xref: /linux/mm/huge_memory.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 #include <linux/pgalloc_tag.h>
42 
43 #include <asm/tlb.h>
44 #include <asm/pgalloc.h>
45 #include "internal.h"
46 #include "swap.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50 
51 /*
52  * By default, transparent hugepage support is disabled in order to avoid
53  * risking an increased memory footprint for applications that are not
54  * guaranteed to benefit from it. When transparent hugepage support is
55  * enabled, it is for all mappings, and khugepaged scans all mappings.
56  * Defrag is invoked by khugepaged hugepage allocations and by page faults
57  * for all hugepage allocations.
58  */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69 
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 					  struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 					 struct shrink_control *sc);
75 
76 static atomic_t huge_zero_refcount;
77 struct folio *huge_zero_folio __read_mostly;
78 unsigned long huge_zero_pfn __read_mostly = ~0UL;
79 unsigned long huge_anon_orders_always __read_mostly;
80 unsigned long huge_anon_orders_madvise __read_mostly;
81 unsigned long huge_anon_orders_inherit __read_mostly;
82 
83 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
84 					 unsigned long vm_flags,
85 					 unsigned long tva_flags,
86 					 unsigned long orders)
87 {
88 	bool smaps = tva_flags & TVA_SMAPS;
89 	bool in_pf = tva_flags & TVA_IN_PF;
90 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
91 	/* Check the intersection of requested and supported orders. */
92 	orders &= vma_is_anonymous(vma) ?
93 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
94 	if (!orders)
95 		return 0;
96 
97 	if (!vma->vm_mm)		/* vdso */
98 		return 0;
99 
100 	/*
101 	 * Explicitly disabled through madvise or prctl, or some
102 	 * architectures may disable THP for some mappings, for
103 	 * example, s390 kvm.
104 	 * */
105 	if ((vm_flags & VM_NOHUGEPAGE) ||
106 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
107 		return 0;
108 	/*
109 	 * If the hardware/firmware marked hugepage support disabled.
110 	 */
111 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
112 		return 0;
113 
114 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
115 	if (vma_is_dax(vma))
116 		return in_pf ? orders : 0;
117 
118 	/*
119 	 * khugepaged special VMA and hugetlb VMA.
120 	 * Must be checked after dax since some dax mappings may have
121 	 * VM_MIXEDMAP set.
122 	 */
123 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
124 		return 0;
125 
126 	/*
127 	 * Check alignment for file vma and size for both file and anon vma by
128 	 * filtering out the unsuitable orders.
129 	 *
130 	 * Skip the check for page fault. Huge fault does the check in fault
131 	 * handlers.
132 	 */
133 	if (!in_pf) {
134 		int order = highest_order(orders);
135 		unsigned long addr;
136 
137 		while (orders) {
138 			addr = vma->vm_end - (PAGE_SIZE << order);
139 			if (thp_vma_suitable_order(vma, addr, order))
140 				break;
141 			order = next_order(&orders, order);
142 		}
143 
144 		if (!orders)
145 			return 0;
146 	}
147 
148 	/*
149 	 * Enabled via shmem mount options or sysfs settings.
150 	 * Must be done before hugepage flags check since shmem has its
151 	 * own flags.
152 	 */
153 	if (!in_pf && shmem_file(vma->vm_file))
154 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
155 				     !enforce_sysfs, vma->vm_mm, vm_flags)
156 			? orders : 0;
157 
158 	if (!vma_is_anonymous(vma)) {
159 		/*
160 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
161 		 * were already handled in thp_vma_allowable_orders().
162 		 */
163 		if (enforce_sysfs &&
164 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
165 						    !hugepage_global_always())))
166 			return 0;
167 
168 		/*
169 		 * Trust that ->huge_fault() handlers know what they are doing
170 		 * in fault path.
171 		 */
172 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
173 			return orders;
174 		/* Only regular file is valid in collapse path */
175 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
176 			return orders;
177 		return 0;
178 	}
179 
180 	if (vma_is_temporary_stack(vma))
181 		return 0;
182 
183 	/*
184 	 * THPeligible bit of smaps should show 1 for proper VMAs even
185 	 * though anon_vma is not initialized yet.
186 	 *
187 	 * Allow page fault since anon_vma may be not initialized until
188 	 * the first page fault.
189 	 */
190 	if (!vma->anon_vma)
191 		return (smaps || in_pf) ? orders : 0;
192 
193 	return orders;
194 }
195 
196 static bool get_huge_zero_page(void)
197 {
198 	struct folio *zero_folio;
199 retry:
200 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
201 		return true;
202 
203 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
204 			HPAGE_PMD_ORDER);
205 	if (!zero_folio) {
206 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
207 		return false;
208 	}
209 	preempt_disable();
210 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
211 		preempt_enable();
212 		folio_put(zero_folio);
213 		goto retry;
214 	}
215 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
216 
217 	/* We take additional reference here. It will be put back by shrinker */
218 	atomic_set(&huge_zero_refcount, 2);
219 	preempt_enable();
220 	count_vm_event(THP_ZERO_PAGE_ALLOC);
221 	return true;
222 }
223 
224 static void put_huge_zero_page(void)
225 {
226 	/*
227 	 * Counter should never go to zero here. Only shrinker can put
228 	 * last reference.
229 	 */
230 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
231 }
232 
233 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
234 {
235 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
236 		return READ_ONCE(huge_zero_folio);
237 
238 	if (!get_huge_zero_page())
239 		return NULL;
240 
241 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
242 		put_huge_zero_page();
243 
244 	return READ_ONCE(huge_zero_folio);
245 }
246 
247 void mm_put_huge_zero_folio(struct mm_struct *mm)
248 {
249 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
250 		put_huge_zero_page();
251 }
252 
253 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
254 					struct shrink_control *sc)
255 {
256 	/* we can free zero page only if last reference remains */
257 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
258 }
259 
260 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
261 				       struct shrink_control *sc)
262 {
263 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
264 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
265 		BUG_ON(zero_folio == NULL);
266 		WRITE_ONCE(huge_zero_pfn, ~0UL);
267 		folio_put(zero_folio);
268 		return HPAGE_PMD_NR;
269 	}
270 
271 	return 0;
272 }
273 
274 static struct shrinker *huge_zero_page_shrinker;
275 
276 #ifdef CONFIG_SYSFS
277 static ssize_t enabled_show(struct kobject *kobj,
278 			    struct kobj_attribute *attr, char *buf)
279 {
280 	const char *output;
281 
282 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
283 		output = "[always] madvise never";
284 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
285 			  &transparent_hugepage_flags))
286 		output = "always [madvise] never";
287 	else
288 		output = "always madvise [never]";
289 
290 	return sysfs_emit(buf, "%s\n", output);
291 }
292 
293 static ssize_t enabled_store(struct kobject *kobj,
294 			     struct kobj_attribute *attr,
295 			     const char *buf, size_t count)
296 {
297 	ssize_t ret = count;
298 
299 	if (sysfs_streq(buf, "always")) {
300 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
302 	} else if (sysfs_streq(buf, "madvise")) {
303 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
304 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
305 	} else if (sysfs_streq(buf, "never")) {
306 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
307 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
308 	} else
309 		ret = -EINVAL;
310 
311 	if (ret > 0) {
312 		int err = start_stop_khugepaged();
313 		if (err)
314 			ret = err;
315 	}
316 	return ret;
317 }
318 
319 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
320 
321 ssize_t single_hugepage_flag_show(struct kobject *kobj,
322 				  struct kobj_attribute *attr, char *buf,
323 				  enum transparent_hugepage_flag flag)
324 {
325 	return sysfs_emit(buf, "%d\n",
326 			  !!test_bit(flag, &transparent_hugepage_flags));
327 }
328 
329 ssize_t single_hugepage_flag_store(struct kobject *kobj,
330 				 struct kobj_attribute *attr,
331 				 const char *buf, size_t count,
332 				 enum transparent_hugepage_flag flag)
333 {
334 	unsigned long value;
335 	int ret;
336 
337 	ret = kstrtoul(buf, 10, &value);
338 	if (ret < 0)
339 		return ret;
340 	if (value > 1)
341 		return -EINVAL;
342 
343 	if (value)
344 		set_bit(flag, &transparent_hugepage_flags);
345 	else
346 		clear_bit(flag, &transparent_hugepage_flags);
347 
348 	return count;
349 }
350 
351 static ssize_t defrag_show(struct kobject *kobj,
352 			   struct kobj_attribute *attr, char *buf)
353 {
354 	const char *output;
355 
356 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
357 		     &transparent_hugepage_flags))
358 		output = "[always] defer defer+madvise madvise never";
359 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
360 			  &transparent_hugepage_flags))
361 		output = "always [defer] defer+madvise madvise never";
362 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
363 			  &transparent_hugepage_flags))
364 		output = "always defer [defer+madvise] madvise never";
365 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
366 			  &transparent_hugepage_flags))
367 		output = "always defer defer+madvise [madvise] never";
368 	else
369 		output = "always defer defer+madvise madvise [never]";
370 
371 	return sysfs_emit(buf, "%s\n", output);
372 }
373 
374 static ssize_t defrag_store(struct kobject *kobj,
375 			    struct kobj_attribute *attr,
376 			    const char *buf, size_t count)
377 {
378 	if (sysfs_streq(buf, "always")) {
379 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
380 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
381 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
382 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
383 	} else if (sysfs_streq(buf, "defer+madvise")) {
384 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
385 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
386 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
387 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
388 	} else if (sysfs_streq(buf, "defer")) {
389 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
390 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
391 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
392 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
393 	} else if (sysfs_streq(buf, "madvise")) {
394 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
397 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
398 	} else if (sysfs_streq(buf, "never")) {
399 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
401 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
403 	} else
404 		return -EINVAL;
405 
406 	return count;
407 }
408 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
409 
410 static ssize_t use_zero_page_show(struct kobject *kobj,
411 				  struct kobj_attribute *attr, char *buf)
412 {
413 	return single_hugepage_flag_show(kobj, attr, buf,
414 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
415 }
416 static ssize_t use_zero_page_store(struct kobject *kobj,
417 		struct kobj_attribute *attr, const char *buf, size_t count)
418 {
419 	return single_hugepage_flag_store(kobj, attr, buf, count,
420 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
421 }
422 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
423 
424 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
425 				   struct kobj_attribute *attr, char *buf)
426 {
427 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
428 }
429 static struct kobj_attribute hpage_pmd_size_attr =
430 	__ATTR_RO(hpage_pmd_size);
431 
432 static struct attribute *hugepage_attr[] = {
433 	&enabled_attr.attr,
434 	&defrag_attr.attr,
435 	&use_zero_page_attr.attr,
436 	&hpage_pmd_size_attr.attr,
437 #ifdef CONFIG_SHMEM
438 	&shmem_enabled_attr.attr,
439 #endif
440 	NULL,
441 };
442 
443 static const struct attribute_group hugepage_attr_group = {
444 	.attrs = hugepage_attr,
445 };
446 
447 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
448 static void thpsize_release(struct kobject *kobj);
449 static DEFINE_SPINLOCK(huge_anon_orders_lock);
450 static LIST_HEAD(thpsize_list);
451 
452 struct thpsize {
453 	struct kobject kobj;
454 	struct list_head node;
455 	int order;
456 };
457 
458 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
459 
460 static ssize_t thpsize_enabled_show(struct kobject *kobj,
461 				    struct kobj_attribute *attr, char *buf)
462 {
463 	int order = to_thpsize(kobj)->order;
464 	const char *output;
465 
466 	if (test_bit(order, &huge_anon_orders_always))
467 		output = "[always] inherit madvise never";
468 	else if (test_bit(order, &huge_anon_orders_inherit))
469 		output = "always [inherit] madvise never";
470 	else if (test_bit(order, &huge_anon_orders_madvise))
471 		output = "always inherit [madvise] never";
472 	else
473 		output = "always inherit madvise [never]";
474 
475 	return sysfs_emit(buf, "%s\n", output);
476 }
477 
478 static ssize_t thpsize_enabled_store(struct kobject *kobj,
479 				     struct kobj_attribute *attr,
480 				     const char *buf, size_t count)
481 {
482 	int order = to_thpsize(kobj)->order;
483 	ssize_t ret = count;
484 
485 	if (sysfs_streq(buf, "always")) {
486 		spin_lock(&huge_anon_orders_lock);
487 		clear_bit(order, &huge_anon_orders_inherit);
488 		clear_bit(order, &huge_anon_orders_madvise);
489 		set_bit(order, &huge_anon_orders_always);
490 		spin_unlock(&huge_anon_orders_lock);
491 	} else if (sysfs_streq(buf, "inherit")) {
492 		spin_lock(&huge_anon_orders_lock);
493 		clear_bit(order, &huge_anon_orders_always);
494 		clear_bit(order, &huge_anon_orders_madvise);
495 		set_bit(order, &huge_anon_orders_inherit);
496 		spin_unlock(&huge_anon_orders_lock);
497 	} else if (sysfs_streq(buf, "madvise")) {
498 		spin_lock(&huge_anon_orders_lock);
499 		clear_bit(order, &huge_anon_orders_always);
500 		clear_bit(order, &huge_anon_orders_inherit);
501 		set_bit(order, &huge_anon_orders_madvise);
502 		spin_unlock(&huge_anon_orders_lock);
503 	} else if (sysfs_streq(buf, "never")) {
504 		spin_lock(&huge_anon_orders_lock);
505 		clear_bit(order, &huge_anon_orders_always);
506 		clear_bit(order, &huge_anon_orders_inherit);
507 		clear_bit(order, &huge_anon_orders_madvise);
508 		spin_unlock(&huge_anon_orders_lock);
509 	} else
510 		ret = -EINVAL;
511 
512 	return ret;
513 }
514 
515 static struct kobj_attribute thpsize_enabled_attr =
516 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
517 
518 static struct attribute *thpsize_attrs[] = {
519 	&thpsize_enabled_attr.attr,
520 	NULL,
521 };
522 
523 static const struct attribute_group thpsize_attr_group = {
524 	.attrs = thpsize_attrs,
525 };
526 
527 static const struct kobj_type thpsize_ktype = {
528 	.release = &thpsize_release,
529 	.sysfs_ops = &kobj_sysfs_ops,
530 };
531 
532 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
533 
534 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
535 {
536 	unsigned long sum = 0;
537 	int cpu;
538 
539 	for_each_possible_cpu(cpu) {
540 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
541 
542 		sum += this->stats[order][item];
543 	}
544 
545 	return sum;
546 }
547 
548 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
549 static ssize_t _name##_show(struct kobject *kobj,			\
550 			struct kobj_attribute *attr, char *buf)		\
551 {									\
552 	int order = to_thpsize(kobj)->order;				\
553 									\
554 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
555 }									\
556 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
557 
558 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
559 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
560 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
561 DEFINE_MTHP_STAT_ATTR(anon_swpout, MTHP_STAT_ANON_SWPOUT);
562 DEFINE_MTHP_STAT_ATTR(anon_swpout_fallback, MTHP_STAT_ANON_SWPOUT_FALLBACK);
563 
564 static struct attribute *stats_attrs[] = {
565 	&anon_fault_alloc_attr.attr,
566 	&anon_fault_fallback_attr.attr,
567 	&anon_fault_fallback_charge_attr.attr,
568 	&anon_swpout_attr.attr,
569 	&anon_swpout_fallback_attr.attr,
570 	NULL,
571 };
572 
573 static struct attribute_group stats_attr_group = {
574 	.name = "stats",
575 	.attrs = stats_attrs,
576 };
577 
578 static struct thpsize *thpsize_create(int order, struct kobject *parent)
579 {
580 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
581 	struct thpsize *thpsize;
582 	int ret;
583 
584 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
585 	if (!thpsize)
586 		return ERR_PTR(-ENOMEM);
587 
588 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
589 				   "hugepages-%lukB", size);
590 	if (ret) {
591 		kfree(thpsize);
592 		return ERR_PTR(ret);
593 	}
594 
595 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
596 	if (ret) {
597 		kobject_put(&thpsize->kobj);
598 		return ERR_PTR(ret);
599 	}
600 
601 	ret = sysfs_create_group(&thpsize->kobj, &stats_attr_group);
602 	if (ret) {
603 		kobject_put(&thpsize->kobj);
604 		return ERR_PTR(ret);
605 	}
606 
607 	thpsize->order = order;
608 	return thpsize;
609 }
610 
611 static void thpsize_release(struct kobject *kobj)
612 {
613 	kfree(to_thpsize(kobj));
614 }
615 
616 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
617 {
618 	int err;
619 	struct thpsize *thpsize;
620 	unsigned long orders;
621 	int order;
622 
623 	/*
624 	 * Default to setting PMD-sized THP to inherit the global setting and
625 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
626 	 * constant so we have to do this here.
627 	 */
628 	huge_anon_orders_inherit = BIT(PMD_ORDER);
629 
630 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
631 	if (unlikely(!*hugepage_kobj)) {
632 		pr_err("failed to create transparent hugepage kobject\n");
633 		return -ENOMEM;
634 	}
635 
636 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
637 	if (err) {
638 		pr_err("failed to register transparent hugepage group\n");
639 		goto delete_obj;
640 	}
641 
642 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
643 	if (err) {
644 		pr_err("failed to register transparent hugepage group\n");
645 		goto remove_hp_group;
646 	}
647 
648 	orders = THP_ORDERS_ALL_ANON;
649 	order = highest_order(orders);
650 	while (orders) {
651 		thpsize = thpsize_create(order, *hugepage_kobj);
652 		if (IS_ERR(thpsize)) {
653 			pr_err("failed to create thpsize for order %d\n", order);
654 			err = PTR_ERR(thpsize);
655 			goto remove_all;
656 		}
657 		list_add(&thpsize->node, &thpsize_list);
658 		order = next_order(&orders, order);
659 	}
660 
661 	return 0;
662 
663 remove_all:
664 	hugepage_exit_sysfs(*hugepage_kobj);
665 	return err;
666 remove_hp_group:
667 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
668 delete_obj:
669 	kobject_put(*hugepage_kobj);
670 	return err;
671 }
672 
673 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
674 {
675 	struct thpsize *thpsize, *tmp;
676 
677 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
678 		list_del(&thpsize->node);
679 		kobject_put(&thpsize->kobj);
680 	}
681 
682 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
683 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
684 	kobject_put(hugepage_kobj);
685 }
686 #else
687 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
688 {
689 	return 0;
690 }
691 
692 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
693 {
694 }
695 #endif /* CONFIG_SYSFS */
696 
697 static int __init thp_shrinker_init(void)
698 {
699 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
700 	if (!huge_zero_page_shrinker)
701 		return -ENOMEM;
702 
703 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
704 						 SHRINKER_MEMCG_AWARE |
705 						 SHRINKER_NONSLAB,
706 						 "thp-deferred_split");
707 	if (!deferred_split_shrinker) {
708 		shrinker_free(huge_zero_page_shrinker);
709 		return -ENOMEM;
710 	}
711 
712 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
713 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
714 	shrinker_register(huge_zero_page_shrinker);
715 
716 	deferred_split_shrinker->count_objects = deferred_split_count;
717 	deferred_split_shrinker->scan_objects = deferred_split_scan;
718 	shrinker_register(deferred_split_shrinker);
719 
720 	return 0;
721 }
722 
723 static void __init thp_shrinker_exit(void)
724 {
725 	shrinker_free(huge_zero_page_shrinker);
726 	shrinker_free(deferred_split_shrinker);
727 }
728 
729 static int __init hugepage_init(void)
730 {
731 	int err;
732 	struct kobject *hugepage_kobj;
733 
734 	if (!has_transparent_hugepage()) {
735 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
736 		return -EINVAL;
737 	}
738 
739 	/*
740 	 * hugepages can't be allocated by the buddy allocator
741 	 */
742 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
743 
744 	err = hugepage_init_sysfs(&hugepage_kobj);
745 	if (err)
746 		goto err_sysfs;
747 
748 	err = khugepaged_init();
749 	if (err)
750 		goto err_slab;
751 
752 	err = thp_shrinker_init();
753 	if (err)
754 		goto err_shrinker;
755 
756 	/*
757 	 * By default disable transparent hugepages on smaller systems,
758 	 * where the extra memory used could hurt more than TLB overhead
759 	 * is likely to save.  The admin can still enable it through /sys.
760 	 */
761 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
762 		transparent_hugepage_flags = 0;
763 		return 0;
764 	}
765 
766 	err = start_stop_khugepaged();
767 	if (err)
768 		goto err_khugepaged;
769 
770 	return 0;
771 err_khugepaged:
772 	thp_shrinker_exit();
773 err_shrinker:
774 	khugepaged_destroy();
775 err_slab:
776 	hugepage_exit_sysfs(hugepage_kobj);
777 err_sysfs:
778 	return err;
779 }
780 subsys_initcall(hugepage_init);
781 
782 static int __init setup_transparent_hugepage(char *str)
783 {
784 	int ret = 0;
785 	if (!str)
786 		goto out;
787 	if (!strcmp(str, "always")) {
788 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
789 			&transparent_hugepage_flags);
790 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
791 			  &transparent_hugepage_flags);
792 		ret = 1;
793 	} else if (!strcmp(str, "madvise")) {
794 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
795 			  &transparent_hugepage_flags);
796 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
797 			&transparent_hugepage_flags);
798 		ret = 1;
799 	} else if (!strcmp(str, "never")) {
800 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
801 			  &transparent_hugepage_flags);
802 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
803 			  &transparent_hugepage_flags);
804 		ret = 1;
805 	}
806 out:
807 	if (!ret)
808 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
809 	return ret;
810 }
811 __setup("transparent_hugepage=", setup_transparent_hugepage);
812 
813 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
814 {
815 	if (likely(vma->vm_flags & VM_WRITE))
816 		pmd = pmd_mkwrite(pmd, vma);
817 	return pmd;
818 }
819 
820 #ifdef CONFIG_MEMCG
821 static inline
822 struct deferred_split *get_deferred_split_queue(struct folio *folio)
823 {
824 	struct mem_cgroup *memcg = folio_memcg(folio);
825 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
826 
827 	if (memcg)
828 		return &memcg->deferred_split_queue;
829 	else
830 		return &pgdat->deferred_split_queue;
831 }
832 #else
833 static inline
834 struct deferred_split *get_deferred_split_queue(struct folio *folio)
835 {
836 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
837 
838 	return &pgdat->deferred_split_queue;
839 }
840 #endif
841 
842 static inline bool is_transparent_hugepage(const struct folio *folio)
843 {
844 	if (!folio_test_large(folio))
845 		return false;
846 
847 	return is_huge_zero_folio(folio) ||
848 		folio_test_large_rmappable(folio);
849 }
850 
851 static unsigned long __thp_get_unmapped_area(struct file *filp,
852 		unsigned long addr, unsigned long len,
853 		loff_t off, unsigned long flags, unsigned long size,
854 		vm_flags_t vm_flags)
855 {
856 	loff_t off_end = off + len;
857 	loff_t off_align = round_up(off, size);
858 	unsigned long len_pad, ret, off_sub;
859 
860 	if (IS_ENABLED(CONFIG_32BIT) || in_compat_syscall())
861 		return 0;
862 
863 	if (off_end <= off_align || (off_end - off_align) < size)
864 		return 0;
865 
866 	len_pad = len + size;
867 	if (len_pad < len || (off + len_pad) < off)
868 		return 0;
869 
870 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
871 					   off >> PAGE_SHIFT, flags, vm_flags);
872 
873 	/*
874 	 * The failure might be due to length padding. The caller will retry
875 	 * without the padding.
876 	 */
877 	if (IS_ERR_VALUE(ret))
878 		return 0;
879 
880 	/*
881 	 * Do not try to align to THP boundary if allocation at the address
882 	 * hint succeeds.
883 	 */
884 	if (ret == addr)
885 		return addr;
886 
887 	off_sub = (off - ret) & (size - 1);
888 
889 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
890 		return ret + size;
891 
892 	ret += off_sub;
893 	return ret;
894 }
895 
896 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
897 		unsigned long len, unsigned long pgoff, unsigned long flags,
898 		vm_flags_t vm_flags)
899 {
900 	unsigned long ret;
901 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
902 
903 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
904 	if (ret)
905 		return ret;
906 
907 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
908 					    vm_flags);
909 }
910 
911 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
912 		unsigned long len, unsigned long pgoff, unsigned long flags)
913 {
914 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
915 }
916 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
917 
918 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
919 			struct page *page, gfp_t gfp)
920 {
921 	struct vm_area_struct *vma = vmf->vma;
922 	struct folio *folio = page_folio(page);
923 	pgtable_t pgtable;
924 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
925 	vm_fault_t ret = 0;
926 
927 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
928 
929 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
930 		folio_put(folio);
931 		count_vm_event(THP_FAULT_FALLBACK);
932 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
933 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
934 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
935 		return VM_FAULT_FALLBACK;
936 	}
937 	folio_throttle_swaprate(folio, gfp);
938 
939 	pgtable = pte_alloc_one(vma->vm_mm);
940 	if (unlikely(!pgtable)) {
941 		ret = VM_FAULT_OOM;
942 		goto release;
943 	}
944 
945 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
946 	/*
947 	 * The memory barrier inside __folio_mark_uptodate makes sure that
948 	 * clear_huge_page writes become visible before the set_pmd_at()
949 	 * write.
950 	 */
951 	__folio_mark_uptodate(folio);
952 
953 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
954 	if (unlikely(!pmd_none(*vmf->pmd))) {
955 		goto unlock_release;
956 	} else {
957 		pmd_t entry;
958 
959 		ret = check_stable_address_space(vma->vm_mm);
960 		if (ret)
961 			goto unlock_release;
962 
963 		/* Deliver the page fault to userland */
964 		if (userfaultfd_missing(vma)) {
965 			spin_unlock(vmf->ptl);
966 			folio_put(folio);
967 			pte_free(vma->vm_mm, pgtable);
968 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
969 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
970 			return ret;
971 		}
972 
973 		entry = mk_huge_pmd(page, vma->vm_page_prot);
974 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
975 		folio_add_new_anon_rmap(folio, vma, haddr);
976 		folio_add_lru_vma(folio, vma);
977 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
978 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
979 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
980 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
981 		mm_inc_nr_ptes(vma->vm_mm);
982 		spin_unlock(vmf->ptl);
983 		count_vm_event(THP_FAULT_ALLOC);
984 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
985 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
986 	}
987 
988 	return 0;
989 unlock_release:
990 	spin_unlock(vmf->ptl);
991 release:
992 	if (pgtable)
993 		pte_free(vma->vm_mm, pgtable);
994 	folio_put(folio);
995 	return ret;
996 
997 }
998 
999 /*
1000  * always: directly stall for all thp allocations
1001  * defer: wake kswapd and fail if not immediately available
1002  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1003  *		  fail if not immediately available
1004  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1005  *	    available
1006  * never: never stall for any thp allocation
1007  */
1008 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1009 {
1010 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1011 
1012 	/* Always do synchronous compaction */
1013 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1014 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1015 
1016 	/* Kick kcompactd and fail quickly */
1017 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1018 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1019 
1020 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1021 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1022 		return GFP_TRANSHUGE_LIGHT |
1023 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1024 					__GFP_KSWAPD_RECLAIM);
1025 
1026 	/* Only do synchronous compaction if madvised */
1027 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1028 		return GFP_TRANSHUGE_LIGHT |
1029 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1030 
1031 	return GFP_TRANSHUGE_LIGHT;
1032 }
1033 
1034 /* Caller must hold page table lock. */
1035 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1036 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1037 		struct folio *zero_folio)
1038 {
1039 	pmd_t entry;
1040 	if (!pmd_none(*pmd))
1041 		return;
1042 	entry = mk_pmd(&zero_folio->page, vma->vm_page_prot);
1043 	entry = pmd_mkhuge(entry);
1044 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1045 	set_pmd_at(mm, haddr, pmd, entry);
1046 	mm_inc_nr_ptes(mm);
1047 }
1048 
1049 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1050 {
1051 	struct vm_area_struct *vma = vmf->vma;
1052 	gfp_t gfp;
1053 	struct folio *folio;
1054 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1055 	vm_fault_t ret;
1056 
1057 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1058 		return VM_FAULT_FALLBACK;
1059 	ret = vmf_anon_prepare(vmf);
1060 	if (ret)
1061 		return ret;
1062 	khugepaged_enter_vma(vma, vma->vm_flags);
1063 
1064 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1065 			!mm_forbids_zeropage(vma->vm_mm) &&
1066 			transparent_hugepage_use_zero_page()) {
1067 		pgtable_t pgtable;
1068 		struct folio *zero_folio;
1069 		vm_fault_t ret;
1070 
1071 		pgtable = pte_alloc_one(vma->vm_mm);
1072 		if (unlikely(!pgtable))
1073 			return VM_FAULT_OOM;
1074 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1075 		if (unlikely(!zero_folio)) {
1076 			pte_free(vma->vm_mm, pgtable);
1077 			count_vm_event(THP_FAULT_FALLBACK);
1078 			return VM_FAULT_FALLBACK;
1079 		}
1080 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1081 		ret = 0;
1082 		if (pmd_none(*vmf->pmd)) {
1083 			ret = check_stable_address_space(vma->vm_mm);
1084 			if (ret) {
1085 				spin_unlock(vmf->ptl);
1086 				pte_free(vma->vm_mm, pgtable);
1087 			} else if (userfaultfd_missing(vma)) {
1088 				spin_unlock(vmf->ptl);
1089 				pte_free(vma->vm_mm, pgtable);
1090 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1091 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1092 			} else {
1093 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1094 						   haddr, vmf->pmd, zero_folio);
1095 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1096 				spin_unlock(vmf->ptl);
1097 			}
1098 		} else {
1099 			spin_unlock(vmf->ptl);
1100 			pte_free(vma->vm_mm, pgtable);
1101 		}
1102 		return ret;
1103 	}
1104 	gfp = vma_thp_gfp_mask(vma);
1105 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1106 	if (unlikely(!folio)) {
1107 		count_vm_event(THP_FAULT_FALLBACK);
1108 		count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_FALLBACK);
1109 		return VM_FAULT_FALLBACK;
1110 	}
1111 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1112 }
1113 
1114 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1115 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1116 		pgtable_t pgtable)
1117 {
1118 	struct mm_struct *mm = vma->vm_mm;
1119 	pmd_t entry;
1120 	spinlock_t *ptl;
1121 
1122 	ptl = pmd_lock(mm, pmd);
1123 	if (!pmd_none(*pmd)) {
1124 		if (write) {
1125 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1126 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1127 				goto out_unlock;
1128 			}
1129 			entry = pmd_mkyoung(*pmd);
1130 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1131 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1132 				update_mmu_cache_pmd(vma, addr, pmd);
1133 		}
1134 
1135 		goto out_unlock;
1136 	}
1137 
1138 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1139 	if (pfn_t_devmap(pfn))
1140 		entry = pmd_mkdevmap(entry);
1141 	if (write) {
1142 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1143 		entry = maybe_pmd_mkwrite(entry, vma);
1144 	}
1145 
1146 	if (pgtable) {
1147 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1148 		mm_inc_nr_ptes(mm);
1149 		pgtable = NULL;
1150 	}
1151 
1152 	set_pmd_at(mm, addr, pmd, entry);
1153 	update_mmu_cache_pmd(vma, addr, pmd);
1154 
1155 out_unlock:
1156 	spin_unlock(ptl);
1157 	if (pgtable)
1158 		pte_free(mm, pgtable);
1159 }
1160 
1161 /**
1162  * vmf_insert_pfn_pmd - insert a pmd size pfn
1163  * @vmf: Structure describing the fault
1164  * @pfn: pfn to insert
1165  * @write: whether it's a write fault
1166  *
1167  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1168  *
1169  * Return: vm_fault_t value.
1170  */
1171 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1172 {
1173 	unsigned long addr = vmf->address & PMD_MASK;
1174 	struct vm_area_struct *vma = vmf->vma;
1175 	pgprot_t pgprot = vma->vm_page_prot;
1176 	pgtable_t pgtable = NULL;
1177 
1178 	/*
1179 	 * If we had pmd_special, we could avoid all these restrictions,
1180 	 * but we need to be consistent with PTEs and architectures that
1181 	 * can't support a 'special' bit.
1182 	 */
1183 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1184 			!pfn_t_devmap(pfn));
1185 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1186 						(VM_PFNMAP|VM_MIXEDMAP));
1187 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1188 
1189 	if (addr < vma->vm_start || addr >= vma->vm_end)
1190 		return VM_FAULT_SIGBUS;
1191 
1192 	if (arch_needs_pgtable_deposit()) {
1193 		pgtable = pte_alloc_one(vma->vm_mm);
1194 		if (!pgtable)
1195 			return VM_FAULT_OOM;
1196 	}
1197 
1198 	track_pfn_insert(vma, &pgprot, pfn);
1199 
1200 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1201 	return VM_FAULT_NOPAGE;
1202 }
1203 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1204 
1205 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1206 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1207 {
1208 	if (likely(vma->vm_flags & VM_WRITE))
1209 		pud = pud_mkwrite(pud);
1210 	return pud;
1211 }
1212 
1213 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1214 		pud_t *pud, pfn_t pfn, bool write)
1215 {
1216 	struct mm_struct *mm = vma->vm_mm;
1217 	pgprot_t prot = vma->vm_page_prot;
1218 	pud_t entry;
1219 	spinlock_t *ptl;
1220 
1221 	ptl = pud_lock(mm, pud);
1222 	if (!pud_none(*pud)) {
1223 		if (write) {
1224 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1225 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1226 				goto out_unlock;
1227 			}
1228 			entry = pud_mkyoung(*pud);
1229 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1230 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1231 				update_mmu_cache_pud(vma, addr, pud);
1232 		}
1233 		goto out_unlock;
1234 	}
1235 
1236 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1237 	if (pfn_t_devmap(pfn))
1238 		entry = pud_mkdevmap(entry);
1239 	if (write) {
1240 		entry = pud_mkyoung(pud_mkdirty(entry));
1241 		entry = maybe_pud_mkwrite(entry, vma);
1242 	}
1243 	set_pud_at(mm, addr, pud, entry);
1244 	update_mmu_cache_pud(vma, addr, pud);
1245 
1246 out_unlock:
1247 	spin_unlock(ptl);
1248 }
1249 
1250 /**
1251  * vmf_insert_pfn_pud - insert a pud size pfn
1252  * @vmf: Structure describing the fault
1253  * @pfn: pfn to insert
1254  * @write: whether it's a write fault
1255  *
1256  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1257  *
1258  * Return: vm_fault_t value.
1259  */
1260 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1261 {
1262 	unsigned long addr = vmf->address & PUD_MASK;
1263 	struct vm_area_struct *vma = vmf->vma;
1264 	pgprot_t pgprot = vma->vm_page_prot;
1265 
1266 	/*
1267 	 * If we had pud_special, we could avoid all these restrictions,
1268 	 * but we need to be consistent with PTEs and architectures that
1269 	 * can't support a 'special' bit.
1270 	 */
1271 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1272 			!pfn_t_devmap(pfn));
1273 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1274 						(VM_PFNMAP|VM_MIXEDMAP));
1275 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1276 
1277 	if (addr < vma->vm_start || addr >= vma->vm_end)
1278 		return VM_FAULT_SIGBUS;
1279 
1280 	track_pfn_insert(vma, &pgprot, pfn);
1281 
1282 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1283 	return VM_FAULT_NOPAGE;
1284 }
1285 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1286 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1287 
1288 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1289 	       pmd_t *pmd, bool write)
1290 {
1291 	pmd_t _pmd;
1292 
1293 	_pmd = pmd_mkyoung(*pmd);
1294 	if (write)
1295 		_pmd = pmd_mkdirty(_pmd);
1296 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1297 				  pmd, _pmd, write))
1298 		update_mmu_cache_pmd(vma, addr, pmd);
1299 }
1300 
1301 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1302 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1303 {
1304 	unsigned long pfn = pmd_pfn(*pmd);
1305 	struct mm_struct *mm = vma->vm_mm;
1306 	struct page *page;
1307 	int ret;
1308 
1309 	assert_spin_locked(pmd_lockptr(mm, pmd));
1310 
1311 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1312 		return NULL;
1313 
1314 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1315 		/* pass */;
1316 	else
1317 		return NULL;
1318 
1319 	if (flags & FOLL_TOUCH)
1320 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1321 
1322 	/*
1323 	 * device mapped pages can only be returned if the
1324 	 * caller will manage the page reference count.
1325 	 */
1326 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1327 		return ERR_PTR(-EEXIST);
1328 
1329 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1330 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1331 	if (!*pgmap)
1332 		return ERR_PTR(-EFAULT);
1333 	page = pfn_to_page(pfn);
1334 	ret = try_grab_page(page, flags);
1335 	if (ret)
1336 		page = ERR_PTR(ret);
1337 
1338 	return page;
1339 }
1340 
1341 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1342 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1343 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1344 {
1345 	spinlock_t *dst_ptl, *src_ptl;
1346 	struct page *src_page;
1347 	struct folio *src_folio;
1348 	pmd_t pmd;
1349 	pgtable_t pgtable = NULL;
1350 	int ret = -ENOMEM;
1351 
1352 	/* Skip if can be re-fill on fault */
1353 	if (!vma_is_anonymous(dst_vma))
1354 		return 0;
1355 
1356 	pgtable = pte_alloc_one(dst_mm);
1357 	if (unlikely(!pgtable))
1358 		goto out;
1359 
1360 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1361 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1362 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1363 
1364 	ret = -EAGAIN;
1365 	pmd = *src_pmd;
1366 
1367 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1368 	if (unlikely(is_swap_pmd(pmd))) {
1369 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1370 
1371 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1372 		if (!is_readable_migration_entry(entry)) {
1373 			entry = make_readable_migration_entry(
1374 							swp_offset(entry));
1375 			pmd = swp_entry_to_pmd(entry);
1376 			if (pmd_swp_soft_dirty(*src_pmd))
1377 				pmd = pmd_swp_mksoft_dirty(pmd);
1378 			if (pmd_swp_uffd_wp(*src_pmd))
1379 				pmd = pmd_swp_mkuffd_wp(pmd);
1380 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1381 		}
1382 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1383 		mm_inc_nr_ptes(dst_mm);
1384 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1385 		if (!userfaultfd_wp(dst_vma))
1386 			pmd = pmd_swp_clear_uffd_wp(pmd);
1387 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1388 		ret = 0;
1389 		goto out_unlock;
1390 	}
1391 #endif
1392 
1393 	if (unlikely(!pmd_trans_huge(pmd))) {
1394 		pte_free(dst_mm, pgtable);
1395 		goto out_unlock;
1396 	}
1397 	/*
1398 	 * When page table lock is held, the huge zero pmd should not be
1399 	 * under splitting since we don't split the page itself, only pmd to
1400 	 * a page table.
1401 	 */
1402 	if (is_huge_zero_pmd(pmd)) {
1403 		/*
1404 		 * mm_get_huge_zero_folio() will never allocate a new
1405 		 * folio here, since we already have a zero page to
1406 		 * copy. It just takes a reference.
1407 		 */
1408 		mm_get_huge_zero_folio(dst_mm);
1409 		goto out_zero_page;
1410 	}
1411 
1412 	src_page = pmd_page(pmd);
1413 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1414 	src_folio = page_folio(src_page);
1415 
1416 	folio_get(src_folio);
1417 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1418 		/* Page maybe pinned: split and retry the fault on PTEs. */
1419 		folio_put(src_folio);
1420 		pte_free(dst_mm, pgtable);
1421 		spin_unlock(src_ptl);
1422 		spin_unlock(dst_ptl);
1423 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1424 		return -EAGAIN;
1425 	}
1426 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1427 out_zero_page:
1428 	mm_inc_nr_ptes(dst_mm);
1429 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1430 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1431 	if (!userfaultfd_wp(dst_vma))
1432 		pmd = pmd_clear_uffd_wp(pmd);
1433 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1434 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1435 
1436 	ret = 0;
1437 out_unlock:
1438 	spin_unlock(src_ptl);
1439 	spin_unlock(dst_ptl);
1440 out:
1441 	return ret;
1442 }
1443 
1444 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1445 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1446 	       pud_t *pud, bool write)
1447 {
1448 	pud_t _pud;
1449 
1450 	_pud = pud_mkyoung(*pud);
1451 	if (write)
1452 		_pud = pud_mkdirty(_pud);
1453 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1454 				  pud, _pud, write))
1455 		update_mmu_cache_pud(vma, addr, pud);
1456 }
1457 
1458 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1459 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1460 		  struct vm_area_struct *vma)
1461 {
1462 	spinlock_t *dst_ptl, *src_ptl;
1463 	pud_t pud;
1464 	int ret;
1465 
1466 	dst_ptl = pud_lock(dst_mm, dst_pud);
1467 	src_ptl = pud_lockptr(src_mm, src_pud);
1468 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1469 
1470 	ret = -EAGAIN;
1471 	pud = *src_pud;
1472 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1473 		goto out_unlock;
1474 
1475 	/*
1476 	 * When page table lock is held, the huge zero pud should not be
1477 	 * under splitting since we don't split the page itself, only pud to
1478 	 * a page table.
1479 	 */
1480 	if (is_huge_zero_pud(pud)) {
1481 		/* No huge zero pud yet */
1482 	}
1483 
1484 	/*
1485 	 * TODO: once we support anonymous pages, use
1486 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1487 	 */
1488 	pudp_set_wrprotect(src_mm, addr, src_pud);
1489 	pud = pud_mkold(pud_wrprotect(pud));
1490 	set_pud_at(dst_mm, addr, dst_pud, pud);
1491 
1492 	ret = 0;
1493 out_unlock:
1494 	spin_unlock(src_ptl);
1495 	spin_unlock(dst_ptl);
1496 	return ret;
1497 }
1498 
1499 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1500 {
1501 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1502 
1503 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1504 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1505 		goto unlock;
1506 
1507 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1508 unlock:
1509 	spin_unlock(vmf->ptl);
1510 }
1511 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1512 
1513 void huge_pmd_set_accessed(struct vm_fault *vmf)
1514 {
1515 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1516 
1517 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1518 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1519 		goto unlock;
1520 
1521 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1522 
1523 unlock:
1524 	spin_unlock(vmf->ptl);
1525 }
1526 
1527 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1528 {
1529 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1530 	struct vm_area_struct *vma = vmf->vma;
1531 	struct folio *folio;
1532 	struct page *page;
1533 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1534 	pmd_t orig_pmd = vmf->orig_pmd;
1535 
1536 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1537 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1538 
1539 	if (is_huge_zero_pmd(orig_pmd))
1540 		goto fallback;
1541 
1542 	spin_lock(vmf->ptl);
1543 
1544 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1545 		spin_unlock(vmf->ptl);
1546 		return 0;
1547 	}
1548 
1549 	page = pmd_page(orig_pmd);
1550 	folio = page_folio(page);
1551 	VM_BUG_ON_PAGE(!PageHead(page), page);
1552 
1553 	/* Early check when only holding the PT lock. */
1554 	if (PageAnonExclusive(page))
1555 		goto reuse;
1556 
1557 	if (!folio_trylock(folio)) {
1558 		folio_get(folio);
1559 		spin_unlock(vmf->ptl);
1560 		folio_lock(folio);
1561 		spin_lock(vmf->ptl);
1562 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1563 			spin_unlock(vmf->ptl);
1564 			folio_unlock(folio);
1565 			folio_put(folio);
1566 			return 0;
1567 		}
1568 		folio_put(folio);
1569 	}
1570 
1571 	/* Recheck after temporarily dropping the PT lock. */
1572 	if (PageAnonExclusive(page)) {
1573 		folio_unlock(folio);
1574 		goto reuse;
1575 	}
1576 
1577 	/*
1578 	 * See do_wp_page(): we can only reuse the folio exclusively if
1579 	 * there are no additional references. Note that we always drain
1580 	 * the LRU cache immediately after adding a THP.
1581 	 */
1582 	if (folio_ref_count(folio) >
1583 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1584 		goto unlock_fallback;
1585 	if (folio_test_swapcache(folio))
1586 		folio_free_swap(folio);
1587 	if (folio_ref_count(folio) == 1) {
1588 		pmd_t entry;
1589 
1590 		folio_move_anon_rmap(folio, vma);
1591 		SetPageAnonExclusive(page);
1592 		folio_unlock(folio);
1593 reuse:
1594 		if (unlikely(unshare)) {
1595 			spin_unlock(vmf->ptl);
1596 			return 0;
1597 		}
1598 		entry = pmd_mkyoung(orig_pmd);
1599 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1600 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1601 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1602 		spin_unlock(vmf->ptl);
1603 		return 0;
1604 	}
1605 
1606 unlock_fallback:
1607 	folio_unlock(folio);
1608 	spin_unlock(vmf->ptl);
1609 fallback:
1610 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1611 	return VM_FAULT_FALLBACK;
1612 }
1613 
1614 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1615 					   unsigned long addr, pmd_t pmd)
1616 {
1617 	struct page *page;
1618 
1619 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1620 		return false;
1621 
1622 	/* Don't touch entries that are not even readable (NUMA hinting). */
1623 	if (pmd_protnone(pmd))
1624 		return false;
1625 
1626 	/* Do we need write faults for softdirty tracking? */
1627 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1628 		return false;
1629 
1630 	/* Do we need write faults for uffd-wp tracking? */
1631 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1632 		return false;
1633 
1634 	if (!(vma->vm_flags & VM_SHARED)) {
1635 		/* See can_change_pte_writable(). */
1636 		page = vm_normal_page_pmd(vma, addr, pmd);
1637 		return page && PageAnon(page) && PageAnonExclusive(page);
1638 	}
1639 
1640 	/* See can_change_pte_writable(). */
1641 	return pmd_dirty(pmd);
1642 }
1643 
1644 /* NUMA hinting page fault entry point for trans huge pmds */
1645 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1646 {
1647 	struct vm_area_struct *vma = vmf->vma;
1648 	pmd_t oldpmd = vmf->orig_pmd;
1649 	pmd_t pmd;
1650 	struct folio *folio;
1651 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1652 	int nid = NUMA_NO_NODE;
1653 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1654 	bool migrated = false, writable = false;
1655 	int flags = 0;
1656 
1657 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1658 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1659 		spin_unlock(vmf->ptl);
1660 		goto out;
1661 	}
1662 
1663 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1664 
1665 	/*
1666 	 * Detect now whether the PMD could be writable; this information
1667 	 * is only valid while holding the PT lock.
1668 	 */
1669 	writable = pmd_write(pmd);
1670 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1671 	    can_change_pmd_writable(vma, vmf->address, pmd))
1672 		writable = true;
1673 
1674 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1675 	if (!folio)
1676 		goto out_map;
1677 
1678 	/* See similar comment in do_numa_page for explanation */
1679 	if (!writable)
1680 		flags |= TNF_NO_GROUP;
1681 
1682 	nid = folio_nid(folio);
1683 	/*
1684 	 * For memory tiering mode, cpupid of slow memory page is used
1685 	 * to record page access time.  So use default value.
1686 	 */
1687 	if (node_is_toptier(nid))
1688 		last_cpupid = folio_last_cpupid(folio);
1689 	target_nid = numa_migrate_prep(folio, vmf, haddr, nid, &flags);
1690 	if (target_nid == NUMA_NO_NODE) {
1691 		folio_put(folio);
1692 		goto out_map;
1693 	}
1694 
1695 	spin_unlock(vmf->ptl);
1696 	writable = false;
1697 
1698 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1699 	if (migrated) {
1700 		flags |= TNF_MIGRATED;
1701 		nid = target_nid;
1702 	} else {
1703 		flags |= TNF_MIGRATE_FAIL;
1704 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1705 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1706 			spin_unlock(vmf->ptl);
1707 			goto out;
1708 		}
1709 		goto out_map;
1710 	}
1711 
1712 out:
1713 	if (nid != NUMA_NO_NODE)
1714 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1715 
1716 	return 0;
1717 
1718 out_map:
1719 	/* Restore the PMD */
1720 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1721 	pmd = pmd_mkyoung(pmd);
1722 	if (writable)
1723 		pmd = pmd_mkwrite(pmd, vma);
1724 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1725 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1726 	spin_unlock(vmf->ptl);
1727 	goto out;
1728 }
1729 
1730 /*
1731  * Return true if we do MADV_FREE successfully on entire pmd page.
1732  * Otherwise, return false.
1733  */
1734 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1735 		pmd_t *pmd, unsigned long addr, unsigned long next)
1736 {
1737 	spinlock_t *ptl;
1738 	pmd_t orig_pmd;
1739 	struct folio *folio;
1740 	struct mm_struct *mm = tlb->mm;
1741 	bool ret = false;
1742 
1743 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1744 
1745 	ptl = pmd_trans_huge_lock(pmd, vma);
1746 	if (!ptl)
1747 		goto out_unlocked;
1748 
1749 	orig_pmd = *pmd;
1750 	if (is_huge_zero_pmd(orig_pmd))
1751 		goto out;
1752 
1753 	if (unlikely(!pmd_present(orig_pmd))) {
1754 		VM_BUG_ON(thp_migration_supported() &&
1755 				  !is_pmd_migration_entry(orig_pmd));
1756 		goto out;
1757 	}
1758 
1759 	folio = pmd_folio(orig_pmd);
1760 	/*
1761 	 * If other processes are mapping this folio, we couldn't discard
1762 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1763 	 */
1764 	if (folio_likely_mapped_shared(folio))
1765 		goto out;
1766 
1767 	if (!folio_trylock(folio))
1768 		goto out;
1769 
1770 	/*
1771 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1772 	 * will deactivate only them.
1773 	 */
1774 	if (next - addr != HPAGE_PMD_SIZE) {
1775 		folio_get(folio);
1776 		spin_unlock(ptl);
1777 		split_folio(folio);
1778 		folio_unlock(folio);
1779 		folio_put(folio);
1780 		goto out_unlocked;
1781 	}
1782 
1783 	if (folio_test_dirty(folio))
1784 		folio_clear_dirty(folio);
1785 	folio_unlock(folio);
1786 
1787 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1788 		pmdp_invalidate(vma, addr, pmd);
1789 		orig_pmd = pmd_mkold(orig_pmd);
1790 		orig_pmd = pmd_mkclean(orig_pmd);
1791 
1792 		set_pmd_at(mm, addr, pmd, orig_pmd);
1793 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1794 	}
1795 
1796 	folio_mark_lazyfree(folio);
1797 	ret = true;
1798 out:
1799 	spin_unlock(ptl);
1800 out_unlocked:
1801 	return ret;
1802 }
1803 
1804 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1805 {
1806 	pgtable_t pgtable;
1807 
1808 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1809 	pte_free(mm, pgtable);
1810 	mm_dec_nr_ptes(mm);
1811 }
1812 
1813 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1814 		 pmd_t *pmd, unsigned long addr)
1815 {
1816 	pmd_t orig_pmd;
1817 	spinlock_t *ptl;
1818 
1819 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1820 
1821 	ptl = __pmd_trans_huge_lock(pmd, vma);
1822 	if (!ptl)
1823 		return 0;
1824 	/*
1825 	 * For architectures like ppc64 we look at deposited pgtable
1826 	 * when calling pmdp_huge_get_and_clear. So do the
1827 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1828 	 * operations.
1829 	 */
1830 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1831 						tlb->fullmm);
1832 	arch_check_zapped_pmd(vma, orig_pmd);
1833 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1834 	if (vma_is_special_huge(vma)) {
1835 		if (arch_needs_pgtable_deposit())
1836 			zap_deposited_table(tlb->mm, pmd);
1837 		spin_unlock(ptl);
1838 	} else if (is_huge_zero_pmd(orig_pmd)) {
1839 		zap_deposited_table(tlb->mm, pmd);
1840 		spin_unlock(ptl);
1841 	} else {
1842 		struct folio *folio = NULL;
1843 		int flush_needed = 1;
1844 
1845 		if (pmd_present(orig_pmd)) {
1846 			struct page *page = pmd_page(orig_pmd);
1847 
1848 			folio = page_folio(page);
1849 			folio_remove_rmap_pmd(folio, page, vma);
1850 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
1851 			VM_BUG_ON_PAGE(!PageHead(page), page);
1852 		} else if (thp_migration_supported()) {
1853 			swp_entry_t entry;
1854 
1855 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1856 			entry = pmd_to_swp_entry(orig_pmd);
1857 			folio = pfn_swap_entry_folio(entry);
1858 			flush_needed = 0;
1859 		} else
1860 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1861 
1862 		if (folio_test_anon(folio)) {
1863 			zap_deposited_table(tlb->mm, pmd);
1864 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1865 		} else {
1866 			if (arch_needs_pgtable_deposit())
1867 				zap_deposited_table(tlb->mm, pmd);
1868 			add_mm_counter(tlb->mm, mm_counter_file(folio),
1869 				       -HPAGE_PMD_NR);
1870 		}
1871 
1872 		spin_unlock(ptl);
1873 		if (flush_needed)
1874 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
1875 	}
1876 	return 1;
1877 }
1878 
1879 #ifndef pmd_move_must_withdraw
1880 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1881 					 spinlock_t *old_pmd_ptl,
1882 					 struct vm_area_struct *vma)
1883 {
1884 	/*
1885 	 * With split pmd lock we also need to move preallocated
1886 	 * PTE page table if new_pmd is on different PMD page table.
1887 	 *
1888 	 * We also don't deposit and withdraw tables for file pages.
1889 	 */
1890 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1891 }
1892 #endif
1893 
1894 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1895 {
1896 #ifdef CONFIG_MEM_SOFT_DIRTY
1897 	if (unlikely(is_pmd_migration_entry(pmd)))
1898 		pmd = pmd_swp_mksoft_dirty(pmd);
1899 	else if (pmd_present(pmd))
1900 		pmd = pmd_mksoft_dirty(pmd);
1901 #endif
1902 	return pmd;
1903 }
1904 
1905 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1906 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1907 {
1908 	spinlock_t *old_ptl, *new_ptl;
1909 	pmd_t pmd;
1910 	struct mm_struct *mm = vma->vm_mm;
1911 	bool force_flush = false;
1912 
1913 	/*
1914 	 * The destination pmd shouldn't be established, free_pgtables()
1915 	 * should have released it; but move_page_tables() might have already
1916 	 * inserted a page table, if racing against shmem/file collapse.
1917 	 */
1918 	if (!pmd_none(*new_pmd)) {
1919 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1920 		return false;
1921 	}
1922 
1923 	/*
1924 	 * We don't have to worry about the ordering of src and dst
1925 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1926 	 */
1927 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1928 	if (old_ptl) {
1929 		new_ptl = pmd_lockptr(mm, new_pmd);
1930 		if (new_ptl != old_ptl)
1931 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1932 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1933 		if (pmd_present(pmd))
1934 			force_flush = true;
1935 		VM_BUG_ON(!pmd_none(*new_pmd));
1936 
1937 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1938 			pgtable_t pgtable;
1939 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1940 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1941 		}
1942 		pmd = move_soft_dirty_pmd(pmd);
1943 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1944 		if (force_flush)
1945 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1946 		if (new_ptl != old_ptl)
1947 			spin_unlock(new_ptl);
1948 		spin_unlock(old_ptl);
1949 		return true;
1950 	}
1951 	return false;
1952 }
1953 
1954 /*
1955  * Returns
1956  *  - 0 if PMD could not be locked
1957  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1958  *      or if prot_numa but THP migration is not supported
1959  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1960  */
1961 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1962 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1963 		    unsigned long cp_flags)
1964 {
1965 	struct mm_struct *mm = vma->vm_mm;
1966 	spinlock_t *ptl;
1967 	pmd_t oldpmd, entry;
1968 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1969 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1970 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1971 	int ret = 1;
1972 
1973 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1974 
1975 	if (prot_numa && !thp_migration_supported())
1976 		return 1;
1977 
1978 	ptl = __pmd_trans_huge_lock(pmd, vma);
1979 	if (!ptl)
1980 		return 0;
1981 
1982 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1983 	if (is_swap_pmd(*pmd)) {
1984 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1985 		struct folio *folio = pfn_swap_entry_folio(entry);
1986 		pmd_t newpmd;
1987 
1988 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1989 		if (is_writable_migration_entry(entry)) {
1990 			/*
1991 			 * A protection check is difficult so
1992 			 * just be safe and disable write
1993 			 */
1994 			if (folio_test_anon(folio))
1995 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1996 			else
1997 				entry = make_readable_migration_entry(swp_offset(entry));
1998 			newpmd = swp_entry_to_pmd(entry);
1999 			if (pmd_swp_soft_dirty(*pmd))
2000 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2001 		} else {
2002 			newpmd = *pmd;
2003 		}
2004 
2005 		if (uffd_wp)
2006 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2007 		else if (uffd_wp_resolve)
2008 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2009 		if (!pmd_same(*pmd, newpmd))
2010 			set_pmd_at(mm, addr, pmd, newpmd);
2011 		goto unlock;
2012 	}
2013 #endif
2014 
2015 	if (prot_numa) {
2016 		struct folio *folio;
2017 		bool toptier;
2018 		/*
2019 		 * Avoid trapping faults against the zero page. The read-only
2020 		 * data is likely to be read-cached on the local CPU and
2021 		 * local/remote hits to the zero page are not interesting.
2022 		 */
2023 		if (is_huge_zero_pmd(*pmd))
2024 			goto unlock;
2025 
2026 		if (pmd_protnone(*pmd))
2027 			goto unlock;
2028 
2029 		folio = pmd_folio(*pmd);
2030 		toptier = node_is_toptier(folio_nid(folio));
2031 		/*
2032 		 * Skip scanning top tier node if normal numa
2033 		 * balancing is disabled
2034 		 */
2035 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2036 		    toptier)
2037 			goto unlock;
2038 
2039 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2040 		    !toptier)
2041 			folio_xchg_access_time(folio,
2042 					       jiffies_to_msecs(jiffies));
2043 	}
2044 	/*
2045 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2046 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2047 	 * which is also under mmap_read_lock(mm):
2048 	 *
2049 	 *	CPU0:				CPU1:
2050 	 *				change_huge_pmd(prot_numa=1)
2051 	 *				 pmdp_huge_get_and_clear_notify()
2052 	 * madvise_dontneed()
2053 	 *  zap_pmd_range()
2054 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2055 	 *   // skip the pmd
2056 	 *				 set_pmd_at();
2057 	 *				 // pmd is re-established
2058 	 *
2059 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2060 	 * which may break userspace.
2061 	 *
2062 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2063 	 * dirty/young flags set by hardware.
2064 	 */
2065 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2066 
2067 	entry = pmd_modify(oldpmd, newprot);
2068 	if (uffd_wp)
2069 		entry = pmd_mkuffd_wp(entry);
2070 	else if (uffd_wp_resolve)
2071 		/*
2072 		 * Leave the write bit to be handled by PF interrupt
2073 		 * handler, then things like COW could be properly
2074 		 * handled.
2075 		 */
2076 		entry = pmd_clear_uffd_wp(entry);
2077 
2078 	/* See change_pte_range(). */
2079 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2080 	    can_change_pmd_writable(vma, addr, entry))
2081 		entry = pmd_mkwrite(entry, vma);
2082 
2083 	ret = HPAGE_PMD_NR;
2084 	set_pmd_at(mm, addr, pmd, entry);
2085 
2086 	if (huge_pmd_needs_flush(oldpmd, entry))
2087 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2088 unlock:
2089 	spin_unlock(ptl);
2090 	return ret;
2091 }
2092 
2093 #ifdef CONFIG_USERFAULTFD
2094 /*
2095  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2096  * the caller, but it must return after releasing the page_table_lock.
2097  * Just move the page from src_pmd to dst_pmd if possible.
2098  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2099  * repeated by the caller, or other errors in case of failure.
2100  */
2101 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2102 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2103 			unsigned long dst_addr, unsigned long src_addr)
2104 {
2105 	pmd_t _dst_pmd, src_pmdval;
2106 	struct page *src_page;
2107 	struct folio *src_folio;
2108 	struct anon_vma *src_anon_vma;
2109 	spinlock_t *src_ptl, *dst_ptl;
2110 	pgtable_t src_pgtable;
2111 	struct mmu_notifier_range range;
2112 	int err = 0;
2113 
2114 	src_pmdval = *src_pmd;
2115 	src_ptl = pmd_lockptr(mm, src_pmd);
2116 
2117 	lockdep_assert_held(src_ptl);
2118 	vma_assert_locked(src_vma);
2119 	vma_assert_locked(dst_vma);
2120 
2121 	/* Sanity checks before the operation */
2122 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2123 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2124 		spin_unlock(src_ptl);
2125 		return -EINVAL;
2126 	}
2127 
2128 	if (!pmd_trans_huge(src_pmdval)) {
2129 		spin_unlock(src_ptl);
2130 		if (is_pmd_migration_entry(src_pmdval)) {
2131 			pmd_migration_entry_wait(mm, &src_pmdval);
2132 			return -EAGAIN;
2133 		}
2134 		return -ENOENT;
2135 	}
2136 
2137 	src_page = pmd_page(src_pmdval);
2138 
2139 	if (!is_huge_zero_pmd(src_pmdval)) {
2140 		if (unlikely(!PageAnonExclusive(src_page))) {
2141 			spin_unlock(src_ptl);
2142 			return -EBUSY;
2143 		}
2144 
2145 		src_folio = page_folio(src_page);
2146 		folio_get(src_folio);
2147 	} else
2148 		src_folio = NULL;
2149 
2150 	spin_unlock(src_ptl);
2151 
2152 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2153 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2154 				src_addr + HPAGE_PMD_SIZE);
2155 	mmu_notifier_invalidate_range_start(&range);
2156 
2157 	if (src_folio) {
2158 		folio_lock(src_folio);
2159 
2160 		/*
2161 		 * split_huge_page walks the anon_vma chain without the page
2162 		 * lock. Serialize against it with the anon_vma lock, the page
2163 		 * lock is not enough.
2164 		 */
2165 		src_anon_vma = folio_get_anon_vma(src_folio);
2166 		if (!src_anon_vma) {
2167 			err = -EAGAIN;
2168 			goto unlock_folio;
2169 		}
2170 		anon_vma_lock_write(src_anon_vma);
2171 	} else
2172 		src_anon_vma = NULL;
2173 
2174 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2175 	double_pt_lock(src_ptl, dst_ptl);
2176 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2177 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2178 		err = -EAGAIN;
2179 		goto unlock_ptls;
2180 	}
2181 	if (src_folio) {
2182 		if (folio_maybe_dma_pinned(src_folio) ||
2183 		    !PageAnonExclusive(&src_folio->page)) {
2184 			err = -EBUSY;
2185 			goto unlock_ptls;
2186 		}
2187 
2188 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2189 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2190 			err = -EBUSY;
2191 			goto unlock_ptls;
2192 		}
2193 
2194 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2195 		/* Folio got pinned from under us. Put it back and fail the move. */
2196 		if (folio_maybe_dma_pinned(src_folio)) {
2197 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2198 			err = -EBUSY;
2199 			goto unlock_ptls;
2200 		}
2201 
2202 		folio_move_anon_rmap(src_folio, dst_vma);
2203 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2204 
2205 		_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2206 		/* Follow mremap() behavior and treat the entry dirty after the move */
2207 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2208 	} else {
2209 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2210 		_dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot);
2211 	}
2212 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2213 
2214 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2215 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2216 unlock_ptls:
2217 	double_pt_unlock(src_ptl, dst_ptl);
2218 	if (src_anon_vma) {
2219 		anon_vma_unlock_write(src_anon_vma);
2220 		put_anon_vma(src_anon_vma);
2221 	}
2222 unlock_folio:
2223 	/* unblock rmap walks */
2224 	if (src_folio)
2225 		folio_unlock(src_folio);
2226 	mmu_notifier_invalidate_range_end(&range);
2227 	if (src_folio)
2228 		folio_put(src_folio);
2229 	return err;
2230 }
2231 #endif /* CONFIG_USERFAULTFD */
2232 
2233 /*
2234  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2235  *
2236  * Note that if it returns page table lock pointer, this routine returns without
2237  * unlocking page table lock. So callers must unlock it.
2238  */
2239 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2240 {
2241 	spinlock_t *ptl;
2242 	ptl = pmd_lock(vma->vm_mm, pmd);
2243 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2244 			pmd_devmap(*pmd)))
2245 		return ptl;
2246 	spin_unlock(ptl);
2247 	return NULL;
2248 }
2249 
2250 /*
2251  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2252  *
2253  * Note that if it returns page table lock pointer, this routine returns without
2254  * unlocking page table lock. So callers must unlock it.
2255  */
2256 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2257 {
2258 	spinlock_t *ptl;
2259 
2260 	ptl = pud_lock(vma->vm_mm, pud);
2261 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2262 		return ptl;
2263 	spin_unlock(ptl);
2264 	return NULL;
2265 }
2266 
2267 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2268 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2269 		 pud_t *pud, unsigned long addr)
2270 {
2271 	spinlock_t *ptl;
2272 
2273 	ptl = __pud_trans_huge_lock(pud, vma);
2274 	if (!ptl)
2275 		return 0;
2276 
2277 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2278 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2279 	if (vma_is_special_huge(vma)) {
2280 		spin_unlock(ptl);
2281 		/* No zero page support yet */
2282 	} else {
2283 		/* No support for anonymous PUD pages yet */
2284 		BUG();
2285 	}
2286 	return 1;
2287 }
2288 
2289 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2290 		unsigned long haddr)
2291 {
2292 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2293 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2294 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2295 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2296 
2297 	count_vm_event(THP_SPLIT_PUD);
2298 
2299 	pudp_huge_clear_flush(vma, haddr, pud);
2300 }
2301 
2302 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2303 		unsigned long address)
2304 {
2305 	spinlock_t *ptl;
2306 	struct mmu_notifier_range range;
2307 
2308 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2309 				address & HPAGE_PUD_MASK,
2310 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2311 	mmu_notifier_invalidate_range_start(&range);
2312 	ptl = pud_lock(vma->vm_mm, pud);
2313 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2314 		goto out;
2315 	__split_huge_pud_locked(vma, pud, range.start);
2316 
2317 out:
2318 	spin_unlock(ptl);
2319 	mmu_notifier_invalidate_range_end(&range);
2320 }
2321 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2322 
2323 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2324 		unsigned long haddr, pmd_t *pmd)
2325 {
2326 	struct mm_struct *mm = vma->vm_mm;
2327 	pgtable_t pgtable;
2328 	pmd_t _pmd, old_pmd;
2329 	unsigned long addr;
2330 	pte_t *pte;
2331 	int i;
2332 
2333 	/*
2334 	 * Leave pmd empty until pte is filled note that it is fine to delay
2335 	 * notification until mmu_notifier_invalidate_range_end() as we are
2336 	 * replacing a zero pmd write protected page with a zero pte write
2337 	 * protected page.
2338 	 *
2339 	 * See Documentation/mm/mmu_notifier.rst
2340 	 */
2341 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2342 
2343 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2344 	pmd_populate(mm, &_pmd, pgtable);
2345 
2346 	pte = pte_offset_map(&_pmd, haddr);
2347 	VM_BUG_ON(!pte);
2348 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2349 		pte_t entry;
2350 
2351 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2352 		entry = pte_mkspecial(entry);
2353 		if (pmd_uffd_wp(old_pmd))
2354 			entry = pte_mkuffd_wp(entry);
2355 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2356 		set_pte_at(mm, addr, pte, entry);
2357 		pte++;
2358 	}
2359 	pte_unmap(pte - 1);
2360 	smp_wmb(); /* make pte visible before pmd */
2361 	pmd_populate(mm, pmd, pgtable);
2362 }
2363 
2364 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2365 		unsigned long haddr, bool freeze)
2366 {
2367 	struct mm_struct *mm = vma->vm_mm;
2368 	struct folio *folio;
2369 	struct page *page;
2370 	pgtable_t pgtable;
2371 	pmd_t old_pmd, _pmd;
2372 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2373 	bool anon_exclusive = false, dirty = false;
2374 	unsigned long addr;
2375 	pte_t *pte;
2376 	int i;
2377 
2378 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2379 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2380 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2381 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2382 				&& !pmd_devmap(*pmd));
2383 
2384 	count_vm_event(THP_SPLIT_PMD);
2385 
2386 	if (!vma_is_anonymous(vma)) {
2387 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2388 		/*
2389 		 * We are going to unmap this huge page. So
2390 		 * just go ahead and zap it
2391 		 */
2392 		if (arch_needs_pgtable_deposit())
2393 			zap_deposited_table(mm, pmd);
2394 		if (vma_is_special_huge(vma))
2395 			return;
2396 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2397 			swp_entry_t entry;
2398 
2399 			entry = pmd_to_swp_entry(old_pmd);
2400 			folio = pfn_swap_entry_folio(entry);
2401 		} else {
2402 			page = pmd_page(old_pmd);
2403 			folio = page_folio(page);
2404 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2405 				folio_mark_dirty(folio);
2406 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2407 				folio_set_referenced(folio);
2408 			folio_remove_rmap_pmd(folio, page, vma);
2409 			folio_put(folio);
2410 		}
2411 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2412 		return;
2413 	}
2414 
2415 	if (is_huge_zero_pmd(*pmd)) {
2416 		/*
2417 		 * FIXME: Do we want to invalidate secondary mmu by calling
2418 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2419 		 * inside __split_huge_pmd() ?
2420 		 *
2421 		 * We are going from a zero huge page write protected to zero
2422 		 * small page also write protected so it does not seems useful
2423 		 * to invalidate secondary mmu at this time.
2424 		 */
2425 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2426 	}
2427 
2428 	pmd_migration = is_pmd_migration_entry(*pmd);
2429 	if (unlikely(pmd_migration)) {
2430 		swp_entry_t entry;
2431 
2432 		old_pmd = *pmd;
2433 		entry = pmd_to_swp_entry(old_pmd);
2434 		page = pfn_swap_entry_to_page(entry);
2435 		write = is_writable_migration_entry(entry);
2436 		if (PageAnon(page))
2437 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2438 		young = is_migration_entry_young(entry);
2439 		dirty = is_migration_entry_dirty(entry);
2440 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2441 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2442 	} else {
2443 		/*
2444 		 * Up to this point the pmd is present and huge and userland has
2445 		 * the whole access to the hugepage during the split (which
2446 		 * happens in place). If we overwrite the pmd with the not-huge
2447 		 * version pointing to the pte here (which of course we could if
2448 		 * all CPUs were bug free), userland could trigger a small page
2449 		 * size TLB miss on the small sized TLB while the hugepage TLB
2450 		 * entry is still established in the huge TLB. Some CPU doesn't
2451 		 * like that. See
2452 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2453 		 * 383 on page 105. Intel should be safe but is also warns that
2454 		 * it's only safe if the permission and cache attributes of the
2455 		 * two entries loaded in the two TLB is identical (which should
2456 		 * be the case here). But it is generally safer to never allow
2457 		 * small and huge TLB entries for the same virtual address to be
2458 		 * loaded simultaneously. So instead of doing "pmd_populate();
2459 		 * flush_pmd_tlb_range();" we first mark the current pmd
2460 		 * notpresent (atomically because here the pmd_trans_huge must
2461 		 * remain set at all times on the pmd until the split is
2462 		 * complete for this pmd), then we flush the SMP TLB and finally
2463 		 * we write the non-huge version of the pmd entry with
2464 		 * pmd_populate.
2465 		 */
2466 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2467 		page = pmd_page(old_pmd);
2468 		folio = page_folio(page);
2469 		if (pmd_dirty(old_pmd)) {
2470 			dirty = true;
2471 			folio_set_dirty(folio);
2472 		}
2473 		write = pmd_write(old_pmd);
2474 		young = pmd_young(old_pmd);
2475 		soft_dirty = pmd_soft_dirty(old_pmd);
2476 		uffd_wp = pmd_uffd_wp(old_pmd);
2477 
2478 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2479 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2480 
2481 		/*
2482 		 * Without "freeze", we'll simply split the PMD, propagating the
2483 		 * PageAnonExclusive() flag for each PTE by setting it for
2484 		 * each subpage -- no need to (temporarily) clear.
2485 		 *
2486 		 * With "freeze" we want to replace mapped pages by
2487 		 * migration entries right away. This is only possible if we
2488 		 * managed to clear PageAnonExclusive() -- see
2489 		 * set_pmd_migration_entry().
2490 		 *
2491 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2492 		 * only and let try_to_migrate_one() fail later.
2493 		 *
2494 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2495 		 */
2496 		anon_exclusive = PageAnonExclusive(page);
2497 		if (freeze && anon_exclusive &&
2498 		    folio_try_share_anon_rmap_pmd(folio, page))
2499 			freeze = false;
2500 		if (!freeze) {
2501 			rmap_t rmap_flags = RMAP_NONE;
2502 
2503 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2504 			if (anon_exclusive)
2505 				rmap_flags |= RMAP_EXCLUSIVE;
2506 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2507 						 vma, haddr, rmap_flags);
2508 		}
2509 	}
2510 
2511 	/*
2512 	 * Withdraw the table only after we mark the pmd entry invalid.
2513 	 * This's critical for some architectures (Power).
2514 	 */
2515 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2516 	pmd_populate(mm, &_pmd, pgtable);
2517 
2518 	pte = pte_offset_map(&_pmd, haddr);
2519 	VM_BUG_ON(!pte);
2520 
2521 	/*
2522 	 * Note that NUMA hinting access restrictions are not transferred to
2523 	 * avoid any possibility of altering permissions across VMAs.
2524 	 */
2525 	if (freeze || pmd_migration) {
2526 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2527 			pte_t entry;
2528 			swp_entry_t swp_entry;
2529 
2530 			if (write)
2531 				swp_entry = make_writable_migration_entry(
2532 							page_to_pfn(page + i));
2533 			else if (anon_exclusive)
2534 				swp_entry = make_readable_exclusive_migration_entry(
2535 							page_to_pfn(page + i));
2536 			else
2537 				swp_entry = make_readable_migration_entry(
2538 							page_to_pfn(page + i));
2539 			if (young)
2540 				swp_entry = make_migration_entry_young(swp_entry);
2541 			if (dirty)
2542 				swp_entry = make_migration_entry_dirty(swp_entry);
2543 			entry = swp_entry_to_pte(swp_entry);
2544 			if (soft_dirty)
2545 				entry = pte_swp_mksoft_dirty(entry);
2546 			if (uffd_wp)
2547 				entry = pte_swp_mkuffd_wp(entry);
2548 
2549 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2550 			set_pte_at(mm, addr, pte + i, entry);
2551 		}
2552 	} else {
2553 		pte_t entry;
2554 
2555 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
2556 		if (write)
2557 			entry = pte_mkwrite(entry, vma);
2558 		if (!young)
2559 			entry = pte_mkold(entry);
2560 		/* NOTE: this may set soft-dirty too on some archs */
2561 		if (dirty)
2562 			entry = pte_mkdirty(entry);
2563 		if (soft_dirty)
2564 			entry = pte_mksoft_dirty(entry);
2565 		if (uffd_wp)
2566 			entry = pte_mkuffd_wp(entry);
2567 
2568 		for (i = 0; i < HPAGE_PMD_NR; i++)
2569 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
2570 
2571 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
2572 	}
2573 	pte_unmap(pte);
2574 
2575 	if (!pmd_migration)
2576 		folio_remove_rmap_pmd(folio, page, vma);
2577 	if (freeze)
2578 		put_page(page);
2579 
2580 	smp_wmb(); /* make pte visible before pmd */
2581 	pmd_populate(mm, pmd, pgtable);
2582 }
2583 
2584 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2585 		unsigned long address, bool freeze, struct folio *folio)
2586 {
2587 	spinlock_t *ptl;
2588 	struct mmu_notifier_range range;
2589 
2590 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2591 				address & HPAGE_PMD_MASK,
2592 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2593 	mmu_notifier_invalidate_range_start(&range);
2594 	ptl = pmd_lock(vma->vm_mm, pmd);
2595 
2596 	/*
2597 	 * If caller asks to setup a migration entry, we need a folio to check
2598 	 * pmd against. Otherwise we can end up replacing wrong folio.
2599 	 */
2600 	VM_BUG_ON(freeze && !folio);
2601 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2602 
2603 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2604 	    is_pmd_migration_entry(*pmd)) {
2605 		/*
2606 		 * It's safe to call pmd_page when folio is set because it's
2607 		 * guaranteed that pmd is present.
2608 		 */
2609 		if (folio && folio != pmd_folio(*pmd))
2610 			goto out;
2611 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2612 	}
2613 
2614 out:
2615 	spin_unlock(ptl);
2616 	mmu_notifier_invalidate_range_end(&range);
2617 }
2618 
2619 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2620 		bool freeze, struct folio *folio)
2621 {
2622 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2623 
2624 	if (!pmd)
2625 		return;
2626 
2627 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2628 }
2629 
2630 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2631 {
2632 	/*
2633 	 * If the new address isn't hpage aligned and it could previously
2634 	 * contain an hugepage: check if we need to split an huge pmd.
2635 	 */
2636 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2637 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2638 			 ALIGN(address, HPAGE_PMD_SIZE)))
2639 		split_huge_pmd_address(vma, address, false, NULL);
2640 }
2641 
2642 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2643 			     unsigned long start,
2644 			     unsigned long end,
2645 			     long adjust_next)
2646 {
2647 	/* Check if we need to split start first. */
2648 	split_huge_pmd_if_needed(vma, start);
2649 
2650 	/* Check if we need to split end next. */
2651 	split_huge_pmd_if_needed(vma, end);
2652 
2653 	/*
2654 	 * If we're also updating the next vma vm_start,
2655 	 * check if we need to split it.
2656 	 */
2657 	if (adjust_next > 0) {
2658 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2659 		unsigned long nstart = next->vm_start;
2660 		nstart += adjust_next;
2661 		split_huge_pmd_if_needed(next, nstart);
2662 	}
2663 }
2664 
2665 static void unmap_folio(struct folio *folio)
2666 {
2667 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
2668 		TTU_BATCH_FLUSH;
2669 
2670 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2671 
2672 	if (folio_test_pmd_mappable(folio))
2673 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
2674 
2675 	/*
2676 	 * Anon pages need migration entries to preserve them, but file
2677 	 * pages can simply be left unmapped, then faulted back on demand.
2678 	 * If that is ever changed (perhaps for mlock), update remap_page().
2679 	 */
2680 	if (folio_test_anon(folio))
2681 		try_to_migrate(folio, ttu_flags);
2682 	else
2683 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2684 
2685 	try_to_unmap_flush();
2686 }
2687 
2688 static void remap_page(struct folio *folio, unsigned long nr)
2689 {
2690 	int i = 0;
2691 
2692 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2693 	if (!folio_test_anon(folio))
2694 		return;
2695 	for (;;) {
2696 		remove_migration_ptes(folio, folio, true);
2697 		i += folio_nr_pages(folio);
2698 		if (i >= nr)
2699 			break;
2700 		folio = folio_next(folio);
2701 	}
2702 }
2703 
2704 static void lru_add_page_tail(struct page *head, struct page *tail,
2705 		struct lruvec *lruvec, struct list_head *list)
2706 {
2707 	VM_BUG_ON_PAGE(!PageHead(head), head);
2708 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2709 	lockdep_assert_held(&lruvec->lru_lock);
2710 
2711 	if (list) {
2712 		/* page reclaim is reclaiming a huge page */
2713 		VM_WARN_ON(PageLRU(head));
2714 		get_page(tail);
2715 		list_add_tail(&tail->lru, list);
2716 	} else {
2717 		/* head is still on lru (and we have it frozen) */
2718 		VM_WARN_ON(!PageLRU(head));
2719 		if (PageUnevictable(tail))
2720 			tail->mlock_count = 0;
2721 		else
2722 			list_add_tail(&tail->lru, &head->lru);
2723 		SetPageLRU(tail);
2724 	}
2725 }
2726 
2727 static void __split_huge_page_tail(struct folio *folio, int tail,
2728 		struct lruvec *lruvec, struct list_head *list,
2729 		unsigned int new_order)
2730 {
2731 	struct page *head = &folio->page;
2732 	struct page *page_tail = head + tail;
2733 	/*
2734 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2735 	 * Don't pass it around before clear_compound_head().
2736 	 */
2737 	struct folio *new_folio = (struct folio *)page_tail;
2738 
2739 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2740 
2741 	/*
2742 	 * Clone page flags before unfreezing refcount.
2743 	 *
2744 	 * After successful get_page_unless_zero() might follow flags change,
2745 	 * for example lock_page() which set PG_waiters.
2746 	 *
2747 	 * Note that for mapped sub-pages of an anonymous THP,
2748 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2749 	 * the migration entry instead from where remap_page() will restore it.
2750 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2751 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2752 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2753 	 */
2754 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2755 	page_tail->flags |= (head->flags &
2756 			((1L << PG_referenced) |
2757 			 (1L << PG_swapbacked) |
2758 			 (1L << PG_swapcache) |
2759 			 (1L << PG_mlocked) |
2760 			 (1L << PG_uptodate) |
2761 			 (1L << PG_active) |
2762 			 (1L << PG_workingset) |
2763 			 (1L << PG_locked) |
2764 			 (1L << PG_unevictable) |
2765 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2766 			 (1L << PG_arch_2) |
2767 			 (1L << PG_arch_3) |
2768 #endif
2769 			 (1L << PG_dirty) |
2770 			 LRU_GEN_MASK | LRU_REFS_MASK));
2771 
2772 	/* ->mapping in first and second tail page is replaced by other uses */
2773 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2774 			page_tail);
2775 	page_tail->mapping = head->mapping;
2776 	page_tail->index = head->index + tail;
2777 
2778 	/*
2779 	 * page->private should not be set in tail pages. Fix up and warn once
2780 	 * if private is unexpectedly set.
2781 	 */
2782 	if (unlikely(page_tail->private)) {
2783 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2784 		page_tail->private = 0;
2785 	}
2786 	if (folio_test_swapcache(folio))
2787 		new_folio->swap.val = folio->swap.val + tail;
2788 
2789 	/* Page flags must be visible before we make the page non-compound. */
2790 	smp_wmb();
2791 
2792 	/*
2793 	 * Clear PageTail before unfreezing page refcount.
2794 	 *
2795 	 * After successful get_page_unless_zero() might follow put_page()
2796 	 * which needs correct compound_head().
2797 	 */
2798 	clear_compound_head(page_tail);
2799 	if (new_order) {
2800 		prep_compound_page(page_tail, new_order);
2801 		folio_set_large_rmappable(new_folio);
2802 	}
2803 
2804 	/* Finally unfreeze refcount. Additional reference from page cache. */
2805 	page_ref_unfreeze(page_tail,
2806 		1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ?
2807 			     folio_nr_pages(new_folio) : 0));
2808 
2809 	if (folio_test_young(folio))
2810 		folio_set_young(new_folio);
2811 	if (folio_test_idle(folio))
2812 		folio_set_idle(new_folio);
2813 
2814 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2815 
2816 	/*
2817 	 * always add to the tail because some iterators expect new
2818 	 * pages to show after the currently processed elements - e.g.
2819 	 * migrate_pages
2820 	 */
2821 	lru_add_page_tail(head, page_tail, lruvec, list);
2822 }
2823 
2824 static void __split_huge_page(struct page *page, struct list_head *list,
2825 		pgoff_t end, unsigned int new_order)
2826 {
2827 	struct folio *folio = page_folio(page);
2828 	struct page *head = &folio->page;
2829 	struct lruvec *lruvec;
2830 	struct address_space *swap_cache = NULL;
2831 	unsigned long offset = 0;
2832 	int i, nr_dropped = 0;
2833 	unsigned int new_nr = 1 << new_order;
2834 	int order = folio_order(folio);
2835 	unsigned int nr = 1 << order;
2836 
2837 	/* complete memcg works before add pages to LRU */
2838 	split_page_memcg(head, order, new_order);
2839 
2840 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2841 		offset = swp_offset(folio->swap);
2842 		swap_cache = swap_address_space(folio->swap);
2843 		xa_lock(&swap_cache->i_pages);
2844 	}
2845 
2846 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2847 	lruvec = folio_lruvec_lock(folio);
2848 
2849 	ClearPageHasHWPoisoned(head);
2850 
2851 	for (i = nr - new_nr; i >= new_nr; i -= new_nr) {
2852 		__split_huge_page_tail(folio, i, lruvec, list, new_order);
2853 		/* Some pages can be beyond EOF: drop them from page cache */
2854 		if (head[i].index >= end) {
2855 			struct folio *tail = page_folio(head + i);
2856 
2857 			if (shmem_mapping(folio->mapping))
2858 				nr_dropped++;
2859 			else if (folio_test_clear_dirty(tail))
2860 				folio_account_cleaned(tail,
2861 					inode_to_wb(folio->mapping->host));
2862 			__filemap_remove_folio(tail, NULL);
2863 			folio_put(tail);
2864 		} else if (!PageAnon(page)) {
2865 			__xa_store(&folio->mapping->i_pages, head[i].index,
2866 					head + i, 0);
2867 		} else if (swap_cache) {
2868 			__xa_store(&swap_cache->i_pages, offset + i,
2869 					head + i, 0);
2870 		}
2871 	}
2872 
2873 	if (!new_order)
2874 		ClearPageCompound(head);
2875 	else {
2876 		struct folio *new_folio = (struct folio *)head;
2877 
2878 		folio_set_order(new_folio, new_order);
2879 	}
2880 	unlock_page_lruvec(lruvec);
2881 	/* Caller disabled irqs, so they are still disabled here */
2882 
2883 	split_page_owner(head, order, new_order);
2884 	pgalloc_tag_split(head, 1 << order);
2885 
2886 	/* See comment in __split_huge_page_tail() */
2887 	if (folio_test_anon(folio)) {
2888 		/* Additional pin to swap cache */
2889 		if (folio_test_swapcache(folio)) {
2890 			folio_ref_add(folio, 1 + new_nr);
2891 			xa_unlock(&swap_cache->i_pages);
2892 		} else {
2893 			folio_ref_inc(folio);
2894 		}
2895 	} else {
2896 		/* Additional pin to page cache */
2897 		folio_ref_add(folio, 1 + new_nr);
2898 		xa_unlock(&folio->mapping->i_pages);
2899 	}
2900 	local_irq_enable();
2901 
2902 	if (nr_dropped)
2903 		shmem_uncharge(folio->mapping->host, nr_dropped);
2904 	remap_page(folio, nr);
2905 
2906 	/*
2907 	 * set page to its compound_head when split to non order-0 pages, so
2908 	 * we can skip unlocking it below, since PG_locked is transferred to
2909 	 * the compound_head of the page and the caller will unlock it.
2910 	 */
2911 	if (new_order)
2912 		page = compound_head(page);
2913 
2914 	for (i = 0; i < nr; i += new_nr) {
2915 		struct page *subpage = head + i;
2916 		struct folio *new_folio = page_folio(subpage);
2917 		if (subpage == page)
2918 			continue;
2919 		folio_unlock(new_folio);
2920 
2921 		/*
2922 		 * Subpages may be freed if there wasn't any mapping
2923 		 * like if add_to_swap() is running on a lru page that
2924 		 * had its mapping zapped. And freeing these pages
2925 		 * requires taking the lru_lock so we do the put_page
2926 		 * of the tail pages after the split is complete.
2927 		 */
2928 		free_page_and_swap_cache(subpage);
2929 	}
2930 }
2931 
2932 /* Racy check whether the huge page can be split */
2933 bool can_split_folio(struct folio *folio, int *pextra_pins)
2934 {
2935 	int extra_pins;
2936 
2937 	/* Additional pins from page cache */
2938 	if (folio_test_anon(folio))
2939 		extra_pins = folio_test_swapcache(folio) ?
2940 				folio_nr_pages(folio) : 0;
2941 	else
2942 		extra_pins = folio_nr_pages(folio);
2943 	if (pextra_pins)
2944 		*pextra_pins = extra_pins;
2945 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2946 }
2947 
2948 /*
2949  * This function splits a large folio into smaller folios of order @new_order.
2950  * @page can point to any page of the large folio to split. The split operation
2951  * does not change the position of @page.
2952  *
2953  * Prerequisites:
2954  *
2955  * 1) The caller must hold a reference on the @page's owning folio, also known
2956  *    as the large folio.
2957  *
2958  * 2) The large folio must be locked.
2959  *
2960  * 3) The folio must not be pinned. Any unexpected folio references, including
2961  *    GUP pins, will result in the folio not getting split; instead, the caller
2962  *    will receive an -EAGAIN.
2963  *
2964  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
2965  *    supported for non-file-backed folios, because folio->_deferred_list, which
2966  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
2967  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
2968  *    since they do not use _deferred_list.
2969  *
2970  * After splitting, the caller's folio reference will be transferred to @page,
2971  * resulting in a raised refcount of @page after this call. The other pages may
2972  * be freed if they are not mapped.
2973  *
2974  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2975  *
2976  * Pages in @new_order will inherit the mapping, flags, and so on from the
2977  * huge page.
2978  *
2979  * Returns 0 if the huge page was split successfully.
2980  *
2981  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
2982  * the folio was concurrently removed from the page cache.
2983  *
2984  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
2985  * under writeback, if fs-specific folio metadata cannot currently be
2986  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
2987  * truncation).
2988  *
2989  * Returns -EINVAL when trying to split to an order that is incompatible
2990  * with the folio. Splitting to order 0 is compatible with all folios.
2991  */
2992 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
2993 				     unsigned int new_order)
2994 {
2995 	struct folio *folio = page_folio(page);
2996 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2997 	/* reset xarray order to new order after split */
2998 	XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order);
2999 	struct anon_vma *anon_vma = NULL;
3000 	struct address_space *mapping = NULL;
3001 	bool is_thp = folio_test_pmd_mappable(folio);
3002 	int extra_pins, ret;
3003 	pgoff_t end;
3004 	bool is_hzp;
3005 
3006 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3007 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3008 
3009 	if (new_order >= folio_order(folio))
3010 		return -EINVAL;
3011 
3012 	/* Cannot split anonymous THP to order-1 */
3013 	if (new_order == 1 && folio_test_anon(folio)) {
3014 		VM_WARN_ONCE(1, "Cannot split to order-1 folio");
3015 		return -EINVAL;
3016 	}
3017 
3018 	if (new_order) {
3019 		/* Only swapping a whole PMD-mapped folio is supported */
3020 		if (folio_test_swapcache(folio))
3021 			return -EINVAL;
3022 		/* Split shmem folio to non-zero order not supported */
3023 		if (shmem_mapping(folio->mapping)) {
3024 			VM_WARN_ONCE(1,
3025 				"Cannot split shmem folio to non-0 order");
3026 			return -EINVAL;
3027 		}
3028 		/* No split if the file system does not support large folio */
3029 		if (!mapping_large_folio_support(folio->mapping)) {
3030 			VM_WARN_ONCE(1,
3031 				"Cannot split file folio to non-0 order");
3032 			return -EINVAL;
3033 		}
3034 	}
3035 
3036 
3037 	is_hzp = is_huge_zero_folio(folio);
3038 	if (is_hzp) {
3039 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3040 		return -EBUSY;
3041 	}
3042 
3043 	if (folio_test_writeback(folio))
3044 		return -EBUSY;
3045 
3046 	if (folio_test_anon(folio)) {
3047 		/*
3048 		 * The caller does not necessarily hold an mmap_lock that would
3049 		 * prevent the anon_vma disappearing so we first we take a
3050 		 * reference to it and then lock the anon_vma for write. This
3051 		 * is similar to folio_lock_anon_vma_read except the write lock
3052 		 * is taken to serialise against parallel split or collapse
3053 		 * operations.
3054 		 */
3055 		anon_vma = folio_get_anon_vma(folio);
3056 		if (!anon_vma) {
3057 			ret = -EBUSY;
3058 			goto out;
3059 		}
3060 		end = -1;
3061 		mapping = NULL;
3062 		anon_vma_lock_write(anon_vma);
3063 	} else {
3064 		gfp_t gfp;
3065 
3066 		mapping = folio->mapping;
3067 
3068 		/* Truncated ? */
3069 		if (!mapping) {
3070 			ret = -EBUSY;
3071 			goto out;
3072 		}
3073 
3074 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3075 							GFP_RECLAIM_MASK);
3076 
3077 		if (!filemap_release_folio(folio, gfp)) {
3078 			ret = -EBUSY;
3079 			goto out;
3080 		}
3081 
3082 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3083 		if (xas_error(&xas)) {
3084 			ret = xas_error(&xas);
3085 			goto out;
3086 		}
3087 
3088 		anon_vma = NULL;
3089 		i_mmap_lock_read(mapping);
3090 
3091 		/*
3092 		 *__split_huge_page() may need to trim off pages beyond EOF:
3093 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3094 		 * which cannot be nested inside the page tree lock. So note
3095 		 * end now: i_size itself may be changed at any moment, but
3096 		 * folio lock is good enough to serialize the trimming.
3097 		 */
3098 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3099 		if (shmem_mapping(mapping))
3100 			end = shmem_fallocend(mapping->host, end);
3101 	}
3102 
3103 	/*
3104 	 * Racy check if we can split the page, before unmap_folio() will
3105 	 * split PMDs
3106 	 */
3107 	if (!can_split_folio(folio, &extra_pins)) {
3108 		ret = -EAGAIN;
3109 		goto out_unlock;
3110 	}
3111 
3112 	unmap_folio(folio);
3113 
3114 	/* block interrupt reentry in xa_lock and spinlock */
3115 	local_irq_disable();
3116 	if (mapping) {
3117 		/*
3118 		 * Check if the folio is present in page cache.
3119 		 * We assume all tail are present too, if folio is there.
3120 		 */
3121 		xas_lock(&xas);
3122 		xas_reset(&xas);
3123 		if (xas_load(&xas) != folio)
3124 			goto fail;
3125 	}
3126 
3127 	/* Prevent deferred_split_scan() touching ->_refcount */
3128 	spin_lock(&ds_queue->split_queue_lock);
3129 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3130 		if (folio_order(folio) > 1 &&
3131 		    !list_empty(&folio->_deferred_list)) {
3132 			ds_queue->split_queue_len--;
3133 			/*
3134 			 * Reinitialize page_deferred_list after removing the
3135 			 * page from the split_queue, otherwise a subsequent
3136 			 * split will see list corruption when checking the
3137 			 * page_deferred_list.
3138 			 */
3139 			list_del_init(&folio->_deferred_list);
3140 		}
3141 		spin_unlock(&ds_queue->split_queue_lock);
3142 		if (mapping) {
3143 			int nr = folio_nr_pages(folio);
3144 
3145 			xas_split(&xas, folio, folio_order(folio));
3146 			if (folio_test_pmd_mappable(folio) &&
3147 			    new_order < HPAGE_PMD_ORDER) {
3148 				if (folio_test_swapbacked(folio)) {
3149 					__lruvec_stat_mod_folio(folio,
3150 							NR_SHMEM_THPS, -nr);
3151 				} else {
3152 					__lruvec_stat_mod_folio(folio,
3153 							NR_FILE_THPS, -nr);
3154 					filemap_nr_thps_dec(mapping);
3155 				}
3156 			}
3157 		}
3158 
3159 		__split_huge_page(page, list, end, new_order);
3160 		ret = 0;
3161 	} else {
3162 		spin_unlock(&ds_queue->split_queue_lock);
3163 fail:
3164 		if (mapping)
3165 			xas_unlock(&xas);
3166 		local_irq_enable();
3167 		remap_page(folio, folio_nr_pages(folio));
3168 		ret = -EAGAIN;
3169 	}
3170 
3171 out_unlock:
3172 	if (anon_vma) {
3173 		anon_vma_unlock_write(anon_vma);
3174 		put_anon_vma(anon_vma);
3175 	}
3176 	if (mapping)
3177 		i_mmap_unlock_read(mapping);
3178 out:
3179 	xas_destroy(&xas);
3180 	if (is_thp)
3181 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3182 	return ret;
3183 }
3184 
3185 void folio_undo_large_rmappable(struct folio *folio)
3186 {
3187 	struct deferred_split *ds_queue;
3188 	unsigned long flags;
3189 
3190 	if (folio_order(folio) <= 1)
3191 		return;
3192 
3193 	/*
3194 	 * At this point, there is no one trying to add the folio to
3195 	 * deferred_list. If folio is not in deferred_list, it's safe
3196 	 * to check without acquiring the split_queue_lock.
3197 	 */
3198 	if (data_race(list_empty(&folio->_deferred_list)))
3199 		return;
3200 
3201 	ds_queue = get_deferred_split_queue(folio);
3202 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3203 	if (!list_empty(&folio->_deferred_list)) {
3204 		ds_queue->split_queue_len--;
3205 		list_del_init(&folio->_deferred_list);
3206 	}
3207 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3208 }
3209 
3210 void deferred_split_folio(struct folio *folio)
3211 {
3212 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3213 #ifdef CONFIG_MEMCG
3214 	struct mem_cgroup *memcg = folio_memcg(folio);
3215 #endif
3216 	unsigned long flags;
3217 
3218 	/*
3219 	 * Order 1 folios have no space for a deferred list, but we also
3220 	 * won't waste much memory by not adding them to the deferred list.
3221 	 */
3222 	if (folio_order(folio) <= 1)
3223 		return;
3224 
3225 	/*
3226 	 * The try_to_unmap() in page reclaim path might reach here too,
3227 	 * this may cause a race condition to corrupt deferred split queue.
3228 	 * And, if page reclaim is already handling the same folio, it is
3229 	 * unnecessary to handle it again in shrinker.
3230 	 *
3231 	 * Check the swapcache flag to determine if the folio is being
3232 	 * handled by page reclaim since THP swap would add the folio into
3233 	 * swap cache before calling try_to_unmap().
3234 	 */
3235 	if (folio_test_swapcache(folio))
3236 		return;
3237 
3238 	if (!list_empty(&folio->_deferred_list))
3239 		return;
3240 
3241 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3242 	if (list_empty(&folio->_deferred_list)) {
3243 		if (folio_test_pmd_mappable(folio))
3244 			count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3245 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3246 		ds_queue->split_queue_len++;
3247 #ifdef CONFIG_MEMCG
3248 		if (memcg)
3249 			set_shrinker_bit(memcg, folio_nid(folio),
3250 					 deferred_split_shrinker->id);
3251 #endif
3252 	}
3253 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3254 }
3255 
3256 static unsigned long deferred_split_count(struct shrinker *shrink,
3257 		struct shrink_control *sc)
3258 {
3259 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3260 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3261 
3262 #ifdef CONFIG_MEMCG
3263 	if (sc->memcg)
3264 		ds_queue = &sc->memcg->deferred_split_queue;
3265 #endif
3266 	return READ_ONCE(ds_queue->split_queue_len);
3267 }
3268 
3269 static unsigned long deferred_split_scan(struct shrinker *shrink,
3270 		struct shrink_control *sc)
3271 {
3272 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3273 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3274 	unsigned long flags;
3275 	LIST_HEAD(list);
3276 	struct folio *folio, *next;
3277 	int split = 0;
3278 
3279 #ifdef CONFIG_MEMCG
3280 	if (sc->memcg)
3281 		ds_queue = &sc->memcg->deferred_split_queue;
3282 #endif
3283 
3284 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3285 	/* Take pin on all head pages to avoid freeing them under us */
3286 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3287 							_deferred_list) {
3288 		if (folio_try_get(folio)) {
3289 			list_move(&folio->_deferred_list, &list);
3290 		} else {
3291 			/* We lost race with folio_put() */
3292 			list_del_init(&folio->_deferred_list);
3293 			ds_queue->split_queue_len--;
3294 		}
3295 		if (!--sc->nr_to_scan)
3296 			break;
3297 	}
3298 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3299 
3300 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3301 		if (!folio_trylock(folio))
3302 			goto next;
3303 		/* split_huge_page() removes page from list on success */
3304 		if (!split_folio(folio))
3305 			split++;
3306 		folio_unlock(folio);
3307 next:
3308 		folio_put(folio);
3309 	}
3310 
3311 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3312 	list_splice_tail(&list, &ds_queue->split_queue);
3313 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3314 
3315 	/*
3316 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3317 	 * This can happen if pages were freed under us.
3318 	 */
3319 	if (!split && list_empty(&ds_queue->split_queue))
3320 		return SHRINK_STOP;
3321 	return split;
3322 }
3323 
3324 #ifdef CONFIG_DEBUG_FS
3325 static void split_huge_pages_all(void)
3326 {
3327 	struct zone *zone;
3328 	struct page *page;
3329 	struct folio *folio;
3330 	unsigned long pfn, max_zone_pfn;
3331 	unsigned long total = 0, split = 0;
3332 
3333 	pr_debug("Split all THPs\n");
3334 	for_each_zone(zone) {
3335 		if (!managed_zone(zone))
3336 			continue;
3337 		max_zone_pfn = zone_end_pfn(zone);
3338 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3339 			int nr_pages;
3340 
3341 			page = pfn_to_online_page(pfn);
3342 			if (!page || PageTail(page))
3343 				continue;
3344 			folio = page_folio(page);
3345 			if (!folio_try_get(folio))
3346 				continue;
3347 
3348 			if (unlikely(page_folio(page) != folio))
3349 				goto next;
3350 
3351 			if (zone != folio_zone(folio))
3352 				goto next;
3353 
3354 			if (!folio_test_large(folio)
3355 				|| folio_test_hugetlb(folio)
3356 				|| !folio_test_lru(folio))
3357 				goto next;
3358 
3359 			total++;
3360 			folio_lock(folio);
3361 			nr_pages = folio_nr_pages(folio);
3362 			if (!split_folio(folio))
3363 				split++;
3364 			pfn += nr_pages - 1;
3365 			folio_unlock(folio);
3366 next:
3367 			folio_put(folio);
3368 			cond_resched();
3369 		}
3370 	}
3371 
3372 	pr_debug("%lu of %lu THP split\n", split, total);
3373 }
3374 
3375 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3376 {
3377 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3378 		    is_vm_hugetlb_page(vma);
3379 }
3380 
3381 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3382 				unsigned long vaddr_end, unsigned int new_order)
3383 {
3384 	int ret = 0;
3385 	struct task_struct *task;
3386 	struct mm_struct *mm;
3387 	unsigned long total = 0, split = 0;
3388 	unsigned long addr;
3389 
3390 	vaddr_start &= PAGE_MASK;
3391 	vaddr_end &= PAGE_MASK;
3392 
3393 	/* Find the task_struct from pid */
3394 	rcu_read_lock();
3395 	task = find_task_by_vpid(pid);
3396 	if (!task) {
3397 		rcu_read_unlock();
3398 		ret = -ESRCH;
3399 		goto out;
3400 	}
3401 	get_task_struct(task);
3402 	rcu_read_unlock();
3403 
3404 	/* Find the mm_struct */
3405 	mm = get_task_mm(task);
3406 	put_task_struct(task);
3407 
3408 	if (!mm) {
3409 		ret = -EINVAL;
3410 		goto out;
3411 	}
3412 
3413 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3414 		 pid, vaddr_start, vaddr_end);
3415 
3416 	mmap_read_lock(mm);
3417 	/*
3418 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3419 	 * table filled with PTE-mapped THPs, each of which is distinct.
3420 	 */
3421 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3422 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3423 		struct page *page;
3424 		struct folio *folio;
3425 
3426 		if (!vma)
3427 			break;
3428 
3429 		/* skip special VMA and hugetlb VMA */
3430 		if (vma_not_suitable_for_thp_split(vma)) {
3431 			addr = vma->vm_end;
3432 			continue;
3433 		}
3434 
3435 		/* FOLL_DUMP to ignore special (like zero) pages */
3436 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3437 
3438 		if (IS_ERR_OR_NULL(page))
3439 			continue;
3440 
3441 		folio = page_folio(page);
3442 		if (!is_transparent_hugepage(folio))
3443 			goto next;
3444 
3445 		if (new_order >= folio_order(folio))
3446 			goto next;
3447 
3448 		total++;
3449 		/*
3450 		 * For folios with private, split_huge_page_to_list_to_order()
3451 		 * will try to drop it before split and then check if the folio
3452 		 * can be split or not. So skip the check here.
3453 		 */
3454 		if (!folio_test_private(folio) &&
3455 		    !can_split_folio(folio, NULL))
3456 			goto next;
3457 
3458 		if (!folio_trylock(folio))
3459 			goto next;
3460 
3461 		if (!split_folio_to_order(folio, new_order))
3462 			split++;
3463 
3464 		folio_unlock(folio);
3465 next:
3466 		folio_put(folio);
3467 		cond_resched();
3468 	}
3469 	mmap_read_unlock(mm);
3470 	mmput(mm);
3471 
3472 	pr_debug("%lu of %lu THP split\n", split, total);
3473 
3474 out:
3475 	return ret;
3476 }
3477 
3478 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3479 				pgoff_t off_end, unsigned int new_order)
3480 {
3481 	struct filename *file;
3482 	struct file *candidate;
3483 	struct address_space *mapping;
3484 	int ret = -EINVAL;
3485 	pgoff_t index;
3486 	int nr_pages = 1;
3487 	unsigned long total = 0, split = 0;
3488 
3489 	file = getname_kernel(file_path);
3490 	if (IS_ERR(file))
3491 		return ret;
3492 
3493 	candidate = file_open_name(file, O_RDONLY, 0);
3494 	if (IS_ERR(candidate))
3495 		goto out;
3496 
3497 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3498 		 file_path, off_start, off_end);
3499 
3500 	mapping = candidate->f_mapping;
3501 
3502 	for (index = off_start; index < off_end; index += nr_pages) {
3503 		struct folio *folio = filemap_get_folio(mapping, index);
3504 
3505 		nr_pages = 1;
3506 		if (IS_ERR(folio))
3507 			continue;
3508 
3509 		if (!folio_test_large(folio))
3510 			goto next;
3511 
3512 		total++;
3513 		nr_pages = folio_nr_pages(folio);
3514 
3515 		if (new_order >= folio_order(folio))
3516 			goto next;
3517 
3518 		if (!folio_trylock(folio))
3519 			goto next;
3520 
3521 		if (!split_folio_to_order(folio, new_order))
3522 			split++;
3523 
3524 		folio_unlock(folio);
3525 next:
3526 		folio_put(folio);
3527 		cond_resched();
3528 	}
3529 
3530 	filp_close(candidate, NULL);
3531 	ret = 0;
3532 
3533 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3534 out:
3535 	putname(file);
3536 	return ret;
3537 }
3538 
3539 #define MAX_INPUT_BUF_SZ 255
3540 
3541 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3542 				size_t count, loff_t *ppops)
3543 {
3544 	static DEFINE_MUTEX(split_debug_mutex);
3545 	ssize_t ret;
3546 	/*
3547 	 * hold pid, start_vaddr, end_vaddr, new_order or
3548 	 * file_path, off_start, off_end, new_order
3549 	 */
3550 	char input_buf[MAX_INPUT_BUF_SZ];
3551 	int pid;
3552 	unsigned long vaddr_start, vaddr_end;
3553 	unsigned int new_order = 0;
3554 
3555 	ret = mutex_lock_interruptible(&split_debug_mutex);
3556 	if (ret)
3557 		return ret;
3558 
3559 	ret = -EFAULT;
3560 
3561 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3562 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3563 		goto out;
3564 
3565 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3566 
3567 	if (input_buf[0] == '/') {
3568 		char *tok;
3569 		char *buf = input_buf;
3570 		char file_path[MAX_INPUT_BUF_SZ];
3571 		pgoff_t off_start = 0, off_end = 0;
3572 		size_t input_len = strlen(input_buf);
3573 
3574 		tok = strsep(&buf, ",");
3575 		if (tok) {
3576 			strcpy(file_path, tok);
3577 		} else {
3578 			ret = -EINVAL;
3579 			goto out;
3580 		}
3581 
3582 		ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order);
3583 		if (ret != 2 && ret != 3) {
3584 			ret = -EINVAL;
3585 			goto out;
3586 		}
3587 		ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order);
3588 		if (!ret)
3589 			ret = input_len;
3590 
3591 		goto out;
3592 	}
3593 
3594 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order);
3595 	if (ret == 1 && pid == 1) {
3596 		split_huge_pages_all();
3597 		ret = strlen(input_buf);
3598 		goto out;
3599 	} else if (ret != 3 && ret != 4) {
3600 		ret = -EINVAL;
3601 		goto out;
3602 	}
3603 
3604 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order);
3605 	if (!ret)
3606 		ret = strlen(input_buf);
3607 out:
3608 	mutex_unlock(&split_debug_mutex);
3609 	return ret;
3610 
3611 }
3612 
3613 static const struct file_operations split_huge_pages_fops = {
3614 	.owner	 = THIS_MODULE,
3615 	.write	 = split_huge_pages_write,
3616 	.llseek  = no_llseek,
3617 };
3618 
3619 static int __init split_huge_pages_debugfs(void)
3620 {
3621 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3622 			    &split_huge_pages_fops);
3623 	return 0;
3624 }
3625 late_initcall(split_huge_pages_debugfs);
3626 #endif
3627 
3628 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3629 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3630 		struct page *page)
3631 {
3632 	struct folio *folio = page_folio(page);
3633 	struct vm_area_struct *vma = pvmw->vma;
3634 	struct mm_struct *mm = vma->vm_mm;
3635 	unsigned long address = pvmw->address;
3636 	bool anon_exclusive;
3637 	pmd_t pmdval;
3638 	swp_entry_t entry;
3639 	pmd_t pmdswp;
3640 
3641 	if (!(pvmw->pmd && !pvmw->pte))
3642 		return 0;
3643 
3644 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3645 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3646 
3647 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3648 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3649 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3650 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3651 		return -EBUSY;
3652 	}
3653 
3654 	if (pmd_dirty(pmdval))
3655 		folio_mark_dirty(folio);
3656 	if (pmd_write(pmdval))
3657 		entry = make_writable_migration_entry(page_to_pfn(page));
3658 	else if (anon_exclusive)
3659 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3660 	else
3661 		entry = make_readable_migration_entry(page_to_pfn(page));
3662 	if (pmd_young(pmdval))
3663 		entry = make_migration_entry_young(entry);
3664 	if (pmd_dirty(pmdval))
3665 		entry = make_migration_entry_dirty(entry);
3666 	pmdswp = swp_entry_to_pmd(entry);
3667 	if (pmd_soft_dirty(pmdval))
3668 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3669 	if (pmd_uffd_wp(pmdval))
3670 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3671 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3672 	folio_remove_rmap_pmd(folio, page, vma);
3673 	folio_put(folio);
3674 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3675 
3676 	return 0;
3677 }
3678 
3679 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3680 {
3681 	struct folio *folio = page_folio(new);
3682 	struct vm_area_struct *vma = pvmw->vma;
3683 	struct mm_struct *mm = vma->vm_mm;
3684 	unsigned long address = pvmw->address;
3685 	unsigned long haddr = address & HPAGE_PMD_MASK;
3686 	pmd_t pmde;
3687 	swp_entry_t entry;
3688 
3689 	if (!(pvmw->pmd && !pvmw->pte))
3690 		return;
3691 
3692 	entry = pmd_to_swp_entry(*pvmw->pmd);
3693 	folio_get(folio);
3694 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3695 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3696 		pmde = pmd_mksoft_dirty(pmde);
3697 	if (is_writable_migration_entry(entry))
3698 		pmde = pmd_mkwrite(pmde, vma);
3699 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3700 		pmde = pmd_mkuffd_wp(pmde);
3701 	if (!is_migration_entry_young(entry))
3702 		pmde = pmd_mkold(pmde);
3703 	/* NOTE: this may contain setting soft-dirty on some archs */
3704 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3705 		pmde = pmd_mkdirty(pmde);
3706 
3707 	if (folio_test_anon(folio)) {
3708 		rmap_t rmap_flags = RMAP_NONE;
3709 
3710 		if (!is_readable_migration_entry(entry))
3711 			rmap_flags |= RMAP_EXCLUSIVE;
3712 
3713 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3714 	} else {
3715 		folio_add_file_rmap_pmd(folio, new, vma);
3716 	}
3717 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3718 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3719 
3720 	/* No need to invalidate - it was non-present before */
3721 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3722 	trace_remove_migration_pmd(address, pmd_val(pmde));
3723 }
3724 #endif
3725