xref: /linux/mm/huge_memory.c (revision 3f0a50f345f78183f6e9b39c2f45ca5dcaa511ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/dax.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 
39 #include <asm/tlb.h>
40 #include <asm/pgalloc.h>
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/thp.h>
45 
46 /*
47  * By default, transparent hugepage support is disabled in order to avoid
48  * risking an increased memory footprint for applications that are not
49  * guaranteed to benefit from it. When transparent hugepage support is
50  * enabled, it is for all mappings, and khugepaged scans all mappings.
51  * Defrag is invoked by khugepaged hugepage allocations and by page faults
52  * for all hugepage allocations.
53  */
54 unsigned long transparent_hugepage_flags __read_mostly =
55 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
56 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
57 #endif
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
59 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
60 #endif
61 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
62 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
63 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
64 
65 static struct shrinker deferred_split_shrinker;
66 
67 static atomic_t huge_zero_refcount;
68 struct page *huge_zero_page __read_mostly;
69 unsigned long huge_zero_pfn __read_mostly = ~0UL;
70 
71 static inline bool file_thp_enabled(struct vm_area_struct *vma)
72 {
73 	return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
74 	       !inode_is_open_for_write(vma->vm_file->f_inode) &&
75 	       (vma->vm_flags & VM_EXEC);
76 }
77 
78 bool transparent_hugepage_active(struct vm_area_struct *vma)
79 {
80 	/* The addr is used to check if the vma size fits */
81 	unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
82 
83 	if (!transhuge_vma_suitable(vma, addr))
84 		return false;
85 	if (vma_is_anonymous(vma))
86 		return __transparent_hugepage_enabled(vma);
87 	if (vma_is_shmem(vma))
88 		return shmem_huge_enabled(vma);
89 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 		return file_thp_enabled(vma);
91 
92 	return false;
93 }
94 
95 static bool get_huge_zero_page(void)
96 {
97 	struct page *zero_page;
98 retry:
99 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
100 		return true;
101 
102 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
103 			HPAGE_PMD_ORDER);
104 	if (!zero_page) {
105 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
106 		return false;
107 	}
108 	count_vm_event(THP_ZERO_PAGE_ALLOC);
109 	preempt_disable();
110 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
111 		preempt_enable();
112 		__free_pages(zero_page, compound_order(zero_page));
113 		goto retry;
114 	}
115 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
116 
117 	/* We take additional reference here. It will be put back by shrinker */
118 	atomic_set(&huge_zero_refcount, 2);
119 	preempt_enable();
120 	return true;
121 }
122 
123 static void put_huge_zero_page(void)
124 {
125 	/*
126 	 * Counter should never go to zero here. Only shrinker can put
127 	 * last reference.
128 	 */
129 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
130 }
131 
132 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
133 {
134 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
135 		return READ_ONCE(huge_zero_page);
136 
137 	if (!get_huge_zero_page())
138 		return NULL;
139 
140 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
141 		put_huge_zero_page();
142 
143 	return READ_ONCE(huge_zero_page);
144 }
145 
146 void mm_put_huge_zero_page(struct mm_struct *mm)
147 {
148 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
149 		put_huge_zero_page();
150 }
151 
152 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
153 					struct shrink_control *sc)
154 {
155 	/* we can free zero page only if last reference remains */
156 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
157 }
158 
159 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
160 				       struct shrink_control *sc)
161 {
162 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
163 		struct page *zero_page = xchg(&huge_zero_page, NULL);
164 		BUG_ON(zero_page == NULL);
165 		WRITE_ONCE(huge_zero_pfn, ~0UL);
166 		__free_pages(zero_page, compound_order(zero_page));
167 		return HPAGE_PMD_NR;
168 	}
169 
170 	return 0;
171 }
172 
173 static struct shrinker huge_zero_page_shrinker = {
174 	.count_objects = shrink_huge_zero_page_count,
175 	.scan_objects = shrink_huge_zero_page_scan,
176 	.seeks = DEFAULT_SEEKS,
177 };
178 
179 #ifdef CONFIG_SYSFS
180 static ssize_t enabled_show(struct kobject *kobj,
181 			    struct kobj_attribute *attr, char *buf)
182 {
183 	const char *output;
184 
185 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
186 		output = "[always] madvise never";
187 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
188 			  &transparent_hugepage_flags))
189 		output = "always [madvise] never";
190 	else
191 		output = "always madvise [never]";
192 
193 	return sysfs_emit(buf, "%s\n", output);
194 }
195 
196 static ssize_t enabled_store(struct kobject *kobj,
197 			     struct kobj_attribute *attr,
198 			     const char *buf, size_t count)
199 {
200 	ssize_t ret = count;
201 
202 	if (sysfs_streq(buf, "always")) {
203 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
204 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205 	} else if (sysfs_streq(buf, "madvise")) {
206 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
207 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
208 	} else if (sysfs_streq(buf, "never")) {
209 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
210 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
211 	} else
212 		ret = -EINVAL;
213 
214 	if (ret > 0) {
215 		int err = start_stop_khugepaged();
216 		if (err)
217 			ret = err;
218 	}
219 	return ret;
220 }
221 static struct kobj_attribute enabled_attr =
222 	__ATTR(enabled, 0644, enabled_show, enabled_store);
223 
224 ssize_t single_hugepage_flag_show(struct kobject *kobj,
225 				  struct kobj_attribute *attr, char *buf,
226 				  enum transparent_hugepage_flag flag)
227 {
228 	return sysfs_emit(buf, "%d\n",
229 			  !!test_bit(flag, &transparent_hugepage_flags));
230 }
231 
232 ssize_t single_hugepage_flag_store(struct kobject *kobj,
233 				 struct kobj_attribute *attr,
234 				 const char *buf, size_t count,
235 				 enum transparent_hugepage_flag flag)
236 {
237 	unsigned long value;
238 	int ret;
239 
240 	ret = kstrtoul(buf, 10, &value);
241 	if (ret < 0)
242 		return ret;
243 	if (value > 1)
244 		return -EINVAL;
245 
246 	if (value)
247 		set_bit(flag, &transparent_hugepage_flags);
248 	else
249 		clear_bit(flag, &transparent_hugepage_flags);
250 
251 	return count;
252 }
253 
254 static ssize_t defrag_show(struct kobject *kobj,
255 			   struct kobj_attribute *attr, char *buf)
256 {
257 	const char *output;
258 
259 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
260 		     &transparent_hugepage_flags))
261 		output = "[always] defer defer+madvise madvise never";
262 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
263 			  &transparent_hugepage_flags))
264 		output = "always [defer] defer+madvise madvise never";
265 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
266 			  &transparent_hugepage_flags))
267 		output = "always defer [defer+madvise] madvise never";
268 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
269 			  &transparent_hugepage_flags))
270 		output = "always defer defer+madvise [madvise] never";
271 	else
272 		output = "always defer defer+madvise madvise [never]";
273 
274 	return sysfs_emit(buf, "%s\n", output);
275 }
276 
277 static ssize_t defrag_store(struct kobject *kobj,
278 			    struct kobj_attribute *attr,
279 			    const char *buf, size_t count)
280 {
281 	if (sysfs_streq(buf, "always")) {
282 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
283 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
284 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
286 	} else if (sysfs_streq(buf, "defer+madvise")) {
287 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
288 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
289 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
291 	} else if (sysfs_streq(buf, "defer")) {
292 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
293 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
294 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
295 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
296 	} else if (sysfs_streq(buf, "madvise")) {
297 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
298 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
299 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
300 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 	} else if (sysfs_streq(buf, "never")) {
302 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
303 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
304 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
305 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
306 	} else
307 		return -EINVAL;
308 
309 	return count;
310 }
311 static struct kobj_attribute defrag_attr =
312 	__ATTR(defrag, 0644, defrag_show, defrag_store);
313 
314 static ssize_t use_zero_page_show(struct kobject *kobj,
315 				  struct kobj_attribute *attr, char *buf)
316 {
317 	return single_hugepage_flag_show(kobj, attr, buf,
318 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
319 }
320 static ssize_t use_zero_page_store(struct kobject *kobj,
321 		struct kobj_attribute *attr, const char *buf, size_t count)
322 {
323 	return single_hugepage_flag_store(kobj, attr, buf, count,
324 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
325 }
326 static struct kobj_attribute use_zero_page_attr =
327 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
328 
329 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
330 				   struct kobj_attribute *attr, char *buf)
331 {
332 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
333 }
334 static struct kobj_attribute hpage_pmd_size_attr =
335 	__ATTR_RO(hpage_pmd_size);
336 
337 static struct attribute *hugepage_attr[] = {
338 	&enabled_attr.attr,
339 	&defrag_attr.attr,
340 	&use_zero_page_attr.attr,
341 	&hpage_pmd_size_attr.attr,
342 #ifdef CONFIG_SHMEM
343 	&shmem_enabled_attr.attr,
344 #endif
345 	NULL,
346 };
347 
348 static const struct attribute_group hugepage_attr_group = {
349 	.attrs = hugepage_attr,
350 };
351 
352 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
353 {
354 	int err;
355 
356 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
357 	if (unlikely(!*hugepage_kobj)) {
358 		pr_err("failed to create transparent hugepage kobject\n");
359 		return -ENOMEM;
360 	}
361 
362 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
363 	if (err) {
364 		pr_err("failed to register transparent hugepage group\n");
365 		goto delete_obj;
366 	}
367 
368 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
369 	if (err) {
370 		pr_err("failed to register transparent hugepage group\n");
371 		goto remove_hp_group;
372 	}
373 
374 	return 0;
375 
376 remove_hp_group:
377 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
378 delete_obj:
379 	kobject_put(*hugepage_kobj);
380 	return err;
381 }
382 
383 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
384 {
385 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
386 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
387 	kobject_put(hugepage_kobj);
388 }
389 #else
390 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
391 {
392 	return 0;
393 }
394 
395 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
396 {
397 }
398 #endif /* CONFIG_SYSFS */
399 
400 static int __init hugepage_init(void)
401 {
402 	int err;
403 	struct kobject *hugepage_kobj;
404 
405 	if (!has_transparent_hugepage()) {
406 		/*
407 		 * Hardware doesn't support hugepages, hence disable
408 		 * DAX PMD support.
409 		 */
410 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
411 		return -EINVAL;
412 	}
413 
414 	/*
415 	 * hugepages can't be allocated by the buddy allocator
416 	 */
417 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
418 	/*
419 	 * we use page->mapping and page->index in second tail page
420 	 * as list_head: assuming THP order >= 2
421 	 */
422 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
423 
424 	err = hugepage_init_sysfs(&hugepage_kobj);
425 	if (err)
426 		goto err_sysfs;
427 
428 	err = khugepaged_init();
429 	if (err)
430 		goto err_slab;
431 
432 	err = register_shrinker(&huge_zero_page_shrinker);
433 	if (err)
434 		goto err_hzp_shrinker;
435 	err = register_shrinker(&deferred_split_shrinker);
436 	if (err)
437 		goto err_split_shrinker;
438 
439 	/*
440 	 * By default disable transparent hugepages on smaller systems,
441 	 * where the extra memory used could hurt more than TLB overhead
442 	 * is likely to save.  The admin can still enable it through /sys.
443 	 */
444 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
445 		transparent_hugepage_flags = 0;
446 		return 0;
447 	}
448 
449 	err = start_stop_khugepaged();
450 	if (err)
451 		goto err_khugepaged;
452 
453 	return 0;
454 err_khugepaged:
455 	unregister_shrinker(&deferred_split_shrinker);
456 err_split_shrinker:
457 	unregister_shrinker(&huge_zero_page_shrinker);
458 err_hzp_shrinker:
459 	khugepaged_destroy();
460 err_slab:
461 	hugepage_exit_sysfs(hugepage_kobj);
462 err_sysfs:
463 	return err;
464 }
465 subsys_initcall(hugepage_init);
466 
467 static int __init setup_transparent_hugepage(char *str)
468 {
469 	int ret = 0;
470 	if (!str)
471 		goto out;
472 	if (!strcmp(str, "always")) {
473 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
474 			&transparent_hugepage_flags);
475 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
476 			  &transparent_hugepage_flags);
477 		ret = 1;
478 	} else if (!strcmp(str, "madvise")) {
479 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
480 			  &transparent_hugepage_flags);
481 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
482 			&transparent_hugepage_flags);
483 		ret = 1;
484 	} else if (!strcmp(str, "never")) {
485 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
486 			  &transparent_hugepage_flags);
487 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
488 			  &transparent_hugepage_flags);
489 		ret = 1;
490 	}
491 out:
492 	if (!ret)
493 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
494 	return ret;
495 }
496 __setup("transparent_hugepage=", setup_transparent_hugepage);
497 
498 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
499 {
500 	if (likely(vma->vm_flags & VM_WRITE))
501 		pmd = pmd_mkwrite(pmd);
502 	return pmd;
503 }
504 
505 #ifdef CONFIG_MEMCG
506 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
507 {
508 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
509 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
510 
511 	if (memcg)
512 		return &memcg->deferred_split_queue;
513 	else
514 		return &pgdat->deferred_split_queue;
515 }
516 #else
517 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
518 {
519 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
520 
521 	return &pgdat->deferred_split_queue;
522 }
523 #endif
524 
525 void prep_transhuge_page(struct page *page)
526 {
527 	/*
528 	 * we use page->mapping and page->indexlru in second tail page
529 	 * as list_head: assuming THP order >= 2
530 	 */
531 
532 	INIT_LIST_HEAD(page_deferred_list(page));
533 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
534 }
535 
536 static inline bool is_transparent_hugepage(struct page *page)
537 {
538 	if (!PageCompound(page))
539 		return false;
540 
541 	page = compound_head(page);
542 	return is_huge_zero_page(page) ||
543 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
544 }
545 
546 static unsigned long __thp_get_unmapped_area(struct file *filp,
547 		unsigned long addr, unsigned long len,
548 		loff_t off, unsigned long flags, unsigned long size)
549 {
550 	loff_t off_end = off + len;
551 	loff_t off_align = round_up(off, size);
552 	unsigned long len_pad, ret;
553 
554 	if (off_end <= off_align || (off_end - off_align) < size)
555 		return 0;
556 
557 	len_pad = len + size;
558 	if (len_pad < len || (off + len_pad) < off)
559 		return 0;
560 
561 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
562 					      off >> PAGE_SHIFT, flags);
563 
564 	/*
565 	 * The failure might be due to length padding. The caller will retry
566 	 * without the padding.
567 	 */
568 	if (IS_ERR_VALUE(ret))
569 		return 0;
570 
571 	/*
572 	 * Do not try to align to THP boundary if allocation at the address
573 	 * hint succeeds.
574 	 */
575 	if (ret == addr)
576 		return addr;
577 
578 	ret += (off - ret) & (size - 1);
579 	return ret;
580 }
581 
582 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
583 		unsigned long len, unsigned long pgoff, unsigned long flags)
584 {
585 	unsigned long ret;
586 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
587 
588 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 	if (ret)
590 		return ret;
591 
592 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593 }
594 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595 
596 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 			struct page *page, gfp_t gfp)
598 {
599 	struct vm_area_struct *vma = vmf->vma;
600 	pgtable_t pgtable;
601 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
602 	vm_fault_t ret = 0;
603 
604 	VM_BUG_ON_PAGE(!PageCompound(page), page);
605 
606 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
607 		put_page(page);
608 		count_vm_event(THP_FAULT_FALLBACK);
609 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
610 		return VM_FAULT_FALLBACK;
611 	}
612 	cgroup_throttle_swaprate(page, gfp);
613 
614 	pgtable = pte_alloc_one(vma->vm_mm);
615 	if (unlikely(!pgtable)) {
616 		ret = VM_FAULT_OOM;
617 		goto release;
618 	}
619 
620 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
621 	/*
622 	 * The memory barrier inside __SetPageUptodate makes sure that
623 	 * clear_huge_page writes become visible before the set_pmd_at()
624 	 * write.
625 	 */
626 	__SetPageUptodate(page);
627 
628 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 	if (unlikely(!pmd_none(*vmf->pmd))) {
630 		goto unlock_release;
631 	} else {
632 		pmd_t entry;
633 
634 		ret = check_stable_address_space(vma->vm_mm);
635 		if (ret)
636 			goto unlock_release;
637 
638 		/* Deliver the page fault to userland */
639 		if (userfaultfd_missing(vma)) {
640 			spin_unlock(vmf->ptl);
641 			put_page(page);
642 			pte_free(vma->vm_mm, pgtable);
643 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 			return ret;
646 		}
647 
648 		entry = mk_huge_pmd(page, vma->vm_page_prot);
649 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
650 		page_add_new_anon_rmap(page, vma, haddr, true);
651 		lru_cache_add_inactive_or_unevictable(page, vma);
652 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
654 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
655 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
656 		mm_inc_nr_ptes(vma->vm_mm);
657 		spin_unlock(vmf->ptl);
658 		count_vm_event(THP_FAULT_ALLOC);
659 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
660 	}
661 
662 	return 0;
663 unlock_release:
664 	spin_unlock(vmf->ptl);
665 release:
666 	if (pgtable)
667 		pte_free(vma->vm_mm, pgtable);
668 	put_page(page);
669 	return ret;
670 
671 }
672 
673 /*
674  * always: directly stall for all thp allocations
675  * defer: wake kswapd and fail if not immediately available
676  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677  *		  fail if not immediately available
678  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679  *	    available
680  * never: never stall for any thp allocation
681  */
682 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
683 {
684 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
685 
686 	/* Always do synchronous compaction */
687 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
689 
690 	/* Kick kcompactd and fail quickly */
691 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
692 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
693 
694 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
695 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
696 		return GFP_TRANSHUGE_LIGHT |
697 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
698 					__GFP_KSWAPD_RECLAIM);
699 
700 	/* Only do synchronous compaction if madvised */
701 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
702 		return GFP_TRANSHUGE_LIGHT |
703 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
704 
705 	return GFP_TRANSHUGE_LIGHT;
706 }
707 
708 /* Caller must hold page table lock. */
709 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
710 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
711 		struct page *zero_page)
712 {
713 	pmd_t entry;
714 	if (!pmd_none(*pmd))
715 		return;
716 	entry = mk_pmd(zero_page, vma->vm_page_prot);
717 	entry = pmd_mkhuge(entry);
718 	if (pgtable)
719 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
720 	set_pmd_at(mm, haddr, pmd, entry);
721 	mm_inc_nr_ptes(mm);
722 }
723 
724 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
725 {
726 	struct vm_area_struct *vma = vmf->vma;
727 	gfp_t gfp;
728 	struct page *page;
729 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
730 
731 	if (!transhuge_vma_suitable(vma, haddr))
732 		return VM_FAULT_FALLBACK;
733 	if (unlikely(anon_vma_prepare(vma)))
734 		return VM_FAULT_OOM;
735 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
736 		return VM_FAULT_OOM;
737 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
738 			!mm_forbids_zeropage(vma->vm_mm) &&
739 			transparent_hugepage_use_zero_page()) {
740 		pgtable_t pgtable;
741 		struct page *zero_page;
742 		vm_fault_t ret;
743 		pgtable = pte_alloc_one(vma->vm_mm);
744 		if (unlikely(!pgtable))
745 			return VM_FAULT_OOM;
746 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
747 		if (unlikely(!zero_page)) {
748 			pte_free(vma->vm_mm, pgtable);
749 			count_vm_event(THP_FAULT_FALLBACK);
750 			return VM_FAULT_FALLBACK;
751 		}
752 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
753 		ret = 0;
754 		if (pmd_none(*vmf->pmd)) {
755 			ret = check_stable_address_space(vma->vm_mm);
756 			if (ret) {
757 				spin_unlock(vmf->ptl);
758 				pte_free(vma->vm_mm, pgtable);
759 			} else if (userfaultfd_missing(vma)) {
760 				spin_unlock(vmf->ptl);
761 				pte_free(vma->vm_mm, pgtable);
762 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
763 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 			} else {
765 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
766 						   haddr, vmf->pmd, zero_page);
767 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
768 				spin_unlock(vmf->ptl);
769 			}
770 		} else {
771 			spin_unlock(vmf->ptl);
772 			pte_free(vma->vm_mm, pgtable);
773 		}
774 		return ret;
775 	}
776 	gfp = vma_thp_gfp_mask(vma);
777 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
778 	if (unlikely(!page)) {
779 		count_vm_event(THP_FAULT_FALLBACK);
780 		return VM_FAULT_FALLBACK;
781 	}
782 	prep_transhuge_page(page);
783 	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
784 }
785 
786 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
787 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 		pgtable_t pgtable)
789 {
790 	struct mm_struct *mm = vma->vm_mm;
791 	pmd_t entry;
792 	spinlock_t *ptl;
793 
794 	ptl = pmd_lock(mm, pmd);
795 	if (!pmd_none(*pmd)) {
796 		if (write) {
797 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 				goto out_unlock;
800 			}
801 			entry = pmd_mkyoung(*pmd);
802 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 				update_mmu_cache_pmd(vma, addr, pmd);
805 		}
806 
807 		goto out_unlock;
808 	}
809 
810 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 	if (pfn_t_devmap(pfn))
812 		entry = pmd_mkdevmap(entry);
813 	if (write) {
814 		entry = pmd_mkyoung(pmd_mkdirty(entry));
815 		entry = maybe_pmd_mkwrite(entry, vma);
816 	}
817 
818 	if (pgtable) {
819 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
820 		mm_inc_nr_ptes(mm);
821 		pgtable = NULL;
822 	}
823 
824 	set_pmd_at(mm, addr, pmd, entry);
825 	update_mmu_cache_pmd(vma, addr, pmd);
826 
827 out_unlock:
828 	spin_unlock(ptl);
829 	if (pgtable)
830 		pte_free(mm, pgtable);
831 }
832 
833 /**
834  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835  * @vmf: Structure describing the fault
836  * @pfn: pfn to insert
837  * @pgprot: page protection to use
838  * @write: whether it's a write fault
839  *
840  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841  * also consult the vmf_insert_mixed_prot() documentation when
842  * @pgprot != @vmf->vma->vm_page_prot.
843  *
844  * Return: vm_fault_t value.
845  */
846 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 				   pgprot_t pgprot, bool write)
848 {
849 	unsigned long addr = vmf->address & PMD_MASK;
850 	struct vm_area_struct *vma = vmf->vma;
851 	pgtable_t pgtable = NULL;
852 
853 	/*
854 	 * If we had pmd_special, we could avoid all these restrictions,
855 	 * but we need to be consistent with PTEs and architectures that
856 	 * can't support a 'special' bit.
857 	 */
858 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 			!pfn_t_devmap(pfn));
860 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 						(VM_PFNMAP|VM_MIXEDMAP));
862 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
863 
864 	if (addr < vma->vm_start || addr >= vma->vm_end)
865 		return VM_FAULT_SIGBUS;
866 
867 	if (arch_needs_pgtable_deposit()) {
868 		pgtable = pte_alloc_one(vma->vm_mm);
869 		if (!pgtable)
870 			return VM_FAULT_OOM;
871 	}
872 
873 	track_pfn_insert(vma, &pgprot, pfn);
874 
875 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
876 	return VM_FAULT_NOPAGE;
877 }
878 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
879 
880 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
881 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
882 {
883 	if (likely(vma->vm_flags & VM_WRITE))
884 		pud = pud_mkwrite(pud);
885 	return pud;
886 }
887 
888 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890 {
891 	struct mm_struct *mm = vma->vm_mm;
892 	pud_t entry;
893 	spinlock_t *ptl;
894 
895 	ptl = pud_lock(mm, pud);
896 	if (!pud_none(*pud)) {
897 		if (write) {
898 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 				goto out_unlock;
901 			}
902 			entry = pud_mkyoung(*pud);
903 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 				update_mmu_cache_pud(vma, addr, pud);
906 		}
907 		goto out_unlock;
908 	}
909 
910 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 	if (pfn_t_devmap(pfn))
912 		entry = pud_mkdevmap(entry);
913 	if (write) {
914 		entry = pud_mkyoung(pud_mkdirty(entry));
915 		entry = maybe_pud_mkwrite(entry, vma);
916 	}
917 	set_pud_at(mm, addr, pud, entry);
918 	update_mmu_cache_pud(vma, addr, pud);
919 
920 out_unlock:
921 	spin_unlock(ptl);
922 }
923 
924 /**
925  * vmf_insert_pfn_pud_prot - insert a pud size pfn
926  * @vmf: Structure describing the fault
927  * @pfn: pfn to insert
928  * @pgprot: page protection to use
929  * @write: whether it's a write fault
930  *
931  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932  * also consult the vmf_insert_mixed_prot() documentation when
933  * @pgprot != @vmf->vma->vm_page_prot.
934  *
935  * Return: vm_fault_t value.
936  */
937 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 				   pgprot_t pgprot, bool write)
939 {
940 	unsigned long addr = vmf->address & PUD_MASK;
941 	struct vm_area_struct *vma = vmf->vma;
942 
943 	/*
944 	 * If we had pud_special, we could avoid all these restrictions,
945 	 * but we need to be consistent with PTEs and architectures that
946 	 * can't support a 'special' bit.
947 	 */
948 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 			!pfn_t_devmap(pfn));
950 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 						(VM_PFNMAP|VM_MIXEDMAP));
952 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
953 
954 	if (addr < vma->vm_start || addr >= vma->vm_end)
955 		return VM_FAULT_SIGBUS;
956 
957 	track_pfn_insert(vma, &pgprot, pfn);
958 
959 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
960 	return VM_FAULT_NOPAGE;
961 }
962 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
963 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964 
965 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
966 		pmd_t *pmd, int flags)
967 {
968 	pmd_t _pmd;
969 
970 	_pmd = pmd_mkyoung(*pmd);
971 	if (flags & FOLL_WRITE)
972 		_pmd = pmd_mkdirty(_pmd);
973 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
974 				pmd, _pmd, flags & FOLL_WRITE))
975 		update_mmu_cache_pmd(vma, addr, pmd);
976 }
977 
978 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
979 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
980 {
981 	unsigned long pfn = pmd_pfn(*pmd);
982 	struct mm_struct *mm = vma->vm_mm;
983 	struct page *page;
984 
985 	assert_spin_locked(pmd_lockptr(mm, pmd));
986 
987 	/*
988 	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 	 * not be in this function with `flags & FOLL_COW` set.
990 	 */
991 	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992 
993 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 			 (FOLL_PIN | FOLL_GET)))
996 		return NULL;
997 
998 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
999 		return NULL;
1000 
1001 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 		/* pass */;
1003 	else
1004 		return NULL;
1005 
1006 	if (flags & FOLL_TOUCH)
1007 		touch_pmd(vma, addr, pmd, flags);
1008 
1009 	/*
1010 	 * device mapped pages can only be returned if the
1011 	 * caller will manage the page reference count.
1012 	 */
1013 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1014 		return ERR_PTR(-EEXIST);
1015 
1016 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1017 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1018 	if (!*pgmap)
1019 		return ERR_PTR(-EFAULT);
1020 	page = pfn_to_page(pfn);
1021 	if (!try_grab_page(page, flags))
1022 		page = ERR_PTR(-ENOMEM);
1023 
1024 	return page;
1025 }
1026 
1027 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1030 {
1031 	spinlock_t *dst_ptl, *src_ptl;
1032 	struct page *src_page;
1033 	pmd_t pmd;
1034 	pgtable_t pgtable = NULL;
1035 	int ret = -ENOMEM;
1036 
1037 	/* Skip if can be re-fill on fault */
1038 	if (!vma_is_anonymous(dst_vma))
1039 		return 0;
1040 
1041 	pgtable = pte_alloc_one(dst_mm);
1042 	if (unlikely(!pgtable))
1043 		goto out;
1044 
1045 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1048 
1049 	ret = -EAGAIN;
1050 	pmd = *src_pmd;
1051 
1052 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1053 	if (unlikely(is_swap_pmd(pmd))) {
1054 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1055 
1056 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1057 		if (is_writable_migration_entry(entry)) {
1058 			entry = make_readable_migration_entry(
1059 							swp_offset(entry));
1060 			pmd = swp_entry_to_pmd(entry);
1061 			if (pmd_swp_soft_dirty(*src_pmd))
1062 				pmd = pmd_swp_mksoft_dirty(pmd);
1063 			if (pmd_swp_uffd_wp(*src_pmd))
1064 				pmd = pmd_swp_mkuffd_wp(pmd);
1065 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1066 		}
1067 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1068 		mm_inc_nr_ptes(dst_mm);
1069 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1070 		if (!userfaultfd_wp(dst_vma))
1071 			pmd = pmd_swp_clear_uffd_wp(pmd);
1072 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1073 		ret = 0;
1074 		goto out_unlock;
1075 	}
1076 #endif
1077 
1078 	if (unlikely(!pmd_trans_huge(pmd))) {
1079 		pte_free(dst_mm, pgtable);
1080 		goto out_unlock;
1081 	}
1082 	/*
1083 	 * When page table lock is held, the huge zero pmd should not be
1084 	 * under splitting since we don't split the page itself, only pmd to
1085 	 * a page table.
1086 	 */
1087 	if (is_huge_zero_pmd(pmd)) {
1088 		/*
1089 		 * get_huge_zero_page() will never allocate a new page here,
1090 		 * since we already have a zero page to copy. It just takes a
1091 		 * reference.
1092 		 */
1093 		mm_get_huge_zero_page(dst_mm);
1094 		goto out_zero_page;
1095 	}
1096 
1097 	src_page = pmd_page(pmd);
1098 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1099 
1100 	/*
1101 	 * If this page is a potentially pinned page, split and retry the fault
1102 	 * with smaller page size.  Normally this should not happen because the
1103 	 * userspace should use MADV_DONTFORK upon pinned regions.  This is a
1104 	 * best effort that the pinned pages won't be replaced by another
1105 	 * random page during the coming copy-on-write.
1106 	 */
1107 	if (unlikely(page_needs_cow_for_dma(src_vma, src_page))) {
1108 		pte_free(dst_mm, pgtable);
1109 		spin_unlock(src_ptl);
1110 		spin_unlock(dst_ptl);
1111 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1112 		return -EAGAIN;
1113 	}
1114 
1115 	get_page(src_page);
1116 	page_dup_rmap(src_page, true);
1117 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1118 out_zero_page:
1119 	mm_inc_nr_ptes(dst_mm);
1120 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1121 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 	if (!userfaultfd_wp(dst_vma))
1123 		pmd = pmd_clear_uffd_wp(pmd);
1124 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1125 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1126 
1127 	ret = 0;
1128 out_unlock:
1129 	spin_unlock(src_ptl);
1130 	spin_unlock(dst_ptl);
1131 out:
1132 	return ret;
1133 }
1134 
1135 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1136 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1137 		pud_t *pud, int flags)
1138 {
1139 	pud_t _pud;
1140 
1141 	_pud = pud_mkyoung(*pud);
1142 	if (flags & FOLL_WRITE)
1143 		_pud = pud_mkdirty(_pud);
1144 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1145 				pud, _pud, flags & FOLL_WRITE))
1146 		update_mmu_cache_pud(vma, addr, pud);
1147 }
1148 
1149 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1150 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1151 {
1152 	unsigned long pfn = pud_pfn(*pud);
1153 	struct mm_struct *mm = vma->vm_mm;
1154 	struct page *page;
1155 
1156 	assert_spin_locked(pud_lockptr(mm, pud));
1157 
1158 	if (flags & FOLL_WRITE && !pud_write(*pud))
1159 		return NULL;
1160 
1161 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1162 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1163 			 (FOLL_PIN | FOLL_GET)))
1164 		return NULL;
1165 
1166 	if (pud_present(*pud) && pud_devmap(*pud))
1167 		/* pass */;
1168 	else
1169 		return NULL;
1170 
1171 	if (flags & FOLL_TOUCH)
1172 		touch_pud(vma, addr, pud, flags);
1173 
1174 	/*
1175 	 * device mapped pages can only be returned if the
1176 	 * caller will manage the page reference count.
1177 	 *
1178 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1179 	 */
1180 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1181 		return ERR_PTR(-EEXIST);
1182 
1183 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1184 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1185 	if (!*pgmap)
1186 		return ERR_PTR(-EFAULT);
1187 	page = pfn_to_page(pfn);
1188 	if (!try_grab_page(page, flags))
1189 		page = ERR_PTR(-ENOMEM);
1190 
1191 	return page;
1192 }
1193 
1194 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1196 		  struct vm_area_struct *vma)
1197 {
1198 	spinlock_t *dst_ptl, *src_ptl;
1199 	pud_t pud;
1200 	int ret;
1201 
1202 	dst_ptl = pud_lock(dst_mm, dst_pud);
1203 	src_ptl = pud_lockptr(src_mm, src_pud);
1204 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1205 
1206 	ret = -EAGAIN;
1207 	pud = *src_pud;
1208 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1209 		goto out_unlock;
1210 
1211 	/*
1212 	 * When page table lock is held, the huge zero pud should not be
1213 	 * under splitting since we don't split the page itself, only pud to
1214 	 * a page table.
1215 	 */
1216 	if (is_huge_zero_pud(pud)) {
1217 		/* No huge zero pud yet */
1218 	}
1219 
1220 	/* Please refer to comments in copy_huge_pmd() */
1221 	if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
1222 		spin_unlock(src_ptl);
1223 		spin_unlock(dst_ptl);
1224 		__split_huge_pud(vma, src_pud, addr);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	pudp_set_wrprotect(src_mm, addr, src_pud);
1229 	pud = pud_mkold(pud_wrprotect(pud));
1230 	set_pud_at(dst_mm, addr, dst_pud, pud);
1231 
1232 	ret = 0;
1233 out_unlock:
1234 	spin_unlock(src_ptl);
1235 	spin_unlock(dst_ptl);
1236 	return ret;
1237 }
1238 
1239 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1240 {
1241 	pud_t entry;
1242 	unsigned long haddr;
1243 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1244 
1245 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1246 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1247 		goto unlock;
1248 
1249 	entry = pud_mkyoung(orig_pud);
1250 	if (write)
1251 		entry = pud_mkdirty(entry);
1252 	haddr = vmf->address & HPAGE_PUD_MASK;
1253 	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1254 		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1255 
1256 unlock:
1257 	spin_unlock(vmf->ptl);
1258 }
1259 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1260 
1261 void huge_pmd_set_accessed(struct vm_fault *vmf)
1262 {
1263 	pmd_t entry;
1264 	unsigned long haddr;
1265 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1266 	pmd_t orig_pmd = vmf->orig_pmd;
1267 
1268 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1269 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1270 		goto unlock;
1271 
1272 	entry = pmd_mkyoung(orig_pmd);
1273 	if (write)
1274 		entry = pmd_mkdirty(entry);
1275 	haddr = vmf->address & HPAGE_PMD_MASK;
1276 	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1277 		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1278 
1279 unlock:
1280 	spin_unlock(vmf->ptl);
1281 }
1282 
1283 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1284 {
1285 	struct vm_area_struct *vma = vmf->vma;
1286 	struct page *page;
1287 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1288 	pmd_t orig_pmd = vmf->orig_pmd;
1289 
1290 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1291 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1292 
1293 	if (is_huge_zero_pmd(orig_pmd))
1294 		goto fallback;
1295 
1296 	spin_lock(vmf->ptl);
1297 
1298 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 		spin_unlock(vmf->ptl);
1300 		return 0;
1301 	}
1302 
1303 	page = pmd_page(orig_pmd);
1304 	VM_BUG_ON_PAGE(!PageHead(page), page);
1305 
1306 	if (!trylock_page(page)) {
1307 		get_page(page);
1308 		spin_unlock(vmf->ptl);
1309 		lock_page(page);
1310 		spin_lock(vmf->ptl);
1311 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1312 			spin_unlock(vmf->ptl);
1313 			unlock_page(page);
1314 			put_page(page);
1315 			return 0;
1316 		}
1317 		put_page(page);
1318 	}
1319 
1320 	/*
1321 	 * See do_wp_page(): we can only map the page writable if there are
1322 	 * no additional references. Note that we always drain the LRU
1323 	 * pagevecs immediately after adding a THP.
1324 	 */
1325 	if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1326 		goto unlock_fallback;
1327 	if (PageSwapCache(page))
1328 		try_to_free_swap(page);
1329 	if (page_count(page) == 1) {
1330 		pmd_t entry;
1331 		entry = pmd_mkyoung(orig_pmd);
1332 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1333 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1334 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1335 		unlock_page(page);
1336 		spin_unlock(vmf->ptl);
1337 		return VM_FAULT_WRITE;
1338 	}
1339 
1340 unlock_fallback:
1341 	unlock_page(page);
1342 	spin_unlock(vmf->ptl);
1343 fallback:
1344 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1345 	return VM_FAULT_FALLBACK;
1346 }
1347 
1348 /*
1349  * FOLL_FORCE can write to even unwritable pmd's, but only
1350  * after we've gone through a COW cycle and they are dirty.
1351  */
1352 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1353 {
1354 	return pmd_write(pmd) ||
1355 	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1356 }
1357 
1358 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1359 				   unsigned long addr,
1360 				   pmd_t *pmd,
1361 				   unsigned int flags)
1362 {
1363 	struct mm_struct *mm = vma->vm_mm;
1364 	struct page *page = NULL;
1365 
1366 	assert_spin_locked(pmd_lockptr(mm, pmd));
1367 
1368 	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1369 		goto out;
1370 
1371 	/* Avoid dumping huge zero page */
1372 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1373 		return ERR_PTR(-EFAULT);
1374 
1375 	/* Full NUMA hinting faults to serialise migration in fault paths */
1376 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1377 		goto out;
1378 
1379 	page = pmd_page(*pmd);
1380 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1381 
1382 	if (!try_grab_page(page, flags))
1383 		return ERR_PTR(-ENOMEM);
1384 
1385 	if (flags & FOLL_TOUCH)
1386 		touch_pmd(vma, addr, pmd, flags);
1387 
1388 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1389 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1390 
1391 out:
1392 	return page;
1393 }
1394 
1395 /* NUMA hinting page fault entry point for trans huge pmds */
1396 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1397 {
1398 	struct vm_area_struct *vma = vmf->vma;
1399 	pmd_t oldpmd = vmf->orig_pmd;
1400 	pmd_t pmd;
1401 	struct page *page;
1402 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1403 	int page_nid = NUMA_NO_NODE;
1404 	int target_nid, last_cpupid = -1;
1405 	bool migrated = false;
1406 	bool was_writable = pmd_savedwrite(oldpmd);
1407 	int flags = 0;
1408 
1409 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1410 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1411 		spin_unlock(vmf->ptl);
1412 		goto out;
1413 	}
1414 
1415 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1416 	page = vm_normal_page_pmd(vma, haddr, pmd);
1417 	if (!page)
1418 		goto out_map;
1419 
1420 	/* See similar comment in do_numa_page for explanation */
1421 	if (!was_writable)
1422 		flags |= TNF_NO_GROUP;
1423 
1424 	page_nid = page_to_nid(page);
1425 	last_cpupid = page_cpupid_last(page);
1426 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1427 				       &flags);
1428 
1429 	if (target_nid == NUMA_NO_NODE) {
1430 		put_page(page);
1431 		goto out_map;
1432 	}
1433 
1434 	spin_unlock(vmf->ptl);
1435 
1436 	migrated = migrate_misplaced_page(page, vma, target_nid);
1437 	if (migrated) {
1438 		flags |= TNF_MIGRATED;
1439 		page_nid = target_nid;
1440 	} else {
1441 		flags |= TNF_MIGRATE_FAIL;
1442 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1443 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1444 			spin_unlock(vmf->ptl);
1445 			goto out;
1446 		}
1447 		goto out_map;
1448 	}
1449 
1450 out:
1451 	if (page_nid != NUMA_NO_NODE)
1452 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1453 				flags);
1454 
1455 	return 0;
1456 
1457 out_map:
1458 	/* Restore the PMD */
1459 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1460 	pmd = pmd_mkyoung(pmd);
1461 	if (was_writable)
1462 		pmd = pmd_mkwrite(pmd);
1463 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1464 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1465 	spin_unlock(vmf->ptl);
1466 	goto out;
1467 }
1468 
1469 /*
1470  * Return true if we do MADV_FREE successfully on entire pmd page.
1471  * Otherwise, return false.
1472  */
1473 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1474 		pmd_t *pmd, unsigned long addr, unsigned long next)
1475 {
1476 	spinlock_t *ptl;
1477 	pmd_t orig_pmd;
1478 	struct page *page;
1479 	struct mm_struct *mm = tlb->mm;
1480 	bool ret = false;
1481 
1482 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1483 
1484 	ptl = pmd_trans_huge_lock(pmd, vma);
1485 	if (!ptl)
1486 		goto out_unlocked;
1487 
1488 	orig_pmd = *pmd;
1489 	if (is_huge_zero_pmd(orig_pmd))
1490 		goto out;
1491 
1492 	if (unlikely(!pmd_present(orig_pmd))) {
1493 		VM_BUG_ON(thp_migration_supported() &&
1494 				  !is_pmd_migration_entry(orig_pmd));
1495 		goto out;
1496 	}
1497 
1498 	page = pmd_page(orig_pmd);
1499 	/*
1500 	 * If other processes are mapping this page, we couldn't discard
1501 	 * the page unless they all do MADV_FREE so let's skip the page.
1502 	 */
1503 	if (total_mapcount(page) != 1)
1504 		goto out;
1505 
1506 	if (!trylock_page(page))
1507 		goto out;
1508 
1509 	/*
1510 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1511 	 * will deactivate only them.
1512 	 */
1513 	if (next - addr != HPAGE_PMD_SIZE) {
1514 		get_page(page);
1515 		spin_unlock(ptl);
1516 		split_huge_page(page);
1517 		unlock_page(page);
1518 		put_page(page);
1519 		goto out_unlocked;
1520 	}
1521 
1522 	if (PageDirty(page))
1523 		ClearPageDirty(page);
1524 	unlock_page(page);
1525 
1526 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1527 		pmdp_invalidate(vma, addr, pmd);
1528 		orig_pmd = pmd_mkold(orig_pmd);
1529 		orig_pmd = pmd_mkclean(orig_pmd);
1530 
1531 		set_pmd_at(mm, addr, pmd, orig_pmd);
1532 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1533 	}
1534 
1535 	mark_page_lazyfree(page);
1536 	ret = true;
1537 out:
1538 	spin_unlock(ptl);
1539 out_unlocked:
1540 	return ret;
1541 }
1542 
1543 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1544 {
1545 	pgtable_t pgtable;
1546 
1547 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1548 	pte_free(mm, pgtable);
1549 	mm_dec_nr_ptes(mm);
1550 }
1551 
1552 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1553 		 pmd_t *pmd, unsigned long addr)
1554 {
1555 	pmd_t orig_pmd;
1556 	spinlock_t *ptl;
1557 
1558 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1559 
1560 	ptl = __pmd_trans_huge_lock(pmd, vma);
1561 	if (!ptl)
1562 		return 0;
1563 	/*
1564 	 * For architectures like ppc64 we look at deposited pgtable
1565 	 * when calling pmdp_huge_get_and_clear. So do the
1566 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1567 	 * operations.
1568 	 */
1569 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1570 						tlb->fullmm);
1571 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1572 	if (vma_is_special_huge(vma)) {
1573 		if (arch_needs_pgtable_deposit())
1574 			zap_deposited_table(tlb->mm, pmd);
1575 		spin_unlock(ptl);
1576 	} else if (is_huge_zero_pmd(orig_pmd)) {
1577 		zap_deposited_table(tlb->mm, pmd);
1578 		spin_unlock(ptl);
1579 	} else {
1580 		struct page *page = NULL;
1581 		int flush_needed = 1;
1582 
1583 		if (pmd_present(orig_pmd)) {
1584 			page = pmd_page(orig_pmd);
1585 			page_remove_rmap(page, vma, true);
1586 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1587 			VM_BUG_ON_PAGE(!PageHead(page), page);
1588 		} else if (thp_migration_supported()) {
1589 			swp_entry_t entry;
1590 
1591 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1592 			entry = pmd_to_swp_entry(orig_pmd);
1593 			page = pfn_swap_entry_to_page(entry);
1594 			flush_needed = 0;
1595 		} else
1596 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1597 
1598 		if (PageAnon(page)) {
1599 			zap_deposited_table(tlb->mm, pmd);
1600 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1601 		} else {
1602 			if (arch_needs_pgtable_deposit())
1603 				zap_deposited_table(tlb->mm, pmd);
1604 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1605 		}
1606 
1607 		spin_unlock(ptl);
1608 		if (flush_needed)
1609 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1610 	}
1611 	return 1;
1612 }
1613 
1614 #ifndef pmd_move_must_withdraw
1615 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1616 					 spinlock_t *old_pmd_ptl,
1617 					 struct vm_area_struct *vma)
1618 {
1619 	/*
1620 	 * With split pmd lock we also need to move preallocated
1621 	 * PTE page table if new_pmd is on different PMD page table.
1622 	 *
1623 	 * We also don't deposit and withdraw tables for file pages.
1624 	 */
1625 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1626 }
1627 #endif
1628 
1629 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1630 {
1631 #ifdef CONFIG_MEM_SOFT_DIRTY
1632 	if (unlikely(is_pmd_migration_entry(pmd)))
1633 		pmd = pmd_swp_mksoft_dirty(pmd);
1634 	else if (pmd_present(pmd))
1635 		pmd = pmd_mksoft_dirty(pmd);
1636 #endif
1637 	return pmd;
1638 }
1639 
1640 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1641 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1642 {
1643 	spinlock_t *old_ptl, *new_ptl;
1644 	pmd_t pmd;
1645 	struct mm_struct *mm = vma->vm_mm;
1646 	bool force_flush = false;
1647 
1648 	/*
1649 	 * The destination pmd shouldn't be established, free_pgtables()
1650 	 * should have release it.
1651 	 */
1652 	if (WARN_ON(!pmd_none(*new_pmd))) {
1653 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1654 		return false;
1655 	}
1656 
1657 	/*
1658 	 * We don't have to worry about the ordering of src and dst
1659 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1660 	 */
1661 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1662 	if (old_ptl) {
1663 		new_ptl = pmd_lockptr(mm, new_pmd);
1664 		if (new_ptl != old_ptl)
1665 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1666 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1667 		if (pmd_present(pmd))
1668 			force_flush = true;
1669 		VM_BUG_ON(!pmd_none(*new_pmd));
1670 
1671 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1672 			pgtable_t pgtable;
1673 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1674 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1675 		}
1676 		pmd = move_soft_dirty_pmd(pmd);
1677 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1678 		if (force_flush)
1679 			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1680 		if (new_ptl != old_ptl)
1681 			spin_unlock(new_ptl);
1682 		spin_unlock(old_ptl);
1683 		return true;
1684 	}
1685 	return false;
1686 }
1687 
1688 /*
1689  * Returns
1690  *  - 0 if PMD could not be locked
1691  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1692  *      or if prot_numa but THP migration is not supported
1693  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1694  */
1695 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1696 		unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
1697 {
1698 	struct mm_struct *mm = vma->vm_mm;
1699 	spinlock_t *ptl;
1700 	pmd_t entry;
1701 	bool preserve_write;
1702 	int ret;
1703 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1704 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1705 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1706 
1707 	if (prot_numa && !thp_migration_supported())
1708 		return 1;
1709 
1710 	ptl = __pmd_trans_huge_lock(pmd, vma);
1711 	if (!ptl)
1712 		return 0;
1713 
1714 	preserve_write = prot_numa && pmd_write(*pmd);
1715 	ret = 1;
1716 
1717 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1718 	if (is_swap_pmd(*pmd)) {
1719 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1720 
1721 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1722 		if (is_writable_migration_entry(entry)) {
1723 			pmd_t newpmd;
1724 			/*
1725 			 * A protection check is difficult so
1726 			 * just be safe and disable write
1727 			 */
1728 			entry = make_readable_migration_entry(
1729 							swp_offset(entry));
1730 			newpmd = swp_entry_to_pmd(entry);
1731 			if (pmd_swp_soft_dirty(*pmd))
1732 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1733 			if (pmd_swp_uffd_wp(*pmd))
1734 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1735 			set_pmd_at(mm, addr, pmd, newpmd);
1736 		}
1737 		goto unlock;
1738 	}
1739 #endif
1740 
1741 	if (prot_numa) {
1742 		struct page *page;
1743 		/*
1744 		 * Avoid trapping faults against the zero page. The read-only
1745 		 * data is likely to be read-cached on the local CPU and
1746 		 * local/remote hits to the zero page are not interesting.
1747 		 */
1748 		if (is_huge_zero_pmd(*pmd))
1749 			goto unlock;
1750 
1751 		if (pmd_protnone(*pmd))
1752 			goto unlock;
1753 
1754 		page = pmd_page(*pmd);
1755 		/*
1756 		 * Skip scanning top tier node if normal numa
1757 		 * balancing is disabled
1758 		 */
1759 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1760 		    node_is_toptier(page_to_nid(page)))
1761 			goto unlock;
1762 	}
1763 	/*
1764 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1765 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1766 	 * which is also under mmap_read_lock(mm):
1767 	 *
1768 	 *	CPU0:				CPU1:
1769 	 *				change_huge_pmd(prot_numa=1)
1770 	 *				 pmdp_huge_get_and_clear_notify()
1771 	 * madvise_dontneed()
1772 	 *  zap_pmd_range()
1773 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1774 	 *   // skip the pmd
1775 	 *				 set_pmd_at();
1776 	 *				 // pmd is re-established
1777 	 *
1778 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1779 	 * which may break userspace.
1780 	 *
1781 	 * pmdp_invalidate() is required to make sure we don't miss
1782 	 * dirty/young flags set by hardware.
1783 	 */
1784 	entry = pmdp_invalidate(vma, addr, pmd);
1785 
1786 	entry = pmd_modify(entry, newprot);
1787 	if (preserve_write)
1788 		entry = pmd_mk_savedwrite(entry);
1789 	if (uffd_wp) {
1790 		entry = pmd_wrprotect(entry);
1791 		entry = pmd_mkuffd_wp(entry);
1792 	} else if (uffd_wp_resolve) {
1793 		/*
1794 		 * Leave the write bit to be handled by PF interrupt
1795 		 * handler, then things like COW could be properly
1796 		 * handled.
1797 		 */
1798 		entry = pmd_clear_uffd_wp(entry);
1799 	}
1800 	ret = HPAGE_PMD_NR;
1801 	set_pmd_at(mm, addr, pmd, entry);
1802 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1803 unlock:
1804 	spin_unlock(ptl);
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1810  *
1811  * Note that if it returns page table lock pointer, this routine returns without
1812  * unlocking page table lock. So callers must unlock it.
1813  */
1814 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1815 {
1816 	spinlock_t *ptl;
1817 	ptl = pmd_lock(vma->vm_mm, pmd);
1818 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1819 			pmd_devmap(*pmd)))
1820 		return ptl;
1821 	spin_unlock(ptl);
1822 	return NULL;
1823 }
1824 
1825 /*
1826  * Returns true if a given pud maps a thp, false otherwise.
1827  *
1828  * Note that if it returns true, this routine returns without unlocking page
1829  * table lock. So callers must unlock it.
1830  */
1831 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1832 {
1833 	spinlock_t *ptl;
1834 
1835 	ptl = pud_lock(vma->vm_mm, pud);
1836 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1837 		return ptl;
1838 	spin_unlock(ptl);
1839 	return NULL;
1840 }
1841 
1842 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1843 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1844 		 pud_t *pud, unsigned long addr)
1845 {
1846 	spinlock_t *ptl;
1847 
1848 	ptl = __pud_trans_huge_lock(pud, vma);
1849 	if (!ptl)
1850 		return 0;
1851 	/*
1852 	 * For architectures like ppc64 we look at deposited pgtable
1853 	 * when calling pudp_huge_get_and_clear. So do the
1854 	 * pgtable_trans_huge_withdraw after finishing pudp related
1855 	 * operations.
1856 	 */
1857 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1858 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1859 	if (vma_is_special_huge(vma)) {
1860 		spin_unlock(ptl);
1861 		/* No zero page support yet */
1862 	} else {
1863 		/* No support for anonymous PUD pages yet */
1864 		BUG();
1865 	}
1866 	return 1;
1867 }
1868 
1869 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1870 		unsigned long haddr)
1871 {
1872 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1873 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1874 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1875 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1876 
1877 	count_vm_event(THP_SPLIT_PUD);
1878 
1879 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1880 }
1881 
1882 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1883 		unsigned long address)
1884 {
1885 	spinlock_t *ptl;
1886 	struct mmu_notifier_range range;
1887 
1888 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1889 				address & HPAGE_PUD_MASK,
1890 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1891 	mmu_notifier_invalidate_range_start(&range);
1892 	ptl = pud_lock(vma->vm_mm, pud);
1893 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1894 		goto out;
1895 	__split_huge_pud_locked(vma, pud, range.start);
1896 
1897 out:
1898 	spin_unlock(ptl);
1899 	/*
1900 	 * No need to double call mmu_notifier->invalidate_range() callback as
1901 	 * the above pudp_huge_clear_flush_notify() did already call it.
1902 	 */
1903 	mmu_notifier_invalidate_range_only_end(&range);
1904 }
1905 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1906 
1907 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1908 		unsigned long haddr, pmd_t *pmd)
1909 {
1910 	struct mm_struct *mm = vma->vm_mm;
1911 	pgtable_t pgtable;
1912 	pmd_t _pmd;
1913 	int i;
1914 
1915 	/*
1916 	 * Leave pmd empty until pte is filled note that it is fine to delay
1917 	 * notification until mmu_notifier_invalidate_range_end() as we are
1918 	 * replacing a zero pmd write protected page with a zero pte write
1919 	 * protected page.
1920 	 *
1921 	 * See Documentation/vm/mmu_notifier.rst
1922 	 */
1923 	pmdp_huge_clear_flush(vma, haddr, pmd);
1924 
1925 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1926 	pmd_populate(mm, &_pmd, pgtable);
1927 
1928 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1929 		pte_t *pte, entry;
1930 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1931 		entry = pte_mkspecial(entry);
1932 		pte = pte_offset_map(&_pmd, haddr);
1933 		VM_BUG_ON(!pte_none(*pte));
1934 		set_pte_at(mm, haddr, pte, entry);
1935 		pte_unmap(pte);
1936 	}
1937 	smp_wmb(); /* make pte visible before pmd */
1938 	pmd_populate(mm, pmd, pgtable);
1939 }
1940 
1941 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1942 		unsigned long haddr, bool freeze)
1943 {
1944 	struct mm_struct *mm = vma->vm_mm;
1945 	struct page *page;
1946 	pgtable_t pgtable;
1947 	pmd_t old_pmd, _pmd;
1948 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1949 	unsigned long addr;
1950 	int i;
1951 
1952 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1953 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1954 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1955 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
1956 				&& !pmd_devmap(*pmd));
1957 
1958 	count_vm_event(THP_SPLIT_PMD);
1959 
1960 	if (!vma_is_anonymous(vma)) {
1961 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1962 		/*
1963 		 * We are going to unmap this huge page. So
1964 		 * just go ahead and zap it
1965 		 */
1966 		if (arch_needs_pgtable_deposit())
1967 			zap_deposited_table(mm, pmd);
1968 		if (vma_is_special_huge(vma))
1969 			return;
1970 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
1971 			swp_entry_t entry;
1972 
1973 			entry = pmd_to_swp_entry(old_pmd);
1974 			page = pfn_swap_entry_to_page(entry);
1975 		} else {
1976 			page = pmd_page(old_pmd);
1977 			if (!PageDirty(page) && pmd_dirty(old_pmd))
1978 				set_page_dirty(page);
1979 			if (!PageReferenced(page) && pmd_young(old_pmd))
1980 				SetPageReferenced(page);
1981 			page_remove_rmap(page, vma, true);
1982 			put_page(page);
1983 		}
1984 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
1985 		return;
1986 	}
1987 
1988 	if (is_huge_zero_pmd(*pmd)) {
1989 		/*
1990 		 * FIXME: Do we want to invalidate secondary mmu by calling
1991 		 * mmu_notifier_invalidate_range() see comments below inside
1992 		 * __split_huge_pmd() ?
1993 		 *
1994 		 * We are going from a zero huge page write protected to zero
1995 		 * small page also write protected so it does not seems useful
1996 		 * to invalidate secondary mmu at this time.
1997 		 */
1998 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
1999 	}
2000 
2001 	/*
2002 	 * Up to this point the pmd is present and huge and userland has the
2003 	 * whole access to the hugepage during the split (which happens in
2004 	 * place). If we overwrite the pmd with the not-huge version pointing
2005 	 * to the pte here (which of course we could if all CPUs were bug
2006 	 * free), userland could trigger a small page size TLB miss on the
2007 	 * small sized TLB while the hugepage TLB entry is still established in
2008 	 * the huge TLB. Some CPU doesn't like that.
2009 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2010 	 * 383 on page 105. Intel should be safe but is also warns that it's
2011 	 * only safe if the permission and cache attributes of the two entries
2012 	 * loaded in the two TLB is identical (which should be the case here).
2013 	 * But it is generally safer to never allow small and huge TLB entries
2014 	 * for the same virtual address to be loaded simultaneously. So instead
2015 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2016 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2017 	 * must remain set at all times on the pmd until the split is complete
2018 	 * for this pmd), then we flush the SMP TLB and finally we write the
2019 	 * non-huge version of the pmd entry with pmd_populate.
2020 	 */
2021 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2022 
2023 	pmd_migration = is_pmd_migration_entry(old_pmd);
2024 	if (unlikely(pmd_migration)) {
2025 		swp_entry_t entry;
2026 
2027 		entry = pmd_to_swp_entry(old_pmd);
2028 		page = pfn_swap_entry_to_page(entry);
2029 		write = is_writable_migration_entry(entry);
2030 		young = false;
2031 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2032 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2033 	} else {
2034 		page = pmd_page(old_pmd);
2035 		if (pmd_dirty(old_pmd))
2036 			SetPageDirty(page);
2037 		write = pmd_write(old_pmd);
2038 		young = pmd_young(old_pmd);
2039 		soft_dirty = pmd_soft_dirty(old_pmd);
2040 		uffd_wp = pmd_uffd_wp(old_pmd);
2041 		VM_BUG_ON_PAGE(!page_count(page), page);
2042 		page_ref_add(page, HPAGE_PMD_NR - 1);
2043 	}
2044 
2045 	/*
2046 	 * Withdraw the table only after we mark the pmd entry invalid.
2047 	 * This's critical for some architectures (Power).
2048 	 */
2049 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2050 	pmd_populate(mm, &_pmd, pgtable);
2051 
2052 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2053 		pte_t entry, *pte;
2054 		/*
2055 		 * Note that NUMA hinting access restrictions are not
2056 		 * transferred to avoid any possibility of altering
2057 		 * permissions across VMAs.
2058 		 */
2059 		if (freeze || pmd_migration) {
2060 			swp_entry_t swp_entry;
2061 			if (write)
2062 				swp_entry = make_writable_migration_entry(
2063 							page_to_pfn(page + i));
2064 			else
2065 				swp_entry = make_readable_migration_entry(
2066 							page_to_pfn(page + i));
2067 			entry = swp_entry_to_pte(swp_entry);
2068 			if (soft_dirty)
2069 				entry = pte_swp_mksoft_dirty(entry);
2070 			if (uffd_wp)
2071 				entry = pte_swp_mkuffd_wp(entry);
2072 		} else {
2073 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2074 			entry = maybe_mkwrite(entry, vma);
2075 			if (!write)
2076 				entry = pte_wrprotect(entry);
2077 			if (!young)
2078 				entry = pte_mkold(entry);
2079 			if (soft_dirty)
2080 				entry = pte_mksoft_dirty(entry);
2081 			if (uffd_wp)
2082 				entry = pte_mkuffd_wp(entry);
2083 		}
2084 		pte = pte_offset_map(&_pmd, addr);
2085 		BUG_ON(!pte_none(*pte));
2086 		set_pte_at(mm, addr, pte, entry);
2087 		if (!pmd_migration)
2088 			atomic_inc(&page[i]._mapcount);
2089 		pte_unmap(pte);
2090 	}
2091 
2092 	if (!pmd_migration) {
2093 		/*
2094 		 * Set PG_double_map before dropping compound_mapcount to avoid
2095 		 * false-negative page_mapped().
2096 		 */
2097 		if (compound_mapcount(page) > 1 &&
2098 		    !TestSetPageDoubleMap(page)) {
2099 			for (i = 0; i < HPAGE_PMD_NR; i++)
2100 				atomic_inc(&page[i]._mapcount);
2101 		}
2102 
2103 		lock_page_memcg(page);
2104 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2105 			/* Last compound_mapcount is gone. */
2106 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2107 						-HPAGE_PMD_NR);
2108 			if (TestClearPageDoubleMap(page)) {
2109 				/* No need in mapcount reference anymore */
2110 				for (i = 0; i < HPAGE_PMD_NR; i++)
2111 					atomic_dec(&page[i]._mapcount);
2112 			}
2113 		}
2114 		unlock_page_memcg(page);
2115 
2116 		/* Above is effectively page_remove_rmap(page, vma, true) */
2117 		munlock_vma_page(page, vma, true);
2118 	}
2119 
2120 	smp_wmb(); /* make pte visible before pmd */
2121 	pmd_populate(mm, pmd, pgtable);
2122 
2123 	if (freeze) {
2124 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2125 			page_remove_rmap(page + i, vma, false);
2126 			put_page(page + i);
2127 		}
2128 	}
2129 }
2130 
2131 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2132 		unsigned long address, bool freeze, struct folio *folio)
2133 {
2134 	spinlock_t *ptl;
2135 	struct mmu_notifier_range range;
2136 
2137 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2138 				address & HPAGE_PMD_MASK,
2139 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2140 	mmu_notifier_invalidate_range_start(&range);
2141 	ptl = pmd_lock(vma->vm_mm, pmd);
2142 
2143 	/*
2144 	 * If caller asks to setup a migration entry, we need a folio to check
2145 	 * pmd against. Otherwise we can end up replacing wrong folio.
2146 	 */
2147 	VM_BUG_ON(freeze && !folio);
2148 	if (folio) {
2149 		VM_WARN_ON_ONCE(!folio_test_locked(folio));
2150 		if (folio != page_folio(pmd_page(*pmd)))
2151 			goto out;
2152 	}
2153 
2154 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2155 	    is_pmd_migration_entry(*pmd))
2156 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2157 
2158 out:
2159 	spin_unlock(ptl);
2160 	/*
2161 	 * No need to double call mmu_notifier->invalidate_range() callback.
2162 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2163 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2164 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2165 	 *    fault will trigger a flush_notify before pointing to a new page
2166 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2167 	 *    page in the meantime)
2168 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2169 	 *     to invalidate secondary tlb entry they are all still valid.
2170 	 *     any further changes to individual pte will notify. So no need
2171 	 *     to call mmu_notifier->invalidate_range()
2172 	 */
2173 	mmu_notifier_invalidate_range_only_end(&range);
2174 }
2175 
2176 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2177 		bool freeze, struct folio *folio)
2178 {
2179 	pgd_t *pgd;
2180 	p4d_t *p4d;
2181 	pud_t *pud;
2182 	pmd_t *pmd;
2183 
2184 	pgd = pgd_offset(vma->vm_mm, address);
2185 	if (!pgd_present(*pgd))
2186 		return;
2187 
2188 	p4d = p4d_offset(pgd, address);
2189 	if (!p4d_present(*p4d))
2190 		return;
2191 
2192 	pud = pud_offset(p4d, address);
2193 	if (!pud_present(*pud))
2194 		return;
2195 
2196 	pmd = pmd_offset(pud, address);
2197 
2198 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2199 }
2200 
2201 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2202 {
2203 	/*
2204 	 * If the new address isn't hpage aligned and it could previously
2205 	 * contain an hugepage: check if we need to split an huge pmd.
2206 	 */
2207 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2208 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2209 			 ALIGN(address, HPAGE_PMD_SIZE)))
2210 		split_huge_pmd_address(vma, address, false, NULL);
2211 }
2212 
2213 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2214 			     unsigned long start,
2215 			     unsigned long end,
2216 			     long adjust_next)
2217 {
2218 	/* Check if we need to split start first. */
2219 	split_huge_pmd_if_needed(vma, start);
2220 
2221 	/* Check if we need to split end next. */
2222 	split_huge_pmd_if_needed(vma, end);
2223 
2224 	/*
2225 	 * If we're also updating the vma->vm_next->vm_start,
2226 	 * check if we need to split it.
2227 	 */
2228 	if (adjust_next > 0) {
2229 		struct vm_area_struct *next = vma->vm_next;
2230 		unsigned long nstart = next->vm_start;
2231 		nstart += adjust_next;
2232 		split_huge_pmd_if_needed(next, nstart);
2233 	}
2234 }
2235 
2236 static void unmap_page(struct page *page)
2237 {
2238 	struct folio *folio = page_folio(page);
2239 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2240 		TTU_SYNC;
2241 
2242 	VM_BUG_ON_PAGE(!PageHead(page), page);
2243 
2244 	/*
2245 	 * Anon pages need migration entries to preserve them, but file
2246 	 * pages can simply be left unmapped, then faulted back on demand.
2247 	 * If that is ever changed (perhaps for mlock), update remap_page().
2248 	 */
2249 	if (folio_test_anon(folio))
2250 		try_to_migrate(folio, ttu_flags);
2251 	else
2252 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2253 
2254 	VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
2255 }
2256 
2257 static void remap_page(struct folio *folio, unsigned long nr)
2258 {
2259 	int i = 0;
2260 
2261 	/* If unmap_page() uses try_to_migrate() on file, remove this check */
2262 	if (!folio_test_anon(folio))
2263 		return;
2264 	for (;;) {
2265 		remove_migration_ptes(folio, folio, true);
2266 		i += folio_nr_pages(folio);
2267 		if (i >= nr)
2268 			break;
2269 		folio = folio_next(folio);
2270 	}
2271 }
2272 
2273 static void lru_add_page_tail(struct page *head, struct page *tail,
2274 		struct lruvec *lruvec, struct list_head *list)
2275 {
2276 	VM_BUG_ON_PAGE(!PageHead(head), head);
2277 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2278 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2279 	lockdep_assert_held(&lruvec->lru_lock);
2280 
2281 	if (list) {
2282 		/* page reclaim is reclaiming a huge page */
2283 		VM_WARN_ON(PageLRU(head));
2284 		get_page(tail);
2285 		list_add_tail(&tail->lru, list);
2286 	} else {
2287 		/* head is still on lru (and we have it frozen) */
2288 		VM_WARN_ON(!PageLRU(head));
2289 		if (PageUnevictable(tail))
2290 			tail->mlock_count = 0;
2291 		else
2292 			list_add_tail(&tail->lru, &head->lru);
2293 		SetPageLRU(tail);
2294 	}
2295 }
2296 
2297 static void __split_huge_page_tail(struct page *head, int tail,
2298 		struct lruvec *lruvec, struct list_head *list)
2299 {
2300 	struct page *page_tail = head + tail;
2301 
2302 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2303 
2304 	/*
2305 	 * Clone page flags before unfreezing refcount.
2306 	 *
2307 	 * After successful get_page_unless_zero() might follow flags change,
2308 	 * for example lock_page() which set PG_waiters.
2309 	 */
2310 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2311 	page_tail->flags |= (head->flags &
2312 			((1L << PG_referenced) |
2313 			 (1L << PG_swapbacked) |
2314 			 (1L << PG_swapcache) |
2315 			 (1L << PG_mlocked) |
2316 			 (1L << PG_uptodate) |
2317 			 (1L << PG_active) |
2318 			 (1L << PG_workingset) |
2319 			 (1L << PG_locked) |
2320 			 (1L << PG_unevictable) |
2321 #ifdef CONFIG_64BIT
2322 			 (1L << PG_arch_2) |
2323 #endif
2324 			 (1L << PG_dirty)));
2325 
2326 	/* ->mapping in first tail page is compound_mapcount */
2327 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2328 			page_tail);
2329 	page_tail->mapping = head->mapping;
2330 	page_tail->index = head->index + tail;
2331 
2332 	/* Page flags must be visible before we make the page non-compound. */
2333 	smp_wmb();
2334 
2335 	/*
2336 	 * Clear PageTail before unfreezing page refcount.
2337 	 *
2338 	 * After successful get_page_unless_zero() might follow put_page()
2339 	 * which needs correct compound_head().
2340 	 */
2341 	clear_compound_head(page_tail);
2342 
2343 	/* Finally unfreeze refcount. Additional reference from page cache. */
2344 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2345 					  PageSwapCache(head)));
2346 
2347 	if (page_is_young(head))
2348 		set_page_young(page_tail);
2349 	if (page_is_idle(head))
2350 		set_page_idle(page_tail);
2351 
2352 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2353 
2354 	/*
2355 	 * always add to the tail because some iterators expect new
2356 	 * pages to show after the currently processed elements - e.g.
2357 	 * migrate_pages
2358 	 */
2359 	lru_add_page_tail(head, page_tail, lruvec, list);
2360 }
2361 
2362 static void __split_huge_page(struct page *page, struct list_head *list,
2363 		pgoff_t end)
2364 {
2365 	struct folio *folio = page_folio(page);
2366 	struct page *head = &folio->page;
2367 	struct lruvec *lruvec;
2368 	struct address_space *swap_cache = NULL;
2369 	unsigned long offset = 0;
2370 	unsigned int nr = thp_nr_pages(head);
2371 	int i;
2372 
2373 	/* complete memcg works before add pages to LRU */
2374 	split_page_memcg(head, nr);
2375 
2376 	if (PageAnon(head) && PageSwapCache(head)) {
2377 		swp_entry_t entry = { .val = page_private(head) };
2378 
2379 		offset = swp_offset(entry);
2380 		swap_cache = swap_address_space(entry);
2381 		xa_lock(&swap_cache->i_pages);
2382 	}
2383 
2384 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2385 	lruvec = folio_lruvec_lock(folio);
2386 
2387 	ClearPageHasHWPoisoned(head);
2388 
2389 	for (i = nr - 1; i >= 1; i--) {
2390 		__split_huge_page_tail(head, i, lruvec, list);
2391 		/* Some pages can be beyond EOF: drop them from page cache */
2392 		if (head[i].index >= end) {
2393 			ClearPageDirty(head + i);
2394 			__delete_from_page_cache(head + i, NULL);
2395 			if (shmem_mapping(head->mapping))
2396 				shmem_uncharge(head->mapping->host, 1);
2397 			put_page(head + i);
2398 		} else if (!PageAnon(page)) {
2399 			__xa_store(&head->mapping->i_pages, head[i].index,
2400 					head + i, 0);
2401 		} else if (swap_cache) {
2402 			__xa_store(&swap_cache->i_pages, offset + i,
2403 					head + i, 0);
2404 		}
2405 	}
2406 
2407 	ClearPageCompound(head);
2408 	unlock_page_lruvec(lruvec);
2409 	/* Caller disabled irqs, so they are still disabled here */
2410 
2411 	split_page_owner(head, nr);
2412 
2413 	/* See comment in __split_huge_page_tail() */
2414 	if (PageAnon(head)) {
2415 		/* Additional pin to swap cache */
2416 		if (PageSwapCache(head)) {
2417 			page_ref_add(head, 2);
2418 			xa_unlock(&swap_cache->i_pages);
2419 		} else {
2420 			page_ref_inc(head);
2421 		}
2422 	} else {
2423 		/* Additional pin to page cache */
2424 		page_ref_add(head, 2);
2425 		xa_unlock(&head->mapping->i_pages);
2426 	}
2427 	local_irq_enable();
2428 
2429 	remap_page(folio, nr);
2430 
2431 	if (PageSwapCache(head)) {
2432 		swp_entry_t entry = { .val = page_private(head) };
2433 
2434 		split_swap_cluster(entry);
2435 	}
2436 
2437 	for (i = 0; i < nr; i++) {
2438 		struct page *subpage = head + i;
2439 		if (subpage == page)
2440 			continue;
2441 		unlock_page(subpage);
2442 
2443 		/*
2444 		 * Subpages may be freed if there wasn't any mapping
2445 		 * like if add_to_swap() is running on a lru page that
2446 		 * had its mapping zapped. And freeing these pages
2447 		 * requires taking the lru_lock so we do the put_page
2448 		 * of the tail pages after the split is complete.
2449 		 */
2450 		put_page(subpage);
2451 	}
2452 }
2453 
2454 /* Racy check whether the huge page can be split */
2455 bool can_split_folio(struct folio *folio, int *pextra_pins)
2456 {
2457 	int extra_pins;
2458 
2459 	/* Additional pins from page cache */
2460 	if (folio_test_anon(folio))
2461 		extra_pins = folio_test_swapcache(folio) ?
2462 				folio_nr_pages(folio) : 0;
2463 	else
2464 		extra_pins = folio_nr_pages(folio);
2465 	if (pextra_pins)
2466 		*pextra_pins = extra_pins;
2467 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2468 }
2469 
2470 /*
2471  * This function splits huge page into normal pages. @page can point to any
2472  * subpage of huge page to split. Split doesn't change the position of @page.
2473  *
2474  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2475  * The huge page must be locked.
2476  *
2477  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2478  *
2479  * Both head page and tail pages will inherit mapping, flags, and so on from
2480  * the hugepage.
2481  *
2482  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2483  * they are not mapped.
2484  *
2485  * Returns 0 if the hugepage is split successfully.
2486  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2487  * us.
2488  */
2489 int split_huge_page_to_list(struct page *page, struct list_head *list)
2490 {
2491 	struct folio *folio = page_folio(page);
2492 	struct page *head = &folio->page;
2493 	struct deferred_split *ds_queue = get_deferred_split_queue(head);
2494 	XA_STATE(xas, &head->mapping->i_pages, head->index);
2495 	struct anon_vma *anon_vma = NULL;
2496 	struct address_space *mapping = NULL;
2497 	int extra_pins, ret;
2498 	pgoff_t end;
2499 
2500 	VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
2501 	VM_BUG_ON_PAGE(!PageLocked(head), head);
2502 	VM_BUG_ON_PAGE(!PageCompound(head), head);
2503 
2504 	if (PageWriteback(head))
2505 		return -EBUSY;
2506 
2507 	if (PageAnon(head)) {
2508 		/*
2509 		 * The caller does not necessarily hold an mmap_lock that would
2510 		 * prevent the anon_vma disappearing so we first we take a
2511 		 * reference to it and then lock the anon_vma for write. This
2512 		 * is similar to folio_lock_anon_vma_read except the write lock
2513 		 * is taken to serialise against parallel split or collapse
2514 		 * operations.
2515 		 */
2516 		anon_vma = page_get_anon_vma(head);
2517 		if (!anon_vma) {
2518 			ret = -EBUSY;
2519 			goto out;
2520 		}
2521 		end = -1;
2522 		mapping = NULL;
2523 		anon_vma_lock_write(anon_vma);
2524 	} else {
2525 		mapping = head->mapping;
2526 
2527 		/* Truncated ? */
2528 		if (!mapping) {
2529 			ret = -EBUSY;
2530 			goto out;
2531 		}
2532 
2533 		xas_split_alloc(&xas, head, compound_order(head),
2534 				mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2535 		if (xas_error(&xas)) {
2536 			ret = xas_error(&xas);
2537 			goto out;
2538 		}
2539 
2540 		anon_vma = NULL;
2541 		i_mmap_lock_read(mapping);
2542 
2543 		/*
2544 		 *__split_huge_page() may need to trim off pages beyond EOF:
2545 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2546 		 * which cannot be nested inside the page tree lock. So note
2547 		 * end now: i_size itself may be changed at any moment, but
2548 		 * head page lock is good enough to serialize the trimming.
2549 		 */
2550 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2551 		if (shmem_mapping(mapping))
2552 			end = shmem_fallocend(mapping->host, end);
2553 	}
2554 
2555 	/*
2556 	 * Racy check if we can split the page, before unmap_page() will
2557 	 * split PMDs
2558 	 */
2559 	if (!can_split_folio(folio, &extra_pins)) {
2560 		ret = -EBUSY;
2561 		goto out_unlock;
2562 	}
2563 
2564 	unmap_page(head);
2565 
2566 	/* block interrupt reentry in xa_lock and spinlock */
2567 	local_irq_disable();
2568 	if (mapping) {
2569 		/*
2570 		 * Check if the head page is present in page cache.
2571 		 * We assume all tail are present too, if head is there.
2572 		 */
2573 		xas_lock(&xas);
2574 		xas_reset(&xas);
2575 		if (xas_load(&xas) != head)
2576 			goto fail;
2577 	}
2578 
2579 	/* Prevent deferred_split_scan() touching ->_refcount */
2580 	spin_lock(&ds_queue->split_queue_lock);
2581 	if (page_ref_freeze(head, 1 + extra_pins)) {
2582 		if (!list_empty(page_deferred_list(head))) {
2583 			ds_queue->split_queue_len--;
2584 			list_del(page_deferred_list(head));
2585 		}
2586 		spin_unlock(&ds_queue->split_queue_lock);
2587 		if (mapping) {
2588 			int nr = thp_nr_pages(head);
2589 
2590 			xas_split(&xas, head, thp_order(head));
2591 			if (PageSwapBacked(head)) {
2592 				__mod_lruvec_page_state(head, NR_SHMEM_THPS,
2593 							-nr);
2594 			} else {
2595 				__mod_lruvec_page_state(head, NR_FILE_THPS,
2596 							-nr);
2597 				filemap_nr_thps_dec(mapping);
2598 			}
2599 		}
2600 
2601 		__split_huge_page(page, list, end);
2602 		ret = 0;
2603 	} else {
2604 		spin_unlock(&ds_queue->split_queue_lock);
2605 fail:
2606 		if (mapping)
2607 			xas_unlock(&xas);
2608 		local_irq_enable();
2609 		remap_page(folio, folio_nr_pages(folio));
2610 		ret = -EBUSY;
2611 	}
2612 
2613 out_unlock:
2614 	if (anon_vma) {
2615 		anon_vma_unlock_write(anon_vma);
2616 		put_anon_vma(anon_vma);
2617 	}
2618 	if (mapping)
2619 		i_mmap_unlock_read(mapping);
2620 out:
2621 	/* Free any memory we didn't use */
2622 	xas_nomem(&xas, 0);
2623 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2624 	return ret;
2625 }
2626 
2627 void free_transhuge_page(struct page *page)
2628 {
2629 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2630 	unsigned long flags;
2631 
2632 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2633 	if (!list_empty(page_deferred_list(page))) {
2634 		ds_queue->split_queue_len--;
2635 		list_del(page_deferred_list(page));
2636 	}
2637 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2638 	free_compound_page(page);
2639 }
2640 
2641 void deferred_split_huge_page(struct page *page)
2642 {
2643 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2644 #ifdef CONFIG_MEMCG
2645 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2646 #endif
2647 	unsigned long flags;
2648 
2649 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2650 
2651 	/*
2652 	 * The try_to_unmap() in page reclaim path might reach here too,
2653 	 * this may cause a race condition to corrupt deferred split queue.
2654 	 * And, if page reclaim is already handling the same page, it is
2655 	 * unnecessary to handle it again in shrinker.
2656 	 *
2657 	 * Check PageSwapCache to determine if the page is being
2658 	 * handled by page reclaim since THP swap would add the page into
2659 	 * swap cache before calling try_to_unmap().
2660 	 */
2661 	if (PageSwapCache(page))
2662 		return;
2663 
2664 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2665 	if (list_empty(page_deferred_list(page))) {
2666 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2667 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2668 		ds_queue->split_queue_len++;
2669 #ifdef CONFIG_MEMCG
2670 		if (memcg)
2671 			set_shrinker_bit(memcg, page_to_nid(page),
2672 					 deferred_split_shrinker.id);
2673 #endif
2674 	}
2675 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2676 }
2677 
2678 static unsigned long deferred_split_count(struct shrinker *shrink,
2679 		struct shrink_control *sc)
2680 {
2681 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2682 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2683 
2684 #ifdef CONFIG_MEMCG
2685 	if (sc->memcg)
2686 		ds_queue = &sc->memcg->deferred_split_queue;
2687 #endif
2688 	return READ_ONCE(ds_queue->split_queue_len);
2689 }
2690 
2691 static unsigned long deferred_split_scan(struct shrinker *shrink,
2692 		struct shrink_control *sc)
2693 {
2694 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2695 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2696 	unsigned long flags;
2697 	LIST_HEAD(list), *pos, *next;
2698 	struct page *page;
2699 	int split = 0;
2700 
2701 #ifdef CONFIG_MEMCG
2702 	if (sc->memcg)
2703 		ds_queue = &sc->memcg->deferred_split_queue;
2704 #endif
2705 
2706 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2707 	/* Take pin on all head pages to avoid freeing them under us */
2708 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2709 		page = list_entry((void *)pos, struct page, deferred_list);
2710 		page = compound_head(page);
2711 		if (get_page_unless_zero(page)) {
2712 			list_move(page_deferred_list(page), &list);
2713 		} else {
2714 			/* We lost race with put_compound_page() */
2715 			list_del_init(page_deferred_list(page));
2716 			ds_queue->split_queue_len--;
2717 		}
2718 		if (!--sc->nr_to_scan)
2719 			break;
2720 	}
2721 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2722 
2723 	list_for_each_safe(pos, next, &list) {
2724 		page = list_entry((void *)pos, struct page, deferred_list);
2725 		if (!trylock_page(page))
2726 			goto next;
2727 		/* split_huge_page() removes page from list on success */
2728 		if (!split_huge_page(page))
2729 			split++;
2730 		unlock_page(page);
2731 next:
2732 		put_page(page);
2733 	}
2734 
2735 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2736 	list_splice_tail(&list, &ds_queue->split_queue);
2737 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2738 
2739 	/*
2740 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2741 	 * This can happen if pages were freed under us.
2742 	 */
2743 	if (!split && list_empty(&ds_queue->split_queue))
2744 		return SHRINK_STOP;
2745 	return split;
2746 }
2747 
2748 static struct shrinker deferred_split_shrinker = {
2749 	.count_objects = deferred_split_count,
2750 	.scan_objects = deferred_split_scan,
2751 	.seeks = DEFAULT_SEEKS,
2752 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2753 		 SHRINKER_NONSLAB,
2754 };
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 static void split_huge_pages_all(void)
2758 {
2759 	struct zone *zone;
2760 	struct page *page;
2761 	unsigned long pfn, max_zone_pfn;
2762 	unsigned long total = 0, split = 0;
2763 
2764 	pr_debug("Split all THPs\n");
2765 	for_each_populated_zone(zone) {
2766 		max_zone_pfn = zone_end_pfn(zone);
2767 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2768 			if (!pfn_valid(pfn))
2769 				continue;
2770 
2771 			page = pfn_to_page(pfn);
2772 			if (!get_page_unless_zero(page))
2773 				continue;
2774 
2775 			if (zone != page_zone(page))
2776 				goto next;
2777 
2778 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2779 				goto next;
2780 
2781 			total++;
2782 			lock_page(page);
2783 			if (!split_huge_page(page))
2784 				split++;
2785 			unlock_page(page);
2786 next:
2787 			put_page(page);
2788 			cond_resched();
2789 		}
2790 	}
2791 
2792 	pr_debug("%lu of %lu THP split\n", split, total);
2793 }
2794 
2795 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2796 {
2797 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2798 		    is_vm_hugetlb_page(vma);
2799 }
2800 
2801 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2802 				unsigned long vaddr_end)
2803 {
2804 	int ret = 0;
2805 	struct task_struct *task;
2806 	struct mm_struct *mm;
2807 	unsigned long total = 0, split = 0;
2808 	unsigned long addr;
2809 
2810 	vaddr_start &= PAGE_MASK;
2811 	vaddr_end &= PAGE_MASK;
2812 
2813 	/* Find the task_struct from pid */
2814 	rcu_read_lock();
2815 	task = find_task_by_vpid(pid);
2816 	if (!task) {
2817 		rcu_read_unlock();
2818 		ret = -ESRCH;
2819 		goto out;
2820 	}
2821 	get_task_struct(task);
2822 	rcu_read_unlock();
2823 
2824 	/* Find the mm_struct */
2825 	mm = get_task_mm(task);
2826 	put_task_struct(task);
2827 
2828 	if (!mm) {
2829 		ret = -EINVAL;
2830 		goto out;
2831 	}
2832 
2833 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2834 		 pid, vaddr_start, vaddr_end);
2835 
2836 	mmap_read_lock(mm);
2837 	/*
2838 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2839 	 * table filled with PTE-mapped THPs, each of which is distinct.
2840 	 */
2841 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2842 		struct vm_area_struct *vma = find_vma(mm, addr);
2843 		struct page *page;
2844 
2845 		if (!vma || addr < vma->vm_start)
2846 			break;
2847 
2848 		/* skip special VMA and hugetlb VMA */
2849 		if (vma_not_suitable_for_thp_split(vma)) {
2850 			addr = vma->vm_end;
2851 			continue;
2852 		}
2853 
2854 		/* FOLL_DUMP to ignore special (like zero) pages */
2855 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2856 
2857 		if (IS_ERR(page))
2858 			continue;
2859 		if (!page)
2860 			continue;
2861 
2862 		if (!is_transparent_hugepage(page))
2863 			goto next;
2864 
2865 		total++;
2866 		if (!can_split_folio(page_folio(page), NULL))
2867 			goto next;
2868 
2869 		if (!trylock_page(page))
2870 			goto next;
2871 
2872 		if (!split_huge_page(page))
2873 			split++;
2874 
2875 		unlock_page(page);
2876 next:
2877 		put_page(page);
2878 		cond_resched();
2879 	}
2880 	mmap_read_unlock(mm);
2881 	mmput(mm);
2882 
2883 	pr_debug("%lu of %lu THP split\n", split, total);
2884 
2885 out:
2886 	return ret;
2887 }
2888 
2889 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2890 				pgoff_t off_end)
2891 {
2892 	struct filename *file;
2893 	struct file *candidate;
2894 	struct address_space *mapping;
2895 	int ret = -EINVAL;
2896 	pgoff_t index;
2897 	int nr_pages = 1;
2898 	unsigned long total = 0, split = 0;
2899 
2900 	file = getname_kernel(file_path);
2901 	if (IS_ERR(file))
2902 		return ret;
2903 
2904 	candidate = file_open_name(file, O_RDONLY, 0);
2905 	if (IS_ERR(candidate))
2906 		goto out;
2907 
2908 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2909 		 file_path, off_start, off_end);
2910 
2911 	mapping = candidate->f_mapping;
2912 
2913 	for (index = off_start; index < off_end; index += nr_pages) {
2914 		struct page *fpage = pagecache_get_page(mapping, index,
2915 						FGP_ENTRY | FGP_HEAD, 0);
2916 
2917 		nr_pages = 1;
2918 		if (xa_is_value(fpage) || !fpage)
2919 			continue;
2920 
2921 		if (!is_transparent_hugepage(fpage))
2922 			goto next;
2923 
2924 		total++;
2925 		nr_pages = thp_nr_pages(fpage);
2926 
2927 		if (!trylock_page(fpage))
2928 			goto next;
2929 
2930 		if (!split_huge_page(fpage))
2931 			split++;
2932 
2933 		unlock_page(fpage);
2934 next:
2935 		put_page(fpage);
2936 		cond_resched();
2937 	}
2938 
2939 	filp_close(candidate, NULL);
2940 	ret = 0;
2941 
2942 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
2943 out:
2944 	putname(file);
2945 	return ret;
2946 }
2947 
2948 #define MAX_INPUT_BUF_SZ 255
2949 
2950 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
2951 				size_t count, loff_t *ppops)
2952 {
2953 	static DEFINE_MUTEX(split_debug_mutex);
2954 	ssize_t ret;
2955 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
2956 	char input_buf[MAX_INPUT_BUF_SZ];
2957 	int pid;
2958 	unsigned long vaddr_start, vaddr_end;
2959 
2960 	ret = mutex_lock_interruptible(&split_debug_mutex);
2961 	if (ret)
2962 		return ret;
2963 
2964 	ret = -EFAULT;
2965 
2966 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
2967 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
2968 		goto out;
2969 
2970 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
2971 
2972 	if (input_buf[0] == '/') {
2973 		char *tok;
2974 		char *buf = input_buf;
2975 		char file_path[MAX_INPUT_BUF_SZ];
2976 		pgoff_t off_start = 0, off_end = 0;
2977 		size_t input_len = strlen(input_buf);
2978 
2979 		tok = strsep(&buf, ",");
2980 		if (tok) {
2981 			strcpy(file_path, tok);
2982 		} else {
2983 			ret = -EINVAL;
2984 			goto out;
2985 		}
2986 
2987 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
2988 		if (ret != 2) {
2989 			ret = -EINVAL;
2990 			goto out;
2991 		}
2992 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
2993 		if (!ret)
2994 			ret = input_len;
2995 
2996 		goto out;
2997 	}
2998 
2999 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3000 	if (ret == 1 && pid == 1) {
3001 		split_huge_pages_all();
3002 		ret = strlen(input_buf);
3003 		goto out;
3004 	} else if (ret != 3) {
3005 		ret = -EINVAL;
3006 		goto out;
3007 	}
3008 
3009 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3010 	if (!ret)
3011 		ret = strlen(input_buf);
3012 out:
3013 	mutex_unlock(&split_debug_mutex);
3014 	return ret;
3015 
3016 }
3017 
3018 static const struct file_operations split_huge_pages_fops = {
3019 	.owner	 = THIS_MODULE,
3020 	.write	 = split_huge_pages_write,
3021 	.llseek  = no_llseek,
3022 };
3023 
3024 static int __init split_huge_pages_debugfs(void)
3025 {
3026 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3027 			    &split_huge_pages_fops);
3028 	return 0;
3029 }
3030 late_initcall(split_huge_pages_debugfs);
3031 #endif
3032 
3033 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3034 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3035 		struct page *page)
3036 {
3037 	struct vm_area_struct *vma = pvmw->vma;
3038 	struct mm_struct *mm = vma->vm_mm;
3039 	unsigned long address = pvmw->address;
3040 	pmd_t pmdval;
3041 	swp_entry_t entry;
3042 	pmd_t pmdswp;
3043 
3044 	if (!(pvmw->pmd && !pvmw->pte))
3045 		return;
3046 
3047 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3048 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3049 	if (pmd_dirty(pmdval))
3050 		set_page_dirty(page);
3051 	if (pmd_write(pmdval))
3052 		entry = make_writable_migration_entry(page_to_pfn(page));
3053 	else
3054 		entry = make_readable_migration_entry(page_to_pfn(page));
3055 	pmdswp = swp_entry_to_pmd(entry);
3056 	if (pmd_soft_dirty(pmdval))
3057 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3058 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3059 	page_remove_rmap(page, vma, true);
3060 	put_page(page);
3061 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3062 }
3063 
3064 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3065 {
3066 	struct vm_area_struct *vma = pvmw->vma;
3067 	struct mm_struct *mm = vma->vm_mm;
3068 	unsigned long address = pvmw->address;
3069 	unsigned long mmun_start = address & HPAGE_PMD_MASK;
3070 	pmd_t pmde;
3071 	swp_entry_t entry;
3072 
3073 	if (!(pvmw->pmd && !pvmw->pte))
3074 		return;
3075 
3076 	entry = pmd_to_swp_entry(*pvmw->pmd);
3077 	get_page(new);
3078 	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3079 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3080 		pmde = pmd_mksoft_dirty(pmde);
3081 	if (is_writable_migration_entry(entry))
3082 		pmde = maybe_pmd_mkwrite(pmde, vma);
3083 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3084 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3085 
3086 	if (PageAnon(new))
3087 		page_add_anon_rmap(new, vma, mmun_start, true);
3088 	else
3089 		page_add_file_rmap(new, vma, true);
3090 	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3091 
3092 	/* No need to invalidate - it was non-present before */
3093 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3094 	trace_remove_migration_pmd(address, pmd_val(pmde));
3095 }
3096 #endif
3097