1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 41 #include <asm/tlb.h> 42 #include <asm/pgalloc.h> 43 #include "internal.h" 44 #include "swap.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/thp.h> 48 49 /* 50 * By default, transparent hugepage support is disabled in order to avoid 51 * risking an increased memory footprint for applications that are not 52 * guaranteed to benefit from it. When transparent hugepage support is 53 * enabled, it is for all mappings, and khugepaged scans all mappings. 54 * Defrag is invoked by khugepaged hugepage allocations and by page faults 55 * for all hugepage allocations. 56 */ 57 unsigned long transparent_hugepage_flags __read_mostly = 58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 59 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 60 #endif 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 63 #endif 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 67 68 static struct shrinker deferred_split_shrinker; 69 70 static atomic_t huge_zero_refcount; 71 struct page *huge_zero_page __read_mostly; 72 unsigned long huge_zero_pfn __read_mostly = ~0UL; 73 74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags, 75 bool smaps, bool in_pf, bool enforce_sysfs) 76 { 77 if (!vma->vm_mm) /* vdso */ 78 return false; 79 80 /* 81 * Explicitly disabled through madvise or prctl, or some 82 * architectures may disable THP for some mappings, for 83 * example, s390 kvm. 84 * */ 85 if ((vm_flags & VM_NOHUGEPAGE) || 86 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 87 return false; 88 /* 89 * If the hardware/firmware marked hugepage support disabled. 90 */ 91 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 92 return false; 93 94 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 95 if (vma_is_dax(vma)) 96 return in_pf; 97 98 /* 99 * Special VMA and hugetlb VMA. 100 * Must be checked after dax since some dax mappings may have 101 * VM_MIXEDMAP set. 102 */ 103 if (vm_flags & VM_NO_KHUGEPAGED) 104 return false; 105 106 /* 107 * Check alignment for file vma and size for both file and anon vma. 108 * 109 * Skip the check for page fault. Huge fault does the check in fault 110 * handlers. And this check is not suitable for huge PUD fault. 111 */ 112 if (!in_pf && 113 !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE))) 114 return false; 115 116 /* 117 * Enabled via shmem mount options or sysfs settings. 118 * Must be done before hugepage flags check since shmem has its 119 * own flags. 120 */ 121 if (!in_pf && shmem_file(vma->vm_file)) 122 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 123 !enforce_sysfs, vma->vm_mm, vm_flags); 124 125 /* Enforce sysfs THP requirements as necessary */ 126 if (enforce_sysfs && 127 (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) && 128 !hugepage_flags_always()))) 129 return false; 130 131 /* Only regular file is valid */ 132 if (!in_pf && file_thp_enabled(vma)) 133 return true; 134 135 if (!vma_is_anonymous(vma)) 136 return false; 137 138 if (vma_is_temporary_stack(vma)) 139 return false; 140 141 /* 142 * THPeligible bit of smaps should show 1 for proper VMAs even 143 * though anon_vma is not initialized yet. 144 * 145 * Allow page fault since anon_vma may be not initialized until 146 * the first page fault. 147 */ 148 if (!vma->anon_vma) 149 return (smaps || in_pf); 150 151 return true; 152 } 153 154 static bool get_huge_zero_page(void) 155 { 156 struct page *zero_page; 157 retry: 158 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 159 return true; 160 161 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 162 HPAGE_PMD_ORDER); 163 if (!zero_page) { 164 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 165 return false; 166 } 167 preempt_disable(); 168 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 169 preempt_enable(); 170 __free_pages(zero_page, compound_order(zero_page)); 171 goto retry; 172 } 173 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 174 175 /* We take additional reference here. It will be put back by shrinker */ 176 atomic_set(&huge_zero_refcount, 2); 177 preempt_enable(); 178 count_vm_event(THP_ZERO_PAGE_ALLOC); 179 return true; 180 } 181 182 static void put_huge_zero_page(void) 183 { 184 /* 185 * Counter should never go to zero here. Only shrinker can put 186 * last reference. 187 */ 188 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 189 } 190 191 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 192 { 193 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 194 return READ_ONCE(huge_zero_page); 195 196 if (!get_huge_zero_page()) 197 return NULL; 198 199 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 200 put_huge_zero_page(); 201 202 return READ_ONCE(huge_zero_page); 203 } 204 205 void mm_put_huge_zero_page(struct mm_struct *mm) 206 { 207 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 208 put_huge_zero_page(); 209 } 210 211 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 212 struct shrink_control *sc) 213 { 214 /* we can free zero page only if last reference remains */ 215 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 216 } 217 218 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 219 struct shrink_control *sc) 220 { 221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 222 struct page *zero_page = xchg(&huge_zero_page, NULL); 223 BUG_ON(zero_page == NULL); 224 WRITE_ONCE(huge_zero_pfn, ~0UL); 225 __free_pages(zero_page, compound_order(zero_page)); 226 return HPAGE_PMD_NR; 227 } 228 229 return 0; 230 } 231 232 static struct shrinker huge_zero_page_shrinker = { 233 .count_objects = shrink_huge_zero_page_count, 234 .scan_objects = shrink_huge_zero_page_scan, 235 .seeks = DEFAULT_SEEKS, 236 }; 237 238 #ifdef CONFIG_SYSFS 239 static ssize_t enabled_show(struct kobject *kobj, 240 struct kobj_attribute *attr, char *buf) 241 { 242 const char *output; 243 244 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 245 output = "[always] madvise never"; 246 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 247 &transparent_hugepage_flags)) 248 output = "always [madvise] never"; 249 else 250 output = "always madvise [never]"; 251 252 return sysfs_emit(buf, "%s\n", output); 253 } 254 255 static ssize_t enabled_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 ssize_t ret = count; 260 261 if (sysfs_streq(buf, "always")) { 262 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 263 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 264 } else if (sysfs_streq(buf, "madvise")) { 265 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 266 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 267 } else if (sysfs_streq(buf, "never")) { 268 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 269 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 270 } else 271 ret = -EINVAL; 272 273 if (ret > 0) { 274 int err = start_stop_khugepaged(); 275 if (err) 276 ret = err; 277 } 278 return ret; 279 } 280 281 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 282 283 ssize_t single_hugepage_flag_show(struct kobject *kobj, 284 struct kobj_attribute *attr, char *buf, 285 enum transparent_hugepage_flag flag) 286 { 287 return sysfs_emit(buf, "%d\n", 288 !!test_bit(flag, &transparent_hugepage_flags)); 289 } 290 291 ssize_t single_hugepage_flag_store(struct kobject *kobj, 292 struct kobj_attribute *attr, 293 const char *buf, size_t count, 294 enum transparent_hugepage_flag flag) 295 { 296 unsigned long value; 297 int ret; 298 299 ret = kstrtoul(buf, 10, &value); 300 if (ret < 0) 301 return ret; 302 if (value > 1) 303 return -EINVAL; 304 305 if (value) 306 set_bit(flag, &transparent_hugepage_flags); 307 else 308 clear_bit(flag, &transparent_hugepage_flags); 309 310 return count; 311 } 312 313 static ssize_t defrag_show(struct kobject *kobj, 314 struct kobj_attribute *attr, char *buf) 315 { 316 const char *output; 317 318 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 319 &transparent_hugepage_flags)) 320 output = "[always] defer defer+madvise madvise never"; 321 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 322 &transparent_hugepage_flags)) 323 output = "always [defer] defer+madvise madvise never"; 324 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 325 &transparent_hugepage_flags)) 326 output = "always defer [defer+madvise] madvise never"; 327 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 328 &transparent_hugepage_flags)) 329 output = "always defer defer+madvise [madvise] never"; 330 else 331 output = "always defer defer+madvise madvise [never]"; 332 333 return sysfs_emit(buf, "%s\n", output); 334 } 335 336 static ssize_t defrag_store(struct kobject *kobj, 337 struct kobj_attribute *attr, 338 const char *buf, size_t count) 339 { 340 if (sysfs_streq(buf, "always")) { 341 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 342 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 343 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 344 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 345 } else if (sysfs_streq(buf, "defer+madvise")) { 346 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 347 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 348 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 349 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 350 } else if (sysfs_streq(buf, "defer")) { 351 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 352 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 353 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 354 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 355 } else if (sysfs_streq(buf, "madvise")) { 356 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 357 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 358 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 359 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 360 } else if (sysfs_streq(buf, "never")) { 361 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 362 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 363 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 364 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 365 } else 366 return -EINVAL; 367 368 return count; 369 } 370 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 371 372 static ssize_t use_zero_page_show(struct kobject *kobj, 373 struct kobj_attribute *attr, char *buf) 374 { 375 return single_hugepage_flag_show(kobj, attr, buf, 376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 377 } 378 static ssize_t use_zero_page_store(struct kobject *kobj, 379 struct kobj_attribute *attr, const char *buf, size_t count) 380 { 381 return single_hugepage_flag_store(kobj, attr, buf, count, 382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 383 } 384 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 385 386 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 387 struct kobj_attribute *attr, char *buf) 388 { 389 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 390 } 391 static struct kobj_attribute hpage_pmd_size_attr = 392 __ATTR_RO(hpage_pmd_size); 393 394 static struct attribute *hugepage_attr[] = { 395 &enabled_attr.attr, 396 &defrag_attr.attr, 397 &use_zero_page_attr.attr, 398 &hpage_pmd_size_attr.attr, 399 #ifdef CONFIG_SHMEM 400 &shmem_enabled_attr.attr, 401 #endif 402 NULL, 403 }; 404 405 static const struct attribute_group hugepage_attr_group = { 406 .attrs = hugepage_attr, 407 }; 408 409 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 410 { 411 int err; 412 413 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 414 if (unlikely(!*hugepage_kobj)) { 415 pr_err("failed to create transparent hugepage kobject\n"); 416 return -ENOMEM; 417 } 418 419 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 420 if (err) { 421 pr_err("failed to register transparent hugepage group\n"); 422 goto delete_obj; 423 } 424 425 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 426 if (err) { 427 pr_err("failed to register transparent hugepage group\n"); 428 goto remove_hp_group; 429 } 430 431 return 0; 432 433 remove_hp_group: 434 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 435 delete_obj: 436 kobject_put(*hugepage_kobj); 437 return err; 438 } 439 440 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 441 { 442 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 443 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 444 kobject_put(hugepage_kobj); 445 } 446 #else 447 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 448 { 449 return 0; 450 } 451 452 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 453 { 454 } 455 #endif /* CONFIG_SYSFS */ 456 457 static int __init hugepage_init(void) 458 { 459 int err; 460 struct kobject *hugepage_kobj; 461 462 if (!has_transparent_hugepage()) { 463 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 464 return -EINVAL; 465 } 466 467 /* 468 * hugepages can't be allocated by the buddy allocator 469 */ 470 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_ORDER); 471 /* 472 * we use page->mapping and page->index in second tail page 473 * as list_head: assuming THP order >= 2 474 */ 475 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 476 477 err = hugepage_init_sysfs(&hugepage_kobj); 478 if (err) 479 goto err_sysfs; 480 481 err = khugepaged_init(); 482 if (err) 483 goto err_slab; 484 485 err = register_shrinker(&huge_zero_page_shrinker, "thp-zero"); 486 if (err) 487 goto err_hzp_shrinker; 488 err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split"); 489 if (err) 490 goto err_split_shrinker; 491 492 /* 493 * By default disable transparent hugepages on smaller systems, 494 * where the extra memory used could hurt more than TLB overhead 495 * is likely to save. The admin can still enable it through /sys. 496 */ 497 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 498 transparent_hugepage_flags = 0; 499 return 0; 500 } 501 502 err = start_stop_khugepaged(); 503 if (err) 504 goto err_khugepaged; 505 506 return 0; 507 err_khugepaged: 508 unregister_shrinker(&deferred_split_shrinker); 509 err_split_shrinker: 510 unregister_shrinker(&huge_zero_page_shrinker); 511 err_hzp_shrinker: 512 khugepaged_destroy(); 513 err_slab: 514 hugepage_exit_sysfs(hugepage_kobj); 515 err_sysfs: 516 return err; 517 } 518 subsys_initcall(hugepage_init); 519 520 static int __init setup_transparent_hugepage(char *str) 521 { 522 int ret = 0; 523 if (!str) 524 goto out; 525 if (!strcmp(str, "always")) { 526 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 527 &transparent_hugepage_flags); 528 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 529 &transparent_hugepage_flags); 530 ret = 1; 531 } else if (!strcmp(str, "madvise")) { 532 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 533 &transparent_hugepage_flags); 534 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 535 &transparent_hugepage_flags); 536 ret = 1; 537 } else if (!strcmp(str, "never")) { 538 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 539 &transparent_hugepage_flags); 540 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 541 &transparent_hugepage_flags); 542 ret = 1; 543 } 544 out: 545 if (!ret) 546 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 547 return ret; 548 } 549 __setup("transparent_hugepage=", setup_transparent_hugepage); 550 551 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 552 { 553 if (likely(vma->vm_flags & VM_WRITE)) 554 pmd = pmd_mkwrite(pmd, vma); 555 return pmd; 556 } 557 558 #ifdef CONFIG_MEMCG 559 static inline 560 struct deferred_split *get_deferred_split_queue(struct folio *folio) 561 { 562 struct mem_cgroup *memcg = folio_memcg(folio); 563 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 564 565 if (memcg) 566 return &memcg->deferred_split_queue; 567 else 568 return &pgdat->deferred_split_queue; 569 } 570 #else 571 static inline 572 struct deferred_split *get_deferred_split_queue(struct folio *folio) 573 { 574 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 575 576 return &pgdat->deferred_split_queue; 577 } 578 #endif 579 580 void folio_prep_large_rmappable(struct folio *folio) 581 { 582 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 583 INIT_LIST_HEAD(&folio->_deferred_list); 584 folio_set_large_rmappable(folio); 585 } 586 587 static inline bool is_transparent_hugepage(struct folio *folio) 588 { 589 if (!folio_test_large(folio)) 590 return false; 591 592 return is_huge_zero_page(&folio->page) || 593 folio_test_large_rmappable(folio); 594 } 595 596 static unsigned long __thp_get_unmapped_area(struct file *filp, 597 unsigned long addr, unsigned long len, 598 loff_t off, unsigned long flags, unsigned long size) 599 { 600 loff_t off_end = off + len; 601 loff_t off_align = round_up(off, size); 602 unsigned long len_pad, ret; 603 604 if (off_end <= off_align || (off_end - off_align) < size) 605 return 0; 606 607 len_pad = len + size; 608 if (len_pad < len || (off + len_pad) < off) 609 return 0; 610 611 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 612 off >> PAGE_SHIFT, flags); 613 614 /* 615 * The failure might be due to length padding. The caller will retry 616 * without the padding. 617 */ 618 if (IS_ERR_VALUE(ret)) 619 return 0; 620 621 /* 622 * Do not try to align to THP boundary if allocation at the address 623 * hint succeeds. 624 */ 625 if (ret == addr) 626 return addr; 627 628 ret += (off - ret) & (size - 1); 629 return ret; 630 } 631 632 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 633 unsigned long len, unsigned long pgoff, unsigned long flags) 634 { 635 unsigned long ret; 636 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 637 638 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 639 if (ret) 640 return ret; 641 642 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 643 } 644 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 645 646 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 647 struct page *page, gfp_t gfp) 648 { 649 struct vm_area_struct *vma = vmf->vma; 650 struct folio *folio = page_folio(page); 651 pgtable_t pgtable; 652 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 653 vm_fault_t ret = 0; 654 655 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 656 657 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 658 folio_put(folio); 659 count_vm_event(THP_FAULT_FALLBACK); 660 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 661 return VM_FAULT_FALLBACK; 662 } 663 folio_throttle_swaprate(folio, gfp); 664 665 pgtable = pte_alloc_one(vma->vm_mm); 666 if (unlikely(!pgtable)) { 667 ret = VM_FAULT_OOM; 668 goto release; 669 } 670 671 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 672 /* 673 * The memory barrier inside __folio_mark_uptodate makes sure that 674 * clear_huge_page writes become visible before the set_pmd_at() 675 * write. 676 */ 677 __folio_mark_uptodate(folio); 678 679 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 680 if (unlikely(!pmd_none(*vmf->pmd))) { 681 goto unlock_release; 682 } else { 683 pmd_t entry; 684 685 ret = check_stable_address_space(vma->vm_mm); 686 if (ret) 687 goto unlock_release; 688 689 /* Deliver the page fault to userland */ 690 if (userfaultfd_missing(vma)) { 691 spin_unlock(vmf->ptl); 692 folio_put(folio); 693 pte_free(vma->vm_mm, pgtable); 694 ret = handle_userfault(vmf, VM_UFFD_MISSING); 695 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 696 return ret; 697 } 698 699 entry = mk_huge_pmd(page, vma->vm_page_prot); 700 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 701 folio_add_new_anon_rmap(folio, vma, haddr); 702 folio_add_lru_vma(folio, vma); 703 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 704 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 705 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 706 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 707 mm_inc_nr_ptes(vma->vm_mm); 708 spin_unlock(vmf->ptl); 709 count_vm_event(THP_FAULT_ALLOC); 710 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 711 } 712 713 return 0; 714 unlock_release: 715 spin_unlock(vmf->ptl); 716 release: 717 if (pgtable) 718 pte_free(vma->vm_mm, pgtable); 719 folio_put(folio); 720 return ret; 721 722 } 723 724 /* 725 * always: directly stall for all thp allocations 726 * defer: wake kswapd and fail if not immediately available 727 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 728 * fail if not immediately available 729 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 730 * available 731 * never: never stall for any thp allocation 732 */ 733 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 734 { 735 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 736 737 /* Always do synchronous compaction */ 738 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 739 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 740 741 /* Kick kcompactd and fail quickly */ 742 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 743 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 744 745 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 746 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 747 return GFP_TRANSHUGE_LIGHT | 748 (vma_madvised ? __GFP_DIRECT_RECLAIM : 749 __GFP_KSWAPD_RECLAIM); 750 751 /* Only do synchronous compaction if madvised */ 752 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 753 return GFP_TRANSHUGE_LIGHT | 754 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 755 756 return GFP_TRANSHUGE_LIGHT; 757 } 758 759 /* Caller must hold page table lock. */ 760 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 761 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 762 struct page *zero_page) 763 { 764 pmd_t entry; 765 if (!pmd_none(*pmd)) 766 return; 767 entry = mk_pmd(zero_page, vma->vm_page_prot); 768 entry = pmd_mkhuge(entry); 769 pgtable_trans_huge_deposit(mm, pmd, pgtable); 770 set_pmd_at(mm, haddr, pmd, entry); 771 mm_inc_nr_ptes(mm); 772 } 773 774 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 775 { 776 struct vm_area_struct *vma = vmf->vma; 777 gfp_t gfp; 778 struct folio *folio; 779 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 780 781 if (!transhuge_vma_suitable(vma, haddr)) 782 return VM_FAULT_FALLBACK; 783 if (unlikely(anon_vma_prepare(vma))) 784 return VM_FAULT_OOM; 785 khugepaged_enter_vma(vma, vma->vm_flags); 786 787 if (!(vmf->flags & FAULT_FLAG_WRITE) && 788 !mm_forbids_zeropage(vma->vm_mm) && 789 transparent_hugepage_use_zero_page()) { 790 pgtable_t pgtable; 791 struct page *zero_page; 792 vm_fault_t ret; 793 pgtable = pte_alloc_one(vma->vm_mm); 794 if (unlikely(!pgtable)) 795 return VM_FAULT_OOM; 796 zero_page = mm_get_huge_zero_page(vma->vm_mm); 797 if (unlikely(!zero_page)) { 798 pte_free(vma->vm_mm, pgtable); 799 count_vm_event(THP_FAULT_FALLBACK); 800 return VM_FAULT_FALLBACK; 801 } 802 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 803 ret = 0; 804 if (pmd_none(*vmf->pmd)) { 805 ret = check_stable_address_space(vma->vm_mm); 806 if (ret) { 807 spin_unlock(vmf->ptl); 808 pte_free(vma->vm_mm, pgtable); 809 } else if (userfaultfd_missing(vma)) { 810 spin_unlock(vmf->ptl); 811 pte_free(vma->vm_mm, pgtable); 812 ret = handle_userfault(vmf, VM_UFFD_MISSING); 813 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 814 } else { 815 set_huge_zero_page(pgtable, vma->vm_mm, vma, 816 haddr, vmf->pmd, zero_page); 817 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 818 spin_unlock(vmf->ptl); 819 } 820 } else { 821 spin_unlock(vmf->ptl); 822 pte_free(vma->vm_mm, pgtable); 823 } 824 return ret; 825 } 826 gfp = vma_thp_gfp_mask(vma); 827 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 828 if (unlikely(!folio)) { 829 count_vm_event(THP_FAULT_FALLBACK); 830 return VM_FAULT_FALLBACK; 831 } 832 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 833 } 834 835 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 836 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 837 pgtable_t pgtable) 838 { 839 struct mm_struct *mm = vma->vm_mm; 840 pmd_t entry; 841 spinlock_t *ptl; 842 843 ptl = pmd_lock(mm, pmd); 844 if (!pmd_none(*pmd)) { 845 if (write) { 846 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 847 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 848 goto out_unlock; 849 } 850 entry = pmd_mkyoung(*pmd); 851 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 852 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 853 update_mmu_cache_pmd(vma, addr, pmd); 854 } 855 856 goto out_unlock; 857 } 858 859 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 860 if (pfn_t_devmap(pfn)) 861 entry = pmd_mkdevmap(entry); 862 if (write) { 863 entry = pmd_mkyoung(pmd_mkdirty(entry)); 864 entry = maybe_pmd_mkwrite(entry, vma); 865 } 866 867 if (pgtable) { 868 pgtable_trans_huge_deposit(mm, pmd, pgtable); 869 mm_inc_nr_ptes(mm); 870 pgtable = NULL; 871 } 872 873 set_pmd_at(mm, addr, pmd, entry); 874 update_mmu_cache_pmd(vma, addr, pmd); 875 876 out_unlock: 877 spin_unlock(ptl); 878 if (pgtable) 879 pte_free(mm, pgtable); 880 } 881 882 /** 883 * vmf_insert_pfn_pmd - insert a pmd size pfn 884 * @vmf: Structure describing the fault 885 * @pfn: pfn to insert 886 * @write: whether it's a write fault 887 * 888 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 889 * 890 * Return: vm_fault_t value. 891 */ 892 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 893 { 894 unsigned long addr = vmf->address & PMD_MASK; 895 struct vm_area_struct *vma = vmf->vma; 896 pgprot_t pgprot = vma->vm_page_prot; 897 pgtable_t pgtable = NULL; 898 899 /* 900 * If we had pmd_special, we could avoid all these restrictions, 901 * but we need to be consistent with PTEs and architectures that 902 * can't support a 'special' bit. 903 */ 904 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 905 !pfn_t_devmap(pfn)); 906 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 907 (VM_PFNMAP|VM_MIXEDMAP)); 908 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 909 910 if (addr < vma->vm_start || addr >= vma->vm_end) 911 return VM_FAULT_SIGBUS; 912 913 if (arch_needs_pgtable_deposit()) { 914 pgtable = pte_alloc_one(vma->vm_mm); 915 if (!pgtable) 916 return VM_FAULT_OOM; 917 } 918 919 track_pfn_insert(vma, &pgprot, pfn); 920 921 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 922 return VM_FAULT_NOPAGE; 923 } 924 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 925 926 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 927 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 928 { 929 if (likely(vma->vm_flags & VM_WRITE)) 930 pud = pud_mkwrite(pud); 931 return pud; 932 } 933 934 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 935 pud_t *pud, pfn_t pfn, bool write) 936 { 937 struct mm_struct *mm = vma->vm_mm; 938 pgprot_t prot = vma->vm_page_prot; 939 pud_t entry; 940 spinlock_t *ptl; 941 942 ptl = pud_lock(mm, pud); 943 if (!pud_none(*pud)) { 944 if (write) { 945 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 946 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 947 goto out_unlock; 948 } 949 entry = pud_mkyoung(*pud); 950 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 951 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 952 update_mmu_cache_pud(vma, addr, pud); 953 } 954 goto out_unlock; 955 } 956 957 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 958 if (pfn_t_devmap(pfn)) 959 entry = pud_mkdevmap(entry); 960 if (write) { 961 entry = pud_mkyoung(pud_mkdirty(entry)); 962 entry = maybe_pud_mkwrite(entry, vma); 963 } 964 set_pud_at(mm, addr, pud, entry); 965 update_mmu_cache_pud(vma, addr, pud); 966 967 out_unlock: 968 spin_unlock(ptl); 969 } 970 971 /** 972 * vmf_insert_pfn_pud - insert a pud size pfn 973 * @vmf: Structure describing the fault 974 * @pfn: pfn to insert 975 * @write: whether it's a write fault 976 * 977 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 978 * 979 * Return: vm_fault_t value. 980 */ 981 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 982 { 983 unsigned long addr = vmf->address & PUD_MASK; 984 struct vm_area_struct *vma = vmf->vma; 985 pgprot_t pgprot = vma->vm_page_prot; 986 987 /* 988 * If we had pud_special, we could avoid all these restrictions, 989 * but we need to be consistent with PTEs and architectures that 990 * can't support a 'special' bit. 991 */ 992 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 993 !pfn_t_devmap(pfn)); 994 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 995 (VM_PFNMAP|VM_MIXEDMAP)); 996 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 997 998 if (addr < vma->vm_start || addr >= vma->vm_end) 999 return VM_FAULT_SIGBUS; 1000 1001 track_pfn_insert(vma, &pgprot, pfn); 1002 1003 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1004 return VM_FAULT_NOPAGE; 1005 } 1006 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1007 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1008 1009 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1010 pmd_t *pmd, bool write) 1011 { 1012 pmd_t _pmd; 1013 1014 _pmd = pmd_mkyoung(*pmd); 1015 if (write) 1016 _pmd = pmd_mkdirty(_pmd); 1017 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1018 pmd, _pmd, write)) 1019 update_mmu_cache_pmd(vma, addr, pmd); 1020 } 1021 1022 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1023 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1024 { 1025 unsigned long pfn = pmd_pfn(*pmd); 1026 struct mm_struct *mm = vma->vm_mm; 1027 struct page *page; 1028 int ret; 1029 1030 assert_spin_locked(pmd_lockptr(mm, pmd)); 1031 1032 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1033 return NULL; 1034 1035 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1036 /* pass */; 1037 else 1038 return NULL; 1039 1040 if (flags & FOLL_TOUCH) 1041 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1042 1043 /* 1044 * device mapped pages can only be returned if the 1045 * caller will manage the page reference count. 1046 */ 1047 if (!(flags & (FOLL_GET | FOLL_PIN))) 1048 return ERR_PTR(-EEXIST); 1049 1050 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1051 *pgmap = get_dev_pagemap(pfn, *pgmap); 1052 if (!*pgmap) 1053 return ERR_PTR(-EFAULT); 1054 page = pfn_to_page(pfn); 1055 ret = try_grab_page(page, flags); 1056 if (ret) 1057 page = ERR_PTR(ret); 1058 1059 return page; 1060 } 1061 1062 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1063 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1064 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1065 { 1066 spinlock_t *dst_ptl, *src_ptl; 1067 struct page *src_page; 1068 pmd_t pmd; 1069 pgtable_t pgtable = NULL; 1070 int ret = -ENOMEM; 1071 1072 /* Skip if can be re-fill on fault */ 1073 if (!vma_is_anonymous(dst_vma)) 1074 return 0; 1075 1076 pgtable = pte_alloc_one(dst_mm); 1077 if (unlikely(!pgtable)) 1078 goto out; 1079 1080 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1081 src_ptl = pmd_lockptr(src_mm, src_pmd); 1082 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1083 1084 ret = -EAGAIN; 1085 pmd = *src_pmd; 1086 1087 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1088 if (unlikely(is_swap_pmd(pmd))) { 1089 swp_entry_t entry = pmd_to_swp_entry(pmd); 1090 1091 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1092 if (!is_readable_migration_entry(entry)) { 1093 entry = make_readable_migration_entry( 1094 swp_offset(entry)); 1095 pmd = swp_entry_to_pmd(entry); 1096 if (pmd_swp_soft_dirty(*src_pmd)) 1097 pmd = pmd_swp_mksoft_dirty(pmd); 1098 if (pmd_swp_uffd_wp(*src_pmd)) 1099 pmd = pmd_swp_mkuffd_wp(pmd); 1100 set_pmd_at(src_mm, addr, src_pmd, pmd); 1101 } 1102 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1103 mm_inc_nr_ptes(dst_mm); 1104 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1105 if (!userfaultfd_wp(dst_vma)) 1106 pmd = pmd_swp_clear_uffd_wp(pmd); 1107 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1108 ret = 0; 1109 goto out_unlock; 1110 } 1111 #endif 1112 1113 if (unlikely(!pmd_trans_huge(pmd))) { 1114 pte_free(dst_mm, pgtable); 1115 goto out_unlock; 1116 } 1117 /* 1118 * When page table lock is held, the huge zero pmd should not be 1119 * under splitting since we don't split the page itself, only pmd to 1120 * a page table. 1121 */ 1122 if (is_huge_zero_pmd(pmd)) { 1123 /* 1124 * get_huge_zero_page() will never allocate a new page here, 1125 * since we already have a zero page to copy. It just takes a 1126 * reference. 1127 */ 1128 mm_get_huge_zero_page(dst_mm); 1129 goto out_zero_page; 1130 } 1131 1132 src_page = pmd_page(pmd); 1133 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1134 1135 get_page(src_page); 1136 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) { 1137 /* Page maybe pinned: split and retry the fault on PTEs. */ 1138 put_page(src_page); 1139 pte_free(dst_mm, pgtable); 1140 spin_unlock(src_ptl); 1141 spin_unlock(dst_ptl); 1142 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1143 return -EAGAIN; 1144 } 1145 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1146 out_zero_page: 1147 mm_inc_nr_ptes(dst_mm); 1148 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1149 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1150 if (!userfaultfd_wp(dst_vma)) 1151 pmd = pmd_clear_uffd_wp(pmd); 1152 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1153 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1154 1155 ret = 0; 1156 out_unlock: 1157 spin_unlock(src_ptl); 1158 spin_unlock(dst_ptl); 1159 out: 1160 return ret; 1161 } 1162 1163 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1164 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1165 pud_t *pud, bool write) 1166 { 1167 pud_t _pud; 1168 1169 _pud = pud_mkyoung(*pud); 1170 if (write) 1171 _pud = pud_mkdirty(_pud); 1172 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1173 pud, _pud, write)) 1174 update_mmu_cache_pud(vma, addr, pud); 1175 } 1176 1177 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1178 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1179 { 1180 unsigned long pfn = pud_pfn(*pud); 1181 struct mm_struct *mm = vma->vm_mm; 1182 struct page *page; 1183 int ret; 1184 1185 assert_spin_locked(pud_lockptr(mm, pud)); 1186 1187 if (flags & FOLL_WRITE && !pud_write(*pud)) 1188 return NULL; 1189 1190 if (pud_present(*pud) && pud_devmap(*pud)) 1191 /* pass */; 1192 else 1193 return NULL; 1194 1195 if (flags & FOLL_TOUCH) 1196 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1197 1198 /* 1199 * device mapped pages can only be returned if the 1200 * caller will manage the page reference count. 1201 * 1202 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1203 */ 1204 if (!(flags & (FOLL_GET | FOLL_PIN))) 1205 return ERR_PTR(-EEXIST); 1206 1207 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1208 *pgmap = get_dev_pagemap(pfn, *pgmap); 1209 if (!*pgmap) 1210 return ERR_PTR(-EFAULT); 1211 page = pfn_to_page(pfn); 1212 1213 ret = try_grab_page(page, flags); 1214 if (ret) 1215 page = ERR_PTR(ret); 1216 1217 return page; 1218 } 1219 1220 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1221 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1222 struct vm_area_struct *vma) 1223 { 1224 spinlock_t *dst_ptl, *src_ptl; 1225 pud_t pud; 1226 int ret; 1227 1228 dst_ptl = pud_lock(dst_mm, dst_pud); 1229 src_ptl = pud_lockptr(src_mm, src_pud); 1230 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1231 1232 ret = -EAGAIN; 1233 pud = *src_pud; 1234 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1235 goto out_unlock; 1236 1237 /* 1238 * When page table lock is held, the huge zero pud should not be 1239 * under splitting since we don't split the page itself, only pud to 1240 * a page table. 1241 */ 1242 if (is_huge_zero_pud(pud)) { 1243 /* No huge zero pud yet */ 1244 } 1245 1246 /* 1247 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap() 1248 * and split if duplicating fails. 1249 */ 1250 pudp_set_wrprotect(src_mm, addr, src_pud); 1251 pud = pud_mkold(pud_wrprotect(pud)); 1252 set_pud_at(dst_mm, addr, dst_pud, pud); 1253 1254 ret = 0; 1255 out_unlock: 1256 spin_unlock(src_ptl); 1257 spin_unlock(dst_ptl); 1258 return ret; 1259 } 1260 1261 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1262 { 1263 bool write = vmf->flags & FAULT_FLAG_WRITE; 1264 1265 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1266 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1267 goto unlock; 1268 1269 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1270 unlock: 1271 spin_unlock(vmf->ptl); 1272 } 1273 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1274 1275 void huge_pmd_set_accessed(struct vm_fault *vmf) 1276 { 1277 bool write = vmf->flags & FAULT_FLAG_WRITE; 1278 1279 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1280 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1281 goto unlock; 1282 1283 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1284 1285 unlock: 1286 spin_unlock(vmf->ptl); 1287 } 1288 1289 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1290 { 1291 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1292 struct vm_area_struct *vma = vmf->vma; 1293 struct folio *folio; 1294 struct page *page; 1295 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1296 pmd_t orig_pmd = vmf->orig_pmd; 1297 1298 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1299 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1300 1301 if (is_huge_zero_pmd(orig_pmd)) 1302 goto fallback; 1303 1304 spin_lock(vmf->ptl); 1305 1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1307 spin_unlock(vmf->ptl); 1308 return 0; 1309 } 1310 1311 page = pmd_page(orig_pmd); 1312 folio = page_folio(page); 1313 VM_BUG_ON_PAGE(!PageHead(page), page); 1314 1315 /* Early check when only holding the PT lock. */ 1316 if (PageAnonExclusive(page)) 1317 goto reuse; 1318 1319 if (!folio_trylock(folio)) { 1320 folio_get(folio); 1321 spin_unlock(vmf->ptl); 1322 folio_lock(folio); 1323 spin_lock(vmf->ptl); 1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1325 spin_unlock(vmf->ptl); 1326 folio_unlock(folio); 1327 folio_put(folio); 1328 return 0; 1329 } 1330 folio_put(folio); 1331 } 1332 1333 /* Recheck after temporarily dropping the PT lock. */ 1334 if (PageAnonExclusive(page)) { 1335 folio_unlock(folio); 1336 goto reuse; 1337 } 1338 1339 /* 1340 * See do_wp_page(): we can only reuse the folio exclusively if 1341 * there are no additional references. Note that we always drain 1342 * the LRU cache immediately after adding a THP. 1343 */ 1344 if (folio_ref_count(folio) > 1345 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1346 goto unlock_fallback; 1347 if (folio_test_swapcache(folio)) 1348 folio_free_swap(folio); 1349 if (folio_ref_count(folio) == 1) { 1350 pmd_t entry; 1351 1352 page_move_anon_rmap(page, vma); 1353 folio_unlock(folio); 1354 reuse: 1355 if (unlikely(unshare)) { 1356 spin_unlock(vmf->ptl); 1357 return 0; 1358 } 1359 entry = pmd_mkyoung(orig_pmd); 1360 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1361 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1362 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1363 spin_unlock(vmf->ptl); 1364 return 0; 1365 } 1366 1367 unlock_fallback: 1368 folio_unlock(folio); 1369 spin_unlock(vmf->ptl); 1370 fallback: 1371 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1372 return VM_FAULT_FALLBACK; 1373 } 1374 1375 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1376 unsigned long addr, pmd_t pmd) 1377 { 1378 struct page *page; 1379 1380 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1381 return false; 1382 1383 /* Don't touch entries that are not even readable (NUMA hinting). */ 1384 if (pmd_protnone(pmd)) 1385 return false; 1386 1387 /* Do we need write faults for softdirty tracking? */ 1388 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1389 return false; 1390 1391 /* Do we need write faults for uffd-wp tracking? */ 1392 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1393 return false; 1394 1395 if (!(vma->vm_flags & VM_SHARED)) { 1396 /* See can_change_pte_writable(). */ 1397 page = vm_normal_page_pmd(vma, addr, pmd); 1398 return page && PageAnon(page) && PageAnonExclusive(page); 1399 } 1400 1401 /* See can_change_pte_writable(). */ 1402 return pmd_dirty(pmd); 1403 } 1404 1405 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1406 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1407 struct vm_area_struct *vma, 1408 unsigned int flags) 1409 { 1410 /* If the pmd is writable, we can write to the page. */ 1411 if (pmd_write(pmd)) 1412 return true; 1413 1414 /* Maybe FOLL_FORCE is set to override it? */ 1415 if (!(flags & FOLL_FORCE)) 1416 return false; 1417 1418 /* But FOLL_FORCE has no effect on shared mappings */ 1419 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1420 return false; 1421 1422 /* ... or read-only private ones */ 1423 if (!(vma->vm_flags & VM_MAYWRITE)) 1424 return false; 1425 1426 /* ... or already writable ones that just need to take a write fault */ 1427 if (vma->vm_flags & VM_WRITE) 1428 return false; 1429 1430 /* 1431 * See can_change_pte_writable(): we broke COW and could map the page 1432 * writable if we have an exclusive anonymous page ... 1433 */ 1434 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1435 return false; 1436 1437 /* ... and a write-fault isn't required for other reasons. */ 1438 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1439 return false; 1440 return !userfaultfd_huge_pmd_wp(vma, pmd); 1441 } 1442 1443 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1444 unsigned long addr, 1445 pmd_t *pmd, 1446 unsigned int flags) 1447 { 1448 struct mm_struct *mm = vma->vm_mm; 1449 struct page *page; 1450 int ret; 1451 1452 assert_spin_locked(pmd_lockptr(mm, pmd)); 1453 1454 page = pmd_page(*pmd); 1455 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1456 1457 if ((flags & FOLL_WRITE) && 1458 !can_follow_write_pmd(*pmd, page, vma, flags)) 1459 return NULL; 1460 1461 /* Avoid dumping huge zero page */ 1462 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1463 return ERR_PTR(-EFAULT); 1464 1465 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1466 return NULL; 1467 1468 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1469 return ERR_PTR(-EMLINK); 1470 1471 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1472 !PageAnonExclusive(page), page); 1473 1474 ret = try_grab_page(page, flags); 1475 if (ret) 1476 return ERR_PTR(ret); 1477 1478 if (flags & FOLL_TOUCH) 1479 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1480 1481 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1482 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1483 1484 return page; 1485 } 1486 1487 /* NUMA hinting page fault entry point for trans huge pmds */ 1488 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1489 { 1490 struct vm_area_struct *vma = vmf->vma; 1491 pmd_t oldpmd = vmf->orig_pmd; 1492 pmd_t pmd; 1493 struct page *page; 1494 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1495 int page_nid = NUMA_NO_NODE; 1496 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1497 bool migrated = false, writable = false; 1498 int flags = 0; 1499 1500 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1501 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1502 spin_unlock(vmf->ptl); 1503 goto out; 1504 } 1505 1506 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1507 1508 /* 1509 * Detect now whether the PMD could be writable; this information 1510 * is only valid while holding the PT lock. 1511 */ 1512 writable = pmd_write(pmd); 1513 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1514 can_change_pmd_writable(vma, vmf->address, pmd)) 1515 writable = true; 1516 1517 page = vm_normal_page_pmd(vma, haddr, pmd); 1518 if (!page) 1519 goto out_map; 1520 1521 /* See similar comment in do_numa_page for explanation */ 1522 if (!writable) 1523 flags |= TNF_NO_GROUP; 1524 1525 page_nid = page_to_nid(page); 1526 /* 1527 * For memory tiering mode, cpupid of slow memory page is used 1528 * to record page access time. So use default value. 1529 */ 1530 if (node_is_toptier(page_nid)) 1531 last_cpupid = page_cpupid_last(page); 1532 target_nid = numa_migrate_prep(page, vma, haddr, page_nid, 1533 &flags); 1534 1535 if (target_nid == NUMA_NO_NODE) { 1536 put_page(page); 1537 goto out_map; 1538 } 1539 1540 spin_unlock(vmf->ptl); 1541 writable = false; 1542 1543 migrated = migrate_misplaced_page(page, vma, target_nid); 1544 if (migrated) { 1545 flags |= TNF_MIGRATED; 1546 page_nid = target_nid; 1547 } else { 1548 flags |= TNF_MIGRATE_FAIL; 1549 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1550 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1551 spin_unlock(vmf->ptl); 1552 goto out; 1553 } 1554 goto out_map; 1555 } 1556 1557 out: 1558 if (page_nid != NUMA_NO_NODE) 1559 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1560 flags); 1561 1562 return 0; 1563 1564 out_map: 1565 /* Restore the PMD */ 1566 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1567 pmd = pmd_mkyoung(pmd); 1568 if (writable) 1569 pmd = pmd_mkwrite(pmd, vma); 1570 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1571 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1572 spin_unlock(vmf->ptl); 1573 goto out; 1574 } 1575 1576 /* 1577 * Return true if we do MADV_FREE successfully on entire pmd page. 1578 * Otherwise, return false. 1579 */ 1580 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1581 pmd_t *pmd, unsigned long addr, unsigned long next) 1582 { 1583 spinlock_t *ptl; 1584 pmd_t orig_pmd; 1585 struct folio *folio; 1586 struct mm_struct *mm = tlb->mm; 1587 bool ret = false; 1588 1589 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1590 1591 ptl = pmd_trans_huge_lock(pmd, vma); 1592 if (!ptl) 1593 goto out_unlocked; 1594 1595 orig_pmd = *pmd; 1596 if (is_huge_zero_pmd(orig_pmd)) 1597 goto out; 1598 1599 if (unlikely(!pmd_present(orig_pmd))) { 1600 VM_BUG_ON(thp_migration_supported() && 1601 !is_pmd_migration_entry(orig_pmd)); 1602 goto out; 1603 } 1604 1605 folio = pfn_folio(pmd_pfn(orig_pmd)); 1606 /* 1607 * If other processes are mapping this folio, we couldn't discard 1608 * the folio unless they all do MADV_FREE so let's skip the folio. 1609 */ 1610 if (folio_estimated_sharers(folio) != 1) 1611 goto out; 1612 1613 if (!folio_trylock(folio)) 1614 goto out; 1615 1616 /* 1617 * If user want to discard part-pages of THP, split it so MADV_FREE 1618 * will deactivate only them. 1619 */ 1620 if (next - addr != HPAGE_PMD_SIZE) { 1621 folio_get(folio); 1622 spin_unlock(ptl); 1623 split_folio(folio); 1624 folio_unlock(folio); 1625 folio_put(folio); 1626 goto out_unlocked; 1627 } 1628 1629 if (folio_test_dirty(folio)) 1630 folio_clear_dirty(folio); 1631 folio_unlock(folio); 1632 1633 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1634 pmdp_invalidate(vma, addr, pmd); 1635 orig_pmd = pmd_mkold(orig_pmd); 1636 orig_pmd = pmd_mkclean(orig_pmd); 1637 1638 set_pmd_at(mm, addr, pmd, orig_pmd); 1639 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1640 } 1641 1642 folio_mark_lazyfree(folio); 1643 ret = true; 1644 out: 1645 spin_unlock(ptl); 1646 out_unlocked: 1647 return ret; 1648 } 1649 1650 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1651 { 1652 pgtable_t pgtable; 1653 1654 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1655 pte_free(mm, pgtable); 1656 mm_dec_nr_ptes(mm); 1657 } 1658 1659 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1660 pmd_t *pmd, unsigned long addr) 1661 { 1662 pmd_t orig_pmd; 1663 spinlock_t *ptl; 1664 1665 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1666 1667 ptl = __pmd_trans_huge_lock(pmd, vma); 1668 if (!ptl) 1669 return 0; 1670 /* 1671 * For architectures like ppc64 we look at deposited pgtable 1672 * when calling pmdp_huge_get_and_clear. So do the 1673 * pgtable_trans_huge_withdraw after finishing pmdp related 1674 * operations. 1675 */ 1676 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1677 tlb->fullmm); 1678 arch_check_zapped_pmd(vma, orig_pmd); 1679 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1680 if (vma_is_special_huge(vma)) { 1681 if (arch_needs_pgtable_deposit()) 1682 zap_deposited_table(tlb->mm, pmd); 1683 spin_unlock(ptl); 1684 } else if (is_huge_zero_pmd(orig_pmd)) { 1685 zap_deposited_table(tlb->mm, pmd); 1686 spin_unlock(ptl); 1687 } else { 1688 struct page *page = NULL; 1689 int flush_needed = 1; 1690 1691 if (pmd_present(orig_pmd)) { 1692 page = pmd_page(orig_pmd); 1693 page_remove_rmap(page, vma, true); 1694 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1695 VM_BUG_ON_PAGE(!PageHead(page), page); 1696 } else if (thp_migration_supported()) { 1697 swp_entry_t entry; 1698 1699 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1700 entry = pmd_to_swp_entry(orig_pmd); 1701 page = pfn_swap_entry_to_page(entry); 1702 flush_needed = 0; 1703 } else 1704 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1705 1706 if (PageAnon(page)) { 1707 zap_deposited_table(tlb->mm, pmd); 1708 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1709 } else { 1710 if (arch_needs_pgtable_deposit()) 1711 zap_deposited_table(tlb->mm, pmd); 1712 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1713 } 1714 1715 spin_unlock(ptl); 1716 if (flush_needed) 1717 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1718 } 1719 return 1; 1720 } 1721 1722 #ifndef pmd_move_must_withdraw 1723 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1724 spinlock_t *old_pmd_ptl, 1725 struct vm_area_struct *vma) 1726 { 1727 /* 1728 * With split pmd lock we also need to move preallocated 1729 * PTE page table if new_pmd is on different PMD page table. 1730 * 1731 * We also don't deposit and withdraw tables for file pages. 1732 */ 1733 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1734 } 1735 #endif 1736 1737 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1738 { 1739 #ifdef CONFIG_MEM_SOFT_DIRTY 1740 if (unlikely(is_pmd_migration_entry(pmd))) 1741 pmd = pmd_swp_mksoft_dirty(pmd); 1742 else if (pmd_present(pmd)) 1743 pmd = pmd_mksoft_dirty(pmd); 1744 #endif 1745 return pmd; 1746 } 1747 1748 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1749 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1750 { 1751 spinlock_t *old_ptl, *new_ptl; 1752 pmd_t pmd; 1753 struct mm_struct *mm = vma->vm_mm; 1754 bool force_flush = false; 1755 1756 /* 1757 * The destination pmd shouldn't be established, free_pgtables() 1758 * should have released it; but move_page_tables() might have already 1759 * inserted a page table, if racing against shmem/file collapse. 1760 */ 1761 if (!pmd_none(*new_pmd)) { 1762 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1763 return false; 1764 } 1765 1766 /* 1767 * We don't have to worry about the ordering of src and dst 1768 * ptlocks because exclusive mmap_lock prevents deadlock. 1769 */ 1770 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1771 if (old_ptl) { 1772 new_ptl = pmd_lockptr(mm, new_pmd); 1773 if (new_ptl != old_ptl) 1774 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1775 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1776 if (pmd_present(pmd)) 1777 force_flush = true; 1778 VM_BUG_ON(!pmd_none(*new_pmd)); 1779 1780 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1781 pgtable_t pgtable; 1782 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1783 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1784 } 1785 pmd = move_soft_dirty_pmd(pmd); 1786 set_pmd_at(mm, new_addr, new_pmd, pmd); 1787 if (force_flush) 1788 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1789 if (new_ptl != old_ptl) 1790 spin_unlock(new_ptl); 1791 spin_unlock(old_ptl); 1792 return true; 1793 } 1794 return false; 1795 } 1796 1797 /* 1798 * Returns 1799 * - 0 if PMD could not be locked 1800 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 1801 * or if prot_numa but THP migration is not supported 1802 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 1803 */ 1804 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1805 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 1806 unsigned long cp_flags) 1807 { 1808 struct mm_struct *mm = vma->vm_mm; 1809 spinlock_t *ptl; 1810 pmd_t oldpmd, entry; 1811 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1812 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1813 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1814 int ret = 1; 1815 1816 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1817 1818 if (prot_numa && !thp_migration_supported()) 1819 return 1; 1820 1821 ptl = __pmd_trans_huge_lock(pmd, vma); 1822 if (!ptl) 1823 return 0; 1824 1825 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1826 if (is_swap_pmd(*pmd)) { 1827 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1828 struct page *page = pfn_swap_entry_to_page(entry); 1829 pmd_t newpmd; 1830 1831 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1832 if (is_writable_migration_entry(entry)) { 1833 /* 1834 * A protection check is difficult so 1835 * just be safe and disable write 1836 */ 1837 if (PageAnon(page)) 1838 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 1839 else 1840 entry = make_readable_migration_entry(swp_offset(entry)); 1841 newpmd = swp_entry_to_pmd(entry); 1842 if (pmd_swp_soft_dirty(*pmd)) 1843 newpmd = pmd_swp_mksoft_dirty(newpmd); 1844 } else { 1845 newpmd = *pmd; 1846 } 1847 1848 if (uffd_wp) 1849 newpmd = pmd_swp_mkuffd_wp(newpmd); 1850 else if (uffd_wp_resolve) 1851 newpmd = pmd_swp_clear_uffd_wp(newpmd); 1852 if (!pmd_same(*pmd, newpmd)) 1853 set_pmd_at(mm, addr, pmd, newpmd); 1854 goto unlock; 1855 } 1856 #endif 1857 1858 if (prot_numa) { 1859 struct page *page; 1860 bool toptier; 1861 /* 1862 * Avoid trapping faults against the zero page. The read-only 1863 * data is likely to be read-cached on the local CPU and 1864 * local/remote hits to the zero page are not interesting. 1865 */ 1866 if (is_huge_zero_pmd(*pmd)) 1867 goto unlock; 1868 1869 if (pmd_protnone(*pmd)) 1870 goto unlock; 1871 1872 page = pmd_page(*pmd); 1873 toptier = node_is_toptier(page_to_nid(page)); 1874 /* 1875 * Skip scanning top tier node if normal numa 1876 * balancing is disabled 1877 */ 1878 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 1879 toptier) 1880 goto unlock; 1881 1882 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1883 !toptier) 1884 xchg_page_access_time(page, jiffies_to_msecs(jiffies)); 1885 } 1886 /* 1887 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1888 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1889 * which is also under mmap_read_lock(mm): 1890 * 1891 * CPU0: CPU1: 1892 * change_huge_pmd(prot_numa=1) 1893 * pmdp_huge_get_and_clear_notify() 1894 * madvise_dontneed() 1895 * zap_pmd_range() 1896 * pmd_trans_huge(*pmd) == 0 (without ptl) 1897 * // skip the pmd 1898 * set_pmd_at(); 1899 * // pmd is re-established 1900 * 1901 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1902 * which may break userspace. 1903 * 1904 * pmdp_invalidate_ad() is required to make sure we don't miss 1905 * dirty/young flags set by hardware. 1906 */ 1907 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 1908 1909 entry = pmd_modify(oldpmd, newprot); 1910 if (uffd_wp) 1911 entry = pmd_mkuffd_wp(entry); 1912 else if (uffd_wp_resolve) 1913 /* 1914 * Leave the write bit to be handled by PF interrupt 1915 * handler, then things like COW could be properly 1916 * handled. 1917 */ 1918 entry = pmd_clear_uffd_wp(entry); 1919 1920 /* See change_pte_range(). */ 1921 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 1922 can_change_pmd_writable(vma, addr, entry)) 1923 entry = pmd_mkwrite(entry, vma); 1924 1925 ret = HPAGE_PMD_NR; 1926 set_pmd_at(mm, addr, pmd, entry); 1927 1928 if (huge_pmd_needs_flush(oldpmd, entry)) 1929 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 1930 unlock: 1931 spin_unlock(ptl); 1932 return ret; 1933 } 1934 1935 /* 1936 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1937 * 1938 * Note that if it returns page table lock pointer, this routine returns without 1939 * unlocking page table lock. So callers must unlock it. 1940 */ 1941 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1942 { 1943 spinlock_t *ptl; 1944 ptl = pmd_lock(vma->vm_mm, pmd); 1945 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1946 pmd_devmap(*pmd))) 1947 return ptl; 1948 spin_unlock(ptl); 1949 return NULL; 1950 } 1951 1952 /* 1953 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 1954 * 1955 * Note that if it returns page table lock pointer, this routine returns without 1956 * unlocking page table lock. So callers must unlock it. 1957 */ 1958 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1959 { 1960 spinlock_t *ptl; 1961 1962 ptl = pud_lock(vma->vm_mm, pud); 1963 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1964 return ptl; 1965 spin_unlock(ptl); 1966 return NULL; 1967 } 1968 1969 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1970 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1971 pud_t *pud, unsigned long addr) 1972 { 1973 spinlock_t *ptl; 1974 1975 ptl = __pud_trans_huge_lock(pud, vma); 1976 if (!ptl) 1977 return 0; 1978 1979 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 1980 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1981 if (vma_is_special_huge(vma)) { 1982 spin_unlock(ptl); 1983 /* No zero page support yet */ 1984 } else { 1985 /* No support for anonymous PUD pages yet */ 1986 BUG(); 1987 } 1988 return 1; 1989 } 1990 1991 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1992 unsigned long haddr) 1993 { 1994 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1995 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1996 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1997 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1998 1999 count_vm_event(THP_SPLIT_PUD); 2000 2001 pudp_huge_clear_flush(vma, haddr, pud); 2002 } 2003 2004 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2005 unsigned long address) 2006 { 2007 spinlock_t *ptl; 2008 struct mmu_notifier_range range; 2009 2010 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2011 address & HPAGE_PUD_MASK, 2012 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2013 mmu_notifier_invalidate_range_start(&range); 2014 ptl = pud_lock(vma->vm_mm, pud); 2015 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2016 goto out; 2017 __split_huge_pud_locked(vma, pud, range.start); 2018 2019 out: 2020 spin_unlock(ptl); 2021 mmu_notifier_invalidate_range_end(&range); 2022 } 2023 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2024 2025 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2026 unsigned long haddr, pmd_t *pmd) 2027 { 2028 struct mm_struct *mm = vma->vm_mm; 2029 pgtable_t pgtable; 2030 pmd_t _pmd, old_pmd; 2031 unsigned long addr; 2032 pte_t *pte; 2033 int i; 2034 2035 /* 2036 * Leave pmd empty until pte is filled note that it is fine to delay 2037 * notification until mmu_notifier_invalidate_range_end() as we are 2038 * replacing a zero pmd write protected page with a zero pte write 2039 * protected page. 2040 * 2041 * See Documentation/mm/mmu_notifier.rst 2042 */ 2043 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2044 2045 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2046 pmd_populate(mm, &_pmd, pgtable); 2047 2048 pte = pte_offset_map(&_pmd, haddr); 2049 VM_BUG_ON(!pte); 2050 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2051 pte_t entry; 2052 2053 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2054 entry = pte_mkspecial(entry); 2055 if (pmd_uffd_wp(old_pmd)) 2056 entry = pte_mkuffd_wp(entry); 2057 VM_BUG_ON(!pte_none(ptep_get(pte))); 2058 set_pte_at(mm, addr, pte, entry); 2059 pte++; 2060 } 2061 pte_unmap(pte - 1); 2062 smp_wmb(); /* make pte visible before pmd */ 2063 pmd_populate(mm, pmd, pgtable); 2064 } 2065 2066 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2067 unsigned long haddr, bool freeze) 2068 { 2069 struct mm_struct *mm = vma->vm_mm; 2070 struct page *page; 2071 pgtable_t pgtable; 2072 pmd_t old_pmd, _pmd; 2073 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2074 bool anon_exclusive = false, dirty = false; 2075 unsigned long addr; 2076 pte_t *pte; 2077 int i; 2078 2079 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2080 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2081 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2082 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2083 && !pmd_devmap(*pmd)); 2084 2085 count_vm_event(THP_SPLIT_PMD); 2086 2087 if (!vma_is_anonymous(vma)) { 2088 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2089 /* 2090 * We are going to unmap this huge page. So 2091 * just go ahead and zap it 2092 */ 2093 if (arch_needs_pgtable_deposit()) 2094 zap_deposited_table(mm, pmd); 2095 if (vma_is_special_huge(vma)) 2096 return; 2097 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2098 swp_entry_t entry; 2099 2100 entry = pmd_to_swp_entry(old_pmd); 2101 page = pfn_swap_entry_to_page(entry); 2102 } else { 2103 page = pmd_page(old_pmd); 2104 if (!PageDirty(page) && pmd_dirty(old_pmd)) 2105 set_page_dirty(page); 2106 if (!PageReferenced(page) && pmd_young(old_pmd)) 2107 SetPageReferenced(page); 2108 page_remove_rmap(page, vma, true); 2109 put_page(page); 2110 } 2111 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2112 return; 2113 } 2114 2115 if (is_huge_zero_pmd(*pmd)) { 2116 /* 2117 * FIXME: Do we want to invalidate secondary mmu by calling 2118 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2119 * inside __split_huge_pmd() ? 2120 * 2121 * We are going from a zero huge page write protected to zero 2122 * small page also write protected so it does not seems useful 2123 * to invalidate secondary mmu at this time. 2124 */ 2125 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2126 } 2127 2128 /* 2129 * Up to this point the pmd is present and huge and userland has the 2130 * whole access to the hugepage during the split (which happens in 2131 * place). If we overwrite the pmd with the not-huge version pointing 2132 * to the pte here (which of course we could if all CPUs were bug 2133 * free), userland could trigger a small page size TLB miss on the 2134 * small sized TLB while the hugepage TLB entry is still established in 2135 * the huge TLB. Some CPU doesn't like that. 2136 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2137 * 383 on page 105. Intel should be safe but is also warns that it's 2138 * only safe if the permission and cache attributes of the two entries 2139 * loaded in the two TLB is identical (which should be the case here). 2140 * But it is generally safer to never allow small and huge TLB entries 2141 * for the same virtual address to be loaded simultaneously. So instead 2142 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2143 * current pmd notpresent (atomically because here the pmd_trans_huge 2144 * must remain set at all times on the pmd until the split is complete 2145 * for this pmd), then we flush the SMP TLB and finally we write the 2146 * non-huge version of the pmd entry with pmd_populate. 2147 */ 2148 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2149 2150 pmd_migration = is_pmd_migration_entry(old_pmd); 2151 if (unlikely(pmd_migration)) { 2152 swp_entry_t entry; 2153 2154 entry = pmd_to_swp_entry(old_pmd); 2155 page = pfn_swap_entry_to_page(entry); 2156 write = is_writable_migration_entry(entry); 2157 if (PageAnon(page)) 2158 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2159 young = is_migration_entry_young(entry); 2160 dirty = is_migration_entry_dirty(entry); 2161 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2162 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2163 } else { 2164 page = pmd_page(old_pmd); 2165 if (pmd_dirty(old_pmd)) { 2166 dirty = true; 2167 SetPageDirty(page); 2168 } 2169 write = pmd_write(old_pmd); 2170 young = pmd_young(old_pmd); 2171 soft_dirty = pmd_soft_dirty(old_pmd); 2172 uffd_wp = pmd_uffd_wp(old_pmd); 2173 2174 VM_BUG_ON_PAGE(!page_count(page), page); 2175 2176 /* 2177 * Without "freeze", we'll simply split the PMD, propagating the 2178 * PageAnonExclusive() flag for each PTE by setting it for 2179 * each subpage -- no need to (temporarily) clear. 2180 * 2181 * With "freeze" we want to replace mapped pages by 2182 * migration entries right away. This is only possible if we 2183 * managed to clear PageAnonExclusive() -- see 2184 * set_pmd_migration_entry(). 2185 * 2186 * In case we cannot clear PageAnonExclusive(), split the PMD 2187 * only and let try_to_migrate_one() fail later. 2188 * 2189 * See page_try_share_anon_rmap(): invalidate PMD first. 2190 */ 2191 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 2192 if (freeze && anon_exclusive && page_try_share_anon_rmap(page)) 2193 freeze = false; 2194 if (!freeze) 2195 page_ref_add(page, HPAGE_PMD_NR - 1); 2196 } 2197 2198 /* 2199 * Withdraw the table only after we mark the pmd entry invalid. 2200 * This's critical for some architectures (Power). 2201 */ 2202 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2203 pmd_populate(mm, &_pmd, pgtable); 2204 2205 pte = pte_offset_map(&_pmd, haddr); 2206 VM_BUG_ON(!pte); 2207 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2208 pte_t entry; 2209 /* 2210 * Note that NUMA hinting access restrictions are not 2211 * transferred to avoid any possibility of altering 2212 * permissions across VMAs. 2213 */ 2214 if (freeze || pmd_migration) { 2215 swp_entry_t swp_entry; 2216 if (write) 2217 swp_entry = make_writable_migration_entry( 2218 page_to_pfn(page + i)); 2219 else if (anon_exclusive) 2220 swp_entry = make_readable_exclusive_migration_entry( 2221 page_to_pfn(page + i)); 2222 else 2223 swp_entry = make_readable_migration_entry( 2224 page_to_pfn(page + i)); 2225 if (young) 2226 swp_entry = make_migration_entry_young(swp_entry); 2227 if (dirty) 2228 swp_entry = make_migration_entry_dirty(swp_entry); 2229 entry = swp_entry_to_pte(swp_entry); 2230 if (soft_dirty) 2231 entry = pte_swp_mksoft_dirty(entry); 2232 if (uffd_wp) 2233 entry = pte_swp_mkuffd_wp(entry); 2234 } else { 2235 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2236 if (write) 2237 entry = pte_mkwrite(entry, vma); 2238 if (anon_exclusive) 2239 SetPageAnonExclusive(page + i); 2240 if (!young) 2241 entry = pte_mkold(entry); 2242 /* NOTE: this may set soft-dirty too on some archs */ 2243 if (dirty) 2244 entry = pte_mkdirty(entry); 2245 if (soft_dirty) 2246 entry = pte_mksoft_dirty(entry); 2247 if (uffd_wp) 2248 entry = pte_mkuffd_wp(entry); 2249 page_add_anon_rmap(page + i, vma, addr, RMAP_NONE); 2250 } 2251 VM_BUG_ON(!pte_none(ptep_get(pte))); 2252 set_pte_at(mm, addr, pte, entry); 2253 pte++; 2254 } 2255 pte_unmap(pte - 1); 2256 2257 if (!pmd_migration) 2258 page_remove_rmap(page, vma, true); 2259 if (freeze) 2260 put_page(page); 2261 2262 smp_wmb(); /* make pte visible before pmd */ 2263 pmd_populate(mm, pmd, pgtable); 2264 } 2265 2266 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2267 unsigned long address, bool freeze, struct folio *folio) 2268 { 2269 spinlock_t *ptl; 2270 struct mmu_notifier_range range; 2271 2272 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2273 address & HPAGE_PMD_MASK, 2274 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2275 mmu_notifier_invalidate_range_start(&range); 2276 ptl = pmd_lock(vma->vm_mm, pmd); 2277 2278 /* 2279 * If caller asks to setup a migration entry, we need a folio to check 2280 * pmd against. Otherwise we can end up replacing wrong folio. 2281 */ 2282 VM_BUG_ON(freeze && !folio); 2283 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2284 2285 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2286 is_pmd_migration_entry(*pmd)) { 2287 /* 2288 * It's safe to call pmd_page when folio is set because it's 2289 * guaranteed that pmd is present. 2290 */ 2291 if (folio && folio != page_folio(pmd_page(*pmd))) 2292 goto out; 2293 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2294 } 2295 2296 out: 2297 spin_unlock(ptl); 2298 mmu_notifier_invalidate_range_end(&range); 2299 } 2300 2301 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2302 bool freeze, struct folio *folio) 2303 { 2304 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2305 2306 if (!pmd) 2307 return; 2308 2309 __split_huge_pmd(vma, pmd, address, freeze, folio); 2310 } 2311 2312 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2313 { 2314 /* 2315 * If the new address isn't hpage aligned and it could previously 2316 * contain an hugepage: check if we need to split an huge pmd. 2317 */ 2318 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2319 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2320 ALIGN(address, HPAGE_PMD_SIZE))) 2321 split_huge_pmd_address(vma, address, false, NULL); 2322 } 2323 2324 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2325 unsigned long start, 2326 unsigned long end, 2327 long adjust_next) 2328 { 2329 /* Check if we need to split start first. */ 2330 split_huge_pmd_if_needed(vma, start); 2331 2332 /* Check if we need to split end next. */ 2333 split_huge_pmd_if_needed(vma, end); 2334 2335 /* 2336 * If we're also updating the next vma vm_start, 2337 * check if we need to split it. 2338 */ 2339 if (adjust_next > 0) { 2340 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2341 unsigned long nstart = next->vm_start; 2342 nstart += adjust_next; 2343 split_huge_pmd_if_needed(next, nstart); 2344 } 2345 } 2346 2347 static void unmap_folio(struct folio *folio) 2348 { 2349 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2350 TTU_SYNC; 2351 2352 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2353 2354 /* 2355 * Anon pages need migration entries to preserve them, but file 2356 * pages can simply be left unmapped, then faulted back on demand. 2357 * If that is ever changed (perhaps for mlock), update remap_page(). 2358 */ 2359 if (folio_test_anon(folio)) 2360 try_to_migrate(folio, ttu_flags); 2361 else 2362 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2363 } 2364 2365 static void remap_page(struct folio *folio, unsigned long nr) 2366 { 2367 int i = 0; 2368 2369 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2370 if (!folio_test_anon(folio)) 2371 return; 2372 for (;;) { 2373 remove_migration_ptes(folio, folio, true); 2374 i += folio_nr_pages(folio); 2375 if (i >= nr) 2376 break; 2377 folio = folio_next(folio); 2378 } 2379 } 2380 2381 static void lru_add_page_tail(struct page *head, struct page *tail, 2382 struct lruvec *lruvec, struct list_head *list) 2383 { 2384 VM_BUG_ON_PAGE(!PageHead(head), head); 2385 VM_BUG_ON_PAGE(PageCompound(tail), head); 2386 VM_BUG_ON_PAGE(PageLRU(tail), head); 2387 lockdep_assert_held(&lruvec->lru_lock); 2388 2389 if (list) { 2390 /* page reclaim is reclaiming a huge page */ 2391 VM_WARN_ON(PageLRU(head)); 2392 get_page(tail); 2393 list_add_tail(&tail->lru, list); 2394 } else { 2395 /* head is still on lru (and we have it frozen) */ 2396 VM_WARN_ON(!PageLRU(head)); 2397 if (PageUnevictable(tail)) 2398 tail->mlock_count = 0; 2399 else 2400 list_add_tail(&tail->lru, &head->lru); 2401 SetPageLRU(tail); 2402 } 2403 } 2404 2405 static void __split_huge_page_tail(struct folio *folio, int tail, 2406 struct lruvec *lruvec, struct list_head *list) 2407 { 2408 struct page *head = &folio->page; 2409 struct page *page_tail = head + tail; 2410 /* 2411 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2412 * Don't pass it around before clear_compound_head(). 2413 */ 2414 struct folio *new_folio = (struct folio *)page_tail; 2415 2416 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2417 2418 /* 2419 * Clone page flags before unfreezing refcount. 2420 * 2421 * After successful get_page_unless_zero() might follow flags change, 2422 * for example lock_page() which set PG_waiters. 2423 * 2424 * Note that for mapped sub-pages of an anonymous THP, 2425 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2426 * the migration entry instead from where remap_page() will restore it. 2427 * We can still have PG_anon_exclusive set on effectively unmapped and 2428 * unreferenced sub-pages of an anonymous THP: we can simply drop 2429 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2430 */ 2431 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2432 page_tail->flags |= (head->flags & 2433 ((1L << PG_referenced) | 2434 (1L << PG_swapbacked) | 2435 (1L << PG_swapcache) | 2436 (1L << PG_mlocked) | 2437 (1L << PG_uptodate) | 2438 (1L << PG_active) | 2439 (1L << PG_workingset) | 2440 (1L << PG_locked) | 2441 (1L << PG_unevictable) | 2442 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2443 (1L << PG_arch_2) | 2444 (1L << PG_arch_3) | 2445 #endif 2446 (1L << PG_dirty) | 2447 LRU_GEN_MASK | LRU_REFS_MASK)); 2448 2449 /* ->mapping in first and second tail page is replaced by other uses */ 2450 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2451 page_tail); 2452 page_tail->mapping = head->mapping; 2453 page_tail->index = head->index + tail; 2454 2455 /* 2456 * page->private should not be set in tail pages. Fix up and warn once 2457 * if private is unexpectedly set. 2458 */ 2459 if (unlikely(page_tail->private)) { 2460 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2461 page_tail->private = 0; 2462 } 2463 if (folio_test_swapcache(folio)) 2464 new_folio->swap.val = folio->swap.val + tail; 2465 2466 /* Page flags must be visible before we make the page non-compound. */ 2467 smp_wmb(); 2468 2469 /* 2470 * Clear PageTail before unfreezing page refcount. 2471 * 2472 * After successful get_page_unless_zero() might follow put_page() 2473 * which needs correct compound_head(). 2474 */ 2475 clear_compound_head(page_tail); 2476 2477 /* Finally unfreeze refcount. Additional reference from page cache. */ 2478 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2479 PageSwapCache(head))); 2480 2481 if (page_is_young(head)) 2482 set_page_young(page_tail); 2483 if (page_is_idle(head)) 2484 set_page_idle(page_tail); 2485 2486 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2487 2488 /* 2489 * always add to the tail because some iterators expect new 2490 * pages to show after the currently processed elements - e.g. 2491 * migrate_pages 2492 */ 2493 lru_add_page_tail(head, page_tail, lruvec, list); 2494 } 2495 2496 static void __split_huge_page(struct page *page, struct list_head *list, 2497 pgoff_t end) 2498 { 2499 struct folio *folio = page_folio(page); 2500 struct page *head = &folio->page; 2501 struct lruvec *lruvec; 2502 struct address_space *swap_cache = NULL; 2503 unsigned long offset = 0; 2504 unsigned int nr = thp_nr_pages(head); 2505 int i, nr_dropped = 0; 2506 2507 /* complete memcg works before add pages to LRU */ 2508 split_page_memcg(head, nr); 2509 2510 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2511 offset = swp_offset(folio->swap); 2512 swap_cache = swap_address_space(folio->swap); 2513 xa_lock(&swap_cache->i_pages); 2514 } 2515 2516 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2517 lruvec = folio_lruvec_lock(folio); 2518 2519 ClearPageHasHWPoisoned(head); 2520 2521 for (i = nr - 1; i >= 1; i--) { 2522 __split_huge_page_tail(folio, i, lruvec, list); 2523 /* Some pages can be beyond EOF: drop them from page cache */ 2524 if (head[i].index >= end) { 2525 struct folio *tail = page_folio(head + i); 2526 2527 if (shmem_mapping(head->mapping)) 2528 nr_dropped++; 2529 else if (folio_test_clear_dirty(tail)) 2530 folio_account_cleaned(tail, 2531 inode_to_wb(folio->mapping->host)); 2532 __filemap_remove_folio(tail, NULL); 2533 folio_put(tail); 2534 } else if (!PageAnon(page)) { 2535 __xa_store(&head->mapping->i_pages, head[i].index, 2536 head + i, 0); 2537 } else if (swap_cache) { 2538 __xa_store(&swap_cache->i_pages, offset + i, 2539 head + i, 0); 2540 } 2541 } 2542 2543 ClearPageCompound(head); 2544 unlock_page_lruvec(lruvec); 2545 /* Caller disabled irqs, so they are still disabled here */ 2546 2547 split_page_owner(head, nr); 2548 2549 /* See comment in __split_huge_page_tail() */ 2550 if (PageAnon(head)) { 2551 /* Additional pin to swap cache */ 2552 if (PageSwapCache(head)) { 2553 page_ref_add(head, 2); 2554 xa_unlock(&swap_cache->i_pages); 2555 } else { 2556 page_ref_inc(head); 2557 } 2558 } else { 2559 /* Additional pin to page cache */ 2560 page_ref_add(head, 2); 2561 xa_unlock(&head->mapping->i_pages); 2562 } 2563 local_irq_enable(); 2564 2565 if (nr_dropped) 2566 shmem_uncharge(head->mapping->host, nr_dropped); 2567 remap_page(folio, nr); 2568 2569 if (folio_test_swapcache(folio)) 2570 split_swap_cluster(folio->swap); 2571 2572 for (i = 0; i < nr; i++) { 2573 struct page *subpage = head + i; 2574 if (subpage == page) 2575 continue; 2576 unlock_page(subpage); 2577 2578 /* 2579 * Subpages may be freed if there wasn't any mapping 2580 * like if add_to_swap() is running on a lru page that 2581 * had its mapping zapped. And freeing these pages 2582 * requires taking the lru_lock so we do the put_page 2583 * of the tail pages after the split is complete. 2584 */ 2585 free_page_and_swap_cache(subpage); 2586 } 2587 } 2588 2589 /* Racy check whether the huge page can be split */ 2590 bool can_split_folio(struct folio *folio, int *pextra_pins) 2591 { 2592 int extra_pins; 2593 2594 /* Additional pins from page cache */ 2595 if (folio_test_anon(folio)) 2596 extra_pins = folio_test_swapcache(folio) ? 2597 folio_nr_pages(folio) : 0; 2598 else 2599 extra_pins = folio_nr_pages(folio); 2600 if (pextra_pins) 2601 *pextra_pins = extra_pins; 2602 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2603 } 2604 2605 /* 2606 * This function splits huge page into normal pages. @page can point to any 2607 * subpage of huge page to split. Split doesn't change the position of @page. 2608 * 2609 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2610 * The huge page must be locked. 2611 * 2612 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2613 * 2614 * Both head page and tail pages will inherit mapping, flags, and so on from 2615 * the hugepage. 2616 * 2617 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2618 * they are not mapped. 2619 * 2620 * Returns 0 if the hugepage is split successfully. 2621 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2622 * us. 2623 */ 2624 int split_huge_page_to_list(struct page *page, struct list_head *list) 2625 { 2626 struct folio *folio = page_folio(page); 2627 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2628 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2629 struct anon_vma *anon_vma = NULL; 2630 struct address_space *mapping = NULL; 2631 int extra_pins, ret; 2632 pgoff_t end; 2633 bool is_hzp; 2634 2635 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2636 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2637 2638 is_hzp = is_huge_zero_page(&folio->page); 2639 if (is_hzp) { 2640 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 2641 return -EBUSY; 2642 } 2643 2644 if (folio_test_writeback(folio)) 2645 return -EBUSY; 2646 2647 if (folio_test_anon(folio)) { 2648 /* 2649 * The caller does not necessarily hold an mmap_lock that would 2650 * prevent the anon_vma disappearing so we first we take a 2651 * reference to it and then lock the anon_vma for write. This 2652 * is similar to folio_lock_anon_vma_read except the write lock 2653 * is taken to serialise against parallel split or collapse 2654 * operations. 2655 */ 2656 anon_vma = folio_get_anon_vma(folio); 2657 if (!anon_vma) { 2658 ret = -EBUSY; 2659 goto out; 2660 } 2661 end = -1; 2662 mapping = NULL; 2663 anon_vma_lock_write(anon_vma); 2664 } else { 2665 gfp_t gfp; 2666 2667 mapping = folio->mapping; 2668 2669 /* Truncated ? */ 2670 if (!mapping) { 2671 ret = -EBUSY; 2672 goto out; 2673 } 2674 2675 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 2676 GFP_RECLAIM_MASK); 2677 2678 if (!filemap_release_folio(folio, gfp)) { 2679 ret = -EBUSY; 2680 goto out; 2681 } 2682 2683 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 2684 if (xas_error(&xas)) { 2685 ret = xas_error(&xas); 2686 goto out; 2687 } 2688 2689 anon_vma = NULL; 2690 i_mmap_lock_read(mapping); 2691 2692 /* 2693 *__split_huge_page() may need to trim off pages beyond EOF: 2694 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2695 * which cannot be nested inside the page tree lock. So note 2696 * end now: i_size itself may be changed at any moment, but 2697 * folio lock is good enough to serialize the trimming. 2698 */ 2699 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2700 if (shmem_mapping(mapping)) 2701 end = shmem_fallocend(mapping->host, end); 2702 } 2703 2704 /* 2705 * Racy check if we can split the page, before unmap_folio() will 2706 * split PMDs 2707 */ 2708 if (!can_split_folio(folio, &extra_pins)) { 2709 ret = -EAGAIN; 2710 goto out_unlock; 2711 } 2712 2713 unmap_folio(folio); 2714 2715 /* block interrupt reentry in xa_lock and spinlock */ 2716 local_irq_disable(); 2717 if (mapping) { 2718 /* 2719 * Check if the folio is present in page cache. 2720 * We assume all tail are present too, if folio is there. 2721 */ 2722 xas_lock(&xas); 2723 xas_reset(&xas); 2724 if (xas_load(&xas) != folio) 2725 goto fail; 2726 } 2727 2728 /* Prevent deferred_split_scan() touching ->_refcount */ 2729 spin_lock(&ds_queue->split_queue_lock); 2730 if (folio_ref_freeze(folio, 1 + extra_pins)) { 2731 if (!list_empty(&folio->_deferred_list)) { 2732 ds_queue->split_queue_len--; 2733 list_del(&folio->_deferred_list); 2734 } 2735 spin_unlock(&ds_queue->split_queue_lock); 2736 if (mapping) { 2737 int nr = folio_nr_pages(folio); 2738 2739 xas_split(&xas, folio, folio_order(folio)); 2740 if (folio_test_swapbacked(folio)) { 2741 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, 2742 -nr); 2743 } else { 2744 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, 2745 -nr); 2746 filemap_nr_thps_dec(mapping); 2747 } 2748 } 2749 2750 __split_huge_page(page, list, end); 2751 ret = 0; 2752 } else { 2753 spin_unlock(&ds_queue->split_queue_lock); 2754 fail: 2755 if (mapping) 2756 xas_unlock(&xas); 2757 local_irq_enable(); 2758 remap_page(folio, folio_nr_pages(folio)); 2759 ret = -EAGAIN; 2760 } 2761 2762 out_unlock: 2763 if (anon_vma) { 2764 anon_vma_unlock_write(anon_vma); 2765 put_anon_vma(anon_vma); 2766 } 2767 if (mapping) 2768 i_mmap_unlock_read(mapping); 2769 out: 2770 xas_destroy(&xas); 2771 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2772 return ret; 2773 } 2774 2775 void folio_undo_large_rmappable(struct folio *folio) 2776 { 2777 struct deferred_split *ds_queue; 2778 unsigned long flags; 2779 2780 /* 2781 * At this point, there is no one trying to add the folio to 2782 * deferred_list. If folio is not in deferred_list, it's safe 2783 * to check without acquiring the split_queue_lock. 2784 */ 2785 if (data_race(list_empty(&folio->_deferred_list))) 2786 return; 2787 2788 ds_queue = get_deferred_split_queue(folio); 2789 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2790 if (!list_empty(&folio->_deferred_list)) { 2791 ds_queue->split_queue_len--; 2792 list_del(&folio->_deferred_list); 2793 } 2794 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2795 } 2796 2797 void deferred_split_folio(struct folio *folio) 2798 { 2799 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2800 #ifdef CONFIG_MEMCG 2801 struct mem_cgroup *memcg = folio_memcg(folio); 2802 #endif 2803 unsigned long flags; 2804 2805 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 2806 2807 /* 2808 * The try_to_unmap() in page reclaim path might reach here too, 2809 * this may cause a race condition to corrupt deferred split queue. 2810 * And, if page reclaim is already handling the same folio, it is 2811 * unnecessary to handle it again in shrinker. 2812 * 2813 * Check the swapcache flag to determine if the folio is being 2814 * handled by page reclaim since THP swap would add the folio into 2815 * swap cache before calling try_to_unmap(). 2816 */ 2817 if (folio_test_swapcache(folio)) 2818 return; 2819 2820 if (!list_empty(&folio->_deferred_list)) 2821 return; 2822 2823 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2824 if (list_empty(&folio->_deferred_list)) { 2825 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2826 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 2827 ds_queue->split_queue_len++; 2828 #ifdef CONFIG_MEMCG 2829 if (memcg) 2830 set_shrinker_bit(memcg, folio_nid(folio), 2831 deferred_split_shrinker.id); 2832 #endif 2833 } 2834 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2835 } 2836 2837 static unsigned long deferred_split_count(struct shrinker *shrink, 2838 struct shrink_control *sc) 2839 { 2840 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2841 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2842 2843 #ifdef CONFIG_MEMCG 2844 if (sc->memcg) 2845 ds_queue = &sc->memcg->deferred_split_queue; 2846 #endif 2847 return READ_ONCE(ds_queue->split_queue_len); 2848 } 2849 2850 static unsigned long deferred_split_scan(struct shrinker *shrink, 2851 struct shrink_control *sc) 2852 { 2853 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2854 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2855 unsigned long flags; 2856 LIST_HEAD(list); 2857 struct folio *folio, *next; 2858 int split = 0; 2859 2860 #ifdef CONFIG_MEMCG 2861 if (sc->memcg) 2862 ds_queue = &sc->memcg->deferred_split_queue; 2863 #endif 2864 2865 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2866 /* Take pin on all head pages to avoid freeing them under us */ 2867 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 2868 _deferred_list) { 2869 if (folio_try_get(folio)) { 2870 list_move(&folio->_deferred_list, &list); 2871 } else { 2872 /* We lost race with folio_put() */ 2873 list_del_init(&folio->_deferred_list); 2874 ds_queue->split_queue_len--; 2875 } 2876 if (!--sc->nr_to_scan) 2877 break; 2878 } 2879 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2880 2881 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 2882 if (!folio_trylock(folio)) 2883 goto next; 2884 /* split_huge_page() removes page from list on success */ 2885 if (!split_folio(folio)) 2886 split++; 2887 folio_unlock(folio); 2888 next: 2889 folio_put(folio); 2890 } 2891 2892 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2893 list_splice_tail(&list, &ds_queue->split_queue); 2894 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2895 2896 /* 2897 * Stop shrinker if we didn't split any page, but the queue is empty. 2898 * This can happen if pages were freed under us. 2899 */ 2900 if (!split && list_empty(&ds_queue->split_queue)) 2901 return SHRINK_STOP; 2902 return split; 2903 } 2904 2905 static struct shrinker deferred_split_shrinker = { 2906 .count_objects = deferred_split_count, 2907 .scan_objects = deferred_split_scan, 2908 .seeks = DEFAULT_SEEKS, 2909 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2910 SHRINKER_NONSLAB, 2911 }; 2912 2913 #ifdef CONFIG_DEBUG_FS 2914 static void split_huge_pages_all(void) 2915 { 2916 struct zone *zone; 2917 struct page *page; 2918 struct folio *folio; 2919 unsigned long pfn, max_zone_pfn; 2920 unsigned long total = 0, split = 0; 2921 2922 pr_debug("Split all THPs\n"); 2923 for_each_zone(zone) { 2924 if (!managed_zone(zone)) 2925 continue; 2926 max_zone_pfn = zone_end_pfn(zone); 2927 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2928 int nr_pages; 2929 2930 page = pfn_to_online_page(pfn); 2931 if (!page || PageTail(page)) 2932 continue; 2933 folio = page_folio(page); 2934 if (!folio_try_get(folio)) 2935 continue; 2936 2937 if (unlikely(page_folio(page) != folio)) 2938 goto next; 2939 2940 if (zone != folio_zone(folio)) 2941 goto next; 2942 2943 if (!folio_test_large(folio) 2944 || folio_test_hugetlb(folio) 2945 || !folio_test_lru(folio)) 2946 goto next; 2947 2948 total++; 2949 folio_lock(folio); 2950 nr_pages = folio_nr_pages(folio); 2951 if (!split_folio(folio)) 2952 split++; 2953 pfn += nr_pages - 1; 2954 folio_unlock(folio); 2955 next: 2956 folio_put(folio); 2957 cond_resched(); 2958 } 2959 } 2960 2961 pr_debug("%lu of %lu THP split\n", split, total); 2962 } 2963 2964 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 2965 { 2966 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 2967 is_vm_hugetlb_page(vma); 2968 } 2969 2970 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 2971 unsigned long vaddr_end) 2972 { 2973 int ret = 0; 2974 struct task_struct *task; 2975 struct mm_struct *mm; 2976 unsigned long total = 0, split = 0; 2977 unsigned long addr; 2978 2979 vaddr_start &= PAGE_MASK; 2980 vaddr_end &= PAGE_MASK; 2981 2982 /* Find the task_struct from pid */ 2983 rcu_read_lock(); 2984 task = find_task_by_vpid(pid); 2985 if (!task) { 2986 rcu_read_unlock(); 2987 ret = -ESRCH; 2988 goto out; 2989 } 2990 get_task_struct(task); 2991 rcu_read_unlock(); 2992 2993 /* Find the mm_struct */ 2994 mm = get_task_mm(task); 2995 put_task_struct(task); 2996 2997 if (!mm) { 2998 ret = -EINVAL; 2999 goto out; 3000 } 3001 3002 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3003 pid, vaddr_start, vaddr_end); 3004 3005 mmap_read_lock(mm); 3006 /* 3007 * always increase addr by PAGE_SIZE, since we could have a PTE page 3008 * table filled with PTE-mapped THPs, each of which is distinct. 3009 */ 3010 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3011 struct vm_area_struct *vma = vma_lookup(mm, addr); 3012 struct page *page; 3013 struct folio *folio; 3014 3015 if (!vma) 3016 break; 3017 3018 /* skip special VMA and hugetlb VMA */ 3019 if (vma_not_suitable_for_thp_split(vma)) { 3020 addr = vma->vm_end; 3021 continue; 3022 } 3023 3024 /* FOLL_DUMP to ignore special (like zero) pages */ 3025 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3026 3027 if (IS_ERR_OR_NULL(page)) 3028 continue; 3029 3030 folio = page_folio(page); 3031 if (!is_transparent_hugepage(folio)) 3032 goto next; 3033 3034 total++; 3035 if (!can_split_folio(folio, NULL)) 3036 goto next; 3037 3038 if (!folio_trylock(folio)) 3039 goto next; 3040 3041 if (!split_folio(folio)) 3042 split++; 3043 3044 folio_unlock(folio); 3045 next: 3046 folio_put(folio); 3047 cond_resched(); 3048 } 3049 mmap_read_unlock(mm); 3050 mmput(mm); 3051 3052 pr_debug("%lu of %lu THP split\n", split, total); 3053 3054 out: 3055 return ret; 3056 } 3057 3058 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3059 pgoff_t off_end) 3060 { 3061 struct filename *file; 3062 struct file *candidate; 3063 struct address_space *mapping; 3064 int ret = -EINVAL; 3065 pgoff_t index; 3066 int nr_pages = 1; 3067 unsigned long total = 0, split = 0; 3068 3069 file = getname_kernel(file_path); 3070 if (IS_ERR(file)) 3071 return ret; 3072 3073 candidate = file_open_name(file, O_RDONLY, 0); 3074 if (IS_ERR(candidate)) 3075 goto out; 3076 3077 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3078 file_path, off_start, off_end); 3079 3080 mapping = candidate->f_mapping; 3081 3082 for (index = off_start; index < off_end; index += nr_pages) { 3083 struct folio *folio = filemap_get_folio(mapping, index); 3084 3085 nr_pages = 1; 3086 if (IS_ERR(folio)) 3087 continue; 3088 3089 if (!folio_test_large(folio)) 3090 goto next; 3091 3092 total++; 3093 nr_pages = folio_nr_pages(folio); 3094 3095 if (!folio_trylock(folio)) 3096 goto next; 3097 3098 if (!split_folio(folio)) 3099 split++; 3100 3101 folio_unlock(folio); 3102 next: 3103 folio_put(folio); 3104 cond_resched(); 3105 } 3106 3107 filp_close(candidate, NULL); 3108 ret = 0; 3109 3110 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3111 out: 3112 putname(file); 3113 return ret; 3114 } 3115 3116 #define MAX_INPUT_BUF_SZ 255 3117 3118 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3119 size_t count, loff_t *ppops) 3120 { 3121 static DEFINE_MUTEX(split_debug_mutex); 3122 ssize_t ret; 3123 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3124 char input_buf[MAX_INPUT_BUF_SZ]; 3125 int pid; 3126 unsigned long vaddr_start, vaddr_end; 3127 3128 ret = mutex_lock_interruptible(&split_debug_mutex); 3129 if (ret) 3130 return ret; 3131 3132 ret = -EFAULT; 3133 3134 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3135 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3136 goto out; 3137 3138 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3139 3140 if (input_buf[0] == '/') { 3141 char *tok; 3142 char *buf = input_buf; 3143 char file_path[MAX_INPUT_BUF_SZ]; 3144 pgoff_t off_start = 0, off_end = 0; 3145 size_t input_len = strlen(input_buf); 3146 3147 tok = strsep(&buf, ","); 3148 if (tok) { 3149 strcpy(file_path, tok); 3150 } else { 3151 ret = -EINVAL; 3152 goto out; 3153 } 3154 3155 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3156 if (ret != 2) { 3157 ret = -EINVAL; 3158 goto out; 3159 } 3160 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3161 if (!ret) 3162 ret = input_len; 3163 3164 goto out; 3165 } 3166 3167 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3168 if (ret == 1 && pid == 1) { 3169 split_huge_pages_all(); 3170 ret = strlen(input_buf); 3171 goto out; 3172 } else if (ret != 3) { 3173 ret = -EINVAL; 3174 goto out; 3175 } 3176 3177 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3178 if (!ret) 3179 ret = strlen(input_buf); 3180 out: 3181 mutex_unlock(&split_debug_mutex); 3182 return ret; 3183 3184 } 3185 3186 static const struct file_operations split_huge_pages_fops = { 3187 .owner = THIS_MODULE, 3188 .write = split_huge_pages_write, 3189 .llseek = no_llseek, 3190 }; 3191 3192 static int __init split_huge_pages_debugfs(void) 3193 { 3194 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3195 &split_huge_pages_fops); 3196 return 0; 3197 } 3198 late_initcall(split_huge_pages_debugfs); 3199 #endif 3200 3201 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3202 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3203 struct page *page) 3204 { 3205 struct vm_area_struct *vma = pvmw->vma; 3206 struct mm_struct *mm = vma->vm_mm; 3207 unsigned long address = pvmw->address; 3208 bool anon_exclusive; 3209 pmd_t pmdval; 3210 swp_entry_t entry; 3211 pmd_t pmdswp; 3212 3213 if (!(pvmw->pmd && !pvmw->pte)) 3214 return 0; 3215 3216 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3217 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3218 3219 /* See page_try_share_anon_rmap(): invalidate PMD first. */ 3220 anon_exclusive = PageAnon(page) && PageAnonExclusive(page); 3221 if (anon_exclusive && page_try_share_anon_rmap(page)) { 3222 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3223 return -EBUSY; 3224 } 3225 3226 if (pmd_dirty(pmdval)) 3227 set_page_dirty(page); 3228 if (pmd_write(pmdval)) 3229 entry = make_writable_migration_entry(page_to_pfn(page)); 3230 else if (anon_exclusive) 3231 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3232 else 3233 entry = make_readable_migration_entry(page_to_pfn(page)); 3234 if (pmd_young(pmdval)) 3235 entry = make_migration_entry_young(entry); 3236 if (pmd_dirty(pmdval)) 3237 entry = make_migration_entry_dirty(entry); 3238 pmdswp = swp_entry_to_pmd(entry); 3239 if (pmd_soft_dirty(pmdval)) 3240 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3241 if (pmd_uffd_wp(pmdval)) 3242 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3243 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3244 page_remove_rmap(page, vma, true); 3245 put_page(page); 3246 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3247 3248 return 0; 3249 } 3250 3251 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3252 { 3253 struct vm_area_struct *vma = pvmw->vma; 3254 struct mm_struct *mm = vma->vm_mm; 3255 unsigned long address = pvmw->address; 3256 unsigned long haddr = address & HPAGE_PMD_MASK; 3257 pmd_t pmde; 3258 swp_entry_t entry; 3259 3260 if (!(pvmw->pmd && !pvmw->pte)) 3261 return; 3262 3263 entry = pmd_to_swp_entry(*pvmw->pmd); 3264 get_page(new); 3265 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3266 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3267 pmde = pmd_mksoft_dirty(pmde); 3268 if (is_writable_migration_entry(entry)) 3269 pmde = pmd_mkwrite(pmde, vma); 3270 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3271 pmde = pmd_mkuffd_wp(pmde); 3272 if (!is_migration_entry_young(entry)) 3273 pmde = pmd_mkold(pmde); 3274 /* NOTE: this may contain setting soft-dirty on some archs */ 3275 if (PageDirty(new) && is_migration_entry_dirty(entry)) 3276 pmde = pmd_mkdirty(pmde); 3277 3278 if (PageAnon(new)) { 3279 rmap_t rmap_flags = RMAP_COMPOUND; 3280 3281 if (!is_readable_migration_entry(entry)) 3282 rmap_flags |= RMAP_EXCLUSIVE; 3283 3284 page_add_anon_rmap(new, vma, haddr, rmap_flags); 3285 } else { 3286 page_add_file_rmap(new, vma, true); 3287 } 3288 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new)); 3289 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3290 3291 /* No need to invalidate - it was non-present before */ 3292 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3293 trace_remove_migration_pmd(address, pmd_val(pmde)); 3294 } 3295 #endif 3296