1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/coredump.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 #include <linux/oom.h> 34 #include <linux/numa.h> 35 #include <linux/page_owner.h> 36 37 #include <asm/tlb.h> 38 #include <asm/pgalloc.h> 39 #include "internal.h" 40 41 /* 42 * By default, transparent hugepage support is disabled in order to avoid 43 * risking an increased memory footprint for applications that are not 44 * guaranteed to benefit from it. When transparent hugepage support is 45 * enabled, it is for all mappings, and khugepaged scans all mappings. 46 * Defrag is invoked by khugepaged hugepage allocations and by page faults 47 * for all hugepage allocations. 48 */ 49 unsigned long transparent_hugepage_flags __read_mostly = 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 52 #endif 53 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 55 #endif 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 59 60 static struct shrinker deferred_split_shrinker; 61 62 static atomic_t huge_zero_refcount; 63 struct page *huge_zero_page __read_mostly; 64 65 bool transparent_hugepage_enabled(struct vm_area_struct *vma) 66 { 67 /* The addr is used to check if the vma size fits */ 68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE; 69 70 if (!transhuge_vma_suitable(vma, addr)) 71 return false; 72 if (vma_is_anonymous(vma)) 73 return __transparent_hugepage_enabled(vma); 74 if (vma_is_shmem(vma)) 75 return shmem_huge_enabled(vma); 76 77 return false; 78 } 79 80 static struct page *get_huge_zero_page(void) 81 { 82 struct page *zero_page; 83 retry: 84 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 85 return READ_ONCE(huge_zero_page); 86 87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 88 HPAGE_PMD_ORDER); 89 if (!zero_page) { 90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 91 return NULL; 92 } 93 count_vm_event(THP_ZERO_PAGE_ALLOC); 94 preempt_disable(); 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 96 preempt_enable(); 97 __free_pages(zero_page, compound_order(zero_page)); 98 goto retry; 99 } 100 101 /* We take additional reference here. It will be put back by shrinker */ 102 atomic_set(&huge_zero_refcount, 2); 103 preempt_enable(); 104 return READ_ONCE(huge_zero_page); 105 } 106 107 static void put_huge_zero_page(void) 108 { 109 /* 110 * Counter should never go to zero here. Only shrinker can put 111 * last reference. 112 */ 113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 114 } 115 116 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 117 { 118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 119 return READ_ONCE(huge_zero_page); 120 121 if (!get_huge_zero_page()) 122 return NULL; 123 124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 125 put_huge_zero_page(); 126 127 return READ_ONCE(huge_zero_page); 128 } 129 130 void mm_put_huge_zero_page(struct mm_struct *mm) 131 { 132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 133 put_huge_zero_page(); 134 } 135 136 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 137 struct shrink_control *sc) 138 { 139 /* we can free zero page only if last reference remains */ 140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 141 } 142 143 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 144 struct shrink_control *sc) 145 { 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 147 struct page *zero_page = xchg(&huge_zero_page, NULL); 148 BUG_ON(zero_page == NULL); 149 __free_pages(zero_page, compound_order(zero_page)); 150 return HPAGE_PMD_NR; 151 } 152 153 return 0; 154 } 155 156 static struct shrinker huge_zero_page_shrinker = { 157 .count_objects = shrink_huge_zero_page_count, 158 .scan_objects = shrink_huge_zero_page_scan, 159 .seeks = DEFAULT_SEEKS, 160 }; 161 162 #ifdef CONFIG_SYSFS 163 static ssize_t enabled_show(struct kobject *kobj, 164 struct kobj_attribute *attr, char *buf) 165 { 166 const char *output; 167 168 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 169 output = "[always] madvise never"; 170 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 171 &transparent_hugepage_flags)) 172 output = "always [madvise] never"; 173 else 174 output = "always madvise [never]"; 175 176 return sysfs_emit(buf, "%s\n", output); 177 } 178 179 static ssize_t enabled_store(struct kobject *kobj, 180 struct kobj_attribute *attr, 181 const char *buf, size_t count) 182 { 183 ssize_t ret = count; 184 185 if (sysfs_streq(buf, "always")) { 186 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 187 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 188 } else if (sysfs_streq(buf, "madvise")) { 189 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 190 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 191 } else if (sysfs_streq(buf, "never")) { 192 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 193 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 194 } else 195 ret = -EINVAL; 196 197 if (ret > 0) { 198 int err = start_stop_khugepaged(); 199 if (err) 200 ret = err; 201 } 202 return ret; 203 } 204 static struct kobj_attribute enabled_attr = 205 __ATTR(enabled, 0644, enabled_show, enabled_store); 206 207 ssize_t single_hugepage_flag_show(struct kobject *kobj, 208 struct kobj_attribute *attr, char *buf, 209 enum transparent_hugepage_flag flag) 210 { 211 return sysfs_emit(buf, "%d\n", 212 !!test_bit(flag, &transparent_hugepage_flags)); 213 } 214 215 ssize_t single_hugepage_flag_store(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 const char *buf, size_t count, 218 enum transparent_hugepage_flag flag) 219 { 220 unsigned long value; 221 int ret; 222 223 ret = kstrtoul(buf, 10, &value); 224 if (ret < 0) 225 return ret; 226 if (value > 1) 227 return -EINVAL; 228 229 if (value) 230 set_bit(flag, &transparent_hugepage_flags); 231 else 232 clear_bit(flag, &transparent_hugepage_flags); 233 234 return count; 235 } 236 237 static ssize_t defrag_show(struct kobject *kobj, 238 struct kobj_attribute *attr, char *buf) 239 { 240 const char *output; 241 242 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 243 &transparent_hugepage_flags)) 244 output = "[always] defer defer+madvise madvise never"; 245 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 246 &transparent_hugepage_flags)) 247 output = "always [defer] defer+madvise madvise never"; 248 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 249 &transparent_hugepage_flags)) 250 output = "always defer [defer+madvise] madvise never"; 251 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 252 &transparent_hugepage_flags)) 253 output = "always defer defer+madvise [madvise] never"; 254 else 255 output = "always defer defer+madvise madvise [never]"; 256 257 return sysfs_emit(buf, "%s\n", output); 258 } 259 260 static ssize_t defrag_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 if (sysfs_streq(buf, "always")) { 265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 268 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 269 } else if (sysfs_streq(buf, "defer+madvise")) { 270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 273 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 274 } else if (sysfs_streq(buf, "defer")) { 275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 278 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 279 } else if (sysfs_streq(buf, "madvise")) { 280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 283 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 284 } else if (sysfs_streq(buf, "never")) { 285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 289 } else 290 return -EINVAL; 291 292 return count; 293 } 294 static struct kobj_attribute defrag_attr = 295 __ATTR(defrag, 0644, defrag_show, defrag_store); 296 297 static ssize_t use_zero_page_show(struct kobject *kobj, 298 struct kobj_attribute *attr, char *buf) 299 { 300 return single_hugepage_flag_show(kobj, attr, buf, 301 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 302 } 303 static ssize_t use_zero_page_store(struct kobject *kobj, 304 struct kobj_attribute *attr, const char *buf, size_t count) 305 { 306 return single_hugepage_flag_store(kobj, attr, buf, count, 307 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 308 } 309 static struct kobj_attribute use_zero_page_attr = 310 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 311 312 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 313 struct kobj_attribute *attr, char *buf) 314 { 315 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 316 } 317 static struct kobj_attribute hpage_pmd_size_attr = 318 __ATTR_RO(hpage_pmd_size); 319 320 static struct attribute *hugepage_attr[] = { 321 &enabled_attr.attr, 322 &defrag_attr.attr, 323 &use_zero_page_attr.attr, 324 &hpage_pmd_size_attr.attr, 325 #ifdef CONFIG_SHMEM 326 &shmem_enabled_attr.attr, 327 #endif 328 NULL, 329 }; 330 331 static const struct attribute_group hugepage_attr_group = { 332 .attrs = hugepage_attr, 333 }; 334 335 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 336 { 337 int err; 338 339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 340 if (unlikely(!*hugepage_kobj)) { 341 pr_err("failed to create transparent hugepage kobject\n"); 342 return -ENOMEM; 343 } 344 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 346 if (err) { 347 pr_err("failed to register transparent hugepage group\n"); 348 goto delete_obj; 349 } 350 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 352 if (err) { 353 pr_err("failed to register transparent hugepage group\n"); 354 goto remove_hp_group; 355 } 356 357 return 0; 358 359 remove_hp_group: 360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 361 delete_obj: 362 kobject_put(*hugepage_kobj); 363 return err; 364 } 365 366 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 367 { 368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 370 kobject_put(hugepage_kobj); 371 } 372 #else 373 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 374 { 375 return 0; 376 } 377 378 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 379 { 380 } 381 #endif /* CONFIG_SYSFS */ 382 383 static int __init hugepage_init(void) 384 { 385 int err; 386 struct kobject *hugepage_kobj; 387 388 if (!has_transparent_hugepage()) { 389 transparent_hugepage_flags = 0; 390 return -EINVAL; 391 } 392 393 /* 394 * hugepages can't be allocated by the buddy allocator 395 */ 396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 397 /* 398 * we use page->mapping and page->index in second tail page 399 * as list_head: assuming THP order >= 2 400 */ 401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 402 403 err = hugepage_init_sysfs(&hugepage_kobj); 404 if (err) 405 goto err_sysfs; 406 407 err = khugepaged_init(); 408 if (err) 409 goto err_slab; 410 411 err = register_shrinker(&huge_zero_page_shrinker); 412 if (err) 413 goto err_hzp_shrinker; 414 err = register_shrinker(&deferred_split_shrinker); 415 if (err) 416 goto err_split_shrinker; 417 418 /* 419 * By default disable transparent hugepages on smaller systems, 420 * where the extra memory used could hurt more than TLB overhead 421 * is likely to save. The admin can still enable it through /sys. 422 */ 423 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 424 transparent_hugepage_flags = 0; 425 return 0; 426 } 427 428 err = start_stop_khugepaged(); 429 if (err) 430 goto err_khugepaged; 431 432 return 0; 433 err_khugepaged: 434 unregister_shrinker(&deferred_split_shrinker); 435 err_split_shrinker: 436 unregister_shrinker(&huge_zero_page_shrinker); 437 err_hzp_shrinker: 438 khugepaged_destroy(); 439 err_slab: 440 hugepage_exit_sysfs(hugepage_kobj); 441 err_sysfs: 442 return err; 443 } 444 subsys_initcall(hugepage_init); 445 446 static int __init setup_transparent_hugepage(char *str) 447 { 448 int ret = 0; 449 if (!str) 450 goto out; 451 if (!strcmp(str, "always")) { 452 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 453 &transparent_hugepage_flags); 454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 455 &transparent_hugepage_flags); 456 ret = 1; 457 } else if (!strcmp(str, "madvise")) { 458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 459 &transparent_hugepage_flags); 460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 461 &transparent_hugepage_flags); 462 ret = 1; 463 } else if (!strcmp(str, "never")) { 464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 465 &transparent_hugepage_flags); 466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 467 &transparent_hugepage_flags); 468 ret = 1; 469 } 470 out: 471 if (!ret) 472 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 473 return ret; 474 } 475 __setup("transparent_hugepage=", setup_transparent_hugepage); 476 477 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 478 { 479 if (likely(vma->vm_flags & VM_WRITE)) 480 pmd = pmd_mkwrite(pmd); 481 return pmd; 482 } 483 484 #ifdef CONFIG_MEMCG 485 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 486 { 487 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 488 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 489 490 if (memcg) 491 return &memcg->deferred_split_queue; 492 else 493 return &pgdat->deferred_split_queue; 494 } 495 #else 496 static inline struct deferred_split *get_deferred_split_queue(struct page *page) 497 { 498 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 499 500 return &pgdat->deferred_split_queue; 501 } 502 #endif 503 504 void prep_transhuge_page(struct page *page) 505 { 506 /* 507 * we use page->mapping and page->indexlru in second tail page 508 * as list_head: assuming THP order >= 2 509 */ 510 511 INIT_LIST_HEAD(page_deferred_list(page)); 512 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 513 } 514 515 bool is_transparent_hugepage(struct page *page) 516 { 517 if (!PageCompound(page)) 518 return false; 519 520 page = compound_head(page); 521 return is_huge_zero_page(page) || 522 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR; 523 } 524 EXPORT_SYMBOL_GPL(is_transparent_hugepage); 525 526 static unsigned long __thp_get_unmapped_area(struct file *filp, 527 unsigned long addr, unsigned long len, 528 loff_t off, unsigned long flags, unsigned long size) 529 { 530 loff_t off_end = off + len; 531 loff_t off_align = round_up(off, size); 532 unsigned long len_pad, ret; 533 534 if (off_end <= off_align || (off_end - off_align) < size) 535 return 0; 536 537 len_pad = len + size; 538 if (len_pad < len || (off + len_pad) < off) 539 return 0; 540 541 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 542 off >> PAGE_SHIFT, flags); 543 544 /* 545 * The failure might be due to length padding. The caller will retry 546 * without the padding. 547 */ 548 if (IS_ERR_VALUE(ret)) 549 return 0; 550 551 /* 552 * Do not try to align to THP boundary if allocation at the address 553 * hint succeeds. 554 */ 555 if (ret == addr) 556 return addr; 557 558 ret += (off - ret) & (size - 1); 559 return ret; 560 } 561 562 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 563 unsigned long len, unsigned long pgoff, unsigned long flags) 564 { 565 unsigned long ret; 566 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 567 568 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD)) 569 goto out; 570 571 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 572 if (ret) 573 return ret; 574 out: 575 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 576 } 577 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 578 579 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 580 struct page *page, gfp_t gfp) 581 { 582 struct vm_area_struct *vma = vmf->vma; 583 pgtable_t pgtable; 584 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 585 vm_fault_t ret = 0; 586 587 VM_BUG_ON_PAGE(!PageCompound(page), page); 588 589 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) { 590 put_page(page); 591 count_vm_event(THP_FAULT_FALLBACK); 592 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 593 return VM_FAULT_FALLBACK; 594 } 595 cgroup_throttle_swaprate(page, gfp); 596 597 pgtable = pte_alloc_one(vma->vm_mm); 598 if (unlikely(!pgtable)) { 599 ret = VM_FAULT_OOM; 600 goto release; 601 } 602 603 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 604 /* 605 * The memory barrier inside __SetPageUptodate makes sure that 606 * clear_huge_page writes become visible before the set_pmd_at() 607 * write. 608 */ 609 __SetPageUptodate(page); 610 611 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 612 if (unlikely(!pmd_none(*vmf->pmd))) { 613 goto unlock_release; 614 } else { 615 pmd_t entry; 616 617 ret = check_stable_address_space(vma->vm_mm); 618 if (ret) 619 goto unlock_release; 620 621 /* Deliver the page fault to userland */ 622 if (userfaultfd_missing(vma)) { 623 vm_fault_t ret2; 624 625 spin_unlock(vmf->ptl); 626 put_page(page); 627 pte_free(vma->vm_mm, pgtable); 628 ret2 = handle_userfault(vmf, VM_UFFD_MISSING); 629 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK); 630 return ret2; 631 } 632 633 entry = mk_huge_pmd(page, vma->vm_page_prot); 634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 635 page_add_new_anon_rmap(page, vma, haddr, true); 636 lru_cache_add_inactive_or_unevictable(page, vma); 637 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 638 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 639 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 640 mm_inc_nr_ptes(vma->vm_mm); 641 spin_unlock(vmf->ptl); 642 count_vm_event(THP_FAULT_ALLOC); 643 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 644 } 645 646 return 0; 647 unlock_release: 648 spin_unlock(vmf->ptl); 649 release: 650 if (pgtable) 651 pte_free(vma->vm_mm, pgtable); 652 put_page(page); 653 return ret; 654 655 } 656 657 /* 658 * always: directly stall for all thp allocations 659 * defer: wake kswapd and fail if not immediately available 660 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 661 * fail if not immediately available 662 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 663 * available 664 * never: never stall for any thp allocation 665 */ 666 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 667 { 668 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 669 670 /* Always do synchronous compaction */ 671 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 672 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 673 674 /* Kick kcompactd and fail quickly */ 675 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 676 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 677 678 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 679 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 680 return GFP_TRANSHUGE_LIGHT | 681 (vma_madvised ? __GFP_DIRECT_RECLAIM : 682 __GFP_KSWAPD_RECLAIM); 683 684 /* Only do synchronous compaction if madvised */ 685 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 686 return GFP_TRANSHUGE_LIGHT | 687 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 688 689 return GFP_TRANSHUGE_LIGHT; 690 } 691 692 /* Caller must hold page table lock. */ 693 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 694 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 695 struct page *zero_page) 696 { 697 pmd_t entry; 698 if (!pmd_none(*pmd)) 699 return false; 700 entry = mk_pmd(zero_page, vma->vm_page_prot); 701 entry = pmd_mkhuge(entry); 702 if (pgtable) 703 pgtable_trans_huge_deposit(mm, pmd, pgtable); 704 set_pmd_at(mm, haddr, pmd, entry); 705 mm_inc_nr_ptes(mm); 706 return true; 707 } 708 709 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 710 { 711 struct vm_area_struct *vma = vmf->vma; 712 gfp_t gfp; 713 struct page *page; 714 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 715 716 if (!transhuge_vma_suitable(vma, haddr)) 717 return VM_FAULT_FALLBACK; 718 if (unlikely(anon_vma_prepare(vma))) 719 return VM_FAULT_OOM; 720 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 721 return VM_FAULT_OOM; 722 if (!(vmf->flags & FAULT_FLAG_WRITE) && 723 !mm_forbids_zeropage(vma->vm_mm) && 724 transparent_hugepage_use_zero_page()) { 725 pgtable_t pgtable; 726 struct page *zero_page; 727 vm_fault_t ret; 728 pgtable = pte_alloc_one(vma->vm_mm); 729 if (unlikely(!pgtable)) 730 return VM_FAULT_OOM; 731 zero_page = mm_get_huge_zero_page(vma->vm_mm); 732 if (unlikely(!zero_page)) { 733 pte_free(vma->vm_mm, pgtable); 734 count_vm_event(THP_FAULT_FALLBACK); 735 return VM_FAULT_FALLBACK; 736 } 737 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 738 ret = 0; 739 if (pmd_none(*vmf->pmd)) { 740 ret = check_stable_address_space(vma->vm_mm); 741 if (ret) { 742 spin_unlock(vmf->ptl); 743 pte_free(vma->vm_mm, pgtable); 744 } else if (userfaultfd_missing(vma)) { 745 spin_unlock(vmf->ptl); 746 pte_free(vma->vm_mm, pgtable); 747 ret = handle_userfault(vmf, VM_UFFD_MISSING); 748 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 749 } else { 750 set_huge_zero_page(pgtable, vma->vm_mm, vma, 751 haddr, vmf->pmd, zero_page); 752 spin_unlock(vmf->ptl); 753 } 754 } else { 755 spin_unlock(vmf->ptl); 756 pte_free(vma->vm_mm, pgtable); 757 } 758 return ret; 759 } 760 gfp = alloc_hugepage_direct_gfpmask(vma); 761 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 762 if (unlikely(!page)) { 763 count_vm_event(THP_FAULT_FALLBACK); 764 return VM_FAULT_FALLBACK; 765 } 766 prep_transhuge_page(page); 767 return __do_huge_pmd_anonymous_page(vmf, page, gfp); 768 } 769 770 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 771 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 772 pgtable_t pgtable) 773 { 774 struct mm_struct *mm = vma->vm_mm; 775 pmd_t entry; 776 spinlock_t *ptl; 777 778 ptl = pmd_lock(mm, pmd); 779 if (!pmd_none(*pmd)) { 780 if (write) { 781 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 782 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 783 goto out_unlock; 784 } 785 entry = pmd_mkyoung(*pmd); 786 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 787 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 788 update_mmu_cache_pmd(vma, addr, pmd); 789 } 790 791 goto out_unlock; 792 } 793 794 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 795 if (pfn_t_devmap(pfn)) 796 entry = pmd_mkdevmap(entry); 797 if (write) { 798 entry = pmd_mkyoung(pmd_mkdirty(entry)); 799 entry = maybe_pmd_mkwrite(entry, vma); 800 } 801 802 if (pgtable) { 803 pgtable_trans_huge_deposit(mm, pmd, pgtable); 804 mm_inc_nr_ptes(mm); 805 pgtable = NULL; 806 } 807 808 set_pmd_at(mm, addr, pmd, entry); 809 update_mmu_cache_pmd(vma, addr, pmd); 810 811 out_unlock: 812 spin_unlock(ptl); 813 if (pgtable) 814 pte_free(mm, pgtable); 815 } 816 817 /** 818 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn 819 * @vmf: Structure describing the fault 820 * @pfn: pfn to insert 821 * @pgprot: page protection to use 822 * @write: whether it's a write fault 823 * 824 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and 825 * also consult the vmf_insert_mixed_prot() documentation when 826 * @pgprot != @vmf->vma->vm_page_prot. 827 * 828 * Return: vm_fault_t value. 829 */ 830 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn, 831 pgprot_t pgprot, bool write) 832 { 833 unsigned long addr = vmf->address & PMD_MASK; 834 struct vm_area_struct *vma = vmf->vma; 835 pgtable_t pgtable = NULL; 836 837 /* 838 * If we had pmd_special, we could avoid all these restrictions, 839 * but we need to be consistent with PTEs and architectures that 840 * can't support a 'special' bit. 841 */ 842 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 843 !pfn_t_devmap(pfn)); 844 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 845 (VM_PFNMAP|VM_MIXEDMAP)); 846 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 847 848 if (addr < vma->vm_start || addr >= vma->vm_end) 849 return VM_FAULT_SIGBUS; 850 851 if (arch_needs_pgtable_deposit()) { 852 pgtable = pte_alloc_one(vma->vm_mm); 853 if (!pgtable) 854 return VM_FAULT_OOM; 855 } 856 857 track_pfn_insert(vma, &pgprot, pfn); 858 859 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 860 return VM_FAULT_NOPAGE; 861 } 862 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot); 863 864 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 865 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 866 { 867 if (likely(vma->vm_flags & VM_WRITE)) 868 pud = pud_mkwrite(pud); 869 return pud; 870 } 871 872 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 873 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write) 874 { 875 struct mm_struct *mm = vma->vm_mm; 876 pud_t entry; 877 spinlock_t *ptl; 878 879 ptl = pud_lock(mm, pud); 880 if (!pud_none(*pud)) { 881 if (write) { 882 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 883 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 884 goto out_unlock; 885 } 886 entry = pud_mkyoung(*pud); 887 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 888 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 889 update_mmu_cache_pud(vma, addr, pud); 890 } 891 goto out_unlock; 892 } 893 894 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 895 if (pfn_t_devmap(pfn)) 896 entry = pud_mkdevmap(entry); 897 if (write) { 898 entry = pud_mkyoung(pud_mkdirty(entry)); 899 entry = maybe_pud_mkwrite(entry, vma); 900 } 901 set_pud_at(mm, addr, pud, entry); 902 update_mmu_cache_pud(vma, addr, pud); 903 904 out_unlock: 905 spin_unlock(ptl); 906 } 907 908 /** 909 * vmf_insert_pfn_pud_prot - insert a pud size pfn 910 * @vmf: Structure describing the fault 911 * @pfn: pfn to insert 912 * @pgprot: page protection to use 913 * @write: whether it's a write fault 914 * 915 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and 916 * also consult the vmf_insert_mixed_prot() documentation when 917 * @pgprot != @vmf->vma->vm_page_prot. 918 * 919 * Return: vm_fault_t value. 920 */ 921 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn, 922 pgprot_t pgprot, bool write) 923 { 924 unsigned long addr = vmf->address & PUD_MASK; 925 struct vm_area_struct *vma = vmf->vma; 926 927 /* 928 * If we had pud_special, we could avoid all these restrictions, 929 * but we need to be consistent with PTEs and architectures that 930 * can't support a 'special' bit. 931 */ 932 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 933 !pfn_t_devmap(pfn)); 934 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 935 (VM_PFNMAP|VM_MIXEDMAP)); 936 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 937 938 if (addr < vma->vm_start || addr >= vma->vm_end) 939 return VM_FAULT_SIGBUS; 940 941 track_pfn_insert(vma, &pgprot, pfn); 942 943 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write); 944 return VM_FAULT_NOPAGE; 945 } 946 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot); 947 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 948 949 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 950 pmd_t *pmd, int flags) 951 { 952 pmd_t _pmd; 953 954 _pmd = pmd_mkyoung(*pmd); 955 if (flags & FOLL_WRITE) 956 _pmd = pmd_mkdirty(_pmd); 957 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 958 pmd, _pmd, flags & FOLL_WRITE)) 959 update_mmu_cache_pmd(vma, addr, pmd); 960 } 961 962 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 963 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 964 { 965 unsigned long pfn = pmd_pfn(*pmd); 966 struct mm_struct *mm = vma->vm_mm; 967 struct page *page; 968 969 assert_spin_locked(pmd_lockptr(mm, pmd)); 970 971 /* 972 * When we COW a devmap PMD entry, we split it into PTEs, so we should 973 * not be in this function with `flags & FOLL_COW` set. 974 */ 975 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set"); 976 977 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 978 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 979 (FOLL_PIN | FOLL_GET))) 980 return NULL; 981 982 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 983 return NULL; 984 985 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 986 /* pass */; 987 else 988 return NULL; 989 990 if (flags & FOLL_TOUCH) 991 touch_pmd(vma, addr, pmd, flags); 992 993 /* 994 * device mapped pages can only be returned if the 995 * caller will manage the page reference count. 996 */ 997 if (!(flags & (FOLL_GET | FOLL_PIN))) 998 return ERR_PTR(-EEXIST); 999 1000 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1001 *pgmap = get_dev_pagemap(pfn, *pgmap); 1002 if (!*pgmap) 1003 return ERR_PTR(-EFAULT); 1004 page = pfn_to_page(pfn); 1005 if (!try_grab_page(page, flags)) 1006 page = ERR_PTR(-ENOMEM); 1007 1008 return page; 1009 } 1010 1011 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1012 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1013 struct vm_area_struct *vma) 1014 { 1015 spinlock_t *dst_ptl, *src_ptl; 1016 struct page *src_page; 1017 pmd_t pmd; 1018 pgtable_t pgtable = NULL; 1019 int ret = -ENOMEM; 1020 1021 /* Skip if can be re-fill on fault */ 1022 if (!vma_is_anonymous(vma)) 1023 return 0; 1024 1025 pgtable = pte_alloc_one(dst_mm); 1026 if (unlikely(!pgtable)) 1027 goto out; 1028 1029 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1030 src_ptl = pmd_lockptr(src_mm, src_pmd); 1031 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1032 1033 ret = -EAGAIN; 1034 pmd = *src_pmd; 1035 1036 /* 1037 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 1038 * does not have the VM_UFFD_WP, which means that the uffd 1039 * fork event is not enabled. 1040 */ 1041 if (!(vma->vm_flags & VM_UFFD_WP)) 1042 pmd = pmd_clear_uffd_wp(pmd); 1043 1044 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1045 if (unlikely(is_swap_pmd(pmd))) { 1046 swp_entry_t entry = pmd_to_swp_entry(pmd); 1047 1048 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1049 if (is_write_migration_entry(entry)) { 1050 make_migration_entry_read(&entry); 1051 pmd = swp_entry_to_pmd(entry); 1052 if (pmd_swp_soft_dirty(*src_pmd)) 1053 pmd = pmd_swp_mksoft_dirty(pmd); 1054 set_pmd_at(src_mm, addr, src_pmd, pmd); 1055 } 1056 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1057 mm_inc_nr_ptes(dst_mm); 1058 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1059 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1060 ret = 0; 1061 goto out_unlock; 1062 } 1063 #endif 1064 1065 if (unlikely(!pmd_trans_huge(pmd))) { 1066 pte_free(dst_mm, pgtable); 1067 goto out_unlock; 1068 } 1069 /* 1070 * When page table lock is held, the huge zero pmd should not be 1071 * under splitting since we don't split the page itself, only pmd to 1072 * a page table. 1073 */ 1074 if (is_huge_zero_pmd(pmd)) { 1075 struct page *zero_page; 1076 /* 1077 * get_huge_zero_page() will never allocate a new page here, 1078 * since we already have a zero page to copy. It just takes a 1079 * reference. 1080 */ 1081 zero_page = mm_get_huge_zero_page(dst_mm); 1082 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 1083 zero_page); 1084 ret = 0; 1085 goto out_unlock; 1086 } 1087 1088 src_page = pmd_page(pmd); 1089 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1090 1091 /* 1092 * If this page is a potentially pinned page, split and retry the fault 1093 * with smaller page size. Normally this should not happen because the 1094 * userspace should use MADV_DONTFORK upon pinned regions. This is a 1095 * best effort that the pinned pages won't be replaced by another 1096 * random page during the coming copy-on-write. 1097 */ 1098 if (unlikely(is_cow_mapping(vma->vm_flags) && 1099 atomic_read(&src_mm->has_pinned) && 1100 page_maybe_dma_pinned(src_page))) { 1101 pte_free(dst_mm, pgtable); 1102 spin_unlock(src_ptl); 1103 spin_unlock(dst_ptl); 1104 __split_huge_pmd(vma, src_pmd, addr, false, NULL); 1105 return -EAGAIN; 1106 } 1107 1108 get_page(src_page); 1109 page_dup_rmap(src_page, true); 1110 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1111 mm_inc_nr_ptes(dst_mm); 1112 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1113 1114 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1115 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1116 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1117 1118 ret = 0; 1119 out_unlock: 1120 spin_unlock(src_ptl); 1121 spin_unlock(dst_ptl); 1122 out: 1123 return ret; 1124 } 1125 1126 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1127 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1128 pud_t *pud, int flags) 1129 { 1130 pud_t _pud; 1131 1132 _pud = pud_mkyoung(*pud); 1133 if (flags & FOLL_WRITE) 1134 _pud = pud_mkdirty(_pud); 1135 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1136 pud, _pud, flags & FOLL_WRITE)) 1137 update_mmu_cache_pud(vma, addr, pud); 1138 } 1139 1140 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1141 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1142 { 1143 unsigned long pfn = pud_pfn(*pud); 1144 struct mm_struct *mm = vma->vm_mm; 1145 struct page *page; 1146 1147 assert_spin_locked(pud_lockptr(mm, pud)); 1148 1149 if (flags & FOLL_WRITE && !pud_write(*pud)) 1150 return NULL; 1151 1152 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1153 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 1154 (FOLL_PIN | FOLL_GET))) 1155 return NULL; 1156 1157 if (pud_present(*pud) && pud_devmap(*pud)) 1158 /* pass */; 1159 else 1160 return NULL; 1161 1162 if (flags & FOLL_TOUCH) 1163 touch_pud(vma, addr, pud, flags); 1164 1165 /* 1166 * device mapped pages can only be returned if the 1167 * caller will manage the page reference count. 1168 * 1169 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1170 */ 1171 if (!(flags & (FOLL_GET | FOLL_PIN))) 1172 return ERR_PTR(-EEXIST); 1173 1174 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1175 *pgmap = get_dev_pagemap(pfn, *pgmap); 1176 if (!*pgmap) 1177 return ERR_PTR(-EFAULT); 1178 page = pfn_to_page(pfn); 1179 if (!try_grab_page(page, flags)) 1180 page = ERR_PTR(-ENOMEM); 1181 1182 return page; 1183 } 1184 1185 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1186 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1187 struct vm_area_struct *vma) 1188 { 1189 spinlock_t *dst_ptl, *src_ptl; 1190 pud_t pud; 1191 int ret; 1192 1193 dst_ptl = pud_lock(dst_mm, dst_pud); 1194 src_ptl = pud_lockptr(src_mm, src_pud); 1195 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1196 1197 ret = -EAGAIN; 1198 pud = *src_pud; 1199 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1200 goto out_unlock; 1201 1202 /* 1203 * When page table lock is held, the huge zero pud should not be 1204 * under splitting since we don't split the page itself, only pud to 1205 * a page table. 1206 */ 1207 if (is_huge_zero_pud(pud)) { 1208 /* No huge zero pud yet */ 1209 } 1210 1211 /* Please refer to comments in copy_huge_pmd() */ 1212 if (unlikely(is_cow_mapping(vma->vm_flags) && 1213 atomic_read(&src_mm->has_pinned) && 1214 page_maybe_dma_pinned(pud_page(pud)))) { 1215 spin_unlock(src_ptl); 1216 spin_unlock(dst_ptl); 1217 __split_huge_pud(vma, src_pud, addr); 1218 return -EAGAIN; 1219 } 1220 1221 pudp_set_wrprotect(src_mm, addr, src_pud); 1222 pud = pud_mkold(pud_wrprotect(pud)); 1223 set_pud_at(dst_mm, addr, dst_pud, pud); 1224 1225 ret = 0; 1226 out_unlock: 1227 spin_unlock(src_ptl); 1228 spin_unlock(dst_ptl); 1229 return ret; 1230 } 1231 1232 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1233 { 1234 pud_t entry; 1235 unsigned long haddr; 1236 bool write = vmf->flags & FAULT_FLAG_WRITE; 1237 1238 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1239 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1240 goto unlock; 1241 1242 entry = pud_mkyoung(orig_pud); 1243 if (write) 1244 entry = pud_mkdirty(entry); 1245 haddr = vmf->address & HPAGE_PUD_MASK; 1246 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write)) 1247 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud); 1248 1249 unlock: 1250 spin_unlock(vmf->ptl); 1251 } 1252 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1253 1254 void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd) 1255 { 1256 pmd_t entry; 1257 unsigned long haddr; 1258 bool write = vmf->flags & FAULT_FLAG_WRITE; 1259 1260 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1261 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) 1262 goto unlock; 1263 1264 entry = pmd_mkyoung(orig_pmd); 1265 if (write) 1266 entry = pmd_mkdirty(entry); 1267 haddr = vmf->address & HPAGE_PMD_MASK; 1268 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write)) 1269 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd); 1270 1271 unlock: 1272 spin_unlock(vmf->ptl); 1273 } 1274 1275 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd) 1276 { 1277 struct vm_area_struct *vma = vmf->vma; 1278 struct page *page; 1279 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1280 1281 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1282 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1283 1284 if (is_huge_zero_pmd(orig_pmd)) 1285 goto fallback; 1286 1287 spin_lock(vmf->ptl); 1288 1289 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1290 spin_unlock(vmf->ptl); 1291 return 0; 1292 } 1293 1294 page = pmd_page(orig_pmd); 1295 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 1296 1297 /* Lock page for reuse_swap_page() */ 1298 if (!trylock_page(page)) { 1299 get_page(page); 1300 spin_unlock(vmf->ptl); 1301 lock_page(page); 1302 spin_lock(vmf->ptl); 1303 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1304 spin_unlock(vmf->ptl); 1305 unlock_page(page); 1306 put_page(page); 1307 return 0; 1308 } 1309 put_page(page); 1310 } 1311 1312 /* 1313 * We can only reuse the page if nobody else maps the huge page or it's 1314 * part. 1315 */ 1316 if (reuse_swap_page(page, NULL)) { 1317 pmd_t entry; 1318 entry = pmd_mkyoung(orig_pmd); 1319 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1320 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1321 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1322 unlock_page(page); 1323 spin_unlock(vmf->ptl); 1324 return VM_FAULT_WRITE; 1325 } 1326 1327 unlock_page(page); 1328 spin_unlock(vmf->ptl); 1329 fallback: 1330 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1331 return VM_FAULT_FALLBACK; 1332 } 1333 1334 /* 1335 * FOLL_FORCE can write to even unwritable pmd's, but only 1336 * after we've gone through a COW cycle and they are dirty. 1337 */ 1338 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags) 1339 { 1340 return pmd_write(pmd) || 1341 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd)); 1342 } 1343 1344 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1345 unsigned long addr, 1346 pmd_t *pmd, 1347 unsigned int flags) 1348 { 1349 struct mm_struct *mm = vma->vm_mm; 1350 struct page *page = NULL; 1351 1352 assert_spin_locked(pmd_lockptr(mm, pmd)); 1353 1354 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags)) 1355 goto out; 1356 1357 /* Avoid dumping huge zero page */ 1358 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1359 return ERR_PTR(-EFAULT); 1360 1361 /* Full NUMA hinting faults to serialise migration in fault paths */ 1362 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1363 goto out; 1364 1365 page = pmd_page(*pmd); 1366 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1367 1368 if (!try_grab_page(page, flags)) 1369 return ERR_PTR(-ENOMEM); 1370 1371 if (flags & FOLL_TOUCH) 1372 touch_pmd(vma, addr, pmd, flags); 1373 1374 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1375 /* 1376 * We don't mlock() pte-mapped THPs. This way we can avoid 1377 * leaking mlocked pages into non-VM_LOCKED VMAs. 1378 * 1379 * For anon THP: 1380 * 1381 * In most cases the pmd is the only mapping of the page as we 1382 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1383 * writable private mappings in populate_vma_page_range(). 1384 * 1385 * The only scenario when we have the page shared here is if we 1386 * mlocking read-only mapping shared over fork(). We skip 1387 * mlocking such pages. 1388 * 1389 * For file THP: 1390 * 1391 * We can expect PageDoubleMap() to be stable under page lock: 1392 * for file pages we set it in page_add_file_rmap(), which 1393 * requires page to be locked. 1394 */ 1395 1396 if (PageAnon(page) && compound_mapcount(page) != 1) 1397 goto skip_mlock; 1398 if (PageDoubleMap(page) || !page->mapping) 1399 goto skip_mlock; 1400 if (!trylock_page(page)) 1401 goto skip_mlock; 1402 if (page->mapping && !PageDoubleMap(page)) 1403 mlock_vma_page(page); 1404 unlock_page(page); 1405 } 1406 skip_mlock: 1407 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1408 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1409 1410 out: 1411 return page; 1412 } 1413 1414 /* NUMA hinting page fault entry point for trans huge pmds */ 1415 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd) 1416 { 1417 struct vm_area_struct *vma = vmf->vma; 1418 struct anon_vma *anon_vma = NULL; 1419 struct page *page; 1420 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1421 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id(); 1422 int target_nid, last_cpupid = -1; 1423 bool page_locked; 1424 bool migrated = false; 1425 bool was_writable; 1426 int flags = 0; 1427 1428 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1429 if (unlikely(!pmd_same(pmd, *vmf->pmd))) 1430 goto out_unlock; 1431 1432 /* 1433 * If there are potential migrations, wait for completion and retry 1434 * without disrupting NUMA hinting information. Do not relock and 1435 * check_same as the page may no longer be mapped. 1436 */ 1437 if (unlikely(pmd_trans_migrating(*vmf->pmd))) { 1438 page = pmd_page(*vmf->pmd); 1439 if (!get_page_unless_zero(page)) 1440 goto out_unlock; 1441 spin_unlock(vmf->ptl); 1442 put_and_wait_on_page_locked(page); 1443 goto out; 1444 } 1445 1446 page = pmd_page(pmd); 1447 BUG_ON(is_huge_zero_page(page)); 1448 page_nid = page_to_nid(page); 1449 last_cpupid = page_cpupid_last(page); 1450 count_vm_numa_event(NUMA_HINT_FAULTS); 1451 if (page_nid == this_nid) { 1452 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1453 flags |= TNF_FAULT_LOCAL; 1454 } 1455 1456 /* See similar comment in do_numa_page for explanation */ 1457 if (!pmd_savedwrite(pmd)) 1458 flags |= TNF_NO_GROUP; 1459 1460 /* 1461 * Acquire the page lock to serialise THP migrations but avoid dropping 1462 * page_table_lock if at all possible 1463 */ 1464 page_locked = trylock_page(page); 1465 target_nid = mpol_misplaced(page, vma, haddr); 1466 if (target_nid == NUMA_NO_NODE) { 1467 /* If the page was locked, there are no parallel migrations */ 1468 if (page_locked) 1469 goto clear_pmdnuma; 1470 } 1471 1472 /* Migration could have started since the pmd_trans_migrating check */ 1473 if (!page_locked) { 1474 page_nid = NUMA_NO_NODE; 1475 if (!get_page_unless_zero(page)) 1476 goto out_unlock; 1477 spin_unlock(vmf->ptl); 1478 put_and_wait_on_page_locked(page); 1479 goto out; 1480 } 1481 1482 /* 1483 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1484 * to serialises splits 1485 */ 1486 get_page(page); 1487 spin_unlock(vmf->ptl); 1488 anon_vma = page_lock_anon_vma_read(page); 1489 1490 /* Confirm the PMD did not change while page_table_lock was released */ 1491 spin_lock(vmf->ptl); 1492 if (unlikely(!pmd_same(pmd, *vmf->pmd))) { 1493 unlock_page(page); 1494 put_page(page); 1495 page_nid = NUMA_NO_NODE; 1496 goto out_unlock; 1497 } 1498 1499 /* Bail if we fail to protect against THP splits for any reason */ 1500 if (unlikely(!anon_vma)) { 1501 put_page(page); 1502 page_nid = NUMA_NO_NODE; 1503 goto clear_pmdnuma; 1504 } 1505 1506 /* 1507 * Since we took the NUMA fault, we must have observed the !accessible 1508 * bit. Make sure all other CPUs agree with that, to avoid them 1509 * modifying the page we're about to migrate. 1510 * 1511 * Must be done under PTL such that we'll observe the relevant 1512 * inc_tlb_flush_pending(). 1513 * 1514 * We are not sure a pending tlb flush here is for a huge page 1515 * mapping or not. Hence use the tlb range variant 1516 */ 1517 if (mm_tlb_flush_pending(vma->vm_mm)) { 1518 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE); 1519 /* 1520 * change_huge_pmd() released the pmd lock before 1521 * invalidating the secondary MMUs sharing the primary 1522 * MMU pagetables (with ->invalidate_range()). The 1523 * mmu_notifier_invalidate_range_end() (which 1524 * internally calls ->invalidate_range()) in 1525 * change_pmd_range() will run after us, so we can't 1526 * rely on it here and we need an explicit invalidate. 1527 */ 1528 mmu_notifier_invalidate_range(vma->vm_mm, haddr, 1529 haddr + HPAGE_PMD_SIZE); 1530 } 1531 1532 /* 1533 * Migrate the THP to the requested node, returns with page unlocked 1534 * and access rights restored. 1535 */ 1536 spin_unlock(vmf->ptl); 1537 1538 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1539 vmf->pmd, pmd, vmf->address, page, target_nid); 1540 if (migrated) { 1541 flags |= TNF_MIGRATED; 1542 page_nid = target_nid; 1543 } else 1544 flags |= TNF_MIGRATE_FAIL; 1545 1546 goto out; 1547 clear_pmdnuma: 1548 BUG_ON(!PageLocked(page)); 1549 was_writable = pmd_savedwrite(pmd); 1550 pmd = pmd_modify(pmd, vma->vm_page_prot); 1551 pmd = pmd_mkyoung(pmd); 1552 if (was_writable) 1553 pmd = pmd_mkwrite(pmd); 1554 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1555 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1556 unlock_page(page); 1557 out_unlock: 1558 spin_unlock(vmf->ptl); 1559 1560 out: 1561 if (anon_vma) 1562 page_unlock_anon_vma_read(anon_vma); 1563 1564 if (page_nid != NUMA_NO_NODE) 1565 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, 1566 flags); 1567 1568 return 0; 1569 } 1570 1571 /* 1572 * Return true if we do MADV_FREE successfully on entire pmd page. 1573 * Otherwise, return false. 1574 */ 1575 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1576 pmd_t *pmd, unsigned long addr, unsigned long next) 1577 { 1578 spinlock_t *ptl; 1579 pmd_t orig_pmd; 1580 struct page *page; 1581 struct mm_struct *mm = tlb->mm; 1582 bool ret = false; 1583 1584 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1585 1586 ptl = pmd_trans_huge_lock(pmd, vma); 1587 if (!ptl) 1588 goto out_unlocked; 1589 1590 orig_pmd = *pmd; 1591 if (is_huge_zero_pmd(orig_pmd)) 1592 goto out; 1593 1594 if (unlikely(!pmd_present(orig_pmd))) { 1595 VM_BUG_ON(thp_migration_supported() && 1596 !is_pmd_migration_entry(orig_pmd)); 1597 goto out; 1598 } 1599 1600 page = pmd_page(orig_pmd); 1601 /* 1602 * If other processes are mapping this page, we couldn't discard 1603 * the page unless they all do MADV_FREE so let's skip the page. 1604 */ 1605 if (page_mapcount(page) != 1) 1606 goto out; 1607 1608 if (!trylock_page(page)) 1609 goto out; 1610 1611 /* 1612 * If user want to discard part-pages of THP, split it so MADV_FREE 1613 * will deactivate only them. 1614 */ 1615 if (next - addr != HPAGE_PMD_SIZE) { 1616 get_page(page); 1617 spin_unlock(ptl); 1618 split_huge_page(page); 1619 unlock_page(page); 1620 put_page(page); 1621 goto out_unlocked; 1622 } 1623 1624 if (PageDirty(page)) 1625 ClearPageDirty(page); 1626 unlock_page(page); 1627 1628 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1629 pmdp_invalidate(vma, addr, pmd); 1630 orig_pmd = pmd_mkold(orig_pmd); 1631 orig_pmd = pmd_mkclean(orig_pmd); 1632 1633 set_pmd_at(mm, addr, pmd, orig_pmd); 1634 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1635 } 1636 1637 mark_page_lazyfree(page); 1638 ret = true; 1639 out: 1640 spin_unlock(ptl); 1641 out_unlocked: 1642 return ret; 1643 } 1644 1645 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1646 { 1647 pgtable_t pgtable; 1648 1649 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1650 pte_free(mm, pgtable); 1651 mm_dec_nr_ptes(mm); 1652 } 1653 1654 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1655 pmd_t *pmd, unsigned long addr) 1656 { 1657 pmd_t orig_pmd; 1658 spinlock_t *ptl; 1659 1660 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1661 1662 ptl = __pmd_trans_huge_lock(pmd, vma); 1663 if (!ptl) 1664 return 0; 1665 /* 1666 * For architectures like ppc64 we look at deposited pgtable 1667 * when calling pmdp_huge_get_and_clear. So do the 1668 * pgtable_trans_huge_withdraw after finishing pmdp related 1669 * operations. 1670 */ 1671 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1672 tlb->fullmm); 1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1674 if (vma_is_special_huge(vma)) { 1675 if (arch_needs_pgtable_deposit()) 1676 zap_deposited_table(tlb->mm, pmd); 1677 spin_unlock(ptl); 1678 if (is_huge_zero_pmd(orig_pmd)) 1679 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1680 } else if (is_huge_zero_pmd(orig_pmd)) { 1681 zap_deposited_table(tlb->mm, pmd); 1682 spin_unlock(ptl); 1683 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE); 1684 } else { 1685 struct page *page = NULL; 1686 int flush_needed = 1; 1687 1688 if (pmd_present(orig_pmd)) { 1689 page = pmd_page(orig_pmd); 1690 page_remove_rmap(page, true); 1691 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1692 VM_BUG_ON_PAGE(!PageHead(page), page); 1693 } else if (thp_migration_supported()) { 1694 swp_entry_t entry; 1695 1696 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1697 entry = pmd_to_swp_entry(orig_pmd); 1698 page = pfn_to_page(swp_offset(entry)); 1699 flush_needed = 0; 1700 } else 1701 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1702 1703 if (PageAnon(page)) { 1704 zap_deposited_table(tlb->mm, pmd); 1705 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1706 } else { 1707 if (arch_needs_pgtable_deposit()) 1708 zap_deposited_table(tlb->mm, pmd); 1709 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1710 } 1711 1712 spin_unlock(ptl); 1713 if (flush_needed) 1714 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1715 } 1716 return 1; 1717 } 1718 1719 #ifndef pmd_move_must_withdraw 1720 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1721 spinlock_t *old_pmd_ptl, 1722 struct vm_area_struct *vma) 1723 { 1724 /* 1725 * With split pmd lock we also need to move preallocated 1726 * PTE page table if new_pmd is on different PMD page table. 1727 * 1728 * We also don't deposit and withdraw tables for file pages. 1729 */ 1730 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1731 } 1732 #endif 1733 1734 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1735 { 1736 #ifdef CONFIG_MEM_SOFT_DIRTY 1737 if (unlikely(is_pmd_migration_entry(pmd))) 1738 pmd = pmd_swp_mksoft_dirty(pmd); 1739 else if (pmd_present(pmd)) 1740 pmd = pmd_mksoft_dirty(pmd); 1741 #endif 1742 return pmd; 1743 } 1744 1745 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1746 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1747 { 1748 spinlock_t *old_ptl, *new_ptl; 1749 pmd_t pmd; 1750 struct mm_struct *mm = vma->vm_mm; 1751 bool force_flush = false; 1752 1753 /* 1754 * The destination pmd shouldn't be established, free_pgtables() 1755 * should have release it. 1756 */ 1757 if (WARN_ON(!pmd_none(*new_pmd))) { 1758 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1759 return false; 1760 } 1761 1762 /* 1763 * We don't have to worry about the ordering of src and dst 1764 * ptlocks because exclusive mmap_lock prevents deadlock. 1765 */ 1766 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1767 if (old_ptl) { 1768 new_ptl = pmd_lockptr(mm, new_pmd); 1769 if (new_ptl != old_ptl) 1770 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1771 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1772 if (pmd_present(pmd)) 1773 force_flush = true; 1774 VM_BUG_ON(!pmd_none(*new_pmd)); 1775 1776 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1777 pgtable_t pgtable; 1778 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1779 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1780 } 1781 pmd = move_soft_dirty_pmd(pmd); 1782 set_pmd_at(mm, new_addr, new_pmd, pmd); 1783 if (force_flush) 1784 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1785 if (new_ptl != old_ptl) 1786 spin_unlock(new_ptl); 1787 spin_unlock(old_ptl); 1788 return true; 1789 } 1790 return false; 1791 } 1792 1793 /* 1794 * Returns 1795 * - 0 if PMD could not be locked 1796 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1797 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1798 */ 1799 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1800 unsigned long addr, pgprot_t newprot, unsigned long cp_flags) 1801 { 1802 struct mm_struct *mm = vma->vm_mm; 1803 spinlock_t *ptl; 1804 pmd_t entry; 1805 bool preserve_write; 1806 int ret; 1807 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 1808 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 1809 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 1810 1811 ptl = __pmd_trans_huge_lock(pmd, vma); 1812 if (!ptl) 1813 return 0; 1814 1815 preserve_write = prot_numa && pmd_write(*pmd); 1816 ret = 1; 1817 1818 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1819 if (is_swap_pmd(*pmd)) { 1820 swp_entry_t entry = pmd_to_swp_entry(*pmd); 1821 1822 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 1823 if (is_write_migration_entry(entry)) { 1824 pmd_t newpmd; 1825 /* 1826 * A protection check is difficult so 1827 * just be safe and disable write 1828 */ 1829 make_migration_entry_read(&entry); 1830 newpmd = swp_entry_to_pmd(entry); 1831 if (pmd_swp_soft_dirty(*pmd)) 1832 newpmd = pmd_swp_mksoft_dirty(newpmd); 1833 set_pmd_at(mm, addr, pmd, newpmd); 1834 } 1835 goto unlock; 1836 } 1837 #endif 1838 1839 /* 1840 * Avoid trapping faults against the zero page. The read-only 1841 * data is likely to be read-cached on the local CPU and 1842 * local/remote hits to the zero page are not interesting. 1843 */ 1844 if (prot_numa && is_huge_zero_pmd(*pmd)) 1845 goto unlock; 1846 1847 if (prot_numa && pmd_protnone(*pmd)) 1848 goto unlock; 1849 1850 /* 1851 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 1852 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 1853 * which is also under mmap_read_lock(mm): 1854 * 1855 * CPU0: CPU1: 1856 * change_huge_pmd(prot_numa=1) 1857 * pmdp_huge_get_and_clear_notify() 1858 * madvise_dontneed() 1859 * zap_pmd_range() 1860 * pmd_trans_huge(*pmd) == 0 (without ptl) 1861 * // skip the pmd 1862 * set_pmd_at(); 1863 * // pmd is re-established 1864 * 1865 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 1866 * which may break userspace. 1867 * 1868 * pmdp_invalidate() is required to make sure we don't miss 1869 * dirty/young flags set by hardware. 1870 */ 1871 entry = pmdp_invalidate(vma, addr, pmd); 1872 1873 entry = pmd_modify(entry, newprot); 1874 if (preserve_write) 1875 entry = pmd_mk_savedwrite(entry); 1876 if (uffd_wp) { 1877 entry = pmd_wrprotect(entry); 1878 entry = pmd_mkuffd_wp(entry); 1879 } else if (uffd_wp_resolve) { 1880 /* 1881 * Leave the write bit to be handled by PF interrupt 1882 * handler, then things like COW could be properly 1883 * handled. 1884 */ 1885 entry = pmd_clear_uffd_wp(entry); 1886 } 1887 ret = HPAGE_PMD_NR; 1888 set_pmd_at(mm, addr, pmd, entry); 1889 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry)); 1890 unlock: 1891 spin_unlock(ptl); 1892 return ret; 1893 } 1894 1895 /* 1896 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1897 * 1898 * Note that if it returns page table lock pointer, this routine returns without 1899 * unlocking page table lock. So callers must unlock it. 1900 */ 1901 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1902 { 1903 spinlock_t *ptl; 1904 ptl = pmd_lock(vma->vm_mm, pmd); 1905 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 1906 pmd_devmap(*pmd))) 1907 return ptl; 1908 spin_unlock(ptl); 1909 return NULL; 1910 } 1911 1912 /* 1913 * Returns true if a given pud maps a thp, false otherwise. 1914 * 1915 * Note that if it returns true, this routine returns without unlocking page 1916 * table lock. So callers must unlock it. 1917 */ 1918 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 1919 { 1920 spinlock_t *ptl; 1921 1922 ptl = pud_lock(vma->vm_mm, pud); 1923 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 1924 return ptl; 1925 spin_unlock(ptl); 1926 return NULL; 1927 } 1928 1929 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1930 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 1931 pud_t *pud, unsigned long addr) 1932 { 1933 spinlock_t *ptl; 1934 1935 ptl = __pud_trans_huge_lock(pud, vma); 1936 if (!ptl) 1937 return 0; 1938 /* 1939 * For architectures like ppc64 we look at deposited pgtable 1940 * when calling pudp_huge_get_and_clear. So do the 1941 * pgtable_trans_huge_withdraw after finishing pudp related 1942 * operations. 1943 */ 1944 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm); 1945 tlb_remove_pud_tlb_entry(tlb, pud, addr); 1946 if (vma_is_special_huge(vma)) { 1947 spin_unlock(ptl); 1948 /* No zero page support yet */ 1949 } else { 1950 /* No support for anonymous PUD pages yet */ 1951 BUG(); 1952 } 1953 return 1; 1954 } 1955 1956 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 1957 unsigned long haddr) 1958 { 1959 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 1960 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1961 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 1962 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 1963 1964 count_vm_event(THP_SPLIT_PUD); 1965 1966 pudp_huge_clear_flush_notify(vma, haddr, pud); 1967 } 1968 1969 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 1970 unsigned long address) 1971 { 1972 spinlock_t *ptl; 1973 struct mmu_notifier_range range; 1974 1975 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1976 address & HPAGE_PUD_MASK, 1977 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 1978 mmu_notifier_invalidate_range_start(&range); 1979 ptl = pud_lock(vma->vm_mm, pud); 1980 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 1981 goto out; 1982 __split_huge_pud_locked(vma, pud, range.start); 1983 1984 out: 1985 spin_unlock(ptl); 1986 /* 1987 * No need to double call mmu_notifier->invalidate_range() callback as 1988 * the above pudp_huge_clear_flush_notify() did already call it. 1989 */ 1990 mmu_notifier_invalidate_range_only_end(&range); 1991 } 1992 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1993 1994 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1995 unsigned long haddr, pmd_t *pmd) 1996 { 1997 struct mm_struct *mm = vma->vm_mm; 1998 pgtable_t pgtable; 1999 pmd_t _pmd; 2000 int i; 2001 2002 /* 2003 * Leave pmd empty until pte is filled note that it is fine to delay 2004 * notification until mmu_notifier_invalidate_range_end() as we are 2005 * replacing a zero pmd write protected page with a zero pte write 2006 * protected page. 2007 * 2008 * See Documentation/vm/mmu_notifier.rst 2009 */ 2010 pmdp_huge_clear_flush(vma, haddr, pmd); 2011 2012 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2013 pmd_populate(mm, &_pmd, pgtable); 2014 2015 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 2016 pte_t *pte, entry; 2017 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 2018 entry = pte_mkspecial(entry); 2019 pte = pte_offset_map(&_pmd, haddr); 2020 VM_BUG_ON(!pte_none(*pte)); 2021 set_pte_at(mm, haddr, pte, entry); 2022 pte_unmap(pte); 2023 } 2024 smp_wmb(); /* make pte visible before pmd */ 2025 pmd_populate(mm, pmd, pgtable); 2026 } 2027 2028 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2029 unsigned long haddr, bool freeze) 2030 { 2031 struct mm_struct *mm = vma->vm_mm; 2032 struct page *page; 2033 pgtable_t pgtable; 2034 pmd_t old_pmd, _pmd; 2035 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2036 unsigned long addr; 2037 int i; 2038 2039 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2040 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2041 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2042 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2043 && !pmd_devmap(*pmd)); 2044 2045 count_vm_event(THP_SPLIT_PMD); 2046 2047 if (!vma_is_anonymous(vma)) { 2048 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 2049 /* 2050 * We are going to unmap this huge page. So 2051 * just go ahead and zap it 2052 */ 2053 if (arch_needs_pgtable_deposit()) 2054 zap_deposited_table(mm, pmd); 2055 if (vma_is_special_huge(vma)) 2056 return; 2057 page = pmd_page(_pmd); 2058 if (!PageDirty(page) && pmd_dirty(_pmd)) 2059 set_page_dirty(page); 2060 if (!PageReferenced(page) && pmd_young(_pmd)) 2061 SetPageReferenced(page); 2062 page_remove_rmap(page, true); 2063 put_page(page); 2064 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2065 return; 2066 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) { 2067 /* 2068 * FIXME: Do we want to invalidate secondary mmu by calling 2069 * mmu_notifier_invalidate_range() see comments below inside 2070 * __split_huge_pmd() ? 2071 * 2072 * We are going from a zero huge page write protected to zero 2073 * small page also write protected so it does not seems useful 2074 * to invalidate secondary mmu at this time. 2075 */ 2076 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2077 } 2078 2079 /* 2080 * Up to this point the pmd is present and huge and userland has the 2081 * whole access to the hugepage during the split (which happens in 2082 * place). If we overwrite the pmd with the not-huge version pointing 2083 * to the pte here (which of course we could if all CPUs were bug 2084 * free), userland could trigger a small page size TLB miss on the 2085 * small sized TLB while the hugepage TLB entry is still established in 2086 * the huge TLB. Some CPU doesn't like that. 2087 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2088 * 383 on page 105. Intel should be safe but is also warns that it's 2089 * only safe if the permission and cache attributes of the two entries 2090 * loaded in the two TLB is identical (which should be the case here). 2091 * But it is generally safer to never allow small and huge TLB entries 2092 * for the same virtual address to be loaded simultaneously. So instead 2093 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2094 * current pmd notpresent (atomically because here the pmd_trans_huge 2095 * must remain set at all times on the pmd until the split is complete 2096 * for this pmd), then we flush the SMP TLB and finally we write the 2097 * non-huge version of the pmd entry with pmd_populate. 2098 */ 2099 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2100 2101 pmd_migration = is_pmd_migration_entry(old_pmd); 2102 if (unlikely(pmd_migration)) { 2103 swp_entry_t entry; 2104 2105 entry = pmd_to_swp_entry(old_pmd); 2106 page = pfn_to_page(swp_offset(entry)); 2107 write = is_write_migration_entry(entry); 2108 young = false; 2109 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2110 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2111 } else { 2112 page = pmd_page(old_pmd); 2113 if (pmd_dirty(old_pmd)) 2114 SetPageDirty(page); 2115 write = pmd_write(old_pmd); 2116 young = pmd_young(old_pmd); 2117 soft_dirty = pmd_soft_dirty(old_pmd); 2118 uffd_wp = pmd_uffd_wp(old_pmd); 2119 } 2120 VM_BUG_ON_PAGE(!page_count(page), page); 2121 page_ref_add(page, HPAGE_PMD_NR - 1); 2122 2123 /* 2124 * Withdraw the table only after we mark the pmd entry invalid. 2125 * This's critical for some architectures (Power). 2126 */ 2127 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2128 pmd_populate(mm, &_pmd, pgtable); 2129 2130 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2131 pte_t entry, *pte; 2132 /* 2133 * Note that NUMA hinting access restrictions are not 2134 * transferred to avoid any possibility of altering 2135 * permissions across VMAs. 2136 */ 2137 if (freeze || pmd_migration) { 2138 swp_entry_t swp_entry; 2139 swp_entry = make_migration_entry(page + i, write); 2140 entry = swp_entry_to_pte(swp_entry); 2141 if (soft_dirty) 2142 entry = pte_swp_mksoft_dirty(entry); 2143 if (uffd_wp) 2144 entry = pte_swp_mkuffd_wp(entry); 2145 } else { 2146 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2147 entry = maybe_mkwrite(entry, vma); 2148 if (!write) 2149 entry = pte_wrprotect(entry); 2150 if (!young) 2151 entry = pte_mkold(entry); 2152 if (soft_dirty) 2153 entry = pte_mksoft_dirty(entry); 2154 if (uffd_wp) 2155 entry = pte_mkuffd_wp(entry); 2156 } 2157 pte = pte_offset_map(&_pmd, addr); 2158 BUG_ON(!pte_none(*pte)); 2159 set_pte_at(mm, addr, pte, entry); 2160 if (!pmd_migration) 2161 atomic_inc(&page[i]._mapcount); 2162 pte_unmap(pte); 2163 } 2164 2165 if (!pmd_migration) { 2166 /* 2167 * Set PG_double_map before dropping compound_mapcount to avoid 2168 * false-negative page_mapped(). 2169 */ 2170 if (compound_mapcount(page) > 1 && 2171 !TestSetPageDoubleMap(page)) { 2172 for (i = 0; i < HPAGE_PMD_NR; i++) 2173 atomic_inc(&page[i]._mapcount); 2174 } 2175 2176 lock_page_memcg(page); 2177 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 2178 /* Last compound_mapcount is gone. */ 2179 __dec_lruvec_page_state(page, NR_ANON_THPS); 2180 if (TestClearPageDoubleMap(page)) { 2181 /* No need in mapcount reference anymore */ 2182 for (i = 0; i < HPAGE_PMD_NR; i++) 2183 atomic_dec(&page[i]._mapcount); 2184 } 2185 } 2186 unlock_page_memcg(page); 2187 } 2188 2189 smp_wmb(); /* make pte visible before pmd */ 2190 pmd_populate(mm, pmd, pgtable); 2191 2192 if (freeze) { 2193 for (i = 0; i < HPAGE_PMD_NR; i++) { 2194 page_remove_rmap(page + i, false); 2195 put_page(page + i); 2196 } 2197 } 2198 } 2199 2200 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2201 unsigned long address, bool freeze, struct page *page) 2202 { 2203 spinlock_t *ptl; 2204 struct mmu_notifier_range range; 2205 bool was_locked = false; 2206 pmd_t _pmd; 2207 2208 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 2209 address & HPAGE_PMD_MASK, 2210 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2211 mmu_notifier_invalidate_range_start(&range); 2212 ptl = pmd_lock(vma->vm_mm, pmd); 2213 2214 /* 2215 * If caller asks to setup a migration entries, we need a page to check 2216 * pmd against. Otherwise we can end up replacing wrong page. 2217 */ 2218 VM_BUG_ON(freeze && !page); 2219 if (page) { 2220 VM_WARN_ON_ONCE(!PageLocked(page)); 2221 was_locked = true; 2222 if (page != pmd_page(*pmd)) 2223 goto out; 2224 } 2225 2226 repeat: 2227 if (pmd_trans_huge(*pmd)) { 2228 if (!page) { 2229 page = pmd_page(*pmd); 2230 if (unlikely(!trylock_page(page))) { 2231 get_page(page); 2232 _pmd = *pmd; 2233 spin_unlock(ptl); 2234 lock_page(page); 2235 spin_lock(ptl); 2236 if (unlikely(!pmd_same(*pmd, _pmd))) { 2237 unlock_page(page); 2238 put_page(page); 2239 page = NULL; 2240 goto repeat; 2241 } 2242 put_page(page); 2243 } 2244 } 2245 if (PageMlocked(page)) 2246 clear_page_mlock(page); 2247 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd))) 2248 goto out; 2249 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2250 out: 2251 spin_unlock(ptl); 2252 if (!was_locked && page) 2253 unlock_page(page); 2254 /* 2255 * No need to double call mmu_notifier->invalidate_range() callback. 2256 * They are 3 cases to consider inside __split_huge_pmd_locked(): 2257 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious 2258 * 2) __split_huge_zero_page_pmd() read only zero page and any write 2259 * fault will trigger a flush_notify before pointing to a new page 2260 * (it is fine if the secondary mmu keeps pointing to the old zero 2261 * page in the meantime) 2262 * 3) Split a huge pmd into pte pointing to the same page. No need 2263 * to invalidate secondary tlb entry they are all still valid. 2264 * any further changes to individual pte will notify. So no need 2265 * to call mmu_notifier->invalidate_range() 2266 */ 2267 mmu_notifier_invalidate_range_only_end(&range); 2268 } 2269 2270 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2271 bool freeze, struct page *page) 2272 { 2273 pgd_t *pgd; 2274 p4d_t *p4d; 2275 pud_t *pud; 2276 pmd_t *pmd; 2277 2278 pgd = pgd_offset(vma->vm_mm, address); 2279 if (!pgd_present(*pgd)) 2280 return; 2281 2282 p4d = p4d_offset(pgd, address); 2283 if (!p4d_present(*p4d)) 2284 return; 2285 2286 pud = pud_offset(p4d, address); 2287 if (!pud_present(*pud)) 2288 return; 2289 2290 pmd = pmd_offset(pud, address); 2291 2292 __split_huge_pmd(vma, pmd, address, freeze, page); 2293 } 2294 2295 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2296 unsigned long start, 2297 unsigned long end, 2298 long adjust_next) 2299 { 2300 /* 2301 * If the new start address isn't hpage aligned and it could 2302 * previously contain an hugepage: check if we need to split 2303 * an huge pmd. 2304 */ 2305 if (start & ~HPAGE_PMD_MASK && 2306 (start & HPAGE_PMD_MASK) >= vma->vm_start && 2307 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2308 split_huge_pmd_address(vma, start, false, NULL); 2309 2310 /* 2311 * If the new end address isn't hpage aligned and it could 2312 * previously contain an hugepage: check if we need to split 2313 * an huge pmd. 2314 */ 2315 if (end & ~HPAGE_PMD_MASK && 2316 (end & HPAGE_PMD_MASK) >= vma->vm_start && 2317 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 2318 split_huge_pmd_address(vma, end, false, NULL); 2319 2320 /* 2321 * If we're also updating the vma->vm_next->vm_start, if the new 2322 * vm_next->vm_start isn't hpage aligned and it could previously 2323 * contain an hugepage: check if we need to split an huge pmd. 2324 */ 2325 if (adjust_next > 0) { 2326 struct vm_area_struct *next = vma->vm_next; 2327 unsigned long nstart = next->vm_start; 2328 nstart += adjust_next; 2329 if (nstart & ~HPAGE_PMD_MASK && 2330 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 2331 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 2332 split_huge_pmd_address(next, nstart, false, NULL); 2333 } 2334 } 2335 2336 static void unmap_page(struct page *page) 2337 { 2338 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | 2339 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD; 2340 bool unmap_success; 2341 2342 VM_BUG_ON_PAGE(!PageHead(page), page); 2343 2344 if (PageAnon(page)) 2345 ttu_flags |= TTU_SPLIT_FREEZE; 2346 2347 unmap_success = try_to_unmap(page, ttu_flags); 2348 VM_BUG_ON_PAGE(!unmap_success, page); 2349 } 2350 2351 static void remap_page(struct page *page, unsigned int nr) 2352 { 2353 int i; 2354 if (PageTransHuge(page)) { 2355 remove_migration_ptes(page, page, true); 2356 } else { 2357 for (i = 0; i < nr; i++) 2358 remove_migration_ptes(page + i, page + i, true); 2359 } 2360 } 2361 2362 static void lru_add_page_tail(struct page *head, struct page *tail, 2363 struct lruvec *lruvec, struct list_head *list) 2364 { 2365 VM_BUG_ON_PAGE(!PageHead(head), head); 2366 VM_BUG_ON_PAGE(PageCompound(tail), head); 2367 VM_BUG_ON_PAGE(PageLRU(tail), head); 2368 lockdep_assert_held(&lruvec->lru_lock); 2369 2370 if (list) { 2371 /* page reclaim is reclaiming a huge page */ 2372 VM_WARN_ON(PageLRU(head)); 2373 get_page(tail); 2374 list_add_tail(&tail->lru, list); 2375 } else { 2376 /* head is still on lru (and we have it frozen) */ 2377 VM_WARN_ON(!PageLRU(head)); 2378 SetPageLRU(tail); 2379 list_add_tail(&tail->lru, &head->lru); 2380 } 2381 } 2382 2383 static void __split_huge_page_tail(struct page *head, int tail, 2384 struct lruvec *lruvec, struct list_head *list) 2385 { 2386 struct page *page_tail = head + tail; 2387 2388 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2389 2390 /* 2391 * Clone page flags before unfreezing refcount. 2392 * 2393 * After successful get_page_unless_zero() might follow flags change, 2394 * for example lock_page() which set PG_waiters. 2395 */ 2396 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2397 page_tail->flags |= (head->flags & 2398 ((1L << PG_referenced) | 2399 (1L << PG_swapbacked) | 2400 (1L << PG_swapcache) | 2401 (1L << PG_mlocked) | 2402 (1L << PG_uptodate) | 2403 (1L << PG_active) | 2404 (1L << PG_workingset) | 2405 (1L << PG_locked) | 2406 (1L << PG_unevictable) | 2407 #ifdef CONFIG_64BIT 2408 (1L << PG_arch_2) | 2409 #endif 2410 (1L << PG_dirty))); 2411 2412 /* ->mapping in first tail page is compound_mapcount */ 2413 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2414 page_tail); 2415 page_tail->mapping = head->mapping; 2416 page_tail->index = head->index + tail; 2417 2418 /* Page flags must be visible before we make the page non-compound. */ 2419 smp_wmb(); 2420 2421 /* 2422 * Clear PageTail before unfreezing page refcount. 2423 * 2424 * After successful get_page_unless_zero() might follow put_page() 2425 * which needs correct compound_head(). 2426 */ 2427 clear_compound_head(page_tail); 2428 2429 /* Finally unfreeze refcount. Additional reference from page cache. */ 2430 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) || 2431 PageSwapCache(head))); 2432 2433 if (page_is_young(head)) 2434 set_page_young(page_tail); 2435 if (page_is_idle(head)) 2436 set_page_idle(page_tail); 2437 2438 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 2439 2440 /* 2441 * always add to the tail because some iterators expect new 2442 * pages to show after the currently processed elements - e.g. 2443 * migrate_pages 2444 */ 2445 lru_add_page_tail(head, page_tail, lruvec, list); 2446 } 2447 2448 static void __split_huge_page(struct page *page, struct list_head *list, 2449 pgoff_t end) 2450 { 2451 struct page *head = compound_head(page); 2452 struct lruvec *lruvec; 2453 struct address_space *swap_cache = NULL; 2454 unsigned long offset = 0; 2455 unsigned int nr = thp_nr_pages(head); 2456 int i; 2457 2458 /* complete memcg works before add pages to LRU */ 2459 mem_cgroup_split_huge_fixup(head); 2460 2461 if (PageAnon(head) && PageSwapCache(head)) { 2462 swp_entry_t entry = { .val = page_private(head) }; 2463 2464 offset = swp_offset(entry); 2465 swap_cache = swap_address_space(entry); 2466 xa_lock(&swap_cache->i_pages); 2467 } 2468 2469 /* lock lru list/PageCompound, ref freezed by page_ref_freeze */ 2470 lruvec = lock_page_lruvec(head); 2471 2472 for (i = nr - 1; i >= 1; i--) { 2473 __split_huge_page_tail(head, i, lruvec, list); 2474 /* Some pages can be beyond i_size: drop them from page cache */ 2475 if (head[i].index >= end) { 2476 ClearPageDirty(head + i); 2477 __delete_from_page_cache(head + i, NULL); 2478 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 2479 shmem_uncharge(head->mapping->host, 1); 2480 put_page(head + i); 2481 } else if (!PageAnon(page)) { 2482 __xa_store(&head->mapping->i_pages, head[i].index, 2483 head + i, 0); 2484 } else if (swap_cache) { 2485 __xa_store(&swap_cache->i_pages, offset + i, 2486 head + i, 0); 2487 } 2488 } 2489 2490 ClearPageCompound(head); 2491 unlock_page_lruvec(lruvec); 2492 /* Caller disabled irqs, so they are still disabled here */ 2493 2494 split_page_owner(head, nr); 2495 2496 /* See comment in __split_huge_page_tail() */ 2497 if (PageAnon(head)) { 2498 /* Additional pin to swap cache */ 2499 if (PageSwapCache(head)) { 2500 page_ref_add(head, 2); 2501 xa_unlock(&swap_cache->i_pages); 2502 } else { 2503 page_ref_inc(head); 2504 } 2505 } else { 2506 /* Additional pin to page cache */ 2507 page_ref_add(head, 2); 2508 xa_unlock(&head->mapping->i_pages); 2509 } 2510 local_irq_enable(); 2511 2512 remap_page(head, nr); 2513 2514 if (PageSwapCache(head)) { 2515 swp_entry_t entry = { .val = page_private(head) }; 2516 2517 split_swap_cluster(entry); 2518 } 2519 2520 for (i = 0; i < nr; i++) { 2521 struct page *subpage = head + i; 2522 if (subpage == page) 2523 continue; 2524 unlock_page(subpage); 2525 2526 /* 2527 * Subpages may be freed if there wasn't any mapping 2528 * like if add_to_swap() is running on a lru page that 2529 * had its mapping zapped. And freeing these pages 2530 * requires taking the lru_lock so we do the put_page 2531 * of the tail pages after the split is complete. 2532 */ 2533 put_page(subpage); 2534 } 2535 } 2536 2537 int total_mapcount(struct page *page) 2538 { 2539 int i, compound, nr, ret; 2540 2541 VM_BUG_ON_PAGE(PageTail(page), page); 2542 2543 if (likely(!PageCompound(page))) 2544 return atomic_read(&page->_mapcount) + 1; 2545 2546 compound = compound_mapcount(page); 2547 nr = compound_nr(page); 2548 if (PageHuge(page)) 2549 return compound; 2550 ret = compound; 2551 for (i = 0; i < nr; i++) 2552 ret += atomic_read(&page[i]._mapcount) + 1; 2553 /* File pages has compound_mapcount included in _mapcount */ 2554 if (!PageAnon(page)) 2555 return ret - compound * nr; 2556 if (PageDoubleMap(page)) 2557 ret -= nr; 2558 return ret; 2559 } 2560 2561 /* 2562 * This calculates accurately how many mappings a transparent hugepage 2563 * has (unlike page_mapcount() which isn't fully accurate). This full 2564 * accuracy is primarily needed to know if copy-on-write faults can 2565 * reuse the page and change the mapping to read-write instead of 2566 * copying them. At the same time this returns the total_mapcount too. 2567 * 2568 * The function returns the highest mapcount any one of the subpages 2569 * has. If the return value is one, even if different processes are 2570 * mapping different subpages of the transparent hugepage, they can 2571 * all reuse it, because each process is reusing a different subpage. 2572 * 2573 * The total_mapcount is instead counting all virtual mappings of the 2574 * subpages. If the total_mapcount is equal to "one", it tells the 2575 * caller all mappings belong to the same "mm" and in turn the 2576 * anon_vma of the transparent hugepage can become the vma->anon_vma 2577 * local one as no other process may be mapping any of the subpages. 2578 * 2579 * It would be more accurate to replace page_mapcount() with 2580 * page_trans_huge_mapcount(), however we only use 2581 * page_trans_huge_mapcount() in the copy-on-write faults where we 2582 * need full accuracy to avoid breaking page pinning, because 2583 * page_trans_huge_mapcount() is slower than page_mapcount(). 2584 */ 2585 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 2586 { 2587 int i, ret, _total_mapcount, mapcount; 2588 2589 /* hugetlbfs shouldn't call it */ 2590 VM_BUG_ON_PAGE(PageHuge(page), page); 2591 2592 if (likely(!PageTransCompound(page))) { 2593 mapcount = atomic_read(&page->_mapcount) + 1; 2594 if (total_mapcount) 2595 *total_mapcount = mapcount; 2596 return mapcount; 2597 } 2598 2599 page = compound_head(page); 2600 2601 _total_mapcount = ret = 0; 2602 for (i = 0; i < thp_nr_pages(page); i++) { 2603 mapcount = atomic_read(&page[i]._mapcount) + 1; 2604 ret = max(ret, mapcount); 2605 _total_mapcount += mapcount; 2606 } 2607 if (PageDoubleMap(page)) { 2608 ret -= 1; 2609 _total_mapcount -= thp_nr_pages(page); 2610 } 2611 mapcount = compound_mapcount(page); 2612 ret += mapcount; 2613 _total_mapcount += mapcount; 2614 if (total_mapcount) 2615 *total_mapcount = _total_mapcount; 2616 return ret; 2617 } 2618 2619 /* Racy check whether the huge page can be split */ 2620 bool can_split_huge_page(struct page *page, int *pextra_pins) 2621 { 2622 int extra_pins; 2623 2624 /* Additional pins from page cache */ 2625 if (PageAnon(page)) 2626 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0; 2627 else 2628 extra_pins = thp_nr_pages(page); 2629 if (pextra_pins) 2630 *pextra_pins = extra_pins; 2631 return total_mapcount(page) == page_count(page) - extra_pins - 1; 2632 } 2633 2634 /* 2635 * This function splits huge page into normal pages. @page can point to any 2636 * subpage of huge page to split. Split doesn't change the position of @page. 2637 * 2638 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2639 * The huge page must be locked. 2640 * 2641 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2642 * 2643 * Both head page and tail pages will inherit mapping, flags, and so on from 2644 * the hugepage. 2645 * 2646 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2647 * they are not mapped. 2648 * 2649 * Returns 0 if the hugepage is split successfully. 2650 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2651 * us. 2652 */ 2653 int split_huge_page_to_list(struct page *page, struct list_head *list) 2654 { 2655 struct page *head = compound_head(page); 2656 struct deferred_split *ds_queue = get_deferred_split_queue(head); 2657 struct anon_vma *anon_vma = NULL; 2658 struct address_space *mapping = NULL; 2659 int count, mapcount, extra_pins, ret; 2660 pgoff_t end; 2661 2662 VM_BUG_ON_PAGE(is_huge_zero_page(head), head); 2663 VM_BUG_ON_PAGE(!PageLocked(head), head); 2664 VM_BUG_ON_PAGE(!PageCompound(head), head); 2665 2666 if (PageWriteback(head)) 2667 return -EBUSY; 2668 2669 if (PageAnon(head)) { 2670 /* 2671 * The caller does not necessarily hold an mmap_lock that would 2672 * prevent the anon_vma disappearing so we first we take a 2673 * reference to it and then lock the anon_vma for write. This 2674 * is similar to page_lock_anon_vma_read except the write lock 2675 * is taken to serialise against parallel split or collapse 2676 * operations. 2677 */ 2678 anon_vma = page_get_anon_vma(head); 2679 if (!anon_vma) { 2680 ret = -EBUSY; 2681 goto out; 2682 } 2683 end = -1; 2684 mapping = NULL; 2685 anon_vma_lock_write(anon_vma); 2686 } else { 2687 mapping = head->mapping; 2688 2689 /* Truncated ? */ 2690 if (!mapping) { 2691 ret = -EBUSY; 2692 goto out; 2693 } 2694 2695 anon_vma = NULL; 2696 i_mmap_lock_read(mapping); 2697 2698 /* 2699 *__split_huge_page() may need to trim off pages beyond EOF: 2700 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 2701 * which cannot be nested inside the page tree lock. So note 2702 * end now: i_size itself may be changed at any moment, but 2703 * head page lock is good enough to serialize the trimming. 2704 */ 2705 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2706 } 2707 2708 /* 2709 * Racy check if we can split the page, before unmap_page() will 2710 * split PMDs 2711 */ 2712 if (!can_split_huge_page(head, &extra_pins)) { 2713 ret = -EBUSY; 2714 goto out_unlock; 2715 } 2716 2717 unmap_page(head); 2718 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2719 2720 /* block interrupt reentry in xa_lock and spinlock */ 2721 local_irq_disable(); 2722 if (mapping) { 2723 XA_STATE(xas, &mapping->i_pages, page_index(head)); 2724 2725 /* 2726 * Check if the head page is present in page cache. 2727 * We assume all tail are present too, if head is there. 2728 */ 2729 xa_lock(&mapping->i_pages); 2730 if (xas_load(&xas) != head) 2731 goto fail; 2732 } 2733 2734 /* Prevent deferred_split_scan() touching ->_refcount */ 2735 spin_lock(&ds_queue->split_queue_lock); 2736 count = page_count(head); 2737 mapcount = total_mapcount(head); 2738 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2739 if (!list_empty(page_deferred_list(head))) { 2740 ds_queue->split_queue_len--; 2741 list_del(page_deferred_list(head)); 2742 } 2743 spin_unlock(&ds_queue->split_queue_lock); 2744 if (mapping) { 2745 if (PageSwapBacked(head)) 2746 __dec_lruvec_page_state(head, NR_SHMEM_THPS); 2747 else 2748 __dec_lruvec_page_state(head, NR_FILE_THPS); 2749 } 2750 2751 __split_huge_page(page, list, end); 2752 ret = 0; 2753 } else { 2754 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2755 pr_alert("total_mapcount: %u, page_count(): %u\n", 2756 mapcount, count); 2757 if (PageTail(page)) 2758 dump_page(head, NULL); 2759 dump_page(page, "total_mapcount(head) > 0"); 2760 BUG(); 2761 } 2762 spin_unlock(&ds_queue->split_queue_lock); 2763 fail: if (mapping) 2764 xa_unlock(&mapping->i_pages); 2765 local_irq_enable(); 2766 remap_page(head, thp_nr_pages(head)); 2767 ret = -EBUSY; 2768 } 2769 2770 out_unlock: 2771 if (anon_vma) { 2772 anon_vma_unlock_write(anon_vma); 2773 put_anon_vma(anon_vma); 2774 } 2775 if (mapping) 2776 i_mmap_unlock_read(mapping); 2777 out: 2778 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2779 return ret; 2780 } 2781 2782 void free_transhuge_page(struct page *page) 2783 { 2784 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2785 unsigned long flags; 2786 2787 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2788 if (!list_empty(page_deferred_list(page))) { 2789 ds_queue->split_queue_len--; 2790 list_del(page_deferred_list(page)); 2791 } 2792 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2793 free_compound_page(page); 2794 } 2795 2796 void deferred_split_huge_page(struct page *page) 2797 { 2798 struct deferred_split *ds_queue = get_deferred_split_queue(page); 2799 #ifdef CONFIG_MEMCG 2800 struct mem_cgroup *memcg = page_memcg(compound_head(page)); 2801 #endif 2802 unsigned long flags; 2803 2804 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2805 2806 /* 2807 * The try_to_unmap() in page reclaim path might reach here too, 2808 * this may cause a race condition to corrupt deferred split queue. 2809 * And, if page reclaim is already handling the same page, it is 2810 * unnecessary to handle it again in shrinker. 2811 * 2812 * Check PageSwapCache to determine if the page is being 2813 * handled by page reclaim since THP swap would add the page into 2814 * swap cache before calling try_to_unmap(). 2815 */ 2816 if (PageSwapCache(page)) 2817 return; 2818 2819 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2820 if (list_empty(page_deferred_list(page))) { 2821 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2822 list_add_tail(page_deferred_list(page), &ds_queue->split_queue); 2823 ds_queue->split_queue_len++; 2824 #ifdef CONFIG_MEMCG 2825 if (memcg) 2826 memcg_set_shrinker_bit(memcg, page_to_nid(page), 2827 deferred_split_shrinker.id); 2828 #endif 2829 } 2830 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2831 } 2832 2833 static unsigned long deferred_split_count(struct shrinker *shrink, 2834 struct shrink_control *sc) 2835 { 2836 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2837 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2838 2839 #ifdef CONFIG_MEMCG 2840 if (sc->memcg) 2841 ds_queue = &sc->memcg->deferred_split_queue; 2842 #endif 2843 return READ_ONCE(ds_queue->split_queue_len); 2844 } 2845 2846 static unsigned long deferred_split_scan(struct shrinker *shrink, 2847 struct shrink_control *sc) 2848 { 2849 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2850 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 2851 unsigned long flags; 2852 LIST_HEAD(list), *pos, *next; 2853 struct page *page; 2854 int split = 0; 2855 2856 #ifdef CONFIG_MEMCG 2857 if (sc->memcg) 2858 ds_queue = &sc->memcg->deferred_split_queue; 2859 #endif 2860 2861 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2862 /* Take pin on all head pages to avoid freeing them under us */ 2863 list_for_each_safe(pos, next, &ds_queue->split_queue) { 2864 page = list_entry((void *)pos, struct page, mapping); 2865 page = compound_head(page); 2866 if (get_page_unless_zero(page)) { 2867 list_move(page_deferred_list(page), &list); 2868 } else { 2869 /* We lost race with put_compound_page() */ 2870 list_del_init(page_deferred_list(page)); 2871 ds_queue->split_queue_len--; 2872 } 2873 if (!--sc->nr_to_scan) 2874 break; 2875 } 2876 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2877 2878 list_for_each_safe(pos, next, &list) { 2879 page = list_entry((void *)pos, struct page, mapping); 2880 if (!trylock_page(page)) 2881 goto next; 2882 /* split_huge_page() removes page from list on success */ 2883 if (!split_huge_page(page)) 2884 split++; 2885 unlock_page(page); 2886 next: 2887 put_page(page); 2888 } 2889 2890 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 2891 list_splice_tail(&list, &ds_queue->split_queue); 2892 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 2893 2894 /* 2895 * Stop shrinker if we didn't split any page, but the queue is empty. 2896 * This can happen if pages were freed under us. 2897 */ 2898 if (!split && list_empty(&ds_queue->split_queue)) 2899 return SHRINK_STOP; 2900 return split; 2901 } 2902 2903 static struct shrinker deferred_split_shrinker = { 2904 .count_objects = deferred_split_count, 2905 .scan_objects = deferred_split_scan, 2906 .seeks = DEFAULT_SEEKS, 2907 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE | 2908 SHRINKER_NONSLAB, 2909 }; 2910 2911 #ifdef CONFIG_DEBUG_FS 2912 static int split_huge_pages_set(void *data, u64 val) 2913 { 2914 struct zone *zone; 2915 struct page *page; 2916 unsigned long pfn, max_zone_pfn; 2917 unsigned long total = 0, split = 0; 2918 2919 if (val != 1) 2920 return -EINVAL; 2921 2922 for_each_populated_zone(zone) { 2923 max_zone_pfn = zone_end_pfn(zone); 2924 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2925 if (!pfn_valid(pfn)) 2926 continue; 2927 2928 page = pfn_to_page(pfn); 2929 if (!get_page_unless_zero(page)) 2930 continue; 2931 2932 if (zone != page_zone(page)) 2933 goto next; 2934 2935 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2936 goto next; 2937 2938 total++; 2939 lock_page(page); 2940 if (!split_huge_page(page)) 2941 split++; 2942 unlock_page(page); 2943 next: 2944 put_page(page); 2945 } 2946 } 2947 2948 pr_info("%lu of %lu THP split\n", split, total); 2949 2950 return 0; 2951 } 2952 DEFINE_DEBUGFS_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2953 "%llu\n"); 2954 2955 static int __init split_huge_pages_debugfs(void) 2956 { 2957 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2958 &split_huge_pages_fops); 2959 return 0; 2960 } 2961 late_initcall(split_huge_pages_debugfs); 2962 #endif 2963 2964 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2965 void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 2966 struct page *page) 2967 { 2968 struct vm_area_struct *vma = pvmw->vma; 2969 struct mm_struct *mm = vma->vm_mm; 2970 unsigned long address = pvmw->address; 2971 pmd_t pmdval; 2972 swp_entry_t entry; 2973 pmd_t pmdswp; 2974 2975 if (!(pvmw->pmd && !pvmw->pte)) 2976 return; 2977 2978 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 2979 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 2980 if (pmd_dirty(pmdval)) 2981 set_page_dirty(page); 2982 entry = make_migration_entry(page, pmd_write(pmdval)); 2983 pmdswp = swp_entry_to_pmd(entry); 2984 if (pmd_soft_dirty(pmdval)) 2985 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 2986 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 2987 page_remove_rmap(page, true); 2988 put_page(page); 2989 } 2990 2991 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 2992 { 2993 struct vm_area_struct *vma = pvmw->vma; 2994 struct mm_struct *mm = vma->vm_mm; 2995 unsigned long address = pvmw->address; 2996 unsigned long mmun_start = address & HPAGE_PMD_MASK; 2997 pmd_t pmde; 2998 swp_entry_t entry; 2999 3000 if (!(pvmw->pmd && !pvmw->pte)) 3001 return; 3002 3003 entry = pmd_to_swp_entry(*pvmw->pmd); 3004 get_page(new); 3005 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot)); 3006 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3007 pmde = pmd_mksoft_dirty(pmde); 3008 if (is_write_migration_entry(entry)) 3009 pmde = maybe_pmd_mkwrite(pmde, vma); 3010 3011 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE); 3012 if (PageAnon(new)) 3013 page_add_anon_rmap(new, vma, mmun_start, true); 3014 else 3015 page_add_file_rmap(new, true); 3016 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde); 3017 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new)) 3018 mlock_vma_page(new); 3019 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3020 } 3021 #endif 3022