1 /* 2 * Copyright (C) 2009 Red Hat, Inc. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/mm.h> 11 #include <linux/sched.h> 12 #include <linux/highmem.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mmu_notifier.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/shrinker.h> 18 #include <linux/mm_inline.h> 19 #include <linux/swapops.h> 20 #include <linux/dax.h> 21 #include <linux/khugepaged.h> 22 #include <linux/freezer.h> 23 #include <linux/pfn_t.h> 24 #include <linux/mman.h> 25 #include <linux/memremap.h> 26 #include <linux/pagemap.h> 27 #include <linux/debugfs.h> 28 #include <linux/migrate.h> 29 #include <linux/hashtable.h> 30 #include <linux/userfaultfd_k.h> 31 #include <linux/page_idle.h> 32 #include <linux/shmem_fs.h> 33 34 #include <asm/tlb.h> 35 #include <asm/pgalloc.h> 36 #include "internal.h" 37 38 /* 39 * By default transparent hugepage support is disabled in order that avoid 40 * to risk increase the memory footprint of applications without a guaranteed 41 * benefit. When transparent hugepage support is enabled, is for all mappings, 42 * and khugepaged scans all mappings. 43 * Defrag is invoked by khugepaged hugepage allocations and by page faults 44 * for all hugepage allocations. 45 */ 46 unsigned long transparent_hugepage_flags __read_mostly = 47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 49 #endif 50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 52 #endif 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 56 57 static struct shrinker deferred_split_shrinker; 58 59 static atomic_t huge_zero_refcount; 60 struct page *huge_zero_page __read_mostly; 61 62 struct page *get_huge_zero_page(void) 63 { 64 struct page *zero_page; 65 retry: 66 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 67 return READ_ONCE(huge_zero_page); 68 69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 70 HPAGE_PMD_ORDER); 71 if (!zero_page) { 72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 73 return NULL; 74 } 75 count_vm_event(THP_ZERO_PAGE_ALLOC); 76 preempt_disable(); 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 78 preempt_enable(); 79 __free_pages(zero_page, compound_order(zero_page)); 80 goto retry; 81 } 82 83 /* We take additional reference here. It will be put back by shrinker */ 84 atomic_set(&huge_zero_refcount, 2); 85 preempt_enable(); 86 return READ_ONCE(huge_zero_page); 87 } 88 89 void put_huge_zero_page(void) 90 { 91 /* 92 * Counter should never go to zero here. Only shrinker can put 93 * last reference. 94 */ 95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 96 } 97 98 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 99 struct shrink_control *sc) 100 { 101 /* we can free zero page only if last reference remains */ 102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 103 } 104 105 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 106 struct shrink_control *sc) 107 { 108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 109 struct page *zero_page = xchg(&huge_zero_page, NULL); 110 BUG_ON(zero_page == NULL); 111 __free_pages(zero_page, compound_order(zero_page)); 112 return HPAGE_PMD_NR; 113 } 114 115 return 0; 116 } 117 118 static struct shrinker huge_zero_page_shrinker = { 119 .count_objects = shrink_huge_zero_page_count, 120 .scan_objects = shrink_huge_zero_page_scan, 121 .seeks = DEFAULT_SEEKS, 122 }; 123 124 #ifdef CONFIG_SYSFS 125 126 static ssize_t triple_flag_store(struct kobject *kobj, 127 struct kobj_attribute *attr, 128 const char *buf, size_t count, 129 enum transparent_hugepage_flag enabled, 130 enum transparent_hugepage_flag deferred, 131 enum transparent_hugepage_flag req_madv) 132 { 133 if (!memcmp("defer", buf, 134 min(sizeof("defer")-1, count))) { 135 if (enabled == deferred) 136 return -EINVAL; 137 clear_bit(enabled, &transparent_hugepage_flags); 138 clear_bit(req_madv, &transparent_hugepage_flags); 139 set_bit(deferred, &transparent_hugepage_flags); 140 } else if (!memcmp("always", buf, 141 min(sizeof("always")-1, count))) { 142 clear_bit(deferred, &transparent_hugepage_flags); 143 clear_bit(req_madv, &transparent_hugepage_flags); 144 set_bit(enabled, &transparent_hugepage_flags); 145 } else if (!memcmp("madvise", buf, 146 min(sizeof("madvise")-1, count))) { 147 clear_bit(enabled, &transparent_hugepage_flags); 148 clear_bit(deferred, &transparent_hugepage_flags); 149 set_bit(req_madv, &transparent_hugepage_flags); 150 } else if (!memcmp("never", buf, 151 min(sizeof("never")-1, count))) { 152 clear_bit(enabled, &transparent_hugepage_flags); 153 clear_bit(req_madv, &transparent_hugepage_flags); 154 clear_bit(deferred, &transparent_hugepage_flags); 155 } else 156 return -EINVAL; 157 158 return count; 159 } 160 161 static ssize_t enabled_show(struct kobject *kobj, 162 struct kobj_attribute *attr, char *buf) 163 { 164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 165 return sprintf(buf, "[always] madvise never\n"); 166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags)) 167 return sprintf(buf, "always [madvise] never\n"); 168 else 169 return sprintf(buf, "always madvise [never]\n"); 170 } 171 172 static ssize_t enabled_store(struct kobject *kobj, 173 struct kobj_attribute *attr, 174 const char *buf, size_t count) 175 { 176 ssize_t ret; 177 178 ret = triple_flag_store(kobj, attr, buf, count, 179 TRANSPARENT_HUGEPAGE_FLAG, 180 TRANSPARENT_HUGEPAGE_FLAG, 181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG); 182 183 if (ret > 0) { 184 int err = start_stop_khugepaged(); 185 if (err) 186 ret = err; 187 } 188 189 return ret; 190 } 191 static struct kobj_attribute enabled_attr = 192 __ATTR(enabled, 0644, enabled_show, enabled_store); 193 194 ssize_t single_hugepage_flag_show(struct kobject *kobj, 195 struct kobj_attribute *attr, char *buf, 196 enum transparent_hugepage_flag flag) 197 { 198 return sprintf(buf, "%d\n", 199 !!test_bit(flag, &transparent_hugepage_flags)); 200 } 201 202 ssize_t single_hugepage_flag_store(struct kobject *kobj, 203 struct kobj_attribute *attr, 204 const char *buf, size_t count, 205 enum transparent_hugepage_flag flag) 206 { 207 unsigned long value; 208 int ret; 209 210 ret = kstrtoul(buf, 10, &value); 211 if (ret < 0) 212 return ret; 213 if (value > 1) 214 return -EINVAL; 215 216 if (value) 217 set_bit(flag, &transparent_hugepage_flags); 218 else 219 clear_bit(flag, &transparent_hugepage_flags); 220 221 return count; 222 } 223 224 /* 225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind 226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of 227 * memory just to allocate one more hugepage. 228 */ 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 233 return sprintf(buf, "[always] defer madvise never\n"); 234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 235 return sprintf(buf, "always [defer] madvise never\n"); 236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 237 return sprintf(buf, "always defer [madvise] never\n"); 238 else 239 return sprintf(buf, "always defer madvise [never]\n"); 240 241 } 242 static ssize_t defrag_store(struct kobject *kobj, 243 struct kobj_attribute *attr, 244 const char *buf, size_t count) 245 { 246 return triple_flag_store(kobj, attr, buf, count, 247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG); 250 } 251 static struct kobj_attribute defrag_attr = 252 __ATTR(defrag, 0644, defrag_show, defrag_store); 253 254 static ssize_t use_zero_page_show(struct kobject *kobj, 255 struct kobj_attribute *attr, char *buf) 256 { 257 return single_hugepage_flag_show(kobj, attr, buf, 258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 259 } 260 static ssize_t use_zero_page_store(struct kobject *kobj, 261 struct kobj_attribute *attr, const char *buf, size_t count) 262 { 263 return single_hugepage_flag_store(kobj, attr, buf, count, 264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 265 } 266 static struct kobj_attribute use_zero_page_attr = 267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store); 268 #ifdef CONFIG_DEBUG_VM 269 static ssize_t debug_cow_show(struct kobject *kobj, 270 struct kobj_attribute *attr, char *buf) 271 { 272 return single_hugepage_flag_show(kobj, attr, buf, 273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 274 } 275 static ssize_t debug_cow_store(struct kobject *kobj, 276 struct kobj_attribute *attr, 277 const char *buf, size_t count) 278 { 279 return single_hugepage_flag_store(kobj, attr, buf, count, 280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG); 281 } 282 static struct kobj_attribute debug_cow_attr = 283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store); 284 #endif /* CONFIG_DEBUG_VM */ 285 286 static struct attribute *hugepage_attr[] = { 287 &enabled_attr.attr, 288 &defrag_attr.attr, 289 &use_zero_page_attr.attr, 290 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) 291 &shmem_enabled_attr.attr, 292 #endif 293 #ifdef CONFIG_DEBUG_VM 294 &debug_cow_attr.attr, 295 #endif 296 NULL, 297 }; 298 299 static struct attribute_group hugepage_attr_group = { 300 .attrs = hugepage_attr, 301 }; 302 303 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 304 { 305 int err; 306 307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 308 if (unlikely(!*hugepage_kobj)) { 309 pr_err("failed to create transparent hugepage kobject\n"); 310 return -ENOMEM; 311 } 312 313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 314 if (err) { 315 pr_err("failed to register transparent hugepage group\n"); 316 goto delete_obj; 317 } 318 319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 320 if (err) { 321 pr_err("failed to register transparent hugepage group\n"); 322 goto remove_hp_group; 323 } 324 325 return 0; 326 327 remove_hp_group: 328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 329 delete_obj: 330 kobject_put(*hugepage_kobj); 331 return err; 332 } 333 334 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 335 { 336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 338 kobject_put(hugepage_kobj); 339 } 340 #else 341 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 342 { 343 return 0; 344 } 345 346 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 347 { 348 } 349 #endif /* CONFIG_SYSFS */ 350 351 static int __init hugepage_init(void) 352 { 353 int err; 354 struct kobject *hugepage_kobj; 355 356 if (!has_transparent_hugepage()) { 357 transparent_hugepage_flags = 0; 358 return -EINVAL; 359 } 360 361 /* 362 * hugepages can't be allocated by the buddy allocator 363 */ 364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER); 365 /* 366 * we use page->mapping and page->index in second tail page 367 * as list_head: assuming THP order >= 2 368 */ 369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 370 371 err = hugepage_init_sysfs(&hugepage_kobj); 372 if (err) 373 goto err_sysfs; 374 375 err = khugepaged_init(); 376 if (err) 377 goto err_slab; 378 379 err = register_shrinker(&huge_zero_page_shrinker); 380 if (err) 381 goto err_hzp_shrinker; 382 err = register_shrinker(&deferred_split_shrinker); 383 if (err) 384 goto err_split_shrinker; 385 386 /* 387 * By default disable transparent hugepages on smaller systems, 388 * where the extra memory used could hurt more than TLB overhead 389 * is likely to save. The admin can still enable it through /sys. 390 */ 391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) { 392 transparent_hugepage_flags = 0; 393 return 0; 394 } 395 396 err = start_stop_khugepaged(); 397 if (err) 398 goto err_khugepaged; 399 400 return 0; 401 err_khugepaged: 402 unregister_shrinker(&deferred_split_shrinker); 403 err_split_shrinker: 404 unregister_shrinker(&huge_zero_page_shrinker); 405 err_hzp_shrinker: 406 khugepaged_destroy(); 407 err_slab: 408 hugepage_exit_sysfs(hugepage_kobj); 409 err_sysfs: 410 return err; 411 } 412 subsys_initcall(hugepage_init); 413 414 static int __init setup_transparent_hugepage(char *str) 415 { 416 int ret = 0; 417 if (!str) 418 goto out; 419 if (!strcmp(str, "always")) { 420 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 421 &transparent_hugepage_flags); 422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 423 &transparent_hugepage_flags); 424 ret = 1; 425 } else if (!strcmp(str, "madvise")) { 426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 427 &transparent_hugepage_flags); 428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 429 &transparent_hugepage_flags); 430 ret = 1; 431 } else if (!strcmp(str, "never")) { 432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 433 &transparent_hugepage_flags); 434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 435 &transparent_hugepage_flags); 436 ret = 1; 437 } 438 out: 439 if (!ret) 440 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 441 return ret; 442 } 443 __setup("transparent_hugepage=", setup_transparent_hugepage); 444 445 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 446 { 447 if (likely(vma->vm_flags & VM_WRITE)) 448 pmd = pmd_mkwrite(pmd); 449 return pmd; 450 } 451 452 static inline struct list_head *page_deferred_list(struct page *page) 453 { 454 /* 455 * ->lru in the tail pages is occupied by compound_head. 456 * Let's use ->mapping + ->index in the second tail page as list_head. 457 */ 458 return (struct list_head *)&page[2].mapping; 459 } 460 461 void prep_transhuge_page(struct page *page) 462 { 463 /* 464 * we use page->mapping and page->indexlru in second tail page 465 * as list_head: assuming THP order >= 2 466 */ 467 468 INIT_LIST_HEAD(page_deferred_list(page)); 469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR); 470 } 471 472 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page, 473 gfp_t gfp) 474 { 475 struct vm_area_struct *vma = fe->vma; 476 struct mem_cgroup *memcg; 477 pgtable_t pgtable; 478 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 479 480 VM_BUG_ON_PAGE(!PageCompound(page), page); 481 482 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) { 483 put_page(page); 484 count_vm_event(THP_FAULT_FALLBACK); 485 return VM_FAULT_FALLBACK; 486 } 487 488 pgtable = pte_alloc_one(vma->vm_mm, haddr); 489 if (unlikely(!pgtable)) { 490 mem_cgroup_cancel_charge(page, memcg, true); 491 put_page(page); 492 return VM_FAULT_OOM; 493 } 494 495 clear_huge_page(page, haddr, HPAGE_PMD_NR); 496 /* 497 * The memory barrier inside __SetPageUptodate makes sure that 498 * clear_huge_page writes become visible before the set_pmd_at() 499 * write. 500 */ 501 __SetPageUptodate(page); 502 503 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 504 if (unlikely(!pmd_none(*fe->pmd))) { 505 spin_unlock(fe->ptl); 506 mem_cgroup_cancel_charge(page, memcg, true); 507 put_page(page); 508 pte_free(vma->vm_mm, pgtable); 509 } else { 510 pmd_t entry; 511 512 /* Deliver the page fault to userland */ 513 if (userfaultfd_missing(vma)) { 514 int ret; 515 516 spin_unlock(fe->ptl); 517 mem_cgroup_cancel_charge(page, memcg, true); 518 put_page(page); 519 pte_free(vma->vm_mm, pgtable); 520 ret = handle_userfault(fe, VM_UFFD_MISSING); 521 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 522 return ret; 523 } 524 525 entry = mk_huge_pmd(page, vma->vm_page_prot); 526 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 527 page_add_new_anon_rmap(page, vma, haddr, true); 528 mem_cgroup_commit_charge(page, memcg, false, true); 529 lru_cache_add_active_or_unevictable(page, vma); 530 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable); 531 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 532 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 533 atomic_long_inc(&vma->vm_mm->nr_ptes); 534 spin_unlock(fe->ptl); 535 count_vm_event(THP_FAULT_ALLOC); 536 } 537 538 return 0; 539 } 540 541 /* 542 * If THP defrag is set to always then directly reclaim/compact as necessary 543 * If set to defer then do only background reclaim/compact and defer to khugepaged 544 * If set to madvise and the VMA is flagged then directly reclaim/compact 545 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's 546 */ 547 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma) 548 { 549 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE); 550 551 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 552 &transparent_hugepage_flags) && vma_madvised) 553 return GFP_TRANSHUGE; 554 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 555 &transparent_hugepage_flags)) 556 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 557 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 558 &transparent_hugepage_flags)) 559 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 560 561 return GFP_TRANSHUGE_LIGHT; 562 } 563 564 /* Caller must hold page table lock. */ 565 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 566 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 567 struct page *zero_page) 568 { 569 pmd_t entry; 570 if (!pmd_none(*pmd)) 571 return false; 572 entry = mk_pmd(zero_page, vma->vm_page_prot); 573 entry = pmd_mkhuge(entry); 574 if (pgtable) 575 pgtable_trans_huge_deposit(mm, pmd, pgtable); 576 set_pmd_at(mm, haddr, pmd, entry); 577 atomic_long_inc(&mm->nr_ptes); 578 return true; 579 } 580 581 int do_huge_pmd_anonymous_page(struct fault_env *fe) 582 { 583 struct vm_area_struct *vma = fe->vma; 584 gfp_t gfp; 585 struct page *page; 586 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 587 588 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 589 return VM_FAULT_FALLBACK; 590 if (unlikely(anon_vma_prepare(vma))) 591 return VM_FAULT_OOM; 592 if (unlikely(khugepaged_enter(vma, vma->vm_flags))) 593 return VM_FAULT_OOM; 594 if (!(fe->flags & FAULT_FLAG_WRITE) && 595 !mm_forbids_zeropage(vma->vm_mm) && 596 transparent_hugepage_use_zero_page()) { 597 pgtable_t pgtable; 598 struct page *zero_page; 599 bool set; 600 int ret; 601 pgtable = pte_alloc_one(vma->vm_mm, haddr); 602 if (unlikely(!pgtable)) 603 return VM_FAULT_OOM; 604 zero_page = get_huge_zero_page(); 605 if (unlikely(!zero_page)) { 606 pte_free(vma->vm_mm, pgtable); 607 count_vm_event(THP_FAULT_FALLBACK); 608 return VM_FAULT_FALLBACK; 609 } 610 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 611 ret = 0; 612 set = false; 613 if (pmd_none(*fe->pmd)) { 614 if (userfaultfd_missing(vma)) { 615 spin_unlock(fe->ptl); 616 ret = handle_userfault(fe, VM_UFFD_MISSING); 617 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 618 } else { 619 set_huge_zero_page(pgtable, vma->vm_mm, vma, 620 haddr, fe->pmd, zero_page); 621 spin_unlock(fe->ptl); 622 set = true; 623 } 624 } else 625 spin_unlock(fe->ptl); 626 if (!set) { 627 pte_free(vma->vm_mm, pgtable); 628 put_huge_zero_page(); 629 } 630 return ret; 631 } 632 gfp = alloc_hugepage_direct_gfpmask(vma); 633 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER); 634 if (unlikely(!page)) { 635 count_vm_event(THP_FAULT_FALLBACK); 636 return VM_FAULT_FALLBACK; 637 } 638 prep_transhuge_page(page); 639 return __do_huge_pmd_anonymous_page(fe, page, gfp); 640 } 641 642 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 643 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write) 644 { 645 struct mm_struct *mm = vma->vm_mm; 646 pmd_t entry; 647 spinlock_t *ptl; 648 649 ptl = pmd_lock(mm, pmd); 650 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 651 if (pfn_t_devmap(pfn)) 652 entry = pmd_mkdevmap(entry); 653 if (write) { 654 entry = pmd_mkyoung(pmd_mkdirty(entry)); 655 entry = maybe_pmd_mkwrite(entry, vma); 656 } 657 set_pmd_at(mm, addr, pmd, entry); 658 update_mmu_cache_pmd(vma, addr, pmd); 659 spin_unlock(ptl); 660 } 661 662 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 663 pmd_t *pmd, pfn_t pfn, bool write) 664 { 665 pgprot_t pgprot = vma->vm_page_prot; 666 /* 667 * If we had pmd_special, we could avoid all these restrictions, 668 * but we need to be consistent with PTEs and architectures that 669 * can't support a 'special' bit. 670 */ 671 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 672 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 673 (VM_PFNMAP|VM_MIXEDMAP)); 674 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 675 BUG_ON(!pfn_t_devmap(pfn)); 676 677 if (addr < vma->vm_start || addr >= vma->vm_end) 678 return VM_FAULT_SIGBUS; 679 if (track_pfn_insert(vma, &pgprot, pfn)) 680 return VM_FAULT_SIGBUS; 681 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write); 682 return VM_FAULT_NOPAGE; 683 } 684 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 685 686 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 687 pmd_t *pmd) 688 { 689 pmd_t _pmd; 690 691 /* 692 * We should set the dirty bit only for FOLL_WRITE but for now 693 * the dirty bit in the pmd is meaningless. And if the dirty 694 * bit will become meaningful and we'll only set it with 695 * FOLL_WRITE, an atomic set_bit will be required on the pmd to 696 * set the young bit, instead of the current set_pmd_at. 697 */ 698 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd)); 699 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 700 pmd, _pmd, 1)) 701 update_mmu_cache_pmd(vma, addr, pmd); 702 } 703 704 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 705 pmd_t *pmd, int flags) 706 { 707 unsigned long pfn = pmd_pfn(*pmd); 708 struct mm_struct *mm = vma->vm_mm; 709 struct dev_pagemap *pgmap; 710 struct page *page; 711 712 assert_spin_locked(pmd_lockptr(mm, pmd)); 713 714 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 715 return NULL; 716 717 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 718 /* pass */; 719 else 720 return NULL; 721 722 if (flags & FOLL_TOUCH) 723 touch_pmd(vma, addr, pmd); 724 725 /* 726 * device mapped pages can only be returned if the 727 * caller will manage the page reference count. 728 */ 729 if (!(flags & FOLL_GET)) 730 return ERR_PTR(-EEXIST); 731 732 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 733 pgmap = get_dev_pagemap(pfn, NULL); 734 if (!pgmap) 735 return ERR_PTR(-EFAULT); 736 page = pfn_to_page(pfn); 737 get_page(page); 738 put_dev_pagemap(pgmap); 739 740 return page; 741 } 742 743 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 744 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 745 struct vm_area_struct *vma) 746 { 747 spinlock_t *dst_ptl, *src_ptl; 748 struct page *src_page; 749 pmd_t pmd; 750 pgtable_t pgtable = NULL; 751 int ret = -ENOMEM; 752 753 /* Skip if can be re-fill on fault */ 754 if (!vma_is_anonymous(vma)) 755 return 0; 756 757 pgtable = pte_alloc_one(dst_mm, addr); 758 if (unlikely(!pgtable)) 759 goto out; 760 761 dst_ptl = pmd_lock(dst_mm, dst_pmd); 762 src_ptl = pmd_lockptr(src_mm, src_pmd); 763 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 764 765 ret = -EAGAIN; 766 pmd = *src_pmd; 767 if (unlikely(!pmd_trans_huge(pmd))) { 768 pte_free(dst_mm, pgtable); 769 goto out_unlock; 770 } 771 /* 772 * When page table lock is held, the huge zero pmd should not be 773 * under splitting since we don't split the page itself, only pmd to 774 * a page table. 775 */ 776 if (is_huge_zero_pmd(pmd)) { 777 struct page *zero_page; 778 /* 779 * get_huge_zero_page() will never allocate a new page here, 780 * since we already have a zero page to copy. It just takes a 781 * reference. 782 */ 783 zero_page = get_huge_zero_page(); 784 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd, 785 zero_page); 786 ret = 0; 787 goto out_unlock; 788 } 789 790 src_page = pmd_page(pmd); 791 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 792 get_page(src_page); 793 page_dup_rmap(src_page, true); 794 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 795 atomic_long_inc(&dst_mm->nr_ptes); 796 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 797 798 pmdp_set_wrprotect(src_mm, addr, src_pmd); 799 pmd = pmd_mkold(pmd_wrprotect(pmd)); 800 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 801 802 ret = 0; 803 out_unlock: 804 spin_unlock(src_ptl); 805 spin_unlock(dst_ptl); 806 out: 807 return ret; 808 } 809 810 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd) 811 { 812 pmd_t entry; 813 unsigned long haddr; 814 815 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd); 816 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 817 goto unlock; 818 819 entry = pmd_mkyoung(orig_pmd); 820 haddr = fe->address & HPAGE_PMD_MASK; 821 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, 822 fe->flags & FAULT_FLAG_WRITE)) 823 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd); 824 825 unlock: 826 spin_unlock(fe->ptl); 827 } 828 829 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd, 830 struct page *page) 831 { 832 struct vm_area_struct *vma = fe->vma; 833 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 834 struct mem_cgroup *memcg; 835 pgtable_t pgtable; 836 pmd_t _pmd; 837 int ret = 0, i; 838 struct page **pages; 839 unsigned long mmun_start; /* For mmu_notifiers */ 840 unsigned long mmun_end; /* For mmu_notifiers */ 841 842 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR, 843 GFP_KERNEL); 844 if (unlikely(!pages)) { 845 ret |= VM_FAULT_OOM; 846 goto out; 847 } 848 849 for (i = 0; i < HPAGE_PMD_NR; i++) { 850 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE | 851 __GFP_OTHER_NODE, vma, 852 fe->address, page_to_nid(page)); 853 if (unlikely(!pages[i] || 854 mem_cgroup_try_charge(pages[i], vma->vm_mm, 855 GFP_KERNEL, &memcg, false))) { 856 if (pages[i]) 857 put_page(pages[i]); 858 while (--i >= 0) { 859 memcg = (void *)page_private(pages[i]); 860 set_page_private(pages[i], 0); 861 mem_cgroup_cancel_charge(pages[i], memcg, 862 false); 863 put_page(pages[i]); 864 } 865 kfree(pages); 866 ret |= VM_FAULT_OOM; 867 goto out; 868 } 869 set_page_private(pages[i], (unsigned long)memcg); 870 } 871 872 for (i = 0; i < HPAGE_PMD_NR; i++) { 873 copy_user_highpage(pages[i], page + i, 874 haddr + PAGE_SIZE * i, vma); 875 __SetPageUptodate(pages[i]); 876 cond_resched(); 877 } 878 879 mmun_start = haddr; 880 mmun_end = haddr + HPAGE_PMD_SIZE; 881 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 882 883 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 884 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 885 goto out_free_pages; 886 VM_BUG_ON_PAGE(!PageHead(page), page); 887 888 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 889 /* leave pmd empty until pte is filled */ 890 891 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd); 892 pmd_populate(vma->vm_mm, &_pmd, pgtable); 893 894 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 895 pte_t entry; 896 entry = mk_pte(pages[i], vma->vm_page_prot); 897 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 898 memcg = (void *)page_private(pages[i]); 899 set_page_private(pages[i], 0); 900 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false); 901 mem_cgroup_commit_charge(pages[i], memcg, false, false); 902 lru_cache_add_active_or_unevictable(pages[i], vma); 903 fe->pte = pte_offset_map(&_pmd, haddr); 904 VM_BUG_ON(!pte_none(*fe->pte)); 905 set_pte_at(vma->vm_mm, haddr, fe->pte, entry); 906 pte_unmap(fe->pte); 907 } 908 kfree(pages); 909 910 smp_wmb(); /* make pte visible before pmd */ 911 pmd_populate(vma->vm_mm, fe->pmd, pgtable); 912 page_remove_rmap(page, true); 913 spin_unlock(fe->ptl); 914 915 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 916 917 ret |= VM_FAULT_WRITE; 918 put_page(page); 919 920 out: 921 return ret; 922 923 out_free_pages: 924 spin_unlock(fe->ptl); 925 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 926 for (i = 0; i < HPAGE_PMD_NR; i++) { 927 memcg = (void *)page_private(pages[i]); 928 set_page_private(pages[i], 0); 929 mem_cgroup_cancel_charge(pages[i], memcg, false); 930 put_page(pages[i]); 931 } 932 kfree(pages); 933 goto out; 934 } 935 936 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd) 937 { 938 struct vm_area_struct *vma = fe->vma; 939 struct page *page = NULL, *new_page; 940 struct mem_cgroup *memcg; 941 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 942 unsigned long mmun_start; /* For mmu_notifiers */ 943 unsigned long mmun_end; /* For mmu_notifiers */ 944 gfp_t huge_gfp; /* for allocation and charge */ 945 int ret = 0; 946 947 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd); 948 VM_BUG_ON_VMA(!vma->anon_vma, vma); 949 if (is_huge_zero_pmd(orig_pmd)) 950 goto alloc; 951 spin_lock(fe->ptl); 952 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) 953 goto out_unlock; 954 955 page = pmd_page(orig_pmd); 956 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page); 957 /* 958 * We can only reuse the page if nobody else maps the huge page or it's 959 * part. 960 */ 961 if (page_trans_huge_mapcount(page, NULL) == 1) { 962 pmd_t entry; 963 entry = pmd_mkyoung(orig_pmd); 964 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 965 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1)) 966 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 967 ret |= VM_FAULT_WRITE; 968 goto out_unlock; 969 } 970 get_page(page); 971 spin_unlock(fe->ptl); 972 alloc: 973 if (transparent_hugepage_enabled(vma) && 974 !transparent_hugepage_debug_cow()) { 975 huge_gfp = alloc_hugepage_direct_gfpmask(vma); 976 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER); 977 } else 978 new_page = NULL; 979 980 if (likely(new_page)) { 981 prep_transhuge_page(new_page); 982 } else { 983 if (!page) { 984 split_huge_pmd(vma, fe->pmd, fe->address); 985 ret |= VM_FAULT_FALLBACK; 986 } else { 987 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page); 988 if (ret & VM_FAULT_OOM) { 989 split_huge_pmd(vma, fe->pmd, fe->address); 990 ret |= VM_FAULT_FALLBACK; 991 } 992 put_page(page); 993 } 994 count_vm_event(THP_FAULT_FALLBACK); 995 goto out; 996 } 997 998 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm, 999 huge_gfp, &memcg, true))) { 1000 put_page(new_page); 1001 split_huge_pmd(vma, fe->pmd, fe->address); 1002 if (page) 1003 put_page(page); 1004 ret |= VM_FAULT_FALLBACK; 1005 count_vm_event(THP_FAULT_FALLBACK); 1006 goto out; 1007 } 1008 1009 count_vm_event(THP_FAULT_ALLOC); 1010 1011 if (!page) 1012 clear_huge_page(new_page, haddr, HPAGE_PMD_NR); 1013 else 1014 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR); 1015 __SetPageUptodate(new_page); 1016 1017 mmun_start = haddr; 1018 mmun_end = haddr + HPAGE_PMD_SIZE; 1019 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end); 1020 1021 spin_lock(fe->ptl); 1022 if (page) 1023 put_page(page); 1024 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) { 1025 spin_unlock(fe->ptl); 1026 mem_cgroup_cancel_charge(new_page, memcg, true); 1027 put_page(new_page); 1028 goto out_mn; 1029 } else { 1030 pmd_t entry; 1031 entry = mk_huge_pmd(new_page, vma->vm_page_prot); 1032 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1033 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd); 1034 page_add_new_anon_rmap(new_page, vma, haddr, true); 1035 mem_cgroup_commit_charge(new_page, memcg, false, true); 1036 lru_cache_add_active_or_unevictable(new_page, vma); 1037 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry); 1038 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1039 if (!page) { 1040 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1041 put_huge_zero_page(); 1042 } else { 1043 VM_BUG_ON_PAGE(!PageHead(page), page); 1044 page_remove_rmap(page, true); 1045 put_page(page); 1046 } 1047 ret |= VM_FAULT_WRITE; 1048 } 1049 spin_unlock(fe->ptl); 1050 out_mn: 1051 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end); 1052 out: 1053 return ret; 1054 out_unlock: 1055 spin_unlock(fe->ptl); 1056 return ret; 1057 } 1058 1059 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1060 unsigned long addr, 1061 pmd_t *pmd, 1062 unsigned int flags) 1063 { 1064 struct mm_struct *mm = vma->vm_mm; 1065 struct page *page = NULL; 1066 1067 assert_spin_locked(pmd_lockptr(mm, pmd)); 1068 1069 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1070 goto out; 1071 1072 /* Avoid dumping huge zero page */ 1073 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1074 return ERR_PTR(-EFAULT); 1075 1076 /* Full NUMA hinting faults to serialise migration in fault paths */ 1077 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 1078 goto out; 1079 1080 page = pmd_page(*pmd); 1081 VM_BUG_ON_PAGE(!PageHead(page), page); 1082 if (flags & FOLL_TOUCH) 1083 touch_pmd(vma, addr, pmd); 1084 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1085 /* 1086 * We don't mlock() pte-mapped THPs. This way we can avoid 1087 * leaking mlocked pages into non-VM_LOCKED VMAs. 1088 * 1089 * For anon THP: 1090 * 1091 * In most cases the pmd is the only mapping of the page as we 1092 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for 1093 * writable private mappings in populate_vma_page_range(). 1094 * 1095 * The only scenario when we have the page shared here is if we 1096 * mlocking read-only mapping shared over fork(). We skip 1097 * mlocking such pages. 1098 * 1099 * For file THP: 1100 * 1101 * We can expect PageDoubleMap() to be stable under page lock: 1102 * for file pages we set it in page_add_file_rmap(), which 1103 * requires page to be locked. 1104 */ 1105 1106 if (PageAnon(page) && compound_mapcount(page) != 1) 1107 goto skip_mlock; 1108 if (PageDoubleMap(page) || !page->mapping) 1109 goto skip_mlock; 1110 if (!trylock_page(page)) 1111 goto skip_mlock; 1112 lru_add_drain(); 1113 if (page->mapping && !PageDoubleMap(page)) 1114 mlock_vma_page(page); 1115 unlock_page(page); 1116 } 1117 skip_mlock: 1118 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1119 VM_BUG_ON_PAGE(!PageCompound(page), page); 1120 if (flags & FOLL_GET) 1121 get_page(page); 1122 1123 out: 1124 return page; 1125 } 1126 1127 /* NUMA hinting page fault entry point for trans huge pmds */ 1128 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd) 1129 { 1130 struct vm_area_struct *vma = fe->vma; 1131 struct anon_vma *anon_vma = NULL; 1132 struct page *page; 1133 unsigned long haddr = fe->address & HPAGE_PMD_MASK; 1134 int page_nid = -1, this_nid = numa_node_id(); 1135 int target_nid, last_cpupid = -1; 1136 bool page_locked; 1137 bool migrated = false; 1138 bool was_writable; 1139 int flags = 0; 1140 1141 /* A PROT_NONE fault should not end up here */ 1142 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); 1143 1144 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd); 1145 if (unlikely(!pmd_same(pmd, *fe->pmd))) 1146 goto out_unlock; 1147 1148 /* 1149 * If there are potential migrations, wait for completion and retry 1150 * without disrupting NUMA hinting information. Do not relock and 1151 * check_same as the page may no longer be mapped. 1152 */ 1153 if (unlikely(pmd_trans_migrating(*fe->pmd))) { 1154 page = pmd_page(*fe->pmd); 1155 spin_unlock(fe->ptl); 1156 wait_on_page_locked(page); 1157 goto out; 1158 } 1159 1160 page = pmd_page(pmd); 1161 BUG_ON(is_huge_zero_page(page)); 1162 page_nid = page_to_nid(page); 1163 last_cpupid = page_cpupid_last(page); 1164 count_vm_numa_event(NUMA_HINT_FAULTS); 1165 if (page_nid == this_nid) { 1166 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 1167 flags |= TNF_FAULT_LOCAL; 1168 } 1169 1170 /* See similar comment in do_numa_page for explanation */ 1171 if (!(vma->vm_flags & VM_WRITE)) 1172 flags |= TNF_NO_GROUP; 1173 1174 /* 1175 * Acquire the page lock to serialise THP migrations but avoid dropping 1176 * page_table_lock if at all possible 1177 */ 1178 page_locked = trylock_page(page); 1179 target_nid = mpol_misplaced(page, vma, haddr); 1180 if (target_nid == -1) { 1181 /* If the page was locked, there are no parallel migrations */ 1182 if (page_locked) 1183 goto clear_pmdnuma; 1184 } 1185 1186 /* Migration could have started since the pmd_trans_migrating check */ 1187 if (!page_locked) { 1188 spin_unlock(fe->ptl); 1189 wait_on_page_locked(page); 1190 page_nid = -1; 1191 goto out; 1192 } 1193 1194 /* 1195 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma 1196 * to serialises splits 1197 */ 1198 get_page(page); 1199 spin_unlock(fe->ptl); 1200 anon_vma = page_lock_anon_vma_read(page); 1201 1202 /* Confirm the PMD did not change while page_table_lock was released */ 1203 spin_lock(fe->ptl); 1204 if (unlikely(!pmd_same(pmd, *fe->pmd))) { 1205 unlock_page(page); 1206 put_page(page); 1207 page_nid = -1; 1208 goto out_unlock; 1209 } 1210 1211 /* Bail if we fail to protect against THP splits for any reason */ 1212 if (unlikely(!anon_vma)) { 1213 put_page(page); 1214 page_nid = -1; 1215 goto clear_pmdnuma; 1216 } 1217 1218 /* 1219 * Migrate the THP to the requested node, returns with page unlocked 1220 * and access rights restored. 1221 */ 1222 spin_unlock(fe->ptl); 1223 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma, 1224 fe->pmd, pmd, fe->address, page, target_nid); 1225 if (migrated) { 1226 flags |= TNF_MIGRATED; 1227 page_nid = target_nid; 1228 } else 1229 flags |= TNF_MIGRATE_FAIL; 1230 1231 goto out; 1232 clear_pmdnuma: 1233 BUG_ON(!PageLocked(page)); 1234 was_writable = pmd_write(pmd); 1235 pmd = pmd_modify(pmd, vma->vm_page_prot); 1236 pmd = pmd_mkyoung(pmd); 1237 if (was_writable) 1238 pmd = pmd_mkwrite(pmd); 1239 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd); 1240 update_mmu_cache_pmd(vma, fe->address, fe->pmd); 1241 unlock_page(page); 1242 out_unlock: 1243 spin_unlock(fe->ptl); 1244 1245 out: 1246 if (anon_vma) 1247 page_unlock_anon_vma_read(anon_vma); 1248 1249 if (page_nid != -1) 1250 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags); 1251 1252 return 0; 1253 } 1254 1255 /* 1256 * Return true if we do MADV_FREE successfully on entire pmd page. 1257 * Otherwise, return false. 1258 */ 1259 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1260 pmd_t *pmd, unsigned long addr, unsigned long next) 1261 { 1262 spinlock_t *ptl; 1263 pmd_t orig_pmd; 1264 struct page *page; 1265 struct mm_struct *mm = tlb->mm; 1266 bool ret = false; 1267 1268 ptl = pmd_trans_huge_lock(pmd, vma); 1269 if (!ptl) 1270 goto out_unlocked; 1271 1272 orig_pmd = *pmd; 1273 if (is_huge_zero_pmd(orig_pmd)) 1274 goto out; 1275 1276 page = pmd_page(orig_pmd); 1277 /* 1278 * If other processes are mapping this page, we couldn't discard 1279 * the page unless they all do MADV_FREE so let's skip the page. 1280 */ 1281 if (page_mapcount(page) != 1) 1282 goto out; 1283 1284 if (!trylock_page(page)) 1285 goto out; 1286 1287 /* 1288 * If user want to discard part-pages of THP, split it so MADV_FREE 1289 * will deactivate only them. 1290 */ 1291 if (next - addr != HPAGE_PMD_SIZE) { 1292 get_page(page); 1293 spin_unlock(ptl); 1294 split_huge_page(page); 1295 put_page(page); 1296 unlock_page(page); 1297 goto out_unlocked; 1298 } 1299 1300 if (PageDirty(page)) 1301 ClearPageDirty(page); 1302 unlock_page(page); 1303 1304 if (PageActive(page)) 1305 deactivate_page(page); 1306 1307 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1308 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1309 tlb->fullmm); 1310 orig_pmd = pmd_mkold(orig_pmd); 1311 orig_pmd = pmd_mkclean(orig_pmd); 1312 1313 set_pmd_at(mm, addr, pmd, orig_pmd); 1314 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1315 } 1316 ret = true; 1317 out: 1318 spin_unlock(ptl); 1319 out_unlocked: 1320 return ret; 1321 } 1322 1323 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1324 pmd_t *pmd, unsigned long addr) 1325 { 1326 pmd_t orig_pmd; 1327 spinlock_t *ptl; 1328 1329 ptl = __pmd_trans_huge_lock(pmd, vma); 1330 if (!ptl) 1331 return 0; 1332 /* 1333 * For architectures like ppc64 we look at deposited pgtable 1334 * when calling pmdp_huge_get_and_clear. So do the 1335 * pgtable_trans_huge_withdraw after finishing pmdp related 1336 * operations. 1337 */ 1338 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd, 1339 tlb->fullmm); 1340 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1341 if (vma_is_dax(vma)) { 1342 spin_unlock(ptl); 1343 if (is_huge_zero_pmd(orig_pmd)) 1344 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1345 } else if (is_huge_zero_pmd(orig_pmd)) { 1346 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd)); 1347 atomic_long_dec(&tlb->mm->nr_ptes); 1348 spin_unlock(ptl); 1349 tlb_remove_page(tlb, pmd_page(orig_pmd)); 1350 } else { 1351 struct page *page = pmd_page(orig_pmd); 1352 page_remove_rmap(page, true); 1353 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1354 VM_BUG_ON_PAGE(!PageHead(page), page); 1355 if (PageAnon(page)) { 1356 pgtable_t pgtable; 1357 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd); 1358 pte_free(tlb->mm, pgtable); 1359 atomic_long_dec(&tlb->mm->nr_ptes); 1360 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1361 } else { 1362 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1363 } 1364 spin_unlock(ptl); 1365 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1366 } 1367 return 1; 1368 } 1369 1370 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1371 unsigned long new_addr, unsigned long old_end, 1372 pmd_t *old_pmd, pmd_t *new_pmd) 1373 { 1374 spinlock_t *old_ptl, *new_ptl; 1375 pmd_t pmd; 1376 struct mm_struct *mm = vma->vm_mm; 1377 1378 if ((old_addr & ~HPAGE_PMD_MASK) || 1379 (new_addr & ~HPAGE_PMD_MASK) || 1380 old_end - old_addr < HPAGE_PMD_SIZE) 1381 return false; 1382 1383 /* 1384 * The destination pmd shouldn't be established, free_pgtables() 1385 * should have release it. 1386 */ 1387 if (WARN_ON(!pmd_none(*new_pmd))) { 1388 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1389 return false; 1390 } 1391 1392 /* 1393 * We don't have to worry about the ordering of src and dst 1394 * ptlocks because exclusive mmap_sem prevents deadlock. 1395 */ 1396 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1397 if (old_ptl) { 1398 new_ptl = pmd_lockptr(mm, new_pmd); 1399 if (new_ptl != old_ptl) 1400 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1401 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1402 VM_BUG_ON(!pmd_none(*new_pmd)); 1403 1404 if (pmd_move_must_withdraw(new_ptl, old_ptl) && 1405 vma_is_anonymous(vma)) { 1406 pgtable_t pgtable; 1407 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1408 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1409 } 1410 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd)); 1411 if (new_ptl != old_ptl) 1412 spin_unlock(new_ptl); 1413 spin_unlock(old_ptl); 1414 return true; 1415 } 1416 return false; 1417 } 1418 1419 /* 1420 * Returns 1421 * - 0 if PMD could not be locked 1422 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary 1423 * - HPAGE_PMD_NR is protections changed and TLB flush necessary 1424 */ 1425 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1426 unsigned long addr, pgprot_t newprot, int prot_numa) 1427 { 1428 struct mm_struct *mm = vma->vm_mm; 1429 spinlock_t *ptl; 1430 int ret = 0; 1431 1432 ptl = __pmd_trans_huge_lock(pmd, vma); 1433 if (ptl) { 1434 pmd_t entry; 1435 bool preserve_write = prot_numa && pmd_write(*pmd); 1436 ret = 1; 1437 1438 /* 1439 * Avoid trapping faults against the zero page. The read-only 1440 * data is likely to be read-cached on the local CPU and 1441 * local/remote hits to the zero page are not interesting. 1442 */ 1443 if (prot_numa && is_huge_zero_pmd(*pmd)) { 1444 spin_unlock(ptl); 1445 return ret; 1446 } 1447 1448 if (!prot_numa || !pmd_protnone(*pmd)) { 1449 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd); 1450 entry = pmd_modify(entry, newprot); 1451 if (preserve_write) 1452 entry = pmd_mkwrite(entry); 1453 ret = HPAGE_PMD_NR; 1454 set_pmd_at(mm, addr, pmd, entry); 1455 BUG_ON(vma_is_anonymous(vma) && !preserve_write && 1456 pmd_write(entry)); 1457 } 1458 spin_unlock(ptl); 1459 } 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 1466 * 1467 * Note that if it returns page table lock pointer, this routine returns without 1468 * unlocking page table lock. So callers must unlock it. 1469 */ 1470 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 1471 { 1472 spinlock_t *ptl; 1473 ptl = pmd_lock(vma->vm_mm, pmd); 1474 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd))) 1475 return ptl; 1476 spin_unlock(ptl); 1477 return NULL; 1478 } 1479 1480 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 1481 unsigned long haddr, pmd_t *pmd) 1482 { 1483 struct mm_struct *mm = vma->vm_mm; 1484 pgtable_t pgtable; 1485 pmd_t _pmd; 1486 int i; 1487 1488 /* leave pmd empty until pte is filled */ 1489 pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1490 1491 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1492 pmd_populate(mm, &_pmd, pgtable); 1493 1494 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) { 1495 pte_t *pte, entry; 1496 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot); 1497 entry = pte_mkspecial(entry); 1498 pte = pte_offset_map(&_pmd, haddr); 1499 VM_BUG_ON(!pte_none(*pte)); 1500 set_pte_at(mm, haddr, pte, entry); 1501 pte_unmap(pte); 1502 } 1503 smp_wmb(); /* make pte visible before pmd */ 1504 pmd_populate(mm, pmd, pgtable); 1505 put_huge_zero_page(); 1506 } 1507 1508 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 1509 unsigned long haddr, bool freeze) 1510 { 1511 struct mm_struct *mm = vma->vm_mm; 1512 struct page *page; 1513 pgtable_t pgtable; 1514 pmd_t _pmd; 1515 bool young, write, dirty; 1516 unsigned long addr; 1517 int i; 1518 1519 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 1520 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 1521 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 1522 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)); 1523 1524 count_vm_event(THP_SPLIT_PMD); 1525 1526 if (!vma_is_anonymous(vma)) { 1527 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd); 1528 if (is_huge_zero_pmd(_pmd)) 1529 put_huge_zero_page(); 1530 if (vma_is_dax(vma)) 1531 return; 1532 page = pmd_page(_pmd); 1533 if (!PageReferenced(page) && pmd_young(_pmd)) 1534 SetPageReferenced(page); 1535 page_remove_rmap(page, true); 1536 put_page(page); 1537 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR); 1538 return; 1539 } else if (is_huge_zero_pmd(*pmd)) { 1540 return __split_huge_zero_page_pmd(vma, haddr, pmd); 1541 } 1542 1543 page = pmd_page(*pmd); 1544 VM_BUG_ON_PAGE(!page_count(page), page); 1545 page_ref_add(page, HPAGE_PMD_NR - 1); 1546 write = pmd_write(*pmd); 1547 young = pmd_young(*pmd); 1548 dirty = pmd_dirty(*pmd); 1549 1550 pmdp_huge_split_prepare(vma, haddr, pmd); 1551 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1552 pmd_populate(mm, &_pmd, pgtable); 1553 1554 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 1555 pte_t entry, *pte; 1556 /* 1557 * Note that NUMA hinting access restrictions are not 1558 * transferred to avoid any possibility of altering 1559 * permissions across VMAs. 1560 */ 1561 if (freeze) { 1562 swp_entry_t swp_entry; 1563 swp_entry = make_migration_entry(page + i, write); 1564 entry = swp_entry_to_pte(swp_entry); 1565 } else { 1566 entry = mk_pte(page + i, vma->vm_page_prot); 1567 entry = maybe_mkwrite(entry, vma); 1568 if (!write) 1569 entry = pte_wrprotect(entry); 1570 if (!young) 1571 entry = pte_mkold(entry); 1572 } 1573 if (dirty) 1574 SetPageDirty(page + i); 1575 pte = pte_offset_map(&_pmd, addr); 1576 BUG_ON(!pte_none(*pte)); 1577 set_pte_at(mm, addr, pte, entry); 1578 atomic_inc(&page[i]._mapcount); 1579 pte_unmap(pte); 1580 } 1581 1582 /* 1583 * Set PG_double_map before dropping compound_mapcount to avoid 1584 * false-negative page_mapped(). 1585 */ 1586 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) { 1587 for (i = 0; i < HPAGE_PMD_NR; i++) 1588 atomic_inc(&page[i]._mapcount); 1589 } 1590 1591 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) { 1592 /* Last compound_mapcount is gone. */ 1593 __dec_node_page_state(page, NR_ANON_THPS); 1594 if (TestClearPageDoubleMap(page)) { 1595 /* No need in mapcount reference anymore */ 1596 for (i = 0; i < HPAGE_PMD_NR; i++) 1597 atomic_dec(&page[i]._mapcount); 1598 } 1599 } 1600 1601 smp_wmb(); /* make pte visible before pmd */ 1602 /* 1603 * Up to this point the pmd is present and huge and userland has the 1604 * whole access to the hugepage during the split (which happens in 1605 * place). If we overwrite the pmd with the not-huge version pointing 1606 * to the pte here (which of course we could if all CPUs were bug 1607 * free), userland could trigger a small page size TLB miss on the 1608 * small sized TLB while the hugepage TLB entry is still established in 1609 * the huge TLB. Some CPU doesn't like that. 1610 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum 1611 * 383 on page 93. Intel should be safe but is also warns that it's 1612 * only safe if the permission and cache attributes of the two entries 1613 * loaded in the two TLB is identical (which should be the case here). 1614 * But it is generally safer to never allow small and huge TLB entries 1615 * for the same virtual address to be loaded simultaneously. So instead 1616 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 1617 * current pmd notpresent (atomically because here the pmd_trans_huge 1618 * and pmd_trans_splitting must remain set at all times on the pmd 1619 * until the split is complete for this pmd), then we flush the SMP TLB 1620 * and finally we write the non-huge version of the pmd entry with 1621 * pmd_populate. 1622 */ 1623 pmdp_invalidate(vma, haddr, pmd); 1624 pmd_populate(mm, pmd, pgtable); 1625 1626 if (freeze) { 1627 for (i = 0; i < HPAGE_PMD_NR; i++) { 1628 page_remove_rmap(page + i, false); 1629 put_page(page + i); 1630 } 1631 } 1632 } 1633 1634 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 1635 unsigned long address, bool freeze, struct page *page) 1636 { 1637 spinlock_t *ptl; 1638 struct mm_struct *mm = vma->vm_mm; 1639 unsigned long haddr = address & HPAGE_PMD_MASK; 1640 1641 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE); 1642 ptl = pmd_lock(mm, pmd); 1643 1644 /* 1645 * If caller asks to setup a migration entries, we need a page to check 1646 * pmd against. Otherwise we can end up replacing wrong page. 1647 */ 1648 VM_BUG_ON(freeze && !page); 1649 if (page && page != pmd_page(*pmd)) 1650 goto out; 1651 1652 if (pmd_trans_huge(*pmd)) { 1653 page = pmd_page(*pmd); 1654 if (PageMlocked(page)) 1655 clear_page_mlock(page); 1656 } else if (!pmd_devmap(*pmd)) 1657 goto out; 1658 __split_huge_pmd_locked(vma, pmd, haddr, freeze); 1659 out: 1660 spin_unlock(ptl); 1661 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE); 1662 } 1663 1664 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 1665 bool freeze, struct page *page) 1666 { 1667 pgd_t *pgd; 1668 pud_t *pud; 1669 pmd_t *pmd; 1670 1671 pgd = pgd_offset(vma->vm_mm, address); 1672 if (!pgd_present(*pgd)) 1673 return; 1674 1675 pud = pud_offset(pgd, address); 1676 if (!pud_present(*pud)) 1677 return; 1678 1679 pmd = pmd_offset(pud, address); 1680 1681 __split_huge_pmd(vma, pmd, address, freeze, page); 1682 } 1683 1684 void vma_adjust_trans_huge(struct vm_area_struct *vma, 1685 unsigned long start, 1686 unsigned long end, 1687 long adjust_next) 1688 { 1689 /* 1690 * If the new start address isn't hpage aligned and it could 1691 * previously contain an hugepage: check if we need to split 1692 * an huge pmd. 1693 */ 1694 if (start & ~HPAGE_PMD_MASK && 1695 (start & HPAGE_PMD_MASK) >= vma->vm_start && 1696 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1697 split_huge_pmd_address(vma, start, false, NULL); 1698 1699 /* 1700 * If the new end address isn't hpage aligned and it could 1701 * previously contain an hugepage: check if we need to split 1702 * an huge pmd. 1703 */ 1704 if (end & ~HPAGE_PMD_MASK && 1705 (end & HPAGE_PMD_MASK) >= vma->vm_start && 1706 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end) 1707 split_huge_pmd_address(vma, end, false, NULL); 1708 1709 /* 1710 * If we're also updating the vma->vm_next->vm_start, if the new 1711 * vm_next->vm_start isn't page aligned and it could previously 1712 * contain an hugepage: check if we need to split an huge pmd. 1713 */ 1714 if (adjust_next > 0) { 1715 struct vm_area_struct *next = vma->vm_next; 1716 unsigned long nstart = next->vm_start; 1717 nstart += adjust_next << PAGE_SHIFT; 1718 if (nstart & ~HPAGE_PMD_MASK && 1719 (nstart & HPAGE_PMD_MASK) >= next->vm_start && 1720 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end) 1721 split_huge_pmd_address(next, nstart, false, NULL); 1722 } 1723 } 1724 1725 static void freeze_page(struct page *page) 1726 { 1727 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS | 1728 TTU_RMAP_LOCKED; 1729 int i, ret; 1730 1731 VM_BUG_ON_PAGE(!PageHead(page), page); 1732 1733 if (PageAnon(page)) 1734 ttu_flags |= TTU_MIGRATION; 1735 1736 /* We only need TTU_SPLIT_HUGE_PMD once */ 1737 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD); 1738 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) { 1739 /* Cut short if the page is unmapped */ 1740 if (page_count(page) == 1) 1741 return; 1742 1743 ret = try_to_unmap(page + i, ttu_flags); 1744 } 1745 VM_BUG_ON_PAGE(ret, page + i - 1); 1746 } 1747 1748 static void unfreeze_page(struct page *page) 1749 { 1750 int i; 1751 1752 for (i = 0; i < HPAGE_PMD_NR; i++) 1753 remove_migration_ptes(page + i, page + i, true); 1754 } 1755 1756 static void __split_huge_page_tail(struct page *head, int tail, 1757 struct lruvec *lruvec, struct list_head *list) 1758 { 1759 struct page *page_tail = head + tail; 1760 1761 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 1762 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail); 1763 1764 /* 1765 * tail_page->_refcount is zero and not changing from under us. But 1766 * get_page_unless_zero() may be running from under us on the 1767 * tail_page. If we used atomic_set() below instead of atomic_inc() or 1768 * atomic_add(), we would then run atomic_set() concurrently with 1769 * get_page_unless_zero(), and atomic_set() is implemented in C not 1770 * using locked ops. spin_unlock on x86 sometime uses locked ops 1771 * because of PPro errata 66, 92, so unless somebody can guarantee 1772 * atomic_set() here would be safe on all archs (and not only on x86), 1773 * it's safer to use atomic_inc()/atomic_add(). 1774 */ 1775 if (PageAnon(head)) { 1776 page_ref_inc(page_tail); 1777 } else { 1778 /* Additional pin to radix tree */ 1779 page_ref_add(page_tail, 2); 1780 } 1781 1782 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1783 page_tail->flags |= (head->flags & 1784 ((1L << PG_referenced) | 1785 (1L << PG_swapbacked) | 1786 (1L << PG_mlocked) | 1787 (1L << PG_uptodate) | 1788 (1L << PG_active) | 1789 (1L << PG_locked) | 1790 (1L << PG_unevictable) | 1791 (1L << PG_dirty))); 1792 1793 /* 1794 * After clearing PageTail the gup refcount can be released. 1795 * Page flags also must be visible before we make the page non-compound. 1796 */ 1797 smp_wmb(); 1798 1799 clear_compound_head(page_tail); 1800 1801 if (page_is_young(head)) 1802 set_page_young(page_tail); 1803 if (page_is_idle(head)) 1804 set_page_idle(page_tail); 1805 1806 /* ->mapping in first tail page is compound_mapcount */ 1807 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 1808 page_tail); 1809 page_tail->mapping = head->mapping; 1810 1811 page_tail->index = head->index + tail; 1812 page_cpupid_xchg_last(page_tail, page_cpupid_last(head)); 1813 lru_add_page_tail(head, page_tail, lruvec, list); 1814 } 1815 1816 static void __split_huge_page(struct page *page, struct list_head *list, 1817 unsigned long flags) 1818 { 1819 struct page *head = compound_head(page); 1820 struct zone *zone = page_zone(head); 1821 struct lruvec *lruvec; 1822 pgoff_t end = -1; 1823 int i; 1824 1825 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat); 1826 1827 /* complete memcg works before add pages to LRU */ 1828 mem_cgroup_split_huge_fixup(head); 1829 1830 if (!PageAnon(page)) 1831 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE); 1832 1833 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) { 1834 __split_huge_page_tail(head, i, lruvec, list); 1835 /* Some pages can be beyond i_size: drop them from page cache */ 1836 if (head[i].index >= end) { 1837 __ClearPageDirty(head + i); 1838 __delete_from_page_cache(head + i, NULL); 1839 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head)) 1840 shmem_uncharge(head->mapping->host, 1); 1841 put_page(head + i); 1842 } 1843 } 1844 1845 ClearPageCompound(head); 1846 /* See comment in __split_huge_page_tail() */ 1847 if (PageAnon(head)) { 1848 page_ref_inc(head); 1849 } else { 1850 /* Additional pin to radix tree */ 1851 page_ref_add(head, 2); 1852 spin_unlock(&head->mapping->tree_lock); 1853 } 1854 1855 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 1856 1857 unfreeze_page(head); 1858 1859 for (i = 0; i < HPAGE_PMD_NR; i++) { 1860 struct page *subpage = head + i; 1861 if (subpage == page) 1862 continue; 1863 unlock_page(subpage); 1864 1865 /* 1866 * Subpages may be freed if there wasn't any mapping 1867 * like if add_to_swap() is running on a lru page that 1868 * had its mapping zapped. And freeing these pages 1869 * requires taking the lru_lock so we do the put_page 1870 * of the tail pages after the split is complete. 1871 */ 1872 put_page(subpage); 1873 } 1874 } 1875 1876 int total_mapcount(struct page *page) 1877 { 1878 int i, compound, ret; 1879 1880 VM_BUG_ON_PAGE(PageTail(page), page); 1881 1882 if (likely(!PageCompound(page))) 1883 return atomic_read(&page->_mapcount) + 1; 1884 1885 compound = compound_mapcount(page); 1886 if (PageHuge(page)) 1887 return compound; 1888 ret = compound; 1889 for (i = 0; i < HPAGE_PMD_NR; i++) 1890 ret += atomic_read(&page[i]._mapcount) + 1; 1891 /* File pages has compound_mapcount included in _mapcount */ 1892 if (!PageAnon(page)) 1893 return ret - compound * HPAGE_PMD_NR; 1894 if (PageDoubleMap(page)) 1895 ret -= HPAGE_PMD_NR; 1896 return ret; 1897 } 1898 1899 /* 1900 * This calculates accurately how many mappings a transparent hugepage 1901 * has (unlike page_mapcount() which isn't fully accurate). This full 1902 * accuracy is primarily needed to know if copy-on-write faults can 1903 * reuse the page and change the mapping to read-write instead of 1904 * copying them. At the same time this returns the total_mapcount too. 1905 * 1906 * The function returns the highest mapcount any one of the subpages 1907 * has. If the return value is one, even if different processes are 1908 * mapping different subpages of the transparent hugepage, they can 1909 * all reuse it, because each process is reusing a different subpage. 1910 * 1911 * The total_mapcount is instead counting all virtual mappings of the 1912 * subpages. If the total_mapcount is equal to "one", it tells the 1913 * caller all mappings belong to the same "mm" and in turn the 1914 * anon_vma of the transparent hugepage can become the vma->anon_vma 1915 * local one as no other process may be mapping any of the subpages. 1916 * 1917 * It would be more accurate to replace page_mapcount() with 1918 * page_trans_huge_mapcount(), however we only use 1919 * page_trans_huge_mapcount() in the copy-on-write faults where we 1920 * need full accuracy to avoid breaking page pinning, because 1921 * page_trans_huge_mapcount() is slower than page_mapcount(). 1922 */ 1923 int page_trans_huge_mapcount(struct page *page, int *total_mapcount) 1924 { 1925 int i, ret, _total_mapcount, mapcount; 1926 1927 /* hugetlbfs shouldn't call it */ 1928 VM_BUG_ON_PAGE(PageHuge(page), page); 1929 1930 if (likely(!PageTransCompound(page))) { 1931 mapcount = atomic_read(&page->_mapcount) + 1; 1932 if (total_mapcount) 1933 *total_mapcount = mapcount; 1934 return mapcount; 1935 } 1936 1937 page = compound_head(page); 1938 1939 _total_mapcount = ret = 0; 1940 for (i = 0; i < HPAGE_PMD_NR; i++) { 1941 mapcount = atomic_read(&page[i]._mapcount) + 1; 1942 ret = max(ret, mapcount); 1943 _total_mapcount += mapcount; 1944 } 1945 if (PageDoubleMap(page)) { 1946 ret -= 1; 1947 _total_mapcount -= HPAGE_PMD_NR; 1948 } 1949 mapcount = compound_mapcount(page); 1950 ret += mapcount; 1951 _total_mapcount += mapcount; 1952 if (total_mapcount) 1953 *total_mapcount = _total_mapcount; 1954 return ret; 1955 } 1956 1957 /* 1958 * This function splits huge page into normal pages. @page can point to any 1959 * subpage of huge page to split. Split doesn't change the position of @page. 1960 * 1961 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 1962 * The huge page must be locked. 1963 * 1964 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 1965 * 1966 * Both head page and tail pages will inherit mapping, flags, and so on from 1967 * the hugepage. 1968 * 1969 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 1970 * they are not mapped. 1971 * 1972 * Returns 0 if the hugepage is split successfully. 1973 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 1974 * us. 1975 */ 1976 int split_huge_page_to_list(struct page *page, struct list_head *list) 1977 { 1978 struct page *head = compound_head(page); 1979 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head)); 1980 struct anon_vma *anon_vma = NULL; 1981 struct address_space *mapping = NULL; 1982 int count, mapcount, extra_pins, ret; 1983 bool mlocked; 1984 unsigned long flags; 1985 1986 VM_BUG_ON_PAGE(is_huge_zero_page(page), page); 1987 VM_BUG_ON_PAGE(!PageLocked(page), page); 1988 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 1989 VM_BUG_ON_PAGE(!PageCompound(page), page); 1990 1991 if (PageAnon(head)) { 1992 /* 1993 * The caller does not necessarily hold an mmap_sem that would 1994 * prevent the anon_vma disappearing so we first we take a 1995 * reference to it and then lock the anon_vma for write. This 1996 * is similar to page_lock_anon_vma_read except the write lock 1997 * is taken to serialise against parallel split or collapse 1998 * operations. 1999 */ 2000 anon_vma = page_get_anon_vma(head); 2001 if (!anon_vma) { 2002 ret = -EBUSY; 2003 goto out; 2004 } 2005 extra_pins = 0; 2006 mapping = NULL; 2007 anon_vma_lock_write(anon_vma); 2008 } else { 2009 mapping = head->mapping; 2010 2011 /* Truncated ? */ 2012 if (!mapping) { 2013 ret = -EBUSY; 2014 goto out; 2015 } 2016 2017 /* Addidional pins from radix tree */ 2018 extra_pins = HPAGE_PMD_NR; 2019 anon_vma = NULL; 2020 i_mmap_lock_read(mapping); 2021 } 2022 2023 /* 2024 * Racy check if we can split the page, before freeze_page() will 2025 * split PMDs 2026 */ 2027 if (total_mapcount(head) != page_count(head) - extra_pins - 1) { 2028 ret = -EBUSY; 2029 goto out_unlock; 2030 } 2031 2032 mlocked = PageMlocked(page); 2033 freeze_page(head); 2034 VM_BUG_ON_PAGE(compound_mapcount(head), head); 2035 2036 /* Make sure the page is not on per-CPU pagevec as it takes pin */ 2037 if (mlocked) 2038 lru_add_drain(); 2039 2040 /* prevent PageLRU to go away from under us, and freeze lru stats */ 2041 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags); 2042 2043 if (mapping) { 2044 void **pslot; 2045 2046 spin_lock(&mapping->tree_lock); 2047 pslot = radix_tree_lookup_slot(&mapping->page_tree, 2048 page_index(head)); 2049 /* 2050 * Check if the head page is present in radix tree. 2051 * We assume all tail are present too, if head is there. 2052 */ 2053 if (radix_tree_deref_slot_protected(pslot, 2054 &mapping->tree_lock) != head) 2055 goto fail; 2056 } 2057 2058 /* Prevent deferred_split_scan() touching ->_refcount */ 2059 spin_lock(&pgdata->split_queue_lock); 2060 count = page_count(head); 2061 mapcount = total_mapcount(head); 2062 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) { 2063 if (!list_empty(page_deferred_list(head))) { 2064 pgdata->split_queue_len--; 2065 list_del(page_deferred_list(head)); 2066 } 2067 if (mapping) 2068 __dec_node_page_state(page, NR_SHMEM_THPS); 2069 spin_unlock(&pgdata->split_queue_lock); 2070 __split_huge_page(page, list, flags); 2071 ret = 0; 2072 } else { 2073 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) { 2074 pr_alert("total_mapcount: %u, page_count(): %u\n", 2075 mapcount, count); 2076 if (PageTail(page)) 2077 dump_page(head, NULL); 2078 dump_page(page, "total_mapcount(head) > 0"); 2079 BUG(); 2080 } 2081 spin_unlock(&pgdata->split_queue_lock); 2082 fail: if (mapping) 2083 spin_unlock(&mapping->tree_lock); 2084 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags); 2085 unfreeze_page(head); 2086 ret = -EBUSY; 2087 } 2088 2089 out_unlock: 2090 if (anon_vma) { 2091 anon_vma_unlock_write(anon_vma); 2092 put_anon_vma(anon_vma); 2093 } 2094 if (mapping) 2095 i_mmap_unlock_read(mapping); 2096 out: 2097 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 2098 return ret; 2099 } 2100 2101 void free_transhuge_page(struct page *page) 2102 { 2103 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2104 unsigned long flags; 2105 2106 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2107 if (!list_empty(page_deferred_list(page))) { 2108 pgdata->split_queue_len--; 2109 list_del(page_deferred_list(page)); 2110 } 2111 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2112 free_compound_page(page); 2113 } 2114 2115 void deferred_split_huge_page(struct page *page) 2116 { 2117 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page)); 2118 unsigned long flags; 2119 2120 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 2121 2122 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2123 if (list_empty(page_deferred_list(page))) { 2124 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 2125 list_add_tail(page_deferred_list(page), &pgdata->split_queue); 2126 pgdata->split_queue_len++; 2127 } 2128 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2129 } 2130 2131 static unsigned long deferred_split_count(struct shrinker *shrink, 2132 struct shrink_control *sc) 2133 { 2134 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2135 return ACCESS_ONCE(pgdata->split_queue_len); 2136 } 2137 2138 static unsigned long deferred_split_scan(struct shrinker *shrink, 2139 struct shrink_control *sc) 2140 { 2141 struct pglist_data *pgdata = NODE_DATA(sc->nid); 2142 unsigned long flags; 2143 LIST_HEAD(list), *pos, *next; 2144 struct page *page; 2145 int split = 0; 2146 2147 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2148 /* Take pin on all head pages to avoid freeing them under us */ 2149 list_for_each_safe(pos, next, &pgdata->split_queue) { 2150 page = list_entry((void *)pos, struct page, mapping); 2151 page = compound_head(page); 2152 if (get_page_unless_zero(page)) { 2153 list_move(page_deferred_list(page), &list); 2154 } else { 2155 /* We lost race with put_compound_page() */ 2156 list_del_init(page_deferred_list(page)); 2157 pgdata->split_queue_len--; 2158 } 2159 if (!--sc->nr_to_scan) 2160 break; 2161 } 2162 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2163 2164 list_for_each_safe(pos, next, &list) { 2165 page = list_entry((void *)pos, struct page, mapping); 2166 lock_page(page); 2167 /* split_huge_page() removes page from list on success */ 2168 if (!split_huge_page(page)) 2169 split++; 2170 unlock_page(page); 2171 put_page(page); 2172 } 2173 2174 spin_lock_irqsave(&pgdata->split_queue_lock, flags); 2175 list_splice_tail(&list, &pgdata->split_queue); 2176 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags); 2177 2178 /* 2179 * Stop shrinker if we didn't split any page, but the queue is empty. 2180 * This can happen if pages were freed under us. 2181 */ 2182 if (!split && list_empty(&pgdata->split_queue)) 2183 return SHRINK_STOP; 2184 return split; 2185 } 2186 2187 static struct shrinker deferred_split_shrinker = { 2188 .count_objects = deferred_split_count, 2189 .scan_objects = deferred_split_scan, 2190 .seeks = DEFAULT_SEEKS, 2191 .flags = SHRINKER_NUMA_AWARE, 2192 }; 2193 2194 #ifdef CONFIG_DEBUG_FS 2195 static int split_huge_pages_set(void *data, u64 val) 2196 { 2197 struct zone *zone; 2198 struct page *page; 2199 unsigned long pfn, max_zone_pfn; 2200 unsigned long total = 0, split = 0; 2201 2202 if (val != 1) 2203 return -EINVAL; 2204 2205 for_each_populated_zone(zone) { 2206 max_zone_pfn = zone_end_pfn(zone); 2207 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 2208 if (!pfn_valid(pfn)) 2209 continue; 2210 2211 page = pfn_to_page(pfn); 2212 if (!get_page_unless_zero(page)) 2213 continue; 2214 2215 if (zone != page_zone(page)) 2216 goto next; 2217 2218 if (!PageHead(page) || PageHuge(page) || !PageLRU(page)) 2219 goto next; 2220 2221 total++; 2222 lock_page(page); 2223 if (!split_huge_page(page)) 2224 split++; 2225 unlock_page(page); 2226 next: 2227 put_page(page); 2228 } 2229 } 2230 2231 pr_info("%lu of %lu THP split\n", split, total); 2232 2233 return 0; 2234 } 2235 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set, 2236 "%llu\n"); 2237 2238 static int __init split_huge_pages_debugfs(void) 2239 { 2240 void *ret; 2241 2242 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 2243 &split_huge_pages_fops); 2244 if (!ret) 2245 pr_warn("Failed to create split_huge_pages in debugfs"); 2246 return 0; 2247 } 2248 late_initcall(split_huge_pages_debugfs); 2249 #endif 2250