1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/numa_balancing.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/backing-dev.h> 21 #include <linux/dax.h> 22 #include <linux/mm_types.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 #include <linux/compat.h> 41 #include <linux/pgalloc_tag.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlb.h> 45 #include <asm/pgalloc.h> 46 #include "internal.h" 47 #include "swap.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/thp.h> 51 52 /* 53 * By default, transparent hugepage support is disabled in order to avoid 54 * risking an increased memory footprint for applications that are not 55 * guaranteed to benefit from it. When transparent hugepage support is 56 * enabled, it is for all mappings, and khugepaged scans all mappings. 57 * Defrag is invoked by khugepaged hugepage allocations and by page faults 58 * for all hugepage allocations. 59 */ 60 unsigned long transparent_hugepage_flags __read_mostly = 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 62 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 63 #endif 64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 65 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 66 #endif 67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 68 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 69 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 70 71 static struct shrinker *deferred_split_shrinker; 72 static unsigned long deferred_split_count(struct shrinker *shrink, 73 struct shrink_control *sc); 74 static unsigned long deferred_split_scan(struct shrinker *shrink, 75 struct shrink_control *sc); 76 static bool split_underused_thp = true; 77 78 static atomic_t huge_zero_refcount; 79 struct folio *huge_zero_folio __read_mostly; 80 unsigned long huge_zero_pfn __read_mostly = ~0UL; 81 unsigned long huge_anon_orders_always __read_mostly; 82 unsigned long huge_anon_orders_madvise __read_mostly; 83 unsigned long huge_anon_orders_inherit __read_mostly; 84 static bool anon_orders_configured __initdata; 85 86 static inline bool file_thp_enabled(struct vm_area_struct *vma) 87 { 88 struct inode *inode; 89 90 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) 91 return false; 92 93 if (!vma->vm_file) 94 return false; 95 96 inode = file_inode(vma->vm_file); 97 98 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode); 99 } 100 101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 102 unsigned long vm_flags, 103 unsigned long tva_flags, 104 unsigned long orders) 105 { 106 bool smaps = tva_flags & TVA_SMAPS; 107 bool in_pf = tva_flags & TVA_IN_PF; 108 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS; 109 unsigned long supported_orders; 110 111 /* Check the intersection of requested and supported orders. */ 112 if (vma_is_anonymous(vma)) 113 supported_orders = THP_ORDERS_ALL_ANON; 114 else if (vma_is_special_huge(vma)) 115 supported_orders = THP_ORDERS_ALL_SPECIAL; 116 else 117 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT; 118 119 orders &= supported_orders; 120 if (!orders) 121 return 0; 122 123 if (!vma->vm_mm) /* vdso */ 124 return 0; 125 126 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags)) 127 return 0; 128 129 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 130 if (vma_is_dax(vma)) 131 return in_pf ? orders : 0; 132 133 /* 134 * khugepaged special VMA and hugetlb VMA. 135 * Must be checked after dax since some dax mappings may have 136 * VM_MIXEDMAP set. 137 */ 138 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 139 return 0; 140 141 /* 142 * Check alignment for file vma and size for both file and anon vma by 143 * filtering out the unsuitable orders. 144 * 145 * Skip the check for page fault. Huge fault does the check in fault 146 * handlers. 147 */ 148 if (!in_pf) { 149 int order = highest_order(orders); 150 unsigned long addr; 151 152 while (orders) { 153 addr = vma->vm_end - (PAGE_SIZE << order); 154 if (thp_vma_suitable_order(vma, addr, order)) 155 break; 156 order = next_order(&orders, order); 157 } 158 159 if (!orders) 160 return 0; 161 } 162 163 /* 164 * Enabled via shmem mount options or sysfs settings. 165 * Must be done before hugepage flags check since shmem has its 166 * own flags. 167 */ 168 if (!in_pf && shmem_file(vma->vm_file)) 169 return shmem_allowable_huge_orders(file_inode(vma->vm_file), 170 vma, vma->vm_pgoff, 0, 171 !enforce_sysfs); 172 173 if (!vma_is_anonymous(vma)) { 174 /* 175 * Enforce sysfs THP requirements as necessary. Anonymous vmas 176 * were already handled in thp_vma_allowable_orders(). 177 */ 178 if (enforce_sysfs && 179 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 180 !hugepage_global_always()))) 181 return 0; 182 183 /* 184 * Trust that ->huge_fault() handlers know what they are doing 185 * in fault path. 186 */ 187 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 188 return orders; 189 /* Only regular file is valid in collapse path */ 190 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 191 return orders; 192 return 0; 193 } 194 195 if (vma_is_temporary_stack(vma)) 196 return 0; 197 198 /* 199 * THPeligible bit of smaps should show 1 for proper VMAs even 200 * though anon_vma is not initialized yet. 201 * 202 * Allow page fault since anon_vma may be not initialized until 203 * the first page fault. 204 */ 205 if (!vma->anon_vma) 206 return (smaps || in_pf) ? orders : 0; 207 208 return orders; 209 } 210 211 static bool get_huge_zero_page(void) 212 { 213 struct folio *zero_folio; 214 retry: 215 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 216 return true; 217 218 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 219 HPAGE_PMD_ORDER); 220 if (!zero_folio) { 221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 222 return false; 223 } 224 /* Ensure zero folio won't have large_rmappable flag set. */ 225 folio_clear_large_rmappable(zero_folio); 226 preempt_disable(); 227 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) { 228 preempt_enable(); 229 folio_put(zero_folio); 230 goto retry; 231 } 232 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio)); 233 234 /* We take additional reference here. It will be put back by shrinker */ 235 atomic_set(&huge_zero_refcount, 2); 236 preempt_enable(); 237 count_vm_event(THP_ZERO_PAGE_ALLOC); 238 return true; 239 } 240 241 static void put_huge_zero_page(void) 242 { 243 /* 244 * Counter should never go to zero here. Only shrinker can put 245 * last reference. 246 */ 247 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 248 } 249 250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm) 251 { 252 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 253 return READ_ONCE(huge_zero_folio); 254 255 if (!get_huge_zero_page()) 256 return NULL; 257 258 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 259 put_huge_zero_page(); 260 261 return READ_ONCE(huge_zero_folio); 262 } 263 264 void mm_put_huge_zero_folio(struct mm_struct *mm) 265 { 266 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 267 put_huge_zero_page(); 268 } 269 270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 271 struct shrink_control *sc) 272 { 273 /* we can free zero page only if last reference remains */ 274 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 275 } 276 277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 278 struct shrink_control *sc) 279 { 280 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 281 struct folio *zero_folio = xchg(&huge_zero_folio, NULL); 282 BUG_ON(zero_folio == NULL); 283 WRITE_ONCE(huge_zero_pfn, ~0UL); 284 folio_put(zero_folio); 285 return HPAGE_PMD_NR; 286 } 287 288 return 0; 289 } 290 291 static struct shrinker *huge_zero_page_shrinker; 292 293 #ifdef CONFIG_SYSFS 294 static ssize_t enabled_show(struct kobject *kobj, 295 struct kobj_attribute *attr, char *buf) 296 { 297 const char *output; 298 299 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 300 output = "[always] madvise never"; 301 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 302 &transparent_hugepage_flags)) 303 output = "always [madvise] never"; 304 else 305 output = "always madvise [never]"; 306 307 return sysfs_emit(buf, "%s\n", output); 308 } 309 310 static ssize_t enabled_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 ssize_t ret = count; 315 316 if (sysfs_streq(buf, "always")) { 317 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 318 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 319 } else if (sysfs_streq(buf, "madvise")) { 320 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 321 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 322 } else if (sysfs_streq(buf, "never")) { 323 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 324 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 325 } else 326 ret = -EINVAL; 327 328 if (ret > 0) { 329 int err = start_stop_khugepaged(); 330 if (err) 331 ret = err; 332 } 333 return ret; 334 } 335 336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 337 338 ssize_t single_hugepage_flag_show(struct kobject *kobj, 339 struct kobj_attribute *attr, char *buf, 340 enum transparent_hugepage_flag flag) 341 { 342 return sysfs_emit(buf, "%d\n", 343 !!test_bit(flag, &transparent_hugepage_flags)); 344 } 345 346 ssize_t single_hugepage_flag_store(struct kobject *kobj, 347 struct kobj_attribute *attr, 348 const char *buf, size_t count, 349 enum transparent_hugepage_flag flag) 350 { 351 unsigned long value; 352 int ret; 353 354 ret = kstrtoul(buf, 10, &value); 355 if (ret < 0) 356 return ret; 357 if (value > 1) 358 return -EINVAL; 359 360 if (value) 361 set_bit(flag, &transparent_hugepage_flags); 362 else 363 clear_bit(flag, &transparent_hugepage_flags); 364 365 return count; 366 } 367 368 static ssize_t defrag_show(struct kobject *kobj, 369 struct kobj_attribute *attr, char *buf) 370 { 371 const char *output; 372 373 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 374 &transparent_hugepage_flags)) 375 output = "[always] defer defer+madvise madvise never"; 376 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 377 &transparent_hugepage_flags)) 378 output = "always [defer] defer+madvise madvise never"; 379 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 380 &transparent_hugepage_flags)) 381 output = "always defer [defer+madvise] madvise never"; 382 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 383 &transparent_hugepage_flags)) 384 output = "always defer defer+madvise [madvise] never"; 385 else 386 output = "always defer defer+madvise madvise [never]"; 387 388 return sysfs_emit(buf, "%s\n", output); 389 } 390 391 static ssize_t defrag_store(struct kobject *kobj, 392 struct kobj_attribute *attr, 393 const char *buf, size_t count) 394 { 395 if (sysfs_streq(buf, "always")) { 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 398 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 399 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 400 } else if (sysfs_streq(buf, "defer+madvise")) { 401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 403 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 404 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 405 } else if (sysfs_streq(buf, "defer")) { 406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 408 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 409 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 410 } else if (sysfs_streq(buf, "madvise")) { 411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 413 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 414 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 415 } else if (sysfs_streq(buf, "never")) { 416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 419 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 420 } else 421 return -EINVAL; 422 423 return count; 424 } 425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 426 427 static ssize_t use_zero_page_show(struct kobject *kobj, 428 struct kobj_attribute *attr, char *buf) 429 { 430 return single_hugepage_flag_show(kobj, attr, buf, 431 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 432 } 433 static ssize_t use_zero_page_store(struct kobject *kobj, 434 struct kobj_attribute *attr, const char *buf, size_t count) 435 { 436 return single_hugepage_flag_store(kobj, attr, buf, count, 437 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 438 } 439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 440 441 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 442 struct kobj_attribute *attr, char *buf) 443 { 444 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 445 } 446 static struct kobj_attribute hpage_pmd_size_attr = 447 __ATTR_RO(hpage_pmd_size); 448 449 static ssize_t split_underused_thp_show(struct kobject *kobj, 450 struct kobj_attribute *attr, char *buf) 451 { 452 return sysfs_emit(buf, "%d\n", split_underused_thp); 453 } 454 455 static ssize_t split_underused_thp_store(struct kobject *kobj, 456 struct kobj_attribute *attr, 457 const char *buf, size_t count) 458 { 459 int err = kstrtobool(buf, &split_underused_thp); 460 461 if (err < 0) 462 return err; 463 464 return count; 465 } 466 467 static struct kobj_attribute split_underused_thp_attr = __ATTR( 468 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store); 469 470 static struct attribute *hugepage_attr[] = { 471 &enabled_attr.attr, 472 &defrag_attr.attr, 473 &use_zero_page_attr.attr, 474 &hpage_pmd_size_attr.attr, 475 #ifdef CONFIG_SHMEM 476 &shmem_enabled_attr.attr, 477 #endif 478 &split_underused_thp_attr.attr, 479 NULL, 480 }; 481 482 static const struct attribute_group hugepage_attr_group = { 483 .attrs = hugepage_attr, 484 }; 485 486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 487 static void thpsize_release(struct kobject *kobj); 488 static DEFINE_SPINLOCK(huge_anon_orders_lock); 489 static LIST_HEAD(thpsize_list); 490 491 static ssize_t anon_enabled_show(struct kobject *kobj, 492 struct kobj_attribute *attr, char *buf) 493 { 494 int order = to_thpsize(kobj)->order; 495 const char *output; 496 497 if (test_bit(order, &huge_anon_orders_always)) 498 output = "[always] inherit madvise never"; 499 else if (test_bit(order, &huge_anon_orders_inherit)) 500 output = "always [inherit] madvise never"; 501 else if (test_bit(order, &huge_anon_orders_madvise)) 502 output = "always inherit [madvise] never"; 503 else 504 output = "always inherit madvise [never]"; 505 506 return sysfs_emit(buf, "%s\n", output); 507 } 508 509 static ssize_t anon_enabled_store(struct kobject *kobj, 510 struct kobj_attribute *attr, 511 const char *buf, size_t count) 512 { 513 int order = to_thpsize(kobj)->order; 514 ssize_t ret = count; 515 516 if (sysfs_streq(buf, "always")) { 517 spin_lock(&huge_anon_orders_lock); 518 clear_bit(order, &huge_anon_orders_inherit); 519 clear_bit(order, &huge_anon_orders_madvise); 520 set_bit(order, &huge_anon_orders_always); 521 spin_unlock(&huge_anon_orders_lock); 522 } else if (sysfs_streq(buf, "inherit")) { 523 spin_lock(&huge_anon_orders_lock); 524 clear_bit(order, &huge_anon_orders_always); 525 clear_bit(order, &huge_anon_orders_madvise); 526 set_bit(order, &huge_anon_orders_inherit); 527 spin_unlock(&huge_anon_orders_lock); 528 } else if (sysfs_streq(buf, "madvise")) { 529 spin_lock(&huge_anon_orders_lock); 530 clear_bit(order, &huge_anon_orders_always); 531 clear_bit(order, &huge_anon_orders_inherit); 532 set_bit(order, &huge_anon_orders_madvise); 533 spin_unlock(&huge_anon_orders_lock); 534 } else if (sysfs_streq(buf, "never")) { 535 spin_lock(&huge_anon_orders_lock); 536 clear_bit(order, &huge_anon_orders_always); 537 clear_bit(order, &huge_anon_orders_inherit); 538 clear_bit(order, &huge_anon_orders_madvise); 539 spin_unlock(&huge_anon_orders_lock); 540 } else 541 ret = -EINVAL; 542 543 if (ret > 0) { 544 int err; 545 546 err = start_stop_khugepaged(); 547 if (err) 548 ret = err; 549 } 550 return ret; 551 } 552 553 static struct kobj_attribute anon_enabled_attr = 554 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store); 555 556 static struct attribute *anon_ctrl_attrs[] = { 557 &anon_enabled_attr.attr, 558 NULL, 559 }; 560 561 static const struct attribute_group anon_ctrl_attr_grp = { 562 .attrs = anon_ctrl_attrs, 563 }; 564 565 static struct attribute *file_ctrl_attrs[] = { 566 #ifdef CONFIG_SHMEM 567 &thpsize_shmem_enabled_attr.attr, 568 #endif 569 NULL, 570 }; 571 572 static const struct attribute_group file_ctrl_attr_grp = { 573 .attrs = file_ctrl_attrs, 574 }; 575 576 static struct attribute *any_ctrl_attrs[] = { 577 NULL, 578 }; 579 580 static const struct attribute_group any_ctrl_attr_grp = { 581 .attrs = any_ctrl_attrs, 582 }; 583 584 static const struct kobj_type thpsize_ktype = { 585 .release = &thpsize_release, 586 .sysfs_ops = &kobj_sysfs_ops, 587 }; 588 589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}}; 590 591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item) 592 { 593 unsigned long sum = 0; 594 int cpu; 595 596 for_each_possible_cpu(cpu) { 597 struct mthp_stat *this = &per_cpu(mthp_stats, cpu); 598 599 sum += this->stats[order][item]; 600 } 601 602 return sum; 603 } 604 605 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \ 606 static ssize_t _name##_show(struct kobject *kobj, \ 607 struct kobj_attribute *attr, char *buf) \ 608 { \ 609 int order = to_thpsize(kobj)->order; \ 610 \ 611 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \ 612 } \ 613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 614 615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC); 616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK); 617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 618 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT); 619 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK); 620 #ifdef CONFIG_SHMEM 621 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC); 622 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK); 623 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE); 624 #endif 625 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT); 626 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED); 627 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED); 628 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON); 629 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED); 630 631 static struct attribute *anon_stats_attrs[] = { 632 &anon_fault_alloc_attr.attr, 633 &anon_fault_fallback_attr.attr, 634 &anon_fault_fallback_charge_attr.attr, 635 #ifndef CONFIG_SHMEM 636 &swpout_attr.attr, 637 &swpout_fallback_attr.attr, 638 #endif 639 &split_deferred_attr.attr, 640 &nr_anon_attr.attr, 641 &nr_anon_partially_mapped_attr.attr, 642 NULL, 643 }; 644 645 static struct attribute_group anon_stats_attr_grp = { 646 .name = "stats", 647 .attrs = anon_stats_attrs, 648 }; 649 650 static struct attribute *file_stats_attrs[] = { 651 #ifdef CONFIG_SHMEM 652 &shmem_alloc_attr.attr, 653 &shmem_fallback_attr.attr, 654 &shmem_fallback_charge_attr.attr, 655 #endif 656 NULL, 657 }; 658 659 static struct attribute_group file_stats_attr_grp = { 660 .name = "stats", 661 .attrs = file_stats_attrs, 662 }; 663 664 static struct attribute *any_stats_attrs[] = { 665 #ifdef CONFIG_SHMEM 666 &swpout_attr.attr, 667 &swpout_fallback_attr.attr, 668 #endif 669 &split_attr.attr, 670 &split_failed_attr.attr, 671 NULL, 672 }; 673 674 static struct attribute_group any_stats_attr_grp = { 675 .name = "stats", 676 .attrs = any_stats_attrs, 677 }; 678 679 static int sysfs_add_group(struct kobject *kobj, 680 const struct attribute_group *grp) 681 { 682 int ret = -ENOENT; 683 684 /* 685 * If the group is named, try to merge first, assuming the subdirectory 686 * was already created. This avoids the warning emitted by 687 * sysfs_create_group() if the directory already exists. 688 */ 689 if (grp->name) 690 ret = sysfs_merge_group(kobj, grp); 691 if (ret) 692 ret = sysfs_create_group(kobj, grp); 693 694 return ret; 695 } 696 697 static struct thpsize *thpsize_create(int order, struct kobject *parent) 698 { 699 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 700 struct thpsize *thpsize; 701 int ret = -ENOMEM; 702 703 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 704 if (!thpsize) 705 goto err; 706 707 thpsize->order = order; 708 709 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 710 "hugepages-%lukB", size); 711 if (ret) { 712 kfree(thpsize); 713 goto err; 714 } 715 716 717 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp); 718 if (ret) 719 goto err_put; 720 721 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp); 722 if (ret) 723 goto err_put; 724 725 if (BIT(order) & THP_ORDERS_ALL_ANON) { 726 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp); 727 if (ret) 728 goto err_put; 729 730 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp); 731 if (ret) 732 goto err_put; 733 } 734 735 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) { 736 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp); 737 if (ret) 738 goto err_put; 739 740 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp); 741 if (ret) 742 goto err_put; 743 } 744 745 return thpsize; 746 err_put: 747 kobject_put(&thpsize->kobj); 748 err: 749 return ERR_PTR(ret); 750 } 751 752 static void thpsize_release(struct kobject *kobj) 753 { 754 kfree(to_thpsize(kobj)); 755 } 756 757 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 758 { 759 int err; 760 struct thpsize *thpsize; 761 unsigned long orders; 762 int order; 763 764 /* 765 * Default to setting PMD-sized THP to inherit the global setting and 766 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 767 * constant so we have to do this here. 768 */ 769 if (!anon_orders_configured) 770 huge_anon_orders_inherit = BIT(PMD_ORDER); 771 772 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 773 if (unlikely(!*hugepage_kobj)) { 774 pr_err("failed to create transparent hugepage kobject\n"); 775 return -ENOMEM; 776 } 777 778 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 779 if (err) { 780 pr_err("failed to register transparent hugepage group\n"); 781 goto delete_obj; 782 } 783 784 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 785 if (err) { 786 pr_err("failed to register transparent hugepage group\n"); 787 goto remove_hp_group; 788 } 789 790 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT; 791 order = highest_order(orders); 792 while (orders) { 793 thpsize = thpsize_create(order, *hugepage_kobj); 794 if (IS_ERR(thpsize)) { 795 pr_err("failed to create thpsize for order %d\n", order); 796 err = PTR_ERR(thpsize); 797 goto remove_all; 798 } 799 list_add(&thpsize->node, &thpsize_list); 800 order = next_order(&orders, order); 801 } 802 803 return 0; 804 805 remove_all: 806 hugepage_exit_sysfs(*hugepage_kobj); 807 return err; 808 remove_hp_group: 809 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 810 delete_obj: 811 kobject_put(*hugepage_kobj); 812 return err; 813 } 814 815 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 816 { 817 struct thpsize *thpsize, *tmp; 818 819 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 820 list_del(&thpsize->node); 821 kobject_put(&thpsize->kobj); 822 } 823 824 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 825 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 826 kobject_put(hugepage_kobj); 827 } 828 #else 829 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 830 { 831 return 0; 832 } 833 834 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 835 { 836 } 837 #endif /* CONFIG_SYSFS */ 838 839 static int __init thp_shrinker_init(void) 840 { 841 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 842 if (!huge_zero_page_shrinker) 843 return -ENOMEM; 844 845 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 846 SHRINKER_MEMCG_AWARE | 847 SHRINKER_NONSLAB, 848 "thp-deferred_split"); 849 if (!deferred_split_shrinker) { 850 shrinker_free(huge_zero_page_shrinker); 851 return -ENOMEM; 852 } 853 854 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 855 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 856 shrinker_register(huge_zero_page_shrinker); 857 858 deferred_split_shrinker->count_objects = deferred_split_count; 859 deferred_split_shrinker->scan_objects = deferred_split_scan; 860 shrinker_register(deferred_split_shrinker); 861 862 return 0; 863 } 864 865 static void __init thp_shrinker_exit(void) 866 { 867 shrinker_free(huge_zero_page_shrinker); 868 shrinker_free(deferred_split_shrinker); 869 } 870 871 static int __init hugepage_init(void) 872 { 873 int err; 874 struct kobject *hugepage_kobj; 875 876 if (!has_transparent_hugepage()) { 877 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 878 return -EINVAL; 879 } 880 881 /* 882 * hugepages can't be allocated by the buddy allocator 883 */ 884 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 885 886 err = hugepage_init_sysfs(&hugepage_kobj); 887 if (err) 888 goto err_sysfs; 889 890 err = khugepaged_init(); 891 if (err) 892 goto err_slab; 893 894 err = thp_shrinker_init(); 895 if (err) 896 goto err_shrinker; 897 898 /* 899 * By default disable transparent hugepages on smaller systems, 900 * where the extra memory used could hurt more than TLB overhead 901 * is likely to save. The admin can still enable it through /sys. 902 */ 903 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 904 transparent_hugepage_flags = 0; 905 return 0; 906 } 907 908 err = start_stop_khugepaged(); 909 if (err) 910 goto err_khugepaged; 911 912 return 0; 913 err_khugepaged: 914 thp_shrinker_exit(); 915 err_shrinker: 916 khugepaged_destroy(); 917 err_slab: 918 hugepage_exit_sysfs(hugepage_kobj); 919 err_sysfs: 920 return err; 921 } 922 subsys_initcall(hugepage_init); 923 924 static int __init setup_transparent_hugepage(char *str) 925 { 926 int ret = 0; 927 if (!str) 928 goto out; 929 if (!strcmp(str, "always")) { 930 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 931 &transparent_hugepage_flags); 932 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 933 &transparent_hugepage_flags); 934 ret = 1; 935 } else if (!strcmp(str, "madvise")) { 936 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 937 &transparent_hugepage_flags); 938 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 939 &transparent_hugepage_flags); 940 ret = 1; 941 } else if (!strcmp(str, "never")) { 942 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 943 &transparent_hugepage_flags); 944 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 945 &transparent_hugepage_flags); 946 ret = 1; 947 } 948 out: 949 if (!ret) 950 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 951 return ret; 952 } 953 __setup("transparent_hugepage=", setup_transparent_hugepage); 954 955 static inline int get_order_from_str(const char *size_str) 956 { 957 unsigned long size; 958 char *endptr; 959 int order; 960 961 size = memparse(size_str, &endptr); 962 963 if (!is_power_of_2(size)) 964 goto err; 965 order = get_order(size); 966 if (BIT(order) & ~THP_ORDERS_ALL_ANON) 967 goto err; 968 969 return order; 970 err: 971 pr_err("invalid size %s in thp_anon boot parameter\n", size_str); 972 return -EINVAL; 973 } 974 975 static char str_dup[PAGE_SIZE] __initdata; 976 static int __init setup_thp_anon(char *str) 977 { 978 char *token, *range, *policy, *subtoken; 979 unsigned long always, inherit, madvise; 980 char *start_size, *end_size; 981 int start, end, nr; 982 char *p; 983 984 if (!str || strlen(str) + 1 > PAGE_SIZE) 985 goto err; 986 strcpy(str_dup, str); 987 988 always = huge_anon_orders_always; 989 madvise = huge_anon_orders_madvise; 990 inherit = huge_anon_orders_inherit; 991 p = str_dup; 992 while ((token = strsep(&p, ";")) != NULL) { 993 range = strsep(&token, ":"); 994 policy = token; 995 996 if (!policy) 997 goto err; 998 999 while ((subtoken = strsep(&range, ",")) != NULL) { 1000 if (strchr(subtoken, '-')) { 1001 start_size = strsep(&subtoken, "-"); 1002 end_size = subtoken; 1003 1004 start = get_order_from_str(start_size); 1005 end = get_order_from_str(end_size); 1006 } else { 1007 start = end = get_order_from_str(subtoken); 1008 } 1009 1010 if (start < 0 || end < 0 || start > end) 1011 goto err; 1012 1013 nr = end - start + 1; 1014 if (!strcmp(policy, "always")) { 1015 bitmap_set(&always, start, nr); 1016 bitmap_clear(&inherit, start, nr); 1017 bitmap_clear(&madvise, start, nr); 1018 } else if (!strcmp(policy, "madvise")) { 1019 bitmap_set(&madvise, start, nr); 1020 bitmap_clear(&inherit, start, nr); 1021 bitmap_clear(&always, start, nr); 1022 } else if (!strcmp(policy, "inherit")) { 1023 bitmap_set(&inherit, start, nr); 1024 bitmap_clear(&madvise, start, nr); 1025 bitmap_clear(&always, start, nr); 1026 } else if (!strcmp(policy, "never")) { 1027 bitmap_clear(&inherit, start, nr); 1028 bitmap_clear(&madvise, start, nr); 1029 bitmap_clear(&always, start, nr); 1030 } else { 1031 pr_err("invalid policy %s in thp_anon boot parameter\n", policy); 1032 goto err; 1033 } 1034 } 1035 } 1036 1037 huge_anon_orders_always = always; 1038 huge_anon_orders_madvise = madvise; 1039 huge_anon_orders_inherit = inherit; 1040 anon_orders_configured = true; 1041 return 1; 1042 1043 err: 1044 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str); 1045 return 0; 1046 } 1047 __setup("thp_anon=", setup_thp_anon); 1048 1049 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 1050 { 1051 if (likely(vma->vm_flags & VM_WRITE)) 1052 pmd = pmd_mkwrite(pmd, vma); 1053 return pmd; 1054 } 1055 1056 #ifdef CONFIG_MEMCG 1057 static inline 1058 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1059 { 1060 struct mem_cgroup *memcg = folio_memcg(folio); 1061 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1062 1063 if (memcg) 1064 return &memcg->deferred_split_queue; 1065 else 1066 return &pgdat->deferred_split_queue; 1067 } 1068 #else 1069 static inline 1070 struct deferred_split *get_deferred_split_queue(struct folio *folio) 1071 { 1072 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 1073 1074 return &pgdat->deferred_split_queue; 1075 } 1076 #endif 1077 1078 static inline bool is_transparent_hugepage(const struct folio *folio) 1079 { 1080 if (!folio_test_large(folio)) 1081 return false; 1082 1083 return is_huge_zero_folio(folio) || 1084 folio_test_large_rmappable(folio); 1085 } 1086 1087 static unsigned long __thp_get_unmapped_area(struct file *filp, 1088 unsigned long addr, unsigned long len, 1089 loff_t off, unsigned long flags, unsigned long size, 1090 vm_flags_t vm_flags) 1091 { 1092 loff_t off_end = off + len; 1093 loff_t off_align = round_up(off, size); 1094 unsigned long len_pad, ret, off_sub; 1095 1096 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall()) 1097 return 0; 1098 1099 if (off_end <= off_align || (off_end - off_align) < size) 1100 return 0; 1101 1102 len_pad = len + size; 1103 if (len_pad < len || (off + len_pad) < off) 1104 return 0; 1105 1106 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad, 1107 off >> PAGE_SHIFT, flags, vm_flags); 1108 1109 /* 1110 * The failure might be due to length padding. The caller will retry 1111 * without the padding. 1112 */ 1113 if (IS_ERR_VALUE(ret)) 1114 return 0; 1115 1116 /* 1117 * Do not try to align to THP boundary if allocation at the address 1118 * hint succeeds. 1119 */ 1120 if (ret == addr) 1121 return addr; 1122 1123 off_sub = (off - ret) & (size - 1); 1124 1125 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub) 1126 return ret + size; 1127 1128 ret += off_sub; 1129 return ret; 1130 } 1131 1132 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr, 1133 unsigned long len, unsigned long pgoff, unsigned long flags, 1134 vm_flags_t vm_flags) 1135 { 1136 unsigned long ret; 1137 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 1138 1139 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags); 1140 if (ret) 1141 return ret; 1142 1143 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags, 1144 vm_flags); 1145 } 1146 1147 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 1148 unsigned long len, unsigned long pgoff, unsigned long flags) 1149 { 1150 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0); 1151 } 1152 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 1153 1154 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma, 1155 unsigned long addr) 1156 { 1157 gfp_t gfp = vma_thp_gfp_mask(vma); 1158 const int order = HPAGE_PMD_ORDER; 1159 struct folio *folio; 1160 1161 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK); 1162 1163 if (unlikely(!folio)) { 1164 count_vm_event(THP_FAULT_FALLBACK); 1165 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1166 return NULL; 1167 } 1168 1169 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1170 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 1171 folio_put(folio); 1172 count_vm_event(THP_FAULT_FALLBACK); 1173 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 1174 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 1175 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 1176 return NULL; 1177 } 1178 folio_throttle_swaprate(folio, gfp); 1179 1180 /* 1181 * When a folio is not zeroed during allocation (__GFP_ZERO not used), 1182 * folio_zero_user() is used to make sure that the page corresponding 1183 * to the faulting address will be hot in the cache after zeroing. 1184 */ 1185 if (!alloc_zeroed()) 1186 folio_zero_user(folio, addr); 1187 /* 1188 * The memory barrier inside __folio_mark_uptodate makes sure that 1189 * folio_zero_user writes become visible before the set_pmd_at() 1190 * write. 1191 */ 1192 __folio_mark_uptodate(folio); 1193 return folio; 1194 } 1195 1196 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd, 1197 struct vm_area_struct *vma, unsigned long haddr) 1198 { 1199 pmd_t entry; 1200 1201 entry = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1202 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1203 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE); 1204 folio_add_lru_vma(folio, vma); 1205 set_pmd_at(vma->vm_mm, haddr, pmd, entry); 1206 update_mmu_cache_pmd(vma, haddr, pmd); 1207 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1208 count_vm_event(THP_FAULT_ALLOC); 1209 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC); 1210 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 1211 } 1212 1213 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1214 { 1215 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1216 struct vm_area_struct *vma = vmf->vma; 1217 struct folio *folio; 1218 pgtable_t pgtable; 1219 vm_fault_t ret = 0; 1220 1221 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1222 if (unlikely(!folio)) 1223 return VM_FAULT_FALLBACK; 1224 1225 pgtable = pte_alloc_one(vma->vm_mm); 1226 if (unlikely(!pgtable)) { 1227 ret = VM_FAULT_OOM; 1228 goto release; 1229 } 1230 1231 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1232 if (unlikely(!pmd_none(*vmf->pmd))) { 1233 goto unlock_release; 1234 } else { 1235 ret = check_stable_address_space(vma->vm_mm); 1236 if (ret) 1237 goto unlock_release; 1238 1239 /* Deliver the page fault to userland */ 1240 if (userfaultfd_missing(vma)) { 1241 spin_unlock(vmf->ptl); 1242 folio_put(folio); 1243 pte_free(vma->vm_mm, pgtable); 1244 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1245 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1246 return ret; 1247 } 1248 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1249 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1250 mm_inc_nr_ptes(vma->vm_mm); 1251 deferred_split_folio(folio, false); 1252 spin_unlock(vmf->ptl); 1253 } 1254 1255 return 0; 1256 unlock_release: 1257 spin_unlock(vmf->ptl); 1258 release: 1259 if (pgtable) 1260 pte_free(vma->vm_mm, pgtable); 1261 folio_put(folio); 1262 return ret; 1263 1264 } 1265 1266 /* 1267 * always: directly stall for all thp allocations 1268 * defer: wake kswapd and fail if not immediately available 1269 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 1270 * fail if not immediately available 1271 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 1272 * available 1273 * never: never stall for any thp allocation 1274 */ 1275 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 1276 { 1277 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 1278 1279 /* Always do synchronous compaction */ 1280 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 1281 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 1282 1283 /* Kick kcompactd and fail quickly */ 1284 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 1285 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 1286 1287 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 1288 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 1289 return GFP_TRANSHUGE_LIGHT | 1290 (vma_madvised ? __GFP_DIRECT_RECLAIM : 1291 __GFP_KSWAPD_RECLAIM); 1292 1293 /* Only do synchronous compaction if madvised */ 1294 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 1295 return GFP_TRANSHUGE_LIGHT | 1296 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 1297 1298 return GFP_TRANSHUGE_LIGHT; 1299 } 1300 1301 /* Caller must hold page table lock. */ 1302 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm, 1303 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 1304 struct folio *zero_folio) 1305 { 1306 pmd_t entry; 1307 if (!pmd_none(*pmd)) 1308 return; 1309 entry = mk_pmd(&zero_folio->page, vma->vm_page_prot); 1310 entry = pmd_mkhuge(entry); 1311 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1312 set_pmd_at(mm, haddr, pmd, entry); 1313 mm_inc_nr_ptes(mm); 1314 } 1315 1316 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 1317 { 1318 struct vm_area_struct *vma = vmf->vma; 1319 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1320 vm_fault_t ret; 1321 1322 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 1323 return VM_FAULT_FALLBACK; 1324 ret = vmf_anon_prepare(vmf); 1325 if (ret) 1326 return ret; 1327 khugepaged_enter_vma(vma, vma->vm_flags); 1328 1329 if (!(vmf->flags & FAULT_FLAG_WRITE) && 1330 !mm_forbids_zeropage(vma->vm_mm) && 1331 transparent_hugepage_use_zero_page()) { 1332 pgtable_t pgtable; 1333 struct folio *zero_folio; 1334 vm_fault_t ret; 1335 1336 pgtable = pte_alloc_one(vma->vm_mm); 1337 if (unlikely(!pgtable)) 1338 return VM_FAULT_OOM; 1339 zero_folio = mm_get_huge_zero_folio(vma->vm_mm); 1340 if (unlikely(!zero_folio)) { 1341 pte_free(vma->vm_mm, pgtable); 1342 count_vm_event(THP_FAULT_FALLBACK); 1343 return VM_FAULT_FALLBACK; 1344 } 1345 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1346 ret = 0; 1347 if (pmd_none(*vmf->pmd)) { 1348 ret = check_stable_address_space(vma->vm_mm); 1349 if (ret) { 1350 spin_unlock(vmf->ptl); 1351 pte_free(vma->vm_mm, pgtable); 1352 } else if (userfaultfd_missing(vma)) { 1353 spin_unlock(vmf->ptl); 1354 pte_free(vma->vm_mm, pgtable); 1355 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1356 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1357 } else { 1358 set_huge_zero_folio(pgtable, vma->vm_mm, vma, 1359 haddr, vmf->pmd, zero_folio); 1360 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1361 spin_unlock(vmf->ptl); 1362 } 1363 } else { 1364 spin_unlock(vmf->ptl); 1365 pte_free(vma->vm_mm, pgtable); 1366 } 1367 return ret; 1368 } 1369 1370 return __do_huge_pmd_anonymous_page(vmf); 1371 } 1372 1373 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1374 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1375 pgtable_t pgtable) 1376 { 1377 struct mm_struct *mm = vma->vm_mm; 1378 pmd_t entry; 1379 spinlock_t *ptl; 1380 1381 ptl = pmd_lock(mm, pmd); 1382 if (!pmd_none(*pmd)) { 1383 if (write) { 1384 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1385 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1386 goto out_unlock; 1387 } 1388 entry = pmd_mkyoung(*pmd); 1389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1390 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1391 update_mmu_cache_pmd(vma, addr, pmd); 1392 } 1393 1394 goto out_unlock; 1395 } 1396 1397 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1398 if (pfn_t_devmap(pfn)) 1399 entry = pmd_mkdevmap(entry); 1400 else 1401 entry = pmd_mkspecial(entry); 1402 if (write) { 1403 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1404 entry = maybe_pmd_mkwrite(entry, vma); 1405 } 1406 1407 if (pgtable) { 1408 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1409 mm_inc_nr_ptes(mm); 1410 pgtable = NULL; 1411 } 1412 1413 set_pmd_at(mm, addr, pmd, entry); 1414 update_mmu_cache_pmd(vma, addr, pmd); 1415 1416 out_unlock: 1417 spin_unlock(ptl); 1418 if (pgtable) 1419 pte_free(mm, pgtable); 1420 } 1421 1422 /** 1423 * vmf_insert_pfn_pmd - insert a pmd size pfn 1424 * @vmf: Structure describing the fault 1425 * @pfn: pfn to insert 1426 * @write: whether it's a write fault 1427 * 1428 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1429 * 1430 * Return: vm_fault_t value. 1431 */ 1432 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1433 { 1434 unsigned long addr = vmf->address & PMD_MASK; 1435 struct vm_area_struct *vma = vmf->vma; 1436 pgprot_t pgprot = vma->vm_page_prot; 1437 pgtable_t pgtable = NULL; 1438 1439 /* 1440 * If we had pmd_special, we could avoid all these restrictions, 1441 * but we need to be consistent with PTEs and architectures that 1442 * can't support a 'special' bit. 1443 */ 1444 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1445 !pfn_t_devmap(pfn)); 1446 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1447 (VM_PFNMAP|VM_MIXEDMAP)); 1448 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1449 1450 if (addr < vma->vm_start || addr >= vma->vm_end) 1451 return VM_FAULT_SIGBUS; 1452 1453 if (arch_needs_pgtable_deposit()) { 1454 pgtable = pte_alloc_one(vma->vm_mm); 1455 if (!pgtable) 1456 return VM_FAULT_OOM; 1457 } 1458 1459 track_pfn_insert(vma, &pgprot, pfn); 1460 1461 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1462 return VM_FAULT_NOPAGE; 1463 } 1464 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1465 1466 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1467 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1468 { 1469 if (likely(vma->vm_flags & VM_WRITE)) 1470 pud = pud_mkwrite(pud); 1471 return pud; 1472 } 1473 1474 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1475 pud_t *pud, pfn_t pfn, bool write) 1476 { 1477 struct mm_struct *mm = vma->vm_mm; 1478 pgprot_t prot = vma->vm_page_prot; 1479 pud_t entry; 1480 spinlock_t *ptl; 1481 1482 ptl = pud_lock(mm, pud); 1483 if (!pud_none(*pud)) { 1484 if (write) { 1485 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn))) 1486 goto out_unlock; 1487 entry = pud_mkyoung(*pud); 1488 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1489 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1490 update_mmu_cache_pud(vma, addr, pud); 1491 } 1492 goto out_unlock; 1493 } 1494 1495 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1496 if (pfn_t_devmap(pfn)) 1497 entry = pud_mkdevmap(entry); 1498 else 1499 entry = pud_mkspecial(entry); 1500 if (write) { 1501 entry = pud_mkyoung(pud_mkdirty(entry)); 1502 entry = maybe_pud_mkwrite(entry, vma); 1503 } 1504 set_pud_at(mm, addr, pud, entry); 1505 update_mmu_cache_pud(vma, addr, pud); 1506 1507 out_unlock: 1508 spin_unlock(ptl); 1509 } 1510 1511 /** 1512 * vmf_insert_pfn_pud - insert a pud size pfn 1513 * @vmf: Structure describing the fault 1514 * @pfn: pfn to insert 1515 * @write: whether it's a write fault 1516 * 1517 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1518 * 1519 * Return: vm_fault_t value. 1520 */ 1521 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1522 { 1523 unsigned long addr = vmf->address & PUD_MASK; 1524 struct vm_area_struct *vma = vmf->vma; 1525 pgprot_t pgprot = vma->vm_page_prot; 1526 1527 /* 1528 * If we had pud_special, we could avoid all these restrictions, 1529 * but we need to be consistent with PTEs and architectures that 1530 * can't support a 'special' bit. 1531 */ 1532 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1533 !pfn_t_devmap(pfn)); 1534 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1535 (VM_PFNMAP|VM_MIXEDMAP)); 1536 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1537 1538 if (addr < vma->vm_start || addr >= vma->vm_end) 1539 return VM_FAULT_SIGBUS; 1540 1541 track_pfn_insert(vma, &pgprot, pfn); 1542 1543 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1544 return VM_FAULT_NOPAGE; 1545 } 1546 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1547 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1548 1549 void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1550 pmd_t *pmd, bool write) 1551 { 1552 pmd_t _pmd; 1553 1554 _pmd = pmd_mkyoung(*pmd); 1555 if (write) 1556 _pmd = pmd_mkdirty(_pmd); 1557 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1558 pmd, _pmd, write)) 1559 update_mmu_cache_pmd(vma, addr, pmd); 1560 } 1561 1562 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1563 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1564 { 1565 unsigned long pfn = pmd_pfn(*pmd); 1566 struct mm_struct *mm = vma->vm_mm; 1567 struct page *page; 1568 int ret; 1569 1570 assert_spin_locked(pmd_lockptr(mm, pmd)); 1571 1572 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1573 return NULL; 1574 1575 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1576 /* pass */; 1577 else 1578 return NULL; 1579 1580 if (flags & FOLL_TOUCH) 1581 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1582 1583 /* 1584 * device mapped pages can only be returned if the 1585 * caller will manage the page reference count. 1586 */ 1587 if (!(flags & (FOLL_GET | FOLL_PIN))) 1588 return ERR_PTR(-EEXIST); 1589 1590 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1591 *pgmap = get_dev_pagemap(pfn, *pgmap); 1592 if (!*pgmap) 1593 return ERR_PTR(-EFAULT); 1594 page = pfn_to_page(pfn); 1595 ret = try_grab_folio(page_folio(page), 1, flags); 1596 if (ret) 1597 page = ERR_PTR(ret); 1598 1599 return page; 1600 } 1601 1602 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1603 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1604 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1605 { 1606 spinlock_t *dst_ptl, *src_ptl; 1607 struct page *src_page; 1608 struct folio *src_folio; 1609 pmd_t pmd; 1610 pgtable_t pgtable = NULL; 1611 int ret = -ENOMEM; 1612 1613 pmd = pmdp_get_lockless(src_pmd); 1614 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) { 1615 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1616 src_ptl = pmd_lockptr(src_mm, src_pmd); 1617 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1618 /* 1619 * No need to recheck the pmd, it can't change with write 1620 * mmap lock held here. 1621 * 1622 * Meanwhile, making sure it's not a CoW VMA with writable 1623 * mapping, otherwise it means either the anon page wrongly 1624 * applied special bit, or we made the PRIVATE mapping be 1625 * able to wrongly write to the backend MMIO. 1626 */ 1627 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd)); 1628 goto set_pmd; 1629 } 1630 1631 /* Skip if can be re-fill on fault */ 1632 if (!vma_is_anonymous(dst_vma)) 1633 return 0; 1634 1635 pgtable = pte_alloc_one(dst_mm); 1636 if (unlikely(!pgtable)) 1637 goto out; 1638 1639 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1640 src_ptl = pmd_lockptr(src_mm, src_pmd); 1641 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1642 1643 ret = -EAGAIN; 1644 pmd = *src_pmd; 1645 1646 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1647 if (unlikely(is_swap_pmd(pmd))) { 1648 swp_entry_t entry = pmd_to_swp_entry(pmd); 1649 1650 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1651 if (!is_readable_migration_entry(entry)) { 1652 entry = make_readable_migration_entry( 1653 swp_offset(entry)); 1654 pmd = swp_entry_to_pmd(entry); 1655 if (pmd_swp_soft_dirty(*src_pmd)) 1656 pmd = pmd_swp_mksoft_dirty(pmd); 1657 if (pmd_swp_uffd_wp(*src_pmd)) 1658 pmd = pmd_swp_mkuffd_wp(pmd); 1659 set_pmd_at(src_mm, addr, src_pmd, pmd); 1660 } 1661 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1662 mm_inc_nr_ptes(dst_mm); 1663 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1664 if (!userfaultfd_wp(dst_vma)) 1665 pmd = pmd_swp_clear_uffd_wp(pmd); 1666 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1667 ret = 0; 1668 goto out_unlock; 1669 } 1670 #endif 1671 1672 if (unlikely(!pmd_trans_huge(pmd))) { 1673 pte_free(dst_mm, pgtable); 1674 goto out_unlock; 1675 } 1676 /* 1677 * When page table lock is held, the huge zero pmd should not be 1678 * under splitting since we don't split the page itself, only pmd to 1679 * a page table. 1680 */ 1681 if (is_huge_zero_pmd(pmd)) { 1682 /* 1683 * mm_get_huge_zero_folio() will never allocate a new 1684 * folio here, since we already have a zero page to 1685 * copy. It just takes a reference. 1686 */ 1687 mm_get_huge_zero_folio(dst_mm); 1688 goto out_zero_page; 1689 } 1690 1691 src_page = pmd_page(pmd); 1692 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1693 src_folio = page_folio(src_page); 1694 1695 folio_get(src_folio); 1696 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1697 /* Page maybe pinned: split and retry the fault on PTEs. */ 1698 folio_put(src_folio); 1699 pte_free(dst_mm, pgtable); 1700 spin_unlock(src_ptl); 1701 spin_unlock(dst_ptl); 1702 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1703 return -EAGAIN; 1704 } 1705 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1706 out_zero_page: 1707 mm_inc_nr_ptes(dst_mm); 1708 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1709 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1710 if (!userfaultfd_wp(dst_vma)) 1711 pmd = pmd_clear_uffd_wp(pmd); 1712 pmd = pmd_wrprotect(pmd); 1713 set_pmd: 1714 pmd = pmd_mkold(pmd); 1715 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1716 1717 ret = 0; 1718 out_unlock: 1719 spin_unlock(src_ptl); 1720 spin_unlock(dst_ptl); 1721 out: 1722 return ret; 1723 } 1724 1725 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1726 void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1727 pud_t *pud, bool write) 1728 { 1729 pud_t _pud; 1730 1731 _pud = pud_mkyoung(*pud); 1732 if (write) 1733 _pud = pud_mkdirty(_pud); 1734 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1735 pud, _pud, write)) 1736 update_mmu_cache_pud(vma, addr, pud); 1737 } 1738 1739 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1740 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1741 struct vm_area_struct *vma) 1742 { 1743 spinlock_t *dst_ptl, *src_ptl; 1744 pud_t pud; 1745 int ret; 1746 1747 dst_ptl = pud_lock(dst_mm, dst_pud); 1748 src_ptl = pud_lockptr(src_mm, src_pud); 1749 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1750 1751 ret = -EAGAIN; 1752 pud = *src_pud; 1753 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1754 goto out_unlock; 1755 1756 /* 1757 * TODO: once we support anonymous pages, use 1758 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1759 */ 1760 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) { 1761 pudp_set_wrprotect(src_mm, addr, src_pud); 1762 pud = pud_wrprotect(pud); 1763 } 1764 pud = pud_mkold(pud); 1765 set_pud_at(dst_mm, addr, dst_pud, pud); 1766 1767 ret = 0; 1768 out_unlock: 1769 spin_unlock(src_ptl); 1770 spin_unlock(dst_ptl); 1771 return ret; 1772 } 1773 1774 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1775 { 1776 bool write = vmf->flags & FAULT_FLAG_WRITE; 1777 1778 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1779 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1780 goto unlock; 1781 1782 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1783 unlock: 1784 spin_unlock(vmf->ptl); 1785 } 1786 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1787 1788 void huge_pmd_set_accessed(struct vm_fault *vmf) 1789 { 1790 bool write = vmf->flags & FAULT_FLAG_WRITE; 1791 1792 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1793 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1794 goto unlock; 1795 1796 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1797 1798 unlock: 1799 spin_unlock(vmf->ptl); 1800 } 1801 1802 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf) 1803 { 1804 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1805 struct vm_area_struct *vma = vmf->vma; 1806 struct mmu_notifier_range range; 1807 struct folio *folio; 1808 vm_fault_t ret = 0; 1809 1810 folio = vma_alloc_anon_folio_pmd(vma, vmf->address); 1811 if (unlikely(!folio)) 1812 return VM_FAULT_FALLBACK; 1813 1814 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr, 1815 haddr + HPAGE_PMD_SIZE); 1816 mmu_notifier_invalidate_range_start(&range); 1817 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1818 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) 1819 goto release; 1820 ret = check_stable_address_space(vma->vm_mm); 1821 if (ret) 1822 goto release; 1823 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd); 1824 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr); 1825 goto unlock; 1826 release: 1827 folio_put(folio); 1828 unlock: 1829 spin_unlock(vmf->ptl); 1830 mmu_notifier_invalidate_range_end(&range); 1831 return ret; 1832 } 1833 1834 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1835 { 1836 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1837 struct vm_area_struct *vma = vmf->vma; 1838 struct folio *folio; 1839 struct page *page; 1840 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1841 pmd_t orig_pmd = vmf->orig_pmd; 1842 1843 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1844 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1845 1846 if (is_huge_zero_pmd(orig_pmd)) { 1847 vm_fault_t ret = do_huge_zero_wp_pmd(vmf); 1848 1849 if (!(ret & VM_FAULT_FALLBACK)) 1850 return ret; 1851 1852 /* Fallback to splitting PMD if THP cannot be allocated */ 1853 goto fallback; 1854 } 1855 1856 spin_lock(vmf->ptl); 1857 1858 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1859 spin_unlock(vmf->ptl); 1860 return 0; 1861 } 1862 1863 page = pmd_page(orig_pmd); 1864 folio = page_folio(page); 1865 VM_BUG_ON_PAGE(!PageHead(page), page); 1866 1867 /* Early check when only holding the PT lock. */ 1868 if (PageAnonExclusive(page)) 1869 goto reuse; 1870 1871 if (!folio_trylock(folio)) { 1872 folio_get(folio); 1873 spin_unlock(vmf->ptl); 1874 folio_lock(folio); 1875 spin_lock(vmf->ptl); 1876 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1877 spin_unlock(vmf->ptl); 1878 folio_unlock(folio); 1879 folio_put(folio); 1880 return 0; 1881 } 1882 folio_put(folio); 1883 } 1884 1885 /* Recheck after temporarily dropping the PT lock. */ 1886 if (PageAnonExclusive(page)) { 1887 folio_unlock(folio); 1888 goto reuse; 1889 } 1890 1891 /* 1892 * See do_wp_page(): we can only reuse the folio exclusively if 1893 * there are no additional references. Note that we always drain 1894 * the LRU cache immediately after adding a THP. 1895 */ 1896 if (folio_ref_count(folio) > 1897 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1898 goto unlock_fallback; 1899 if (folio_test_swapcache(folio)) 1900 folio_free_swap(folio); 1901 if (folio_ref_count(folio) == 1) { 1902 pmd_t entry; 1903 1904 folio_move_anon_rmap(folio, vma); 1905 SetPageAnonExclusive(page); 1906 folio_unlock(folio); 1907 reuse: 1908 if (unlikely(unshare)) { 1909 spin_unlock(vmf->ptl); 1910 return 0; 1911 } 1912 entry = pmd_mkyoung(orig_pmd); 1913 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1914 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1915 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1916 spin_unlock(vmf->ptl); 1917 return 0; 1918 } 1919 1920 unlock_fallback: 1921 folio_unlock(folio); 1922 spin_unlock(vmf->ptl); 1923 fallback: 1924 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1925 return VM_FAULT_FALLBACK; 1926 } 1927 1928 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1929 unsigned long addr, pmd_t pmd) 1930 { 1931 struct page *page; 1932 1933 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1934 return false; 1935 1936 /* Don't touch entries that are not even readable (NUMA hinting). */ 1937 if (pmd_protnone(pmd)) 1938 return false; 1939 1940 /* Do we need write faults for softdirty tracking? */ 1941 if (pmd_needs_soft_dirty_wp(vma, pmd)) 1942 return false; 1943 1944 /* Do we need write faults for uffd-wp tracking? */ 1945 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1946 return false; 1947 1948 if (!(vma->vm_flags & VM_SHARED)) { 1949 /* See can_change_pte_writable(). */ 1950 page = vm_normal_page_pmd(vma, addr, pmd); 1951 return page && PageAnon(page) && PageAnonExclusive(page); 1952 } 1953 1954 /* See can_change_pte_writable(). */ 1955 return pmd_dirty(pmd); 1956 } 1957 1958 /* NUMA hinting page fault entry point for trans huge pmds */ 1959 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1960 { 1961 struct vm_area_struct *vma = vmf->vma; 1962 struct folio *folio; 1963 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1964 int nid = NUMA_NO_NODE; 1965 int target_nid, last_cpupid; 1966 pmd_t pmd, old_pmd; 1967 bool writable = false; 1968 int flags = 0; 1969 1970 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1971 old_pmd = pmdp_get(vmf->pmd); 1972 1973 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) { 1974 spin_unlock(vmf->ptl); 1975 return 0; 1976 } 1977 1978 pmd = pmd_modify(old_pmd, vma->vm_page_prot); 1979 1980 /* 1981 * Detect now whether the PMD could be writable; this information 1982 * is only valid while holding the PT lock. 1983 */ 1984 writable = pmd_write(pmd); 1985 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1986 can_change_pmd_writable(vma, vmf->address, pmd)) 1987 writable = true; 1988 1989 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1990 if (!folio) 1991 goto out_map; 1992 1993 nid = folio_nid(folio); 1994 1995 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable, 1996 &last_cpupid); 1997 if (target_nid == NUMA_NO_NODE) 1998 goto out_map; 1999 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 2000 flags |= TNF_MIGRATE_FAIL; 2001 goto out_map; 2002 } 2003 /* The folio is isolated and isolation code holds a folio reference. */ 2004 spin_unlock(vmf->ptl); 2005 writable = false; 2006 2007 if (!migrate_misplaced_folio(folio, vma, target_nid)) { 2008 flags |= TNF_MIGRATED; 2009 nid = target_nid; 2010 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2011 return 0; 2012 } 2013 2014 flags |= TNF_MIGRATE_FAIL; 2015 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2016 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) { 2017 spin_unlock(vmf->ptl); 2018 return 0; 2019 } 2020 out_map: 2021 /* Restore the PMD */ 2022 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot); 2023 pmd = pmd_mkyoung(pmd); 2024 if (writable) 2025 pmd = pmd_mkwrite(pmd, vma); 2026 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 2027 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 2028 spin_unlock(vmf->ptl); 2029 2030 if (nid != NUMA_NO_NODE) 2031 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 2032 return 0; 2033 } 2034 2035 /* 2036 * Return true if we do MADV_FREE successfully on entire pmd page. 2037 * Otherwise, return false. 2038 */ 2039 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2040 pmd_t *pmd, unsigned long addr, unsigned long next) 2041 { 2042 spinlock_t *ptl; 2043 pmd_t orig_pmd; 2044 struct folio *folio; 2045 struct mm_struct *mm = tlb->mm; 2046 bool ret = false; 2047 2048 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2049 2050 ptl = pmd_trans_huge_lock(pmd, vma); 2051 if (!ptl) 2052 goto out_unlocked; 2053 2054 orig_pmd = *pmd; 2055 if (is_huge_zero_pmd(orig_pmd)) 2056 goto out; 2057 2058 if (unlikely(!pmd_present(orig_pmd))) { 2059 VM_BUG_ON(thp_migration_supported() && 2060 !is_pmd_migration_entry(orig_pmd)); 2061 goto out; 2062 } 2063 2064 folio = pmd_folio(orig_pmd); 2065 /* 2066 * If other processes are mapping this folio, we couldn't discard 2067 * the folio unless they all do MADV_FREE so let's skip the folio. 2068 */ 2069 if (folio_likely_mapped_shared(folio)) 2070 goto out; 2071 2072 if (!folio_trylock(folio)) 2073 goto out; 2074 2075 /* 2076 * If user want to discard part-pages of THP, split it so MADV_FREE 2077 * will deactivate only them. 2078 */ 2079 if (next - addr != HPAGE_PMD_SIZE) { 2080 folio_get(folio); 2081 spin_unlock(ptl); 2082 split_folio(folio); 2083 folio_unlock(folio); 2084 folio_put(folio); 2085 goto out_unlocked; 2086 } 2087 2088 if (folio_test_dirty(folio)) 2089 folio_clear_dirty(folio); 2090 folio_unlock(folio); 2091 2092 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 2093 pmdp_invalidate(vma, addr, pmd); 2094 orig_pmd = pmd_mkold(orig_pmd); 2095 orig_pmd = pmd_mkclean(orig_pmd); 2096 2097 set_pmd_at(mm, addr, pmd, orig_pmd); 2098 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2099 } 2100 2101 folio_mark_lazyfree(folio); 2102 ret = true; 2103 out: 2104 spin_unlock(ptl); 2105 out_unlocked: 2106 return ret; 2107 } 2108 2109 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 2110 { 2111 pgtable_t pgtable; 2112 2113 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2114 pte_free(mm, pgtable); 2115 mm_dec_nr_ptes(mm); 2116 } 2117 2118 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2119 pmd_t *pmd, unsigned long addr) 2120 { 2121 pmd_t orig_pmd; 2122 spinlock_t *ptl; 2123 2124 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2125 2126 ptl = __pmd_trans_huge_lock(pmd, vma); 2127 if (!ptl) 2128 return 0; 2129 /* 2130 * For architectures like ppc64 we look at deposited pgtable 2131 * when calling pmdp_huge_get_and_clear. So do the 2132 * pgtable_trans_huge_withdraw after finishing pmdp related 2133 * operations. 2134 */ 2135 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 2136 tlb->fullmm); 2137 arch_check_zapped_pmd(vma, orig_pmd); 2138 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 2139 if (vma_is_special_huge(vma)) { 2140 if (arch_needs_pgtable_deposit()) 2141 zap_deposited_table(tlb->mm, pmd); 2142 spin_unlock(ptl); 2143 } else if (is_huge_zero_pmd(orig_pmd)) { 2144 zap_deposited_table(tlb->mm, pmd); 2145 spin_unlock(ptl); 2146 } else { 2147 struct folio *folio = NULL; 2148 int flush_needed = 1; 2149 2150 if (pmd_present(orig_pmd)) { 2151 struct page *page = pmd_page(orig_pmd); 2152 2153 folio = page_folio(page); 2154 folio_remove_rmap_pmd(folio, page, vma); 2155 WARN_ON_ONCE(folio_mapcount(folio) < 0); 2156 VM_BUG_ON_PAGE(!PageHead(page), page); 2157 } else if (thp_migration_supported()) { 2158 swp_entry_t entry; 2159 2160 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 2161 entry = pmd_to_swp_entry(orig_pmd); 2162 folio = pfn_swap_entry_folio(entry); 2163 flush_needed = 0; 2164 } else 2165 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 2166 2167 if (folio_test_anon(folio)) { 2168 zap_deposited_table(tlb->mm, pmd); 2169 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 2170 } else { 2171 if (arch_needs_pgtable_deposit()) 2172 zap_deposited_table(tlb->mm, pmd); 2173 add_mm_counter(tlb->mm, mm_counter_file(folio), 2174 -HPAGE_PMD_NR); 2175 } 2176 2177 spin_unlock(ptl); 2178 if (flush_needed) 2179 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE); 2180 } 2181 return 1; 2182 } 2183 2184 #ifndef pmd_move_must_withdraw 2185 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 2186 spinlock_t *old_pmd_ptl, 2187 struct vm_area_struct *vma) 2188 { 2189 /* 2190 * With split pmd lock we also need to move preallocated 2191 * PTE page table if new_pmd is on different PMD page table. 2192 * 2193 * We also don't deposit and withdraw tables for file pages. 2194 */ 2195 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 2196 } 2197 #endif 2198 2199 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 2200 { 2201 #ifdef CONFIG_MEM_SOFT_DIRTY 2202 if (unlikely(is_pmd_migration_entry(pmd))) 2203 pmd = pmd_swp_mksoft_dirty(pmd); 2204 else if (pmd_present(pmd)) 2205 pmd = pmd_mksoft_dirty(pmd); 2206 #endif 2207 return pmd; 2208 } 2209 2210 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 2211 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 2212 { 2213 spinlock_t *old_ptl, *new_ptl; 2214 pmd_t pmd; 2215 struct mm_struct *mm = vma->vm_mm; 2216 bool force_flush = false; 2217 2218 /* 2219 * The destination pmd shouldn't be established, free_pgtables() 2220 * should have released it; but move_page_tables() might have already 2221 * inserted a page table, if racing against shmem/file collapse. 2222 */ 2223 if (!pmd_none(*new_pmd)) { 2224 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 2225 return false; 2226 } 2227 2228 /* 2229 * We don't have to worry about the ordering of src and dst 2230 * ptlocks because exclusive mmap_lock prevents deadlock. 2231 */ 2232 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 2233 if (old_ptl) { 2234 new_ptl = pmd_lockptr(mm, new_pmd); 2235 if (new_ptl != old_ptl) 2236 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 2237 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 2238 if (pmd_present(pmd)) 2239 force_flush = true; 2240 VM_BUG_ON(!pmd_none(*new_pmd)); 2241 2242 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 2243 pgtable_t pgtable; 2244 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 2245 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 2246 } 2247 pmd = move_soft_dirty_pmd(pmd); 2248 set_pmd_at(mm, new_addr, new_pmd, pmd); 2249 if (force_flush) 2250 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 2251 if (new_ptl != old_ptl) 2252 spin_unlock(new_ptl); 2253 spin_unlock(old_ptl); 2254 return true; 2255 } 2256 return false; 2257 } 2258 2259 /* 2260 * Returns 2261 * - 0 if PMD could not be locked 2262 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2263 * or if prot_numa but THP migration is not supported 2264 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2265 */ 2266 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2267 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2268 unsigned long cp_flags) 2269 { 2270 struct mm_struct *mm = vma->vm_mm; 2271 spinlock_t *ptl; 2272 pmd_t oldpmd, entry; 2273 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2274 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2275 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2276 int ret = 1; 2277 2278 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2279 2280 if (prot_numa && !thp_migration_supported()) 2281 return 1; 2282 2283 ptl = __pmd_trans_huge_lock(pmd, vma); 2284 if (!ptl) 2285 return 0; 2286 2287 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2288 if (is_swap_pmd(*pmd)) { 2289 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2290 struct folio *folio = pfn_swap_entry_folio(entry); 2291 pmd_t newpmd; 2292 2293 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2294 if (is_writable_migration_entry(entry)) { 2295 /* 2296 * A protection check is difficult so 2297 * just be safe and disable write 2298 */ 2299 if (folio_test_anon(folio)) 2300 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2301 else 2302 entry = make_readable_migration_entry(swp_offset(entry)); 2303 newpmd = swp_entry_to_pmd(entry); 2304 if (pmd_swp_soft_dirty(*pmd)) 2305 newpmd = pmd_swp_mksoft_dirty(newpmd); 2306 } else { 2307 newpmd = *pmd; 2308 } 2309 2310 if (uffd_wp) 2311 newpmd = pmd_swp_mkuffd_wp(newpmd); 2312 else if (uffd_wp_resolve) 2313 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2314 if (!pmd_same(*pmd, newpmd)) 2315 set_pmd_at(mm, addr, pmd, newpmd); 2316 goto unlock; 2317 } 2318 #endif 2319 2320 if (prot_numa) { 2321 struct folio *folio; 2322 bool toptier; 2323 /* 2324 * Avoid trapping faults against the zero page. The read-only 2325 * data is likely to be read-cached on the local CPU and 2326 * local/remote hits to the zero page are not interesting. 2327 */ 2328 if (is_huge_zero_pmd(*pmd)) 2329 goto unlock; 2330 2331 if (pmd_protnone(*pmd)) 2332 goto unlock; 2333 2334 folio = pmd_folio(*pmd); 2335 toptier = node_is_toptier(folio_nid(folio)); 2336 /* 2337 * Skip scanning top tier node if normal numa 2338 * balancing is disabled 2339 */ 2340 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2341 toptier) 2342 goto unlock; 2343 2344 if (folio_use_access_time(folio)) 2345 folio_xchg_access_time(folio, 2346 jiffies_to_msecs(jiffies)); 2347 } 2348 /* 2349 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2350 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2351 * which is also under mmap_read_lock(mm): 2352 * 2353 * CPU0: CPU1: 2354 * change_huge_pmd(prot_numa=1) 2355 * pmdp_huge_get_and_clear_notify() 2356 * madvise_dontneed() 2357 * zap_pmd_range() 2358 * pmd_trans_huge(*pmd) == 0 (without ptl) 2359 * // skip the pmd 2360 * set_pmd_at(); 2361 * // pmd is re-established 2362 * 2363 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2364 * which may break userspace. 2365 * 2366 * pmdp_invalidate_ad() is required to make sure we don't miss 2367 * dirty/young flags set by hardware. 2368 */ 2369 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2370 2371 entry = pmd_modify(oldpmd, newprot); 2372 if (uffd_wp) 2373 entry = pmd_mkuffd_wp(entry); 2374 else if (uffd_wp_resolve) 2375 /* 2376 * Leave the write bit to be handled by PF interrupt 2377 * handler, then things like COW could be properly 2378 * handled. 2379 */ 2380 entry = pmd_clear_uffd_wp(entry); 2381 2382 /* See change_pte_range(). */ 2383 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2384 can_change_pmd_writable(vma, addr, entry)) 2385 entry = pmd_mkwrite(entry, vma); 2386 2387 ret = HPAGE_PMD_NR; 2388 set_pmd_at(mm, addr, pmd, entry); 2389 2390 if (huge_pmd_needs_flush(oldpmd, entry)) 2391 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2392 unlock: 2393 spin_unlock(ptl); 2394 return ret; 2395 } 2396 2397 /* 2398 * Returns: 2399 * 2400 * - 0: if pud leaf changed from under us 2401 * - 1: if pud can be skipped 2402 * - HPAGE_PUD_NR: if pud was successfully processed 2403 */ 2404 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2405 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2406 pud_t *pudp, unsigned long addr, pgprot_t newprot, 2407 unsigned long cp_flags) 2408 { 2409 struct mm_struct *mm = vma->vm_mm; 2410 pud_t oldpud, entry; 2411 spinlock_t *ptl; 2412 2413 tlb_change_page_size(tlb, HPAGE_PUD_SIZE); 2414 2415 /* NUMA balancing doesn't apply to dax */ 2416 if (cp_flags & MM_CP_PROT_NUMA) 2417 return 1; 2418 2419 /* 2420 * Huge entries on userfault-wp only works with anonymous, while we 2421 * don't have anonymous PUDs yet. 2422 */ 2423 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL)) 2424 return 1; 2425 2426 ptl = __pud_trans_huge_lock(pudp, vma); 2427 if (!ptl) 2428 return 0; 2429 2430 /* 2431 * Can't clear PUD or it can race with concurrent zapping. See 2432 * change_huge_pmd(). 2433 */ 2434 oldpud = pudp_invalidate(vma, addr, pudp); 2435 entry = pud_modify(oldpud, newprot); 2436 set_pud_at(mm, addr, pudp, entry); 2437 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE); 2438 2439 spin_unlock(ptl); 2440 return HPAGE_PUD_NR; 2441 } 2442 #endif 2443 2444 #ifdef CONFIG_USERFAULTFD 2445 /* 2446 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by 2447 * the caller, but it must return after releasing the page_table_lock. 2448 * Just move the page from src_pmd to dst_pmd if possible. 2449 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2450 * repeated by the caller, or other errors in case of failure. 2451 */ 2452 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2453 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2454 unsigned long dst_addr, unsigned long src_addr) 2455 { 2456 pmd_t _dst_pmd, src_pmdval; 2457 struct page *src_page; 2458 struct folio *src_folio; 2459 struct anon_vma *src_anon_vma; 2460 spinlock_t *src_ptl, *dst_ptl; 2461 pgtable_t src_pgtable; 2462 struct mmu_notifier_range range; 2463 int err = 0; 2464 2465 src_pmdval = *src_pmd; 2466 src_ptl = pmd_lockptr(mm, src_pmd); 2467 2468 lockdep_assert_held(src_ptl); 2469 vma_assert_locked(src_vma); 2470 vma_assert_locked(dst_vma); 2471 2472 /* Sanity checks before the operation */ 2473 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2474 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2475 spin_unlock(src_ptl); 2476 return -EINVAL; 2477 } 2478 2479 if (!pmd_trans_huge(src_pmdval)) { 2480 spin_unlock(src_ptl); 2481 if (is_pmd_migration_entry(src_pmdval)) { 2482 pmd_migration_entry_wait(mm, &src_pmdval); 2483 return -EAGAIN; 2484 } 2485 return -ENOENT; 2486 } 2487 2488 src_page = pmd_page(src_pmdval); 2489 2490 if (!is_huge_zero_pmd(src_pmdval)) { 2491 if (unlikely(!PageAnonExclusive(src_page))) { 2492 spin_unlock(src_ptl); 2493 return -EBUSY; 2494 } 2495 2496 src_folio = page_folio(src_page); 2497 folio_get(src_folio); 2498 } else 2499 src_folio = NULL; 2500 2501 spin_unlock(src_ptl); 2502 2503 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2504 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2505 src_addr + HPAGE_PMD_SIZE); 2506 mmu_notifier_invalidate_range_start(&range); 2507 2508 if (src_folio) { 2509 folio_lock(src_folio); 2510 2511 /* 2512 * split_huge_page walks the anon_vma chain without the page 2513 * lock. Serialize against it with the anon_vma lock, the page 2514 * lock is not enough. 2515 */ 2516 src_anon_vma = folio_get_anon_vma(src_folio); 2517 if (!src_anon_vma) { 2518 err = -EAGAIN; 2519 goto unlock_folio; 2520 } 2521 anon_vma_lock_write(src_anon_vma); 2522 } else 2523 src_anon_vma = NULL; 2524 2525 dst_ptl = pmd_lockptr(mm, dst_pmd); 2526 double_pt_lock(src_ptl, dst_ptl); 2527 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2528 !pmd_same(*dst_pmd, dst_pmdval))) { 2529 err = -EAGAIN; 2530 goto unlock_ptls; 2531 } 2532 if (src_folio) { 2533 if (folio_maybe_dma_pinned(src_folio) || 2534 !PageAnonExclusive(&src_folio->page)) { 2535 err = -EBUSY; 2536 goto unlock_ptls; 2537 } 2538 2539 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2540 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2541 err = -EBUSY; 2542 goto unlock_ptls; 2543 } 2544 2545 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2546 /* Folio got pinned from under us. Put it back and fail the move. */ 2547 if (folio_maybe_dma_pinned(src_folio)) { 2548 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2549 err = -EBUSY; 2550 goto unlock_ptls; 2551 } 2552 2553 folio_move_anon_rmap(src_folio, dst_vma); 2554 src_folio->index = linear_page_index(dst_vma, dst_addr); 2555 2556 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2557 /* Follow mremap() behavior and treat the entry dirty after the move */ 2558 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2559 } else { 2560 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2561 _dst_pmd = mk_huge_pmd(src_page, dst_vma->vm_page_prot); 2562 } 2563 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2564 2565 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2566 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2567 unlock_ptls: 2568 double_pt_unlock(src_ptl, dst_ptl); 2569 if (src_anon_vma) { 2570 anon_vma_unlock_write(src_anon_vma); 2571 put_anon_vma(src_anon_vma); 2572 } 2573 unlock_folio: 2574 /* unblock rmap walks */ 2575 if (src_folio) 2576 folio_unlock(src_folio); 2577 mmu_notifier_invalidate_range_end(&range); 2578 if (src_folio) 2579 folio_put(src_folio); 2580 return err; 2581 } 2582 #endif /* CONFIG_USERFAULTFD */ 2583 2584 /* 2585 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2586 * 2587 * Note that if it returns page table lock pointer, this routine returns without 2588 * unlocking page table lock. So callers must unlock it. 2589 */ 2590 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2591 { 2592 spinlock_t *ptl; 2593 ptl = pmd_lock(vma->vm_mm, pmd); 2594 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2595 pmd_devmap(*pmd))) 2596 return ptl; 2597 spin_unlock(ptl); 2598 return NULL; 2599 } 2600 2601 /* 2602 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2603 * 2604 * Note that if it returns page table lock pointer, this routine returns without 2605 * unlocking page table lock. So callers must unlock it. 2606 */ 2607 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2608 { 2609 spinlock_t *ptl; 2610 2611 ptl = pud_lock(vma->vm_mm, pud); 2612 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2613 return ptl; 2614 spin_unlock(ptl); 2615 return NULL; 2616 } 2617 2618 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2619 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2620 pud_t *pud, unsigned long addr) 2621 { 2622 spinlock_t *ptl; 2623 pud_t orig_pud; 2624 2625 ptl = __pud_trans_huge_lock(pud, vma); 2626 if (!ptl) 2627 return 0; 2628 2629 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2630 arch_check_zapped_pud(vma, orig_pud); 2631 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2632 if (vma_is_special_huge(vma)) { 2633 spin_unlock(ptl); 2634 /* No zero page support yet */ 2635 } else { 2636 /* No support for anonymous PUD pages yet */ 2637 BUG(); 2638 } 2639 return 1; 2640 } 2641 2642 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2643 unsigned long haddr) 2644 { 2645 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2646 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2647 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2648 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2649 2650 count_vm_event(THP_SPLIT_PUD); 2651 2652 pudp_huge_clear_flush(vma, haddr, pud); 2653 } 2654 2655 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2656 unsigned long address) 2657 { 2658 spinlock_t *ptl; 2659 struct mmu_notifier_range range; 2660 2661 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2662 address & HPAGE_PUD_MASK, 2663 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2664 mmu_notifier_invalidate_range_start(&range); 2665 ptl = pud_lock(vma->vm_mm, pud); 2666 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2667 goto out; 2668 __split_huge_pud_locked(vma, pud, range.start); 2669 2670 out: 2671 spin_unlock(ptl); 2672 mmu_notifier_invalidate_range_end(&range); 2673 } 2674 #else 2675 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2676 unsigned long address) 2677 { 2678 } 2679 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2680 2681 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2682 unsigned long haddr, pmd_t *pmd) 2683 { 2684 struct mm_struct *mm = vma->vm_mm; 2685 pgtable_t pgtable; 2686 pmd_t _pmd, old_pmd; 2687 unsigned long addr; 2688 pte_t *pte; 2689 int i; 2690 2691 /* 2692 * Leave pmd empty until pte is filled note that it is fine to delay 2693 * notification until mmu_notifier_invalidate_range_end() as we are 2694 * replacing a zero pmd write protected page with a zero pte write 2695 * protected page. 2696 * 2697 * See Documentation/mm/mmu_notifier.rst 2698 */ 2699 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2700 2701 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2702 pmd_populate(mm, &_pmd, pgtable); 2703 2704 pte = pte_offset_map(&_pmd, haddr); 2705 VM_BUG_ON(!pte); 2706 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2707 pte_t entry; 2708 2709 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2710 entry = pte_mkspecial(entry); 2711 if (pmd_uffd_wp(old_pmd)) 2712 entry = pte_mkuffd_wp(entry); 2713 VM_BUG_ON(!pte_none(ptep_get(pte))); 2714 set_pte_at(mm, addr, pte, entry); 2715 pte++; 2716 } 2717 pte_unmap(pte - 1); 2718 smp_wmb(); /* make pte visible before pmd */ 2719 pmd_populate(mm, pmd, pgtable); 2720 } 2721 2722 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2723 unsigned long haddr, bool freeze) 2724 { 2725 struct mm_struct *mm = vma->vm_mm; 2726 struct folio *folio; 2727 struct page *page; 2728 pgtable_t pgtable; 2729 pmd_t old_pmd, _pmd; 2730 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2731 bool anon_exclusive = false, dirty = false; 2732 unsigned long addr; 2733 pte_t *pte; 2734 int i; 2735 2736 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2737 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2738 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2739 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2740 && !pmd_devmap(*pmd)); 2741 2742 count_vm_event(THP_SPLIT_PMD); 2743 2744 if (!vma_is_anonymous(vma)) { 2745 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2746 /* 2747 * We are going to unmap this huge page. So 2748 * just go ahead and zap it 2749 */ 2750 if (arch_needs_pgtable_deposit()) 2751 zap_deposited_table(mm, pmd); 2752 if (vma_is_special_huge(vma)) 2753 return; 2754 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2755 swp_entry_t entry; 2756 2757 entry = pmd_to_swp_entry(old_pmd); 2758 folio = pfn_swap_entry_folio(entry); 2759 } else { 2760 page = pmd_page(old_pmd); 2761 folio = page_folio(page); 2762 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2763 folio_mark_dirty(folio); 2764 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2765 folio_set_referenced(folio); 2766 folio_remove_rmap_pmd(folio, page, vma); 2767 folio_put(folio); 2768 } 2769 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR); 2770 return; 2771 } 2772 2773 if (is_huge_zero_pmd(*pmd)) { 2774 /* 2775 * FIXME: Do we want to invalidate secondary mmu by calling 2776 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2777 * inside __split_huge_pmd() ? 2778 * 2779 * We are going from a zero huge page write protected to zero 2780 * small page also write protected so it does not seems useful 2781 * to invalidate secondary mmu at this time. 2782 */ 2783 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2784 } 2785 2786 pmd_migration = is_pmd_migration_entry(*pmd); 2787 if (unlikely(pmd_migration)) { 2788 swp_entry_t entry; 2789 2790 old_pmd = *pmd; 2791 entry = pmd_to_swp_entry(old_pmd); 2792 page = pfn_swap_entry_to_page(entry); 2793 write = is_writable_migration_entry(entry); 2794 if (PageAnon(page)) 2795 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2796 young = is_migration_entry_young(entry); 2797 dirty = is_migration_entry_dirty(entry); 2798 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2799 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2800 } else { 2801 /* 2802 * Up to this point the pmd is present and huge and userland has 2803 * the whole access to the hugepage during the split (which 2804 * happens in place). If we overwrite the pmd with the not-huge 2805 * version pointing to the pte here (which of course we could if 2806 * all CPUs were bug free), userland could trigger a small page 2807 * size TLB miss on the small sized TLB while the hugepage TLB 2808 * entry is still established in the huge TLB. Some CPU doesn't 2809 * like that. See 2810 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2811 * 383 on page 105. Intel should be safe but is also warns that 2812 * it's only safe if the permission and cache attributes of the 2813 * two entries loaded in the two TLB is identical (which should 2814 * be the case here). But it is generally safer to never allow 2815 * small and huge TLB entries for the same virtual address to be 2816 * loaded simultaneously. So instead of doing "pmd_populate(); 2817 * flush_pmd_tlb_range();" we first mark the current pmd 2818 * notpresent (atomically because here the pmd_trans_huge must 2819 * remain set at all times on the pmd until the split is 2820 * complete for this pmd), then we flush the SMP TLB and finally 2821 * we write the non-huge version of the pmd entry with 2822 * pmd_populate. 2823 */ 2824 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2825 page = pmd_page(old_pmd); 2826 folio = page_folio(page); 2827 if (pmd_dirty(old_pmd)) { 2828 dirty = true; 2829 folio_set_dirty(folio); 2830 } 2831 write = pmd_write(old_pmd); 2832 young = pmd_young(old_pmd); 2833 soft_dirty = pmd_soft_dirty(old_pmd); 2834 uffd_wp = pmd_uffd_wp(old_pmd); 2835 2836 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2837 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2838 2839 /* 2840 * Without "freeze", we'll simply split the PMD, propagating the 2841 * PageAnonExclusive() flag for each PTE by setting it for 2842 * each subpage -- no need to (temporarily) clear. 2843 * 2844 * With "freeze" we want to replace mapped pages by 2845 * migration entries right away. This is only possible if we 2846 * managed to clear PageAnonExclusive() -- see 2847 * set_pmd_migration_entry(). 2848 * 2849 * In case we cannot clear PageAnonExclusive(), split the PMD 2850 * only and let try_to_migrate_one() fail later. 2851 * 2852 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2853 */ 2854 anon_exclusive = PageAnonExclusive(page); 2855 if (freeze && anon_exclusive && 2856 folio_try_share_anon_rmap_pmd(folio, page)) 2857 freeze = false; 2858 if (!freeze) { 2859 rmap_t rmap_flags = RMAP_NONE; 2860 2861 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2862 if (anon_exclusive) 2863 rmap_flags |= RMAP_EXCLUSIVE; 2864 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2865 vma, haddr, rmap_flags); 2866 } 2867 } 2868 2869 /* 2870 * Withdraw the table only after we mark the pmd entry invalid. 2871 * This's critical for some architectures (Power). 2872 */ 2873 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2874 pmd_populate(mm, &_pmd, pgtable); 2875 2876 pte = pte_offset_map(&_pmd, haddr); 2877 VM_BUG_ON(!pte); 2878 2879 /* 2880 * Note that NUMA hinting access restrictions are not transferred to 2881 * avoid any possibility of altering permissions across VMAs. 2882 */ 2883 if (freeze || pmd_migration) { 2884 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2885 pte_t entry; 2886 swp_entry_t swp_entry; 2887 2888 if (write) 2889 swp_entry = make_writable_migration_entry( 2890 page_to_pfn(page + i)); 2891 else if (anon_exclusive) 2892 swp_entry = make_readable_exclusive_migration_entry( 2893 page_to_pfn(page + i)); 2894 else 2895 swp_entry = make_readable_migration_entry( 2896 page_to_pfn(page + i)); 2897 if (young) 2898 swp_entry = make_migration_entry_young(swp_entry); 2899 if (dirty) 2900 swp_entry = make_migration_entry_dirty(swp_entry); 2901 entry = swp_entry_to_pte(swp_entry); 2902 if (soft_dirty) 2903 entry = pte_swp_mksoft_dirty(entry); 2904 if (uffd_wp) 2905 entry = pte_swp_mkuffd_wp(entry); 2906 2907 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2908 set_pte_at(mm, addr, pte + i, entry); 2909 } 2910 } else { 2911 pte_t entry; 2912 2913 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot)); 2914 if (write) 2915 entry = pte_mkwrite(entry, vma); 2916 if (!young) 2917 entry = pte_mkold(entry); 2918 /* NOTE: this may set soft-dirty too on some archs */ 2919 if (dirty) 2920 entry = pte_mkdirty(entry); 2921 if (soft_dirty) 2922 entry = pte_mksoft_dirty(entry); 2923 if (uffd_wp) 2924 entry = pte_mkuffd_wp(entry); 2925 2926 for (i = 0; i < HPAGE_PMD_NR; i++) 2927 VM_WARN_ON(!pte_none(ptep_get(pte + i))); 2928 2929 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR); 2930 } 2931 pte_unmap(pte); 2932 2933 if (!pmd_migration) 2934 folio_remove_rmap_pmd(folio, page, vma); 2935 if (freeze) 2936 put_page(page); 2937 2938 smp_wmb(); /* make pte visible before pmd */ 2939 pmd_populate(mm, pmd, pgtable); 2940 } 2941 2942 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address, 2943 pmd_t *pmd, bool freeze, struct folio *folio) 2944 { 2945 VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio)); 2946 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE)); 2947 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2948 VM_BUG_ON(freeze && !folio); 2949 2950 /* 2951 * When the caller requests to set up a migration entry, we 2952 * require a folio to check the PMD against. Otherwise, there 2953 * is a risk of replacing the wrong folio. 2954 */ 2955 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2956 is_pmd_migration_entry(*pmd)) { 2957 if (folio && folio != pmd_folio(*pmd)) 2958 return; 2959 __split_huge_pmd_locked(vma, pmd, address, freeze); 2960 } 2961 } 2962 2963 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2964 unsigned long address, bool freeze, struct folio *folio) 2965 { 2966 spinlock_t *ptl; 2967 struct mmu_notifier_range range; 2968 2969 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2970 address & HPAGE_PMD_MASK, 2971 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2972 mmu_notifier_invalidate_range_start(&range); 2973 ptl = pmd_lock(vma->vm_mm, pmd); 2974 split_huge_pmd_locked(vma, range.start, pmd, freeze, folio); 2975 spin_unlock(ptl); 2976 mmu_notifier_invalidate_range_end(&range); 2977 } 2978 2979 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2980 bool freeze, struct folio *folio) 2981 { 2982 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2983 2984 if (!pmd) 2985 return; 2986 2987 __split_huge_pmd(vma, pmd, address, freeze, folio); 2988 } 2989 2990 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2991 { 2992 /* 2993 * If the new address isn't hpage aligned and it could previously 2994 * contain an hugepage: check if we need to split an huge pmd. 2995 */ 2996 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2997 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2998 ALIGN(address, HPAGE_PMD_SIZE))) 2999 split_huge_pmd_address(vma, address, false, NULL); 3000 } 3001 3002 void vma_adjust_trans_huge(struct vm_area_struct *vma, 3003 unsigned long start, 3004 unsigned long end, 3005 long adjust_next) 3006 { 3007 /* Check if we need to split start first. */ 3008 split_huge_pmd_if_needed(vma, start); 3009 3010 /* Check if we need to split end next. */ 3011 split_huge_pmd_if_needed(vma, end); 3012 3013 /* 3014 * If we're also updating the next vma vm_start, 3015 * check if we need to split it. 3016 */ 3017 if (adjust_next > 0) { 3018 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 3019 unsigned long nstart = next->vm_start; 3020 nstart += adjust_next; 3021 split_huge_pmd_if_needed(next, nstart); 3022 } 3023 } 3024 3025 static void unmap_folio(struct folio *folio) 3026 { 3027 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC | 3028 TTU_BATCH_FLUSH; 3029 3030 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3031 3032 if (folio_test_pmd_mappable(folio)) 3033 ttu_flags |= TTU_SPLIT_HUGE_PMD; 3034 3035 /* 3036 * Anon pages need migration entries to preserve them, but file 3037 * pages can simply be left unmapped, then faulted back on demand. 3038 * If that is ever changed (perhaps for mlock), update remap_page(). 3039 */ 3040 if (folio_test_anon(folio)) 3041 try_to_migrate(folio, ttu_flags); 3042 else 3043 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 3044 3045 try_to_unmap_flush(); 3046 } 3047 3048 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma, 3049 unsigned long addr, pmd_t *pmdp, 3050 struct folio *folio) 3051 { 3052 struct mm_struct *mm = vma->vm_mm; 3053 int ref_count, map_count; 3054 pmd_t orig_pmd = *pmdp; 3055 3056 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd)) 3057 return false; 3058 3059 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp); 3060 3061 /* 3062 * Syncing against concurrent GUP-fast: 3063 * - clear PMD; barrier; read refcount 3064 * - inc refcount; barrier; read PMD 3065 */ 3066 smp_mb(); 3067 3068 ref_count = folio_ref_count(folio); 3069 map_count = folio_mapcount(folio); 3070 3071 /* 3072 * Order reads for folio refcount and dirty flag 3073 * (see comments in __remove_mapping()). 3074 */ 3075 smp_rmb(); 3076 3077 /* 3078 * If the folio or its PMD is redirtied at this point, or if there 3079 * are unexpected references, we will give up to discard this folio 3080 * and remap it. 3081 * 3082 * The only folio refs must be one from isolation plus the rmap(s). 3083 */ 3084 if (folio_test_dirty(folio) || pmd_dirty(orig_pmd) || 3085 ref_count != map_count + 1) { 3086 set_pmd_at(mm, addr, pmdp, orig_pmd); 3087 return false; 3088 } 3089 3090 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma); 3091 zap_deposited_table(mm, pmdp); 3092 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR); 3093 if (vma->vm_flags & VM_LOCKED) 3094 mlock_drain_local(); 3095 folio_put(folio); 3096 3097 return true; 3098 } 3099 3100 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr, 3101 pmd_t *pmdp, struct folio *folio) 3102 { 3103 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio); 3104 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 3105 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE)); 3106 3107 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) 3108 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio); 3109 3110 return false; 3111 } 3112 3113 static void remap_page(struct folio *folio, unsigned long nr, int flags) 3114 { 3115 int i = 0; 3116 3117 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 3118 if (!folio_test_anon(folio)) 3119 return; 3120 for (;;) { 3121 remove_migration_ptes(folio, folio, RMP_LOCKED | flags); 3122 i += folio_nr_pages(folio); 3123 if (i >= nr) 3124 break; 3125 folio = folio_next(folio); 3126 } 3127 } 3128 3129 static void lru_add_page_tail(struct folio *folio, struct page *tail, 3130 struct lruvec *lruvec, struct list_head *list) 3131 { 3132 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3133 VM_BUG_ON_FOLIO(PageLRU(tail), folio); 3134 lockdep_assert_held(&lruvec->lru_lock); 3135 3136 if (list) { 3137 /* page reclaim is reclaiming a huge page */ 3138 VM_WARN_ON(folio_test_lru(folio)); 3139 get_page(tail); 3140 list_add_tail(&tail->lru, list); 3141 } else { 3142 /* head is still on lru (and we have it frozen) */ 3143 VM_WARN_ON(!folio_test_lru(folio)); 3144 if (folio_test_unevictable(folio)) 3145 tail->mlock_count = 0; 3146 else 3147 list_add_tail(&tail->lru, &folio->lru); 3148 SetPageLRU(tail); 3149 } 3150 } 3151 3152 static void __split_huge_page_tail(struct folio *folio, int tail, 3153 struct lruvec *lruvec, struct list_head *list, 3154 unsigned int new_order) 3155 { 3156 struct page *head = &folio->page; 3157 struct page *page_tail = head + tail; 3158 /* 3159 * Careful: new_folio is not a "real" folio before we cleared PageTail. 3160 * Don't pass it around before clear_compound_head(). 3161 */ 3162 struct folio *new_folio = (struct folio *)page_tail; 3163 3164 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 3165 3166 /* 3167 * Clone page flags before unfreezing refcount. 3168 * 3169 * After successful get_page_unless_zero() might follow flags change, 3170 * for example lock_page() which set PG_waiters. 3171 * 3172 * Note that for mapped sub-pages of an anonymous THP, 3173 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 3174 * the migration entry instead from where remap_page() will restore it. 3175 * We can still have PG_anon_exclusive set on effectively unmapped and 3176 * unreferenced sub-pages of an anonymous THP: we can simply drop 3177 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 3178 */ 3179 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 3180 page_tail->flags |= (head->flags & 3181 ((1L << PG_referenced) | 3182 (1L << PG_swapbacked) | 3183 (1L << PG_swapcache) | 3184 (1L << PG_mlocked) | 3185 (1L << PG_uptodate) | 3186 (1L << PG_active) | 3187 (1L << PG_workingset) | 3188 (1L << PG_locked) | 3189 (1L << PG_unevictable) | 3190 #ifdef CONFIG_ARCH_USES_PG_ARCH_2 3191 (1L << PG_arch_2) | 3192 #endif 3193 #ifdef CONFIG_ARCH_USES_PG_ARCH_3 3194 (1L << PG_arch_3) | 3195 #endif 3196 (1L << PG_dirty) | 3197 LRU_GEN_MASK | LRU_REFS_MASK)); 3198 3199 /* ->mapping in first and second tail page is replaced by other uses */ 3200 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 3201 page_tail); 3202 page_tail->mapping = head->mapping; 3203 page_tail->index = head->index + tail; 3204 3205 /* 3206 * page->private should not be set in tail pages. Fix up and warn once 3207 * if private is unexpectedly set. 3208 */ 3209 if (unlikely(page_tail->private)) { 3210 VM_WARN_ON_ONCE_PAGE(true, page_tail); 3211 page_tail->private = 0; 3212 } 3213 if (folio_test_swapcache(folio)) 3214 new_folio->swap.val = folio->swap.val + tail; 3215 3216 /* Page flags must be visible before we make the page non-compound. */ 3217 smp_wmb(); 3218 3219 /* 3220 * Clear PageTail before unfreezing page refcount. 3221 * 3222 * After successful get_page_unless_zero() might follow put_page() 3223 * which needs correct compound_head(). 3224 */ 3225 clear_compound_head(page_tail); 3226 if (new_order) { 3227 prep_compound_page(page_tail, new_order); 3228 folio_set_large_rmappable(new_folio); 3229 } 3230 3231 /* Finally unfreeze refcount. Additional reference from page cache. */ 3232 page_ref_unfreeze(page_tail, 3233 1 + ((!folio_test_anon(folio) || folio_test_swapcache(folio)) ? 3234 folio_nr_pages(new_folio) : 0)); 3235 3236 if (folio_test_young(folio)) 3237 folio_set_young(new_folio); 3238 if (folio_test_idle(folio)) 3239 folio_set_idle(new_folio); 3240 3241 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 3242 3243 /* 3244 * always add to the tail because some iterators expect new 3245 * pages to show after the currently processed elements - e.g. 3246 * migrate_pages 3247 */ 3248 lru_add_page_tail(folio, page_tail, lruvec, list); 3249 } 3250 3251 static void __split_huge_page(struct page *page, struct list_head *list, 3252 pgoff_t end, unsigned int new_order) 3253 { 3254 struct folio *folio = page_folio(page); 3255 struct page *head = &folio->page; 3256 struct lruvec *lruvec; 3257 struct address_space *swap_cache = NULL; 3258 unsigned long offset = 0; 3259 int i, nr_dropped = 0; 3260 unsigned int new_nr = 1 << new_order; 3261 int order = folio_order(folio); 3262 unsigned int nr = 1 << order; 3263 3264 /* complete memcg works before add pages to LRU */ 3265 split_page_memcg(head, order, new_order); 3266 3267 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 3268 offset = swap_cache_index(folio->swap); 3269 swap_cache = swap_address_space(folio->swap); 3270 xa_lock(&swap_cache->i_pages); 3271 } 3272 3273 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 3274 lruvec = folio_lruvec_lock(folio); 3275 3276 ClearPageHasHWPoisoned(head); 3277 3278 for (i = nr - new_nr; i >= new_nr; i -= new_nr) { 3279 __split_huge_page_tail(folio, i, lruvec, list, new_order); 3280 /* Some pages can be beyond EOF: drop them from page cache */ 3281 if (head[i].index >= end) { 3282 struct folio *tail = page_folio(head + i); 3283 3284 if (shmem_mapping(folio->mapping)) 3285 nr_dropped++; 3286 else if (folio_test_clear_dirty(tail)) 3287 folio_account_cleaned(tail, 3288 inode_to_wb(folio->mapping->host)); 3289 __filemap_remove_folio(tail, NULL); 3290 folio_put(tail); 3291 } else if (!PageAnon(page)) { 3292 __xa_store(&folio->mapping->i_pages, head[i].index, 3293 head + i, 0); 3294 } else if (swap_cache) { 3295 __xa_store(&swap_cache->i_pages, offset + i, 3296 head + i, 0); 3297 } 3298 } 3299 3300 if (!new_order) 3301 ClearPageCompound(head); 3302 else { 3303 struct folio *new_folio = (struct folio *)head; 3304 3305 folio_set_order(new_folio, new_order); 3306 } 3307 unlock_page_lruvec(lruvec); 3308 /* Caller disabled irqs, so they are still disabled here */ 3309 3310 split_page_owner(head, order, new_order); 3311 pgalloc_tag_split(folio, order, new_order); 3312 3313 /* See comment in __split_huge_page_tail() */ 3314 if (folio_test_anon(folio)) { 3315 /* Additional pin to swap cache */ 3316 if (folio_test_swapcache(folio)) { 3317 folio_ref_add(folio, 1 + new_nr); 3318 xa_unlock(&swap_cache->i_pages); 3319 } else { 3320 folio_ref_inc(folio); 3321 } 3322 } else { 3323 /* Additional pin to page cache */ 3324 folio_ref_add(folio, 1 + new_nr); 3325 xa_unlock(&folio->mapping->i_pages); 3326 } 3327 local_irq_enable(); 3328 3329 if (nr_dropped) 3330 shmem_uncharge(folio->mapping->host, nr_dropped); 3331 remap_page(folio, nr, PageAnon(head) ? RMP_USE_SHARED_ZEROPAGE : 0); 3332 3333 /* 3334 * set page to its compound_head when split to non order-0 pages, so 3335 * we can skip unlocking it below, since PG_locked is transferred to 3336 * the compound_head of the page and the caller will unlock it. 3337 */ 3338 if (new_order) 3339 page = compound_head(page); 3340 3341 for (i = 0; i < nr; i += new_nr) { 3342 struct page *subpage = head + i; 3343 struct folio *new_folio = page_folio(subpage); 3344 if (subpage == page) 3345 continue; 3346 folio_unlock(new_folio); 3347 3348 /* 3349 * Subpages may be freed if there wasn't any mapping 3350 * like if add_to_swap() is running on a lru page that 3351 * had its mapping zapped. And freeing these pages 3352 * requires taking the lru_lock so we do the put_page 3353 * of the tail pages after the split is complete. 3354 */ 3355 free_page_and_swap_cache(subpage); 3356 } 3357 } 3358 3359 /* Racy check whether the huge page can be split */ 3360 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins) 3361 { 3362 int extra_pins; 3363 3364 /* Additional pins from page cache */ 3365 if (folio_test_anon(folio)) 3366 extra_pins = folio_test_swapcache(folio) ? 3367 folio_nr_pages(folio) : 0; 3368 else 3369 extra_pins = folio_nr_pages(folio); 3370 if (pextra_pins) 3371 *pextra_pins = extra_pins; 3372 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 3373 caller_pins; 3374 } 3375 3376 /* 3377 * This function splits a large folio into smaller folios of order @new_order. 3378 * @page can point to any page of the large folio to split. The split operation 3379 * does not change the position of @page. 3380 * 3381 * Prerequisites: 3382 * 3383 * 1) The caller must hold a reference on the @page's owning folio, also known 3384 * as the large folio. 3385 * 3386 * 2) The large folio must be locked. 3387 * 3388 * 3) The folio must not be pinned. Any unexpected folio references, including 3389 * GUP pins, will result in the folio not getting split; instead, the caller 3390 * will receive an -EAGAIN. 3391 * 3392 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not 3393 * supported for non-file-backed folios, because folio->_deferred_list, which 3394 * is used by partially mapped folios, is stored in subpage 2, but an order-1 3395 * folio only has subpages 0 and 1. File-backed order-1 folios are supported, 3396 * since they do not use _deferred_list. 3397 * 3398 * After splitting, the caller's folio reference will be transferred to @page, 3399 * resulting in a raised refcount of @page after this call. The other pages may 3400 * be freed if they are not mapped. 3401 * 3402 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 3403 * 3404 * Pages in @new_order will inherit the mapping, flags, and so on from the 3405 * huge page. 3406 * 3407 * Returns 0 if the huge page was split successfully. 3408 * 3409 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if 3410 * the folio was concurrently removed from the page cache. 3411 * 3412 * Returns -EBUSY when trying to split the huge zeropage, if the folio is 3413 * under writeback, if fs-specific folio metadata cannot currently be 3414 * released, or if some unexpected race happened (e.g., anon VMA disappeared, 3415 * truncation). 3416 * 3417 * Callers should ensure that the order respects the address space mapping 3418 * min-order if one is set for non-anonymous folios. 3419 * 3420 * Returns -EINVAL when trying to split to an order that is incompatible 3421 * with the folio. Splitting to order 0 is compatible with all folios. 3422 */ 3423 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list, 3424 unsigned int new_order) 3425 { 3426 struct folio *folio = page_folio(page); 3427 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3428 /* reset xarray order to new order after split */ 3429 XA_STATE_ORDER(xas, &folio->mapping->i_pages, folio->index, new_order); 3430 bool is_anon = folio_test_anon(folio); 3431 struct address_space *mapping = NULL; 3432 struct anon_vma *anon_vma = NULL; 3433 int order = folio_order(folio); 3434 int extra_pins, ret; 3435 pgoff_t end; 3436 bool is_hzp; 3437 3438 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3439 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 3440 3441 if (new_order >= folio_order(folio)) 3442 return -EINVAL; 3443 3444 if (is_anon) { 3445 /* order-1 is not supported for anonymous THP. */ 3446 if (new_order == 1) { 3447 VM_WARN_ONCE(1, "Cannot split to order-1 folio"); 3448 return -EINVAL; 3449 } 3450 } else if (new_order) { 3451 /* Split shmem folio to non-zero order not supported */ 3452 if (shmem_mapping(folio->mapping)) { 3453 VM_WARN_ONCE(1, 3454 "Cannot split shmem folio to non-0 order"); 3455 return -EINVAL; 3456 } 3457 /* 3458 * No split if the file system does not support large folio. 3459 * Note that we might still have THPs in such mappings due to 3460 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping 3461 * does not actually support large folios properly. 3462 */ 3463 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 3464 !mapping_large_folio_support(folio->mapping)) { 3465 VM_WARN_ONCE(1, 3466 "Cannot split file folio to non-0 order"); 3467 return -EINVAL; 3468 } 3469 } 3470 3471 /* Only swapping a whole PMD-mapped folio is supported */ 3472 if (folio_test_swapcache(folio) && new_order) 3473 return -EINVAL; 3474 3475 is_hzp = is_huge_zero_folio(folio); 3476 if (is_hzp) { 3477 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 3478 return -EBUSY; 3479 } 3480 3481 if (folio_test_writeback(folio)) 3482 return -EBUSY; 3483 3484 if (is_anon) { 3485 /* 3486 * The caller does not necessarily hold an mmap_lock that would 3487 * prevent the anon_vma disappearing so we first we take a 3488 * reference to it and then lock the anon_vma for write. This 3489 * is similar to folio_lock_anon_vma_read except the write lock 3490 * is taken to serialise against parallel split or collapse 3491 * operations. 3492 */ 3493 anon_vma = folio_get_anon_vma(folio); 3494 if (!anon_vma) { 3495 ret = -EBUSY; 3496 goto out; 3497 } 3498 end = -1; 3499 mapping = NULL; 3500 anon_vma_lock_write(anon_vma); 3501 } else { 3502 unsigned int min_order; 3503 gfp_t gfp; 3504 3505 mapping = folio->mapping; 3506 3507 /* Truncated ? */ 3508 if (!mapping) { 3509 ret = -EBUSY; 3510 goto out; 3511 } 3512 3513 min_order = mapping_min_folio_order(folio->mapping); 3514 if (new_order < min_order) { 3515 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u", 3516 min_order); 3517 ret = -EINVAL; 3518 goto out; 3519 } 3520 3521 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3522 GFP_RECLAIM_MASK); 3523 3524 if (!filemap_release_folio(folio, gfp)) { 3525 ret = -EBUSY; 3526 goto out; 3527 } 3528 3529 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3530 if (xas_error(&xas)) { 3531 ret = xas_error(&xas); 3532 goto out; 3533 } 3534 3535 anon_vma = NULL; 3536 i_mmap_lock_read(mapping); 3537 3538 /* 3539 *__split_huge_page() may need to trim off pages beyond EOF: 3540 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3541 * which cannot be nested inside the page tree lock. So note 3542 * end now: i_size itself may be changed at any moment, but 3543 * folio lock is good enough to serialize the trimming. 3544 */ 3545 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3546 if (shmem_mapping(mapping)) 3547 end = shmem_fallocend(mapping->host, end); 3548 } 3549 3550 /* 3551 * Racy check if we can split the page, before unmap_folio() will 3552 * split PMDs 3553 */ 3554 if (!can_split_folio(folio, 1, &extra_pins)) { 3555 ret = -EAGAIN; 3556 goto out_unlock; 3557 } 3558 3559 unmap_folio(folio); 3560 3561 /* block interrupt reentry in xa_lock and spinlock */ 3562 local_irq_disable(); 3563 if (mapping) { 3564 /* 3565 * Check if the folio is present in page cache. 3566 * We assume all tail are present too, if folio is there. 3567 */ 3568 xas_lock(&xas); 3569 xas_reset(&xas); 3570 if (xas_load(&xas) != folio) 3571 goto fail; 3572 } 3573 3574 /* Prevent deferred_split_scan() touching ->_refcount */ 3575 spin_lock(&ds_queue->split_queue_lock); 3576 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3577 if (folio_order(folio) > 1 && 3578 !list_empty(&folio->_deferred_list)) { 3579 ds_queue->split_queue_len--; 3580 if (folio_test_partially_mapped(folio)) { 3581 __folio_clear_partially_mapped(folio); 3582 mod_mthp_stat(folio_order(folio), 3583 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3584 } 3585 /* 3586 * Reinitialize page_deferred_list after removing the 3587 * page from the split_queue, otherwise a subsequent 3588 * split will see list corruption when checking the 3589 * page_deferred_list. 3590 */ 3591 list_del_init(&folio->_deferred_list); 3592 } 3593 spin_unlock(&ds_queue->split_queue_lock); 3594 if (mapping) { 3595 int nr = folio_nr_pages(folio); 3596 3597 xas_split(&xas, folio, folio_order(folio)); 3598 if (folio_test_pmd_mappable(folio) && 3599 new_order < HPAGE_PMD_ORDER) { 3600 if (folio_test_swapbacked(folio)) { 3601 __lruvec_stat_mod_folio(folio, 3602 NR_SHMEM_THPS, -nr); 3603 } else { 3604 __lruvec_stat_mod_folio(folio, 3605 NR_FILE_THPS, -nr); 3606 filemap_nr_thps_dec(mapping); 3607 } 3608 } 3609 } 3610 3611 if (is_anon) { 3612 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 3613 mod_mthp_stat(new_order, MTHP_STAT_NR_ANON, 1 << (order - new_order)); 3614 } 3615 __split_huge_page(page, list, end, new_order); 3616 ret = 0; 3617 } else { 3618 spin_unlock(&ds_queue->split_queue_lock); 3619 fail: 3620 if (mapping) 3621 xas_unlock(&xas); 3622 local_irq_enable(); 3623 remap_page(folio, folio_nr_pages(folio), 0); 3624 ret = -EAGAIN; 3625 } 3626 3627 out_unlock: 3628 if (anon_vma) { 3629 anon_vma_unlock_write(anon_vma); 3630 put_anon_vma(anon_vma); 3631 } 3632 if (mapping) 3633 i_mmap_unlock_read(mapping); 3634 out: 3635 xas_destroy(&xas); 3636 if (order == HPAGE_PMD_ORDER) 3637 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3638 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED); 3639 return ret; 3640 } 3641 3642 int min_order_for_split(struct folio *folio) 3643 { 3644 if (folio_test_anon(folio)) 3645 return 0; 3646 3647 if (!folio->mapping) { 3648 if (folio_test_pmd_mappable(folio)) 3649 count_vm_event(THP_SPLIT_PAGE_FAILED); 3650 return -EBUSY; 3651 } 3652 3653 return mapping_min_folio_order(folio->mapping); 3654 } 3655 3656 int split_folio_to_list(struct folio *folio, struct list_head *list) 3657 { 3658 int ret = min_order_for_split(folio); 3659 3660 if (ret < 0) 3661 return ret; 3662 3663 return split_huge_page_to_list_to_order(&folio->page, list, ret); 3664 } 3665 3666 /* 3667 * __folio_unqueue_deferred_split() is not to be called directly: 3668 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h 3669 * limits its calls to those folios which may have a _deferred_list for 3670 * queueing THP splits, and that list is (racily observed to be) non-empty. 3671 * 3672 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is 3673 * zero: because even when split_queue_lock is held, a non-empty _deferred_list 3674 * might be in use on deferred_split_scan()'s unlocked on-stack list. 3675 * 3676 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is 3677 * therefore important to unqueue deferred split before changing folio memcg. 3678 */ 3679 bool __folio_unqueue_deferred_split(struct folio *folio) 3680 { 3681 struct deferred_split *ds_queue; 3682 unsigned long flags; 3683 bool unqueued = false; 3684 3685 WARN_ON_ONCE(folio_ref_count(folio)); 3686 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio)); 3687 3688 ds_queue = get_deferred_split_queue(folio); 3689 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3690 if (!list_empty(&folio->_deferred_list)) { 3691 ds_queue->split_queue_len--; 3692 if (folio_test_partially_mapped(folio)) { 3693 __folio_clear_partially_mapped(folio); 3694 mod_mthp_stat(folio_order(folio), 3695 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3696 } 3697 list_del_init(&folio->_deferred_list); 3698 unqueued = true; 3699 } 3700 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3701 3702 return unqueued; /* useful for debug warnings */ 3703 } 3704 3705 /* partially_mapped=false won't clear PG_partially_mapped folio flag */ 3706 void deferred_split_folio(struct folio *folio, bool partially_mapped) 3707 { 3708 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3709 #ifdef CONFIG_MEMCG 3710 struct mem_cgroup *memcg = folio_memcg(folio); 3711 #endif 3712 unsigned long flags; 3713 3714 /* 3715 * Order 1 folios have no space for a deferred list, but we also 3716 * won't waste much memory by not adding them to the deferred list. 3717 */ 3718 if (folio_order(folio) <= 1) 3719 return; 3720 3721 if (!partially_mapped && !split_underused_thp) 3722 return; 3723 3724 /* 3725 * Exclude swapcache: originally to avoid a corrupt deferred split 3726 * queue. Nowadays that is fully prevented by mem_cgroup_swapout(); 3727 * but if page reclaim is already handling the same folio, it is 3728 * unnecessary to handle it again in the shrinker, so excluding 3729 * swapcache here may still be a useful optimization. 3730 */ 3731 if (folio_test_swapcache(folio)) 3732 return; 3733 3734 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3735 if (partially_mapped) { 3736 if (!folio_test_partially_mapped(folio)) { 3737 __folio_set_partially_mapped(folio); 3738 if (folio_test_pmd_mappable(folio)) 3739 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3740 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED); 3741 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1); 3742 3743 } 3744 } else { 3745 /* partially mapped folios cannot become non-partially mapped */ 3746 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio); 3747 } 3748 if (list_empty(&folio->_deferred_list)) { 3749 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3750 ds_queue->split_queue_len++; 3751 #ifdef CONFIG_MEMCG 3752 if (memcg) 3753 set_shrinker_bit(memcg, folio_nid(folio), 3754 deferred_split_shrinker->id); 3755 #endif 3756 } 3757 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3758 } 3759 3760 static unsigned long deferred_split_count(struct shrinker *shrink, 3761 struct shrink_control *sc) 3762 { 3763 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3764 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3765 3766 #ifdef CONFIG_MEMCG 3767 if (sc->memcg) 3768 ds_queue = &sc->memcg->deferred_split_queue; 3769 #endif 3770 return READ_ONCE(ds_queue->split_queue_len); 3771 } 3772 3773 static bool thp_underused(struct folio *folio) 3774 { 3775 int num_zero_pages = 0, num_filled_pages = 0; 3776 void *kaddr; 3777 int i; 3778 3779 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1) 3780 return false; 3781 3782 for (i = 0; i < folio_nr_pages(folio); i++) { 3783 kaddr = kmap_local_folio(folio, i * PAGE_SIZE); 3784 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) { 3785 num_zero_pages++; 3786 if (num_zero_pages > khugepaged_max_ptes_none) { 3787 kunmap_local(kaddr); 3788 return true; 3789 } 3790 } else { 3791 /* 3792 * Another path for early exit once the number 3793 * of non-zero filled pages exceeds threshold. 3794 */ 3795 num_filled_pages++; 3796 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) { 3797 kunmap_local(kaddr); 3798 return false; 3799 } 3800 } 3801 kunmap_local(kaddr); 3802 } 3803 return false; 3804 } 3805 3806 static unsigned long deferred_split_scan(struct shrinker *shrink, 3807 struct shrink_control *sc) 3808 { 3809 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3810 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3811 unsigned long flags; 3812 LIST_HEAD(list); 3813 struct folio *folio, *next, *prev = NULL; 3814 int split = 0, removed = 0; 3815 3816 #ifdef CONFIG_MEMCG 3817 if (sc->memcg) 3818 ds_queue = &sc->memcg->deferred_split_queue; 3819 #endif 3820 3821 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3822 /* Take pin on all head pages to avoid freeing them under us */ 3823 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3824 _deferred_list) { 3825 if (folio_try_get(folio)) { 3826 list_move(&folio->_deferred_list, &list); 3827 } else { 3828 /* We lost race with folio_put() */ 3829 if (folio_test_partially_mapped(folio)) { 3830 __folio_clear_partially_mapped(folio); 3831 mod_mthp_stat(folio_order(folio), 3832 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1); 3833 } 3834 list_del_init(&folio->_deferred_list); 3835 ds_queue->split_queue_len--; 3836 } 3837 if (!--sc->nr_to_scan) 3838 break; 3839 } 3840 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3841 3842 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3843 bool did_split = false; 3844 bool underused = false; 3845 3846 if (!folio_test_partially_mapped(folio)) { 3847 underused = thp_underused(folio); 3848 if (!underused) 3849 goto next; 3850 } 3851 if (!folio_trylock(folio)) 3852 goto next; 3853 if (!split_folio(folio)) { 3854 did_split = true; 3855 if (underused) 3856 count_vm_event(THP_UNDERUSED_SPLIT_PAGE); 3857 split++; 3858 } 3859 folio_unlock(folio); 3860 next: 3861 /* 3862 * split_folio() removes folio from list on success. 3863 * Only add back to the queue if folio is partially mapped. 3864 * If thp_underused returns false, or if split_folio fails 3865 * in the case it was underused, then consider it used and 3866 * don't add it back to split_queue. 3867 */ 3868 if (!did_split && !folio_test_partially_mapped(folio)) { 3869 list_del_init(&folio->_deferred_list); 3870 removed++; 3871 } else { 3872 /* 3873 * That unlocked list_del_init() above would be unsafe, 3874 * unless its folio is separated from any earlier folios 3875 * left on the list (which may be concurrently unqueued) 3876 * by one safe folio with refcount still raised. 3877 */ 3878 swap(folio, prev); 3879 } 3880 if (folio) 3881 folio_put(folio); 3882 } 3883 3884 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3885 list_splice_tail(&list, &ds_queue->split_queue); 3886 ds_queue->split_queue_len -= removed; 3887 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3888 3889 if (prev) 3890 folio_put(prev); 3891 3892 /* 3893 * Stop shrinker if we didn't split any page, but the queue is empty. 3894 * This can happen if pages were freed under us. 3895 */ 3896 if (!split && list_empty(&ds_queue->split_queue)) 3897 return SHRINK_STOP; 3898 return split; 3899 } 3900 3901 #ifdef CONFIG_DEBUG_FS 3902 static void split_huge_pages_all(void) 3903 { 3904 struct zone *zone; 3905 struct page *page; 3906 struct folio *folio; 3907 unsigned long pfn, max_zone_pfn; 3908 unsigned long total = 0, split = 0; 3909 3910 pr_debug("Split all THPs\n"); 3911 for_each_zone(zone) { 3912 if (!managed_zone(zone)) 3913 continue; 3914 max_zone_pfn = zone_end_pfn(zone); 3915 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3916 int nr_pages; 3917 3918 page = pfn_to_online_page(pfn); 3919 if (!page || PageTail(page)) 3920 continue; 3921 folio = page_folio(page); 3922 if (!folio_try_get(folio)) 3923 continue; 3924 3925 if (unlikely(page_folio(page) != folio)) 3926 goto next; 3927 3928 if (zone != folio_zone(folio)) 3929 goto next; 3930 3931 if (!folio_test_large(folio) 3932 || folio_test_hugetlb(folio) 3933 || !folio_test_lru(folio)) 3934 goto next; 3935 3936 total++; 3937 folio_lock(folio); 3938 nr_pages = folio_nr_pages(folio); 3939 if (!split_folio(folio)) 3940 split++; 3941 pfn += nr_pages - 1; 3942 folio_unlock(folio); 3943 next: 3944 folio_put(folio); 3945 cond_resched(); 3946 } 3947 } 3948 3949 pr_debug("%lu of %lu THP split\n", split, total); 3950 } 3951 3952 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3953 { 3954 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3955 is_vm_hugetlb_page(vma); 3956 } 3957 3958 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3959 unsigned long vaddr_end, unsigned int new_order) 3960 { 3961 int ret = 0; 3962 struct task_struct *task; 3963 struct mm_struct *mm; 3964 unsigned long total = 0, split = 0; 3965 unsigned long addr; 3966 3967 vaddr_start &= PAGE_MASK; 3968 vaddr_end &= PAGE_MASK; 3969 3970 task = find_get_task_by_vpid(pid); 3971 if (!task) { 3972 ret = -ESRCH; 3973 goto out; 3974 } 3975 3976 /* Find the mm_struct */ 3977 mm = get_task_mm(task); 3978 put_task_struct(task); 3979 3980 if (!mm) { 3981 ret = -EINVAL; 3982 goto out; 3983 } 3984 3985 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3986 pid, vaddr_start, vaddr_end); 3987 3988 mmap_read_lock(mm); 3989 /* 3990 * always increase addr by PAGE_SIZE, since we could have a PTE page 3991 * table filled with PTE-mapped THPs, each of which is distinct. 3992 */ 3993 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3994 struct vm_area_struct *vma = vma_lookup(mm, addr); 3995 struct folio_walk fw; 3996 struct folio *folio; 3997 struct address_space *mapping; 3998 unsigned int target_order = new_order; 3999 4000 if (!vma) 4001 break; 4002 4003 /* skip special VMA and hugetlb VMA */ 4004 if (vma_not_suitable_for_thp_split(vma)) { 4005 addr = vma->vm_end; 4006 continue; 4007 } 4008 4009 folio = folio_walk_start(&fw, vma, addr, 0); 4010 if (!folio) 4011 continue; 4012 4013 if (!is_transparent_hugepage(folio)) 4014 goto next; 4015 4016 if (!folio_test_anon(folio)) { 4017 mapping = folio->mapping; 4018 target_order = max(new_order, 4019 mapping_min_folio_order(mapping)); 4020 } 4021 4022 if (target_order >= folio_order(folio)) 4023 goto next; 4024 4025 total++; 4026 /* 4027 * For folios with private, split_huge_page_to_list_to_order() 4028 * will try to drop it before split and then check if the folio 4029 * can be split or not. So skip the check here. 4030 */ 4031 if (!folio_test_private(folio) && 4032 !can_split_folio(folio, 0, NULL)) 4033 goto next; 4034 4035 if (!folio_trylock(folio)) 4036 goto next; 4037 folio_get(folio); 4038 folio_walk_end(&fw, vma); 4039 4040 if (!folio_test_anon(folio) && folio->mapping != mapping) 4041 goto unlock; 4042 4043 if (!split_folio_to_order(folio, target_order)) 4044 split++; 4045 4046 unlock: 4047 4048 folio_unlock(folio); 4049 folio_put(folio); 4050 4051 cond_resched(); 4052 continue; 4053 next: 4054 folio_walk_end(&fw, vma); 4055 cond_resched(); 4056 } 4057 mmap_read_unlock(mm); 4058 mmput(mm); 4059 4060 pr_debug("%lu of %lu THP split\n", split, total); 4061 4062 out: 4063 return ret; 4064 } 4065 4066 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 4067 pgoff_t off_end, unsigned int new_order) 4068 { 4069 struct filename *file; 4070 struct file *candidate; 4071 struct address_space *mapping; 4072 int ret = -EINVAL; 4073 pgoff_t index; 4074 int nr_pages = 1; 4075 unsigned long total = 0, split = 0; 4076 unsigned int min_order; 4077 unsigned int target_order; 4078 4079 file = getname_kernel(file_path); 4080 if (IS_ERR(file)) 4081 return ret; 4082 4083 candidate = file_open_name(file, O_RDONLY, 0); 4084 if (IS_ERR(candidate)) 4085 goto out; 4086 4087 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 4088 file_path, off_start, off_end); 4089 4090 mapping = candidate->f_mapping; 4091 min_order = mapping_min_folio_order(mapping); 4092 target_order = max(new_order, min_order); 4093 4094 for (index = off_start; index < off_end; index += nr_pages) { 4095 struct folio *folio = filemap_get_folio(mapping, index); 4096 4097 nr_pages = 1; 4098 if (IS_ERR(folio)) 4099 continue; 4100 4101 if (!folio_test_large(folio)) 4102 goto next; 4103 4104 total++; 4105 nr_pages = folio_nr_pages(folio); 4106 4107 if (target_order >= folio_order(folio)) 4108 goto next; 4109 4110 if (!folio_trylock(folio)) 4111 goto next; 4112 4113 if (folio->mapping != mapping) 4114 goto unlock; 4115 4116 if (!split_folio_to_order(folio, target_order)) 4117 split++; 4118 4119 unlock: 4120 folio_unlock(folio); 4121 next: 4122 folio_put(folio); 4123 cond_resched(); 4124 } 4125 4126 filp_close(candidate, NULL); 4127 ret = 0; 4128 4129 pr_debug("%lu of %lu file-backed THP split\n", split, total); 4130 out: 4131 putname(file); 4132 return ret; 4133 } 4134 4135 #define MAX_INPUT_BUF_SZ 255 4136 4137 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 4138 size_t count, loff_t *ppops) 4139 { 4140 static DEFINE_MUTEX(split_debug_mutex); 4141 ssize_t ret; 4142 /* 4143 * hold pid, start_vaddr, end_vaddr, new_order or 4144 * file_path, off_start, off_end, new_order 4145 */ 4146 char input_buf[MAX_INPUT_BUF_SZ]; 4147 int pid; 4148 unsigned long vaddr_start, vaddr_end; 4149 unsigned int new_order = 0; 4150 4151 ret = mutex_lock_interruptible(&split_debug_mutex); 4152 if (ret) 4153 return ret; 4154 4155 ret = -EFAULT; 4156 4157 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 4158 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 4159 goto out; 4160 4161 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 4162 4163 if (input_buf[0] == '/') { 4164 char *tok; 4165 char *buf = input_buf; 4166 char file_path[MAX_INPUT_BUF_SZ]; 4167 pgoff_t off_start = 0, off_end = 0; 4168 size_t input_len = strlen(input_buf); 4169 4170 tok = strsep(&buf, ","); 4171 if (tok) { 4172 strcpy(file_path, tok); 4173 } else { 4174 ret = -EINVAL; 4175 goto out; 4176 } 4177 4178 ret = sscanf(buf, "0x%lx,0x%lx,%d", &off_start, &off_end, &new_order); 4179 if (ret != 2 && ret != 3) { 4180 ret = -EINVAL; 4181 goto out; 4182 } 4183 ret = split_huge_pages_in_file(file_path, off_start, off_end, new_order); 4184 if (!ret) 4185 ret = input_len; 4186 4187 goto out; 4188 } 4189 4190 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d", &pid, &vaddr_start, &vaddr_end, &new_order); 4191 if (ret == 1 && pid == 1) { 4192 split_huge_pages_all(); 4193 ret = strlen(input_buf); 4194 goto out; 4195 } else if (ret != 3 && ret != 4) { 4196 ret = -EINVAL; 4197 goto out; 4198 } 4199 4200 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order); 4201 if (!ret) 4202 ret = strlen(input_buf); 4203 out: 4204 mutex_unlock(&split_debug_mutex); 4205 return ret; 4206 4207 } 4208 4209 static const struct file_operations split_huge_pages_fops = { 4210 .owner = THIS_MODULE, 4211 .write = split_huge_pages_write, 4212 }; 4213 4214 static int __init split_huge_pages_debugfs(void) 4215 { 4216 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 4217 &split_huge_pages_fops); 4218 return 0; 4219 } 4220 late_initcall(split_huge_pages_debugfs); 4221 #endif 4222 4223 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 4224 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 4225 struct page *page) 4226 { 4227 struct folio *folio = page_folio(page); 4228 struct vm_area_struct *vma = pvmw->vma; 4229 struct mm_struct *mm = vma->vm_mm; 4230 unsigned long address = pvmw->address; 4231 bool anon_exclusive; 4232 pmd_t pmdval; 4233 swp_entry_t entry; 4234 pmd_t pmdswp; 4235 4236 if (!(pvmw->pmd && !pvmw->pte)) 4237 return 0; 4238 4239 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 4240 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 4241 4242 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 4243 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 4244 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 4245 set_pmd_at(mm, address, pvmw->pmd, pmdval); 4246 return -EBUSY; 4247 } 4248 4249 if (pmd_dirty(pmdval)) 4250 folio_mark_dirty(folio); 4251 if (pmd_write(pmdval)) 4252 entry = make_writable_migration_entry(page_to_pfn(page)); 4253 else if (anon_exclusive) 4254 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 4255 else 4256 entry = make_readable_migration_entry(page_to_pfn(page)); 4257 if (pmd_young(pmdval)) 4258 entry = make_migration_entry_young(entry); 4259 if (pmd_dirty(pmdval)) 4260 entry = make_migration_entry_dirty(entry); 4261 pmdswp = swp_entry_to_pmd(entry); 4262 if (pmd_soft_dirty(pmdval)) 4263 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 4264 if (pmd_uffd_wp(pmdval)) 4265 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 4266 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 4267 folio_remove_rmap_pmd(folio, page, vma); 4268 folio_put(folio); 4269 trace_set_migration_pmd(address, pmd_val(pmdswp)); 4270 4271 return 0; 4272 } 4273 4274 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 4275 { 4276 struct folio *folio = page_folio(new); 4277 struct vm_area_struct *vma = pvmw->vma; 4278 struct mm_struct *mm = vma->vm_mm; 4279 unsigned long address = pvmw->address; 4280 unsigned long haddr = address & HPAGE_PMD_MASK; 4281 pmd_t pmde; 4282 swp_entry_t entry; 4283 4284 if (!(pvmw->pmd && !pvmw->pte)) 4285 return; 4286 4287 entry = pmd_to_swp_entry(*pvmw->pmd); 4288 folio_get(folio); 4289 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 4290 if (pmd_swp_soft_dirty(*pvmw->pmd)) 4291 pmde = pmd_mksoft_dirty(pmde); 4292 if (is_writable_migration_entry(entry)) 4293 pmde = pmd_mkwrite(pmde, vma); 4294 if (pmd_swp_uffd_wp(*pvmw->pmd)) 4295 pmde = pmd_mkuffd_wp(pmde); 4296 if (!is_migration_entry_young(entry)) 4297 pmde = pmd_mkold(pmde); 4298 /* NOTE: this may contain setting soft-dirty on some archs */ 4299 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 4300 pmde = pmd_mkdirty(pmde); 4301 4302 if (folio_test_anon(folio)) { 4303 rmap_t rmap_flags = RMAP_NONE; 4304 4305 if (!is_readable_migration_entry(entry)) 4306 rmap_flags |= RMAP_EXCLUSIVE; 4307 4308 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 4309 } else { 4310 folio_add_file_rmap_pmd(folio, new, vma); 4311 } 4312 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 4313 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 4314 4315 /* No need to invalidate - it was non-present before */ 4316 update_mmu_cache_pmd(vma, address, pvmw->pmd); 4317 trace_remove_migration_pmd(address, pmd_val(pmde)); 4318 } 4319 #endif 4320