xref: /linux/mm/huge_memory.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *  Copyright (C) 2009  Red Hat, Inc.
3  *
4  *  This work is licensed under the terms of the GNU GPL, version 2. See
5  *  the COPYING file in the top-level directory.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37 
38 enum scan_result {
39 	SCAN_FAIL,
40 	SCAN_SUCCEED,
41 	SCAN_PMD_NULL,
42 	SCAN_EXCEED_NONE_PTE,
43 	SCAN_PTE_NON_PRESENT,
44 	SCAN_PAGE_RO,
45 	SCAN_NO_REFERENCED_PAGE,
46 	SCAN_PAGE_NULL,
47 	SCAN_SCAN_ABORT,
48 	SCAN_PAGE_COUNT,
49 	SCAN_PAGE_LRU,
50 	SCAN_PAGE_LOCK,
51 	SCAN_PAGE_ANON,
52 	SCAN_PAGE_COMPOUND,
53 	SCAN_ANY_PROCESS,
54 	SCAN_VMA_NULL,
55 	SCAN_VMA_CHECK,
56 	SCAN_ADDRESS_RANGE,
57 	SCAN_SWAP_CACHE_PAGE,
58 	SCAN_DEL_PAGE_LRU,
59 	SCAN_ALLOC_HUGE_PAGE_FAIL,
60 	SCAN_CGROUP_CHARGE_FAIL
61 };
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/huge_memory.h>
65 
66 /*
67  * By default transparent hugepage support is disabled in order that avoid
68  * to risk increase the memory footprint of applications without a guaranteed
69  * benefit. When transparent hugepage support is enabled, is for all mappings,
70  * and khugepaged scans all mappings.
71  * Defrag is invoked by khugepaged hugepage allocations and by page faults
72  * for all hugepage allocations.
73  */
74 unsigned long transparent_hugepage_flags __read_mostly =
75 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
76 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
77 #endif
78 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80 #endif
81 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
82 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
84 
85 /* default scan 8*512 pte (or vmas) every 30 second */
86 static unsigned int khugepaged_pages_to_scan __read_mostly;
87 static unsigned int khugepaged_pages_collapsed;
88 static unsigned int khugepaged_full_scans;
89 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90 /* during fragmentation poll the hugepage allocator once every minute */
91 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92 static unsigned long khugepaged_sleep_expire;
93 static struct task_struct *khugepaged_thread __read_mostly;
94 static DEFINE_MUTEX(khugepaged_mutex);
95 static DEFINE_SPINLOCK(khugepaged_mm_lock);
96 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
97 /*
98  * default collapse hugepages if there is at least one pte mapped like
99  * it would have happened if the vma was large enough during page
100  * fault.
101  */
102 static unsigned int khugepaged_max_ptes_none __read_mostly;
103 
104 static int khugepaged(void *none);
105 static int khugepaged_slab_init(void);
106 static void khugepaged_slab_exit(void);
107 
108 #define MM_SLOTS_HASH_BITS 10
109 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
110 
111 static struct kmem_cache *mm_slot_cache __read_mostly;
112 
113 /**
114  * struct mm_slot - hash lookup from mm to mm_slot
115  * @hash: hash collision list
116  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
117  * @mm: the mm that this information is valid for
118  */
119 struct mm_slot {
120 	struct hlist_node hash;
121 	struct list_head mm_node;
122 	struct mm_struct *mm;
123 };
124 
125 /**
126  * struct khugepaged_scan - cursor for scanning
127  * @mm_head: the head of the mm list to scan
128  * @mm_slot: the current mm_slot we are scanning
129  * @address: the next address inside that to be scanned
130  *
131  * There is only the one khugepaged_scan instance of this cursor structure.
132  */
133 struct khugepaged_scan {
134 	struct list_head mm_head;
135 	struct mm_slot *mm_slot;
136 	unsigned long address;
137 };
138 static struct khugepaged_scan khugepaged_scan = {
139 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
140 };
141 
142 static struct shrinker deferred_split_shrinker;
143 
144 static void set_recommended_min_free_kbytes(void)
145 {
146 	struct zone *zone;
147 	int nr_zones = 0;
148 	unsigned long recommended_min;
149 
150 	for_each_populated_zone(zone)
151 		nr_zones++;
152 
153 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
154 	recommended_min = pageblock_nr_pages * nr_zones * 2;
155 
156 	/*
157 	 * Make sure that on average at least two pageblocks are almost free
158 	 * of another type, one for a migratetype to fall back to and a
159 	 * second to avoid subsequent fallbacks of other types There are 3
160 	 * MIGRATE_TYPES we care about.
161 	 */
162 	recommended_min += pageblock_nr_pages * nr_zones *
163 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
164 
165 	/* don't ever allow to reserve more than 5% of the lowmem */
166 	recommended_min = min(recommended_min,
167 			      (unsigned long) nr_free_buffer_pages() / 20);
168 	recommended_min <<= (PAGE_SHIFT-10);
169 
170 	if (recommended_min > min_free_kbytes) {
171 		if (user_min_free_kbytes >= 0)
172 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
173 				min_free_kbytes, recommended_min);
174 
175 		min_free_kbytes = recommended_min;
176 	}
177 	setup_per_zone_wmarks();
178 }
179 
180 static int start_stop_khugepaged(void)
181 {
182 	int err = 0;
183 	if (khugepaged_enabled()) {
184 		if (!khugepaged_thread)
185 			khugepaged_thread = kthread_run(khugepaged, NULL,
186 							"khugepaged");
187 		if (IS_ERR(khugepaged_thread)) {
188 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
189 			err = PTR_ERR(khugepaged_thread);
190 			khugepaged_thread = NULL;
191 			goto fail;
192 		}
193 
194 		if (!list_empty(&khugepaged_scan.mm_head))
195 			wake_up_interruptible(&khugepaged_wait);
196 
197 		set_recommended_min_free_kbytes();
198 	} else if (khugepaged_thread) {
199 		kthread_stop(khugepaged_thread);
200 		khugepaged_thread = NULL;
201 	}
202 fail:
203 	return err;
204 }
205 
206 static atomic_t huge_zero_refcount;
207 struct page *huge_zero_page __read_mostly;
208 
209 struct page *get_huge_zero_page(void)
210 {
211 	struct page *zero_page;
212 retry:
213 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
214 		return READ_ONCE(huge_zero_page);
215 
216 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
217 			HPAGE_PMD_ORDER);
218 	if (!zero_page) {
219 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
220 		return NULL;
221 	}
222 	count_vm_event(THP_ZERO_PAGE_ALLOC);
223 	preempt_disable();
224 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
225 		preempt_enable();
226 		__free_pages(zero_page, compound_order(zero_page));
227 		goto retry;
228 	}
229 
230 	/* We take additional reference here. It will be put back by shrinker */
231 	atomic_set(&huge_zero_refcount, 2);
232 	preempt_enable();
233 	return READ_ONCE(huge_zero_page);
234 }
235 
236 void put_huge_zero_page(void)
237 {
238 	/*
239 	 * Counter should never go to zero here. Only shrinker can put
240 	 * last reference.
241 	 */
242 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
243 }
244 
245 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 					struct shrink_control *sc)
247 {
248 	/* we can free zero page only if last reference remains */
249 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250 }
251 
252 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 				       struct shrink_control *sc)
254 {
255 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
256 		struct page *zero_page = xchg(&huge_zero_page, NULL);
257 		BUG_ON(zero_page == NULL);
258 		__free_pages(zero_page, compound_order(zero_page));
259 		return HPAGE_PMD_NR;
260 	}
261 
262 	return 0;
263 }
264 
265 static struct shrinker huge_zero_page_shrinker = {
266 	.count_objects = shrink_huge_zero_page_count,
267 	.scan_objects = shrink_huge_zero_page_scan,
268 	.seeks = DEFAULT_SEEKS,
269 };
270 
271 #ifdef CONFIG_SYSFS
272 
273 static ssize_t triple_flag_store(struct kobject *kobj,
274 				 struct kobj_attribute *attr,
275 				 const char *buf, size_t count,
276 				 enum transparent_hugepage_flag enabled,
277 				 enum transparent_hugepage_flag deferred,
278 				 enum transparent_hugepage_flag req_madv)
279 {
280 	if (!memcmp("defer", buf,
281 		    min(sizeof("defer")-1, count))) {
282 		if (enabled == deferred)
283 			return -EINVAL;
284 		clear_bit(enabled, &transparent_hugepage_flags);
285 		clear_bit(req_madv, &transparent_hugepage_flags);
286 		set_bit(deferred, &transparent_hugepage_flags);
287 	} else if (!memcmp("always", buf,
288 		    min(sizeof("always")-1, count))) {
289 		clear_bit(deferred, &transparent_hugepage_flags);
290 		clear_bit(req_madv, &transparent_hugepage_flags);
291 		set_bit(enabled, &transparent_hugepage_flags);
292 	} else if (!memcmp("madvise", buf,
293 			   min(sizeof("madvise")-1, count))) {
294 		clear_bit(enabled, &transparent_hugepage_flags);
295 		clear_bit(deferred, &transparent_hugepage_flags);
296 		set_bit(req_madv, &transparent_hugepage_flags);
297 	} else if (!memcmp("never", buf,
298 			   min(sizeof("never")-1, count))) {
299 		clear_bit(enabled, &transparent_hugepage_flags);
300 		clear_bit(req_madv, &transparent_hugepage_flags);
301 		clear_bit(deferred, &transparent_hugepage_flags);
302 	} else
303 		return -EINVAL;
304 
305 	return count;
306 }
307 
308 static ssize_t enabled_show(struct kobject *kobj,
309 			    struct kobj_attribute *attr, char *buf)
310 {
311 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 		return sprintf(buf, "[always] madvise never\n");
313 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 		return sprintf(buf, "always [madvise] never\n");
315 	else
316 		return sprintf(buf, "always madvise [never]\n");
317 }
318 
319 static ssize_t enabled_store(struct kobject *kobj,
320 			     struct kobj_attribute *attr,
321 			     const char *buf, size_t count)
322 {
323 	ssize_t ret;
324 
325 	ret = triple_flag_store(kobj, attr, buf, count,
326 				TRANSPARENT_HUGEPAGE_FLAG,
327 				TRANSPARENT_HUGEPAGE_FLAG,
328 				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329 
330 	if (ret > 0) {
331 		int err;
332 
333 		mutex_lock(&khugepaged_mutex);
334 		err = start_stop_khugepaged();
335 		mutex_unlock(&khugepaged_mutex);
336 
337 		if (err)
338 			ret = err;
339 	}
340 
341 	return ret;
342 }
343 static struct kobj_attribute enabled_attr =
344 	__ATTR(enabled, 0644, enabled_show, enabled_store);
345 
346 static ssize_t single_flag_show(struct kobject *kobj,
347 				struct kobj_attribute *attr, char *buf,
348 				enum transparent_hugepage_flag flag)
349 {
350 	return sprintf(buf, "%d\n",
351 		       !!test_bit(flag, &transparent_hugepage_flags));
352 }
353 
354 static ssize_t single_flag_store(struct kobject *kobj,
355 				 struct kobj_attribute *attr,
356 				 const char *buf, size_t count,
357 				 enum transparent_hugepage_flag flag)
358 {
359 	unsigned long value;
360 	int ret;
361 
362 	ret = kstrtoul(buf, 10, &value);
363 	if (ret < 0)
364 		return ret;
365 	if (value > 1)
366 		return -EINVAL;
367 
368 	if (value)
369 		set_bit(flag, &transparent_hugepage_flags);
370 	else
371 		clear_bit(flag, &transparent_hugepage_flags);
372 
373 	return count;
374 }
375 
376 /*
377  * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378  * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379  * memory just to allocate one more hugepage.
380  */
381 static ssize_t defrag_show(struct kobject *kobj,
382 			   struct kobj_attribute *attr, char *buf)
383 {
384 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 		return sprintf(buf, "[always] defer madvise never\n");
386 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 		return sprintf(buf, "always [defer] madvise never\n");
388 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 		return sprintf(buf, "always defer [madvise] never\n");
390 	else
391 		return sprintf(buf, "always defer madvise [never]\n");
392 
393 }
394 static ssize_t defrag_store(struct kobject *kobj,
395 			    struct kobj_attribute *attr,
396 			    const char *buf, size_t count)
397 {
398 	return triple_flag_store(kobj, attr, buf, count,
399 				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
401 				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402 }
403 static struct kobj_attribute defrag_attr =
404 	__ATTR(defrag, 0644, defrag_show, defrag_store);
405 
406 static ssize_t use_zero_page_show(struct kobject *kobj,
407 		struct kobj_attribute *attr, char *buf)
408 {
409 	return single_flag_show(kobj, attr, buf,
410 				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411 }
412 static ssize_t use_zero_page_store(struct kobject *kobj,
413 		struct kobj_attribute *attr, const char *buf, size_t count)
414 {
415 	return single_flag_store(kobj, attr, buf, count,
416 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417 }
418 static struct kobj_attribute use_zero_page_attr =
419 	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
420 #ifdef CONFIG_DEBUG_VM
421 static ssize_t debug_cow_show(struct kobject *kobj,
422 				struct kobj_attribute *attr, char *buf)
423 {
424 	return single_flag_show(kobj, attr, buf,
425 				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426 }
427 static ssize_t debug_cow_store(struct kobject *kobj,
428 			       struct kobj_attribute *attr,
429 			       const char *buf, size_t count)
430 {
431 	return single_flag_store(kobj, attr, buf, count,
432 				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433 }
434 static struct kobj_attribute debug_cow_attr =
435 	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436 #endif /* CONFIG_DEBUG_VM */
437 
438 static struct attribute *hugepage_attr[] = {
439 	&enabled_attr.attr,
440 	&defrag_attr.attr,
441 	&use_zero_page_attr.attr,
442 #ifdef CONFIG_DEBUG_VM
443 	&debug_cow_attr.attr,
444 #endif
445 	NULL,
446 };
447 
448 static struct attribute_group hugepage_attr_group = {
449 	.attrs = hugepage_attr,
450 };
451 
452 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 					 struct kobj_attribute *attr,
454 					 char *buf)
455 {
456 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457 }
458 
459 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 					  struct kobj_attribute *attr,
461 					  const char *buf, size_t count)
462 {
463 	unsigned long msecs;
464 	int err;
465 
466 	err = kstrtoul(buf, 10, &msecs);
467 	if (err || msecs > UINT_MAX)
468 		return -EINVAL;
469 
470 	khugepaged_scan_sleep_millisecs = msecs;
471 	khugepaged_sleep_expire = 0;
472 	wake_up_interruptible(&khugepaged_wait);
473 
474 	return count;
475 }
476 static struct kobj_attribute scan_sleep_millisecs_attr =
477 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
478 	       scan_sleep_millisecs_store);
479 
480 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
481 					  struct kobj_attribute *attr,
482 					  char *buf)
483 {
484 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
485 }
486 
487 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
488 					   struct kobj_attribute *attr,
489 					   const char *buf, size_t count)
490 {
491 	unsigned long msecs;
492 	int err;
493 
494 	err = kstrtoul(buf, 10, &msecs);
495 	if (err || msecs > UINT_MAX)
496 		return -EINVAL;
497 
498 	khugepaged_alloc_sleep_millisecs = msecs;
499 	khugepaged_sleep_expire = 0;
500 	wake_up_interruptible(&khugepaged_wait);
501 
502 	return count;
503 }
504 static struct kobj_attribute alloc_sleep_millisecs_attr =
505 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
506 	       alloc_sleep_millisecs_store);
507 
508 static ssize_t pages_to_scan_show(struct kobject *kobj,
509 				  struct kobj_attribute *attr,
510 				  char *buf)
511 {
512 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
513 }
514 static ssize_t pages_to_scan_store(struct kobject *kobj,
515 				   struct kobj_attribute *attr,
516 				   const char *buf, size_t count)
517 {
518 	int err;
519 	unsigned long pages;
520 
521 	err = kstrtoul(buf, 10, &pages);
522 	if (err || !pages || pages > UINT_MAX)
523 		return -EINVAL;
524 
525 	khugepaged_pages_to_scan = pages;
526 
527 	return count;
528 }
529 static struct kobj_attribute pages_to_scan_attr =
530 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
531 	       pages_to_scan_store);
532 
533 static ssize_t pages_collapsed_show(struct kobject *kobj,
534 				    struct kobj_attribute *attr,
535 				    char *buf)
536 {
537 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
538 }
539 static struct kobj_attribute pages_collapsed_attr =
540 	__ATTR_RO(pages_collapsed);
541 
542 static ssize_t full_scans_show(struct kobject *kobj,
543 			       struct kobj_attribute *attr,
544 			       char *buf)
545 {
546 	return sprintf(buf, "%u\n", khugepaged_full_scans);
547 }
548 static struct kobj_attribute full_scans_attr =
549 	__ATTR_RO(full_scans);
550 
551 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
552 				      struct kobj_attribute *attr, char *buf)
553 {
554 	return single_flag_show(kobj, attr, buf,
555 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
556 }
557 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
558 				       struct kobj_attribute *attr,
559 				       const char *buf, size_t count)
560 {
561 	return single_flag_store(kobj, attr, buf, count,
562 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
563 }
564 static struct kobj_attribute khugepaged_defrag_attr =
565 	__ATTR(defrag, 0644, khugepaged_defrag_show,
566 	       khugepaged_defrag_store);
567 
568 /*
569  * max_ptes_none controls if khugepaged should collapse hugepages over
570  * any unmapped ptes in turn potentially increasing the memory
571  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
572  * reduce the available free memory in the system as it
573  * runs. Increasing max_ptes_none will instead potentially reduce the
574  * free memory in the system during the khugepaged scan.
575  */
576 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
577 					     struct kobj_attribute *attr,
578 					     char *buf)
579 {
580 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
581 }
582 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
583 					      struct kobj_attribute *attr,
584 					      const char *buf, size_t count)
585 {
586 	int err;
587 	unsigned long max_ptes_none;
588 
589 	err = kstrtoul(buf, 10, &max_ptes_none);
590 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
591 		return -EINVAL;
592 
593 	khugepaged_max_ptes_none = max_ptes_none;
594 
595 	return count;
596 }
597 static struct kobj_attribute khugepaged_max_ptes_none_attr =
598 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
599 	       khugepaged_max_ptes_none_store);
600 
601 static struct attribute *khugepaged_attr[] = {
602 	&khugepaged_defrag_attr.attr,
603 	&khugepaged_max_ptes_none_attr.attr,
604 	&pages_to_scan_attr.attr,
605 	&pages_collapsed_attr.attr,
606 	&full_scans_attr.attr,
607 	&scan_sleep_millisecs_attr.attr,
608 	&alloc_sleep_millisecs_attr.attr,
609 	NULL,
610 };
611 
612 static struct attribute_group khugepaged_attr_group = {
613 	.attrs = khugepaged_attr,
614 	.name = "khugepaged",
615 };
616 
617 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
618 {
619 	int err;
620 
621 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
622 	if (unlikely(!*hugepage_kobj)) {
623 		pr_err("failed to create transparent hugepage kobject\n");
624 		return -ENOMEM;
625 	}
626 
627 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
628 	if (err) {
629 		pr_err("failed to register transparent hugepage group\n");
630 		goto delete_obj;
631 	}
632 
633 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
634 	if (err) {
635 		pr_err("failed to register transparent hugepage group\n");
636 		goto remove_hp_group;
637 	}
638 
639 	return 0;
640 
641 remove_hp_group:
642 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
643 delete_obj:
644 	kobject_put(*hugepage_kobj);
645 	return err;
646 }
647 
648 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649 {
650 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
651 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
652 	kobject_put(hugepage_kobj);
653 }
654 #else
655 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
656 {
657 	return 0;
658 }
659 
660 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
661 {
662 }
663 #endif /* CONFIG_SYSFS */
664 
665 static int __init hugepage_init(void)
666 {
667 	int err;
668 	struct kobject *hugepage_kobj;
669 
670 	if (!has_transparent_hugepage()) {
671 		transparent_hugepage_flags = 0;
672 		return -EINVAL;
673 	}
674 
675 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
676 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
677 	/*
678 	 * hugepages can't be allocated by the buddy allocator
679 	 */
680 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
681 	/*
682 	 * we use page->mapping and page->index in second tail page
683 	 * as list_head: assuming THP order >= 2
684 	 */
685 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
686 
687 	err = hugepage_init_sysfs(&hugepage_kobj);
688 	if (err)
689 		goto err_sysfs;
690 
691 	err = khugepaged_slab_init();
692 	if (err)
693 		goto err_slab;
694 
695 	err = register_shrinker(&huge_zero_page_shrinker);
696 	if (err)
697 		goto err_hzp_shrinker;
698 	err = register_shrinker(&deferred_split_shrinker);
699 	if (err)
700 		goto err_split_shrinker;
701 
702 	/*
703 	 * By default disable transparent hugepages on smaller systems,
704 	 * where the extra memory used could hurt more than TLB overhead
705 	 * is likely to save.  The admin can still enable it through /sys.
706 	 */
707 	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
708 		transparent_hugepage_flags = 0;
709 		return 0;
710 	}
711 
712 	err = start_stop_khugepaged();
713 	if (err)
714 		goto err_khugepaged;
715 
716 	return 0;
717 err_khugepaged:
718 	unregister_shrinker(&deferred_split_shrinker);
719 err_split_shrinker:
720 	unregister_shrinker(&huge_zero_page_shrinker);
721 err_hzp_shrinker:
722 	khugepaged_slab_exit();
723 err_slab:
724 	hugepage_exit_sysfs(hugepage_kobj);
725 err_sysfs:
726 	return err;
727 }
728 subsys_initcall(hugepage_init);
729 
730 static int __init setup_transparent_hugepage(char *str)
731 {
732 	int ret = 0;
733 	if (!str)
734 		goto out;
735 	if (!strcmp(str, "always")) {
736 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 			&transparent_hugepage_flags);
738 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 			  &transparent_hugepage_flags);
740 		ret = 1;
741 	} else if (!strcmp(str, "madvise")) {
742 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743 			  &transparent_hugepage_flags);
744 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745 			&transparent_hugepage_flags);
746 		ret = 1;
747 	} else if (!strcmp(str, "never")) {
748 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749 			  &transparent_hugepage_flags);
750 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751 			  &transparent_hugepage_flags);
752 		ret = 1;
753 	}
754 out:
755 	if (!ret)
756 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
757 	return ret;
758 }
759 __setup("transparent_hugepage=", setup_transparent_hugepage);
760 
761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
762 {
763 	if (likely(vma->vm_flags & VM_WRITE))
764 		pmd = pmd_mkwrite(pmd);
765 	return pmd;
766 }
767 
768 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
769 {
770 	return pmd_mkhuge(mk_pmd(page, prot));
771 }
772 
773 static inline struct list_head *page_deferred_list(struct page *page)
774 {
775 	/*
776 	 * ->lru in the tail pages is occupied by compound_head.
777 	 * Let's use ->mapping + ->index in the second tail page as list_head.
778 	 */
779 	return (struct list_head *)&page[2].mapping;
780 }
781 
782 void prep_transhuge_page(struct page *page)
783 {
784 	/*
785 	 * we use page->mapping and page->indexlru in second tail page
786 	 * as list_head: assuming THP order >= 2
787 	 */
788 
789 	INIT_LIST_HEAD(page_deferred_list(page));
790 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
791 }
792 
793 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
794 					struct vm_area_struct *vma,
795 					unsigned long address, pmd_t *pmd,
796 					struct page *page, gfp_t gfp,
797 					unsigned int flags)
798 {
799 	struct mem_cgroup *memcg;
800 	pgtable_t pgtable;
801 	spinlock_t *ptl;
802 	unsigned long haddr = address & HPAGE_PMD_MASK;
803 
804 	VM_BUG_ON_PAGE(!PageCompound(page), page);
805 
806 	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
807 		put_page(page);
808 		count_vm_event(THP_FAULT_FALLBACK);
809 		return VM_FAULT_FALLBACK;
810 	}
811 
812 	pgtable = pte_alloc_one(mm, haddr);
813 	if (unlikely(!pgtable)) {
814 		mem_cgroup_cancel_charge(page, memcg, true);
815 		put_page(page);
816 		return VM_FAULT_OOM;
817 	}
818 
819 	clear_huge_page(page, haddr, HPAGE_PMD_NR);
820 	/*
821 	 * The memory barrier inside __SetPageUptodate makes sure that
822 	 * clear_huge_page writes become visible before the set_pmd_at()
823 	 * write.
824 	 */
825 	__SetPageUptodate(page);
826 
827 	ptl = pmd_lock(mm, pmd);
828 	if (unlikely(!pmd_none(*pmd))) {
829 		spin_unlock(ptl);
830 		mem_cgroup_cancel_charge(page, memcg, true);
831 		put_page(page);
832 		pte_free(mm, pgtable);
833 	} else {
834 		pmd_t entry;
835 
836 		/* Deliver the page fault to userland */
837 		if (userfaultfd_missing(vma)) {
838 			int ret;
839 
840 			spin_unlock(ptl);
841 			mem_cgroup_cancel_charge(page, memcg, true);
842 			put_page(page);
843 			pte_free(mm, pgtable);
844 			ret = handle_userfault(vma, address, flags,
845 					       VM_UFFD_MISSING);
846 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 			return ret;
848 		}
849 
850 		entry = mk_huge_pmd(page, vma->vm_page_prot);
851 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
852 		page_add_new_anon_rmap(page, vma, haddr, true);
853 		mem_cgroup_commit_charge(page, memcg, false, true);
854 		lru_cache_add_active_or_unevictable(page, vma);
855 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
856 		set_pmd_at(mm, haddr, pmd, entry);
857 		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
858 		atomic_long_inc(&mm->nr_ptes);
859 		spin_unlock(ptl);
860 		count_vm_event(THP_FAULT_ALLOC);
861 	}
862 
863 	return 0;
864 }
865 
866 /*
867  * If THP is set to always then directly reclaim/compact as necessary
868  * If set to defer then do no reclaim and defer to khugepaged
869  * If set to madvise and the VMA is flagged then directly reclaim/compact
870  */
871 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
872 {
873 	gfp_t reclaim_flags = 0;
874 
875 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
876 	    (vma->vm_flags & VM_HUGEPAGE))
877 		reclaim_flags = __GFP_DIRECT_RECLAIM;
878 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
879 		reclaim_flags = __GFP_KSWAPD_RECLAIM;
880 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
881 		reclaim_flags = __GFP_DIRECT_RECLAIM;
882 
883 	return GFP_TRANSHUGE | reclaim_flags;
884 }
885 
886 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
887 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
888 {
889 	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
890 }
891 
892 /* Caller must hold page table lock. */
893 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
894 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
895 		struct page *zero_page)
896 {
897 	pmd_t entry;
898 	if (!pmd_none(*pmd))
899 		return false;
900 	entry = mk_pmd(zero_page, vma->vm_page_prot);
901 	entry = pmd_mkhuge(entry);
902 	if (pgtable)
903 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
904 	set_pmd_at(mm, haddr, pmd, entry);
905 	atomic_long_inc(&mm->nr_ptes);
906 	return true;
907 }
908 
909 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
910 			       unsigned long address, pmd_t *pmd,
911 			       unsigned int flags)
912 {
913 	gfp_t gfp;
914 	struct page *page;
915 	unsigned long haddr = address & HPAGE_PMD_MASK;
916 
917 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
918 		return VM_FAULT_FALLBACK;
919 	if (unlikely(anon_vma_prepare(vma)))
920 		return VM_FAULT_OOM;
921 	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
922 		return VM_FAULT_OOM;
923 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
924 			transparent_hugepage_use_zero_page()) {
925 		spinlock_t *ptl;
926 		pgtable_t pgtable;
927 		struct page *zero_page;
928 		bool set;
929 		int ret;
930 		pgtable = pte_alloc_one(mm, haddr);
931 		if (unlikely(!pgtable))
932 			return VM_FAULT_OOM;
933 		zero_page = get_huge_zero_page();
934 		if (unlikely(!zero_page)) {
935 			pte_free(mm, pgtable);
936 			count_vm_event(THP_FAULT_FALLBACK);
937 			return VM_FAULT_FALLBACK;
938 		}
939 		ptl = pmd_lock(mm, pmd);
940 		ret = 0;
941 		set = false;
942 		if (pmd_none(*pmd)) {
943 			if (userfaultfd_missing(vma)) {
944 				spin_unlock(ptl);
945 				ret = handle_userfault(vma, address, flags,
946 						       VM_UFFD_MISSING);
947 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
948 			} else {
949 				set_huge_zero_page(pgtable, mm, vma,
950 						   haddr, pmd,
951 						   zero_page);
952 				spin_unlock(ptl);
953 				set = true;
954 			}
955 		} else
956 			spin_unlock(ptl);
957 		if (!set) {
958 			pte_free(mm, pgtable);
959 			put_huge_zero_page();
960 		}
961 		return ret;
962 	}
963 	gfp = alloc_hugepage_direct_gfpmask(vma);
964 	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
965 	if (unlikely(!page)) {
966 		count_vm_event(THP_FAULT_FALLBACK);
967 		return VM_FAULT_FALLBACK;
968 	}
969 	prep_transhuge_page(page);
970 	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
971 					    flags);
972 }
973 
974 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
975 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
976 {
977 	struct mm_struct *mm = vma->vm_mm;
978 	pmd_t entry;
979 	spinlock_t *ptl;
980 
981 	ptl = pmd_lock(mm, pmd);
982 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
983 	if (pfn_t_devmap(pfn))
984 		entry = pmd_mkdevmap(entry);
985 	if (write) {
986 		entry = pmd_mkyoung(pmd_mkdirty(entry));
987 		entry = maybe_pmd_mkwrite(entry, vma);
988 	}
989 	set_pmd_at(mm, addr, pmd, entry);
990 	update_mmu_cache_pmd(vma, addr, pmd);
991 	spin_unlock(ptl);
992 }
993 
994 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
995 			pmd_t *pmd, pfn_t pfn, bool write)
996 {
997 	pgprot_t pgprot = vma->vm_page_prot;
998 	/*
999 	 * If we had pmd_special, we could avoid all these restrictions,
1000 	 * but we need to be consistent with PTEs and architectures that
1001 	 * can't support a 'special' bit.
1002 	 */
1003 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 	BUG_ON(!pfn_t_devmap(pfn));
1008 
1009 	if (addr < vma->vm_start || addr >= vma->vm_end)
1010 		return VM_FAULT_SIGBUS;
1011 	if (track_pfn_insert(vma, &pgprot, pfn))
1012 		return VM_FAULT_SIGBUS;
1013 	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 
1017 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018 		pmd_t *pmd)
1019 {
1020 	pmd_t _pmd;
1021 
1022 	/*
1023 	 * We should set the dirty bit only for FOLL_WRITE but for now
1024 	 * the dirty bit in the pmd is meaningless.  And if the dirty
1025 	 * bit will become meaningful and we'll only set it with
1026 	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027 	 * set the young bit, instead of the current set_pmd_at.
1028 	 */
1029 	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031 				pmd, _pmd,  1))
1032 		update_mmu_cache_pmd(vma, addr, pmd);
1033 }
1034 
1035 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036 		pmd_t *pmd, int flags)
1037 {
1038 	unsigned long pfn = pmd_pfn(*pmd);
1039 	struct mm_struct *mm = vma->vm_mm;
1040 	struct dev_pagemap *pgmap;
1041 	struct page *page;
1042 
1043 	assert_spin_locked(pmd_lockptr(mm, pmd));
1044 
1045 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046 		return NULL;
1047 
1048 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049 		/* pass */;
1050 	else
1051 		return NULL;
1052 
1053 	if (flags & FOLL_TOUCH)
1054 		touch_pmd(vma, addr, pmd);
1055 
1056 	/*
1057 	 * device mapped pages can only be returned if the
1058 	 * caller will manage the page reference count.
1059 	 */
1060 	if (!(flags & FOLL_GET))
1061 		return ERR_PTR(-EEXIST);
1062 
1063 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064 	pgmap = get_dev_pagemap(pfn, NULL);
1065 	if (!pgmap)
1066 		return ERR_PTR(-EFAULT);
1067 	page = pfn_to_page(pfn);
1068 	get_page(page);
1069 	put_dev_pagemap(pgmap);
1070 
1071 	return page;
1072 }
1073 
1074 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076 		  struct vm_area_struct *vma)
1077 {
1078 	spinlock_t *dst_ptl, *src_ptl;
1079 	struct page *src_page;
1080 	pmd_t pmd;
1081 	pgtable_t pgtable = NULL;
1082 	int ret;
1083 
1084 	if (!vma_is_dax(vma)) {
1085 		ret = -ENOMEM;
1086 		pgtable = pte_alloc_one(dst_mm, addr);
1087 		if (unlikely(!pgtable))
1088 			goto out;
1089 	}
1090 
1091 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1093 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094 
1095 	ret = -EAGAIN;
1096 	pmd = *src_pmd;
1097 	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098 		pte_free(dst_mm, pgtable);
1099 		goto out_unlock;
1100 	}
1101 	/*
1102 	 * When page table lock is held, the huge zero pmd should not be
1103 	 * under splitting since we don't split the page itself, only pmd to
1104 	 * a page table.
1105 	 */
1106 	if (is_huge_zero_pmd(pmd)) {
1107 		struct page *zero_page;
1108 		/*
1109 		 * get_huge_zero_page() will never allocate a new page here,
1110 		 * since we already have a zero page to copy. It just takes a
1111 		 * reference.
1112 		 */
1113 		zero_page = get_huge_zero_page();
1114 		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115 				zero_page);
1116 		ret = 0;
1117 		goto out_unlock;
1118 	}
1119 
1120 	if (!vma_is_dax(vma)) {
1121 		/* thp accounting separate from pmd_devmap accounting */
1122 		src_page = pmd_page(pmd);
1123 		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124 		get_page(src_page);
1125 		page_dup_rmap(src_page, true);
1126 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127 		atomic_long_inc(&dst_mm->nr_ptes);
1128 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129 	}
1130 
1131 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1133 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1134 
1135 	ret = 0;
1136 out_unlock:
1137 	spin_unlock(src_ptl);
1138 	spin_unlock(dst_ptl);
1139 out:
1140 	return ret;
1141 }
1142 
1143 void huge_pmd_set_accessed(struct mm_struct *mm,
1144 			   struct vm_area_struct *vma,
1145 			   unsigned long address,
1146 			   pmd_t *pmd, pmd_t orig_pmd,
1147 			   int dirty)
1148 {
1149 	spinlock_t *ptl;
1150 	pmd_t entry;
1151 	unsigned long haddr;
1152 
1153 	ptl = pmd_lock(mm, pmd);
1154 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155 		goto unlock;
1156 
1157 	entry = pmd_mkyoung(orig_pmd);
1158 	haddr = address & HPAGE_PMD_MASK;
1159 	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160 		update_mmu_cache_pmd(vma, address, pmd);
1161 
1162 unlock:
1163 	spin_unlock(ptl);
1164 }
1165 
1166 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167 					struct vm_area_struct *vma,
1168 					unsigned long address,
1169 					pmd_t *pmd, pmd_t orig_pmd,
1170 					struct page *page,
1171 					unsigned long haddr)
1172 {
1173 	struct mem_cgroup *memcg;
1174 	spinlock_t *ptl;
1175 	pgtable_t pgtable;
1176 	pmd_t _pmd;
1177 	int ret = 0, i;
1178 	struct page **pages;
1179 	unsigned long mmun_start;	/* For mmu_notifiers */
1180 	unsigned long mmun_end;		/* For mmu_notifiers */
1181 
1182 	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183 			GFP_KERNEL);
1184 	if (unlikely(!pages)) {
1185 		ret |= VM_FAULT_OOM;
1186 		goto out;
1187 	}
1188 
1189 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1190 		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191 					       __GFP_OTHER_NODE,
1192 					       vma, address, page_to_nid(page));
1193 		if (unlikely(!pages[i] ||
1194 			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195 						   &memcg, false))) {
1196 			if (pages[i])
1197 				put_page(pages[i]);
1198 			while (--i >= 0) {
1199 				memcg = (void *)page_private(pages[i]);
1200 				set_page_private(pages[i], 0);
1201 				mem_cgroup_cancel_charge(pages[i], memcg,
1202 						false);
1203 				put_page(pages[i]);
1204 			}
1205 			kfree(pages);
1206 			ret |= VM_FAULT_OOM;
1207 			goto out;
1208 		}
1209 		set_page_private(pages[i], (unsigned long)memcg);
1210 	}
1211 
1212 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213 		copy_user_highpage(pages[i], page + i,
1214 				   haddr + PAGE_SIZE * i, vma);
1215 		__SetPageUptodate(pages[i]);
1216 		cond_resched();
1217 	}
1218 
1219 	mmun_start = haddr;
1220 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1221 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222 
1223 	ptl = pmd_lock(mm, pmd);
1224 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225 		goto out_free_pages;
1226 	VM_BUG_ON_PAGE(!PageHead(page), page);
1227 
1228 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229 	/* leave pmd empty until pte is filled */
1230 
1231 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232 	pmd_populate(mm, &_pmd, pgtable);
1233 
1234 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235 		pte_t *pte, entry;
1236 		entry = mk_pte(pages[i], vma->vm_page_prot);
1237 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238 		memcg = (void *)page_private(pages[i]);
1239 		set_page_private(pages[i], 0);
1240 		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241 		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242 		lru_cache_add_active_or_unevictable(pages[i], vma);
1243 		pte = pte_offset_map(&_pmd, haddr);
1244 		VM_BUG_ON(!pte_none(*pte));
1245 		set_pte_at(mm, haddr, pte, entry);
1246 		pte_unmap(pte);
1247 	}
1248 	kfree(pages);
1249 
1250 	smp_wmb(); /* make pte visible before pmd */
1251 	pmd_populate(mm, pmd, pgtable);
1252 	page_remove_rmap(page, true);
1253 	spin_unlock(ptl);
1254 
1255 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256 
1257 	ret |= VM_FAULT_WRITE;
1258 	put_page(page);
1259 
1260 out:
1261 	return ret;
1262 
1263 out_free_pages:
1264 	spin_unlock(ptl);
1265 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1266 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1267 		memcg = (void *)page_private(pages[i]);
1268 		set_page_private(pages[i], 0);
1269 		mem_cgroup_cancel_charge(pages[i], memcg, false);
1270 		put_page(pages[i]);
1271 	}
1272 	kfree(pages);
1273 	goto out;
1274 }
1275 
1276 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278 {
1279 	spinlock_t *ptl;
1280 	int ret = 0;
1281 	struct page *page = NULL, *new_page;
1282 	struct mem_cgroup *memcg;
1283 	unsigned long haddr;
1284 	unsigned long mmun_start;	/* For mmu_notifiers */
1285 	unsigned long mmun_end;		/* For mmu_notifiers */
1286 	gfp_t huge_gfp;			/* for allocation and charge */
1287 
1288 	ptl = pmd_lockptr(mm, pmd);
1289 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290 	haddr = address & HPAGE_PMD_MASK;
1291 	if (is_huge_zero_pmd(orig_pmd))
1292 		goto alloc;
1293 	spin_lock(ptl);
1294 	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295 		goto out_unlock;
1296 
1297 	page = pmd_page(orig_pmd);
1298 	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299 	/*
1300 	 * We can only reuse the page if nobody else maps the huge page or it's
1301 	 * part.
1302 	 */
1303 	if (page_trans_huge_mapcount(page, NULL) == 1) {
1304 		pmd_t entry;
1305 		entry = pmd_mkyoung(orig_pmd);
1306 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307 		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308 			update_mmu_cache_pmd(vma, address, pmd);
1309 		ret |= VM_FAULT_WRITE;
1310 		goto out_unlock;
1311 	}
1312 	get_page(page);
1313 	spin_unlock(ptl);
1314 alloc:
1315 	if (transparent_hugepage_enabled(vma) &&
1316 	    !transparent_hugepage_debug_cow()) {
1317 		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318 		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319 	} else
1320 		new_page = NULL;
1321 
1322 	if (likely(new_page)) {
1323 		prep_transhuge_page(new_page);
1324 	} else {
1325 		if (!page) {
1326 			split_huge_pmd(vma, pmd, address);
1327 			ret |= VM_FAULT_FALLBACK;
1328 		} else {
1329 			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330 					pmd, orig_pmd, page, haddr);
1331 			if (ret & VM_FAULT_OOM) {
1332 				split_huge_pmd(vma, pmd, address);
1333 				ret |= VM_FAULT_FALLBACK;
1334 			}
1335 			put_page(page);
1336 		}
1337 		count_vm_event(THP_FAULT_FALLBACK);
1338 		goto out;
1339 	}
1340 
1341 	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342 					   true))) {
1343 		put_page(new_page);
1344 		if (page) {
1345 			split_huge_pmd(vma, pmd, address);
1346 			put_page(page);
1347 		} else
1348 			split_huge_pmd(vma, pmd, address);
1349 		ret |= VM_FAULT_FALLBACK;
1350 		count_vm_event(THP_FAULT_FALLBACK);
1351 		goto out;
1352 	}
1353 
1354 	count_vm_event(THP_FAULT_ALLOC);
1355 
1356 	if (!page)
1357 		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358 	else
1359 		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360 	__SetPageUptodate(new_page);
1361 
1362 	mmun_start = haddr;
1363 	mmun_end   = haddr + HPAGE_PMD_SIZE;
1364 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365 
1366 	spin_lock(ptl);
1367 	if (page)
1368 		put_page(page);
1369 	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370 		spin_unlock(ptl);
1371 		mem_cgroup_cancel_charge(new_page, memcg, true);
1372 		put_page(new_page);
1373 		goto out_mn;
1374 	} else {
1375 		pmd_t entry;
1376 		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378 		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379 		page_add_new_anon_rmap(new_page, vma, haddr, true);
1380 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1381 		lru_cache_add_active_or_unevictable(new_page, vma);
1382 		set_pmd_at(mm, haddr, pmd, entry);
1383 		update_mmu_cache_pmd(vma, address, pmd);
1384 		if (!page) {
1385 			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386 			put_huge_zero_page();
1387 		} else {
1388 			VM_BUG_ON_PAGE(!PageHead(page), page);
1389 			page_remove_rmap(page, true);
1390 			put_page(page);
1391 		}
1392 		ret |= VM_FAULT_WRITE;
1393 	}
1394 	spin_unlock(ptl);
1395 out_mn:
1396 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397 out:
1398 	return ret;
1399 out_unlock:
1400 	spin_unlock(ptl);
1401 	return ret;
1402 }
1403 
1404 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405 				   unsigned long addr,
1406 				   pmd_t *pmd,
1407 				   unsigned int flags)
1408 {
1409 	struct mm_struct *mm = vma->vm_mm;
1410 	struct page *page = NULL;
1411 
1412 	assert_spin_locked(pmd_lockptr(mm, pmd));
1413 
1414 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415 		goto out;
1416 
1417 	/* Avoid dumping huge zero page */
1418 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419 		return ERR_PTR(-EFAULT);
1420 
1421 	/* Full NUMA hinting faults to serialise migration in fault paths */
1422 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423 		goto out;
1424 
1425 	page = pmd_page(*pmd);
1426 	VM_BUG_ON_PAGE(!PageHead(page), page);
1427 	if (flags & FOLL_TOUCH)
1428 		touch_pmd(vma, addr, pmd);
1429 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430 		/*
1431 		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432 		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433 		 *
1434 		 * In most cases the pmd is the only mapping of the page as we
1435 		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436 		 * writable private mappings in populate_vma_page_range().
1437 		 *
1438 		 * The only scenario when we have the page shared here is if we
1439 		 * mlocking read-only mapping shared over fork(). We skip
1440 		 * mlocking such pages.
1441 		 */
1442 		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443 				page->mapping && trylock_page(page)) {
1444 			lru_add_drain();
1445 			if (page->mapping)
1446 				mlock_vma_page(page);
1447 			unlock_page(page);
1448 		}
1449 	}
1450 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451 	VM_BUG_ON_PAGE(!PageCompound(page), page);
1452 	if (flags & FOLL_GET)
1453 		get_page(page);
1454 
1455 out:
1456 	return page;
1457 }
1458 
1459 /* NUMA hinting page fault entry point for trans huge pmds */
1460 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461 				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462 {
1463 	spinlock_t *ptl;
1464 	struct anon_vma *anon_vma = NULL;
1465 	struct page *page;
1466 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1467 	int page_nid = -1, this_nid = numa_node_id();
1468 	int target_nid, last_cpupid = -1;
1469 	bool page_locked;
1470 	bool migrated = false;
1471 	bool was_writable;
1472 	int flags = 0;
1473 
1474 	/* A PROT_NONE fault should not end up here */
1475 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476 
1477 	ptl = pmd_lock(mm, pmdp);
1478 	if (unlikely(!pmd_same(pmd, *pmdp)))
1479 		goto out_unlock;
1480 
1481 	/*
1482 	 * If there are potential migrations, wait for completion and retry
1483 	 * without disrupting NUMA hinting information. Do not relock and
1484 	 * check_same as the page may no longer be mapped.
1485 	 */
1486 	if (unlikely(pmd_trans_migrating(*pmdp))) {
1487 		page = pmd_page(*pmdp);
1488 		spin_unlock(ptl);
1489 		wait_on_page_locked(page);
1490 		goto out;
1491 	}
1492 
1493 	page = pmd_page(pmd);
1494 	BUG_ON(is_huge_zero_page(page));
1495 	page_nid = page_to_nid(page);
1496 	last_cpupid = page_cpupid_last(page);
1497 	count_vm_numa_event(NUMA_HINT_FAULTS);
1498 	if (page_nid == this_nid) {
1499 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500 		flags |= TNF_FAULT_LOCAL;
1501 	}
1502 
1503 	/* See similar comment in do_numa_page for explanation */
1504 	if (!(vma->vm_flags & VM_WRITE))
1505 		flags |= TNF_NO_GROUP;
1506 
1507 	/*
1508 	 * Acquire the page lock to serialise THP migrations but avoid dropping
1509 	 * page_table_lock if at all possible
1510 	 */
1511 	page_locked = trylock_page(page);
1512 	target_nid = mpol_misplaced(page, vma, haddr);
1513 	if (target_nid == -1) {
1514 		/* If the page was locked, there are no parallel migrations */
1515 		if (page_locked)
1516 			goto clear_pmdnuma;
1517 	}
1518 
1519 	/* Migration could have started since the pmd_trans_migrating check */
1520 	if (!page_locked) {
1521 		spin_unlock(ptl);
1522 		wait_on_page_locked(page);
1523 		page_nid = -1;
1524 		goto out;
1525 	}
1526 
1527 	/*
1528 	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529 	 * to serialises splits
1530 	 */
1531 	get_page(page);
1532 	spin_unlock(ptl);
1533 	anon_vma = page_lock_anon_vma_read(page);
1534 
1535 	/* Confirm the PMD did not change while page_table_lock was released */
1536 	spin_lock(ptl);
1537 	if (unlikely(!pmd_same(pmd, *pmdp))) {
1538 		unlock_page(page);
1539 		put_page(page);
1540 		page_nid = -1;
1541 		goto out_unlock;
1542 	}
1543 
1544 	/* Bail if we fail to protect against THP splits for any reason */
1545 	if (unlikely(!anon_vma)) {
1546 		put_page(page);
1547 		page_nid = -1;
1548 		goto clear_pmdnuma;
1549 	}
1550 
1551 	/*
1552 	 * Migrate the THP to the requested node, returns with page unlocked
1553 	 * and access rights restored.
1554 	 */
1555 	spin_unlock(ptl);
1556 	migrated = migrate_misplaced_transhuge_page(mm, vma,
1557 				pmdp, pmd, addr, page, target_nid);
1558 	if (migrated) {
1559 		flags |= TNF_MIGRATED;
1560 		page_nid = target_nid;
1561 	} else
1562 		flags |= TNF_MIGRATE_FAIL;
1563 
1564 	goto out;
1565 clear_pmdnuma:
1566 	BUG_ON(!PageLocked(page));
1567 	was_writable = pmd_write(pmd);
1568 	pmd = pmd_modify(pmd, vma->vm_page_prot);
1569 	pmd = pmd_mkyoung(pmd);
1570 	if (was_writable)
1571 		pmd = pmd_mkwrite(pmd);
1572 	set_pmd_at(mm, haddr, pmdp, pmd);
1573 	update_mmu_cache_pmd(vma, addr, pmdp);
1574 	unlock_page(page);
1575 out_unlock:
1576 	spin_unlock(ptl);
1577 
1578 out:
1579 	if (anon_vma)
1580 		page_unlock_anon_vma_read(anon_vma);
1581 
1582 	if (page_nid != -1)
1583 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584 
1585 	return 0;
1586 }
1587 
1588 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589 		pmd_t *pmd, unsigned long addr, unsigned long next)
1590 
1591 {
1592 	spinlock_t *ptl;
1593 	pmd_t orig_pmd;
1594 	struct page *page;
1595 	struct mm_struct *mm = tlb->mm;
1596 	int ret = 0;
1597 
1598 	ptl = pmd_trans_huge_lock(pmd, vma);
1599 	if (!ptl)
1600 		goto out_unlocked;
1601 
1602 	orig_pmd = *pmd;
1603 	if (is_huge_zero_pmd(orig_pmd)) {
1604 		ret = 1;
1605 		goto out;
1606 	}
1607 
1608 	page = pmd_page(orig_pmd);
1609 	/*
1610 	 * If other processes are mapping this page, we couldn't discard
1611 	 * the page unless they all do MADV_FREE so let's skip the page.
1612 	 */
1613 	if (page_mapcount(page) != 1)
1614 		goto out;
1615 
1616 	if (!trylock_page(page))
1617 		goto out;
1618 
1619 	/*
1620 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1621 	 * will deactivate only them.
1622 	 */
1623 	if (next - addr != HPAGE_PMD_SIZE) {
1624 		get_page(page);
1625 		spin_unlock(ptl);
1626 		if (split_huge_page(page)) {
1627 			put_page(page);
1628 			unlock_page(page);
1629 			goto out_unlocked;
1630 		}
1631 		put_page(page);
1632 		unlock_page(page);
1633 		ret = 1;
1634 		goto out_unlocked;
1635 	}
1636 
1637 	if (PageDirty(page))
1638 		ClearPageDirty(page);
1639 	unlock_page(page);
1640 
1641 	if (PageActive(page))
1642 		deactivate_page(page);
1643 
1644 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645 		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646 			tlb->fullmm);
1647 		orig_pmd = pmd_mkold(orig_pmd);
1648 		orig_pmd = pmd_mkclean(orig_pmd);
1649 
1650 		set_pmd_at(mm, addr, pmd, orig_pmd);
1651 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652 	}
1653 	ret = 1;
1654 out:
1655 	spin_unlock(ptl);
1656 out_unlocked:
1657 	return ret;
1658 }
1659 
1660 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661 		 pmd_t *pmd, unsigned long addr)
1662 {
1663 	pmd_t orig_pmd;
1664 	spinlock_t *ptl;
1665 
1666 	ptl = __pmd_trans_huge_lock(pmd, vma);
1667 	if (!ptl)
1668 		return 0;
1669 	/*
1670 	 * For architectures like ppc64 we look at deposited pgtable
1671 	 * when calling pmdp_huge_get_and_clear. So do the
1672 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1673 	 * operations.
1674 	 */
1675 	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676 			tlb->fullmm);
1677 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678 	if (vma_is_dax(vma)) {
1679 		spin_unlock(ptl);
1680 		if (is_huge_zero_pmd(orig_pmd))
1681 			tlb_remove_page(tlb, pmd_page(orig_pmd));
1682 	} else if (is_huge_zero_pmd(orig_pmd)) {
1683 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684 		atomic_long_dec(&tlb->mm->nr_ptes);
1685 		spin_unlock(ptl);
1686 		tlb_remove_page(tlb, pmd_page(orig_pmd));
1687 	} else {
1688 		struct page *page = pmd_page(orig_pmd);
1689 		page_remove_rmap(page, true);
1690 		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691 		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692 		VM_BUG_ON_PAGE(!PageHead(page), page);
1693 		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694 		atomic_long_dec(&tlb->mm->nr_ptes);
1695 		spin_unlock(ptl);
1696 		tlb_remove_page(tlb, page);
1697 	}
1698 	return 1;
1699 }
1700 
1701 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1702 		  unsigned long new_addr, unsigned long old_end,
1703 		  pmd_t *old_pmd, pmd_t *new_pmd)
1704 {
1705 	spinlock_t *old_ptl, *new_ptl;
1706 	pmd_t pmd;
1707 	struct mm_struct *mm = vma->vm_mm;
1708 
1709 	if ((old_addr & ~HPAGE_PMD_MASK) ||
1710 	    (new_addr & ~HPAGE_PMD_MASK) ||
1711 	    old_end - old_addr < HPAGE_PMD_SIZE)
1712 		return false;
1713 
1714 	/*
1715 	 * The destination pmd shouldn't be established, free_pgtables()
1716 	 * should have release it.
1717 	 */
1718 	if (WARN_ON(!pmd_none(*new_pmd))) {
1719 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1720 		return false;
1721 	}
1722 
1723 	/*
1724 	 * We don't have to worry about the ordering of src and dst
1725 	 * ptlocks because exclusive mmap_sem prevents deadlock.
1726 	 */
1727 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1728 	if (old_ptl) {
1729 		new_ptl = pmd_lockptr(mm, new_pmd);
1730 		if (new_ptl != old_ptl)
1731 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1732 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1733 		VM_BUG_ON(!pmd_none(*new_pmd));
1734 
1735 		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1736 				vma_is_anonymous(vma)) {
1737 			pgtable_t pgtable;
1738 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1739 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1740 		}
1741 		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1742 		if (new_ptl != old_ptl)
1743 			spin_unlock(new_ptl);
1744 		spin_unlock(old_ptl);
1745 		return true;
1746 	}
1747 	return false;
1748 }
1749 
1750 /*
1751  * Returns
1752  *  - 0 if PMD could not be locked
1753  *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1754  *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1755  */
1756 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1757 		unsigned long addr, pgprot_t newprot, int prot_numa)
1758 {
1759 	struct mm_struct *mm = vma->vm_mm;
1760 	spinlock_t *ptl;
1761 	int ret = 0;
1762 
1763 	ptl = __pmd_trans_huge_lock(pmd, vma);
1764 	if (ptl) {
1765 		pmd_t entry;
1766 		bool preserve_write = prot_numa && pmd_write(*pmd);
1767 		ret = 1;
1768 
1769 		/*
1770 		 * Avoid trapping faults against the zero page. The read-only
1771 		 * data is likely to be read-cached on the local CPU and
1772 		 * local/remote hits to the zero page are not interesting.
1773 		 */
1774 		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1775 			spin_unlock(ptl);
1776 			return ret;
1777 		}
1778 
1779 		if (!prot_numa || !pmd_protnone(*pmd)) {
1780 			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1781 			entry = pmd_modify(entry, newprot);
1782 			if (preserve_write)
1783 				entry = pmd_mkwrite(entry);
1784 			ret = HPAGE_PMD_NR;
1785 			set_pmd_at(mm, addr, pmd, entry);
1786 			BUG_ON(!preserve_write && pmd_write(entry));
1787 		}
1788 		spin_unlock(ptl);
1789 	}
1790 
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Returns true if a given pmd maps a thp, false otherwise.
1796  *
1797  * Note that if it returns true, this routine returns without unlocking page
1798  * table lock. So callers must unlock it.
1799  */
1800 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1801 {
1802 	spinlock_t *ptl;
1803 	ptl = pmd_lock(vma->vm_mm, pmd);
1804 	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1805 		return ptl;
1806 	spin_unlock(ptl);
1807 	return NULL;
1808 }
1809 
1810 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1811 
1812 int hugepage_madvise(struct vm_area_struct *vma,
1813 		     unsigned long *vm_flags, int advice)
1814 {
1815 	switch (advice) {
1816 	case MADV_HUGEPAGE:
1817 #ifdef CONFIG_S390
1818 		/*
1819 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1820 		 * can't handle this properly after s390_enable_sie, so we simply
1821 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1822 		 */
1823 		if (mm_has_pgste(vma->vm_mm))
1824 			return 0;
1825 #endif
1826 		/*
1827 		 * Be somewhat over-protective like KSM for now!
1828 		 */
1829 		if (*vm_flags & VM_NO_THP)
1830 			return -EINVAL;
1831 		*vm_flags &= ~VM_NOHUGEPAGE;
1832 		*vm_flags |= VM_HUGEPAGE;
1833 		/*
1834 		 * If the vma become good for khugepaged to scan,
1835 		 * register it here without waiting a page fault that
1836 		 * may not happen any time soon.
1837 		 */
1838 		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1839 			return -ENOMEM;
1840 		break;
1841 	case MADV_NOHUGEPAGE:
1842 		/*
1843 		 * Be somewhat over-protective like KSM for now!
1844 		 */
1845 		if (*vm_flags & VM_NO_THP)
1846 			return -EINVAL;
1847 		*vm_flags &= ~VM_HUGEPAGE;
1848 		*vm_flags |= VM_NOHUGEPAGE;
1849 		/*
1850 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1851 		 * this vma even if we leave the mm registered in khugepaged if
1852 		 * it got registered before VM_NOHUGEPAGE was set.
1853 		 */
1854 		break;
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 static int __init khugepaged_slab_init(void)
1861 {
1862 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1863 					  sizeof(struct mm_slot),
1864 					  __alignof__(struct mm_slot), 0, NULL);
1865 	if (!mm_slot_cache)
1866 		return -ENOMEM;
1867 
1868 	return 0;
1869 }
1870 
1871 static void __init khugepaged_slab_exit(void)
1872 {
1873 	kmem_cache_destroy(mm_slot_cache);
1874 }
1875 
1876 static inline struct mm_slot *alloc_mm_slot(void)
1877 {
1878 	if (!mm_slot_cache)	/* initialization failed */
1879 		return NULL;
1880 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1881 }
1882 
1883 static inline void free_mm_slot(struct mm_slot *mm_slot)
1884 {
1885 	kmem_cache_free(mm_slot_cache, mm_slot);
1886 }
1887 
1888 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1889 {
1890 	struct mm_slot *mm_slot;
1891 
1892 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1893 		if (mm == mm_slot->mm)
1894 			return mm_slot;
1895 
1896 	return NULL;
1897 }
1898 
1899 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1900 				    struct mm_slot *mm_slot)
1901 {
1902 	mm_slot->mm = mm;
1903 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1904 }
1905 
1906 static inline int khugepaged_test_exit(struct mm_struct *mm)
1907 {
1908 	return atomic_read(&mm->mm_users) == 0;
1909 }
1910 
1911 int __khugepaged_enter(struct mm_struct *mm)
1912 {
1913 	struct mm_slot *mm_slot;
1914 	int wakeup;
1915 
1916 	mm_slot = alloc_mm_slot();
1917 	if (!mm_slot)
1918 		return -ENOMEM;
1919 
1920 	/* __khugepaged_exit() must not run from under us */
1921 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1922 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1923 		free_mm_slot(mm_slot);
1924 		return 0;
1925 	}
1926 
1927 	spin_lock(&khugepaged_mm_lock);
1928 	insert_to_mm_slots_hash(mm, mm_slot);
1929 	/*
1930 	 * Insert just behind the scanning cursor, to let the area settle
1931 	 * down a little.
1932 	 */
1933 	wakeup = list_empty(&khugepaged_scan.mm_head);
1934 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1935 	spin_unlock(&khugepaged_mm_lock);
1936 
1937 	atomic_inc(&mm->mm_count);
1938 	if (wakeup)
1939 		wake_up_interruptible(&khugepaged_wait);
1940 
1941 	return 0;
1942 }
1943 
1944 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1945 			       unsigned long vm_flags)
1946 {
1947 	unsigned long hstart, hend;
1948 	if (!vma->anon_vma)
1949 		/*
1950 		 * Not yet faulted in so we will register later in the
1951 		 * page fault if needed.
1952 		 */
1953 		return 0;
1954 	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1955 		/* khugepaged not yet working on file or special mappings */
1956 		return 0;
1957 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1958 	hend = vma->vm_end & HPAGE_PMD_MASK;
1959 	if (hstart < hend)
1960 		return khugepaged_enter(vma, vm_flags);
1961 	return 0;
1962 }
1963 
1964 void __khugepaged_exit(struct mm_struct *mm)
1965 {
1966 	struct mm_slot *mm_slot;
1967 	int free = 0;
1968 
1969 	spin_lock(&khugepaged_mm_lock);
1970 	mm_slot = get_mm_slot(mm);
1971 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1972 		hash_del(&mm_slot->hash);
1973 		list_del(&mm_slot->mm_node);
1974 		free = 1;
1975 	}
1976 	spin_unlock(&khugepaged_mm_lock);
1977 
1978 	if (free) {
1979 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1980 		free_mm_slot(mm_slot);
1981 		mmdrop(mm);
1982 	} else if (mm_slot) {
1983 		/*
1984 		 * This is required to serialize against
1985 		 * khugepaged_test_exit() (which is guaranteed to run
1986 		 * under mmap sem read mode). Stop here (after we
1987 		 * return all pagetables will be destroyed) until
1988 		 * khugepaged has finished working on the pagetables
1989 		 * under the mmap_sem.
1990 		 */
1991 		down_write(&mm->mmap_sem);
1992 		up_write(&mm->mmap_sem);
1993 	}
1994 }
1995 
1996 static void release_pte_page(struct page *page)
1997 {
1998 	/* 0 stands for page_is_file_cache(page) == false */
1999 	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2000 	unlock_page(page);
2001 	putback_lru_page(page);
2002 }
2003 
2004 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2005 {
2006 	while (--_pte >= pte) {
2007 		pte_t pteval = *_pte;
2008 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2009 			release_pte_page(pte_page(pteval));
2010 	}
2011 }
2012 
2013 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2014 					unsigned long address,
2015 					pte_t *pte)
2016 {
2017 	struct page *page = NULL;
2018 	pte_t *_pte;
2019 	int none_or_zero = 0, result = 0;
2020 	bool referenced = false, writable = false;
2021 
2022 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2023 	     _pte++, address += PAGE_SIZE) {
2024 		pte_t pteval = *_pte;
2025 		if (pte_none(pteval) || (pte_present(pteval) &&
2026 				is_zero_pfn(pte_pfn(pteval)))) {
2027 			if (!userfaultfd_armed(vma) &&
2028 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2029 				continue;
2030 			} else {
2031 				result = SCAN_EXCEED_NONE_PTE;
2032 				goto out;
2033 			}
2034 		}
2035 		if (!pte_present(pteval)) {
2036 			result = SCAN_PTE_NON_PRESENT;
2037 			goto out;
2038 		}
2039 		page = vm_normal_page(vma, address, pteval);
2040 		if (unlikely(!page)) {
2041 			result = SCAN_PAGE_NULL;
2042 			goto out;
2043 		}
2044 
2045 		VM_BUG_ON_PAGE(PageCompound(page), page);
2046 		VM_BUG_ON_PAGE(!PageAnon(page), page);
2047 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2048 
2049 		/*
2050 		 * We can do it before isolate_lru_page because the
2051 		 * page can't be freed from under us. NOTE: PG_lock
2052 		 * is needed to serialize against split_huge_page
2053 		 * when invoked from the VM.
2054 		 */
2055 		if (!trylock_page(page)) {
2056 			result = SCAN_PAGE_LOCK;
2057 			goto out;
2058 		}
2059 
2060 		/*
2061 		 * cannot use mapcount: can't collapse if there's a gup pin.
2062 		 * The page must only be referenced by the scanned process
2063 		 * and page swap cache.
2064 		 */
2065 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2066 			unlock_page(page);
2067 			result = SCAN_PAGE_COUNT;
2068 			goto out;
2069 		}
2070 		if (pte_write(pteval)) {
2071 			writable = true;
2072 		} else {
2073 			if (PageSwapCache(page) &&
2074 			    !reuse_swap_page(page, NULL)) {
2075 				unlock_page(page);
2076 				result = SCAN_SWAP_CACHE_PAGE;
2077 				goto out;
2078 			}
2079 			/*
2080 			 * Page is not in the swap cache. It can be collapsed
2081 			 * into a THP.
2082 			 */
2083 		}
2084 
2085 		/*
2086 		 * Isolate the page to avoid collapsing an hugepage
2087 		 * currently in use by the VM.
2088 		 */
2089 		if (isolate_lru_page(page)) {
2090 			unlock_page(page);
2091 			result = SCAN_DEL_PAGE_LRU;
2092 			goto out;
2093 		}
2094 		/* 0 stands for page_is_file_cache(page) == false */
2095 		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2096 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2097 		VM_BUG_ON_PAGE(PageLRU(page), page);
2098 
2099 		/* If there is no mapped pte young don't collapse the page */
2100 		if (pte_young(pteval) ||
2101 		    page_is_young(page) || PageReferenced(page) ||
2102 		    mmu_notifier_test_young(vma->vm_mm, address))
2103 			referenced = true;
2104 	}
2105 	if (likely(writable)) {
2106 		if (likely(referenced)) {
2107 			result = SCAN_SUCCEED;
2108 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2109 							    referenced, writable, result);
2110 			return 1;
2111 		}
2112 	} else {
2113 		result = SCAN_PAGE_RO;
2114 	}
2115 
2116 out:
2117 	release_pte_pages(pte, _pte);
2118 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2119 					    referenced, writable, result);
2120 	return 0;
2121 }
2122 
2123 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2124 				      struct vm_area_struct *vma,
2125 				      unsigned long address,
2126 				      spinlock_t *ptl)
2127 {
2128 	pte_t *_pte;
2129 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2130 		pte_t pteval = *_pte;
2131 		struct page *src_page;
2132 
2133 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2134 			clear_user_highpage(page, address);
2135 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2136 			if (is_zero_pfn(pte_pfn(pteval))) {
2137 				/*
2138 				 * ptl mostly unnecessary.
2139 				 */
2140 				spin_lock(ptl);
2141 				/*
2142 				 * paravirt calls inside pte_clear here are
2143 				 * superfluous.
2144 				 */
2145 				pte_clear(vma->vm_mm, address, _pte);
2146 				spin_unlock(ptl);
2147 			}
2148 		} else {
2149 			src_page = pte_page(pteval);
2150 			copy_user_highpage(page, src_page, address, vma);
2151 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2152 			release_pte_page(src_page);
2153 			/*
2154 			 * ptl mostly unnecessary, but preempt has to
2155 			 * be disabled to update the per-cpu stats
2156 			 * inside page_remove_rmap().
2157 			 */
2158 			spin_lock(ptl);
2159 			/*
2160 			 * paravirt calls inside pte_clear here are
2161 			 * superfluous.
2162 			 */
2163 			pte_clear(vma->vm_mm, address, _pte);
2164 			page_remove_rmap(src_page, false);
2165 			spin_unlock(ptl);
2166 			free_page_and_swap_cache(src_page);
2167 		}
2168 
2169 		address += PAGE_SIZE;
2170 		page++;
2171 	}
2172 }
2173 
2174 static void khugepaged_alloc_sleep(void)
2175 {
2176 	DEFINE_WAIT(wait);
2177 
2178 	add_wait_queue(&khugepaged_wait, &wait);
2179 	freezable_schedule_timeout_interruptible(
2180 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2181 	remove_wait_queue(&khugepaged_wait, &wait);
2182 }
2183 
2184 static int khugepaged_node_load[MAX_NUMNODES];
2185 
2186 static bool khugepaged_scan_abort(int nid)
2187 {
2188 	int i;
2189 
2190 	/*
2191 	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2192 	 * allocate memory locally.
2193 	 */
2194 	if (!zone_reclaim_mode)
2195 		return false;
2196 
2197 	/* If there is a count for this node already, it must be acceptable */
2198 	if (khugepaged_node_load[nid])
2199 		return false;
2200 
2201 	for (i = 0; i < MAX_NUMNODES; i++) {
2202 		if (!khugepaged_node_load[i])
2203 			continue;
2204 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2205 			return true;
2206 	}
2207 	return false;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 static int khugepaged_find_target_node(void)
2212 {
2213 	static int last_khugepaged_target_node = NUMA_NO_NODE;
2214 	int nid, target_node = 0, max_value = 0;
2215 
2216 	/* find first node with max normal pages hit */
2217 	for (nid = 0; nid < MAX_NUMNODES; nid++)
2218 		if (khugepaged_node_load[nid] > max_value) {
2219 			max_value = khugepaged_node_load[nid];
2220 			target_node = nid;
2221 		}
2222 
2223 	/* do some balance if several nodes have the same hit record */
2224 	if (target_node <= last_khugepaged_target_node)
2225 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2226 				nid++)
2227 			if (max_value == khugepaged_node_load[nid]) {
2228 				target_node = nid;
2229 				break;
2230 			}
2231 
2232 	last_khugepaged_target_node = target_node;
2233 	return target_node;
2234 }
2235 
2236 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2237 {
2238 	if (IS_ERR(*hpage)) {
2239 		if (!*wait)
2240 			return false;
2241 
2242 		*wait = false;
2243 		*hpage = NULL;
2244 		khugepaged_alloc_sleep();
2245 	} else if (*hpage) {
2246 		put_page(*hpage);
2247 		*hpage = NULL;
2248 	}
2249 
2250 	return true;
2251 }
2252 
2253 static struct page *
2254 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2255 		       unsigned long address, int node)
2256 {
2257 	VM_BUG_ON_PAGE(*hpage, *hpage);
2258 
2259 	/*
2260 	 * Before allocating the hugepage, release the mmap_sem read lock.
2261 	 * The allocation can take potentially a long time if it involves
2262 	 * sync compaction, and we do not need to hold the mmap_sem during
2263 	 * that. We will recheck the vma after taking it again in write mode.
2264 	 */
2265 	up_read(&mm->mmap_sem);
2266 
2267 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2268 	if (unlikely(!*hpage)) {
2269 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2270 		*hpage = ERR_PTR(-ENOMEM);
2271 		return NULL;
2272 	}
2273 
2274 	prep_transhuge_page(*hpage);
2275 	count_vm_event(THP_COLLAPSE_ALLOC);
2276 	return *hpage;
2277 }
2278 #else
2279 static int khugepaged_find_target_node(void)
2280 {
2281 	return 0;
2282 }
2283 
2284 static inline struct page *alloc_khugepaged_hugepage(void)
2285 {
2286 	struct page *page;
2287 
2288 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2289 			   HPAGE_PMD_ORDER);
2290 	if (page)
2291 		prep_transhuge_page(page);
2292 	return page;
2293 }
2294 
2295 static struct page *khugepaged_alloc_hugepage(bool *wait)
2296 {
2297 	struct page *hpage;
2298 
2299 	do {
2300 		hpage = alloc_khugepaged_hugepage();
2301 		if (!hpage) {
2302 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2303 			if (!*wait)
2304 				return NULL;
2305 
2306 			*wait = false;
2307 			khugepaged_alloc_sleep();
2308 		} else
2309 			count_vm_event(THP_COLLAPSE_ALLOC);
2310 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2311 
2312 	return hpage;
2313 }
2314 
2315 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2316 {
2317 	if (!*hpage)
2318 		*hpage = khugepaged_alloc_hugepage(wait);
2319 
2320 	if (unlikely(!*hpage))
2321 		return false;
2322 
2323 	return true;
2324 }
2325 
2326 static struct page *
2327 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2328 		       unsigned long address, int node)
2329 {
2330 	up_read(&mm->mmap_sem);
2331 	VM_BUG_ON(!*hpage);
2332 
2333 	return  *hpage;
2334 }
2335 #endif
2336 
2337 static bool hugepage_vma_check(struct vm_area_struct *vma)
2338 {
2339 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2340 	    (vma->vm_flags & VM_NOHUGEPAGE))
2341 		return false;
2342 	if (!vma->anon_vma || vma->vm_ops)
2343 		return false;
2344 	if (is_vma_temporary_stack(vma))
2345 		return false;
2346 	return !(vma->vm_flags & VM_NO_THP);
2347 }
2348 
2349 static void collapse_huge_page(struct mm_struct *mm,
2350 				   unsigned long address,
2351 				   struct page **hpage,
2352 				   struct vm_area_struct *vma,
2353 				   int node)
2354 {
2355 	pmd_t *pmd, _pmd;
2356 	pte_t *pte;
2357 	pgtable_t pgtable;
2358 	struct page *new_page;
2359 	spinlock_t *pmd_ptl, *pte_ptl;
2360 	int isolated = 0, result = 0;
2361 	unsigned long hstart, hend;
2362 	struct mem_cgroup *memcg;
2363 	unsigned long mmun_start;	/* For mmu_notifiers */
2364 	unsigned long mmun_end;		/* For mmu_notifiers */
2365 	gfp_t gfp;
2366 
2367 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2368 
2369 	/* Only allocate from the target node */
2370 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2371 
2372 	/* release the mmap_sem read lock. */
2373 	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2374 	if (!new_page) {
2375 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2376 		goto out_nolock;
2377 	}
2378 
2379 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2380 		result = SCAN_CGROUP_CHARGE_FAIL;
2381 		goto out_nolock;
2382 	}
2383 
2384 	/*
2385 	 * Prevent all access to pagetables with the exception of
2386 	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2387 	 * handled by the anon_vma lock + PG_lock.
2388 	 */
2389 	down_write(&mm->mmap_sem);
2390 	if (unlikely(khugepaged_test_exit(mm))) {
2391 		result = SCAN_ANY_PROCESS;
2392 		goto out;
2393 	}
2394 
2395 	vma = find_vma(mm, address);
2396 	if (!vma) {
2397 		result = SCAN_VMA_NULL;
2398 		goto out;
2399 	}
2400 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2401 	hend = vma->vm_end & HPAGE_PMD_MASK;
2402 	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2403 		result = SCAN_ADDRESS_RANGE;
2404 		goto out;
2405 	}
2406 	if (!hugepage_vma_check(vma)) {
2407 		result = SCAN_VMA_CHECK;
2408 		goto out;
2409 	}
2410 	pmd = mm_find_pmd(mm, address);
2411 	if (!pmd) {
2412 		result = SCAN_PMD_NULL;
2413 		goto out;
2414 	}
2415 
2416 	anon_vma_lock_write(vma->anon_vma);
2417 
2418 	pte = pte_offset_map(pmd, address);
2419 	pte_ptl = pte_lockptr(mm, pmd);
2420 
2421 	mmun_start = address;
2422 	mmun_end   = address + HPAGE_PMD_SIZE;
2423 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2424 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2425 	/*
2426 	 * After this gup_fast can't run anymore. This also removes
2427 	 * any huge TLB entry from the CPU so we won't allow
2428 	 * huge and small TLB entries for the same virtual address
2429 	 * to avoid the risk of CPU bugs in that area.
2430 	 */
2431 	_pmd = pmdp_collapse_flush(vma, address, pmd);
2432 	spin_unlock(pmd_ptl);
2433 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2434 
2435 	spin_lock(pte_ptl);
2436 	isolated = __collapse_huge_page_isolate(vma, address, pte);
2437 	spin_unlock(pte_ptl);
2438 
2439 	if (unlikely(!isolated)) {
2440 		pte_unmap(pte);
2441 		spin_lock(pmd_ptl);
2442 		BUG_ON(!pmd_none(*pmd));
2443 		/*
2444 		 * We can only use set_pmd_at when establishing
2445 		 * hugepmds and never for establishing regular pmds that
2446 		 * points to regular pagetables. Use pmd_populate for that
2447 		 */
2448 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2449 		spin_unlock(pmd_ptl);
2450 		anon_vma_unlock_write(vma->anon_vma);
2451 		result = SCAN_FAIL;
2452 		goto out;
2453 	}
2454 
2455 	/*
2456 	 * All pages are isolated and locked so anon_vma rmap
2457 	 * can't run anymore.
2458 	 */
2459 	anon_vma_unlock_write(vma->anon_vma);
2460 
2461 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2462 	pte_unmap(pte);
2463 	__SetPageUptodate(new_page);
2464 	pgtable = pmd_pgtable(_pmd);
2465 
2466 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2467 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2468 
2469 	/*
2470 	 * spin_lock() below is not the equivalent of smp_wmb(), so
2471 	 * this is needed to avoid the copy_huge_page writes to become
2472 	 * visible after the set_pmd_at() write.
2473 	 */
2474 	smp_wmb();
2475 
2476 	spin_lock(pmd_ptl);
2477 	BUG_ON(!pmd_none(*pmd));
2478 	page_add_new_anon_rmap(new_page, vma, address, true);
2479 	mem_cgroup_commit_charge(new_page, memcg, false, true);
2480 	lru_cache_add_active_or_unevictable(new_page, vma);
2481 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2482 	set_pmd_at(mm, address, pmd, _pmd);
2483 	update_mmu_cache_pmd(vma, address, pmd);
2484 	spin_unlock(pmd_ptl);
2485 
2486 	*hpage = NULL;
2487 
2488 	khugepaged_pages_collapsed++;
2489 	result = SCAN_SUCCEED;
2490 out_up_write:
2491 	up_write(&mm->mmap_sem);
2492 	trace_mm_collapse_huge_page(mm, isolated, result);
2493 	return;
2494 
2495 out_nolock:
2496 	trace_mm_collapse_huge_page(mm, isolated, result);
2497 	return;
2498 out:
2499 	mem_cgroup_cancel_charge(new_page, memcg, true);
2500 	goto out_up_write;
2501 }
2502 
2503 static int khugepaged_scan_pmd(struct mm_struct *mm,
2504 			       struct vm_area_struct *vma,
2505 			       unsigned long address,
2506 			       struct page **hpage)
2507 {
2508 	pmd_t *pmd;
2509 	pte_t *pte, *_pte;
2510 	int ret = 0, none_or_zero = 0, result = 0;
2511 	struct page *page = NULL;
2512 	unsigned long _address;
2513 	spinlock_t *ptl;
2514 	int node = NUMA_NO_NODE;
2515 	bool writable = false, referenced = false;
2516 
2517 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2518 
2519 	pmd = mm_find_pmd(mm, address);
2520 	if (!pmd) {
2521 		result = SCAN_PMD_NULL;
2522 		goto out;
2523 	}
2524 
2525 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2526 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 	     _pte++, _address += PAGE_SIZE) {
2529 		pte_t pteval = *_pte;
2530 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2531 			if (!userfaultfd_armed(vma) &&
2532 			    ++none_or_zero <= khugepaged_max_ptes_none) {
2533 				continue;
2534 			} else {
2535 				result = SCAN_EXCEED_NONE_PTE;
2536 				goto out_unmap;
2537 			}
2538 		}
2539 		if (!pte_present(pteval)) {
2540 			result = SCAN_PTE_NON_PRESENT;
2541 			goto out_unmap;
2542 		}
2543 		if (pte_write(pteval))
2544 			writable = true;
2545 
2546 		page = vm_normal_page(vma, _address, pteval);
2547 		if (unlikely(!page)) {
2548 			result = SCAN_PAGE_NULL;
2549 			goto out_unmap;
2550 		}
2551 
2552 		/* TODO: teach khugepaged to collapse THP mapped with pte */
2553 		if (PageCompound(page)) {
2554 			result = SCAN_PAGE_COMPOUND;
2555 			goto out_unmap;
2556 		}
2557 
2558 		/*
2559 		 * Record which node the original page is from and save this
2560 		 * information to khugepaged_node_load[].
2561 		 * Khupaged will allocate hugepage from the node has the max
2562 		 * hit record.
2563 		 */
2564 		node = page_to_nid(page);
2565 		if (khugepaged_scan_abort(node)) {
2566 			result = SCAN_SCAN_ABORT;
2567 			goto out_unmap;
2568 		}
2569 		khugepaged_node_load[node]++;
2570 		if (!PageLRU(page)) {
2571 			result = SCAN_PAGE_LRU;
2572 			goto out_unmap;
2573 		}
2574 		if (PageLocked(page)) {
2575 			result = SCAN_PAGE_LOCK;
2576 			goto out_unmap;
2577 		}
2578 		if (!PageAnon(page)) {
2579 			result = SCAN_PAGE_ANON;
2580 			goto out_unmap;
2581 		}
2582 
2583 		/*
2584 		 * cannot use mapcount: can't collapse if there's a gup pin.
2585 		 * The page must only be referenced by the scanned process
2586 		 * and page swap cache.
2587 		 */
2588 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2589 			result = SCAN_PAGE_COUNT;
2590 			goto out_unmap;
2591 		}
2592 		if (pte_young(pteval) ||
2593 		    page_is_young(page) || PageReferenced(page) ||
2594 		    mmu_notifier_test_young(vma->vm_mm, address))
2595 			referenced = true;
2596 	}
2597 	if (writable) {
2598 		if (referenced) {
2599 			result = SCAN_SUCCEED;
2600 			ret = 1;
2601 		} else {
2602 			result = SCAN_NO_REFERENCED_PAGE;
2603 		}
2604 	} else {
2605 		result = SCAN_PAGE_RO;
2606 	}
2607 out_unmap:
2608 	pte_unmap_unlock(pte, ptl);
2609 	if (ret) {
2610 		node = khugepaged_find_target_node();
2611 		/* collapse_huge_page will return with the mmap_sem released */
2612 		collapse_huge_page(mm, address, hpage, vma, node);
2613 	}
2614 out:
2615 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2616 				     none_or_zero, result);
2617 	return ret;
2618 }
2619 
2620 static void collect_mm_slot(struct mm_slot *mm_slot)
2621 {
2622 	struct mm_struct *mm = mm_slot->mm;
2623 
2624 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2625 
2626 	if (khugepaged_test_exit(mm)) {
2627 		/* free mm_slot */
2628 		hash_del(&mm_slot->hash);
2629 		list_del(&mm_slot->mm_node);
2630 
2631 		/*
2632 		 * Not strictly needed because the mm exited already.
2633 		 *
2634 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2635 		 */
2636 
2637 		/* khugepaged_mm_lock actually not necessary for the below */
2638 		free_mm_slot(mm_slot);
2639 		mmdrop(mm);
2640 	}
2641 }
2642 
2643 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2644 					    struct page **hpage)
2645 	__releases(&khugepaged_mm_lock)
2646 	__acquires(&khugepaged_mm_lock)
2647 {
2648 	struct mm_slot *mm_slot;
2649 	struct mm_struct *mm;
2650 	struct vm_area_struct *vma;
2651 	int progress = 0;
2652 
2653 	VM_BUG_ON(!pages);
2654 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2655 
2656 	if (khugepaged_scan.mm_slot)
2657 		mm_slot = khugepaged_scan.mm_slot;
2658 	else {
2659 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2660 				     struct mm_slot, mm_node);
2661 		khugepaged_scan.address = 0;
2662 		khugepaged_scan.mm_slot = mm_slot;
2663 	}
2664 	spin_unlock(&khugepaged_mm_lock);
2665 
2666 	mm = mm_slot->mm;
2667 	down_read(&mm->mmap_sem);
2668 	if (unlikely(khugepaged_test_exit(mm)))
2669 		vma = NULL;
2670 	else
2671 		vma = find_vma(mm, khugepaged_scan.address);
2672 
2673 	progress++;
2674 	for (; vma; vma = vma->vm_next) {
2675 		unsigned long hstart, hend;
2676 
2677 		cond_resched();
2678 		if (unlikely(khugepaged_test_exit(mm))) {
2679 			progress++;
2680 			break;
2681 		}
2682 		if (!hugepage_vma_check(vma)) {
2683 skip:
2684 			progress++;
2685 			continue;
2686 		}
2687 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2688 		hend = vma->vm_end & HPAGE_PMD_MASK;
2689 		if (hstart >= hend)
2690 			goto skip;
2691 		if (khugepaged_scan.address > hend)
2692 			goto skip;
2693 		if (khugepaged_scan.address < hstart)
2694 			khugepaged_scan.address = hstart;
2695 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2696 
2697 		while (khugepaged_scan.address < hend) {
2698 			int ret;
2699 			cond_resched();
2700 			if (unlikely(khugepaged_test_exit(mm)))
2701 				goto breakouterloop;
2702 
2703 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2704 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2705 				  hend);
2706 			ret = khugepaged_scan_pmd(mm, vma,
2707 						  khugepaged_scan.address,
2708 						  hpage);
2709 			/* move to next address */
2710 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2711 			progress += HPAGE_PMD_NR;
2712 			if (ret)
2713 				/* we released mmap_sem so break loop */
2714 				goto breakouterloop_mmap_sem;
2715 			if (progress >= pages)
2716 				goto breakouterloop;
2717 		}
2718 	}
2719 breakouterloop:
2720 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2721 breakouterloop_mmap_sem:
2722 
2723 	spin_lock(&khugepaged_mm_lock);
2724 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2725 	/*
2726 	 * Release the current mm_slot if this mm is about to die, or
2727 	 * if we scanned all vmas of this mm.
2728 	 */
2729 	if (khugepaged_test_exit(mm) || !vma) {
2730 		/*
2731 		 * Make sure that if mm_users is reaching zero while
2732 		 * khugepaged runs here, khugepaged_exit will find
2733 		 * mm_slot not pointing to the exiting mm.
2734 		 */
2735 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2736 			khugepaged_scan.mm_slot = list_entry(
2737 				mm_slot->mm_node.next,
2738 				struct mm_slot, mm_node);
2739 			khugepaged_scan.address = 0;
2740 		} else {
2741 			khugepaged_scan.mm_slot = NULL;
2742 			khugepaged_full_scans++;
2743 		}
2744 
2745 		collect_mm_slot(mm_slot);
2746 	}
2747 
2748 	return progress;
2749 }
2750 
2751 static int khugepaged_has_work(void)
2752 {
2753 	return !list_empty(&khugepaged_scan.mm_head) &&
2754 		khugepaged_enabled();
2755 }
2756 
2757 static int khugepaged_wait_event(void)
2758 {
2759 	return !list_empty(&khugepaged_scan.mm_head) ||
2760 		kthread_should_stop();
2761 }
2762 
2763 static void khugepaged_do_scan(void)
2764 {
2765 	struct page *hpage = NULL;
2766 	unsigned int progress = 0, pass_through_head = 0;
2767 	unsigned int pages = khugepaged_pages_to_scan;
2768 	bool wait = true;
2769 
2770 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2771 
2772 	while (progress < pages) {
2773 		if (!khugepaged_prealloc_page(&hpage, &wait))
2774 			break;
2775 
2776 		cond_resched();
2777 
2778 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2779 			break;
2780 
2781 		spin_lock(&khugepaged_mm_lock);
2782 		if (!khugepaged_scan.mm_slot)
2783 			pass_through_head++;
2784 		if (khugepaged_has_work() &&
2785 		    pass_through_head < 2)
2786 			progress += khugepaged_scan_mm_slot(pages - progress,
2787 							    &hpage);
2788 		else
2789 			progress = pages;
2790 		spin_unlock(&khugepaged_mm_lock);
2791 	}
2792 
2793 	if (!IS_ERR_OR_NULL(hpage))
2794 		put_page(hpage);
2795 }
2796 
2797 static bool khugepaged_should_wakeup(void)
2798 {
2799 	return kthread_should_stop() ||
2800 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2801 }
2802 
2803 static void khugepaged_wait_work(void)
2804 {
2805 	if (khugepaged_has_work()) {
2806 		const unsigned long scan_sleep_jiffies =
2807 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2808 
2809 		if (!scan_sleep_jiffies)
2810 			return;
2811 
2812 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2813 		wait_event_freezable_timeout(khugepaged_wait,
2814 					     khugepaged_should_wakeup(),
2815 					     scan_sleep_jiffies);
2816 		return;
2817 	}
2818 
2819 	if (khugepaged_enabled())
2820 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2821 }
2822 
2823 static int khugepaged(void *none)
2824 {
2825 	struct mm_slot *mm_slot;
2826 
2827 	set_freezable();
2828 	set_user_nice(current, MAX_NICE);
2829 
2830 	while (!kthread_should_stop()) {
2831 		khugepaged_do_scan();
2832 		khugepaged_wait_work();
2833 	}
2834 
2835 	spin_lock(&khugepaged_mm_lock);
2836 	mm_slot = khugepaged_scan.mm_slot;
2837 	khugepaged_scan.mm_slot = NULL;
2838 	if (mm_slot)
2839 		collect_mm_slot(mm_slot);
2840 	spin_unlock(&khugepaged_mm_lock);
2841 	return 0;
2842 }
2843 
2844 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2845 		unsigned long haddr, pmd_t *pmd)
2846 {
2847 	struct mm_struct *mm = vma->vm_mm;
2848 	pgtable_t pgtable;
2849 	pmd_t _pmd;
2850 	int i;
2851 
2852 	/* leave pmd empty until pte is filled */
2853 	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2854 
2855 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2856 	pmd_populate(mm, &_pmd, pgtable);
2857 
2858 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2859 		pte_t *pte, entry;
2860 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2861 		entry = pte_mkspecial(entry);
2862 		pte = pte_offset_map(&_pmd, haddr);
2863 		VM_BUG_ON(!pte_none(*pte));
2864 		set_pte_at(mm, haddr, pte, entry);
2865 		pte_unmap(pte);
2866 	}
2867 	smp_wmb(); /* make pte visible before pmd */
2868 	pmd_populate(mm, pmd, pgtable);
2869 	put_huge_zero_page();
2870 }
2871 
2872 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2873 		unsigned long haddr, bool freeze)
2874 {
2875 	struct mm_struct *mm = vma->vm_mm;
2876 	struct page *page;
2877 	pgtable_t pgtable;
2878 	pmd_t _pmd;
2879 	bool young, write, dirty;
2880 	unsigned long addr;
2881 	int i;
2882 
2883 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2884 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2885 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2886 	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2887 
2888 	count_vm_event(THP_SPLIT_PMD);
2889 
2890 	if (vma_is_dax(vma)) {
2891 		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2892 		if (is_huge_zero_pmd(_pmd))
2893 			put_huge_zero_page();
2894 		return;
2895 	} else if (is_huge_zero_pmd(*pmd)) {
2896 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2897 	}
2898 
2899 	page = pmd_page(*pmd);
2900 	VM_BUG_ON_PAGE(!page_count(page), page);
2901 	page_ref_add(page, HPAGE_PMD_NR - 1);
2902 	write = pmd_write(*pmd);
2903 	young = pmd_young(*pmd);
2904 	dirty = pmd_dirty(*pmd);
2905 
2906 	pmdp_huge_split_prepare(vma, haddr, pmd);
2907 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2908 	pmd_populate(mm, &_pmd, pgtable);
2909 
2910 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2911 		pte_t entry, *pte;
2912 		/*
2913 		 * Note that NUMA hinting access restrictions are not
2914 		 * transferred to avoid any possibility of altering
2915 		 * permissions across VMAs.
2916 		 */
2917 		if (freeze) {
2918 			swp_entry_t swp_entry;
2919 			swp_entry = make_migration_entry(page + i, write);
2920 			entry = swp_entry_to_pte(swp_entry);
2921 		} else {
2922 			entry = mk_pte(page + i, vma->vm_page_prot);
2923 			entry = maybe_mkwrite(entry, vma);
2924 			if (!write)
2925 				entry = pte_wrprotect(entry);
2926 			if (!young)
2927 				entry = pte_mkold(entry);
2928 		}
2929 		if (dirty)
2930 			SetPageDirty(page + i);
2931 		pte = pte_offset_map(&_pmd, addr);
2932 		BUG_ON(!pte_none(*pte));
2933 		set_pte_at(mm, addr, pte, entry);
2934 		atomic_inc(&page[i]._mapcount);
2935 		pte_unmap(pte);
2936 	}
2937 
2938 	/*
2939 	 * Set PG_double_map before dropping compound_mapcount to avoid
2940 	 * false-negative page_mapped().
2941 	 */
2942 	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2943 		for (i = 0; i < HPAGE_PMD_NR; i++)
2944 			atomic_inc(&page[i]._mapcount);
2945 	}
2946 
2947 	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2948 		/* Last compound_mapcount is gone. */
2949 		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2950 		if (TestClearPageDoubleMap(page)) {
2951 			/* No need in mapcount reference anymore */
2952 			for (i = 0; i < HPAGE_PMD_NR; i++)
2953 				atomic_dec(&page[i]._mapcount);
2954 		}
2955 	}
2956 
2957 	smp_wmb(); /* make pte visible before pmd */
2958 	/*
2959 	 * Up to this point the pmd is present and huge and userland has the
2960 	 * whole access to the hugepage during the split (which happens in
2961 	 * place). If we overwrite the pmd with the not-huge version pointing
2962 	 * to the pte here (which of course we could if all CPUs were bug
2963 	 * free), userland could trigger a small page size TLB miss on the
2964 	 * small sized TLB while the hugepage TLB entry is still established in
2965 	 * the huge TLB. Some CPU doesn't like that.
2966 	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2967 	 * 383 on page 93. Intel should be safe but is also warns that it's
2968 	 * only safe if the permission and cache attributes of the two entries
2969 	 * loaded in the two TLB is identical (which should be the case here).
2970 	 * But it is generally safer to never allow small and huge TLB entries
2971 	 * for the same virtual address to be loaded simultaneously. So instead
2972 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2973 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2974 	 * and pmd_trans_splitting must remain set at all times on the pmd
2975 	 * until the split is complete for this pmd), then we flush the SMP TLB
2976 	 * and finally we write the non-huge version of the pmd entry with
2977 	 * pmd_populate.
2978 	 */
2979 	pmdp_invalidate(vma, haddr, pmd);
2980 	pmd_populate(mm, pmd, pgtable);
2981 
2982 	if (freeze) {
2983 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2984 			page_remove_rmap(page + i, false);
2985 			put_page(page + i);
2986 		}
2987 	}
2988 }
2989 
2990 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2991 		unsigned long address, bool freeze)
2992 {
2993 	spinlock_t *ptl;
2994 	struct mm_struct *mm = vma->vm_mm;
2995 	unsigned long haddr = address & HPAGE_PMD_MASK;
2996 
2997 	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2998 	ptl = pmd_lock(mm, pmd);
2999 	if (pmd_trans_huge(*pmd)) {
3000 		struct page *page = pmd_page(*pmd);
3001 		if (PageMlocked(page))
3002 			clear_page_mlock(page);
3003 	} else if (!pmd_devmap(*pmd))
3004 		goto out;
3005 	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
3006 out:
3007 	spin_unlock(ptl);
3008 	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3009 }
3010 
3011 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3012 		bool freeze, struct page *page)
3013 {
3014 	pgd_t *pgd;
3015 	pud_t *pud;
3016 	pmd_t *pmd;
3017 
3018 	pgd = pgd_offset(vma->vm_mm, address);
3019 	if (!pgd_present(*pgd))
3020 		return;
3021 
3022 	pud = pud_offset(pgd, address);
3023 	if (!pud_present(*pud))
3024 		return;
3025 
3026 	pmd = pmd_offset(pud, address);
3027 	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3028 		return;
3029 
3030 	/*
3031 	 * If caller asks to setup a migration entries, we need a page to check
3032 	 * pmd against. Otherwise we can end up replacing wrong page.
3033 	 */
3034 	VM_BUG_ON(freeze && !page);
3035 	if (page && page != pmd_page(*pmd))
3036 		return;
3037 
3038 	/*
3039 	 * Caller holds the mmap_sem write mode or the anon_vma lock,
3040 	 * so a huge pmd cannot materialize from under us (khugepaged
3041 	 * holds both the mmap_sem write mode and the anon_vma lock
3042 	 * write mode).
3043 	 */
3044 	__split_huge_pmd(vma, pmd, address, freeze);
3045 }
3046 
3047 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3048 			     unsigned long start,
3049 			     unsigned long end,
3050 			     long adjust_next)
3051 {
3052 	/*
3053 	 * If the new start address isn't hpage aligned and it could
3054 	 * previously contain an hugepage: check if we need to split
3055 	 * an huge pmd.
3056 	 */
3057 	if (start & ~HPAGE_PMD_MASK &&
3058 	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3059 	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3060 		split_huge_pmd_address(vma, start, false, NULL);
3061 
3062 	/*
3063 	 * If the new end address isn't hpage aligned and it could
3064 	 * previously contain an hugepage: check if we need to split
3065 	 * an huge pmd.
3066 	 */
3067 	if (end & ~HPAGE_PMD_MASK &&
3068 	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3069 	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3070 		split_huge_pmd_address(vma, end, false, NULL);
3071 
3072 	/*
3073 	 * If we're also updating the vma->vm_next->vm_start, if the new
3074 	 * vm_next->vm_start isn't page aligned and it could previously
3075 	 * contain an hugepage: check if we need to split an huge pmd.
3076 	 */
3077 	if (adjust_next > 0) {
3078 		struct vm_area_struct *next = vma->vm_next;
3079 		unsigned long nstart = next->vm_start;
3080 		nstart += adjust_next << PAGE_SHIFT;
3081 		if (nstart & ~HPAGE_PMD_MASK &&
3082 		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3083 		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3084 			split_huge_pmd_address(next, nstart, false, NULL);
3085 	}
3086 }
3087 
3088 static void freeze_page(struct page *page)
3089 {
3090 	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3091 		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3092 	int i, ret;
3093 
3094 	VM_BUG_ON_PAGE(!PageHead(page), page);
3095 
3096 	/* We only need TTU_SPLIT_HUGE_PMD once */
3097 	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3098 	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3099 		/* Cut short if the page is unmapped */
3100 		if (page_count(page) == 1)
3101 			return;
3102 
3103 		ret = try_to_unmap(page + i, ttu_flags);
3104 	}
3105 	VM_BUG_ON(ret);
3106 }
3107 
3108 static void unfreeze_page(struct page *page)
3109 {
3110 	int i;
3111 
3112 	for (i = 0; i < HPAGE_PMD_NR; i++)
3113 		remove_migration_ptes(page + i, page + i, true);
3114 }
3115 
3116 static void __split_huge_page_tail(struct page *head, int tail,
3117 		struct lruvec *lruvec, struct list_head *list)
3118 {
3119 	struct page *page_tail = head + tail;
3120 
3121 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3122 	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3123 
3124 	/*
3125 	 * tail_page->_refcount is zero and not changing from under us. But
3126 	 * get_page_unless_zero() may be running from under us on the
3127 	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3128 	 * would then run atomic_set() concurrently with
3129 	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3130 	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3131 	 * because of PPro errata 66, 92, so unless somebody can guarantee
3132 	 * atomic_set() here would be safe on all archs (and not only on x86),
3133 	 * it's safer to use atomic_inc().
3134 	 */
3135 	page_ref_inc(page_tail);
3136 
3137 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3138 	page_tail->flags |= (head->flags &
3139 			((1L << PG_referenced) |
3140 			 (1L << PG_swapbacked) |
3141 			 (1L << PG_mlocked) |
3142 			 (1L << PG_uptodate) |
3143 			 (1L << PG_active) |
3144 			 (1L << PG_locked) |
3145 			 (1L << PG_unevictable) |
3146 			 (1L << PG_dirty)));
3147 
3148 	/*
3149 	 * After clearing PageTail the gup refcount can be released.
3150 	 * Page flags also must be visible before we make the page non-compound.
3151 	 */
3152 	smp_wmb();
3153 
3154 	clear_compound_head(page_tail);
3155 
3156 	if (page_is_young(head))
3157 		set_page_young(page_tail);
3158 	if (page_is_idle(head))
3159 		set_page_idle(page_tail);
3160 
3161 	/* ->mapping in first tail page is compound_mapcount */
3162 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3163 			page_tail);
3164 	page_tail->mapping = head->mapping;
3165 
3166 	page_tail->index = head->index + tail;
3167 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3168 	lru_add_page_tail(head, page_tail, lruvec, list);
3169 }
3170 
3171 static void __split_huge_page(struct page *page, struct list_head *list)
3172 {
3173 	struct page *head = compound_head(page);
3174 	struct zone *zone = page_zone(head);
3175 	struct lruvec *lruvec;
3176 	int i;
3177 
3178 	/* prevent PageLRU to go away from under us, and freeze lru stats */
3179 	spin_lock_irq(&zone->lru_lock);
3180 	lruvec = mem_cgroup_page_lruvec(head, zone);
3181 
3182 	/* complete memcg works before add pages to LRU */
3183 	mem_cgroup_split_huge_fixup(head);
3184 
3185 	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3186 		__split_huge_page_tail(head, i, lruvec, list);
3187 
3188 	ClearPageCompound(head);
3189 	spin_unlock_irq(&zone->lru_lock);
3190 
3191 	unfreeze_page(head);
3192 
3193 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3194 		struct page *subpage = head + i;
3195 		if (subpage == page)
3196 			continue;
3197 		unlock_page(subpage);
3198 
3199 		/*
3200 		 * Subpages may be freed if there wasn't any mapping
3201 		 * like if add_to_swap() is running on a lru page that
3202 		 * had its mapping zapped. And freeing these pages
3203 		 * requires taking the lru_lock so we do the put_page
3204 		 * of the tail pages after the split is complete.
3205 		 */
3206 		put_page(subpage);
3207 	}
3208 }
3209 
3210 int total_mapcount(struct page *page)
3211 {
3212 	int i, ret;
3213 
3214 	VM_BUG_ON_PAGE(PageTail(page), page);
3215 
3216 	if (likely(!PageCompound(page)))
3217 		return atomic_read(&page->_mapcount) + 1;
3218 
3219 	ret = compound_mapcount(page);
3220 	if (PageHuge(page))
3221 		return ret;
3222 	for (i = 0; i < HPAGE_PMD_NR; i++)
3223 		ret += atomic_read(&page[i]._mapcount) + 1;
3224 	if (PageDoubleMap(page))
3225 		ret -= HPAGE_PMD_NR;
3226 	return ret;
3227 }
3228 
3229 /*
3230  * This calculates accurately how many mappings a transparent hugepage
3231  * has (unlike page_mapcount() which isn't fully accurate). This full
3232  * accuracy is primarily needed to know if copy-on-write faults can
3233  * reuse the page and change the mapping to read-write instead of
3234  * copying them. At the same time this returns the total_mapcount too.
3235  *
3236  * The function returns the highest mapcount any one of the subpages
3237  * has. If the return value is one, even if different processes are
3238  * mapping different subpages of the transparent hugepage, they can
3239  * all reuse it, because each process is reusing a different subpage.
3240  *
3241  * The total_mapcount is instead counting all virtual mappings of the
3242  * subpages. If the total_mapcount is equal to "one", it tells the
3243  * caller all mappings belong to the same "mm" and in turn the
3244  * anon_vma of the transparent hugepage can become the vma->anon_vma
3245  * local one as no other process may be mapping any of the subpages.
3246  *
3247  * It would be more accurate to replace page_mapcount() with
3248  * page_trans_huge_mapcount(), however we only use
3249  * page_trans_huge_mapcount() in the copy-on-write faults where we
3250  * need full accuracy to avoid breaking page pinning, because
3251  * page_trans_huge_mapcount() is slower than page_mapcount().
3252  */
3253 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3254 {
3255 	int i, ret, _total_mapcount, mapcount;
3256 
3257 	/* hugetlbfs shouldn't call it */
3258 	VM_BUG_ON_PAGE(PageHuge(page), page);
3259 
3260 	if (likely(!PageTransCompound(page))) {
3261 		mapcount = atomic_read(&page->_mapcount) + 1;
3262 		if (total_mapcount)
3263 			*total_mapcount = mapcount;
3264 		return mapcount;
3265 	}
3266 
3267 	page = compound_head(page);
3268 
3269 	_total_mapcount = ret = 0;
3270 	for (i = 0; i < HPAGE_PMD_NR; i++) {
3271 		mapcount = atomic_read(&page[i]._mapcount) + 1;
3272 		ret = max(ret, mapcount);
3273 		_total_mapcount += mapcount;
3274 	}
3275 	if (PageDoubleMap(page)) {
3276 		ret -= 1;
3277 		_total_mapcount -= HPAGE_PMD_NR;
3278 	}
3279 	mapcount = compound_mapcount(page);
3280 	ret += mapcount;
3281 	_total_mapcount += mapcount;
3282 	if (total_mapcount)
3283 		*total_mapcount = _total_mapcount;
3284 	return ret;
3285 }
3286 
3287 /*
3288  * This function splits huge page into normal pages. @page can point to any
3289  * subpage of huge page to split. Split doesn't change the position of @page.
3290  *
3291  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3292  * The huge page must be locked.
3293  *
3294  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3295  *
3296  * Both head page and tail pages will inherit mapping, flags, and so on from
3297  * the hugepage.
3298  *
3299  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3300  * they are not mapped.
3301  *
3302  * Returns 0 if the hugepage is split successfully.
3303  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3304  * us.
3305  */
3306 int split_huge_page_to_list(struct page *page, struct list_head *list)
3307 {
3308 	struct page *head = compound_head(page);
3309 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3310 	struct anon_vma *anon_vma;
3311 	int count, mapcount, ret;
3312 	bool mlocked;
3313 	unsigned long flags;
3314 
3315 	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3316 	VM_BUG_ON_PAGE(!PageAnon(page), page);
3317 	VM_BUG_ON_PAGE(!PageLocked(page), page);
3318 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3319 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3320 
3321 	/*
3322 	 * The caller does not necessarily hold an mmap_sem that would prevent
3323 	 * the anon_vma disappearing so we first we take a reference to it
3324 	 * and then lock the anon_vma for write. This is similar to
3325 	 * page_lock_anon_vma_read except the write lock is taken to serialise
3326 	 * against parallel split or collapse operations.
3327 	 */
3328 	anon_vma = page_get_anon_vma(head);
3329 	if (!anon_vma) {
3330 		ret = -EBUSY;
3331 		goto out;
3332 	}
3333 	anon_vma_lock_write(anon_vma);
3334 
3335 	/*
3336 	 * Racy check if we can split the page, before freeze_page() will
3337 	 * split PMDs
3338 	 */
3339 	if (total_mapcount(head) != page_count(head) - 1) {
3340 		ret = -EBUSY;
3341 		goto out_unlock;
3342 	}
3343 
3344 	mlocked = PageMlocked(page);
3345 	freeze_page(head);
3346 	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3347 
3348 	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3349 	if (mlocked)
3350 		lru_add_drain();
3351 
3352 	/* Prevent deferred_split_scan() touching ->_refcount */
3353 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3354 	count = page_count(head);
3355 	mapcount = total_mapcount(head);
3356 	if (!mapcount && count == 1) {
3357 		if (!list_empty(page_deferred_list(head))) {
3358 			pgdata->split_queue_len--;
3359 			list_del(page_deferred_list(head));
3360 		}
3361 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3362 		__split_huge_page(page, list);
3363 		ret = 0;
3364 	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3365 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3366 		pr_alert("total_mapcount: %u, page_count(): %u\n",
3367 				mapcount, count);
3368 		if (PageTail(page))
3369 			dump_page(head, NULL);
3370 		dump_page(page, "total_mapcount(head) > 0");
3371 		BUG();
3372 	} else {
3373 		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3374 		unfreeze_page(head);
3375 		ret = -EBUSY;
3376 	}
3377 
3378 out_unlock:
3379 	anon_vma_unlock_write(anon_vma);
3380 	put_anon_vma(anon_vma);
3381 out:
3382 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3383 	return ret;
3384 }
3385 
3386 void free_transhuge_page(struct page *page)
3387 {
3388 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3389 	unsigned long flags;
3390 
3391 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3392 	if (!list_empty(page_deferred_list(page))) {
3393 		pgdata->split_queue_len--;
3394 		list_del(page_deferred_list(page));
3395 	}
3396 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3397 	free_compound_page(page);
3398 }
3399 
3400 void deferred_split_huge_page(struct page *page)
3401 {
3402 	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3403 	unsigned long flags;
3404 
3405 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3406 
3407 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3408 	if (list_empty(page_deferred_list(page))) {
3409 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3410 		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3411 		pgdata->split_queue_len++;
3412 	}
3413 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3414 }
3415 
3416 static unsigned long deferred_split_count(struct shrinker *shrink,
3417 		struct shrink_control *sc)
3418 {
3419 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3420 	return ACCESS_ONCE(pgdata->split_queue_len);
3421 }
3422 
3423 static unsigned long deferred_split_scan(struct shrinker *shrink,
3424 		struct shrink_control *sc)
3425 {
3426 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3427 	unsigned long flags;
3428 	LIST_HEAD(list), *pos, *next;
3429 	struct page *page;
3430 	int split = 0;
3431 
3432 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3433 	/* Take pin on all head pages to avoid freeing them under us */
3434 	list_for_each_safe(pos, next, &pgdata->split_queue) {
3435 		page = list_entry((void *)pos, struct page, mapping);
3436 		page = compound_head(page);
3437 		if (get_page_unless_zero(page)) {
3438 			list_move(page_deferred_list(page), &list);
3439 		} else {
3440 			/* We lost race with put_compound_page() */
3441 			list_del_init(page_deferred_list(page));
3442 			pgdata->split_queue_len--;
3443 		}
3444 		if (!--sc->nr_to_scan)
3445 			break;
3446 	}
3447 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3448 
3449 	list_for_each_safe(pos, next, &list) {
3450 		page = list_entry((void *)pos, struct page, mapping);
3451 		lock_page(page);
3452 		/* split_huge_page() removes page from list on success */
3453 		if (!split_huge_page(page))
3454 			split++;
3455 		unlock_page(page);
3456 		put_page(page);
3457 	}
3458 
3459 	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3460 	list_splice_tail(&list, &pgdata->split_queue);
3461 	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3462 
3463 	/*
3464 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3465 	 * This can happen if pages were freed under us.
3466 	 */
3467 	if (!split && list_empty(&pgdata->split_queue))
3468 		return SHRINK_STOP;
3469 	return split;
3470 }
3471 
3472 static struct shrinker deferred_split_shrinker = {
3473 	.count_objects = deferred_split_count,
3474 	.scan_objects = deferred_split_scan,
3475 	.seeks = DEFAULT_SEEKS,
3476 	.flags = SHRINKER_NUMA_AWARE,
3477 };
3478 
3479 #ifdef CONFIG_DEBUG_FS
3480 static int split_huge_pages_set(void *data, u64 val)
3481 {
3482 	struct zone *zone;
3483 	struct page *page;
3484 	unsigned long pfn, max_zone_pfn;
3485 	unsigned long total = 0, split = 0;
3486 
3487 	if (val != 1)
3488 		return -EINVAL;
3489 
3490 	for_each_populated_zone(zone) {
3491 		max_zone_pfn = zone_end_pfn(zone);
3492 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3493 			if (!pfn_valid(pfn))
3494 				continue;
3495 
3496 			page = pfn_to_page(pfn);
3497 			if (!get_page_unless_zero(page))
3498 				continue;
3499 
3500 			if (zone != page_zone(page))
3501 				goto next;
3502 
3503 			if (!PageHead(page) || !PageAnon(page) ||
3504 					PageHuge(page))
3505 				goto next;
3506 
3507 			total++;
3508 			lock_page(page);
3509 			if (!split_huge_page(page))
3510 				split++;
3511 			unlock_page(page);
3512 next:
3513 			put_page(page);
3514 		}
3515 	}
3516 
3517 	pr_info("%lu of %lu THP split\n", split, total);
3518 
3519 	return 0;
3520 }
3521 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3522 		"%llu\n");
3523 
3524 static int __init split_huge_pages_debugfs(void)
3525 {
3526 	void *ret;
3527 
3528 	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3529 			&split_huge_pages_fops);
3530 	if (!ret)
3531 		pr_warn("Failed to create split_huge_pages in debugfs");
3532 	return 0;
3533 }
3534 late_initcall(split_huge_pages_debugfs);
3535 #endif
3536