xref: /linux/mm/huge_memory.c (revision 0c078e310b6d16b9b9489bbc7bc1476430d19a7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker deferred_split_shrinker;
69 
70 static atomic_t huge_zero_refcount;
71 struct page *huge_zero_page __read_mostly;
72 unsigned long huge_zero_pfn __read_mostly = ~0UL;
73 
74 bool hugepage_vma_check(struct vm_area_struct *vma, unsigned long vm_flags,
75 			bool smaps, bool in_pf, bool enforce_sysfs)
76 {
77 	if (!vma->vm_mm)		/* vdso */
78 		return false;
79 
80 	/*
81 	 * Explicitly disabled through madvise or prctl, or some
82 	 * architectures may disable THP for some mappings, for
83 	 * example, s390 kvm.
84 	 * */
85 	if ((vm_flags & VM_NOHUGEPAGE) ||
86 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
87 		return false;
88 	/*
89 	 * If the hardware/firmware marked hugepage support disabled.
90 	 */
91 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_NEVER_DAX))
92 		return false;
93 
94 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
95 	if (vma_is_dax(vma))
96 		return in_pf;
97 
98 	/*
99 	 * Special VMA and hugetlb VMA.
100 	 * Must be checked after dax since some dax mappings may have
101 	 * VM_MIXEDMAP set.
102 	 */
103 	if (vm_flags & VM_NO_KHUGEPAGED)
104 		return false;
105 
106 	/*
107 	 * Check alignment for file vma and size for both file and anon vma.
108 	 *
109 	 * Skip the check for page fault. Huge fault does the check in fault
110 	 * handlers. And this check is not suitable for huge PUD fault.
111 	 */
112 	if (!in_pf &&
113 	    !transhuge_vma_suitable(vma, (vma->vm_end - HPAGE_PMD_SIZE)))
114 		return false;
115 
116 	/*
117 	 * Enabled via shmem mount options or sysfs settings.
118 	 * Must be done before hugepage flags check since shmem has its
119 	 * own flags.
120 	 */
121 	if (!in_pf && shmem_file(vma->vm_file))
122 		return shmem_huge_enabled(vma, !enforce_sysfs);
123 
124 	/* Enforce sysfs THP requirements as necessary */
125 	if (enforce_sysfs &&
126 	    (!hugepage_flags_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
127 					   !hugepage_flags_always())))
128 		return false;
129 
130 	/* Only regular file is valid */
131 	if (!in_pf && file_thp_enabled(vma))
132 		return true;
133 
134 	if (!vma_is_anonymous(vma))
135 		return false;
136 
137 	if (vma_is_temporary_stack(vma))
138 		return false;
139 
140 	/*
141 	 * THPeligible bit of smaps should show 1 for proper VMAs even
142 	 * though anon_vma is not initialized yet.
143 	 *
144 	 * Allow page fault since anon_vma may be not initialized until
145 	 * the first page fault.
146 	 */
147 	if (!vma->anon_vma)
148 		return (smaps || in_pf);
149 
150 	return true;
151 }
152 
153 static bool get_huge_zero_page(void)
154 {
155 	struct page *zero_page;
156 retry:
157 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
158 		return true;
159 
160 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
161 			HPAGE_PMD_ORDER);
162 	if (!zero_page) {
163 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
164 		return false;
165 	}
166 	preempt_disable();
167 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
168 		preempt_enable();
169 		__free_pages(zero_page, compound_order(zero_page));
170 		goto retry;
171 	}
172 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
173 
174 	/* We take additional reference here. It will be put back by shrinker */
175 	atomic_set(&huge_zero_refcount, 2);
176 	preempt_enable();
177 	count_vm_event(THP_ZERO_PAGE_ALLOC);
178 	return true;
179 }
180 
181 static void put_huge_zero_page(void)
182 {
183 	/*
184 	 * Counter should never go to zero here. Only shrinker can put
185 	 * last reference.
186 	 */
187 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
188 }
189 
190 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
191 {
192 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
193 		return READ_ONCE(huge_zero_page);
194 
195 	if (!get_huge_zero_page())
196 		return NULL;
197 
198 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
199 		put_huge_zero_page();
200 
201 	return READ_ONCE(huge_zero_page);
202 }
203 
204 void mm_put_huge_zero_page(struct mm_struct *mm)
205 {
206 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
207 		put_huge_zero_page();
208 }
209 
210 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
211 					struct shrink_control *sc)
212 {
213 	/* we can free zero page only if last reference remains */
214 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
215 }
216 
217 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
218 				       struct shrink_control *sc)
219 {
220 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
221 		struct page *zero_page = xchg(&huge_zero_page, NULL);
222 		BUG_ON(zero_page == NULL);
223 		WRITE_ONCE(huge_zero_pfn, ~0UL);
224 		__free_pages(zero_page, compound_order(zero_page));
225 		return HPAGE_PMD_NR;
226 	}
227 
228 	return 0;
229 }
230 
231 static struct shrinker huge_zero_page_shrinker = {
232 	.count_objects = shrink_huge_zero_page_count,
233 	.scan_objects = shrink_huge_zero_page_scan,
234 	.seeks = DEFAULT_SEEKS,
235 };
236 
237 #ifdef CONFIG_SYSFS
238 static ssize_t enabled_show(struct kobject *kobj,
239 			    struct kobj_attribute *attr, char *buf)
240 {
241 	const char *output;
242 
243 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
244 		output = "[always] madvise never";
245 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
246 			  &transparent_hugepage_flags))
247 		output = "always [madvise] never";
248 	else
249 		output = "always madvise [never]";
250 
251 	return sysfs_emit(buf, "%s\n", output);
252 }
253 
254 static ssize_t enabled_store(struct kobject *kobj,
255 			     struct kobj_attribute *attr,
256 			     const char *buf, size_t count)
257 {
258 	ssize_t ret = count;
259 
260 	if (sysfs_streq(buf, "always")) {
261 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
263 	} else if (sysfs_streq(buf, "madvise")) {
264 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
265 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
266 	} else if (sysfs_streq(buf, "never")) {
267 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
268 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 	} else
270 		ret = -EINVAL;
271 
272 	if (ret > 0) {
273 		int err = start_stop_khugepaged();
274 		if (err)
275 			ret = err;
276 	}
277 	return ret;
278 }
279 
280 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
281 
282 ssize_t single_hugepage_flag_show(struct kobject *kobj,
283 				  struct kobj_attribute *attr, char *buf,
284 				  enum transparent_hugepage_flag flag)
285 {
286 	return sysfs_emit(buf, "%d\n",
287 			  !!test_bit(flag, &transparent_hugepage_flags));
288 }
289 
290 ssize_t single_hugepage_flag_store(struct kobject *kobj,
291 				 struct kobj_attribute *attr,
292 				 const char *buf, size_t count,
293 				 enum transparent_hugepage_flag flag)
294 {
295 	unsigned long value;
296 	int ret;
297 
298 	ret = kstrtoul(buf, 10, &value);
299 	if (ret < 0)
300 		return ret;
301 	if (value > 1)
302 		return -EINVAL;
303 
304 	if (value)
305 		set_bit(flag, &transparent_hugepage_flags);
306 	else
307 		clear_bit(flag, &transparent_hugepage_flags);
308 
309 	return count;
310 }
311 
312 static ssize_t defrag_show(struct kobject *kobj,
313 			   struct kobj_attribute *attr, char *buf)
314 {
315 	const char *output;
316 
317 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
318 		     &transparent_hugepage_flags))
319 		output = "[always] defer defer+madvise madvise never";
320 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
321 			  &transparent_hugepage_flags))
322 		output = "always [defer] defer+madvise madvise never";
323 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
324 			  &transparent_hugepage_flags))
325 		output = "always defer [defer+madvise] madvise never";
326 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
327 			  &transparent_hugepage_flags))
328 		output = "always defer defer+madvise [madvise] never";
329 	else
330 		output = "always defer defer+madvise madvise [never]";
331 
332 	return sysfs_emit(buf, "%s\n", output);
333 }
334 
335 static ssize_t defrag_store(struct kobject *kobj,
336 			    struct kobj_attribute *attr,
337 			    const char *buf, size_t count)
338 {
339 	if (sysfs_streq(buf, "always")) {
340 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
341 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
342 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
343 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
344 	} else if (sysfs_streq(buf, "defer+madvise")) {
345 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
346 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
347 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
348 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
349 	} else if (sysfs_streq(buf, "defer")) {
350 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
351 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
352 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
353 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
354 	} else if (sysfs_streq(buf, "madvise")) {
355 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
356 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
357 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
358 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
359 	} else if (sysfs_streq(buf, "never")) {
360 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
361 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
362 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
363 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
364 	} else
365 		return -EINVAL;
366 
367 	return count;
368 }
369 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
370 
371 static ssize_t use_zero_page_show(struct kobject *kobj,
372 				  struct kobj_attribute *attr, char *buf)
373 {
374 	return single_hugepage_flag_show(kobj, attr, buf,
375 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static ssize_t use_zero_page_store(struct kobject *kobj,
378 		struct kobj_attribute *attr, const char *buf, size_t count)
379 {
380 	return single_hugepage_flag_store(kobj, attr, buf, count,
381 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
382 }
383 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
384 
385 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
386 				   struct kobj_attribute *attr, char *buf)
387 {
388 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
389 }
390 static struct kobj_attribute hpage_pmd_size_attr =
391 	__ATTR_RO(hpage_pmd_size);
392 
393 static struct attribute *hugepage_attr[] = {
394 	&enabled_attr.attr,
395 	&defrag_attr.attr,
396 	&use_zero_page_attr.attr,
397 	&hpage_pmd_size_attr.attr,
398 #ifdef CONFIG_SHMEM
399 	&shmem_enabled_attr.attr,
400 #endif
401 	NULL,
402 };
403 
404 static const struct attribute_group hugepage_attr_group = {
405 	.attrs = hugepage_attr,
406 };
407 
408 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
409 {
410 	int err;
411 
412 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
413 	if (unlikely(!*hugepage_kobj)) {
414 		pr_err("failed to create transparent hugepage kobject\n");
415 		return -ENOMEM;
416 	}
417 
418 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
419 	if (err) {
420 		pr_err("failed to register transparent hugepage group\n");
421 		goto delete_obj;
422 	}
423 
424 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
425 	if (err) {
426 		pr_err("failed to register transparent hugepage group\n");
427 		goto remove_hp_group;
428 	}
429 
430 	return 0;
431 
432 remove_hp_group:
433 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
434 delete_obj:
435 	kobject_put(*hugepage_kobj);
436 	return err;
437 }
438 
439 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
440 {
441 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
442 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
443 	kobject_put(hugepage_kobj);
444 }
445 #else
446 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
447 {
448 	return 0;
449 }
450 
451 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
452 {
453 }
454 #endif /* CONFIG_SYSFS */
455 
456 static int __init hugepage_init(void)
457 {
458 	int err;
459 	struct kobject *hugepage_kobj;
460 
461 	if (!has_transparent_hugepage()) {
462 		/*
463 		 * Hardware doesn't support hugepages, hence disable
464 		 * DAX PMD support.
465 		 */
466 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
467 		return -EINVAL;
468 	}
469 
470 	/*
471 	 * hugepages can't be allocated by the buddy allocator
472 	 */
473 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
474 	/*
475 	 * we use page->mapping and page->index in second tail page
476 	 * as list_head: assuming THP order >= 2
477 	 */
478 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
479 
480 	err = hugepage_init_sysfs(&hugepage_kobj);
481 	if (err)
482 		goto err_sysfs;
483 
484 	err = khugepaged_init();
485 	if (err)
486 		goto err_slab;
487 
488 	err = register_shrinker(&huge_zero_page_shrinker, "thp-zero");
489 	if (err)
490 		goto err_hzp_shrinker;
491 	err = register_shrinker(&deferred_split_shrinker, "thp-deferred_split");
492 	if (err)
493 		goto err_split_shrinker;
494 
495 	/*
496 	 * By default disable transparent hugepages on smaller systems,
497 	 * where the extra memory used could hurt more than TLB overhead
498 	 * is likely to save.  The admin can still enable it through /sys.
499 	 */
500 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
501 		transparent_hugepage_flags = 0;
502 		return 0;
503 	}
504 
505 	err = start_stop_khugepaged();
506 	if (err)
507 		goto err_khugepaged;
508 
509 	return 0;
510 err_khugepaged:
511 	unregister_shrinker(&deferred_split_shrinker);
512 err_split_shrinker:
513 	unregister_shrinker(&huge_zero_page_shrinker);
514 err_hzp_shrinker:
515 	khugepaged_destroy();
516 err_slab:
517 	hugepage_exit_sysfs(hugepage_kobj);
518 err_sysfs:
519 	return err;
520 }
521 subsys_initcall(hugepage_init);
522 
523 static int __init setup_transparent_hugepage(char *str)
524 {
525 	int ret = 0;
526 	if (!str)
527 		goto out;
528 	if (!strcmp(str, "always")) {
529 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
530 			&transparent_hugepage_flags);
531 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
532 			  &transparent_hugepage_flags);
533 		ret = 1;
534 	} else if (!strcmp(str, "madvise")) {
535 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
536 			  &transparent_hugepage_flags);
537 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
538 			&transparent_hugepage_flags);
539 		ret = 1;
540 	} else if (!strcmp(str, "never")) {
541 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
542 			  &transparent_hugepage_flags);
543 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
544 			  &transparent_hugepage_flags);
545 		ret = 1;
546 	}
547 out:
548 	if (!ret)
549 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
550 	return ret;
551 }
552 __setup("transparent_hugepage=", setup_transparent_hugepage);
553 
554 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
555 {
556 	if (likely(vma->vm_flags & VM_WRITE))
557 		pmd = pmd_mkwrite(pmd);
558 	return pmd;
559 }
560 
561 #ifdef CONFIG_MEMCG
562 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
563 {
564 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
565 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
566 
567 	if (memcg)
568 		return &memcg->deferred_split_queue;
569 	else
570 		return &pgdat->deferred_split_queue;
571 }
572 #else
573 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
574 {
575 	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
576 
577 	return &pgdat->deferred_split_queue;
578 }
579 #endif
580 
581 void prep_transhuge_page(struct page *page)
582 {
583 	/*
584 	 * we use page->mapping and page->index in second tail page
585 	 * as list_head: assuming THP order >= 2
586 	 */
587 
588 	INIT_LIST_HEAD(page_deferred_list(page));
589 	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
590 }
591 
592 static inline bool is_transparent_hugepage(struct page *page)
593 {
594 	if (!PageCompound(page))
595 		return false;
596 
597 	page = compound_head(page);
598 	return is_huge_zero_page(page) ||
599 	       page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
600 }
601 
602 static unsigned long __thp_get_unmapped_area(struct file *filp,
603 		unsigned long addr, unsigned long len,
604 		loff_t off, unsigned long flags, unsigned long size)
605 {
606 	loff_t off_end = off + len;
607 	loff_t off_align = round_up(off, size);
608 	unsigned long len_pad, ret;
609 
610 	if (off_end <= off_align || (off_end - off_align) < size)
611 		return 0;
612 
613 	len_pad = len + size;
614 	if (len_pad < len || (off + len_pad) < off)
615 		return 0;
616 
617 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
618 					      off >> PAGE_SHIFT, flags);
619 
620 	/*
621 	 * The failure might be due to length padding. The caller will retry
622 	 * without the padding.
623 	 */
624 	if (IS_ERR_VALUE(ret))
625 		return 0;
626 
627 	/*
628 	 * Do not try to align to THP boundary if allocation at the address
629 	 * hint succeeds.
630 	 */
631 	if (ret == addr)
632 		return addr;
633 
634 	ret += (off - ret) & (size - 1);
635 	return ret;
636 }
637 
638 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
639 		unsigned long len, unsigned long pgoff, unsigned long flags)
640 {
641 	unsigned long ret;
642 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
643 
644 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
645 	if (ret)
646 		return ret;
647 
648 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
649 }
650 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
651 
652 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
653 			struct page *page, gfp_t gfp)
654 {
655 	struct vm_area_struct *vma = vmf->vma;
656 	pgtable_t pgtable;
657 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
658 	vm_fault_t ret = 0;
659 
660 	VM_BUG_ON_PAGE(!PageCompound(page), page);
661 
662 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
663 		put_page(page);
664 		count_vm_event(THP_FAULT_FALLBACK);
665 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
666 		return VM_FAULT_FALLBACK;
667 	}
668 	cgroup_throttle_swaprate(page, gfp);
669 
670 	pgtable = pte_alloc_one(vma->vm_mm);
671 	if (unlikely(!pgtable)) {
672 		ret = VM_FAULT_OOM;
673 		goto release;
674 	}
675 
676 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
677 	/*
678 	 * The memory barrier inside __SetPageUptodate makes sure that
679 	 * clear_huge_page writes become visible before the set_pmd_at()
680 	 * write.
681 	 */
682 	__SetPageUptodate(page);
683 
684 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
685 	if (unlikely(!pmd_none(*vmf->pmd))) {
686 		goto unlock_release;
687 	} else {
688 		pmd_t entry;
689 
690 		ret = check_stable_address_space(vma->vm_mm);
691 		if (ret)
692 			goto unlock_release;
693 
694 		/* Deliver the page fault to userland */
695 		if (userfaultfd_missing(vma)) {
696 			spin_unlock(vmf->ptl);
697 			put_page(page);
698 			pte_free(vma->vm_mm, pgtable);
699 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
700 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
701 			return ret;
702 		}
703 
704 		entry = mk_huge_pmd(page, vma->vm_page_prot);
705 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
706 		page_add_new_anon_rmap(page, vma, haddr);
707 		lru_cache_add_inactive_or_unevictable(page, vma);
708 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
709 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
710 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
711 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
712 		mm_inc_nr_ptes(vma->vm_mm);
713 		spin_unlock(vmf->ptl);
714 		count_vm_event(THP_FAULT_ALLOC);
715 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
716 	}
717 
718 	return 0;
719 unlock_release:
720 	spin_unlock(vmf->ptl);
721 release:
722 	if (pgtable)
723 		pte_free(vma->vm_mm, pgtable);
724 	put_page(page);
725 	return ret;
726 
727 }
728 
729 /*
730  * always: directly stall for all thp allocations
731  * defer: wake kswapd and fail if not immediately available
732  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
733  *		  fail if not immediately available
734  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
735  *	    available
736  * never: never stall for any thp allocation
737  */
738 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
739 {
740 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
741 
742 	/* Always do synchronous compaction */
743 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
744 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
745 
746 	/* Kick kcompactd and fail quickly */
747 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
748 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
749 
750 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
751 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
752 		return GFP_TRANSHUGE_LIGHT |
753 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
754 					__GFP_KSWAPD_RECLAIM);
755 
756 	/* Only do synchronous compaction if madvised */
757 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
758 		return GFP_TRANSHUGE_LIGHT |
759 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
760 
761 	return GFP_TRANSHUGE_LIGHT;
762 }
763 
764 /* Caller must hold page table lock. */
765 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 		struct page *zero_page)
768 {
769 	pmd_t entry;
770 	if (!pmd_none(*pmd))
771 		return;
772 	entry = mk_pmd(zero_page, vma->vm_page_prot);
773 	entry = pmd_mkhuge(entry);
774 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 	set_pmd_at(mm, haddr, pmd, entry);
776 	mm_inc_nr_ptes(mm);
777 }
778 
779 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
780 {
781 	struct vm_area_struct *vma = vmf->vma;
782 	gfp_t gfp;
783 	struct folio *folio;
784 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
785 
786 	if (!transhuge_vma_suitable(vma, haddr))
787 		return VM_FAULT_FALLBACK;
788 	if (unlikely(anon_vma_prepare(vma)))
789 		return VM_FAULT_OOM;
790 	khugepaged_enter_vma(vma, vma->vm_flags);
791 
792 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
793 			!mm_forbids_zeropage(vma->vm_mm) &&
794 			transparent_hugepage_use_zero_page()) {
795 		pgtable_t pgtable;
796 		struct page *zero_page;
797 		vm_fault_t ret;
798 		pgtable = pte_alloc_one(vma->vm_mm);
799 		if (unlikely(!pgtable))
800 			return VM_FAULT_OOM;
801 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
802 		if (unlikely(!zero_page)) {
803 			pte_free(vma->vm_mm, pgtable);
804 			count_vm_event(THP_FAULT_FALLBACK);
805 			return VM_FAULT_FALLBACK;
806 		}
807 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
808 		ret = 0;
809 		if (pmd_none(*vmf->pmd)) {
810 			ret = check_stable_address_space(vma->vm_mm);
811 			if (ret) {
812 				spin_unlock(vmf->ptl);
813 				pte_free(vma->vm_mm, pgtable);
814 			} else if (userfaultfd_missing(vma)) {
815 				spin_unlock(vmf->ptl);
816 				pte_free(vma->vm_mm, pgtable);
817 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
818 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
819 			} else {
820 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
821 						   haddr, vmf->pmd, zero_page);
822 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
823 				spin_unlock(vmf->ptl);
824 			}
825 		} else {
826 			spin_unlock(vmf->ptl);
827 			pte_free(vma->vm_mm, pgtable);
828 		}
829 		return ret;
830 	}
831 	gfp = vma_thp_gfp_mask(vma);
832 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
833 	if (unlikely(!folio)) {
834 		count_vm_event(THP_FAULT_FALLBACK);
835 		return VM_FAULT_FALLBACK;
836 	}
837 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
838 }
839 
840 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
841 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
842 		pgtable_t pgtable)
843 {
844 	struct mm_struct *mm = vma->vm_mm;
845 	pmd_t entry;
846 	spinlock_t *ptl;
847 
848 	ptl = pmd_lock(mm, pmd);
849 	if (!pmd_none(*pmd)) {
850 		if (write) {
851 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
852 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
853 				goto out_unlock;
854 			}
855 			entry = pmd_mkyoung(*pmd);
856 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
857 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
858 				update_mmu_cache_pmd(vma, addr, pmd);
859 		}
860 
861 		goto out_unlock;
862 	}
863 
864 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
865 	if (pfn_t_devmap(pfn))
866 		entry = pmd_mkdevmap(entry);
867 	if (write) {
868 		entry = pmd_mkyoung(pmd_mkdirty(entry));
869 		entry = maybe_pmd_mkwrite(entry, vma);
870 	}
871 
872 	if (pgtable) {
873 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
874 		mm_inc_nr_ptes(mm);
875 		pgtable = NULL;
876 	}
877 
878 	set_pmd_at(mm, addr, pmd, entry);
879 	update_mmu_cache_pmd(vma, addr, pmd);
880 
881 out_unlock:
882 	spin_unlock(ptl);
883 	if (pgtable)
884 		pte_free(mm, pgtable);
885 }
886 
887 /**
888  * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
889  * @vmf: Structure describing the fault
890  * @pfn: pfn to insert
891  * @pgprot: page protection to use
892  * @write: whether it's a write fault
893  *
894  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
895  * also consult the vmf_insert_mixed_prot() documentation when
896  * @pgprot != @vmf->vma->vm_page_prot.
897  *
898  * Return: vm_fault_t value.
899  */
900 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
901 				   pgprot_t pgprot, bool write)
902 {
903 	unsigned long addr = vmf->address & PMD_MASK;
904 	struct vm_area_struct *vma = vmf->vma;
905 	pgtable_t pgtable = NULL;
906 
907 	/*
908 	 * If we had pmd_special, we could avoid all these restrictions,
909 	 * but we need to be consistent with PTEs and architectures that
910 	 * can't support a 'special' bit.
911 	 */
912 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
913 			!pfn_t_devmap(pfn));
914 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
915 						(VM_PFNMAP|VM_MIXEDMAP));
916 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
917 
918 	if (addr < vma->vm_start || addr >= vma->vm_end)
919 		return VM_FAULT_SIGBUS;
920 
921 	if (arch_needs_pgtable_deposit()) {
922 		pgtable = pte_alloc_one(vma->vm_mm);
923 		if (!pgtable)
924 			return VM_FAULT_OOM;
925 	}
926 
927 	track_pfn_insert(vma, &pgprot, pfn);
928 
929 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
930 	return VM_FAULT_NOPAGE;
931 }
932 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
933 
934 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
935 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
936 {
937 	if (likely(vma->vm_flags & VM_WRITE))
938 		pud = pud_mkwrite(pud);
939 	return pud;
940 }
941 
942 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
943 		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
944 {
945 	struct mm_struct *mm = vma->vm_mm;
946 	pud_t entry;
947 	spinlock_t *ptl;
948 
949 	ptl = pud_lock(mm, pud);
950 	if (!pud_none(*pud)) {
951 		if (write) {
952 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
953 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
954 				goto out_unlock;
955 			}
956 			entry = pud_mkyoung(*pud);
957 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
958 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
959 				update_mmu_cache_pud(vma, addr, pud);
960 		}
961 		goto out_unlock;
962 	}
963 
964 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
965 	if (pfn_t_devmap(pfn))
966 		entry = pud_mkdevmap(entry);
967 	if (write) {
968 		entry = pud_mkyoung(pud_mkdirty(entry));
969 		entry = maybe_pud_mkwrite(entry, vma);
970 	}
971 	set_pud_at(mm, addr, pud, entry);
972 	update_mmu_cache_pud(vma, addr, pud);
973 
974 out_unlock:
975 	spin_unlock(ptl);
976 }
977 
978 /**
979  * vmf_insert_pfn_pud_prot - insert a pud size pfn
980  * @vmf: Structure describing the fault
981  * @pfn: pfn to insert
982  * @pgprot: page protection to use
983  * @write: whether it's a write fault
984  *
985  * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
986  * also consult the vmf_insert_mixed_prot() documentation when
987  * @pgprot != @vmf->vma->vm_page_prot.
988  *
989  * Return: vm_fault_t value.
990  */
991 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
992 				   pgprot_t pgprot, bool write)
993 {
994 	unsigned long addr = vmf->address & PUD_MASK;
995 	struct vm_area_struct *vma = vmf->vma;
996 
997 	/*
998 	 * If we had pud_special, we could avoid all these restrictions,
999 	 * but we need to be consistent with PTEs and architectures that
1000 	 * can't support a 'special' bit.
1001 	 */
1002 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1003 			!pfn_t_devmap(pfn));
1004 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005 						(VM_PFNMAP|VM_MIXEDMAP));
1006 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007 
1008 	if (addr < vma->vm_start || addr >= vma->vm_end)
1009 		return VM_FAULT_SIGBUS;
1010 
1011 	track_pfn_insert(vma, &pgprot, pfn);
1012 
1013 	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
1014 	return VM_FAULT_NOPAGE;
1015 }
1016 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
1017 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1018 
1019 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1020 		      pmd_t *pmd, bool write)
1021 {
1022 	pmd_t _pmd;
1023 
1024 	_pmd = pmd_mkyoung(*pmd);
1025 	if (write)
1026 		_pmd = pmd_mkdirty(_pmd);
1027 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 				  pmd, _pmd, write))
1029 		update_mmu_cache_pmd(vma, addr, pmd);
1030 }
1031 
1032 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1034 {
1035 	unsigned long pfn = pmd_pfn(*pmd);
1036 	struct mm_struct *mm = vma->vm_mm;
1037 	struct page *page;
1038 
1039 	assert_spin_locked(pmd_lockptr(mm, pmd));
1040 
1041 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1042 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1043 			 (FOLL_PIN | FOLL_GET)))
1044 		return NULL;
1045 
1046 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1047 		return NULL;
1048 
1049 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1050 		/* pass */;
1051 	else
1052 		return NULL;
1053 
1054 	if (flags & FOLL_TOUCH)
1055 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1056 
1057 	/*
1058 	 * device mapped pages can only be returned if the
1059 	 * caller will manage the page reference count.
1060 	 */
1061 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1062 		return ERR_PTR(-EEXIST);
1063 
1064 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1065 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1066 	if (!*pgmap)
1067 		return ERR_PTR(-EFAULT);
1068 	page = pfn_to_page(pfn);
1069 	if (!try_grab_page(page, flags))
1070 		page = ERR_PTR(-ENOMEM);
1071 
1072 	return page;
1073 }
1074 
1075 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1076 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1077 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1078 {
1079 	spinlock_t *dst_ptl, *src_ptl;
1080 	struct page *src_page;
1081 	pmd_t pmd;
1082 	pgtable_t pgtable = NULL;
1083 	int ret = -ENOMEM;
1084 
1085 	/* Skip if can be re-fill on fault */
1086 	if (!vma_is_anonymous(dst_vma))
1087 		return 0;
1088 
1089 	pgtable = pte_alloc_one(dst_mm);
1090 	if (unlikely(!pgtable))
1091 		goto out;
1092 
1093 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1094 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1095 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1096 
1097 	ret = -EAGAIN;
1098 	pmd = *src_pmd;
1099 
1100 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1101 	if (unlikely(is_swap_pmd(pmd))) {
1102 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1103 
1104 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1105 		if (!is_readable_migration_entry(entry)) {
1106 			entry = make_readable_migration_entry(
1107 							swp_offset(entry));
1108 			pmd = swp_entry_to_pmd(entry);
1109 			if (pmd_swp_soft_dirty(*src_pmd))
1110 				pmd = pmd_swp_mksoft_dirty(pmd);
1111 			if (pmd_swp_uffd_wp(*src_pmd))
1112 				pmd = pmd_swp_mkuffd_wp(pmd);
1113 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1114 		}
1115 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1116 		mm_inc_nr_ptes(dst_mm);
1117 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1118 		if (!userfaultfd_wp(dst_vma))
1119 			pmd = pmd_swp_clear_uffd_wp(pmd);
1120 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1121 		ret = 0;
1122 		goto out_unlock;
1123 	}
1124 #endif
1125 
1126 	if (unlikely(!pmd_trans_huge(pmd))) {
1127 		pte_free(dst_mm, pgtable);
1128 		goto out_unlock;
1129 	}
1130 	/*
1131 	 * When page table lock is held, the huge zero pmd should not be
1132 	 * under splitting since we don't split the page itself, only pmd to
1133 	 * a page table.
1134 	 */
1135 	if (is_huge_zero_pmd(pmd)) {
1136 		/*
1137 		 * get_huge_zero_page() will never allocate a new page here,
1138 		 * since we already have a zero page to copy. It just takes a
1139 		 * reference.
1140 		 */
1141 		mm_get_huge_zero_page(dst_mm);
1142 		goto out_zero_page;
1143 	}
1144 
1145 	src_page = pmd_page(pmd);
1146 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1147 
1148 	get_page(src_page);
1149 	if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1150 		/* Page maybe pinned: split and retry the fault on PTEs. */
1151 		put_page(src_page);
1152 		pte_free(dst_mm, pgtable);
1153 		spin_unlock(src_ptl);
1154 		spin_unlock(dst_ptl);
1155 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1156 		return -EAGAIN;
1157 	}
1158 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 out_zero_page:
1160 	mm_inc_nr_ptes(dst_mm);
1161 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1162 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1163 	if (!userfaultfd_wp(dst_vma))
1164 		pmd = pmd_clear_uffd_wp(pmd);
1165 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1166 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1167 
1168 	ret = 0;
1169 out_unlock:
1170 	spin_unlock(src_ptl);
1171 	spin_unlock(dst_ptl);
1172 out:
1173 	return ret;
1174 }
1175 
1176 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1177 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1178 		      pud_t *pud, bool write)
1179 {
1180 	pud_t _pud;
1181 
1182 	_pud = pud_mkyoung(*pud);
1183 	if (write)
1184 		_pud = pud_mkdirty(_pud);
1185 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1186 				  pud, _pud, write))
1187 		update_mmu_cache_pud(vma, addr, pud);
1188 }
1189 
1190 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1191 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1192 {
1193 	unsigned long pfn = pud_pfn(*pud);
1194 	struct mm_struct *mm = vma->vm_mm;
1195 	struct page *page;
1196 
1197 	assert_spin_locked(pud_lockptr(mm, pud));
1198 
1199 	if (flags & FOLL_WRITE && !pud_write(*pud))
1200 		return NULL;
1201 
1202 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
1203 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1204 			 (FOLL_PIN | FOLL_GET)))
1205 		return NULL;
1206 
1207 	if (pud_present(*pud) && pud_devmap(*pud))
1208 		/* pass */;
1209 	else
1210 		return NULL;
1211 
1212 	if (flags & FOLL_TOUCH)
1213 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1214 
1215 	/*
1216 	 * device mapped pages can only be returned if the
1217 	 * caller will manage the page reference count.
1218 	 *
1219 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1220 	 */
1221 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1222 		return ERR_PTR(-EEXIST);
1223 
1224 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1225 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1226 	if (!*pgmap)
1227 		return ERR_PTR(-EFAULT);
1228 	page = pfn_to_page(pfn);
1229 	if (!try_grab_page(page, flags))
1230 		page = ERR_PTR(-ENOMEM);
1231 
1232 	return page;
1233 }
1234 
1235 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1236 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1237 		  struct vm_area_struct *vma)
1238 {
1239 	spinlock_t *dst_ptl, *src_ptl;
1240 	pud_t pud;
1241 	int ret;
1242 
1243 	dst_ptl = pud_lock(dst_mm, dst_pud);
1244 	src_ptl = pud_lockptr(src_mm, src_pud);
1245 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1246 
1247 	ret = -EAGAIN;
1248 	pud = *src_pud;
1249 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1250 		goto out_unlock;
1251 
1252 	/*
1253 	 * When page table lock is held, the huge zero pud should not be
1254 	 * under splitting since we don't split the page itself, only pud to
1255 	 * a page table.
1256 	 */
1257 	if (is_huge_zero_pud(pud)) {
1258 		/* No huge zero pud yet */
1259 	}
1260 
1261 	/*
1262 	 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1263 	 * and split if duplicating fails.
1264 	 */
1265 	pudp_set_wrprotect(src_mm, addr, src_pud);
1266 	pud = pud_mkold(pud_wrprotect(pud));
1267 	set_pud_at(dst_mm, addr, dst_pud, pud);
1268 
1269 	ret = 0;
1270 out_unlock:
1271 	spin_unlock(src_ptl);
1272 	spin_unlock(dst_ptl);
1273 	return ret;
1274 }
1275 
1276 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1277 {
1278 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1279 
1280 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1281 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1282 		goto unlock;
1283 
1284 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1285 unlock:
1286 	spin_unlock(vmf->ptl);
1287 }
1288 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1289 
1290 void huge_pmd_set_accessed(struct vm_fault *vmf)
1291 {
1292 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1293 
1294 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1295 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1296 		goto unlock;
1297 
1298 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1299 
1300 unlock:
1301 	spin_unlock(vmf->ptl);
1302 }
1303 
1304 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1305 {
1306 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1307 	struct vm_area_struct *vma = vmf->vma;
1308 	struct folio *folio;
1309 	struct page *page;
1310 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1311 	pmd_t orig_pmd = vmf->orig_pmd;
1312 
1313 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1314 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1315 
1316 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1317 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1318 
1319 	if (is_huge_zero_pmd(orig_pmd))
1320 		goto fallback;
1321 
1322 	spin_lock(vmf->ptl);
1323 
1324 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 		spin_unlock(vmf->ptl);
1326 		return 0;
1327 	}
1328 
1329 	page = pmd_page(orig_pmd);
1330 	folio = page_folio(page);
1331 	VM_BUG_ON_PAGE(!PageHead(page), page);
1332 
1333 	/* Early check when only holding the PT lock. */
1334 	if (PageAnonExclusive(page))
1335 		goto reuse;
1336 
1337 	if (!folio_trylock(folio)) {
1338 		folio_get(folio);
1339 		spin_unlock(vmf->ptl);
1340 		folio_lock(folio);
1341 		spin_lock(vmf->ptl);
1342 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1343 			spin_unlock(vmf->ptl);
1344 			folio_unlock(folio);
1345 			folio_put(folio);
1346 			return 0;
1347 		}
1348 		folio_put(folio);
1349 	}
1350 
1351 	/* Recheck after temporarily dropping the PT lock. */
1352 	if (PageAnonExclusive(page)) {
1353 		folio_unlock(folio);
1354 		goto reuse;
1355 	}
1356 
1357 	/*
1358 	 * See do_wp_page(): we can only reuse the folio exclusively if
1359 	 * there are no additional references. Note that we always drain
1360 	 * the LRU pagevecs immediately after adding a THP.
1361 	 */
1362 	if (folio_ref_count(folio) >
1363 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1364 		goto unlock_fallback;
1365 	if (folio_test_swapcache(folio))
1366 		folio_free_swap(folio);
1367 	if (folio_ref_count(folio) == 1) {
1368 		pmd_t entry;
1369 
1370 		page_move_anon_rmap(page, vma);
1371 		folio_unlock(folio);
1372 reuse:
1373 		if (unlikely(unshare)) {
1374 			spin_unlock(vmf->ptl);
1375 			return 0;
1376 		}
1377 		entry = pmd_mkyoung(orig_pmd);
1378 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1379 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1380 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1381 		spin_unlock(vmf->ptl);
1382 		return VM_FAULT_WRITE;
1383 	}
1384 
1385 unlock_fallback:
1386 	folio_unlock(folio);
1387 	spin_unlock(vmf->ptl);
1388 fallback:
1389 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1390 	return VM_FAULT_FALLBACK;
1391 }
1392 
1393 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1394 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1395 					struct vm_area_struct *vma,
1396 					unsigned int flags)
1397 {
1398 	/* If the pmd is writable, we can write to the page. */
1399 	if (pmd_write(pmd))
1400 		return true;
1401 
1402 	/* Maybe FOLL_FORCE is set to override it? */
1403 	if (!(flags & FOLL_FORCE))
1404 		return false;
1405 
1406 	/* But FOLL_FORCE has no effect on shared mappings */
1407 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1408 		return false;
1409 
1410 	/* ... or read-only private ones */
1411 	if (!(vma->vm_flags & VM_MAYWRITE))
1412 		return false;
1413 
1414 	/* ... or already writable ones that just need to take a write fault */
1415 	if (vma->vm_flags & VM_WRITE)
1416 		return false;
1417 
1418 	/*
1419 	 * See can_change_pte_writable(): we broke COW and could map the page
1420 	 * writable if we have an exclusive anonymous page ...
1421 	 */
1422 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1423 		return false;
1424 
1425 	/* ... and a write-fault isn't required for other reasons. */
1426 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1427 		return false;
1428 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1429 }
1430 
1431 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1432 				   unsigned long addr,
1433 				   pmd_t *pmd,
1434 				   unsigned int flags)
1435 {
1436 	struct mm_struct *mm = vma->vm_mm;
1437 	struct page *page;
1438 
1439 	assert_spin_locked(pmd_lockptr(mm, pmd));
1440 
1441 	page = pmd_page(*pmd);
1442 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1443 
1444 	if ((flags & FOLL_WRITE) &&
1445 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1446 		return NULL;
1447 
1448 	/* Avoid dumping huge zero page */
1449 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1450 		return ERR_PTR(-EFAULT);
1451 
1452 	/* Full NUMA hinting faults to serialise migration in fault paths */
1453 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(flags))
1454 		return NULL;
1455 
1456 	if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1457 		return ERR_PTR(-EMLINK);
1458 
1459 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1460 			!PageAnonExclusive(page), page);
1461 
1462 	if (!try_grab_page(page, flags))
1463 		return ERR_PTR(-ENOMEM);
1464 
1465 	if (flags & FOLL_TOUCH)
1466 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1467 
1468 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1469 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1470 
1471 	return page;
1472 }
1473 
1474 /* NUMA hinting page fault entry point for trans huge pmds */
1475 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1476 {
1477 	struct vm_area_struct *vma = vmf->vma;
1478 	pmd_t oldpmd = vmf->orig_pmd;
1479 	pmd_t pmd;
1480 	struct page *page;
1481 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1482 	int page_nid = NUMA_NO_NODE;
1483 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1484 	bool migrated = false;
1485 	bool was_writable = pmd_savedwrite(oldpmd);
1486 	int flags = 0;
1487 
1488 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1489 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1490 		spin_unlock(vmf->ptl);
1491 		goto out;
1492 	}
1493 
1494 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1495 	page = vm_normal_page_pmd(vma, haddr, pmd);
1496 	if (!page)
1497 		goto out_map;
1498 
1499 	/* See similar comment in do_numa_page for explanation */
1500 	if (!was_writable)
1501 		flags |= TNF_NO_GROUP;
1502 
1503 	page_nid = page_to_nid(page);
1504 	/*
1505 	 * For memory tiering mode, cpupid of slow memory page is used
1506 	 * to record page access time.  So use default value.
1507 	 */
1508 	if (node_is_toptier(page_nid))
1509 		last_cpupid = page_cpupid_last(page);
1510 	target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1511 				       &flags);
1512 
1513 	if (target_nid == NUMA_NO_NODE) {
1514 		put_page(page);
1515 		goto out_map;
1516 	}
1517 
1518 	spin_unlock(vmf->ptl);
1519 
1520 	migrated = migrate_misplaced_page(page, vma, target_nid);
1521 	if (migrated) {
1522 		flags |= TNF_MIGRATED;
1523 		page_nid = target_nid;
1524 	} else {
1525 		flags |= TNF_MIGRATE_FAIL;
1526 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1527 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1528 			spin_unlock(vmf->ptl);
1529 			goto out;
1530 		}
1531 		goto out_map;
1532 	}
1533 
1534 out:
1535 	if (page_nid != NUMA_NO_NODE)
1536 		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1537 				flags);
1538 
1539 	return 0;
1540 
1541 out_map:
1542 	/* Restore the PMD */
1543 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1544 	pmd = pmd_mkyoung(pmd);
1545 	if (was_writable)
1546 		pmd = pmd_mkwrite(pmd);
1547 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1548 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1549 	spin_unlock(vmf->ptl);
1550 	goto out;
1551 }
1552 
1553 /*
1554  * Return true if we do MADV_FREE successfully on entire pmd page.
1555  * Otherwise, return false.
1556  */
1557 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1558 		pmd_t *pmd, unsigned long addr, unsigned long next)
1559 {
1560 	spinlock_t *ptl;
1561 	pmd_t orig_pmd;
1562 	struct page *page;
1563 	struct mm_struct *mm = tlb->mm;
1564 	bool ret = false;
1565 
1566 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1567 
1568 	ptl = pmd_trans_huge_lock(pmd, vma);
1569 	if (!ptl)
1570 		goto out_unlocked;
1571 
1572 	orig_pmd = *pmd;
1573 	if (is_huge_zero_pmd(orig_pmd))
1574 		goto out;
1575 
1576 	if (unlikely(!pmd_present(orig_pmd))) {
1577 		VM_BUG_ON(thp_migration_supported() &&
1578 				  !is_pmd_migration_entry(orig_pmd));
1579 		goto out;
1580 	}
1581 
1582 	page = pmd_page(orig_pmd);
1583 	/*
1584 	 * If other processes are mapping this page, we couldn't discard
1585 	 * the page unless they all do MADV_FREE so let's skip the page.
1586 	 */
1587 	if (total_mapcount(page) != 1)
1588 		goto out;
1589 
1590 	if (!trylock_page(page))
1591 		goto out;
1592 
1593 	/*
1594 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1595 	 * will deactivate only them.
1596 	 */
1597 	if (next - addr != HPAGE_PMD_SIZE) {
1598 		get_page(page);
1599 		spin_unlock(ptl);
1600 		split_huge_page(page);
1601 		unlock_page(page);
1602 		put_page(page);
1603 		goto out_unlocked;
1604 	}
1605 
1606 	if (PageDirty(page))
1607 		ClearPageDirty(page);
1608 	unlock_page(page);
1609 
1610 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1611 		pmdp_invalidate(vma, addr, pmd);
1612 		orig_pmd = pmd_mkold(orig_pmd);
1613 		orig_pmd = pmd_mkclean(orig_pmd);
1614 
1615 		set_pmd_at(mm, addr, pmd, orig_pmd);
1616 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617 	}
1618 
1619 	mark_page_lazyfree(page);
1620 	ret = true;
1621 out:
1622 	spin_unlock(ptl);
1623 out_unlocked:
1624 	return ret;
1625 }
1626 
1627 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1628 {
1629 	pgtable_t pgtable;
1630 
1631 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1632 	pte_free(mm, pgtable);
1633 	mm_dec_nr_ptes(mm);
1634 }
1635 
1636 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1637 		 pmd_t *pmd, unsigned long addr)
1638 {
1639 	pmd_t orig_pmd;
1640 	spinlock_t *ptl;
1641 
1642 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1643 
1644 	ptl = __pmd_trans_huge_lock(pmd, vma);
1645 	if (!ptl)
1646 		return 0;
1647 	/*
1648 	 * For architectures like ppc64 we look at deposited pgtable
1649 	 * when calling pmdp_huge_get_and_clear. So do the
1650 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1651 	 * operations.
1652 	 */
1653 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1654 						tlb->fullmm);
1655 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1656 	if (vma_is_special_huge(vma)) {
1657 		if (arch_needs_pgtable_deposit())
1658 			zap_deposited_table(tlb->mm, pmd);
1659 		spin_unlock(ptl);
1660 	} else if (is_huge_zero_pmd(orig_pmd)) {
1661 		zap_deposited_table(tlb->mm, pmd);
1662 		spin_unlock(ptl);
1663 	} else {
1664 		struct page *page = NULL;
1665 		int flush_needed = 1;
1666 
1667 		if (pmd_present(orig_pmd)) {
1668 			page = pmd_page(orig_pmd);
1669 			page_remove_rmap(page, vma, true);
1670 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1671 			VM_BUG_ON_PAGE(!PageHead(page), page);
1672 		} else if (thp_migration_supported()) {
1673 			swp_entry_t entry;
1674 
1675 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1676 			entry = pmd_to_swp_entry(orig_pmd);
1677 			page = pfn_swap_entry_to_page(entry);
1678 			flush_needed = 0;
1679 		} else
1680 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1681 
1682 		if (PageAnon(page)) {
1683 			zap_deposited_table(tlb->mm, pmd);
1684 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1685 		} else {
1686 			if (arch_needs_pgtable_deposit())
1687 				zap_deposited_table(tlb->mm, pmd);
1688 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1689 		}
1690 
1691 		spin_unlock(ptl);
1692 		if (flush_needed)
1693 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1694 	}
1695 	return 1;
1696 }
1697 
1698 #ifndef pmd_move_must_withdraw
1699 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1700 					 spinlock_t *old_pmd_ptl,
1701 					 struct vm_area_struct *vma)
1702 {
1703 	/*
1704 	 * With split pmd lock we also need to move preallocated
1705 	 * PTE page table if new_pmd is on different PMD page table.
1706 	 *
1707 	 * We also don't deposit and withdraw tables for file pages.
1708 	 */
1709 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1710 }
1711 #endif
1712 
1713 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1714 {
1715 #ifdef CONFIG_MEM_SOFT_DIRTY
1716 	if (unlikely(is_pmd_migration_entry(pmd)))
1717 		pmd = pmd_swp_mksoft_dirty(pmd);
1718 	else if (pmd_present(pmd))
1719 		pmd = pmd_mksoft_dirty(pmd);
1720 #endif
1721 	return pmd;
1722 }
1723 
1724 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1725 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1726 {
1727 	spinlock_t *old_ptl, *new_ptl;
1728 	pmd_t pmd;
1729 	struct mm_struct *mm = vma->vm_mm;
1730 	bool force_flush = false;
1731 
1732 	/*
1733 	 * The destination pmd shouldn't be established, free_pgtables()
1734 	 * should have release it.
1735 	 */
1736 	if (WARN_ON(!pmd_none(*new_pmd))) {
1737 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1738 		return false;
1739 	}
1740 
1741 	/*
1742 	 * We don't have to worry about the ordering of src and dst
1743 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1744 	 */
1745 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1746 	if (old_ptl) {
1747 		new_ptl = pmd_lockptr(mm, new_pmd);
1748 		if (new_ptl != old_ptl)
1749 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1750 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1751 		if (pmd_present(pmd))
1752 			force_flush = true;
1753 		VM_BUG_ON(!pmd_none(*new_pmd));
1754 
1755 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1756 			pgtable_t pgtable;
1757 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1758 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1759 		}
1760 		pmd = move_soft_dirty_pmd(pmd);
1761 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1762 		if (force_flush)
1763 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1764 		if (new_ptl != old_ptl)
1765 			spin_unlock(new_ptl);
1766 		spin_unlock(old_ptl);
1767 		return true;
1768 	}
1769 	return false;
1770 }
1771 
1772 /*
1773  * Returns
1774  *  - 0 if PMD could not be locked
1775  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1776  *      or if prot_numa but THP migration is not supported
1777  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
1778  */
1779 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1780 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1781 		    unsigned long cp_flags)
1782 {
1783 	struct mm_struct *mm = vma->vm_mm;
1784 	spinlock_t *ptl;
1785 	pmd_t oldpmd, entry;
1786 	bool preserve_write;
1787 	int ret;
1788 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1789 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1790 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1791 
1792 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1793 
1794 	if (prot_numa && !thp_migration_supported())
1795 		return 1;
1796 
1797 	ptl = __pmd_trans_huge_lock(pmd, vma);
1798 	if (!ptl)
1799 		return 0;
1800 
1801 	preserve_write = prot_numa && pmd_write(*pmd);
1802 	ret = 1;
1803 
1804 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1805 	if (is_swap_pmd(*pmd)) {
1806 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
1807 		struct page *page = pfn_swap_entry_to_page(entry);
1808 
1809 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1810 		if (is_writable_migration_entry(entry)) {
1811 			pmd_t newpmd;
1812 			/*
1813 			 * A protection check is difficult so
1814 			 * just be safe and disable write
1815 			 */
1816 			if (PageAnon(page))
1817 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1818 			else
1819 				entry = make_readable_migration_entry(swp_offset(entry));
1820 			newpmd = swp_entry_to_pmd(entry);
1821 			if (pmd_swp_soft_dirty(*pmd))
1822 				newpmd = pmd_swp_mksoft_dirty(newpmd);
1823 			if (pmd_swp_uffd_wp(*pmd))
1824 				newpmd = pmd_swp_mkuffd_wp(newpmd);
1825 			set_pmd_at(mm, addr, pmd, newpmd);
1826 		}
1827 		goto unlock;
1828 	}
1829 #endif
1830 
1831 	if (prot_numa) {
1832 		struct page *page;
1833 		bool toptier;
1834 		/*
1835 		 * Avoid trapping faults against the zero page. The read-only
1836 		 * data is likely to be read-cached on the local CPU and
1837 		 * local/remote hits to the zero page are not interesting.
1838 		 */
1839 		if (is_huge_zero_pmd(*pmd))
1840 			goto unlock;
1841 
1842 		if (pmd_protnone(*pmd))
1843 			goto unlock;
1844 
1845 		page = pmd_page(*pmd);
1846 		toptier = node_is_toptier(page_to_nid(page));
1847 		/*
1848 		 * Skip scanning top tier node if normal numa
1849 		 * balancing is disabled
1850 		 */
1851 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1852 		    toptier)
1853 			goto unlock;
1854 
1855 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1856 		    !toptier)
1857 			xchg_page_access_time(page, jiffies_to_msecs(jiffies));
1858 	}
1859 	/*
1860 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1861 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1862 	 * which is also under mmap_read_lock(mm):
1863 	 *
1864 	 *	CPU0:				CPU1:
1865 	 *				change_huge_pmd(prot_numa=1)
1866 	 *				 pmdp_huge_get_and_clear_notify()
1867 	 * madvise_dontneed()
1868 	 *  zap_pmd_range()
1869 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
1870 	 *   // skip the pmd
1871 	 *				 set_pmd_at();
1872 	 *				 // pmd is re-established
1873 	 *
1874 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1875 	 * which may break userspace.
1876 	 *
1877 	 * pmdp_invalidate_ad() is required to make sure we don't miss
1878 	 * dirty/young flags set by hardware.
1879 	 */
1880 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1881 
1882 	entry = pmd_modify(oldpmd, newprot);
1883 	if (preserve_write)
1884 		entry = pmd_mk_savedwrite(entry);
1885 	if (uffd_wp) {
1886 		entry = pmd_wrprotect(entry);
1887 		entry = pmd_mkuffd_wp(entry);
1888 	} else if (uffd_wp_resolve) {
1889 		/*
1890 		 * Leave the write bit to be handled by PF interrupt
1891 		 * handler, then things like COW could be properly
1892 		 * handled.
1893 		 */
1894 		entry = pmd_clear_uffd_wp(entry);
1895 	}
1896 	ret = HPAGE_PMD_NR;
1897 	set_pmd_at(mm, addr, pmd, entry);
1898 
1899 	if (huge_pmd_needs_flush(oldpmd, entry))
1900 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1901 
1902 	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1903 unlock:
1904 	spin_unlock(ptl);
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1910  *
1911  * Note that if it returns page table lock pointer, this routine returns without
1912  * unlocking page table lock. So callers must unlock it.
1913  */
1914 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1915 {
1916 	spinlock_t *ptl;
1917 	ptl = pmd_lock(vma->vm_mm, pmd);
1918 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1919 			pmd_devmap(*pmd)))
1920 		return ptl;
1921 	spin_unlock(ptl);
1922 	return NULL;
1923 }
1924 
1925 /*
1926  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
1927  *
1928  * Note that if it returns page table lock pointer, this routine returns without
1929  * unlocking page table lock. So callers must unlock it.
1930  */
1931 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1932 {
1933 	spinlock_t *ptl;
1934 
1935 	ptl = pud_lock(vma->vm_mm, pud);
1936 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1937 		return ptl;
1938 	spin_unlock(ptl);
1939 	return NULL;
1940 }
1941 
1942 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1943 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1944 		 pud_t *pud, unsigned long addr)
1945 {
1946 	spinlock_t *ptl;
1947 
1948 	ptl = __pud_trans_huge_lock(pud, vma);
1949 	if (!ptl)
1950 		return 0;
1951 
1952 	pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1953 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
1954 	if (vma_is_special_huge(vma)) {
1955 		spin_unlock(ptl);
1956 		/* No zero page support yet */
1957 	} else {
1958 		/* No support for anonymous PUD pages yet */
1959 		BUG();
1960 	}
1961 	return 1;
1962 }
1963 
1964 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1965 		unsigned long haddr)
1966 {
1967 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1968 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1969 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1970 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1971 
1972 	count_vm_event(THP_SPLIT_PUD);
1973 
1974 	pudp_huge_clear_flush_notify(vma, haddr, pud);
1975 }
1976 
1977 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1978 		unsigned long address)
1979 {
1980 	spinlock_t *ptl;
1981 	struct mmu_notifier_range range;
1982 
1983 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1984 				address & HPAGE_PUD_MASK,
1985 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1986 	mmu_notifier_invalidate_range_start(&range);
1987 	ptl = pud_lock(vma->vm_mm, pud);
1988 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1989 		goto out;
1990 	__split_huge_pud_locked(vma, pud, range.start);
1991 
1992 out:
1993 	spin_unlock(ptl);
1994 	/*
1995 	 * No need to double call mmu_notifier->invalidate_range() callback as
1996 	 * the above pudp_huge_clear_flush_notify() did already call it.
1997 	 */
1998 	mmu_notifier_invalidate_range_only_end(&range);
1999 }
2000 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2001 
2002 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2003 		unsigned long haddr, pmd_t *pmd)
2004 {
2005 	struct mm_struct *mm = vma->vm_mm;
2006 	pgtable_t pgtable;
2007 	pmd_t _pmd;
2008 	int i;
2009 
2010 	/*
2011 	 * Leave pmd empty until pte is filled note that it is fine to delay
2012 	 * notification until mmu_notifier_invalidate_range_end() as we are
2013 	 * replacing a zero pmd write protected page with a zero pte write
2014 	 * protected page.
2015 	 *
2016 	 * See Documentation/mm/mmu_notifier.rst
2017 	 */
2018 	pmdp_huge_clear_flush(vma, haddr, pmd);
2019 
2020 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2021 	pmd_populate(mm, &_pmd, pgtable);
2022 
2023 	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2024 		pte_t *pte, entry;
2025 		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2026 		entry = pte_mkspecial(entry);
2027 		pte = pte_offset_map(&_pmd, haddr);
2028 		VM_BUG_ON(!pte_none(*pte));
2029 		set_pte_at(mm, haddr, pte, entry);
2030 		pte_unmap(pte);
2031 	}
2032 	smp_wmb(); /* make pte visible before pmd */
2033 	pmd_populate(mm, pmd, pgtable);
2034 }
2035 
2036 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2037 		unsigned long haddr, bool freeze)
2038 {
2039 	struct mm_struct *mm = vma->vm_mm;
2040 	struct page *page;
2041 	pgtable_t pgtable;
2042 	pmd_t old_pmd, _pmd;
2043 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2044 	bool anon_exclusive = false, dirty = false;
2045 	unsigned long addr;
2046 	int i;
2047 
2048 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2049 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2050 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2051 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2052 				&& !pmd_devmap(*pmd));
2053 
2054 	count_vm_event(THP_SPLIT_PMD);
2055 
2056 	if (!vma_is_anonymous(vma)) {
2057 		old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2058 		/*
2059 		 * We are going to unmap this huge page. So
2060 		 * just go ahead and zap it
2061 		 */
2062 		if (arch_needs_pgtable_deposit())
2063 			zap_deposited_table(mm, pmd);
2064 		if (vma_is_special_huge(vma))
2065 			return;
2066 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2067 			swp_entry_t entry;
2068 
2069 			entry = pmd_to_swp_entry(old_pmd);
2070 			page = pfn_swap_entry_to_page(entry);
2071 		} else {
2072 			page = pmd_page(old_pmd);
2073 			if (!PageDirty(page) && pmd_dirty(old_pmd))
2074 				set_page_dirty(page);
2075 			if (!PageReferenced(page) && pmd_young(old_pmd))
2076 				SetPageReferenced(page);
2077 			page_remove_rmap(page, vma, true);
2078 			put_page(page);
2079 		}
2080 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2081 		return;
2082 	}
2083 
2084 	if (is_huge_zero_pmd(*pmd)) {
2085 		/*
2086 		 * FIXME: Do we want to invalidate secondary mmu by calling
2087 		 * mmu_notifier_invalidate_range() see comments below inside
2088 		 * __split_huge_pmd() ?
2089 		 *
2090 		 * We are going from a zero huge page write protected to zero
2091 		 * small page also write protected so it does not seems useful
2092 		 * to invalidate secondary mmu at this time.
2093 		 */
2094 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2095 	}
2096 
2097 	/*
2098 	 * Up to this point the pmd is present and huge and userland has the
2099 	 * whole access to the hugepage during the split (which happens in
2100 	 * place). If we overwrite the pmd with the not-huge version pointing
2101 	 * to the pte here (which of course we could if all CPUs were bug
2102 	 * free), userland could trigger a small page size TLB miss on the
2103 	 * small sized TLB while the hugepage TLB entry is still established in
2104 	 * the huge TLB. Some CPU doesn't like that.
2105 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2106 	 * 383 on page 105. Intel should be safe but is also warns that it's
2107 	 * only safe if the permission and cache attributes of the two entries
2108 	 * loaded in the two TLB is identical (which should be the case here).
2109 	 * But it is generally safer to never allow small and huge TLB entries
2110 	 * for the same virtual address to be loaded simultaneously. So instead
2111 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2112 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2113 	 * must remain set at all times on the pmd until the split is complete
2114 	 * for this pmd), then we flush the SMP TLB and finally we write the
2115 	 * non-huge version of the pmd entry with pmd_populate.
2116 	 */
2117 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2118 
2119 	pmd_migration = is_pmd_migration_entry(old_pmd);
2120 	if (unlikely(pmd_migration)) {
2121 		swp_entry_t entry;
2122 
2123 		entry = pmd_to_swp_entry(old_pmd);
2124 		page = pfn_swap_entry_to_page(entry);
2125 		write = is_writable_migration_entry(entry);
2126 		if (PageAnon(page))
2127 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2128 		young = is_migration_entry_young(entry);
2129 		dirty = is_migration_entry_dirty(entry);
2130 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2131 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2132 	} else {
2133 		page = pmd_page(old_pmd);
2134 		if (pmd_dirty(old_pmd)) {
2135 			dirty = true;
2136 			SetPageDirty(page);
2137 		}
2138 		write = pmd_write(old_pmd);
2139 		young = pmd_young(old_pmd);
2140 		soft_dirty = pmd_soft_dirty(old_pmd);
2141 		uffd_wp = pmd_uffd_wp(old_pmd);
2142 
2143 		VM_BUG_ON_PAGE(!page_count(page), page);
2144 		page_ref_add(page, HPAGE_PMD_NR - 1);
2145 
2146 		/*
2147 		 * Without "freeze", we'll simply split the PMD, propagating the
2148 		 * PageAnonExclusive() flag for each PTE by setting it for
2149 		 * each subpage -- no need to (temporarily) clear.
2150 		 *
2151 		 * With "freeze" we want to replace mapped pages by
2152 		 * migration entries right away. This is only possible if we
2153 		 * managed to clear PageAnonExclusive() -- see
2154 		 * set_pmd_migration_entry().
2155 		 *
2156 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2157 		 * only and let try_to_migrate_one() fail later.
2158 		 *
2159 		 * See page_try_share_anon_rmap(): invalidate PMD first.
2160 		 */
2161 		anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2162 		if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2163 			freeze = false;
2164 	}
2165 
2166 	/*
2167 	 * Withdraw the table only after we mark the pmd entry invalid.
2168 	 * This's critical for some architectures (Power).
2169 	 */
2170 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2171 	pmd_populate(mm, &_pmd, pgtable);
2172 
2173 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2174 		pte_t entry, *pte;
2175 		/*
2176 		 * Note that NUMA hinting access restrictions are not
2177 		 * transferred to avoid any possibility of altering
2178 		 * permissions across VMAs.
2179 		 */
2180 		if (freeze || pmd_migration) {
2181 			swp_entry_t swp_entry;
2182 			if (write)
2183 				swp_entry = make_writable_migration_entry(
2184 							page_to_pfn(page + i));
2185 			else if (anon_exclusive)
2186 				swp_entry = make_readable_exclusive_migration_entry(
2187 							page_to_pfn(page + i));
2188 			else
2189 				swp_entry = make_readable_migration_entry(
2190 							page_to_pfn(page + i));
2191 			if (young)
2192 				swp_entry = make_migration_entry_young(swp_entry);
2193 			if (dirty)
2194 				swp_entry = make_migration_entry_dirty(swp_entry);
2195 			entry = swp_entry_to_pte(swp_entry);
2196 			if (soft_dirty)
2197 				entry = pte_swp_mksoft_dirty(entry);
2198 			if (uffd_wp)
2199 				entry = pte_swp_mkuffd_wp(entry);
2200 		} else {
2201 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2202 			entry = maybe_mkwrite(entry, vma);
2203 			if (anon_exclusive)
2204 				SetPageAnonExclusive(page + i);
2205 			if (!write)
2206 				entry = pte_wrprotect(entry);
2207 			if (!young)
2208 				entry = pte_mkold(entry);
2209 			/* NOTE: this may set soft-dirty too on some archs */
2210 			if (dirty)
2211 				entry = pte_mkdirty(entry);
2212 			if (soft_dirty)
2213 				entry = pte_mksoft_dirty(entry);
2214 			if (uffd_wp)
2215 				entry = pte_mkuffd_wp(entry);
2216 		}
2217 		pte = pte_offset_map(&_pmd, addr);
2218 		BUG_ON(!pte_none(*pte));
2219 		set_pte_at(mm, addr, pte, entry);
2220 		if (!pmd_migration)
2221 			atomic_inc(&page[i]._mapcount);
2222 		pte_unmap(pte);
2223 	}
2224 
2225 	if (!pmd_migration) {
2226 		/*
2227 		 * Set PG_double_map before dropping compound_mapcount to avoid
2228 		 * false-negative page_mapped().
2229 		 */
2230 		if (compound_mapcount(page) > 1 &&
2231 		    !TestSetPageDoubleMap(page)) {
2232 			for (i = 0; i < HPAGE_PMD_NR; i++)
2233 				atomic_inc(&page[i]._mapcount);
2234 		}
2235 
2236 		lock_page_memcg(page);
2237 		if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2238 			/* Last compound_mapcount is gone. */
2239 			__mod_lruvec_page_state(page, NR_ANON_THPS,
2240 						-HPAGE_PMD_NR);
2241 			if (TestClearPageDoubleMap(page)) {
2242 				/* No need in mapcount reference anymore */
2243 				for (i = 0; i < HPAGE_PMD_NR; i++)
2244 					atomic_dec(&page[i]._mapcount);
2245 			}
2246 		}
2247 		unlock_page_memcg(page);
2248 
2249 		/* Above is effectively page_remove_rmap(page, vma, true) */
2250 		munlock_vma_page(page, vma, true);
2251 	}
2252 
2253 	smp_wmb(); /* make pte visible before pmd */
2254 	pmd_populate(mm, pmd, pgtable);
2255 
2256 	if (freeze) {
2257 		for (i = 0; i < HPAGE_PMD_NR; i++) {
2258 			page_remove_rmap(page + i, vma, false);
2259 			put_page(page + i);
2260 		}
2261 	}
2262 }
2263 
2264 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2265 		unsigned long address, bool freeze, struct folio *folio)
2266 {
2267 	spinlock_t *ptl;
2268 	struct mmu_notifier_range range;
2269 
2270 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2271 				address & HPAGE_PMD_MASK,
2272 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2273 	mmu_notifier_invalidate_range_start(&range);
2274 	ptl = pmd_lock(vma->vm_mm, pmd);
2275 
2276 	/*
2277 	 * If caller asks to setup a migration entry, we need a folio to check
2278 	 * pmd against. Otherwise we can end up replacing wrong folio.
2279 	 */
2280 	VM_BUG_ON(freeze && !folio);
2281 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2282 
2283 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2284 	    is_pmd_migration_entry(*pmd)) {
2285 		/*
2286 		 * It's safe to call pmd_page when folio is set because it's
2287 		 * guaranteed that pmd is present.
2288 		 */
2289 		if (folio && folio != page_folio(pmd_page(*pmd)))
2290 			goto out;
2291 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2292 	}
2293 
2294 out:
2295 	spin_unlock(ptl);
2296 	/*
2297 	 * No need to double call mmu_notifier->invalidate_range() callback.
2298 	 * They are 3 cases to consider inside __split_huge_pmd_locked():
2299 	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2300 	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
2301 	 *    fault will trigger a flush_notify before pointing to a new page
2302 	 *    (it is fine if the secondary mmu keeps pointing to the old zero
2303 	 *    page in the meantime)
2304 	 *  3) Split a huge pmd into pte pointing to the same page. No need
2305 	 *     to invalidate secondary tlb entry they are all still valid.
2306 	 *     any further changes to individual pte will notify. So no need
2307 	 *     to call mmu_notifier->invalidate_range()
2308 	 */
2309 	mmu_notifier_invalidate_range_only_end(&range);
2310 }
2311 
2312 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2313 		bool freeze, struct folio *folio)
2314 {
2315 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2316 
2317 	if (!pmd)
2318 		return;
2319 
2320 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2321 }
2322 
2323 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2324 {
2325 	/*
2326 	 * If the new address isn't hpage aligned and it could previously
2327 	 * contain an hugepage: check if we need to split an huge pmd.
2328 	 */
2329 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2330 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2331 			 ALIGN(address, HPAGE_PMD_SIZE)))
2332 		split_huge_pmd_address(vma, address, false, NULL);
2333 }
2334 
2335 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2336 			     unsigned long start,
2337 			     unsigned long end,
2338 			     long adjust_next)
2339 {
2340 	/* Check if we need to split start first. */
2341 	split_huge_pmd_if_needed(vma, start);
2342 
2343 	/* Check if we need to split end next. */
2344 	split_huge_pmd_if_needed(vma, end);
2345 
2346 	/*
2347 	 * If we're also updating the next vma vm_start,
2348 	 * check if we need to split it.
2349 	 */
2350 	if (adjust_next > 0) {
2351 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2352 		unsigned long nstart = next->vm_start;
2353 		nstart += adjust_next;
2354 		split_huge_pmd_if_needed(next, nstart);
2355 	}
2356 }
2357 
2358 static void unmap_folio(struct folio *folio)
2359 {
2360 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2361 		TTU_SYNC;
2362 
2363 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2364 
2365 	/*
2366 	 * Anon pages need migration entries to preserve them, but file
2367 	 * pages can simply be left unmapped, then faulted back on demand.
2368 	 * If that is ever changed (perhaps for mlock), update remap_page().
2369 	 */
2370 	if (folio_test_anon(folio))
2371 		try_to_migrate(folio, ttu_flags);
2372 	else
2373 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2374 }
2375 
2376 static void remap_page(struct folio *folio, unsigned long nr)
2377 {
2378 	int i = 0;
2379 
2380 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2381 	if (!folio_test_anon(folio))
2382 		return;
2383 	for (;;) {
2384 		remove_migration_ptes(folio, folio, true);
2385 		i += folio_nr_pages(folio);
2386 		if (i >= nr)
2387 			break;
2388 		folio = folio_next(folio);
2389 	}
2390 }
2391 
2392 static void lru_add_page_tail(struct page *head, struct page *tail,
2393 		struct lruvec *lruvec, struct list_head *list)
2394 {
2395 	VM_BUG_ON_PAGE(!PageHead(head), head);
2396 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2397 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2398 	lockdep_assert_held(&lruvec->lru_lock);
2399 
2400 	if (list) {
2401 		/* page reclaim is reclaiming a huge page */
2402 		VM_WARN_ON(PageLRU(head));
2403 		get_page(tail);
2404 		list_add_tail(&tail->lru, list);
2405 	} else {
2406 		/* head is still on lru (and we have it frozen) */
2407 		VM_WARN_ON(!PageLRU(head));
2408 		if (PageUnevictable(tail))
2409 			tail->mlock_count = 0;
2410 		else
2411 			list_add_tail(&tail->lru, &head->lru);
2412 		SetPageLRU(tail);
2413 	}
2414 }
2415 
2416 static void __split_huge_page_tail(struct page *head, int tail,
2417 		struct lruvec *lruvec, struct list_head *list)
2418 {
2419 	struct page *page_tail = head + tail;
2420 
2421 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2422 
2423 	/*
2424 	 * Clone page flags before unfreezing refcount.
2425 	 *
2426 	 * After successful get_page_unless_zero() might follow flags change,
2427 	 * for example lock_page() which set PG_waiters.
2428 	 *
2429 	 * Note that for mapped sub-pages of an anonymous THP,
2430 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2431 	 * the migration entry instead from where remap_page() will restore it.
2432 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2433 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2434 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2435 	 */
2436 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2437 	page_tail->flags |= (head->flags &
2438 			((1L << PG_referenced) |
2439 			 (1L << PG_swapbacked) |
2440 			 (1L << PG_swapcache) |
2441 			 (1L << PG_mlocked) |
2442 			 (1L << PG_uptodate) |
2443 			 (1L << PG_active) |
2444 			 (1L << PG_workingset) |
2445 			 (1L << PG_locked) |
2446 			 (1L << PG_unevictable) |
2447 #ifdef CONFIG_64BIT
2448 			 (1L << PG_arch_2) |
2449 #endif
2450 			 (1L << PG_dirty) |
2451 			 LRU_GEN_MASK | LRU_REFS_MASK));
2452 
2453 	/* ->mapping in first tail page is compound_mapcount */
2454 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2455 			page_tail);
2456 	page_tail->mapping = head->mapping;
2457 	page_tail->index = head->index + tail;
2458 
2459 	/*
2460 	 * page->private should not be set in tail pages with the exception
2461 	 * of swap cache pages that store the swp_entry_t in tail pages.
2462 	 * Fix up and warn once if private is unexpectedly set.
2463 	 */
2464 	if (!folio_test_swapcache(page_folio(head))) {
2465 		VM_WARN_ON_ONCE_PAGE(page_tail->private != 0, page_tail);
2466 		page_tail->private = 0;
2467 	}
2468 
2469 	/* Page flags must be visible before we make the page non-compound. */
2470 	smp_wmb();
2471 
2472 	/*
2473 	 * Clear PageTail before unfreezing page refcount.
2474 	 *
2475 	 * After successful get_page_unless_zero() might follow put_page()
2476 	 * which needs correct compound_head().
2477 	 */
2478 	clear_compound_head(page_tail);
2479 
2480 	/* Finally unfreeze refcount. Additional reference from page cache. */
2481 	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2482 					  PageSwapCache(head)));
2483 
2484 	if (page_is_young(head))
2485 		set_page_young(page_tail);
2486 	if (page_is_idle(head))
2487 		set_page_idle(page_tail);
2488 
2489 	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2490 
2491 	/*
2492 	 * always add to the tail because some iterators expect new
2493 	 * pages to show after the currently processed elements - e.g.
2494 	 * migrate_pages
2495 	 */
2496 	lru_add_page_tail(head, page_tail, lruvec, list);
2497 }
2498 
2499 static void __split_huge_page(struct page *page, struct list_head *list,
2500 		pgoff_t end)
2501 {
2502 	struct folio *folio = page_folio(page);
2503 	struct page *head = &folio->page;
2504 	struct lruvec *lruvec;
2505 	struct address_space *swap_cache = NULL;
2506 	unsigned long offset = 0;
2507 	unsigned int nr = thp_nr_pages(head);
2508 	int i;
2509 
2510 	/* complete memcg works before add pages to LRU */
2511 	split_page_memcg(head, nr);
2512 
2513 	if (PageAnon(head) && PageSwapCache(head)) {
2514 		swp_entry_t entry = { .val = page_private(head) };
2515 
2516 		offset = swp_offset(entry);
2517 		swap_cache = swap_address_space(entry);
2518 		xa_lock(&swap_cache->i_pages);
2519 	}
2520 
2521 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2522 	lruvec = folio_lruvec_lock(folio);
2523 
2524 	ClearPageHasHWPoisoned(head);
2525 
2526 	for (i = nr - 1; i >= 1; i--) {
2527 		__split_huge_page_tail(head, i, lruvec, list);
2528 		/* Some pages can be beyond EOF: drop them from page cache */
2529 		if (head[i].index >= end) {
2530 			struct folio *tail = page_folio(head + i);
2531 
2532 			if (shmem_mapping(head->mapping))
2533 				shmem_uncharge(head->mapping->host, 1);
2534 			else if (folio_test_clear_dirty(tail))
2535 				folio_account_cleaned(tail,
2536 					inode_to_wb(folio->mapping->host));
2537 			__filemap_remove_folio(tail, NULL);
2538 			folio_put(tail);
2539 		} else if (!PageAnon(page)) {
2540 			__xa_store(&head->mapping->i_pages, head[i].index,
2541 					head + i, 0);
2542 		} else if (swap_cache) {
2543 			__xa_store(&swap_cache->i_pages, offset + i,
2544 					head + i, 0);
2545 		}
2546 	}
2547 
2548 	ClearPageCompound(head);
2549 	unlock_page_lruvec(lruvec);
2550 	/* Caller disabled irqs, so they are still disabled here */
2551 
2552 	split_page_owner(head, nr);
2553 
2554 	/* See comment in __split_huge_page_tail() */
2555 	if (PageAnon(head)) {
2556 		/* Additional pin to swap cache */
2557 		if (PageSwapCache(head)) {
2558 			page_ref_add(head, 2);
2559 			xa_unlock(&swap_cache->i_pages);
2560 		} else {
2561 			page_ref_inc(head);
2562 		}
2563 	} else {
2564 		/* Additional pin to page cache */
2565 		page_ref_add(head, 2);
2566 		xa_unlock(&head->mapping->i_pages);
2567 	}
2568 	local_irq_enable();
2569 
2570 	remap_page(folio, nr);
2571 
2572 	if (PageSwapCache(head)) {
2573 		swp_entry_t entry = { .val = page_private(head) };
2574 
2575 		split_swap_cluster(entry);
2576 	}
2577 
2578 	for (i = 0; i < nr; i++) {
2579 		struct page *subpage = head + i;
2580 		if (subpage == page)
2581 			continue;
2582 		unlock_page(subpage);
2583 
2584 		/*
2585 		 * Subpages may be freed if there wasn't any mapping
2586 		 * like if add_to_swap() is running on a lru page that
2587 		 * had its mapping zapped. And freeing these pages
2588 		 * requires taking the lru_lock so we do the put_page
2589 		 * of the tail pages after the split is complete.
2590 		 */
2591 		free_page_and_swap_cache(subpage);
2592 	}
2593 }
2594 
2595 /* Racy check whether the huge page can be split */
2596 bool can_split_folio(struct folio *folio, int *pextra_pins)
2597 {
2598 	int extra_pins;
2599 
2600 	/* Additional pins from page cache */
2601 	if (folio_test_anon(folio))
2602 		extra_pins = folio_test_swapcache(folio) ?
2603 				folio_nr_pages(folio) : 0;
2604 	else
2605 		extra_pins = folio_nr_pages(folio);
2606 	if (pextra_pins)
2607 		*pextra_pins = extra_pins;
2608 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2609 }
2610 
2611 /*
2612  * This function splits huge page into normal pages. @page can point to any
2613  * subpage of huge page to split. Split doesn't change the position of @page.
2614  *
2615  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2616  * The huge page must be locked.
2617  *
2618  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2619  *
2620  * Both head page and tail pages will inherit mapping, flags, and so on from
2621  * the hugepage.
2622  *
2623  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2624  * they are not mapped.
2625  *
2626  * Returns 0 if the hugepage is split successfully.
2627  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2628  * us.
2629  */
2630 int split_huge_page_to_list(struct page *page, struct list_head *list)
2631 {
2632 	struct folio *folio = page_folio(page);
2633 	struct deferred_split *ds_queue = get_deferred_split_queue(&folio->page);
2634 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2635 	struct anon_vma *anon_vma = NULL;
2636 	struct address_space *mapping = NULL;
2637 	int extra_pins, ret;
2638 	pgoff_t end;
2639 	bool is_hzp;
2640 
2641 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2642 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2643 
2644 	is_hzp = is_huge_zero_page(&folio->page);
2645 	VM_WARN_ON_ONCE_FOLIO(is_hzp, folio);
2646 	if (is_hzp)
2647 		return -EBUSY;
2648 
2649 	if (folio_test_writeback(folio))
2650 		return -EBUSY;
2651 
2652 	if (folio_test_anon(folio)) {
2653 		/*
2654 		 * The caller does not necessarily hold an mmap_lock that would
2655 		 * prevent the anon_vma disappearing so we first we take a
2656 		 * reference to it and then lock the anon_vma for write. This
2657 		 * is similar to folio_lock_anon_vma_read except the write lock
2658 		 * is taken to serialise against parallel split or collapse
2659 		 * operations.
2660 		 */
2661 		anon_vma = folio_get_anon_vma(folio);
2662 		if (!anon_vma) {
2663 			ret = -EBUSY;
2664 			goto out;
2665 		}
2666 		end = -1;
2667 		mapping = NULL;
2668 		anon_vma_lock_write(anon_vma);
2669 	} else {
2670 		gfp_t gfp;
2671 
2672 		mapping = folio->mapping;
2673 
2674 		/* Truncated ? */
2675 		if (!mapping) {
2676 			ret = -EBUSY;
2677 			goto out;
2678 		}
2679 
2680 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
2681 							GFP_RECLAIM_MASK);
2682 
2683 		if (folio_test_private(folio) &&
2684 				!filemap_release_folio(folio, gfp)) {
2685 			ret = -EBUSY;
2686 			goto out;
2687 		}
2688 
2689 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
2690 		if (xas_error(&xas)) {
2691 			ret = xas_error(&xas);
2692 			goto out;
2693 		}
2694 
2695 		anon_vma = NULL;
2696 		i_mmap_lock_read(mapping);
2697 
2698 		/*
2699 		 *__split_huge_page() may need to trim off pages beyond EOF:
2700 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2701 		 * which cannot be nested inside the page tree lock. So note
2702 		 * end now: i_size itself may be changed at any moment, but
2703 		 * folio lock is good enough to serialize the trimming.
2704 		 */
2705 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2706 		if (shmem_mapping(mapping))
2707 			end = shmem_fallocend(mapping->host, end);
2708 	}
2709 
2710 	/*
2711 	 * Racy check if we can split the page, before unmap_folio() will
2712 	 * split PMDs
2713 	 */
2714 	if (!can_split_folio(folio, &extra_pins)) {
2715 		ret = -EBUSY;
2716 		goto out_unlock;
2717 	}
2718 
2719 	unmap_folio(folio);
2720 
2721 	/* block interrupt reentry in xa_lock and spinlock */
2722 	local_irq_disable();
2723 	if (mapping) {
2724 		/*
2725 		 * Check if the folio is present in page cache.
2726 		 * We assume all tail are present too, if folio is there.
2727 		 */
2728 		xas_lock(&xas);
2729 		xas_reset(&xas);
2730 		if (xas_load(&xas) != folio)
2731 			goto fail;
2732 	}
2733 
2734 	/* Prevent deferred_split_scan() touching ->_refcount */
2735 	spin_lock(&ds_queue->split_queue_lock);
2736 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
2737 		if (!list_empty(page_deferred_list(&folio->page))) {
2738 			ds_queue->split_queue_len--;
2739 			list_del(page_deferred_list(&folio->page));
2740 		}
2741 		spin_unlock(&ds_queue->split_queue_lock);
2742 		if (mapping) {
2743 			int nr = folio_nr_pages(folio);
2744 
2745 			xas_split(&xas, folio, folio_order(folio));
2746 			if (folio_test_swapbacked(folio)) {
2747 				__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS,
2748 							-nr);
2749 			} else {
2750 				__lruvec_stat_mod_folio(folio, NR_FILE_THPS,
2751 							-nr);
2752 				filemap_nr_thps_dec(mapping);
2753 			}
2754 		}
2755 
2756 		__split_huge_page(page, list, end);
2757 		ret = 0;
2758 	} else {
2759 		spin_unlock(&ds_queue->split_queue_lock);
2760 fail:
2761 		if (mapping)
2762 			xas_unlock(&xas);
2763 		local_irq_enable();
2764 		remap_page(folio, folio_nr_pages(folio));
2765 		ret = -EBUSY;
2766 	}
2767 
2768 out_unlock:
2769 	if (anon_vma) {
2770 		anon_vma_unlock_write(anon_vma);
2771 		put_anon_vma(anon_vma);
2772 	}
2773 	if (mapping)
2774 		i_mmap_unlock_read(mapping);
2775 out:
2776 	xas_destroy(&xas);
2777 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2778 	return ret;
2779 }
2780 
2781 void free_transhuge_page(struct page *page)
2782 {
2783 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2784 	unsigned long flags;
2785 
2786 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2787 	if (!list_empty(page_deferred_list(page))) {
2788 		ds_queue->split_queue_len--;
2789 		list_del(page_deferred_list(page));
2790 	}
2791 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2792 	free_compound_page(page);
2793 }
2794 
2795 void deferred_split_huge_page(struct page *page)
2796 {
2797 	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2798 #ifdef CONFIG_MEMCG
2799 	struct mem_cgroup *memcg = page_memcg(compound_head(page));
2800 #endif
2801 	unsigned long flags;
2802 
2803 	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2804 
2805 	/*
2806 	 * The try_to_unmap() in page reclaim path might reach here too,
2807 	 * this may cause a race condition to corrupt deferred split queue.
2808 	 * And, if page reclaim is already handling the same page, it is
2809 	 * unnecessary to handle it again in shrinker.
2810 	 *
2811 	 * Check PageSwapCache to determine if the page is being
2812 	 * handled by page reclaim since THP swap would add the page into
2813 	 * swap cache before calling try_to_unmap().
2814 	 */
2815 	if (PageSwapCache(page))
2816 		return;
2817 
2818 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2819 	if (list_empty(page_deferred_list(page))) {
2820 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2821 		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2822 		ds_queue->split_queue_len++;
2823 #ifdef CONFIG_MEMCG
2824 		if (memcg)
2825 			set_shrinker_bit(memcg, page_to_nid(page),
2826 					 deferred_split_shrinker.id);
2827 #endif
2828 	}
2829 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2830 }
2831 
2832 static unsigned long deferred_split_count(struct shrinker *shrink,
2833 		struct shrink_control *sc)
2834 {
2835 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2836 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2837 
2838 #ifdef CONFIG_MEMCG
2839 	if (sc->memcg)
2840 		ds_queue = &sc->memcg->deferred_split_queue;
2841 #endif
2842 	return READ_ONCE(ds_queue->split_queue_len);
2843 }
2844 
2845 static unsigned long deferred_split_scan(struct shrinker *shrink,
2846 		struct shrink_control *sc)
2847 {
2848 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
2849 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2850 	unsigned long flags;
2851 	LIST_HEAD(list), *pos, *next;
2852 	struct page *page;
2853 	int split = 0;
2854 
2855 #ifdef CONFIG_MEMCG
2856 	if (sc->memcg)
2857 		ds_queue = &sc->memcg->deferred_split_queue;
2858 #endif
2859 
2860 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2861 	/* Take pin on all head pages to avoid freeing them under us */
2862 	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2863 		page = list_entry((void *)pos, struct page, deferred_list);
2864 		page = compound_head(page);
2865 		if (get_page_unless_zero(page)) {
2866 			list_move(page_deferred_list(page), &list);
2867 		} else {
2868 			/* We lost race with put_compound_page() */
2869 			list_del_init(page_deferred_list(page));
2870 			ds_queue->split_queue_len--;
2871 		}
2872 		if (!--sc->nr_to_scan)
2873 			break;
2874 	}
2875 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2876 
2877 	list_for_each_safe(pos, next, &list) {
2878 		page = list_entry((void *)pos, struct page, deferred_list);
2879 		if (!trylock_page(page))
2880 			goto next;
2881 		/* split_huge_page() removes page from list on success */
2882 		if (!split_huge_page(page))
2883 			split++;
2884 		unlock_page(page);
2885 next:
2886 		put_page(page);
2887 	}
2888 
2889 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2890 	list_splice_tail(&list, &ds_queue->split_queue);
2891 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2892 
2893 	/*
2894 	 * Stop shrinker if we didn't split any page, but the queue is empty.
2895 	 * This can happen if pages were freed under us.
2896 	 */
2897 	if (!split && list_empty(&ds_queue->split_queue))
2898 		return SHRINK_STOP;
2899 	return split;
2900 }
2901 
2902 static struct shrinker deferred_split_shrinker = {
2903 	.count_objects = deferred_split_count,
2904 	.scan_objects = deferred_split_scan,
2905 	.seeks = DEFAULT_SEEKS,
2906 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2907 		 SHRINKER_NONSLAB,
2908 };
2909 
2910 #ifdef CONFIG_DEBUG_FS
2911 static void split_huge_pages_all(void)
2912 {
2913 	struct zone *zone;
2914 	struct page *page;
2915 	unsigned long pfn, max_zone_pfn;
2916 	unsigned long total = 0, split = 0;
2917 
2918 	pr_debug("Split all THPs\n");
2919 	for_each_zone(zone) {
2920 		if (!managed_zone(zone))
2921 			continue;
2922 		max_zone_pfn = zone_end_pfn(zone);
2923 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2924 			int nr_pages;
2925 
2926 			page = pfn_to_online_page(pfn);
2927 			if (!page || !get_page_unless_zero(page))
2928 				continue;
2929 
2930 			if (zone != page_zone(page))
2931 				goto next;
2932 
2933 			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2934 				goto next;
2935 
2936 			total++;
2937 			lock_page(page);
2938 			nr_pages = thp_nr_pages(page);
2939 			if (!split_huge_page(page))
2940 				split++;
2941 			pfn += nr_pages - 1;
2942 			unlock_page(page);
2943 next:
2944 			put_page(page);
2945 			cond_resched();
2946 		}
2947 	}
2948 
2949 	pr_debug("%lu of %lu THP split\n", split, total);
2950 }
2951 
2952 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2953 {
2954 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2955 		    is_vm_hugetlb_page(vma);
2956 }
2957 
2958 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2959 				unsigned long vaddr_end)
2960 {
2961 	int ret = 0;
2962 	struct task_struct *task;
2963 	struct mm_struct *mm;
2964 	unsigned long total = 0, split = 0;
2965 	unsigned long addr;
2966 
2967 	vaddr_start &= PAGE_MASK;
2968 	vaddr_end &= PAGE_MASK;
2969 
2970 	/* Find the task_struct from pid */
2971 	rcu_read_lock();
2972 	task = find_task_by_vpid(pid);
2973 	if (!task) {
2974 		rcu_read_unlock();
2975 		ret = -ESRCH;
2976 		goto out;
2977 	}
2978 	get_task_struct(task);
2979 	rcu_read_unlock();
2980 
2981 	/* Find the mm_struct */
2982 	mm = get_task_mm(task);
2983 	put_task_struct(task);
2984 
2985 	if (!mm) {
2986 		ret = -EINVAL;
2987 		goto out;
2988 	}
2989 
2990 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2991 		 pid, vaddr_start, vaddr_end);
2992 
2993 	mmap_read_lock(mm);
2994 	/*
2995 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
2996 	 * table filled with PTE-mapped THPs, each of which is distinct.
2997 	 */
2998 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2999 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3000 		struct page *page;
3001 
3002 		if (!vma)
3003 			break;
3004 
3005 		/* skip special VMA and hugetlb VMA */
3006 		if (vma_not_suitable_for_thp_split(vma)) {
3007 			addr = vma->vm_end;
3008 			continue;
3009 		}
3010 
3011 		/* FOLL_DUMP to ignore special (like zero) pages */
3012 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3013 
3014 		if (IS_ERR_OR_NULL(page))
3015 			continue;
3016 
3017 		if (!is_transparent_hugepage(page))
3018 			goto next;
3019 
3020 		total++;
3021 		if (!can_split_folio(page_folio(page), NULL))
3022 			goto next;
3023 
3024 		if (!trylock_page(page))
3025 			goto next;
3026 
3027 		if (!split_huge_page(page))
3028 			split++;
3029 
3030 		unlock_page(page);
3031 next:
3032 		put_page(page);
3033 		cond_resched();
3034 	}
3035 	mmap_read_unlock(mm);
3036 	mmput(mm);
3037 
3038 	pr_debug("%lu of %lu THP split\n", split, total);
3039 
3040 out:
3041 	return ret;
3042 }
3043 
3044 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3045 				pgoff_t off_end)
3046 {
3047 	struct filename *file;
3048 	struct file *candidate;
3049 	struct address_space *mapping;
3050 	int ret = -EINVAL;
3051 	pgoff_t index;
3052 	int nr_pages = 1;
3053 	unsigned long total = 0, split = 0;
3054 
3055 	file = getname_kernel(file_path);
3056 	if (IS_ERR(file))
3057 		return ret;
3058 
3059 	candidate = file_open_name(file, O_RDONLY, 0);
3060 	if (IS_ERR(candidate))
3061 		goto out;
3062 
3063 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3064 		 file_path, off_start, off_end);
3065 
3066 	mapping = candidate->f_mapping;
3067 
3068 	for (index = off_start; index < off_end; index += nr_pages) {
3069 		struct page *fpage = pagecache_get_page(mapping, index,
3070 						FGP_ENTRY | FGP_HEAD, 0);
3071 
3072 		nr_pages = 1;
3073 		if (xa_is_value(fpage) || !fpage)
3074 			continue;
3075 
3076 		if (!is_transparent_hugepage(fpage))
3077 			goto next;
3078 
3079 		total++;
3080 		nr_pages = thp_nr_pages(fpage);
3081 
3082 		if (!trylock_page(fpage))
3083 			goto next;
3084 
3085 		if (!split_huge_page(fpage))
3086 			split++;
3087 
3088 		unlock_page(fpage);
3089 next:
3090 		put_page(fpage);
3091 		cond_resched();
3092 	}
3093 
3094 	filp_close(candidate, NULL);
3095 	ret = 0;
3096 
3097 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3098 out:
3099 	putname(file);
3100 	return ret;
3101 }
3102 
3103 #define MAX_INPUT_BUF_SZ 255
3104 
3105 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3106 				size_t count, loff_t *ppops)
3107 {
3108 	static DEFINE_MUTEX(split_debug_mutex);
3109 	ssize_t ret;
3110 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3111 	char input_buf[MAX_INPUT_BUF_SZ];
3112 	int pid;
3113 	unsigned long vaddr_start, vaddr_end;
3114 
3115 	ret = mutex_lock_interruptible(&split_debug_mutex);
3116 	if (ret)
3117 		return ret;
3118 
3119 	ret = -EFAULT;
3120 
3121 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3122 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3123 		goto out;
3124 
3125 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3126 
3127 	if (input_buf[0] == '/') {
3128 		char *tok;
3129 		char *buf = input_buf;
3130 		char file_path[MAX_INPUT_BUF_SZ];
3131 		pgoff_t off_start = 0, off_end = 0;
3132 		size_t input_len = strlen(input_buf);
3133 
3134 		tok = strsep(&buf, ",");
3135 		if (tok) {
3136 			strcpy(file_path, tok);
3137 		} else {
3138 			ret = -EINVAL;
3139 			goto out;
3140 		}
3141 
3142 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3143 		if (ret != 2) {
3144 			ret = -EINVAL;
3145 			goto out;
3146 		}
3147 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3148 		if (!ret)
3149 			ret = input_len;
3150 
3151 		goto out;
3152 	}
3153 
3154 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3155 	if (ret == 1 && pid == 1) {
3156 		split_huge_pages_all();
3157 		ret = strlen(input_buf);
3158 		goto out;
3159 	} else if (ret != 3) {
3160 		ret = -EINVAL;
3161 		goto out;
3162 	}
3163 
3164 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3165 	if (!ret)
3166 		ret = strlen(input_buf);
3167 out:
3168 	mutex_unlock(&split_debug_mutex);
3169 	return ret;
3170 
3171 }
3172 
3173 static const struct file_operations split_huge_pages_fops = {
3174 	.owner	 = THIS_MODULE,
3175 	.write	 = split_huge_pages_write,
3176 	.llseek  = no_llseek,
3177 };
3178 
3179 static int __init split_huge_pages_debugfs(void)
3180 {
3181 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3182 			    &split_huge_pages_fops);
3183 	return 0;
3184 }
3185 late_initcall(split_huge_pages_debugfs);
3186 #endif
3187 
3188 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3189 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3190 		struct page *page)
3191 {
3192 	struct vm_area_struct *vma = pvmw->vma;
3193 	struct mm_struct *mm = vma->vm_mm;
3194 	unsigned long address = pvmw->address;
3195 	bool anon_exclusive;
3196 	pmd_t pmdval;
3197 	swp_entry_t entry;
3198 	pmd_t pmdswp;
3199 
3200 	if (!(pvmw->pmd && !pvmw->pte))
3201 		return 0;
3202 
3203 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3204 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3205 
3206 	/* See page_try_share_anon_rmap(): invalidate PMD first. */
3207 	anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3208 	if (anon_exclusive && page_try_share_anon_rmap(page)) {
3209 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3210 		return -EBUSY;
3211 	}
3212 
3213 	if (pmd_dirty(pmdval))
3214 		set_page_dirty(page);
3215 	if (pmd_write(pmdval))
3216 		entry = make_writable_migration_entry(page_to_pfn(page));
3217 	else if (anon_exclusive)
3218 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3219 	else
3220 		entry = make_readable_migration_entry(page_to_pfn(page));
3221 	if (pmd_young(pmdval))
3222 		entry = make_migration_entry_young(entry);
3223 	if (pmd_dirty(pmdval))
3224 		entry = make_migration_entry_dirty(entry);
3225 	pmdswp = swp_entry_to_pmd(entry);
3226 	if (pmd_soft_dirty(pmdval))
3227 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3228 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3229 	page_remove_rmap(page, vma, true);
3230 	put_page(page);
3231 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3232 
3233 	return 0;
3234 }
3235 
3236 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3237 {
3238 	struct vm_area_struct *vma = pvmw->vma;
3239 	struct mm_struct *mm = vma->vm_mm;
3240 	unsigned long address = pvmw->address;
3241 	unsigned long haddr = address & HPAGE_PMD_MASK;
3242 	pmd_t pmde;
3243 	swp_entry_t entry;
3244 
3245 	if (!(pvmw->pmd && !pvmw->pte))
3246 		return;
3247 
3248 	entry = pmd_to_swp_entry(*pvmw->pmd);
3249 	get_page(new);
3250 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3251 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3252 		pmde = pmd_mksoft_dirty(pmde);
3253 	if (is_writable_migration_entry(entry))
3254 		pmde = maybe_pmd_mkwrite(pmde, vma);
3255 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3256 		pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3257 	if (!is_migration_entry_young(entry))
3258 		pmde = pmd_mkold(pmde);
3259 	/* NOTE: this may contain setting soft-dirty on some archs */
3260 	if (PageDirty(new) && is_migration_entry_dirty(entry))
3261 		pmde = pmd_mkdirty(pmde);
3262 
3263 	if (PageAnon(new)) {
3264 		rmap_t rmap_flags = RMAP_COMPOUND;
3265 
3266 		if (!is_readable_migration_entry(entry))
3267 			rmap_flags |= RMAP_EXCLUSIVE;
3268 
3269 		page_add_anon_rmap(new, vma, haddr, rmap_flags);
3270 	} else {
3271 		page_add_file_rmap(new, vma, true);
3272 	}
3273 	VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3274 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3275 
3276 	/* No need to invalidate - it was non-present before */
3277 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3278 	trace_remove_migration_pmd(address, pmd_val(pmde));
3279 }
3280 #endif
3281