xref: /linux/mm/huge_memory.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26 
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30 
31 /*
32  * By default transparent hugepage support is disabled in order that avoid
33  * to risk increase the memory footprint of applications without a guaranteed
34  * benefit. When transparent hugepage support is enabled, is for all mappings,
35  * and khugepaged scans all mappings.
36  * Defrag is invoked by khugepaged hugepage allocations and by page faults
37  * for all hugepage allocations.
38  */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49 
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62  * default collapse hugepages if there is at least one pte mapped like
63  * it would have happened if the vma was large enough during page
64  * fault.
65  */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67 
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70 
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73 
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75 
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83 	struct hlist_node hash;
84 	struct list_head mm_node;
85 	struct mm_struct *mm;
86 };
87 
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97 	struct list_head mm_head;
98 	struct mm_slot *mm_slot;
99 	unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104 
105 
106 static int set_recommended_min_free_kbytes(void)
107 {
108 	struct zone *zone;
109 	int nr_zones = 0;
110 	unsigned long recommended_min;
111 
112 	if (!khugepaged_enabled())
113 		return 0;
114 
115 	for_each_populated_zone(zone)
116 		nr_zones++;
117 
118 	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 	recommended_min = pageblock_nr_pages * nr_zones * 2;
120 
121 	/*
122 	 * Make sure that on average at least two pageblocks are almost free
123 	 * of another type, one for a migratetype to fall back to and a
124 	 * second to avoid subsequent fallbacks of other types There are 3
125 	 * MIGRATE_TYPES we care about.
126 	 */
127 	recommended_min += pageblock_nr_pages * nr_zones *
128 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129 
130 	/* don't ever allow to reserve more than 5% of the lowmem */
131 	recommended_min = min(recommended_min,
132 			      (unsigned long) nr_free_buffer_pages() / 20);
133 	recommended_min <<= (PAGE_SHIFT-10);
134 
135 	if (recommended_min > min_free_kbytes) {
136 		if (user_min_free_kbytes >= 0)
137 			pr_info("raising min_free_kbytes from %d to %lu "
138 				"to help transparent hugepage allocations\n",
139 				min_free_kbytes, recommended_min);
140 
141 		min_free_kbytes = recommended_min;
142 	}
143 	setup_per_zone_wmarks();
144 	return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147 
148 static int start_khugepaged(void)
149 {
150 	int err = 0;
151 	if (khugepaged_enabled()) {
152 		if (!khugepaged_thread)
153 			khugepaged_thread = kthread_run(khugepaged, NULL,
154 							"khugepaged");
155 		if (unlikely(IS_ERR(khugepaged_thread))) {
156 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 			err = PTR_ERR(khugepaged_thread);
158 			khugepaged_thread = NULL;
159 		}
160 
161 		if (!list_empty(&khugepaged_scan.mm_head))
162 			wake_up_interruptible(&khugepaged_wait);
163 
164 		set_recommended_min_free_kbytes();
165 	} else if (khugepaged_thread) {
166 		kthread_stop(khugepaged_thread);
167 		khugepaged_thread = NULL;
168 	}
169 
170 	return err;
171 }
172 
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
175 
176 static inline bool is_huge_zero_pmd(pmd_t pmd)
177 {
178 	return is_huge_zero_page(pmd_page(pmd));
179 }
180 
181 static struct page *get_huge_zero_page(void)
182 {
183 	struct page *zero_page;
184 retry:
185 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
186 		return ACCESS_ONCE(huge_zero_page);
187 
188 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
189 			HPAGE_PMD_ORDER);
190 	if (!zero_page) {
191 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
192 		return NULL;
193 	}
194 	count_vm_event(THP_ZERO_PAGE_ALLOC);
195 	preempt_disable();
196 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
197 		preempt_enable();
198 		__free_pages(zero_page, compound_order(zero_page));
199 		goto retry;
200 	}
201 
202 	/* We take additional reference here. It will be put back by shrinker */
203 	atomic_set(&huge_zero_refcount, 2);
204 	preempt_enable();
205 	return ACCESS_ONCE(huge_zero_page);
206 }
207 
208 static void put_huge_zero_page(void)
209 {
210 	/*
211 	 * Counter should never go to zero here. Only shrinker can put
212 	 * last reference.
213 	 */
214 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 }
216 
217 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 					struct shrink_control *sc)
219 {
220 	/* we can free zero page only if last reference remains */
221 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 }
223 
224 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 				       struct shrink_control *sc)
226 {
227 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
228 		struct page *zero_page = xchg(&huge_zero_page, NULL);
229 		BUG_ON(zero_page == NULL);
230 		__free_pages(zero_page, compound_order(zero_page));
231 		return HPAGE_PMD_NR;
232 	}
233 
234 	return 0;
235 }
236 
237 static struct shrinker huge_zero_page_shrinker = {
238 	.count_objects = shrink_huge_zero_page_count,
239 	.scan_objects = shrink_huge_zero_page_scan,
240 	.seeks = DEFAULT_SEEKS,
241 };
242 
243 #ifdef CONFIG_SYSFS
244 
245 static ssize_t double_flag_show(struct kobject *kobj,
246 				struct kobj_attribute *attr, char *buf,
247 				enum transparent_hugepage_flag enabled,
248 				enum transparent_hugepage_flag req_madv)
249 {
250 	if (test_bit(enabled, &transparent_hugepage_flags)) {
251 		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 		return sprintf(buf, "[always] madvise never\n");
253 	} else if (test_bit(req_madv, &transparent_hugepage_flags))
254 		return sprintf(buf, "always [madvise] never\n");
255 	else
256 		return sprintf(buf, "always madvise [never]\n");
257 }
258 static ssize_t double_flag_store(struct kobject *kobj,
259 				 struct kobj_attribute *attr,
260 				 const char *buf, size_t count,
261 				 enum transparent_hugepage_flag enabled,
262 				 enum transparent_hugepage_flag req_madv)
263 {
264 	if (!memcmp("always", buf,
265 		    min(sizeof("always")-1, count))) {
266 		set_bit(enabled, &transparent_hugepage_flags);
267 		clear_bit(req_madv, &transparent_hugepage_flags);
268 	} else if (!memcmp("madvise", buf,
269 			   min(sizeof("madvise")-1, count))) {
270 		clear_bit(enabled, &transparent_hugepage_flags);
271 		set_bit(req_madv, &transparent_hugepage_flags);
272 	} else if (!memcmp("never", buf,
273 			   min(sizeof("never")-1, count))) {
274 		clear_bit(enabled, &transparent_hugepage_flags);
275 		clear_bit(req_madv, &transparent_hugepage_flags);
276 	} else
277 		return -EINVAL;
278 
279 	return count;
280 }
281 
282 static ssize_t enabled_show(struct kobject *kobj,
283 			    struct kobj_attribute *attr, char *buf)
284 {
285 	return double_flag_show(kobj, attr, buf,
286 				TRANSPARENT_HUGEPAGE_FLAG,
287 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288 }
289 static ssize_t enabled_store(struct kobject *kobj,
290 			     struct kobj_attribute *attr,
291 			     const char *buf, size_t count)
292 {
293 	ssize_t ret;
294 
295 	ret = double_flag_store(kobj, attr, buf, count,
296 				TRANSPARENT_HUGEPAGE_FLAG,
297 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298 
299 	if (ret > 0) {
300 		int err;
301 
302 		mutex_lock(&khugepaged_mutex);
303 		err = start_khugepaged();
304 		mutex_unlock(&khugepaged_mutex);
305 
306 		if (err)
307 			ret = err;
308 	}
309 
310 	return ret;
311 }
312 static struct kobj_attribute enabled_attr =
313 	__ATTR(enabled, 0644, enabled_show, enabled_store);
314 
315 static ssize_t single_flag_show(struct kobject *kobj,
316 				struct kobj_attribute *attr, char *buf,
317 				enum transparent_hugepage_flag flag)
318 {
319 	return sprintf(buf, "%d\n",
320 		       !!test_bit(flag, &transparent_hugepage_flags));
321 }
322 
323 static ssize_t single_flag_store(struct kobject *kobj,
324 				 struct kobj_attribute *attr,
325 				 const char *buf, size_t count,
326 				 enum transparent_hugepage_flag flag)
327 {
328 	unsigned long value;
329 	int ret;
330 
331 	ret = kstrtoul(buf, 10, &value);
332 	if (ret < 0)
333 		return ret;
334 	if (value > 1)
335 		return -EINVAL;
336 
337 	if (value)
338 		set_bit(flag, &transparent_hugepage_flags);
339 	else
340 		clear_bit(flag, &transparent_hugepage_flags);
341 
342 	return count;
343 }
344 
345 /*
346  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348  * memory just to allocate one more hugepage.
349  */
350 static ssize_t defrag_show(struct kobject *kobj,
351 			   struct kobj_attribute *attr, char *buf)
352 {
353 	return double_flag_show(kobj, attr, buf,
354 				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356 }
357 static ssize_t defrag_store(struct kobject *kobj,
358 			    struct kobj_attribute *attr,
359 			    const char *buf, size_t count)
360 {
361 	return double_flag_store(kobj, attr, buf, count,
362 				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364 }
365 static struct kobj_attribute defrag_attr =
366 	__ATTR(defrag, 0644, defrag_show, defrag_store);
367 
368 static ssize_t use_zero_page_show(struct kobject *kobj,
369 		struct kobj_attribute *attr, char *buf)
370 {
371 	return single_flag_show(kobj, attr, buf,
372 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static ssize_t use_zero_page_store(struct kobject *kobj,
375 		struct kobj_attribute *attr, const char *buf, size_t count)
376 {
377 	return single_flag_store(kobj, attr, buf, count,
378 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379 }
380 static struct kobj_attribute use_zero_page_attr =
381 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
382 #ifdef CONFIG_DEBUG_VM
383 static ssize_t debug_cow_show(struct kobject *kobj,
384 				struct kobj_attribute *attr, char *buf)
385 {
386 	return single_flag_show(kobj, attr, buf,
387 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388 }
389 static ssize_t debug_cow_store(struct kobject *kobj,
390 			       struct kobj_attribute *attr,
391 			       const char *buf, size_t count)
392 {
393 	return single_flag_store(kobj, attr, buf, count,
394 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395 }
396 static struct kobj_attribute debug_cow_attr =
397 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398 #endif /* CONFIG_DEBUG_VM */
399 
400 static struct attribute *hugepage_attr[] = {
401 	&enabled_attr.attr,
402 	&defrag_attr.attr,
403 	&use_zero_page_attr.attr,
404 #ifdef CONFIG_DEBUG_VM
405 	&debug_cow_attr.attr,
406 #endif
407 	NULL,
408 };
409 
410 static struct attribute_group hugepage_attr_group = {
411 	.attrs = hugepage_attr,
412 };
413 
414 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 					 struct kobj_attribute *attr,
416 					 char *buf)
417 {
418 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 }
420 
421 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 					  struct kobj_attribute *attr,
423 					  const char *buf, size_t count)
424 {
425 	unsigned long msecs;
426 	int err;
427 
428 	err = kstrtoul(buf, 10, &msecs);
429 	if (err || msecs > UINT_MAX)
430 		return -EINVAL;
431 
432 	khugepaged_scan_sleep_millisecs = msecs;
433 	wake_up_interruptible(&khugepaged_wait);
434 
435 	return count;
436 }
437 static struct kobj_attribute scan_sleep_millisecs_attr =
438 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 	       scan_sleep_millisecs_store);
440 
441 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 					  struct kobj_attribute *attr,
443 					  char *buf)
444 {
445 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 }
447 
448 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 					   struct kobj_attribute *attr,
450 					   const char *buf, size_t count)
451 {
452 	unsigned long msecs;
453 	int err;
454 
455 	err = kstrtoul(buf, 10, &msecs);
456 	if (err || msecs > UINT_MAX)
457 		return -EINVAL;
458 
459 	khugepaged_alloc_sleep_millisecs = msecs;
460 	wake_up_interruptible(&khugepaged_wait);
461 
462 	return count;
463 }
464 static struct kobj_attribute alloc_sleep_millisecs_attr =
465 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 	       alloc_sleep_millisecs_store);
467 
468 static ssize_t pages_to_scan_show(struct kobject *kobj,
469 				  struct kobj_attribute *attr,
470 				  char *buf)
471 {
472 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473 }
474 static ssize_t pages_to_scan_store(struct kobject *kobj,
475 				   struct kobj_attribute *attr,
476 				   const char *buf, size_t count)
477 {
478 	int err;
479 	unsigned long pages;
480 
481 	err = kstrtoul(buf, 10, &pages);
482 	if (err || !pages || pages > UINT_MAX)
483 		return -EINVAL;
484 
485 	khugepaged_pages_to_scan = pages;
486 
487 	return count;
488 }
489 static struct kobj_attribute pages_to_scan_attr =
490 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 	       pages_to_scan_store);
492 
493 static ssize_t pages_collapsed_show(struct kobject *kobj,
494 				    struct kobj_attribute *attr,
495 				    char *buf)
496 {
497 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498 }
499 static struct kobj_attribute pages_collapsed_attr =
500 	__ATTR_RO(pages_collapsed);
501 
502 static ssize_t full_scans_show(struct kobject *kobj,
503 			       struct kobj_attribute *attr,
504 			       char *buf)
505 {
506 	return sprintf(buf, "%u\n", khugepaged_full_scans);
507 }
508 static struct kobj_attribute full_scans_attr =
509 	__ATTR_RO(full_scans);
510 
511 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 				      struct kobj_attribute *attr, char *buf)
513 {
514 	return single_flag_show(kobj, attr, buf,
515 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516 }
517 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 				       struct kobj_attribute *attr,
519 				       const char *buf, size_t count)
520 {
521 	return single_flag_store(kobj, attr, buf, count,
522 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523 }
524 static struct kobj_attribute khugepaged_defrag_attr =
525 	__ATTR(defrag, 0644, khugepaged_defrag_show,
526 	       khugepaged_defrag_store);
527 
528 /*
529  * max_ptes_none controls if khugepaged should collapse hugepages over
530  * any unmapped ptes in turn potentially increasing the memory
531  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532  * reduce the available free memory in the system as it
533  * runs. Increasing max_ptes_none will instead potentially reduce the
534  * free memory in the system during the khugepaged scan.
535  */
536 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 					     struct kobj_attribute *attr,
538 					     char *buf)
539 {
540 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541 }
542 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 					      struct kobj_attribute *attr,
544 					      const char *buf, size_t count)
545 {
546 	int err;
547 	unsigned long max_ptes_none;
548 
549 	err = kstrtoul(buf, 10, &max_ptes_none);
550 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 		return -EINVAL;
552 
553 	khugepaged_max_ptes_none = max_ptes_none;
554 
555 	return count;
556 }
557 static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 	       khugepaged_max_ptes_none_store);
560 
561 static struct attribute *khugepaged_attr[] = {
562 	&khugepaged_defrag_attr.attr,
563 	&khugepaged_max_ptes_none_attr.attr,
564 	&pages_to_scan_attr.attr,
565 	&pages_collapsed_attr.attr,
566 	&full_scans_attr.attr,
567 	&scan_sleep_millisecs_attr.attr,
568 	&alloc_sleep_millisecs_attr.attr,
569 	NULL,
570 };
571 
572 static struct attribute_group khugepaged_attr_group = {
573 	.attrs = khugepaged_attr,
574 	.name = "khugepaged",
575 };
576 
577 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
578 {
579 	int err;
580 
581 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 	if (unlikely(!*hugepage_kobj)) {
583 		pr_err("failed to create transparent hugepage kobject\n");
584 		return -ENOMEM;
585 	}
586 
587 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
588 	if (err) {
589 		pr_err("failed to register transparent hugepage group\n");
590 		goto delete_obj;
591 	}
592 
593 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
594 	if (err) {
595 		pr_err("failed to register transparent hugepage group\n");
596 		goto remove_hp_group;
597 	}
598 
599 	return 0;
600 
601 remove_hp_group:
602 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603 delete_obj:
604 	kobject_put(*hugepage_kobj);
605 	return err;
606 }
607 
608 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609 {
610 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 	kobject_put(hugepage_kobj);
613 }
614 #else
615 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616 {
617 	return 0;
618 }
619 
620 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 {
622 }
623 #endif /* CONFIG_SYSFS */
624 
625 static int __init hugepage_init(void)
626 {
627 	int err;
628 	struct kobject *hugepage_kobj;
629 
630 	if (!has_transparent_hugepage()) {
631 		transparent_hugepage_flags = 0;
632 		return -EINVAL;
633 	}
634 
635 	err = hugepage_init_sysfs(&hugepage_kobj);
636 	if (err)
637 		return err;
638 
639 	err = khugepaged_slab_init();
640 	if (err)
641 		goto out;
642 
643 	register_shrinker(&huge_zero_page_shrinker);
644 
645 	/*
646 	 * By default disable transparent hugepages on smaller systems,
647 	 * where the extra memory used could hurt more than TLB overhead
648 	 * is likely to save.  The admin can still enable it through /sys.
649 	 */
650 	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 		transparent_hugepage_flags = 0;
652 
653 	start_khugepaged();
654 
655 	return 0;
656 out:
657 	hugepage_exit_sysfs(hugepage_kobj);
658 	return err;
659 }
660 subsys_initcall(hugepage_init);
661 
662 static int __init setup_transparent_hugepage(char *str)
663 {
664 	int ret = 0;
665 	if (!str)
666 		goto out;
667 	if (!strcmp(str, "always")) {
668 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 			&transparent_hugepage_flags);
670 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 			  &transparent_hugepage_flags);
672 		ret = 1;
673 	} else if (!strcmp(str, "madvise")) {
674 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 			  &transparent_hugepage_flags);
676 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 			&transparent_hugepage_flags);
678 		ret = 1;
679 	} else if (!strcmp(str, "never")) {
680 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 			  &transparent_hugepage_flags);
682 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 			  &transparent_hugepage_flags);
684 		ret = 1;
685 	}
686 out:
687 	if (!ret)
688 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
689 	return ret;
690 }
691 __setup("transparent_hugepage=", setup_transparent_hugepage);
692 
693 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 {
695 	if (likely(vma->vm_flags & VM_WRITE))
696 		pmd = pmd_mkwrite(pmd);
697 	return pmd;
698 }
699 
700 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 {
702 	pmd_t entry;
703 	entry = mk_pmd(page, prot);
704 	entry = pmd_mkhuge(entry);
705 	return entry;
706 }
707 
708 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 					struct vm_area_struct *vma,
710 					unsigned long haddr, pmd_t *pmd,
711 					struct page *page)
712 {
713 	struct mem_cgroup *memcg;
714 	pgtable_t pgtable;
715 	spinlock_t *ptl;
716 
717 	VM_BUG_ON_PAGE(!PageCompound(page), page);
718 
719 	if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
720 		return VM_FAULT_OOM;
721 
722 	pgtable = pte_alloc_one(mm, haddr);
723 	if (unlikely(!pgtable)) {
724 		mem_cgroup_cancel_charge(page, memcg);
725 		return VM_FAULT_OOM;
726 	}
727 
728 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
729 	/*
730 	 * The memory barrier inside __SetPageUptodate makes sure that
731 	 * clear_huge_page writes become visible before the set_pmd_at()
732 	 * write.
733 	 */
734 	__SetPageUptodate(page);
735 
736 	ptl = pmd_lock(mm, pmd);
737 	if (unlikely(!pmd_none(*pmd))) {
738 		spin_unlock(ptl);
739 		mem_cgroup_cancel_charge(page, memcg);
740 		put_page(page);
741 		pte_free(mm, pgtable);
742 	} else {
743 		pmd_t entry;
744 		entry = mk_huge_pmd(page, vma->vm_page_prot);
745 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
746 		page_add_new_anon_rmap(page, vma, haddr);
747 		mem_cgroup_commit_charge(page, memcg, false);
748 		lru_cache_add_active_or_unevictable(page, vma);
749 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 		set_pmd_at(mm, haddr, pmd, entry);
751 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
752 		atomic_long_inc(&mm->nr_ptes);
753 		spin_unlock(ptl);
754 	}
755 
756 	return 0;
757 }
758 
759 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
760 {
761 	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
762 }
763 
764 /* Caller must hold page table lock. */
765 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return false;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	atomic_long_inc(&mm->nr_ptes);
777 	return true;
778 }
779 
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 			       unsigned long address, pmd_t *pmd,
782 			       unsigned int flags)
783 {
784 	gfp_t gfp;
785 	struct page *page;
786 	unsigned long haddr = address & HPAGE_PMD_MASK;
787 
788 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
789 		return VM_FAULT_FALLBACK;
790 	if (unlikely(anon_vma_prepare(vma)))
791 		return VM_FAULT_OOM;
792 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
793 		return VM_FAULT_OOM;
794 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
795 			transparent_hugepage_use_zero_page()) {
796 		spinlock_t *ptl;
797 		pgtable_t pgtable;
798 		struct page *zero_page;
799 		bool set;
800 		pgtable = pte_alloc_one(mm, haddr);
801 		if (unlikely(!pgtable))
802 			return VM_FAULT_OOM;
803 		zero_page = get_huge_zero_page();
804 		if (unlikely(!zero_page)) {
805 			pte_free(mm, pgtable);
806 			count_vm_event(THP_FAULT_FALLBACK);
807 			return VM_FAULT_FALLBACK;
808 		}
809 		ptl = pmd_lock(mm, pmd);
810 		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 				zero_page);
812 		spin_unlock(ptl);
813 		if (!set) {
814 			pte_free(mm, pgtable);
815 			put_huge_zero_page();
816 		}
817 		return 0;
818 	}
819 	gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
821 	if (unlikely(!page)) {
822 		count_vm_event(THP_FAULT_FALLBACK);
823 		return VM_FAULT_FALLBACK;
824 	}
825 	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
826 		put_page(page);
827 		count_vm_event(THP_FAULT_FALLBACK);
828 		return VM_FAULT_FALLBACK;
829 	}
830 
831 	count_vm_event(THP_FAULT_ALLOC);
832 	return 0;
833 }
834 
835 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 		  struct vm_area_struct *vma)
838 {
839 	spinlock_t *dst_ptl, *src_ptl;
840 	struct page *src_page;
841 	pmd_t pmd;
842 	pgtable_t pgtable;
843 	int ret;
844 
845 	ret = -ENOMEM;
846 	pgtable = pte_alloc_one(dst_mm, addr);
847 	if (unlikely(!pgtable))
848 		goto out;
849 
850 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 	src_ptl = pmd_lockptr(src_mm, src_pmd);
852 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
853 
854 	ret = -EAGAIN;
855 	pmd = *src_pmd;
856 	if (unlikely(!pmd_trans_huge(pmd))) {
857 		pte_free(dst_mm, pgtable);
858 		goto out_unlock;
859 	}
860 	/*
861 	 * When page table lock is held, the huge zero pmd should not be
862 	 * under splitting since we don't split the page itself, only pmd to
863 	 * a page table.
864 	 */
865 	if (is_huge_zero_pmd(pmd)) {
866 		struct page *zero_page;
867 		bool set;
868 		/*
869 		 * get_huge_zero_page() will never allocate a new page here,
870 		 * since we already have a zero page to copy. It just takes a
871 		 * reference.
872 		 */
873 		zero_page = get_huge_zero_page();
874 		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
875 				zero_page);
876 		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
877 		ret = 0;
878 		goto out_unlock;
879 	}
880 
881 	if (unlikely(pmd_trans_splitting(pmd))) {
882 		/* split huge page running from under us */
883 		spin_unlock(src_ptl);
884 		spin_unlock(dst_ptl);
885 		pte_free(dst_mm, pgtable);
886 
887 		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
888 		goto out;
889 	}
890 	src_page = pmd_page(pmd);
891 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
892 	get_page(src_page);
893 	page_dup_rmap(src_page);
894 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895 
896 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 	pmd = pmd_mkold(pmd_wrprotect(pmd));
898 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
899 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
900 	atomic_long_inc(&dst_mm->nr_ptes);
901 
902 	ret = 0;
903 out_unlock:
904 	spin_unlock(src_ptl);
905 	spin_unlock(dst_ptl);
906 out:
907 	return ret;
908 }
909 
910 void huge_pmd_set_accessed(struct mm_struct *mm,
911 			   struct vm_area_struct *vma,
912 			   unsigned long address,
913 			   pmd_t *pmd, pmd_t orig_pmd,
914 			   int dirty)
915 {
916 	spinlock_t *ptl;
917 	pmd_t entry;
918 	unsigned long haddr;
919 
920 	ptl = pmd_lock(mm, pmd);
921 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
922 		goto unlock;
923 
924 	entry = pmd_mkyoung(orig_pmd);
925 	haddr = address & HPAGE_PMD_MASK;
926 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 		update_mmu_cache_pmd(vma, address, pmd);
928 
929 unlock:
930 	spin_unlock(ptl);
931 }
932 
933 /*
934  * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935  * during copy_user_huge_page()'s copy_page_rep(): in the case when
936  * the source page gets split and a tail freed before copy completes.
937  * Called under pmd_lock of checked pmd, so safe from splitting itself.
938  */
939 static void get_user_huge_page(struct page *page)
940 {
941 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 		struct page *endpage = page + HPAGE_PMD_NR;
943 
944 		atomic_add(HPAGE_PMD_NR, &page->_count);
945 		while (++page < endpage)
946 			get_huge_page_tail(page);
947 	} else {
948 		get_page(page);
949 	}
950 }
951 
952 static void put_user_huge_page(struct page *page)
953 {
954 	if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 		struct page *endpage = page + HPAGE_PMD_NR;
956 
957 		while (page < endpage)
958 			put_page(page++);
959 	} else {
960 		put_page(page);
961 	}
962 }
963 
964 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 					struct vm_area_struct *vma,
966 					unsigned long address,
967 					pmd_t *pmd, pmd_t orig_pmd,
968 					struct page *page,
969 					unsigned long haddr)
970 {
971 	struct mem_cgroup *memcg;
972 	spinlock_t *ptl;
973 	pgtable_t pgtable;
974 	pmd_t _pmd;
975 	int ret = 0, i;
976 	struct page **pages;
977 	unsigned long mmun_start;	/* For mmu_notifiers */
978 	unsigned long mmun_end;		/* For mmu_notifiers */
979 
980 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
981 			GFP_KERNEL);
982 	if (unlikely(!pages)) {
983 		ret |= VM_FAULT_OOM;
984 		goto out;
985 	}
986 
987 	for (i = 0; i < HPAGE_PMD_NR; i++) {
988 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
989 					       __GFP_OTHER_NODE,
990 					       vma, address, page_to_nid(page));
991 		if (unlikely(!pages[i] ||
992 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
993 						   &memcg))) {
994 			if (pages[i])
995 				put_page(pages[i]);
996 			while (--i >= 0) {
997 				memcg = (void *)page_private(pages[i]);
998 				set_page_private(pages[i], 0);
999 				mem_cgroup_cancel_charge(pages[i], memcg);
1000 				put_page(pages[i]);
1001 			}
1002 			kfree(pages);
1003 			ret |= VM_FAULT_OOM;
1004 			goto out;
1005 		}
1006 		set_page_private(pages[i], (unsigned long)memcg);
1007 	}
1008 
1009 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 		copy_user_highpage(pages[i], page + i,
1011 				   haddr + PAGE_SIZE * i, vma);
1012 		__SetPageUptodate(pages[i]);
1013 		cond_resched();
1014 	}
1015 
1016 	mmun_start = haddr;
1017 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1018 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019 
1020 	ptl = pmd_lock(mm, pmd);
1021 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 		goto out_free_pages;
1023 	VM_BUG_ON_PAGE(!PageHead(page), page);
1024 
1025 	pmdp_clear_flush_notify(vma, haddr, pmd);
1026 	/* leave pmd empty until pte is filled */
1027 
1028 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1029 	pmd_populate(mm, &_pmd, pgtable);
1030 
1031 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1032 		pte_t *pte, entry;
1033 		entry = mk_pte(pages[i], vma->vm_page_prot);
1034 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1035 		memcg = (void *)page_private(pages[i]);
1036 		set_page_private(pages[i], 0);
1037 		page_add_new_anon_rmap(pages[i], vma, haddr);
1038 		mem_cgroup_commit_charge(pages[i], memcg, false);
1039 		lru_cache_add_active_or_unevictable(pages[i], vma);
1040 		pte = pte_offset_map(&_pmd, haddr);
1041 		VM_BUG_ON(!pte_none(*pte));
1042 		set_pte_at(mm, haddr, pte, entry);
1043 		pte_unmap(pte);
1044 	}
1045 	kfree(pages);
1046 
1047 	smp_wmb(); /* make pte visible before pmd */
1048 	pmd_populate(mm, pmd, pgtable);
1049 	page_remove_rmap(page);
1050 	spin_unlock(ptl);
1051 
1052 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1053 
1054 	ret |= VM_FAULT_WRITE;
1055 	put_page(page);
1056 
1057 out:
1058 	return ret;
1059 
1060 out_free_pages:
1061 	spin_unlock(ptl);
1062 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1063 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1064 		memcg = (void *)page_private(pages[i]);
1065 		set_page_private(pages[i], 0);
1066 		mem_cgroup_cancel_charge(pages[i], memcg);
1067 		put_page(pages[i]);
1068 	}
1069 	kfree(pages);
1070 	goto out;
1071 }
1072 
1073 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1075 {
1076 	spinlock_t *ptl;
1077 	int ret = 0;
1078 	struct page *page = NULL, *new_page;
1079 	struct mem_cgroup *memcg;
1080 	unsigned long haddr;
1081 	unsigned long mmun_start;	/* For mmu_notifiers */
1082 	unsigned long mmun_end;		/* For mmu_notifiers */
1083 
1084 	ptl = pmd_lockptr(mm, pmd);
1085 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1086 	haddr = address & HPAGE_PMD_MASK;
1087 	if (is_huge_zero_pmd(orig_pmd))
1088 		goto alloc;
1089 	spin_lock(ptl);
1090 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 		goto out_unlock;
1092 
1093 	page = pmd_page(orig_pmd);
1094 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1095 	if (page_mapcount(page) == 1) {
1096 		pmd_t entry;
1097 		entry = pmd_mkyoung(orig_pmd);
1098 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1099 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1100 			update_mmu_cache_pmd(vma, address, pmd);
1101 		ret |= VM_FAULT_WRITE;
1102 		goto out_unlock;
1103 	}
1104 	get_user_huge_page(page);
1105 	spin_unlock(ptl);
1106 alloc:
1107 	if (transparent_hugepage_enabled(vma) &&
1108 	    !transparent_hugepage_debug_cow()) {
1109 		gfp_t gfp;
1110 
1111 		gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1112 		new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
1113 	} else
1114 		new_page = NULL;
1115 
1116 	if (unlikely(!new_page)) {
1117 		if (!page) {
1118 			split_huge_page_pmd(vma, address, pmd);
1119 			ret |= VM_FAULT_FALLBACK;
1120 		} else {
1121 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1122 					pmd, orig_pmd, page, haddr);
1123 			if (ret & VM_FAULT_OOM) {
1124 				split_huge_page(page);
1125 				ret |= VM_FAULT_FALLBACK;
1126 			}
1127 			put_user_huge_page(page);
1128 		}
1129 		count_vm_event(THP_FAULT_FALLBACK);
1130 		goto out;
1131 	}
1132 
1133 	if (unlikely(mem_cgroup_try_charge(new_page, mm,
1134 					   GFP_TRANSHUGE, &memcg))) {
1135 		put_page(new_page);
1136 		if (page) {
1137 			split_huge_page(page);
1138 			put_user_huge_page(page);
1139 		} else
1140 			split_huge_page_pmd(vma, address, pmd);
1141 		ret |= VM_FAULT_FALLBACK;
1142 		count_vm_event(THP_FAULT_FALLBACK);
1143 		goto out;
1144 	}
1145 
1146 	count_vm_event(THP_FAULT_ALLOC);
1147 
1148 	if (!page)
1149 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1150 	else
1151 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1152 	__SetPageUptodate(new_page);
1153 
1154 	mmun_start = haddr;
1155 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1156 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1157 
1158 	spin_lock(ptl);
1159 	if (page)
1160 		put_user_huge_page(page);
1161 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1162 		spin_unlock(ptl);
1163 		mem_cgroup_cancel_charge(new_page, memcg);
1164 		put_page(new_page);
1165 		goto out_mn;
1166 	} else {
1167 		pmd_t entry;
1168 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1170 		pmdp_clear_flush_notify(vma, haddr, pmd);
1171 		page_add_new_anon_rmap(new_page, vma, haddr);
1172 		mem_cgroup_commit_charge(new_page, memcg, false);
1173 		lru_cache_add_active_or_unevictable(new_page, vma);
1174 		set_pmd_at(mm, haddr, pmd, entry);
1175 		update_mmu_cache_pmd(vma, address, pmd);
1176 		if (!page) {
1177 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1178 			put_huge_zero_page();
1179 		} else {
1180 			VM_BUG_ON_PAGE(!PageHead(page), page);
1181 			page_remove_rmap(page);
1182 			put_page(page);
1183 		}
1184 		ret |= VM_FAULT_WRITE;
1185 	}
1186 	spin_unlock(ptl);
1187 out_mn:
1188 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1189 out:
1190 	return ret;
1191 out_unlock:
1192 	spin_unlock(ptl);
1193 	return ret;
1194 }
1195 
1196 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1197 				   unsigned long addr,
1198 				   pmd_t *pmd,
1199 				   unsigned int flags)
1200 {
1201 	struct mm_struct *mm = vma->vm_mm;
1202 	struct page *page = NULL;
1203 
1204 	assert_spin_locked(pmd_lockptr(mm, pmd));
1205 
1206 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1207 		goto out;
1208 
1209 	/* Avoid dumping huge zero page */
1210 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1211 		return ERR_PTR(-EFAULT);
1212 
1213 	/* Full NUMA hinting faults to serialise migration in fault paths */
1214 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1215 		goto out;
1216 
1217 	page = pmd_page(*pmd);
1218 	VM_BUG_ON_PAGE(!PageHead(page), page);
1219 	if (flags & FOLL_TOUCH) {
1220 		pmd_t _pmd;
1221 		/*
1222 		 * We should set the dirty bit only for FOLL_WRITE but
1223 		 * for now the dirty bit in the pmd is meaningless.
1224 		 * And if the dirty bit will become meaningful and
1225 		 * we'll only set it with FOLL_WRITE, an atomic
1226 		 * set_bit will be required on the pmd to set the
1227 		 * young bit, instead of the current set_pmd_at.
1228 		 */
1229 		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1230 		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1231 					  pmd, _pmd,  1))
1232 			update_mmu_cache_pmd(vma, addr, pmd);
1233 	}
1234 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1235 		if (page->mapping && trylock_page(page)) {
1236 			lru_add_drain();
1237 			if (page->mapping)
1238 				mlock_vma_page(page);
1239 			unlock_page(page);
1240 		}
1241 	}
1242 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1243 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1244 	if (flags & FOLL_GET)
1245 		get_page_foll(page);
1246 
1247 out:
1248 	return page;
1249 }
1250 
1251 /* NUMA hinting page fault entry point for trans huge pmds */
1252 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1253 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1254 {
1255 	spinlock_t *ptl;
1256 	struct anon_vma *anon_vma = NULL;
1257 	struct page *page;
1258 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1259 	int page_nid = -1, this_nid = numa_node_id();
1260 	int target_nid, last_cpupid = -1;
1261 	bool page_locked;
1262 	bool migrated = false;
1263 	bool was_writable;
1264 	int flags = 0;
1265 
1266 	/* A PROT_NONE fault should not end up here */
1267 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1268 
1269 	ptl = pmd_lock(mm, pmdp);
1270 	if (unlikely(!pmd_same(pmd, *pmdp)))
1271 		goto out_unlock;
1272 
1273 	/*
1274 	 * If there are potential migrations, wait for completion and retry
1275 	 * without disrupting NUMA hinting information. Do not relock and
1276 	 * check_same as the page may no longer be mapped.
1277 	 */
1278 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1279 		page = pmd_page(*pmdp);
1280 		spin_unlock(ptl);
1281 		wait_on_page_locked(page);
1282 		goto out;
1283 	}
1284 
1285 	page = pmd_page(pmd);
1286 	BUG_ON(is_huge_zero_page(page));
1287 	page_nid = page_to_nid(page);
1288 	last_cpupid = page_cpupid_last(page);
1289 	count_vm_numa_event(NUMA_HINT_FAULTS);
1290 	if (page_nid == this_nid) {
1291 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1292 		flags |= TNF_FAULT_LOCAL;
1293 	}
1294 
1295 	/* See similar comment in do_numa_page for explanation */
1296 	if (!(vma->vm_flags & VM_WRITE))
1297 		flags |= TNF_NO_GROUP;
1298 
1299 	/*
1300 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1301 	 * page_table_lock if at all possible
1302 	 */
1303 	page_locked = trylock_page(page);
1304 	target_nid = mpol_misplaced(page, vma, haddr);
1305 	if (target_nid == -1) {
1306 		/* If the page was locked, there are no parallel migrations */
1307 		if (page_locked)
1308 			goto clear_pmdnuma;
1309 	}
1310 
1311 	/* Migration could have started since the pmd_trans_migrating check */
1312 	if (!page_locked) {
1313 		spin_unlock(ptl);
1314 		wait_on_page_locked(page);
1315 		page_nid = -1;
1316 		goto out;
1317 	}
1318 
1319 	/*
1320 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1321 	 * to serialises splits
1322 	 */
1323 	get_page(page);
1324 	spin_unlock(ptl);
1325 	anon_vma = page_lock_anon_vma_read(page);
1326 
1327 	/* Confirm the PMD did not change while page_table_lock was released */
1328 	spin_lock(ptl);
1329 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1330 		unlock_page(page);
1331 		put_page(page);
1332 		page_nid = -1;
1333 		goto out_unlock;
1334 	}
1335 
1336 	/* Bail if we fail to protect against THP splits for any reason */
1337 	if (unlikely(!anon_vma)) {
1338 		put_page(page);
1339 		page_nid = -1;
1340 		goto clear_pmdnuma;
1341 	}
1342 
1343 	/*
1344 	 * Migrate the THP to the requested node, returns with page unlocked
1345 	 * and access rights restored.
1346 	 */
1347 	spin_unlock(ptl);
1348 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1349 				pmdp, pmd, addr, page, target_nid);
1350 	if (migrated) {
1351 		flags |= TNF_MIGRATED;
1352 		page_nid = target_nid;
1353 	} else
1354 		flags |= TNF_MIGRATE_FAIL;
1355 
1356 	goto out;
1357 clear_pmdnuma:
1358 	BUG_ON(!PageLocked(page));
1359 	was_writable = pmd_write(pmd);
1360 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1361 	pmd = pmd_mkyoung(pmd);
1362 	if (was_writable)
1363 		pmd = pmd_mkwrite(pmd);
1364 	set_pmd_at(mm, haddr, pmdp, pmd);
1365 	update_mmu_cache_pmd(vma, addr, pmdp);
1366 	unlock_page(page);
1367 out_unlock:
1368 	spin_unlock(ptl);
1369 
1370 out:
1371 	if (anon_vma)
1372 		page_unlock_anon_vma_read(anon_vma);
1373 
1374 	if (page_nid != -1)
1375 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1376 
1377 	return 0;
1378 }
1379 
1380 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1381 		 pmd_t *pmd, unsigned long addr)
1382 {
1383 	spinlock_t *ptl;
1384 	int ret = 0;
1385 
1386 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1387 		struct page *page;
1388 		pgtable_t pgtable;
1389 		pmd_t orig_pmd;
1390 		/*
1391 		 * For architectures like ppc64 we look at deposited pgtable
1392 		 * when calling pmdp_get_and_clear. So do the
1393 		 * pgtable_trans_huge_withdraw after finishing pmdp related
1394 		 * operations.
1395 		 */
1396 		orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1397 						   tlb->fullmm);
1398 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1399 		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1400 		if (is_huge_zero_pmd(orig_pmd)) {
1401 			atomic_long_dec(&tlb->mm->nr_ptes);
1402 			spin_unlock(ptl);
1403 			put_huge_zero_page();
1404 		} else {
1405 			page = pmd_page(orig_pmd);
1406 			page_remove_rmap(page);
1407 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1408 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1409 			VM_BUG_ON_PAGE(!PageHead(page), page);
1410 			atomic_long_dec(&tlb->mm->nr_ptes);
1411 			spin_unlock(ptl);
1412 			tlb_remove_page(tlb, page);
1413 		}
1414 		pte_free(tlb->mm, pgtable);
1415 		ret = 1;
1416 	}
1417 	return ret;
1418 }
1419 
1420 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1421 		  unsigned long old_addr,
1422 		  unsigned long new_addr, unsigned long old_end,
1423 		  pmd_t *old_pmd, pmd_t *new_pmd)
1424 {
1425 	spinlock_t *old_ptl, *new_ptl;
1426 	int ret = 0;
1427 	pmd_t pmd;
1428 
1429 	struct mm_struct *mm = vma->vm_mm;
1430 
1431 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1432 	    (new_addr & ~HPAGE_PMD_MASK) ||
1433 	    old_end - old_addr < HPAGE_PMD_SIZE ||
1434 	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1435 		goto out;
1436 
1437 	/*
1438 	 * The destination pmd shouldn't be established, free_pgtables()
1439 	 * should have release it.
1440 	 */
1441 	if (WARN_ON(!pmd_none(*new_pmd))) {
1442 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1443 		goto out;
1444 	}
1445 
1446 	/*
1447 	 * We don't have to worry about the ordering of src and dst
1448 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1449 	 */
1450 	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1451 	if (ret == 1) {
1452 		new_ptl = pmd_lockptr(mm, new_pmd);
1453 		if (new_ptl != old_ptl)
1454 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1455 		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1456 		VM_BUG_ON(!pmd_none(*new_pmd));
1457 
1458 		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1459 			pgtable_t pgtable;
1460 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1461 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1462 		}
1463 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1464 		if (new_ptl != old_ptl)
1465 			spin_unlock(new_ptl);
1466 		spin_unlock(old_ptl);
1467 	}
1468 out:
1469 	return ret;
1470 }
1471 
1472 /*
1473  * Returns
1474  *  - 0 if PMD could not be locked
1475  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1476  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1477  */
1478 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1479 		unsigned long addr, pgprot_t newprot, int prot_numa)
1480 {
1481 	struct mm_struct *mm = vma->vm_mm;
1482 	spinlock_t *ptl;
1483 	int ret = 0;
1484 
1485 	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1486 		pmd_t entry;
1487 		bool preserve_write = prot_numa && pmd_write(*pmd);
1488 		ret = 1;
1489 
1490 		/*
1491 		 * Avoid trapping faults against the zero page. The read-only
1492 		 * data is likely to be read-cached on the local CPU and
1493 		 * local/remote hits to the zero page are not interesting.
1494 		 */
1495 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1496 			spin_unlock(ptl);
1497 			return ret;
1498 		}
1499 
1500 		if (!prot_numa || !pmd_protnone(*pmd)) {
1501 			entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1502 			entry = pmd_modify(entry, newprot);
1503 			if (preserve_write)
1504 				entry = pmd_mkwrite(entry);
1505 			ret = HPAGE_PMD_NR;
1506 			set_pmd_at(mm, addr, pmd, entry);
1507 			BUG_ON(!preserve_write && pmd_write(entry));
1508 		}
1509 		spin_unlock(ptl);
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 /*
1516  * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1517  * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1518  *
1519  * Note that if it returns 1, this routine returns without unlocking page
1520  * table locks. So callers must unlock them.
1521  */
1522 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1523 		spinlock_t **ptl)
1524 {
1525 	*ptl = pmd_lock(vma->vm_mm, pmd);
1526 	if (likely(pmd_trans_huge(*pmd))) {
1527 		if (unlikely(pmd_trans_splitting(*pmd))) {
1528 			spin_unlock(*ptl);
1529 			wait_split_huge_page(vma->anon_vma, pmd);
1530 			return -1;
1531 		} else {
1532 			/* Thp mapped by 'pmd' is stable, so we can
1533 			 * handle it as it is. */
1534 			return 1;
1535 		}
1536 	}
1537 	spin_unlock(*ptl);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * This function returns whether a given @page is mapped onto the @address
1543  * in the virtual space of @mm.
1544  *
1545  * When it's true, this function returns *pmd with holding the page table lock
1546  * and passing it back to the caller via @ptl.
1547  * If it's false, returns NULL without holding the page table lock.
1548  */
1549 pmd_t *page_check_address_pmd(struct page *page,
1550 			      struct mm_struct *mm,
1551 			      unsigned long address,
1552 			      enum page_check_address_pmd_flag flag,
1553 			      spinlock_t **ptl)
1554 {
1555 	pgd_t *pgd;
1556 	pud_t *pud;
1557 	pmd_t *pmd;
1558 
1559 	if (address & ~HPAGE_PMD_MASK)
1560 		return NULL;
1561 
1562 	pgd = pgd_offset(mm, address);
1563 	if (!pgd_present(*pgd))
1564 		return NULL;
1565 	pud = pud_offset(pgd, address);
1566 	if (!pud_present(*pud))
1567 		return NULL;
1568 	pmd = pmd_offset(pud, address);
1569 
1570 	*ptl = pmd_lock(mm, pmd);
1571 	if (!pmd_present(*pmd))
1572 		goto unlock;
1573 	if (pmd_page(*pmd) != page)
1574 		goto unlock;
1575 	/*
1576 	 * split_vma() may create temporary aliased mappings. There is
1577 	 * no risk as long as all huge pmd are found and have their
1578 	 * splitting bit set before __split_huge_page_refcount
1579 	 * runs. Finding the same huge pmd more than once during the
1580 	 * same rmap walk is not a problem.
1581 	 */
1582 	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1583 	    pmd_trans_splitting(*pmd))
1584 		goto unlock;
1585 	if (pmd_trans_huge(*pmd)) {
1586 		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1587 			  !pmd_trans_splitting(*pmd));
1588 		return pmd;
1589 	}
1590 unlock:
1591 	spin_unlock(*ptl);
1592 	return NULL;
1593 }
1594 
1595 static int __split_huge_page_splitting(struct page *page,
1596 				       struct vm_area_struct *vma,
1597 				       unsigned long address)
1598 {
1599 	struct mm_struct *mm = vma->vm_mm;
1600 	spinlock_t *ptl;
1601 	pmd_t *pmd;
1602 	int ret = 0;
1603 	/* For mmu_notifiers */
1604 	const unsigned long mmun_start = address;
1605 	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1606 
1607 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1608 	pmd = page_check_address_pmd(page, mm, address,
1609 			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1610 	if (pmd) {
1611 		/*
1612 		 * We can't temporarily set the pmd to null in order
1613 		 * to split it, the pmd must remain marked huge at all
1614 		 * times or the VM won't take the pmd_trans_huge paths
1615 		 * and it won't wait on the anon_vma->root->rwsem to
1616 		 * serialize against split_huge_page*.
1617 		 */
1618 		pmdp_splitting_flush(vma, address, pmd);
1619 
1620 		ret = 1;
1621 		spin_unlock(ptl);
1622 	}
1623 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1624 
1625 	return ret;
1626 }
1627 
1628 static void __split_huge_page_refcount(struct page *page,
1629 				       struct list_head *list)
1630 {
1631 	int i;
1632 	struct zone *zone = page_zone(page);
1633 	struct lruvec *lruvec;
1634 	int tail_count = 0;
1635 
1636 	/* prevent PageLRU to go away from under us, and freeze lru stats */
1637 	spin_lock_irq(&zone->lru_lock);
1638 	lruvec = mem_cgroup_page_lruvec(page, zone);
1639 
1640 	compound_lock(page);
1641 	/* complete memcg works before add pages to LRU */
1642 	mem_cgroup_split_huge_fixup(page);
1643 
1644 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1645 		struct page *page_tail = page + i;
1646 
1647 		/* tail_page->_mapcount cannot change */
1648 		BUG_ON(page_mapcount(page_tail) < 0);
1649 		tail_count += page_mapcount(page_tail);
1650 		/* check for overflow */
1651 		BUG_ON(tail_count < 0);
1652 		BUG_ON(atomic_read(&page_tail->_count) != 0);
1653 		/*
1654 		 * tail_page->_count is zero and not changing from
1655 		 * under us. But get_page_unless_zero() may be running
1656 		 * from under us on the tail_page. If we used
1657 		 * atomic_set() below instead of atomic_add(), we
1658 		 * would then run atomic_set() concurrently with
1659 		 * get_page_unless_zero(), and atomic_set() is
1660 		 * implemented in C not using locked ops. spin_unlock
1661 		 * on x86 sometime uses locked ops because of PPro
1662 		 * errata 66, 92, so unless somebody can guarantee
1663 		 * atomic_set() here would be safe on all archs (and
1664 		 * not only on x86), it's safer to use atomic_add().
1665 		 */
1666 		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1667 			   &page_tail->_count);
1668 
1669 		/* after clearing PageTail the gup refcount can be released */
1670 		smp_mb__after_atomic();
1671 
1672 		/*
1673 		 * retain hwpoison flag of the poisoned tail page:
1674 		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1675 		 *   by the memory-failure.
1676 		 */
1677 		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1678 		page_tail->flags |= (page->flags &
1679 				     ((1L << PG_referenced) |
1680 				      (1L << PG_swapbacked) |
1681 				      (1L << PG_mlocked) |
1682 				      (1L << PG_uptodate) |
1683 				      (1L << PG_active) |
1684 				      (1L << PG_unevictable)));
1685 		page_tail->flags |= (1L << PG_dirty);
1686 
1687 		/* clear PageTail before overwriting first_page */
1688 		smp_wmb();
1689 
1690 		/*
1691 		 * __split_huge_page_splitting() already set the
1692 		 * splitting bit in all pmd that could map this
1693 		 * hugepage, that will ensure no CPU can alter the
1694 		 * mapcount on the head page. The mapcount is only
1695 		 * accounted in the head page and it has to be
1696 		 * transferred to all tail pages in the below code. So
1697 		 * for this code to be safe, the split the mapcount
1698 		 * can't change. But that doesn't mean userland can't
1699 		 * keep changing and reading the page contents while
1700 		 * we transfer the mapcount, so the pmd splitting
1701 		 * status is achieved setting a reserved bit in the
1702 		 * pmd, not by clearing the present bit.
1703 		*/
1704 		page_tail->_mapcount = page->_mapcount;
1705 
1706 		BUG_ON(page_tail->mapping);
1707 		page_tail->mapping = page->mapping;
1708 
1709 		page_tail->index = page->index + i;
1710 		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1711 
1712 		BUG_ON(!PageAnon(page_tail));
1713 		BUG_ON(!PageUptodate(page_tail));
1714 		BUG_ON(!PageDirty(page_tail));
1715 		BUG_ON(!PageSwapBacked(page_tail));
1716 
1717 		lru_add_page_tail(page, page_tail, lruvec, list);
1718 	}
1719 	atomic_sub(tail_count, &page->_count);
1720 	BUG_ON(atomic_read(&page->_count) <= 0);
1721 
1722 	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1723 
1724 	ClearPageCompound(page);
1725 	compound_unlock(page);
1726 	spin_unlock_irq(&zone->lru_lock);
1727 
1728 	for (i = 1; i < HPAGE_PMD_NR; i++) {
1729 		struct page *page_tail = page + i;
1730 		BUG_ON(page_count(page_tail) <= 0);
1731 		/*
1732 		 * Tail pages may be freed if there wasn't any mapping
1733 		 * like if add_to_swap() is running on a lru page that
1734 		 * had its mapping zapped. And freeing these pages
1735 		 * requires taking the lru_lock so we do the put_page
1736 		 * of the tail pages after the split is complete.
1737 		 */
1738 		put_page(page_tail);
1739 	}
1740 
1741 	/*
1742 	 * Only the head page (now become a regular page) is required
1743 	 * to be pinned by the caller.
1744 	 */
1745 	BUG_ON(page_count(page) <= 0);
1746 }
1747 
1748 static int __split_huge_page_map(struct page *page,
1749 				 struct vm_area_struct *vma,
1750 				 unsigned long address)
1751 {
1752 	struct mm_struct *mm = vma->vm_mm;
1753 	spinlock_t *ptl;
1754 	pmd_t *pmd, _pmd;
1755 	int ret = 0, i;
1756 	pgtable_t pgtable;
1757 	unsigned long haddr;
1758 
1759 	pmd = page_check_address_pmd(page, mm, address,
1760 			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1761 	if (pmd) {
1762 		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1763 		pmd_populate(mm, &_pmd, pgtable);
1764 		if (pmd_write(*pmd))
1765 			BUG_ON(page_mapcount(page) != 1);
1766 
1767 		haddr = address;
1768 		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1769 			pte_t *pte, entry;
1770 			BUG_ON(PageCompound(page+i));
1771 			/*
1772 			 * Note that NUMA hinting access restrictions are not
1773 			 * transferred to avoid any possibility of altering
1774 			 * permissions across VMAs.
1775 			 */
1776 			entry = mk_pte(page + i, vma->vm_page_prot);
1777 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1778 			if (!pmd_write(*pmd))
1779 				entry = pte_wrprotect(entry);
1780 			if (!pmd_young(*pmd))
1781 				entry = pte_mkold(entry);
1782 			pte = pte_offset_map(&_pmd, haddr);
1783 			BUG_ON(!pte_none(*pte));
1784 			set_pte_at(mm, haddr, pte, entry);
1785 			pte_unmap(pte);
1786 		}
1787 
1788 		smp_wmb(); /* make pte visible before pmd */
1789 		/*
1790 		 * Up to this point the pmd is present and huge and
1791 		 * userland has the whole access to the hugepage
1792 		 * during the split (which happens in place). If we
1793 		 * overwrite the pmd with the not-huge version
1794 		 * pointing to the pte here (which of course we could
1795 		 * if all CPUs were bug free), userland could trigger
1796 		 * a small page size TLB miss on the small sized TLB
1797 		 * while the hugepage TLB entry is still established
1798 		 * in the huge TLB. Some CPU doesn't like that. See
1799 		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1800 		 * Erratum 383 on page 93. Intel should be safe but is
1801 		 * also warns that it's only safe if the permission
1802 		 * and cache attributes of the two entries loaded in
1803 		 * the two TLB is identical (which should be the case
1804 		 * here). But it is generally safer to never allow
1805 		 * small and huge TLB entries for the same virtual
1806 		 * address to be loaded simultaneously. So instead of
1807 		 * doing "pmd_populate(); flush_tlb_range();" we first
1808 		 * mark the current pmd notpresent (atomically because
1809 		 * here the pmd_trans_huge and pmd_trans_splitting
1810 		 * must remain set at all times on the pmd until the
1811 		 * split is complete for this pmd), then we flush the
1812 		 * SMP TLB and finally we write the non-huge version
1813 		 * of the pmd entry with pmd_populate.
1814 		 */
1815 		pmdp_invalidate(vma, address, pmd);
1816 		pmd_populate(mm, pmd, pgtable);
1817 		ret = 1;
1818 		spin_unlock(ptl);
1819 	}
1820 
1821 	return ret;
1822 }
1823 
1824 /* must be called with anon_vma->root->rwsem held */
1825 static void __split_huge_page(struct page *page,
1826 			      struct anon_vma *anon_vma,
1827 			      struct list_head *list)
1828 {
1829 	int mapcount, mapcount2;
1830 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1831 	struct anon_vma_chain *avc;
1832 
1833 	BUG_ON(!PageHead(page));
1834 	BUG_ON(PageTail(page));
1835 
1836 	mapcount = 0;
1837 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1838 		struct vm_area_struct *vma = avc->vma;
1839 		unsigned long addr = vma_address(page, vma);
1840 		BUG_ON(is_vma_temporary_stack(vma));
1841 		mapcount += __split_huge_page_splitting(page, vma, addr);
1842 	}
1843 	/*
1844 	 * It is critical that new vmas are added to the tail of the
1845 	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1846 	 * and establishes a child pmd before
1847 	 * __split_huge_page_splitting() freezes the parent pmd (so if
1848 	 * we fail to prevent copy_huge_pmd() from running until the
1849 	 * whole __split_huge_page() is complete), we will still see
1850 	 * the newly established pmd of the child later during the
1851 	 * walk, to be able to set it as pmd_trans_splitting too.
1852 	 */
1853 	if (mapcount != page_mapcount(page)) {
1854 		pr_err("mapcount %d page_mapcount %d\n",
1855 			mapcount, page_mapcount(page));
1856 		BUG();
1857 	}
1858 
1859 	__split_huge_page_refcount(page, list);
1860 
1861 	mapcount2 = 0;
1862 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1863 		struct vm_area_struct *vma = avc->vma;
1864 		unsigned long addr = vma_address(page, vma);
1865 		BUG_ON(is_vma_temporary_stack(vma));
1866 		mapcount2 += __split_huge_page_map(page, vma, addr);
1867 	}
1868 	if (mapcount != mapcount2) {
1869 		pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1870 			mapcount, mapcount2, page_mapcount(page));
1871 		BUG();
1872 	}
1873 }
1874 
1875 /*
1876  * Split a hugepage into normal pages. This doesn't change the position of head
1877  * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1878  * @list. Both head page and tail pages will inherit mapping, flags, and so on
1879  * from the hugepage.
1880  * Return 0 if the hugepage is split successfully otherwise return 1.
1881  */
1882 int split_huge_page_to_list(struct page *page, struct list_head *list)
1883 {
1884 	struct anon_vma *anon_vma;
1885 	int ret = 1;
1886 
1887 	BUG_ON(is_huge_zero_page(page));
1888 	BUG_ON(!PageAnon(page));
1889 
1890 	/*
1891 	 * The caller does not necessarily hold an mmap_sem that would prevent
1892 	 * the anon_vma disappearing so we first we take a reference to it
1893 	 * and then lock the anon_vma for write. This is similar to
1894 	 * page_lock_anon_vma_read except the write lock is taken to serialise
1895 	 * against parallel split or collapse operations.
1896 	 */
1897 	anon_vma = page_get_anon_vma(page);
1898 	if (!anon_vma)
1899 		goto out;
1900 	anon_vma_lock_write(anon_vma);
1901 
1902 	ret = 0;
1903 	if (!PageCompound(page))
1904 		goto out_unlock;
1905 
1906 	BUG_ON(!PageSwapBacked(page));
1907 	__split_huge_page(page, anon_vma, list);
1908 	count_vm_event(THP_SPLIT);
1909 
1910 	BUG_ON(PageCompound(page));
1911 out_unlock:
1912 	anon_vma_unlock_write(anon_vma);
1913 	put_anon_vma(anon_vma);
1914 out:
1915 	return ret;
1916 }
1917 
1918 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1919 
1920 int hugepage_madvise(struct vm_area_struct *vma,
1921 		     unsigned long *vm_flags, int advice)
1922 {
1923 	switch (advice) {
1924 	case MADV_HUGEPAGE:
1925 #ifdef CONFIG_S390
1926 		/*
1927 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1928 		 * can't handle this properly after s390_enable_sie, so we simply
1929 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1930 		 */
1931 		if (mm_has_pgste(vma->vm_mm))
1932 			return 0;
1933 #endif
1934 		/*
1935 		 * Be somewhat over-protective like KSM for now!
1936 		 */
1937 		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1938 			return -EINVAL;
1939 		*vm_flags &= ~VM_NOHUGEPAGE;
1940 		*vm_flags |= VM_HUGEPAGE;
1941 		/*
1942 		 * If the vma become good for khugepaged to scan,
1943 		 * register it here without waiting a page fault that
1944 		 * may not happen any time soon.
1945 		 */
1946 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1947 			return -ENOMEM;
1948 		break;
1949 	case MADV_NOHUGEPAGE:
1950 		/*
1951 		 * Be somewhat over-protective like KSM for now!
1952 		 */
1953 		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1954 			return -EINVAL;
1955 		*vm_flags &= ~VM_HUGEPAGE;
1956 		*vm_flags |= VM_NOHUGEPAGE;
1957 		/*
1958 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1959 		 * this vma even if we leave the mm registered in khugepaged if
1960 		 * it got registered before VM_NOHUGEPAGE was set.
1961 		 */
1962 		break;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static int __init khugepaged_slab_init(void)
1969 {
1970 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1971 					  sizeof(struct mm_slot),
1972 					  __alignof__(struct mm_slot), 0, NULL);
1973 	if (!mm_slot_cache)
1974 		return -ENOMEM;
1975 
1976 	return 0;
1977 }
1978 
1979 static inline struct mm_slot *alloc_mm_slot(void)
1980 {
1981 	if (!mm_slot_cache)	/* initialization failed */
1982 		return NULL;
1983 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1984 }
1985 
1986 static inline void free_mm_slot(struct mm_slot *mm_slot)
1987 {
1988 	kmem_cache_free(mm_slot_cache, mm_slot);
1989 }
1990 
1991 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1992 {
1993 	struct mm_slot *mm_slot;
1994 
1995 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1996 		if (mm == mm_slot->mm)
1997 			return mm_slot;
1998 
1999 	return NULL;
2000 }
2001 
2002 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2003 				    struct mm_slot *mm_slot)
2004 {
2005 	mm_slot->mm = mm;
2006 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2007 }
2008 
2009 static inline int khugepaged_test_exit(struct mm_struct *mm)
2010 {
2011 	return atomic_read(&mm->mm_users) == 0;
2012 }
2013 
2014 int __khugepaged_enter(struct mm_struct *mm)
2015 {
2016 	struct mm_slot *mm_slot;
2017 	int wakeup;
2018 
2019 	mm_slot = alloc_mm_slot();
2020 	if (!mm_slot)
2021 		return -ENOMEM;
2022 
2023 	/* __khugepaged_exit() must not run from under us */
2024 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2025 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2026 		free_mm_slot(mm_slot);
2027 		return 0;
2028 	}
2029 
2030 	spin_lock(&khugepaged_mm_lock);
2031 	insert_to_mm_slots_hash(mm, mm_slot);
2032 	/*
2033 	 * Insert just behind the scanning cursor, to let the area settle
2034 	 * down a little.
2035 	 */
2036 	wakeup = list_empty(&khugepaged_scan.mm_head);
2037 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2038 	spin_unlock(&khugepaged_mm_lock);
2039 
2040 	atomic_inc(&mm->mm_count);
2041 	if (wakeup)
2042 		wake_up_interruptible(&khugepaged_wait);
2043 
2044 	return 0;
2045 }
2046 
2047 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2048 			       unsigned long vm_flags)
2049 {
2050 	unsigned long hstart, hend;
2051 	if (!vma->anon_vma)
2052 		/*
2053 		 * Not yet faulted in so we will register later in the
2054 		 * page fault if needed.
2055 		 */
2056 		return 0;
2057 	if (vma->vm_ops)
2058 		/* khugepaged not yet working on file or special mappings */
2059 		return 0;
2060 	VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2061 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2062 	hend = vma->vm_end & HPAGE_PMD_MASK;
2063 	if (hstart < hend)
2064 		return khugepaged_enter(vma, vm_flags);
2065 	return 0;
2066 }
2067 
2068 void __khugepaged_exit(struct mm_struct *mm)
2069 {
2070 	struct mm_slot *mm_slot;
2071 	int free = 0;
2072 
2073 	spin_lock(&khugepaged_mm_lock);
2074 	mm_slot = get_mm_slot(mm);
2075 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2076 		hash_del(&mm_slot->hash);
2077 		list_del(&mm_slot->mm_node);
2078 		free = 1;
2079 	}
2080 	spin_unlock(&khugepaged_mm_lock);
2081 
2082 	if (free) {
2083 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2084 		free_mm_slot(mm_slot);
2085 		mmdrop(mm);
2086 	} else if (mm_slot) {
2087 		/*
2088 		 * This is required to serialize against
2089 		 * khugepaged_test_exit() (which is guaranteed to run
2090 		 * under mmap sem read mode). Stop here (after we
2091 		 * return all pagetables will be destroyed) until
2092 		 * khugepaged has finished working on the pagetables
2093 		 * under the mmap_sem.
2094 		 */
2095 		down_write(&mm->mmap_sem);
2096 		up_write(&mm->mmap_sem);
2097 	}
2098 }
2099 
2100 static void release_pte_page(struct page *page)
2101 {
2102 	/* 0 stands for page_is_file_cache(page) == false */
2103 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2104 	unlock_page(page);
2105 	putback_lru_page(page);
2106 }
2107 
2108 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2109 {
2110 	while (--_pte >= pte) {
2111 		pte_t pteval = *_pte;
2112 		if (!pte_none(pteval))
2113 			release_pte_page(pte_page(pteval));
2114 	}
2115 }
2116 
2117 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2118 					unsigned long address,
2119 					pte_t *pte)
2120 {
2121 	struct page *page;
2122 	pte_t *_pte;
2123 	int none = 0;
2124 	bool referenced = false, writable = false;
2125 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2126 	     _pte++, address += PAGE_SIZE) {
2127 		pte_t pteval = *_pte;
2128 		if (pte_none(pteval)) {
2129 			if (++none <= khugepaged_max_ptes_none)
2130 				continue;
2131 			else
2132 				goto out;
2133 		}
2134 		if (!pte_present(pteval))
2135 			goto out;
2136 		page = vm_normal_page(vma, address, pteval);
2137 		if (unlikely(!page))
2138 			goto out;
2139 
2140 		VM_BUG_ON_PAGE(PageCompound(page), page);
2141 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2142 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2143 
2144 		/*
2145 		 * We can do it before isolate_lru_page because the
2146 		 * page can't be freed from under us. NOTE: PG_lock
2147 		 * is needed to serialize against split_huge_page
2148 		 * when invoked from the VM.
2149 		 */
2150 		if (!trylock_page(page))
2151 			goto out;
2152 
2153 		/*
2154 		 * cannot use mapcount: can't collapse if there's a gup pin.
2155 		 * The page must only be referenced by the scanned process
2156 		 * and page swap cache.
2157 		 */
2158 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2159 			unlock_page(page);
2160 			goto out;
2161 		}
2162 		if (pte_write(pteval)) {
2163 			writable = true;
2164 		} else {
2165 			if (PageSwapCache(page) && !reuse_swap_page(page)) {
2166 				unlock_page(page);
2167 				goto out;
2168 			}
2169 			/*
2170 			 * Page is not in the swap cache. It can be collapsed
2171 			 * into a THP.
2172 			 */
2173 		}
2174 
2175 		/*
2176 		 * Isolate the page to avoid collapsing an hugepage
2177 		 * currently in use by the VM.
2178 		 */
2179 		if (isolate_lru_page(page)) {
2180 			unlock_page(page);
2181 			goto out;
2182 		}
2183 		/* 0 stands for page_is_file_cache(page) == false */
2184 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2185 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2186 		VM_BUG_ON_PAGE(PageLRU(page), page);
2187 
2188 		/* If there is no mapped pte young don't collapse the page */
2189 		if (pte_young(pteval) || PageReferenced(page) ||
2190 		    mmu_notifier_test_young(vma->vm_mm, address))
2191 			referenced = true;
2192 	}
2193 	if (likely(referenced && writable))
2194 		return 1;
2195 out:
2196 	release_pte_pages(pte, _pte);
2197 	return 0;
2198 }
2199 
2200 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2201 				      struct vm_area_struct *vma,
2202 				      unsigned long address,
2203 				      spinlock_t *ptl)
2204 {
2205 	pte_t *_pte;
2206 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2207 		pte_t pteval = *_pte;
2208 		struct page *src_page;
2209 
2210 		if (pte_none(pteval)) {
2211 			clear_user_highpage(page, address);
2212 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2213 		} else {
2214 			src_page = pte_page(pteval);
2215 			copy_user_highpage(page, src_page, address, vma);
2216 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2217 			release_pte_page(src_page);
2218 			/*
2219 			 * ptl mostly unnecessary, but preempt has to
2220 			 * be disabled to update the per-cpu stats
2221 			 * inside page_remove_rmap().
2222 			 */
2223 			spin_lock(ptl);
2224 			/*
2225 			 * paravirt calls inside pte_clear here are
2226 			 * superfluous.
2227 			 */
2228 			pte_clear(vma->vm_mm, address, _pte);
2229 			page_remove_rmap(src_page);
2230 			spin_unlock(ptl);
2231 			free_page_and_swap_cache(src_page);
2232 		}
2233 
2234 		address += PAGE_SIZE;
2235 		page++;
2236 	}
2237 }
2238 
2239 static void khugepaged_alloc_sleep(void)
2240 {
2241 	wait_event_freezable_timeout(khugepaged_wait, false,
2242 			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2243 }
2244 
2245 static int khugepaged_node_load[MAX_NUMNODES];
2246 
2247 static bool khugepaged_scan_abort(int nid)
2248 {
2249 	int i;
2250 
2251 	/*
2252 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2253 	 * allocate memory locally.
2254 	 */
2255 	if (!zone_reclaim_mode)
2256 		return false;
2257 
2258 	/* If there is a count for this node already, it must be acceptable */
2259 	if (khugepaged_node_load[nid])
2260 		return false;
2261 
2262 	for (i = 0; i < MAX_NUMNODES; i++) {
2263 		if (!khugepaged_node_load[i])
2264 			continue;
2265 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2266 			return true;
2267 	}
2268 	return false;
2269 }
2270 
2271 #ifdef CONFIG_NUMA
2272 static int khugepaged_find_target_node(void)
2273 {
2274 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2275 	int nid, target_node = 0, max_value = 0;
2276 
2277 	/* find first node with max normal pages hit */
2278 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2279 		if (khugepaged_node_load[nid] > max_value) {
2280 			max_value = khugepaged_node_load[nid];
2281 			target_node = nid;
2282 		}
2283 
2284 	/* do some balance if several nodes have the same hit record */
2285 	if (target_node <= last_khugepaged_target_node)
2286 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2287 				nid++)
2288 			if (max_value == khugepaged_node_load[nid]) {
2289 				target_node = nid;
2290 				break;
2291 			}
2292 
2293 	last_khugepaged_target_node = target_node;
2294 	return target_node;
2295 }
2296 
2297 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2298 {
2299 	if (IS_ERR(*hpage)) {
2300 		if (!*wait)
2301 			return false;
2302 
2303 		*wait = false;
2304 		*hpage = NULL;
2305 		khugepaged_alloc_sleep();
2306 	} else if (*hpage) {
2307 		put_page(*hpage);
2308 		*hpage = NULL;
2309 	}
2310 
2311 	return true;
2312 }
2313 
2314 static struct page
2315 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2316 		       struct vm_area_struct *vma, unsigned long address,
2317 		       int node)
2318 {
2319 	VM_BUG_ON_PAGE(*hpage, *hpage);
2320 
2321 	/*
2322 	 * Before allocating the hugepage, release the mmap_sem read lock.
2323 	 * The allocation can take potentially a long time if it involves
2324 	 * sync compaction, and we do not need to hold the mmap_sem during
2325 	 * that. We will recheck the vma after taking it again in write mode.
2326 	 */
2327 	up_read(&mm->mmap_sem);
2328 
2329 	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2330 		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2331 	if (unlikely(!*hpage)) {
2332 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2333 		*hpage = ERR_PTR(-ENOMEM);
2334 		return NULL;
2335 	}
2336 
2337 	count_vm_event(THP_COLLAPSE_ALLOC);
2338 	return *hpage;
2339 }
2340 #else
2341 static int khugepaged_find_target_node(void)
2342 {
2343 	return 0;
2344 }
2345 
2346 static inline struct page *alloc_hugepage(int defrag)
2347 {
2348 	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2349 			   HPAGE_PMD_ORDER);
2350 }
2351 
2352 static struct page *khugepaged_alloc_hugepage(bool *wait)
2353 {
2354 	struct page *hpage;
2355 
2356 	do {
2357 		hpage = alloc_hugepage(khugepaged_defrag());
2358 		if (!hpage) {
2359 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2360 			if (!*wait)
2361 				return NULL;
2362 
2363 			*wait = false;
2364 			khugepaged_alloc_sleep();
2365 		} else
2366 			count_vm_event(THP_COLLAPSE_ALLOC);
2367 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2368 
2369 	return hpage;
2370 }
2371 
2372 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2373 {
2374 	if (!*hpage)
2375 		*hpage = khugepaged_alloc_hugepage(wait);
2376 
2377 	if (unlikely(!*hpage))
2378 		return false;
2379 
2380 	return true;
2381 }
2382 
2383 static struct page
2384 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2385 		       struct vm_area_struct *vma, unsigned long address,
2386 		       int node)
2387 {
2388 	up_read(&mm->mmap_sem);
2389 	VM_BUG_ON(!*hpage);
2390 	return  *hpage;
2391 }
2392 #endif
2393 
2394 static bool hugepage_vma_check(struct vm_area_struct *vma)
2395 {
2396 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2397 	    (vma->vm_flags & VM_NOHUGEPAGE))
2398 		return false;
2399 
2400 	if (!vma->anon_vma || vma->vm_ops)
2401 		return false;
2402 	if (is_vma_temporary_stack(vma))
2403 		return false;
2404 	VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2405 	return true;
2406 }
2407 
2408 static void collapse_huge_page(struct mm_struct *mm,
2409 				   unsigned long address,
2410 				   struct page **hpage,
2411 				   struct vm_area_struct *vma,
2412 				   int node)
2413 {
2414 	pmd_t *pmd, _pmd;
2415 	pte_t *pte;
2416 	pgtable_t pgtable;
2417 	struct page *new_page;
2418 	spinlock_t *pmd_ptl, *pte_ptl;
2419 	int isolated;
2420 	unsigned long hstart, hend;
2421 	struct mem_cgroup *memcg;
2422 	unsigned long mmun_start;	/* For mmu_notifiers */
2423 	unsigned long mmun_end;		/* For mmu_notifiers */
2424 
2425 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2426 
2427 	/* release the mmap_sem read lock. */
2428 	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2429 	if (!new_page)
2430 		return;
2431 
2432 	if (unlikely(mem_cgroup_try_charge(new_page, mm,
2433 					   GFP_TRANSHUGE, &memcg)))
2434 		return;
2435 
2436 	/*
2437 	 * Prevent all access to pagetables with the exception of
2438 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2439 	 * handled by the anon_vma lock + PG_lock.
2440 	 */
2441 	down_write(&mm->mmap_sem);
2442 	if (unlikely(khugepaged_test_exit(mm)))
2443 		goto out;
2444 
2445 	vma = find_vma(mm, address);
2446 	if (!vma)
2447 		goto out;
2448 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2449 	hend = vma->vm_end & HPAGE_PMD_MASK;
2450 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2451 		goto out;
2452 	if (!hugepage_vma_check(vma))
2453 		goto out;
2454 	pmd = mm_find_pmd(mm, address);
2455 	if (!pmd)
2456 		goto out;
2457 
2458 	anon_vma_lock_write(vma->anon_vma);
2459 
2460 	pte = pte_offset_map(pmd, address);
2461 	pte_ptl = pte_lockptr(mm, pmd);
2462 
2463 	mmun_start = address;
2464 	mmun_end   = address + HPAGE_PMD_SIZE;
2465 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2466 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2467 	/*
2468 	 * After this gup_fast can't run anymore. This also removes
2469 	 * any huge TLB entry from the CPU so we won't allow
2470 	 * huge and small TLB entries for the same virtual address
2471 	 * to avoid the risk of CPU bugs in that area.
2472 	 */
2473 	_pmd = pmdp_clear_flush(vma, address, pmd);
2474 	spin_unlock(pmd_ptl);
2475 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2476 
2477 	spin_lock(pte_ptl);
2478 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2479 	spin_unlock(pte_ptl);
2480 
2481 	if (unlikely(!isolated)) {
2482 		pte_unmap(pte);
2483 		spin_lock(pmd_ptl);
2484 		BUG_ON(!pmd_none(*pmd));
2485 		/*
2486 		 * We can only use set_pmd_at when establishing
2487 		 * hugepmds and never for establishing regular pmds that
2488 		 * points to regular pagetables. Use pmd_populate for that
2489 		 */
2490 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2491 		spin_unlock(pmd_ptl);
2492 		anon_vma_unlock_write(vma->anon_vma);
2493 		goto out;
2494 	}
2495 
2496 	/*
2497 	 * All pages are isolated and locked so anon_vma rmap
2498 	 * can't run anymore.
2499 	 */
2500 	anon_vma_unlock_write(vma->anon_vma);
2501 
2502 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2503 	pte_unmap(pte);
2504 	__SetPageUptodate(new_page);
2505 	pgtable = pmd_pgtable(_pmd);
2506 
2507 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2508 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2509 
2510 	/*
2511 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2512 	 * this is needed to avoid the copy_huge_page writes to become
2513 	 * visible after the set_pmd_at() write.
2514 	 */
2515 	smp_wmb();
2516 
2517 	spin_lock(pmd_ptl);
2518 	BUG_ON(!pmd_none(*pmd));
2519 	page_add_new_anon_rmap(new_page, vma, address);
2520 	mem_cgroup_commit_charge(new_page, memcg, false);
2521 	lru_cache_add_active_or_unevictable(new_page, vma);
2522 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2523 	set_pmd_at(mm, address, pmd, _pmd);
2524 	update_mmu_cache_pmd(vma, address, pmd);
2525 	spin_unlock(pmd_ptl);
2526 
2527 	*hpage = NULL;
2528 
2529 	khugepaged_pages_collapsed++;
2530 out_up_write:
2531 	up_write(&mm->mmap_sem);
2532 	return;
2533 
2534 out:
2535 	mem_cgroup_cancel_charge(new_page, memcg);
2536 	goto out_up_write;
2537 }
2538 
2539 static int khugepaged_scan_pmd(struct mm_struct *mm,
2540 			       struct vm_area_struct *vma,
2541 			       unsigned long address,
2542 			       struct page **hpage)
2543 {
2544 	pmd_t *pmd;
2545 	pte_t *pte, *_pte;
2546 	int ret = 0, none = 0;
2547 	struct page *page;
2548 	unsigned long _address;
2549 	spinlock_t *ptl;
2550 	int node = NUMA_NO_NODE;
2551 	bool writable = false, referenced = false;
2552 
2553 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2554 
2555 	pmd = mm_find_pmd(mm, address);
2556 	if (!pmd)
2557 		goto out;
2558 
2559 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2560 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2561 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2562 	     _pte++, _address += PAGE_SIZE) {
2563 		pte_t pteval = *_pte;
2564 		if (pte_none(pteval)) {
2565 			if (++none <= khugepaged_max_ptes_none)
2566 				continue;
2567 			else
2568 				goto out_unmap;
2569 		}
2570 		if (!pte_present(pteval))
2571 			goto out_unmap;
2572 		if (pte_write(pteval))
2573 			writable = true;
2574 
2575 		page = vm_normal_page(vma, _address, pteval);
2576 		if (unlikely(!page))
2577 			goto out_unmap;
2578 		/*
2579 		 * Record which node the original page is from and save this
2580 		 * information to khugepaged_node_load[].
2581 		 * Khupaged will allocate hugepage from the node has the max
2582 		 * hit record.
2583 		 */
2584 		node = page_to_nid(page);
2585 		if (khugepaged_scan_abort(node))
2586 			goto out_unmap;
2587 		khugepaged_node_load[node]++;
2588 		VM_BUG_ON_PAGE(PageCompound(page), page);
2589 		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2590 			goto out_unmap;
2591 		/*
2592 		 * cannot use mapcount: can't collapse if there's a gup pin.
2593 		 * The page must only be referenced by the scanned process
2594 		 * and page swap cache.
2595 		 */
2596 		if (page_count(page) != 1 + !!PageSwapCache(page))
2597 			goto out_unmap;
2598 		if (pte_young(pteval) || PageReferenced(page) ||
2599 		    mmu_notifier_test_young(vma->vm_mm, address))
2600 			referenced = true;
2601 	}
2602 	if (referenced && writable)
2603 		ret = 1;
2604 out_unmap:
2605 	pte_unmap_unlock(pte, ptl);
2606 	if (ret) {
2607 		node = khugepaged_find_target_node();
2608 		/* collapse_huge_page will return with the mmap_sem released */
2609 		collapse_huge_page(mm, address, hpage, vma, node);
2610 	}
2611 out:
2612 	return ret;
2613 }
2614 
2615 static void collect_mm_slot(struct mm_slot *mm_slot)
2616 {
2617 	struct mm_struct *mm = mm_slot->mm;
2618 
2619 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2620 
2621 	if (khugepaged_test_exit(mm)) {
2622 		/* free mm_slot */
2623 		hash_del(&mm_slot->hash);
2624 		list_del(&mm_slot->mm_node);
2625 
2626 		/*
2627 		 * Not strictly needed because the mm exited already.
2628 		 *
2629 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2630 		 */
2631 
2632 		/* khugepaged_mm_lock actually not necessary for the below */
2633 		free_mm_slot(mm_slot);
2634 		mmdrop(mm);
2635 	}
2636 }
2637 
2638 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2639 					    struct page **hpage)
2640 	__releases(&khugepaged_mm_lock)
2641 	__acquires(&khugepaged_mm_lock)
2642 {
2643 	struct mm_slot *mm_slot;
2644 	struct mm_struct *mm;
2645 	struct vm_area_struct *vma;
2646 	int progress = 0;
2647 
2648 	VM_BUG_ON(!pages);
2649 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2650 
2651 	if (khugepaged_scan.mm_slot)
2652 		mm_slot = khugepaged_scan.mm_slot;
2653 	else {
2654 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2655 				     struct mm_slot, mm_node);
2656 		khugepaged_scan.address = 0;
2657 		khugepaged_scan.mm_slot = mm_slot;
2658 	}
2659 	spin_unlock(&khugepaged_mm_lock);
2660 
2661 	mm = mm_slot->mm;
2662 	down_read(&mm->mmap_sem);
2663 	if (unlikely(khugepaged_test_exit(mm)))
2664 		vma = NULL;
2665 	else
2666 		vma = find_vma(mm, khugepaged_scan.address);
2667 
2668 	progress++;
2669 	for (; vma; vma = vma->vm_next) {
2670 		unsigned long hstart, hend;
2671 
2672 		cond_resched();
2673 		if (unlikely(khugepaged_test_exit(mm))) {
2674 			progress++;
2675 			break;
2676 		}
2677 		if (!hugepage_vma_check(vma)) {
2678 skip:
2679 			progress++;
2680 			continue;
2681 		}
2682 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2683 		hend = vma->vm_end & HPAGE_PMD_MASK;
2684 		if (hstart >= hend)
2685 			goto skip;
2686 		if (khugepaged_scan.address > hend)
2687 			goto skip;
2688 		if (khugepaged_scan.address < hstart)
2689 			khugepaged_scan.address = hstart;
2690 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2691 
2692 		while (khugepaged_scan.address < hend) {
2693 			int ret;
2694 			cond_resched();
2695 			if (unlikely(khugepaged_test_exit(mm)))
2696 				goto breakouterloop;
2697 
2698 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2699 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2700 				  hend);
2701 			ret = khugepaged_scan_pmd(mm, vma,
2702 						  khugepaged_scan.address,
2703 						  hpage);
2704 			/* move to next address */
2705 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2706 			progress += HPAGE_PMD_NR;
2707 			if (ret)
2708 				/* we released mmap_sem so break loop */
2709 				goto breakouterloop_mmap_sem;
2710 			if (progress >= pages)
2711 				goto breakouterloop;
2712 		}
2713 	}
2714 breakouterloop:
2715 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2716 breakouterloop_mmap_sem:
2717 
2718 	spin_lock(&khugepaged_mm_lock);
2719 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2720 	/*
2721 	 * Release the current mm_slot if this mm is about to die, or
2722 	 * if we scanned all vmas of this mm.
2723 	 */
2724 	if (khugepaged_test_exit(mm) || !vma) {
2725 		/*
2726 		 * Make sure that if mm_users is reaching zero while
2727 		 * khugepaged runs here, khugepaged_exit will find
2728 		 * mm_slot not pointing to the exiting mm.
2729 		 */
2730 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2731 			khugepaged_scan.mm_slot = list_entry(
2732 				mm_slot->mm_node.next,
2733 				struct mm_slot, mm_node);
2734 			khugepaged_scan.address = 0;
2735 		} else {
2736 			khugepaged_scan.mm_slot = NULL;
2737 			khugepaged_full_scans++;
2738 		}
2739 
2740 		collect_mm_slot(mm_slot);
2741 	}
2742 
2743 	return progress;
2744 }
2745 
2746 static int khugepaged_has_work(void)
2747 {
2748 	return !list_empty(&khugepaged_scan.mm_head) &&
2749 		khugepaged_enabled();
2750 }
2751 
2752 static int khugepaged_wait_event(void)
2753 {
2754 	return !list_empty(&khugepaged_scan.mm_head) ||
2755 		kthread_should_stop();
2756 }
2757 
2758 static void khugepaged_do_scan(void)
2759 {
2760 	struct page *hpage = NULL;
2761 	unsigned int progress = 0, pass_through_head = 0;
2762 	unsigned int pages = khugepaged_pages_to_scan;
2763 	bool wait = true;
2764 
2765 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2766 
2767 	while (progress < pages) {
2768 		if (!khugepaged_prealloc_page(&hpage, &wait))
2769 			break;
2770 
2771 		cond_resched();
2772 
2773 		if (unlikely(kthread_should_stop() || freezing(current)))
2774 			break;
2775 
2776 		spin_lock(&khugepaged_mm_lock);
2777 		if (!khugepaged_scan.mm_slot)
2778 			pass_through_head++;
2779 		if (khugepaged_has_work() &&
2780 		    pass_through_head < 2)
2781 			progress += khugepaged_scan_mm_slot(pages - progress,
2782 							    &hpage);
2783 		else
2784 			progress = pages;
2785 		spin_unlock(&khugepaged_mm_lock);
2786 	}
2787 
2788 	if (!IS_ERR_OR_NULL(hpage))
2789 		put_page(hpage);
2790 }
2791 
2792 static void khugepaged_wait_work(void)
2793 {
2794 	try_to_freeze();
2795 
2796 	if (khugepaged_has_work()) {
2797 		if (!khugepaged_scan_sleep_millisecs)
2798 			return;
2799 
2800 		wait_event_freezable_timeout(khugepaged_wait,
2801 					     kthread_should_stop(),
2802 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2803 		return;
2804 	}
2805 
2806 	if (khugepaged_enabled())
2807 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2808 }
2809 
2810 static int khugepaged(void *none)
2811 {
2812 	struct mm_slot *mm_slot;
2813 
2814 	set_freezable();
2815 	set_user_nice(current, MAX_NICE);
2816 
2817 	while (!kthread_should_stop()) {
2818 		khugepaged_do_scan();
2819 		khugepaged_wait_work();
2820 	}
2821 
2822 	spin_lock(&khugepaged_mm_lock);
2823 	mm_slot = khugepaged_scan.mm_slot;
2824 	khugepaged_scan.mm_slot = NULL;
2825 	if (mm_slot)
2826 		collect_mm_slot(mm_slot);
2827 	spin_unlock(&khugepaged_mm_lock);
2828 	return 0;
2829 }
2830 
2831 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2832 		unsigned long haddr, pmd_t *pmd)
2833 {
2834 	struct mm_struct *mm = vma->vm_mm;
2835 	pgtable_t pgtable;
2836 	pmd_t _pmd;
2837 	int i;
2838 
2839 	pmdp_clear_flush_notify(vma, haddr, pmd);
2840 	/* leave pmd empty until pte is filled */
2841 
2842 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2843 	pmd_populate(mm, &_pmd, pgtable);
2844 
2845 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2846 		pte_t *pte, entry;
2847 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2848 		entry = pte_mkspecial(entry);
2849 		pte = pte_offset_map(&_pmd, haddr);
2850 		VM_BUG_ON(!pte_none(*pte));
2851 		set_pte_at(mm, haddr, pte, entry);
2852 		pte_unmap(pte);
2853 	}
2854 	smp_wmb(); /* make pte visible before pmd */
2855 	pmd_populate(mm, pmd, pgtable);
2856 	put_huge_zero_page();
2857 }
2858 
2859 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2860 		pmd_t *pmd)
2861 {
2862 	spinlock_t *ptl;
2863 	struct page *page;
2864 	struct mm_struct *mm = vma->vm_mm;
2865 	unsigned long haddr = address & HPAGE_PMD_MASK;
2866 	unsigned long mmun_start;	/* For mmu_notifiers */
2867 	unsigned long mmun_end;		/* For mmu_notifiers */
2868 
2869 	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2870 
2871 	mmun_start = haddr;
2872 	mmun_end   = haddr + HPAGE_PMD_SIZE;
2873 again:
2874 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2875 	ptl = pmd_lock(mm, pmd);
2876 	if (unlikely(!pmd_trans_huge(*pmd))) {
2877 		spin_unlock(ptl);
2878 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2879 		return;
2880 	}
2881 	if (is_huge_zero_pmd(*pmd)) {
2882 		__split_huge_zero_page_pmd(vma, haddr, pmd);
2883 		spin_unlock(ptl);
2884 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2885 		return;
2886 	}
2887 	page = pmd_page(*pmd);
2888 	VM_BUG_ON_PAGE(!page_count(page), page);
2889 	get_page(page);
2890 	spin_unlock(ptl);
2891 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2892 
2893 	split_huge_page(page);
2894 
2895 	put_page(page);
2896 
2897 	/*
2898 	 * We don't always have down_write of mmap_sem here: a racing
2899 	 * do_huge_pmd_wp_page() might have copied-on-write to another
2900 	 * huge page before our split_huge_page() got the anon_vma lock.
2901 	 */
2902 	if (unlikely(pmd_trans_huge(*pmd)))
2903 		goto again;
2904 }
2905 
2906 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2907 		pmd_t *pmd)
2908 {
2909 	struct vm_area_struct *vma;
2910 
2911 	vma = find_vma(mm, address);
2912 	BUG_ON(vma == NULL);
2913 	split_huge_page_pmd(vma, address, pmd);
2914 }
2915 
2916 static void split_huge_page_address(struct mm_struct *mm,
2917 				    unsigned long address)
2918 {
2919 	pgd_t *pgd;
2920 	pud_t *pud;
2921 	pmd_t *pmd;
2922 
2923 	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2924 
2925 	pgd = pgd_offset(mm, address);
2926 	if (!pgd_present(*pgd))
2927 		return;
2928 
2929 	pud = pud_offset(pgd, address);
2930 	if (!pud_present(*pud))
2931 		return;
2932 
2933 	pmd = pmd_offset(pud, address);
2934 	if (!pmd_present(*pmd))
2935 		return;
2936 	/*
2937 	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2938 	 * materialize from under us.
2939 	 */
2940 	split_huge_page_pmd_mm(mm, address, pmd);
2941 }
2942 
2943 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2944 			     unsigned long start,
2945 			     unsigned long end,
2946 			     long adjust_next)
2947 {
2948 	/*
2949 	 * If the new start address isn't hpage aligned and it could
2950 	 * previously contain an hugepage: check if we need to split
2951 	 * an huge pmd.
2952 	 */
2953 	if (start & ~HPAGE_PMD_MASK &&
2954 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2955 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2956 		split_huge_page_address(vma->vm_mm, start);
2957 
2958 	/*
2959 	 * If the new end address isn't hpage aligned and it could
2960 	 * previously contain an hugepage: check if we need to split
2961 	 * an huge pmd.
2962 	 */
2963 	if (end & ~HPAGE_PMD_MASK &&
2964 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2965 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2966 		split_huge_page_address(vma->vm_mm, end);
2967 
2968 	/*
2969 	 * If we're also updating the vma->vm_next->vm_start, if the new
2970 	 * vm_next->vm_start isn't page aligned and it could previously
2971 	 * contain an hugepage: check if we need to split an huge pmd.
2972 	 */
2973 	if (adjust_next > 0) {
2974 		struct vm_area_struct *next = vma->vm_next;
2975 		unsigned long nstart = next->vm_start;
2976 		nstart += adjust_next << PAGE_SHIFT;
2977 		if (nstart & ~HPAGE_PMD_MASK &&
2978 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2979 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2980 			split_huge_page_address(next->vm_mm, nstart);
2981 	}
2982 }
2983