))
1188 		return NULL;
1189 
1190 	if (pud_present(*pud) && pud_devmap(*pud))
1191 		/* pass */;
1192 	else
1193 		return NULL;
1194 
1195 	if (flags & FOLL_TOUCH)
1196 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1197 
1198 	/*
1199 	 * device mapped pages can only be returned if the
1200 	 * caller will manage the page reference count.
1201 	 *
1202 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1203 	 */
1204 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1205 		return ERR_PTR(-EEXIST);
1206 
1207 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1208 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1209 	if (!*pgmap)
1210 		return ERR_PTR(-EFAULT);
1211 	page = pfn_to_page(pfn);
1212 
1213 	ret = try_grab_page(page, flags);
1214 	if (ret)
1215 		page = ERR_PTR(ret);
1216 
1217 	return page;
1218 }
1219 
1220 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1221 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1222 		  struct vm_area_struct *vma)
1223 {
1224 	spinlock_t *dst_ptl, *src_ptl;
1225 	pud_t pud;
1226 	int ret;
1227 
1228 	dst_ptl = pud_lock(dst_mm, dst_pud);
1229 	src_ptl = pud_lockptr(src_mm, src_pud);
1230 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1231 
1232 	ret = -EAGAIN;
1233 	pud = *src_pud;
1234 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1235 		goto out_unlock;
1236 
1237 	/*
1238 	 * When page table lock is held, the huge zero pud should not be
1239 	 * under splitting since we don't split the page itself, only pud to
1240 	 * a page table.
1241 	 */
1242 	if (is_huge_zero_pud(pud)) {
1243 		/* No huge zero pud yet */
1244 	}
1245 
1246 	/*
1247 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1248 	 * and split if duplicating fails.
1249 	 */
1250 	pudp_set_wrprotect(src_mm, addr, src_pud);
1251 	pud = pud_mkold(pud_wrprotect(pud));
1252 	set_pud_at(dst_mm, addr, dst_pud, pud);
1253 
1254 	ret = 0;
1255 out_unlock:
1256 	spin_unlock(src_ptl);
1257 	spin_unlock(dst_ptl);
1258 	return ret;
1259 }
1260 
1261 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1262 {
1263 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1264 
1265 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1266 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1267 		goto unlock;
1268 
1269 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1270 unlock:
1271 	spin_unlock(vmf->ptl);
1272 }
1273 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1274 
1275 void huge_pmd_set_accessed(struct vm_fault *vmf)
1276 {
1277 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1278 
1279 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1280 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1281 		goto unlock;
1282 
1283 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1284 
1285 unlock:
1286 	spin_unlock(vmf->ptl);
1287 }
1288 
1289 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1290 {
1291 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1292 	struct vm_area_struct *vma = vmf->vma;
1293 	struct folio *folio;
1294 	struct page *page;
1295 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1296 	pmd_t orig_pmd = vmf->orig_pmd;
1297 
1298 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1299 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1300 
1301 	if (is_huge_zero_pmd(orig_pmd))
1302 		goto fallback;
1303 
1304 	spin_lock(vmf->ptl);
1305 
1306 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1307 		spin_unlock(vmf->ptl);
1308 		return 0;
1309 	}
1310 
1311 	page = pmd_page(orig_pmd);
1312 	folio = page_folio(page);
1313 	VM_BUG_ON_PAGE(!PageHead(page), page);
1314 
1315 	/* Early check when only holding the PT lock. */
1316 	if (PageAnonExclusive(page))
1317 		goto reuse;
1318 
1319 	if (!folio_trylock(folio)) {
1320 		folio_get(folio);
1321 		spin_unlock(vmf->ptl);
1322 		folio_lock(folio);
1323 		spin_lock(vmf->ptl);
1324 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 			spin_unlock(vmf->ptl);
1326 			folio_unlock(folio);
1327 			folio_put(folio);
1328 			return 0;
1329 		}
1330 		folio_put(folio);
1331 	}
1332 
1333 	/* Recheck after temporarily dropping the PT lock. */
1334 	if (PageAnonExclusive(page)) {
1335 		folio_unlock(folio);
1336 		goto reuse;
1337 	}
1338 
1339 	/*
1340 	 * See do_wp_page(): we can only reuse the folio exclusively if
1341 	 * there are no additional references. Note that we always drain
1342 	 * the LRU cache immediately after adding a THP.
1343 	 */
1344 	if (folio_ref_count(folio) >
1345 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1346 		goto unlock_fallback;
1347 	if (folio_test_swapcache(folio))
1348 		folio_free_swap(folio);
1349 	if (folio_ref_count(folio) == 1) {
1350 		pmd_t entry;
1351 
1352 		page_move_anon_rmap(page, vma);
1353 		folio_unlock(folio);
1354 reuse:
1355 		if (unlikely(unshare)) {
1356 			spin_unlock(vmf->ptl);
1357 			return 0;
1358 		}
1359 		entry = pmd_mkyoung(orig_pmd);
1360 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1361 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1362 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363 		spin_unlock(vmf->ptl);
1364 		return 0;
1365 	}
1366 
1367 unlock_fallback:
1368 	folio_unlock(folio);
1369 	spin_unlock(vmf->ptl);
1370 fallback:
1371 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1372 	return VM_FAULT_FALLBACK;
1373 }
1374 
1375 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1376 					   unsigned long addr, pmd_t pmd)
1377 {
1378 	struct page *page;
1379 
1380 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1381 		return false;
1382 
1383 	/* Don't touch entries that are not even readable (NUMA hinting). */
1384 	if (pmd_protnone(pmd))
1385 		return false;
1386 
1387 	/* Do we need write faults for softdirty tracking? */
1388 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1389 		return false;
1390 
1391 	/* Do we need write faults for uffd-wp tracking? */
1392 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1393 		return false;
1394 
1395 	if (!(vma->vm_flags & VM_SHARED)) {
1396 		/* See can_change_pte_writable(). */
1397 		page = vm_normal_page_pmd(vma, addr, pmd);
1398 		return page && PageAnon(page) && PageAnonExclusive(page);
1399 	}
1400 
1401 	/* See can_change_pte_writable(). */
1402 	return pmd_dirty(pmd);
1403 }
1404 
1405 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1406 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1407 					struct vm_area_struct *vma,
1408 					unsigned int flags)
1409 {
1410 	/* If the pmd is writable, we can write to the page. */
1411 	if (pmd_write(pmd))
1412 		return true;
1413 
1414 	/* Maybe FOLL_FORCE is set to override it? */
1415 	if (!(flags & FOLL_FORCE))
1416 		return false;
1417 
1418 	/* But FOLL_FORCE has no effect on shared mappings */
1419 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1420 		return false;
1421 
1422 	/* ... or read-only private ones */
1423 	if (!(vma->vm_flags & VM_MAYWRITE))
1424 		return false;
1425 
1426 	/* ... or already writable ones that just need to take a write fault */
1427 	if (vma->vm_flags & VM_WRITE)
1428 		return false;
1429 
1430 	/*
1431 	 * See can_change_pte_writable(): we broke COW and could map the page
1432 	 * writable if we have an exclusive anonymous page ...
1433 	 */
1434 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1435 		return false;
1436 
1437 	/* ... and a write-fault isn't required for other reasons. */
1438 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1439 		return false;
1440 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1441 }
1442 
1443 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1444 				   unsigned long addr,
1445 				   pmd_t *pmd,
1446 				   unsigned int flags)
1447 {
1448 	struct mm_struct *mm = vma->vm_mm;
1449 	struct page *page;
1450 	int ret;
1451 
1452 	assert_spin_locked(pmd_lockptr(mm, pmd));
1453 
1454 	page = pmd_page(*pmd);
1455 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1456 
1457 	if ((flags & FOLL_WRITE) &&
1458 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1459 		return NULL;
1460 
1461 	/* Avoid dumping huge zero page */
1462 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1463 		return ERR_PTR(-EFAULT);
1464 
1465 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1466 		return NULL;
1467 
1468 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1469 		return ERR_PTR(-EMLINK);
1470 
1471 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1472 			!PageAnonExclusive(page), page);
1473 
1474 	ret = try_grab_page(page, flags);
1475 	if (ret)
1476 		return ERR_PTR(ret);
1477 
1478 	if (flags & FOLL_TOUCH)
1479 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1480 
1481 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1482 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1483 
1484 	return page;
1485 }
1486 
1487 /* NUMA hinting page fault entry point for trans huge pmds */
1488 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1489 {
1490 	struct vm_area_struct *vma = vmf->vma;
1491 	pmd_t oldpmd = vmf->orig_pmd;
1492 	pmd_t pmd;
1493 	struct page *page;
1494 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1495 	int page_nid = NUMA_NO_NODE;
1496 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1497 	bool migrated = false, writable = false;
1498 	int flags = 0;
1499 
1500 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1501 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1502 		spin_unlock(vmf->ptl);
1503 		goto out;
1504 	}
1505 
1506 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1507 
1508 	/*
1509 	 * Detect now whether the PMD could be writable; this information
1510 	 * is only valid while holding the PT lock.
1511 	 */
1512 	writable = pmd_write(pmd);
1513 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1514 	    can_change_pmd_writable(vma, vmf->address, pmd))
1515 		writable = true;
1516 
1517 	page = vm_normal_page_pmd(vma, haddr, pmd);
1518 	if (!page)
1519 		goto out_map;
1520 
1521 	/* See similar comment in do_numa_page for explanation */
1522 	if (!writable)
1523 		flags |= TNF_NO_GROUP;
1524 
1525 	page_nid = page_to_nid(page);
1526 	/*
1527 	 * For memory tiering mode, cpupid of slow memory page is used
1528 	 * to record page access time.  So use default value.
1529 	 */
1530 	if (node_is_toptier(page_nid))
1531 		last_cpupid = page_cpupid_last(page);
1532 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1533 				       &flags);
1534 
1535 	if (target_nid == NUMA_NO_NODE) {
1536 		put_page(page);
1537 		goto out_map;
1538 	}
1539 
1540 	spin_unlock(vmf->ptl);
1541 	writable = false;
1542 
1543 	migrated = migrate_misplaced_page(page, vma, target_nid);
1544 	if (migrated) {
1545 		flags |= TNF_MIGRATED;
1546 		page_nid = target_nid;
1547 	} else {
1548 		flags |= TNF_MIGRATE_FAIL;
1549 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1550 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1551 			spin_unlock(vmf->ptl);
1552 			goto out;
1553 		}
1554 		goto out_map;
1555 	}
1556 
1557 out:
1558 	if (page_nid != NUMA_NO_NODE)
1559 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1560 				flags);
1561 
1562 	return 0;
1563 
1564 out_map:
1565 	/* Restore the PMD */
1566 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1567 	pmd = pmd_mkyoung(pmd);
1568 	if (writable)
1569 		pmd = pmd_mkwrite(pmd, vma);
1570 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1571 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1572 	spin_unlock(vmf->ptl);
1573 	goto out;
1574 }
1575 
1576 /*
1577  * Return true if we do MADV_FREE successfully on entire pmd page.
1578  * Otherwise, return false.
1579  */
1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1581 		pmd_t *pmd, unsigned long addr, unsigned long next)
1582 {
1583 	spinlock_t *ptl;
1584 	pmd_t orig_pmd;
1585 	struct folio *folio;
1586 	struct mm_struct *mm = tlb->mm;
1587 	bool ret = false;
1588 
1589 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1590 
1591 	ptl = pmd_trans_huge_lock(pmd, vma);
1592 	if (!ptl)
1593 		goto out_unlocked;
1594 
1595 	orig_pmd = *pmd;
1596 	if (is_huge_zero_pmd(orig_pmd))
1597 		goto out;
1598 
1599 	if (unlikely(!pmd_present(orig_pmd))) {
1600 		VM_BUG_ON(thp_migration_supported() &&
1601 				  !is_pmd_migration_entry(orig_pmd));
1602 		goto out;
1603 	}
1604 
1605 	folio = pfn_folio(pmd_pfn(orig_pmd));
1606 	/*
1607 	 * If other processes are mapping this folio, we couldn't discard
1608 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1609 	 */
1610 	if (folio_estimated_sharers(folio) != 1)
1611 		goto out;
1612 
1613 	if (!folio_trylock(folio))
1614 		goto out;
1615 
1616 	/*
1617 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 	 * will deactivate only them.
1619 	 */
1620 	if (next - addr != HPAGE_PMD_SIZE) {
1621 		folio_get(folio);
1622 		spin_unlock(ptl);
1623 		split_folio(folio);
1624 		folio_unlock(folio);
1625 		folio_put(folio);
1626 		goto out_unlocked;
1627 	}
1628 
1629 	if (folio_test_dirty(folio))
1630 		folio_clear_dirty(folio);
1631 	folio_unlock(folio);
1632 
1633 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1634 		pmdp_invalidate(vma, addr, pmd);
1635 		orig_pmd = pmd_mkold(orig_pmd);
1636 		orig_pmd = pmd_mkclean(orig_pmd);
1637 
1638 		set_pmd_at(mm, addr, pmd, orig_pmd);
1639 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1640 	}
1641 
1642 	folio_mark_lazyfree(folio);
1643 	ret = true;
1644 out:
1645 	spin_unlock(ptl);
1646 out_unlocked:
1647 	return ret;
1648 }
1649 
1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1651 {
1652 	pgtable_t pgtable;
1653 
1654 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1655 	pte_free(mm, pgtable);
1656 	mm_dec_nr_ptes(mm);
1657 }
1658 
1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1660 		 pmd_t *pmd, unsigned long addr)
1661 {
1662 	pmd_t orig_pmd;
1663 	spinlock_t *ptl;
1664 
1665 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1666 
1667 	ptl = __pmd_trans_huge_lock(pmd, vma);
1668 	if (!ptl)
1669 		return 0;
1670 	/*
1671 	 * For architectures like ppc64 we look at deposited pgtable
1672 	 * when calling pmdp_huge_get_and_clear. So do the
1673 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1674 	 * operations.
1675 	 */
1676 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1677 						tlb->fullmm);
1678 	arch_check_zapped_pmd(vma, orig_pmd);
1679 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1680 	if (vma_is_special_huge(vma)) {
1681 		if (arch_needs_pgtable_deposit())
1682 			zap_deposited_table(tlb->mm, pmd);
1683 		spin_unlock(ptl);
1684 	} else if (is_huge_zero_pmd(orig_pmd)) {
1685 		zap_deposited_table(tlb->mm, pmd);
1686 		spin_unlock(ptl);
1687 	} else {
1688 		struct page *page = NULL;
1689 		int flush_needed = 1;
1690 
1691 		if (pmd_present(orig_pmd)) {
1692 			page = pmd_page(orig_pmd);
1693 			page_remove_rmap(page, vma, true);
1694 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1695 			VM_BUG_ON_PAGE(!PageHead(page), page);
1696 		} else if (thp_migration_supported()) {
1697 			swp_entry_t entry;
1698 
1699 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1700 			entry = pmd_to_swp_entry(orig_pmd);
1701 			page = pfn_swap_entry_to_page(entry);
1702 			flush_needed = 0;
1703 		} else
1704 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1705 
1706 		if (PageAnon(page)) {
1707 			zap_deposited_table(tlb->mm, pmd);
1708 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1709 		} else {
1710 			if (arch_needs_pgtable_deposit())
1711 				zap_deposited_table(tlb->mm, pmd);
1712 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1713 		}
1714 
1715 		spin_unlock(ptl);
1716 		if (flush_needed)
1717 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1718 	}
1719 	return 1;
1720 }
1721 
1722 #ifndef pmd_move_must_withdraw
1723 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1724 					 spinlock_t *old_pmd_ptl,
1725 					 struct vm_area_struct *vma)
1726 {
1727 	/*
1728 	 * With split pmd lock we also need to move preallocated
1729 	 * PTE page table if new_pmd is on different PMD page table.
1730 	 *
1731 	 * We also don't deposit and withdraw tables for file pages.
1732 	 */
1733 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1734 }
1735 #endif
1736 
1737 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1738 {
1739 #ifdef CONFIG_MEM_SOFT_DIRTY
1740 	if (unlikely(is_pmd_migration_entry(pmd)))
1741 		pmd = pmd_swp_mksoft_dirty(pmd);
1742 	else if (pmd_present(pmd))
1743 		pmd = pmd_mksoft_dirty(pmd);
1744 #endif
1745 	return pmd;
1746 }
1747 
1748 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1749 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1750 {
1751 	spinlock_t *old_ptl, *new_ptl;
1752 	pmd_t pmd;
1753 	struct mm_struct *mm = vma->vm_mm;
1754 	bool force_flush = false;
1755 
1756 	/*
1757 	 * The destination pmd shouldn't be established, free_pgtables()
1758 	 * should have released it; but move_page_tables() might have already
1759 	 * inserted a page table, if racing against shmem/file collapse.
1760 	 */
1761 	if (!pmd_none(*new_pmd)) {
1762 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1763 		return false;
1764 	}
1765 
1766 	/*
1767 	 * We don't have to worry about the ordering of src and dst
1768 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1769 	 */
1770 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1771 	if (old_ptl) {
1772 		new_ptl = pmd_lockptr(mm, new_pmd);
1773 		if (new_ptl != old_ptl)
1774 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1775 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1776 		if (pmd_present(pmd))
1777 			force_flush = true;
1778 		VM_BUG_ON(!pmd_none(*new_pmd));
1779 
1780 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1781 			pgtable_t pgtable;
1782 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1783 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1784 		}
1785 		pmd = move_soft_dirty_pmd(pmd);
1786 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1787 		if (force_flush)
1788 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1789 		if (new_ptl != old_ptl)
1790 			spin_unlock(new_ptl);
1791 		spin_unlock(old_ptl);
1792 		return true;
1793 	}
1794 	return false;
1795 }
1796 
1797 /*
1798  * Returns
1799  *  - 0 if PMD could not be locked
1800  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1801  *      or if prot_numa but THP migration is not supported
1802  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1803  */
1804 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1805 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1806 		    unsigned long cp_flags)
1807 {
1808 	struct mm_struct *mm = vma->vm_mm;
1809 	spinlock_t *ptl;
1810 	pmd_t oldpmd, entry;
1811 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1812 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1813 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1814 	int ret = 1;
1815 
1816 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1817 
1818 	if (prot_numa && !thp_migration_supported())
1819 		return 1;
1820 
1821 	ptl = __pmd_trans_huge_lock(pmd, vma);
1822 	if (!ptl)
1823 		return 0;
1824 
1825 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1826 	if (is_swap_pmd(*pmd)) {
1827 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1828 		struct page *page = pfn_swap_entry_to_page(entry);
1829 		pmd_t newpmd;
1830 
1831 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1832 		if (is_writable_migration_entry(entry)) {
1833 			/*
1834 			 * A protection check is difficult so
1835 			 * just be safe and disable write
1836 			 */
1837 			if (PageAnon(page))
1838 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1839 			else
1840 				entry = make_readable_migration_entry(swp_offset(entry));
1841 			newpmd = swp_entry_to_pmd(entry);
1842 			if (pmd_swp_soft_dirty(*pmd))
1843 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1844 		} else {
1845 			newpmd = *pmd;
1846 		}
1847 
1848 		if (uffd_wp)
1849 			newpmd = pmd_swp_mkuffd_wp(newpmd);
1850 		else if (uffd_wp_resolve)
1851 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
1852 		if (!pmd_same(*pmd, newpmd))
1853 			set_pmd_at(mm, addr, pmd, newpmd);
1854 		goto unlock;
1855 	}
1856 #endif
1857 
1858 	if (prot_numa) {
1859 		struct page *page;
1860 		bool toptier;
1861 		/*
1862 		 * Avoid trapping faults against the zero page. The read-only
1863 		 * data is likely to be read-cached on the local CPU and
1864 		 * local/remote hits to the zero page are not interesting.
1865 		 */
1866 		if (is_huge_zero_pmd(*pmd))
1867 			goto unlock;
1868 
1869 		if (pmd_protnone(*pmd))
1870 			goto unlock;
1871 
1872 		page = pmd_page(*pmd);
1873 		toptier = node_is_toptier(page_to_nid(page));
1874 		/*
1875 		 * Skip scanning top tier node if normal numa
1876 		 * balancing is disabled
1877 		 */
1878 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1879 		    toptier)
1880 			goto unlock;
1881 
1882 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1883 		    !toptier)
1884 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1885 	}
1886 	/*
1887 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1888 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1889 	 * which is also under mmap_read_lock(mm):
1890 	 *
1891 	 *	CPU0:				CPU1:
1892 	 *				change_huge_pmd(prot_numa=1)
1893 	 *				 pmdp_huge_get_and_clear_notify()
1894 	 * madvise_dontneed()
1895 	 *  zap_pmd_range()
1896 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1897 	 *   // skip the pmd
1898 	 *				 set_pmd_at();
1899 	 *				 // pmd is re-established
1900 	 *
1901 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1902 	 * which may break userspace.
1903 	 *
1904 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1905 	 * dirty/young flags set by hardware.
1906 	 */
1907 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1908 
1909 	entry = pmd_modify(oldpmd, newprot);
1910 	if (uffd_wp)
1911 		entry = pmd_mkuffd_wp(entry);
1912 	else if (uffd_wp_resolve)
1913 		/*
1914 		 * Leave the write bit to be handled by PF interrupt
1915 		 * handler, then things like COW could be properly
1916 		 * handled.
1917 		 */
1918 		entry = pmd_clear_uffd_wp(entry);
1919 
1920 	/* See change_pte_range(). */
1921 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
1922 	    can_change_pmd_writable(vma, addr, entry))
1923 		entry = pmd_mkwrite(entry, vma);
1924 
1925 	ret = HPAGE_PMD_NR;
1926 	set_pmd_at(mm, addr, pmd, entry);
1927 
1928 	if (huge_pmd_needs_flush(oldpmd, entry))
1929 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1930 unlock:
1931 	spin_unlock(ptl);
1932 	return ret;
1933 }
1934 
1935 /*
1936  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1937  *
1938  * Note that if it returns page table lock pointer, this routine returns without
1939  * unlocking page table lock. So callers must unlock it.
1940  */
1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1942 {
1943 	spinlock_t *ptl;
1944 	ptl = pmd_lock(vma->vm_mm, pmd);
1945 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1946 			pmd_devmap(*pmd)))
1947 		return ptl;
1948 	spin_unlock(ptl);
1949 	return NULL;
1950 }
1951 
1952 /*
1953  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1954  *
1955  * Note that if it returns page table lock pointer, this routine returns without
1956  * unlocking page table lock. So callers must unlock it.
1957  */
1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1959 {
1960 	spinlock_t *ptl;
1961 
1962 	ptl = pud_lock(vma->vm_mm, pud);
1963 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1964 		return ptl;
1965 	spin_unlock(ptl);
1966 	return NULL;
1967 }
1968 
1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1971 		 pud_t *pud, unsigned long addr)
1972 {
1973 	spinlock_t *ptl;
1974 
1975 	ptl = __pud_trans_huge_lock(pud, vma);
1976 	if (!ptl)
1977 		return 0;
1978 
1979 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
1980 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1981 	if (vma_is_special_huge(vma)) {
1982 		spin_unlock(ptl);
1983 		/* No zero page support yet */
1984 	} else {
1985 		/* No support for anonymous PUD pages yet */
1986 		BUG();
1987 	}
1988 	return 1;
1989 }
1990 
1991 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1992 		unsigned long haddr)
1993 {
1994 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1995 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1996 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1997 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1998 
1999 	count_vm_event(THP_SPLIT_PUD);
2000 
2001 	pudp_huge_clear_flush(vma, haddr, pud);
2002 }
2003 
2004 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2005 		unsigned long address)
2006 {
2007 	spinlock_t *ptl;
2008 	struct mmu_notifier_range range;
2009 
2010 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2011 				address & HPAGE_PUD_MASK,
2012 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2013 	mmu_notifier_invalidate_range_start(&range);
2014 	ptl = pud_lock(vma->vm_mm, pud);
2015 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2016 		goto out;
2017 	__split_huge_pud_locked(vma, pud, range.start);
2018 
2019 out:
2020 	spin_unlock(ptl);
2021 	mmu_notifier_invalidate_range_end(&range);
2022 }
2023 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2024 
2025 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2026 		unsigned long haddr, pmd_t *pmd)
2027 {
2028 	struct mm_struct *mm = vma->vm_mm;
2029 	pgtable_t pgtable;
2030 	pmd_t _pmd, old_pmd;
2031 	unsigned long addr;
2032 	pte_t *pte;
2033 	int i;
2034 
2035 	/*
2036 	 * Leave pmd empty until pte is filled note that it is fine to delay
2037 	 * notification until mmu_notifier_invalidate_range_end() as we are
2038 	 * replacing a zero pmd write protected page with a zero pte write
2039 	 * protected page.
2040 	 *
2041 	 * See Documentation/mm/mmu_notifier.rst
2042 	 */
2043 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2044 
2045 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2046 	pmd_populate(mm, &_pmd, pgtable);
2047 
2048 	pte = pte_offset_map(&_pmd, haddr);
2049 	VM_BUG_ON(!pte);
2050 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2051 		pte_t entry;
2052 
2053 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2054 		entry = pte_mkspecial(entry);
2055 		if (pmd_uffd_wp(old_pmd))
2056 			entry = pte_mkuffd_wp(entry);
2057 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2058 		set_pte_at(mm, addr, pte, entry);
2059 		pte++;
2060 	}
2061 	pte_unmap(pte - 1);
2062 	smp_wmb(); /* make pte visible before pmd */
2063 	pmd_populate(mm, pmd, pgtable);
2064 }
2065 
2066 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2067 		unsigned long haddr, bool freeze)
2068 {
2069 	struct mm_struct *mm = vma->vm_mm;
2070 	struct page *page;
2071 	pgtable_t pgtable;
2072 	pmd_t old_pmd, _pmd;
2073 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2074 	bool anon_exclusive = false, dirty = false;
2075 	unsigned long addr;
2076 	pte_t *pte;
2077 	int i;
2078 
2079 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2080 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2081 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2082 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2083 				&& !pmd_devmap(*pmd));
2084 
2085 	count_vm_event(THP_SPLIT_PMD);
2086 
2087 	if (!vma_is_anonymous(vma)) {
2088 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2089 		/*
2090 		 * We are going to unmap this huge page. So
2091 		 * just go ahead and zap it
2092 		 */
2093 		if (arch_needs_pgtable_deposit())
2094 			zap_deposited_table(mm, pmd);
2095 		if (vma_is_special_huge(vma))
2096 			return;
2097 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2098 			swp_entry_t entry;
2099 
2100 			entry = pmd_to_swp_entry(old_pmd);
2101 			page = pfn_swap_entry_to_page(entry);
2102 		} else {
2103 			page = pmd_page(old_pmd);
2104 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2105 				set_page_dirty(page);
2106 			if (!PageReferenced(page) && pmd_young(old_pmd))
2107 				SetPageReferenced(page);
2108 			page_remove_rmap(page, vma, true);
2109 			put_page(page);
2110 		}
2111 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2112 		return;
2113 	}
2114 
2115 	if (is_huge_zero_pmd(*pmd)) {
2116 		/*
2117 		 * FIXME: Do we want to invalidate secondary mmu by calling
2118 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2119 		 * inside __split_huge_pmd() ?
2120 		 *
2121 		 * We are going from a zero huge page write protected to zero
2122 		 * small page also write protected so it does not seems useful
2123 		 * to invalidate secondary mmu at this time.
2124 		 */
2125 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2126 	}
2127 
2128 	/*
2129 	 * Up to this point the pmd is present and huge and userland has the
2130 	 * whole access to the hugepage during the split (which happens in
2131 	 * place). If we overwrite the pmd with the not-huge version pointing
2132 	 * to the pte here (which of course we could if all CPUs were bug
2133 	 * free), userland could trigger a small page size TLB miss on the
2134 	 * small sized TLB while the hugepage TLB entry is still established in
2135 	 * the huge TLB. Some CPU doesn't like that.
2136 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2137 	 * 383 on page 105. Intel should be safe but is also warns that it's
2138 	 * only safe if the permission and cache attributes of the two entries
2139 	 * loaded in the two TLB is identical (which should be the case here).
2140 	 * But it is generally safer to never allow small and huge TLB entries
2141 	 * for the same virtual address to be loaded simultaneously. So instead
2142 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2143 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2144 	 * must remain set at all times on the pmd until the split is complete
2145 	 * for this pmd), then we flush the SMP TLB and finally we write the
2146 	 * non-huge version of the pmd entry with pmd_populate.
2147 	 */
2148 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2149 
2150 	pmd_migration = is_pmd_migration_entry(old_pmd);
2151 	if (unlikely(pmd_migration)) {
2152 		swp_entry_t entry;
2153 
2154 		entry = pmd_to_swp_entry(old_pmd);
2155 		page = pfn_swap_entry_to_page(entry);
2156 		write = is_writable_migration_entry(entry);
2157 		if (PageAnon(page))
2158 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2159 		young = is_migration_entry_young(entry);
2160 		dirty = is_migration_entry_dirty(entry);
2161 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2162 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2163 	} else {
2164 		page = pmd_page(old_pmd);
2165 		if (pmd_dirty(old_pmd)) {
2166 			dirty = true;
2167 			SetPageDirty(page);
2168 		}
2169 		write = pmd_write(old_pmd);
2170 		young = pmd_young(old_pmd);
2171 		soft_dirty = pmd_soft_dirty(old_pmd);
2172 		uffd_wp = pmd_uffd_wp(old_pmd);
2173 
2174 		VM_BUG_ON_PAGE(!page_count(page), page);
2175 
2176 		/*
2177 		 * Without "freeze", we'll simply split the PMD, propagating the
2178 		 * PageAnonExclusive() flag for each PTE by setting it for
2179 		 * each subpage -- no need to (temporarily) clear.
2180 		 *
2181 		 * With "freeze" we want to replace mapped pages by
2182 		 * migration entries right away. This is only possible if we
2183 		 * managed to clear PageAnonExclusive() -- see
2184 		 * set_pmd_migration_entry().
2185 		 *
2186 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2187 		 * only and let try_to_migrate_one() fail later.
2188 		 *
2189 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2190 		 */
2191 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2192 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2193 			freeze = false;
2194 		if (!freeze)
2195 			page_ref_add(page, HPAGE_PMD_NR - 1);
2196 	}
2197 
2198 	/*
2199 	 * Withdraw the table only after we mark the pmd entry invalid.
2200 	 * This's critical for some architectures (Power).
2201 	 */
2202 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2203 	pmd_populate(mm, &_pmd, pgtable);
2204 
2205 	pte = pte_offset_map(&_pmd, haddr);
2206 	VM_BUG_ON(!pte);
2207 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2208 		pte_t entry;
2209 		/*
2210 		 * Note that NUMA hinting access restrictions are not
2211 		 * transferred to avoid any possibility of altering
2212 		 * permissions across VMAs.
2213 		 */
2214 		if (freeze || pmd_migration) {
2215 			swp_entry_t swp_entry;
2216 			if (write)
2217 				swp_entry = make_writable_migration_entry(
2218 							page_to_pfn(page + i));
2219 			else if (anon_exclusive)
2220 				swp_entry = make_readable_exclusive_migration_entry(
2221 							page_to_pfn(page + i));
2222 			else
2223 				swp_entry = make_readable_migration_entry(
2224 							page_to_pfn(page + i));
2225 			if (young)
2226 				swp_entry = make_migration_entry_young(swp_entry);
2227 			if (dirty)
2228 				swp_entry = make_migration_entry_dirty(swp_entry);
2229 			entry = swp_entry_to_pte(swp_entry);
2230 			if (soft_dirty)
2231 				entry = pte_swp_mksoft_dirty(entry);
2232 			if (uffd_wp)
2233 				entry = pte_swp_mkuffd_wp(entry);
2234 		} else {
2235 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2236 			if (write)
2237 				entry = pte_mkwrite(entry, vma);
2238 			if (anon_exclusive)
2239 				SetPageAnonExclusive(page + i);
2240 			if (!young)
2241 				entry = pte_mkold(entry);
2242 			/* NOTE: this may set soft-dirty too on some archs */
2243 			if (dirty)
2244 				entry = pte_mkdirty(entry);
2245 			if (soft_dirty)
2246 				entry = pte_mksoft_dirty(entry);
2247 			if (uffd_wp)
2248 				entry = pte_mkuffd_wp(entry);
2249 			page_add_anon_rmap(page + i, vma, addr, RMAP_NONE);
2250 		}
2251 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2252 		set_pte_at(mm, addr, pte, entry);
2253 		pte++;
2254 	}
2255 	pte_unmap(pte - 1);
2256 
2257 	if (!pmd_migration)
2258 		page_remove_rmap(page, vma, true);
2259 	if (freeze)
2260 		put_page(page);
2261 
2262 	smp_wmb(); /* make pte visible before pmd */
2263 	pmd_populate(mm, pmd, pgtable);
2264 }
2265 
2266 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2267 		unsigned long address, bool freeze, struct folio *folio)
2268 {
2269 	spinlock_t *ptl;
2270 	struct mmu_notifier_range range;
2271 
2272 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2273 				address & HPAGE_PMD_MASK,
2274 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2275 	mmu_notifier_invalidate_range_start(&range);
2276 	ptl = pmd_lock(vma->vm_mm, pmd);
2277 
2278 	/*
2279 	 * If caller asks to setup a migration entry, we need a folio to check
2280 	 * pmd against. Otherwise we can end up replacing wrong folio.
2281 	 */
2282 	VM_BUG_ON(freeze && !folio);
2283 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2284 
2285 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2286 	    is_pmd_migration_entry(*pmd)) {
2287 		/*
2288 		 * It's safe to call pmd_page when folio is set because it's
2289 		 * guaranteed that pmd is present.
2290 		 */
2291 		if (folio && folio != page_folio(pmd_page(*pmd)))
2292 			goto out;
2293 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2294 	}
2295 
2296 out:
2297 	spin_unlock(ptl);
2298 	mmu_notifier_invalidate_range_end(&range);
2299 }
2300 
2301 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2302 		bool freeze, struct folio *folio)
2303 {
2304 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2305 
2306 	if (!pmd)
2307 		return;
2308 
2309 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2310 }
2311 
2312 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2313 {
2314 	/*
2315 	 * If the new address isn't hpage aligned and it could previously
2316 	 * contain an hugepage: check if we need to split an huge pmd.
2317 	 */
2318 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2319 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2320 			 ALIGN(address, HPAGE_PMD_SIZE)))
2321 		split_huge_pmd_address(vma, address, false, NULL);
2322 }
2323 
2324 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2325 			     unsigned long start,
2326 			     unsigned long end,
2327 			     long adjust_next)
2328 {
2329 	/* Check if we need to split start first. */
2330 	split_huge_pmd_if_needed(vma, start);
2331 
2332 	/* Check if we need to split end next. */
2333 	split_huge_pmd_if_needed(vma, end);
2334 
2335 	/*
2336 	 * If we're also updating the next vma vm_start,
2337 	 * check if we need to split it.
2338 	 */
2339 	if (adjust_next > 0) {
2340 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2341 		unsigned long nstart = next->vm_start;
2342 		nstart += adjust_next;
2343 		split_huge_pmd_if_needed(next, nstart);
2344 	}
2345 }
2346 
2347 static void unmap_folio(struct folio *folio)
2348 {
2349 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2350 		TTU_SYNC;
2351 
2352 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2353 
2354 	/*
2355 	 * Anon pages need migration entries to preserve them, but file
2356 	 * pages can simply be left unmapped, then faulted back on demand.
2357 	 * If that is ever changed (perhaps for mlock), update remap_page().
2358 	 */
2359 	if (folio_test_anon(folio))
2360 		try_to_migrate(folio, ttu_flags);
2361 	else
2362 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2363 }
2364 
2365 static void remap_page(struct folio *folio, unsigned long nr)
2366 {
2367 	int i = 0;
2368 
2369 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2370 	if (!folio_test_anon(folio))
2371 		return;
2372 	for (;;) {
2373 		remove_migration_ptes(folio, folio, true);
2374 		i += folio_nr_pages(folio);
2375 		if (i >= nr)
2376 			break;
2377 		folio = folio_next(folio);
2378 	}
2379 }
2380 
2381 static void lru_add_page_tail(struct page *head, struct page *tail,
2382 		struct lruvec *lruvec, struct list_head *list)
2383 {
2384 	VM_BUG_ON_PAGE(!PageHead(head), head);
2385 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2386 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2387 	lockdep_assert_held(&lruvec->lru_lock);
2388 
2389 	if (list) {
2390 		/* page reclaim is reclaiming a huge page */
2391 		VM_WARN_ON(PageLRU(head));
2392 		get_page(tail);
2393 		list_add_tail(&tail->lru, list);
2394 	} else {
2395 		/* head is still on lru (and we have it frozen) */
2396 		VM_WARN_ON(!PageLRU(head));
2397 		if (PageUnevictable(tail))
2398 			tail->mlock_count = 0;
2399 		else
2400 			list_add_tail(&tail->lru, &head->lru);
2401 		SetPageLRU(tail);
2402 	}
2403 }
2404 
2405 static void __split_huge_page_tail(struct folio *folio, int tail,
2406 		struct lruvec *lruvec, struct list_head *list)
2407 {
2408 	struct page *head = &folio->page;
2409 	struct page *page_tail = head + tail;
2410 	/*
2411 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2412 	 * Don't pass it around before clear_compound_head().
2413 	 */
2414 	struct folio *new_folio = (struct folio *)page_tail;
2415 
2416 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2417 
2418 	/*
2419 	 * Clone page flags before unfreezing refcount.
2420 	 *
2421 	 * After successful get_page_unless_zero() might follow flags change,
2422 	 * for example lock_page() which set PG_waiters.
2423 	 *
2424 	 * Note that for mapped sub-pages of an anonymous THP,
2425 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2426 	 * the migration entry instead from where remap_page() will restore it.
2427 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2428 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2429 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2430 	 */
2431 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2432 	page_tail->flags |= (head->flags &
2433 			((1L << PG_referenced) |
2434 			 (1L << PG_swapbacked) |
2435 			 (1L << PG_swapcache) |
2436 			 (1L << PG_mlocked) |
2437 			 (1L << PG_uptodate) |
2438 			 (1L << PG_active) |
2439 			 (1L << PG_workingset) |
2440 			 (1L << PG_locked) |
2441 			 (1L << PG_unevictable) |
2442 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2443 			 (1L << PG_arch_2) |
2444 			 (1L << PG_arch_3) |
2445 #endif
2446 			 (1L << PG_dirty) |
2447 			 LRU_GEN_MASK | LRU_REFS_MASK));
2448 
2449 	/* ->mapping in first and second tail page is replaced by other uses */
2450 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2451 			page_tail);
2452 	page_tail->mapping = head->mapping;
2453 	page_tail->index = head->index + tail;
2454 
2455 	/*
2456 	 * page->private should not be set in tail pages. Fix up and warn once
2457 	 * if private is unexpectedly set.
2458 	 */
2459 	if (unlikely(page_tail->private)) {
2460 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2461 		page_tail->private = 0;
2462 	}
2463 	if (folio_test_swapcache(folio))
2464 		new_folio->swap.val = folio->swap.val + tail;
2465 
2466 	/* Page flags must be visible before we make the page non-compound. */
2467 	smp_wmb();
2468 
2469 	/*
2470 	 * Clear PageTail before unfreezing page refcount.
2471 	 *
2472 	 * After successful get_page_unless_zero() might follow put_page()
2473 	 * which needs correct compound_head().
2474 	 */
2475 	clear_compound_head(page_tail);
2476 
2477 	/* Finally unfreeze refcount. Additional reference from page cache. */
2478 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2479 					  PageSwapCache(head)));
2480 
2481 	if (page_is_young(head))
2482 		set_page_young(page_tail);
2483 	if (page_is_idle(head))
2484 		set_page_idle(page_tail);
2485 
2486 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2487 
2488 	/*
2489 	 * always add to the tail because some iterators expect new
2490 	 * pages to show after the currently processed elements - e.g.
2491 	 * migrate_pages
2492 	 */
2493 	lru_add_page_tail(head, page_tail, lruvec, list);
2494 }
2495 
2496 static void __split_huge_page(struct page *page, struct list_head *list,
2497 		pgoff_t end)
2498 {
2499 	struct folio *folio = page_folio(page);
2500 	struct page *head = &folio->page;
2501 	struct lruvec *lruvec;
2502 	struct address_space *swap_cache = NULL;
2503 	unsigned long offset = 0;
2504 	unsigned int nr = thp_nr_pages(head);
2505 	int i, nr_dropped = 0;
2506 
2507 	/* complete memcg works before add pages to LRU */
2508 	split_page_memcg(head, nr);
2509 
2510 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2511 		offset = swp_offset(folio->swap);
2512 		swap_cache = swap_address_space(folio->swap);
2513 		xa_lock(&swap_cache->i_pages);
2514 	}
2515 
2516 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2517 	lruvec = folio_lruvec_lock(folio);
2518 
2519 	ClearPageHasHWPoisoned(head);
2520 
2521 	for (i = nr - 1; i >= 1; i--) {
2522 		__split_huge_page_tail(folio, i, lruvec, list);
2523 		/* Some pages can be beyond EOF: drop them from page cache */
2524 		if (head[i].index >= end) {
2525 			struct folio *tail = page_folio(head + i);
2526 
2527 			if (shmem_mapping(head->mapping))
2528 				nr_dropped++;
2529 			else if (folio_test_clear_dirty(tail))
2530 				folio_account_cleaned(tail,
2531 					inode_to_wb(folio->mapping->host));
2532 			__filemap_remove_folio(tail, NULL);
2533 			folio_put(tail);
2534 		} else if (!PageAnon(page)) {
2535 			__xa_store(&head->mapping->i_pages, head[i].index,
2536 					head + i, 0);
2537 		} else if (swap_cache) {
2538 			__xa_store(&swap_cache->i_pages, offset + i,
2539 					head + i, 0);
2540 		}
2541 	}
2542 
2543 	ClearPageCompound(head);
2544 	unlock_page_lruvec(lruvec);
2545 	/* Caller disabled irqs, so they are still disabled here */
2546 
2547 	split_page_owner(head, nr);
2548 
2549 	/* See comment in __split_huge_page_tail() */
2550 	if (PageAnon(head)) {
2551 		/* Additional pin to swap cache */
2552 		if (PageSwapCache(head)) {
2553 			page_ref_add(head, 2);
2554 			xa_unlock(&swap_cache->i_pages);
2555 		} else {
2556 			page_ref_inc(head);
2557 		}
2558 	} else {
2559 		/* Additional pin to page cache */
2560 		page_ref_add(head, 2);
2561 		xa_unlock(&head->mapping->i_pages);
2562 	}
2563 	local_irq_enable();
2564 
2565 	if (nr_dropped)
2566 		shmem_uncharge(head->mapping->host, nr_dropped);
2567 	remap_page(folio, nr);
2568 
2569 	if (folio_test_swapcache(folio))
2570 		split_swap_cluster(folio->swap);
2571 
2572 	for (i = 0; i < nr; i++) {
2573 		struct page *subpage = head + i;
2574 		if (subpage == page)
2575 			continue;
2576 		unlock_page(subpage);
2577 
2578 		/*
2579 		 * Subpages may be freed if there wasn't any mapping
2580 		 * like if add_to_swap() is running on a lru page that
2581 		 * had its mapping zapped. And freeing these pages
2582 		 * requires taking the lru_lock so we do the put_page
2583 		 * of the tail pages after the split is complete.
2584 		 */
2585 		free_page_and_swap_cache(subpage);
2586 	}
2587 }
2588 
2589 /* Racy check whether the huge page can be split */
2590 bool can_split_folio(struct folio *folio, int *pextra_pins)
2591 {
2592 	int extra_pins;
2593 
2594 	/* Additional pins from page cache */
2595 	if (folio_test_anon(folio))
2596 		extra_pins = folio_test_swapcache(folio) ?
2597 				folio_nr_pages(folio) : 0;
2598 	else
2599 		extra_pins = folio_nr_pages(folio);
2600 	if (pextra_pins)
2601 		*pextra_pins = extra_pins;
2602 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2603 }
2604 
2605 /*
2606  * This function splits huge page into normal pages. @page can point to any
2607  * subpage of huge page to split. Split doesn't change the position of @page.
2608  *
2609  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2610  * The huge page must be locked.
2611  *
2612  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2613  *
2614  * Both head page and tail pages will inherit mapping, flags, and so on from
2615  * the hugepage.
2616  *
2617  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2618  * they are not mapped.
2619  *
2620  * Returns 0 if the hugepage is split successfully.
2621  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2622  * us.
2623  */
2624 int split_huge_page_to_list(struct page *page, struct list_head *list)
2625 {
2626 	struct folio *folio = page_folio(page);
2627 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2628 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2629 	struct anon_vma *anon_vma = NULL;
2630 	struct address_space *mapping = NULL;
2631 	int extra_pins, ret;
2632 	pgoff_t end;
2633 	bool is_hzp;
2634 
2635 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2636 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2637 
2638 	is_hzp = is_huge_zero_page(&folio->page);
2639 	if (is_hzp) {
2640 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2641 		return -EBUSY;
2642 	}
2643 
2644 	if (folio_test_writeback(folio))
2645 		return -EBUSY;
2646 
2647 	if (folio_test_anon(folio)) {
2648 		/*
2649 		 * The caller does not necessarily hold an mmap_lock that would
2650 		 * prevent the anon_vma disappearing so we first we take a
2651 		 * reference to it and then lock the anon_vma for write. This
2652 		 * is similar to folio_lock_anon_vma_read except the write lock
2653 		 * is taken to serialise against parallel split or collapse
2654 		 * operations.
2655 		 */
2656 		anon_vma = folio_get_anon_vma(folio);
2657 		if (!anon_vma) {
2658 			ret = -EBUSY;
2659 			goto out;
2660 		}
2661 		end = -1;
2662 		mapping = NULL;
2663 		anon_vma_lock_write(anon_vma);
2664 	} else {
2665 		gfp_t gfp;
2666 
2667 		mapping = folio->mapping;
2668 
2669 		/* Truncated ? */
2670 		if (!mapping) {
2671 			ret = -EBUSY;
2672 			goto out;
2673 		}
2674 
2675 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2676 							GFP_RECLAIM_MASK);
2677 
2678 		if (!filemap_release_folio(folio, gfp)) {
2679 			ret = -EBUSY;
2680 			goto out;
2681 		}
2682 
2683 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2684 		if (xas_error(&xas)) {
2685 			ret = xas_error(&xas);
2686 			goto out;
2687 		}
2688 
2689 		anon_vma = NULL;
2690 		i_mmap_lock_read(mapping);
2691 
2692 		/*
2693 		 *__split_huge_page() may need to trim off pages beyond EOF:
2694 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2695 		 * which cannot be nested inside the page tree lock. So note
2696 		 * end now: i_size itself may be changed at any moment, but
2697 		 * folio lock is good enough to serialize the trimming.
2698 		 */
2699 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2700 		if (shmem_mapping(mapping))
2701 			end = shmem_fallocend(mapping->host, end);
2702 	}
2703 
2704 	/*
2705 	 * Racy check if we can split the page, before unmap_folio() will
2706 	 * split PMDs
2707 	 */
2708 	if (!can_split_folio(folio, &extra_pins)) {
2709 		ret = -EAGAIN;
2710 		goto out_unlock;
2711 	}
2712 
2713 	unmap_folio(folio);
2714 
2715 	/* block interrupt reentry in xa_lock and spinlock */
2716 	local_irq_disable();
2717 	if (mapping) {
2718 		/*
2719 		 * Check if the folio is present in page cache.
2720 		 * We assume all tail are present too, if folio is there.
2721 		 */
2722 		xas_lock(&xas);
2723 		xas_reset(&xas);
2724 		if (xas_load(&xas) != folio)
2725 			goto fail;
2726 	}
2727 
2728 	/* Prevent deferred_split_scan() touching ->_refcount */
2729 	spin_lock(&ds_queue->split_queue_lock);
2730 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2731 		if (!list_empty(&folio->_deferred_list)) {
2732 			ds_queue->split_queue_len--;
2733 			list_del(&folio->_deferred_list);
2734 		}
2735 		spin_unlock(&ds_queue->split_queue_lock);
2736 		if (mapping) {
2737 			int nr = folio_nr_pages(folio);
2738 
2739 			xas_split(&xas, folio, folio_order(folio));
2740 			if (folio_test_swapbacked(folio)) {
2741 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2742 							-nr);
2743 			} else {
2744 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2745 							-nr);
2746 				filemap_nr_thps_dec(mapping);
2747 			}
2748 		}
2749 
2750 		__split_huge_page(page, list, end);
2751 		ret = 0;
2752 	} else {
2753 		spin_unlock(&ds_queue->split_queue_lock);
2754 fail:
2755 		if (mapping)
2756 			xas_unlock(&xas);
2757 		local_irq_enable();
2758 		remap_page(folio, folio_nr_pages(folio));
2759 		ret = -EAGAIN;
2760 	}
2761 
2762 out_unlock:
2763 	if (anon_vma) {
2764 		anon_vma_unlock_write(anon_vma);
2765 		put_anon_vma(anon_vma);
2766 	}
2767 	if (mapping)
2768 		i_mmap_unlock_read(mapping);
2769 out:
2770 	xas_destroy(&xas);
2771 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2772 	return ret;
2773 }
2774 
2775 void folio_undo_large_rmappable(struct folio *folio)
2776 {
2777 	struct deferred_split *ds_queue;
2778 	unsigned long flags;
2779 
2780 	/*
2781 	 * At this point, there is no one trying to add the folio to
2782 	 * deferred_list. If folio is not in deferred_list, it's safe
2783 	 * to check without acquiring the split_queue_lock.
2784 	 */
2785 	if (data_race(list_empty(&folio->_deferred_list)))
2786 		return;
2787 
2788 	ds_queue = get_deferred_split_queue(folio);
2789 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2790 	if (!list_empty(&folio->_deferred_list)) {
2791 		ds_queue->split_queue_len--;
2792 		list_del(&folio->_deferred_list);
2793 	}
2794 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2795 }
2796 
2797 void deferred_split_folio(struct folio *folio)
2798 {
2799 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2800 #ifdef CONFIG_MEMCG
2801 	struct mem_cgroup *memcg = folio_memcg(folio);
2802 #endif
2803 	unsigned long flags;
2804 
2805 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
2806 
2807 	/*
2808 	 * The try_to_unmap() in page reclaim path might reach here too,
2809 	 * this may cause a race condition to corrupt deferred split queue.
2810 	 * And, if page reclaim is already handling the same folio, it is
2811 	 * unnecessary to handle it again in shrinker.
2812 	 *
2813 	 * Check the swapcache flag to determine if the folio is being
2814 	 * handled by page reclaim since THP swap would add the folio into
2815 	 * swap cache before calling try_to_unmap().
2816 	 */
2817 	if (folio_test_swapcache(folio))
2818 		return;
2819 
2820 	if (!list_empty(&folio->_deferred_list))
2821 		return;
2822 
2823 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2824 	if (list_empty(&folio->_deferred_list)) {
2825 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2826 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
2827 		ds_queue->split_queue_len++;
2828 #ifdef CONFIG_MEMCG
2829 		if (memcg)
2830 			set_shrinker_bit(memcg, folio_nid(folio),
2831 					 deferred_split_shrinker.id);
2832 #endif
2833 	}
2834 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2835 }
2836 
2837 static unsigned long deferred_split_count(struct shrinker *shrink,
2838 		struct shrink_control *sc)
2839 {
2840 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2841 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2842 
2843 #ifdef CONFIG_MEMCG
2844 	if (sc->memcg)
2845 		ds_queue = &sc->memcg->deferred_split_queue;
2846 #endif
2847 	return READ_ONCE(ds_queue->split_queue_len);
2848 }
2849 
2850 static unsigned long deferred_split_scan(struct shrinker *shrink,
2851 		struct shrink_control *sc)
2852 {
2853 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2854 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2855 	unsigned long flags;
2856 	LIST_HEAD(list);
2857 	struct folio *folio, *next;
2858 	int split = 0;
2859 
2860 #ifdef CONFIG_MEMCG
2861 	if (sc->memcg)
2862 		ds_queue = &sc->memcg->deferred_split_queue;
2863 #endif
2864 
2865 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2866 	/* Take pin on all head pages to avoid freeing them under us */
2867 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
2868 							_deferred_list) {
2869 		if (folio_try_get(folio)) {
2870 			list_move(&folio->_deferred_list, &list);
2871 		} else {
2872 			/* We lost race with folio_put() */
2873 			list_del_init(&folio->_deferred_list);
2874 			ds_queue->split_queue_len--;
2875 		}
2876 		if (!--sc->nr_to_scan)
2877 			break;
2878 	}
2879 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2880 
2881 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
2882 		if (!folio_trylock(folio))
2883 			goto next;
2884 		/* split_huge_page() removes page from list on success */
2885 		if (!split_folio(folio))
2886 			split++;
2887 		folio_unlock(folio);
2888 next:
2889 		folio_put(folio);
2890 	}
2891 
2892 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2893 	list_splice_tail(&list, &ds_queue->split_queue);
2894 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2895 
2896 	/*
2897 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2898 	 * This can happen if pages were freed under us.
2899 	 */
2900 	if (!split && list_empty(&ds_queue->split_queue))
2901 		return SHRINK_STOP;
2902 	return split;
2903 }
2904 
2905 static struct shrinker deferred_split_shrinker = {
2906 	.count_objects = deferred_split_count,
2907 	.scan_objects = deferred_split_scan,
2908 	.seeks = DEFAULT_SEEKS,
2909 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2910 		 SHRINKER_NONSLAB,
2911 };
2912 
2913 #ifdef CONFIG_DEBUG_FS
2914 static void split_huge_pages_all(void)
2915 {
2916 	struct zone *zone;
2917 	struct page *page;
2918 	struct folio *folio;
2919 	unsigned long pfn, max_zone_pfn;
2920 	unsigned long total = 0, split = 0;
2921 
2922 	pr_debug("Split all THPs\n");
2923 	for_each_zone(zone) {
2924 		if (!managed_zone(zone))
2925 			continue;
2926 		max_zone_pfn = zone_end_pfn(zone);
2927 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2928 			int nr_pages;
2929 
2930 			page = pfn_to_online_page(pfn);
2931 			if (!page || PageTail(page))
2932 				continue;
2933 			folio = page_folio(page);
2934 			if (!folio_try_get(folio))
2935 				continue;
2936 
2937 			if (unlikely(page_folio(page) != folio))
2938 				goto next;
2939 
2940 			if (zone != folio_zone(folio))
2941 				goto next;
2942 
2943 			if (!folio_test_large(folio)
2944 				|| folio_test_hugetlb(folio)
2945 				|| !folio_test_lru(folio))
2946 				goto next;
2947 
2948 			total++;
2949 			folio_lock(folio);
2950 			nr_pages = folio_nr_pages(folio);
2951 			if (!split_folio(folio))
2952 				split++;
2953 			pfn += nr_pages - 1;
2954 			folio_unlock(folio);
2955 next:
2956 			folio_put(folio);
2957 			cond_resched();
2958 		}
2959 	}
2960 
2961 	pr_debug("%lu of %lu THP split\n", split, total);
2962 }
2963 
2964 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2965 {
2966 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2967 		    is_vm_hugetlb_page(vma);
2968 }
2969 
2970 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2971 				unsigned long vaddr_end)
2972 {
2973 	int ret = 0;
2974 	struct task_struct *task;
2975 	struct mm_struct *mm;
2976 	unsigned long total = 0, split = 0;
2977 	unsigned long addr;
2978 
2979 	vaddr_start &= PAGE_MASK;
2980 	vaddr_end &= PAGE_MASK;
2981 
2982 	/* Find the task_struct from pid */
2983 	rcu_read_lock();
2984 	task = find_task_by_vpid(pid);
2985 	if (!task) {
2986 		rcu_read_unlock();
2987 		ret = -ESRCH;
2988 		goto out;
2989 	}
2990 	get_task_struct(task);
2991 	rcu_read_unlock();
2992 
2993 	/* Find the mm_struct */
2994 	mm = get_task_mm(task);
2995 	put_task_struct(task);
2996 
2997 	if (!mm) {
2998 		ret = -EINVAL;
2999 		goto out;
3000 	}
3001 
3002 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3003 		 pid, vaddr_start, vaddr_end);
3004 
3005 	mmap_read_lock(mm);
3006 	/*
3007 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3008 	 * table filled with PTE-mapped THPs, each of which is distinct.
3009 	 */
3010 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3011 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3012 		struct page *page;
3013 		struct folio *folio;
3014 
3015 		if (!vma)
3016 			break;
3017 
3018 		/* skip special VMA and hugetlb VMA */
3019 		if (vma_not_suitable_for_thp_split(vma)) {
3020 			addr = vma->vm_end;
3021 			continue;
3022 		}
3023 
3024 		/* FOLL_DUMP to ignore special (like zero) pages */
3025 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3026 
3027 		if (IS_ERR_OR_NULL(page))
3028 			continue;
3029 
3030 		folio = page_folio(page);
3031 		if (!is_transparent_hugepage(folio))
3032 			goto next;
3033 
3034 		total++;
3035 		if (!can_split_folio(folio, NULL))
3036 			goto next;
3037 
3038 		if (!folio_trylock(folio))
3039 			goto next;
3040 
3041 		if (!split_folio(folio))
3042 			split++;
3043 
3044 		folio_unlock(folio);
3045 next:
3046 		folio_put(folio);
3047 		cond_resched();
3048 	}
3049 	mmap_read_unlock(mm);
3050 	mmput(mm);
3051 
3052 	pr_debug("%lu of %lu THP split\n", split, total);
3053 
3054 out:
3055 	return ret;
3056 }
3057 
3058 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3059 				pgoff_t off_end)
3060 {
3061 	struct filename *file;
3062 	struct file *candidate;
3063 	struct address_space *mapping;
3064 	int ret = -EINVAL;
3065 	pgoff_t index;
3066 	int nr_pages = 1;
3067 	unsigned long total = 0, split = 0;
3068 
3069 	file = getname_kernel(file_path);
3070 	if (IS_ERR(file))
3071 		return ret;
3072 
3073 	candidate = file_open_name(file, O_RDONLY, 0);
3074 	if (IS_ERR(candidate))
3075 		goto out;
3076 
3077 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3078 		 file_path, off_start, off_end);
3079 
3080 	mapping = candidate->f_mapping;
3081 
3082 	for (index = off_start; index < off_end; index += nr_pages) {
3083 		struct folio *folio = filemap_get_folio(mapping, index);
3084 
3085 		nr_pages = 1;
3086 		if (IS_ERR(folio))
3087 			continue;
3088 
3089 		if (!folio_test_large(folio))
3090 			goto next;
3091 
3092 		total++;
3093 		nr_pages = folio_nr_pages(folio);
3094 
3095 		if (!folio_trylock(folio))
3096 			goto next;
3097 
3098 		if (!split_folio(folio))
3099 			split++;
3100 
3101 		folio_unlock(folio);
3102 next:
3103 		folio_put(folio);
3104 		cond_resched();
3105 	}
3106 
3107 	filp_close(candidate, NULL);
3108 	ret = 0;
3109 
3110 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3111 out:
3112 	putname(file);
3113 	return ret;
3114 }
3115 
3116 #define MAX_INPUT_BUF_SZ 255
3117 
3118 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3119 				size_t count, loff_t *ppops)
3120 {
3121 	static DEFINE_MUTEX(split_debug_mutex);
3122 	ssize_t ret;
3123 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3124 	char input_buf[MAX_INPUT_BUF_SZ];
3125 	int pid;
3126 	unsigned long vaddr_start, vaddr_end;
3127 
3128 	ret = mutex_lock_interruptible(&split_debug_mutex);
3129 	if (ret)
3130 		return ret;
3131 
3132 	ret = -EFAULT;
3133 
3134 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3135 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3136 		goto out;
3137 
3138 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3139 
3140 	if (input_buf[0] == '/') {
3141 		char *tok;
3142 		char *buf = input_buf;
3143 		char file_path[MAX_INPUT_BUF_SZ];
3144 		pgoff_t off_start = 0, off_end = 0;
3145 		size_t input_len = strlen(input_buf);
3146 
3147 		tok = strsep(&buf, ",");
3148 		if (tok) {
3149 			strcpy(file_path, tok);
3150 		} else {
3151 			ret = -EINVAL;
3152 			goto out;
3153 		}
3154 
3155 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3156 		if (ret != 2) {
3157 			ret = -EINVAL;
3158 			goto out;
3159 		}
3160 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3161 		if (!ret)
3162 			ret = input_len;
3163 
3164 		goto out;
3165 	}
3166 
3167 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3168 	if (ret == 1 && pid == 1) {
3169 		split_huge_pages_all();
3170 		ret = strlen(input_buf);
3171 		goto out;
3172 	} else if (ret != 3) {
3173 		ret = -EINVAL;
3174 		goto out;
3175 	}
3176 
3177 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3178 	if (!ret)
3179 		ret = strlen(input_buf);
3180 out:
3181 	mutex_unlock(&split_debug_mutex);
3182 	return ret;
3183 
3184 }
3185 
3186 static const struct file_operations split_huge_pages_fops = {
3187 	.owner	 = THIS_MODULE,
3188 	.write	 = split_huge_pages_write,
3189 	.llseek  = no_llseek,
3190 };
3191 
3192 static int __init split_huge_pages_debugfs(void)
3193 {
3194 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3195 			    &split_huge_pages_fops);
3196 	return 0;
3197 }
3198 late_initcall(split_huge_pages_debugfs);
3199 #endif
3200 
3201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3202 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3203 		struct page *page)
3204 {
3205 	struct vm_area_struct *vma = pvmw->vma;
3206 	struct mm_struct *mm = vma->vm_mm;
3207 	unsigned long address = pvmw->address;
3208 	bool anon_exclusive;
3209 	pmd_t pmdval;
3210 	swp_entry_t entry;
3211 	pmd_t pmdswp;
3212 
3213 	if (!(pvmw->pmd && !pvmw->pte))
3214 		return 0;
3215 
3216 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3217 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3218 
3219 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3220 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3221 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3222 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3223 		return -EBUSY;
3224 	}
3225 
3226 	if (pmd_dirty(pmdval))
3227 		set_page_dirty(page);
3228 	if (pmd_write(pmdval))
3229 		entry = make_writable_migration_entry(page_to_pfn(page));
3230 	else if (anon_exclusive)
3231 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3232 	else
3233 		entry = make_readable_migration_entry(page_to_pfn(page));
3234 	if (pmd_young(pmdval))
3235 		entry = make_migration_entry_young(entry);
3236 	if (pmd_dirty(pmdval))
3237 		entry = make_migration_entry_dirty(entry);
3238 	pmdswp = swp_entry_to_pmd(entry);
3239 	if (pmd_soft_dirty(pmdval))
3240 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3241 	if (pmd_uffd_wp(pmdval))
3242 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3243 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3244 	page_remove_rmap(page, vma, true);
3245 	put_page(page);
3246 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3247 
3248 	return 0;
3249 }
3250 
3251 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3252 {
3253 	struct vm_area_struct *vma = pvmw->vma;
3254 	struct mm_struct *mm = vma->vm_mm;
3255 	unsigned long address = pvmw->address;
3256 	unsigned long haddr = address & HPAGE_PMD_MASK;
3257 	pmd_t pmde;
3258 	swp_entry_t entry;
3259 
3260 	if (!(pvmw->pmd && !pvmw->pte))
3261 		return;
3262 
3263 	entry = pmd_to_swp_entry(*pvmw->pmd);
3264 	get_page(new);
3265 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3266 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3267 		pmde = pmd_mksoft_dirty(pmde);
3268 	if (is_writable_migration_entry(entry))
3269 		pmde = pmd_mkwrite(pmde, vma);
3270 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3271 		pmde = pmd_mkuffd_wp(pmde);
3272 	if (!is_migration_entry_young(entry))
3273 		pmde = pmd_mkold(pmde);
3274 	/* NOTE: this may contain setting soft-dirty on some archs */
3275 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3276 		pmde = pmd_mkdirty(pmde);
3277 
3278 	if (PageAnon(new)) {
3279 		rmap_t rmap_flags = RMAP_COMPOUND;
3280 
3281 		if (!is_readable_migration_entry(entry))
3282 			rmap_flags |= RMAP_EXCLUSIVE;
3283 
3284 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3285 	} else {
3286 		page_add_file_rmap(new, vma, true);
3287 	}
3288 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3289 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3290 
3291 	/* No need to invalidate - it was non-present before */
3292 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3293 	trace_remove_migration_pmd(address, pmd_val(pmde));
3294 }
3295 #endif
3296