1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2009 Red Hat, Inc. 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/mm.h> 9 #include <linux/sched.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/coredump.h> 12 #include <linux/sched/numa_balancing.h> 13 #include <linux/highmem.h> 14 #include <linux/hugetlb.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/rmap.h> 17 #include <linux/swap.h> 18 #include <linux/shrinker.h> 19 #include <linux/mm_inline.h> 20 #include <linux/swapops.h> 21 #include <linux/backing-dev.h> 22 #include <linux/dax.h> 23 #include <linux/khugepaged.h> 24 #include <linux/freezer.h> 25 #include <linux/pfn_t.h> 26 #include <linux/mman.h> 27 #include <linux/memremap.h> 28 #include <linux/pagemap.h> 29 #include <linux/debugfs.h> 30 #include <linux/migrate.h> 31 #include <linux/hashtable.h> 32 #include <linux/userfaultfd_k.h> 33 #include <linux/page_idle.h> 34 #include <linux/shmem_fs.h> 35 #include <linux/oom.h> 36 #include <linux/numa.h> 37 #include <linux/page_owner.h> 38 #include <linux/sched/sysctl.h> 39 #include <linux/memory-tiers.h> 40 41 #include <asm/tlb.h> 42 #include <asm/pgalloc.h> 43 #include "internal.h" 44 #include "swap.h" 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/thp.h> 48 49 /* 50 * By default, transparent hugepage support is disabled in order to avoid 51 * risking an increased memory footprint for applications that are not 52 * guaranteed to benefit from it. When transparent hugepage support is 53 * enabled, it is for all mappings, and khugepaged scans all mappings. 54 * Defrag is invoked by khugepaged hugepage allocations and by page faults 55 * for all hugepage allocations. 56 */ 57 unsigned long transparent_hugepage_flags __read_mostly = 58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS 59 (1<<TRANSPARENT_HUGEPAGE_FLAG)| 60 #endif 61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE 62 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)| 63 #endif 64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)| 65 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)| 66 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 67 68 static struct shrinker *deferred_split_shrinker; 69 static unsigned long deferred_split_count(struct shrinker *shrink, 70 struct shrink_control *sc); 71 static unsigned long deferred_split_scan(struct shrinker *shrink, 72 struct shrink_control *sc); 73 74 static atomic_t huge_zero_refcount; 75 struct page *huge_zero_page __read_mostly; 76 unsigned long huge_zero_pfn __read_mostly = ~0UL; 77 unsigned long huge_anon_orders_always __read_mostly; 78 unsigned long huge_anon_orders_madvise __read_mostly; 79 unsigned long huge_anon_orders_inherit __read_mostly; 80 81 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma, 82 unsigned long vm_flags, bool smaps, 83 bool in_pf, bool enforce_sysfs, 84 unsigned long orders) 85 { 86 /* Check the intersection of requested and supported orders. */ 87 orders &= vma_is_anonymous(vma) ? 88 THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE; 89 if (!orders) 90 return 0; 91 92 if (!vma->vm_mm) /* vdso */ 93 return 0; 94 95 /* 96 * Explicitly disabled through madvise or prctl, or some 97 * architectures may disable THP for some mappings, for 98 * example, s390 kvm. 99 * */ 100 if ((vm_flags & VM_NOHUGEPAGE) || 101 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)) 102 return 0; 103 /* 104 * If the hardware/firmware marked hugepage support disabled. 105 */ 106 if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED)) 107 return 0; 108 109 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */ 110 if (vma_is_dax(vma)) 111 return in_pf ? orders : 0; 112 113 /* 114 * khugepaged special VMA and hugetlb VMA. 115 * Must be checked after dax since some dax mappings may have 116 * VM_MIXEDMAP set. 117 */ 118 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED)) 119 return 0; 120 121 /* 122 * Check alignment for file vma and size for both file and anon vma by 123 * filtering out the unsuitable orders. 124 * 125 * Skip the check for page fault. Huge fault does the check in fault 126 * handlers. 127 */ 128 if (!in_pf) { 129 int order = highest_order(orders); 130 unsigned long addr; 131 132 while (orders) { 133 addr = vma->vm_end - (PAGE_SIZE << order); 134 if (thp_vma_suitable_order(vma, addr, order)) 135 break; 136 order = next_order(&orders, order); 137 } 138 139 if (!orders) 140 return 0; 141 } 142 143 /* 144 * Enabled via shmem mount options or sysfs settings. 145 * Must be done before hugepage flags check since shmem has its 146 * own flags. 147 */ 148 if (!in_pf && shmem_file(vma->vm_file)) 149 return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff, 150 !enforce_sysfs, vma->vm_mm, vm_flags) 151 ? orders : 0; 152 153 if (!vma_is_anonymous(vma)) { 154 /* 155 * Enforce sysfs THP requirements as necessary. Anonymous vmas 156 * were already handled in thp_vma_allowable_orders(). 157 */ 158 if (enforce_sysfs && 159 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) && 160 !hugepage_global_always()))) 161 return 0; 162 163 /* 164 * Trust that ->huge_fault() handlers know what they are doing 165 * in fault path. 166 */ 167 if (((in_pf || smaps)) && vma->vm_ops->huge_fault) 168 return orders; 169 /* Only regular file is valid in collapse path */ 170 if (((!in_pf || smaps)) && file_thp_enabled(vma)) 171 return orders; 172 return 0; 173 } 174 175 if (vma_is_temporary_stack(vma)) 176 return 0; 177 178 /* 179 * THPeligible bit of smaps should show 1 for proper VMAs even 180 * though anon_vma is not initialized yet. 181 * 182 * Allow page fault since anon_vma may be not initialized until 183 * the first page fault. 184 */ 185 if (!vma->anon_vma) 186 return (smaps || in_pf) ? orders : 0; 187 188 return orders; 189 } 190 191 static bool get_huge_zero_page(void) 192 { 193 struct page *zero_page; 194 retry: 195 if (likely(atomic_inc_not_zero(&huge_zero_refcount))) 196 return true; 197 198 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE, 199 HPAGE_PMD_ORDER); 200 if (!zero_page) { 201 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED); 202 return false; 203 } 204 preempt_disable(); 205 if (cmpxchg(&huge_zero_page, NULL, zero_page)) { 206 preempt_enable(); 207 __free_pages(zero_page, compound_order(zero_page)); 208 goto retry; 209 } 210 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page)); 211 212 /* We take additional reference here. It will be put back by shrinker */ 213 atomic_set(&huge_zero_refcount, 2); 214 preempt_enable(); 215 count_vm_event(THP_ZERO_PAGE_ALLOC); 216 return true; 217 } 218 219 static void put_huge_zero_page(void) 220 { 221 /* 222 * Counter should never go to zero here. Only shrinker can put 223 * last reference. 224 */ 225 BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); 226 } 227 228 struct page *mm_get_huge_zero_page(struct mm_struct *mm) 229 { 230 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 231 return READ_ONCE(huge_zero_page); 232 233 if (!get_huge_zero_page()) 234 return NULL; 235 236 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 237 put_huge_zero_page(); 238 239 return READ_ONCE(huge_zero_page); 240 } 241 242 void mm_put_huge_zero_page(struct mm_struct *mm) 243 { 244 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags)) 245 put_huge_zero_page(); 246 } 247 248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, 249 struct shrink_control *sc) 250 { 251 /* we can free zero page only if last reference remains */ 252 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; 253 } 254 255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, 256 struct shrink_control *sc) 257 { 258 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { 259 struct page *zero_page = xchg(&huge_zero_page, NULL); 260 BUG_ON(zero_page == NULL); 261 WRITE_ONCE(huge_zero_pfn, ~0UL); 262 __free_pages(zero_page, compound_order(zero_page)); 263 return HPAGE_PMD_NR; 264 } 265 266 return 0; 267 } 268 269 static struct shrinker *huge_zero_page_shrinker; 270 271 #ifdef CONFIG_SYSFS 272 static ssize_t enabled_show(struct kobject *kobj, 273 struct kobj_attribute *attr, char *buf) 274 { 275 const char *output; 276 277 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags)) 278 output = "[always] madvise never"; 279 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 280 &transparent_hugepage_flags)) 281 output = "always [madvise] never"; 282 else 283 output = "always madvise [never]"; 284 285 return sysfs_emit(buf, "%s\n", output); 286 } 287 288 static ssize_t enabled_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 ssize_t ret = count; 293 294 if (sysfs_streq(buf, "always")) { 295 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 296 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 297 } else if (sysfs_streq(buf, "madvise")) { 298 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 299 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 300 } else if (sysfs_streq(buf, "never")) { 301 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags); 302 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags); 303 } else 304 ret = -EINVAL; 305 306 if (ret > 0) { 307 int err = start_stop_khugepaged(); 308 if (err) 309 ret = err; 310 } 311 return ret; 312 } 313 314 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled); 315 316 ssize_t single_hugepage_flag_show(struct kobject *kobj, 317 struct kobj_attribute *attr, char *buf, 318 enum transparent_hugepage_flag flag) 319 { 320 return sysfs_emit(buf, "%d\n", 321 !!test_bit(flag, &transparent_hugepage_flags)); 322 } 323 324 ssize_t single_hugepage_flag_store(struct kobject *kobj, 325 struct kobj_attribute *attr, 326 const char *buf, size_t count, 327 enum transparent_hugepage_flag flag) 328 { 329 unsigned long value; 330 int ret; 331 332 ret = kstrtoul(buf, 10, &value); 333 if (ret < 0) 334 return ret; 335 if (value > 1) 336 return -EINVAL; 337 338 if (value) 339 set_bit(flag, &transparent_hugepage_flags); 340 else 341 clear_bit(flag, &transparent_hugepage_flags); 342 343 return count; 344 } 345 346 static ssize_t defrag_show(struct kobject *kobj, 347 struct kobj_attribute *attr, char *buf) 348 { 349 const char *output; 350 351 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, 352 &transparent_hugepage_flags)) 353 output = "[always] defer defer+madvise madvise never"; 354 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, 355 &transparent_hugepage_flags)) 356 output = "always [defer] defer+madvise madvise never"; 357 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, 358 &transparent_hugepage_flags)) 359 output = "always defer [defer+madvise] madvise never"; 360 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, 361 &transparent_hugepage_flags)) 362 output = "always defer defer+madvise [madvise] never"; 363 else 364 output = "always defer defer+madvise madvise [never]"; 365 366 return sysfs_emit(buf, "%s\n", output); 367 } 368 369 static ssize_t defrag_store(struct kobject *kobj, 370 struct kobj_attribute *attr, 371 const char *buf, size_t count) 372 { 373 if (sysfs_streq(buf, "always")) { 374 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 375 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 376 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 377 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 378 } else if (sysfs_streq(buf, "defer+madvise")) { 379 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 380 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 381 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 382 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 383 } else if (sysfs_streq(buf, "defer")) { 384 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 385 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 386 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 387 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 388 } else if (sysfs_streq(buf, "madvise")) { 389 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 390 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 391 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 392 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 393 } else if (sysfs_streq(buf, "never")) { 394 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags); 395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags); 396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags); 397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags); 398 } else 399 return -EINVAL; 400 401 return count; 402 } 403 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag); 404 405 static ssize_t use_zero_page_show(struct kobject *kobj, 406 struct kobj_attribute *attr, char *buf) 407 { 408 return single_hugepage_flag_show(kobj, attr, buf, 409 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 410 } 411 static ssize_t use_zero_page_store(struct kobject *kobj, 412 struct kobj_attribute *attr, const char *buf, size_t count) 413 { 414 return single_hugepage_flag_store(kobj, attr, buf, count, 415 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG); 416 } 417 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page); 418 419 static ssize_t hpage_pmd_size_show(struct kobject *kobj, 420 struct kobj_attribute *attr, char *buf) 421 { 422 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE); 423 } 424 static struct kobj_attribute hpage_pmd_size_attr = 425 __ATTR_RO(hpage_pmd_size); 426 427 static struct attribute *hugepage_attr[] = { 428 &enabled_attr.attr, 429 &defrag_attr.attr, 430 &use_zero_page_attr.attr, 431 &hpage_pmd_size_attr.attr, 432 #ifdef CONFIG_SHMEM 433 &shmem_enabled_attr.attr, 434 #endif 435 NULL, 436 }; 437 438 static const struct attribute_group hugepage_attr_group = { 439 .attrs = hugepage_attr, 440 }; 441 442 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj); 443 static void thpsize_release(struct kobject *kobj); 444 static DEFINE_SPINLOCK(huge_anon_orders_lock); 445 static LIST_HEAD(thpsize_list); 446 447 struct thpsize { 448 struct kobject kobj; 449 struct list_head node; 450 int order; 451 }; 452 453 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj) 454 455 static ssize_t thpsize_enabled_show(struct kobject *kobj, 456 struct kobj_attribute *attr, char *buf) 457 { 458 int order = to_thpsize(kobj)->order; 459 const char *output; 460 461 if (test_bit(order, &huge_anon_orders_always)) 462 output = "[always] inherit madvise never"; 463 else if (test_bit(order, &huge_anon_orders_inherit)) 464 output = "always [inherit] madvise never"; 465 else if (test_bit(order, &huge_anon_orders_madvise)) 466 output = "always inherit [madvise] never"; 467 else 468 output = "always inherit madvise [never]"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 473 static ssize_t thpsize_enabled_store(struct kobject *kobj, 474 struct kobj_attribute *attr, 475 const char *buf, size_t count) 476 { 477 int order = to_thpsize(kobj)->order; 478 ssize_t ret = count; 479 480 if (sysfs_streq(buf, "always")) { 481 spin_lock(&huge_anon_orders_lock); 482 clear_bit(order, &huge_anon_orders_inherit); 483 clear_bit(order, &huge_anon_orders_madvise); 484 set_bit(order, &huge_anon_orders_always); 485 spin_unlock(&huge_anon_orders_lock); 486 } else if (sysfs_streq(buf, "inherit")) { 487 spin_lock(&huge_anon_orders_lock); 488 clear_bit(order, &huge_anon_orders_always); 489 clear_bit(order, &huge_anon_orders_madvise); 490 set_bit(order, &huge_anon_orders_inherit); 491 spin_unlock(&huge_anon_orders_lock); 492 } else if (sysfs_streq(buf, "madvise")) { 493 spin_lock(&huge_anon_orders_lock); 494 clear_bit(order, &huge_anon_orders_always); 495 clear_bit(order, &huge_anon_orders_inherit); 496 set_bit(order, &huge_anon_orders_madvise); 497 spin_unlock(&huge_anon_orders_lock); 498 } else if (sysfs_streq(buf, "never")) { 499 spin_lock(&huge_anon_orders_lock); 500 clear_bit(order, &huge_anon_orders_always); 501 clear_bit(order, &huge_anon_orders_inherit); 502 clear_bit(order, &huge_anon_orders_madvise); 503 spin_unlock(&huge_anon_orders_lock); 504 } else 505 ret = -EINVAL; 506 507 return ret; 508 } 509 510 static struct kobj_attribute thpsize_enabled_attr = 511 __ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store); 512 513 static struct attribute *thpsize_attrs[] = { 514 &thpsize_enabled_attr.attr, 515 NULL, 516 }; 517 518 static const struct attribute_group thpsize_attr_group = { 519 .attrs = thpsize_attrs, 520 }; 521 522 static const struct kobj_type thpsize_ktype = { 523 .release = &thpsize_release, 524 .sysfs_ops = &kobj_sysfs_ops, 525 }; 526 527 static struct thpsize *thpsize_create(int order, struct kobject *parent) 528 { 529 unsigned long size = (PAGE_SIZE << order) / SZ_1K; 530 struct thpsize *thpsize; 531 int ret; 532 533 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL); 534 if (!thpsize) 535 return ERR_PTR(-ENOMEM); 536 537 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent, 538 "hugepages-%lukB", size); 539 if (ret) { 540 kfree(thpsize); 541 return ERR_PTR(ret); 542 } 543 544 ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group); 545 if (ret) { 546 kobject_put(&thpsize->kobj); 547 return ERR_PTR(ret); 548 } 549 550 thpsize->order = order; 551 return thpsize; 552 } 553 554 static void thpsize_release(struct kobject *kobj) 555 { 556 kfree(to_thpsize(kobj)); 557 } 558 559 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj) 560 { 561 int err; 562 struct thpsize *thpsize; 563 unsigned long orders; 564 int order; 565 566 /* 567 * Default to setting PMD-sized THP to inherit the global setting and 568 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time 569 * constant so we have to do this here. 570 */ 571 huge_anon_orders_inherit = BIT(PMD_ORDER); 572 573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj); 574 if (unlikely(!*hugepage_kobj)) { 575 pr_err("failed to create transparent hugepage kobject\n"); 576 return -ENOMEM; 577 } 578 579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group); 580 if (err) { 581 pr_err("failed to register transparent hugepage group\n"); 582 goto delete_obj; 583 } 584 585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group); 586 if (err) { 587 pr_err("failed to register transparent hugepage group\n"); 588 goto remove_hp_group; 589 } 590 591 orders = THP_ORDERS_ALL_ANON; 592 order = highest_order(orders); 593 while (orders) { 594 thpsize = thpsize_create(order, *hugepage_kobj); 595 if (IS_ERR(thpsize)) { 596 pr_err("failed to create thpsize for order %d\n", order); 597 err = PTR_ERR(thpsize); 598 goto remove_all; 599 } 600 list_add(&thpsize->node, &thpsize_list); 601 order = next_order(&orders, order); 602 } 603 604 return 0; 605 606 remove_all: 607 hugepage_exit_sysfs(*hugepage_kobj); 608 return err; 609 remove_hp_group: 610 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group); 611 delete_obj: 612 kobject_put(*hugepage_kobj); 613 return err; 614 } 615 616 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj) 617 { 618 struct thpsize *thpsize, *tmp; 619 620 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) { 621 list_del(&thpsize->node); 622 kobject_put(&thpsize->kobj); 623 } 624 625 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group); 626 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group); 627 kobject_put(hugepage_kobj); 628 } 629 #else 630 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj) 631 { 632 return 0; 633 } 634 635 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj) 636 { 637 } 638 #endif /* CONFIG_SYSFS */ 639 640 static int __init thp_shrinker_init(void) 641 { 642 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero"); 643 if (!huge_zero_page_shrinker) 644 return -ENOMEM; 645 646 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE | 647 SHRINKER_MEMCG_AWARE | 648 SHRINKER_NONSLAB, 649 "thp-deferred_split"); 650 if (!deferred_split_shrinker) { 651 shrinker_free(huge_zero_page_shrinker); 652 return -ENOMEM; 653 } 654 655 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count; 656 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan; 657 shrinker_register(huge_zero_page_shrinker); 658 659 deferred_split_shrinker->count_objects = deferred_split_count; 660 deferred_split_shrinker->scan_objects = deferred_split_scan; 661 shrinker_register(deferred_split_shrinker); 662 663 return 0; 664 } 665 666 static void __init thp_shrinker_exit(void) 667 { 668 shrinker_free(huge_zero_page_shrinker); 669 shrinker_free(deferred_split_shrinker); 670 } 671 672 static int __init hugepage_init(void) 673 { 674 int err; 675 struct kobject *hugepage_kobj; 676 677 if (!has_transparent_hugepage()) { 678 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED; 679 return -EINVAL; 680 } 681 682 /* 683 * hugepages can't be allocated by the buddy allocator 684 */ 685 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER); 686 /* 687 * we use page->mapping and page->index in second tail page 688 * as list_head: assuming THP order >= 2 689 */ 690 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2); 691 692 err = hugepage_init_sysfs(&hugepage_kobj); 693 if (err) 694 goto err_sysfs; 695 696 err = khugepaged_init(); 697 if (err) 698 goto err_slab; 699 700 err = thp_shrinker_init(); 701 if (err) 702 goto err_shrinker; 703 704 /* 705 * By default disable transparent hugepages on smaller systems, 706 * where the extra memory used could hurt more than TLB overhead 707 * is likely to save. The admin can still enable it through /sys. 708 */ 709 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) { 710 transparent_hugepage_flags = 0; 711 return 0; 712 } 713 714 err = start_stop_khugepaged(); 715 if (err) 716 goto err_khugepaged; 717 718 return 0; 719 err_khugepaged: 720 thp_shrinker_exit(); 721 err_shrinker: 722 khugepaged_destroy(); 723 err_slab: 724 hugepage_exit_sysfs(hugepage_kobj); 725 err_sysfs: 726 return err; 727 } 728 subsys_initcall(hugepage_init); 729 730 static int __init setup_transparent_hugepage(char *str) 731 { 732 int ret = 0; 733 if (!str) 734 goto out; 735 if (!strcmp(str, "always")) { 736 set_bit(TRANSPARENT_HUGEPAGE_FLAG, 737 &transparent_hugepage_flags); 738 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 739 &transparent_hugepage_flags); 740 ret = 1; 741 } else if (!strcmp(str, "madvise")) { 742 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 743 &transparent_hugepage_flags); 744 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 745 &transparent_hugepage_flags); 746 ret = 1; 747 } else if (!strcmp(str, "never")) { 748 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, 749 &transparent_hugepage_flags); 750 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, 751 &transparent_hugepage_flags); 752 ret = 1; 753 } 754 out: 755 if (!ret) 756 pr_warn("transparent_hugepage= cannot parse, ignored\n"); 757 return ret; 758 } 759 __setup("transparent_hugepage=", setup_transparent_hugepage); 760 761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 762 { 763 if (likely(vma->vm_flags & VM_WRITE)) 764 pmd = pmd_mkwrite(pmd, vma); 765 return pmd; 766 } 767 768 #ifdef CONFIG_MEMCG 769 static inline 770 struct deferred_split *get_deferred_split_queue(struct folio *folio) 771 { 772 struct mem_cgroup *memcg = folio_memcg(folio); 773 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 774 775 if (memcg) 776 return &memcg->deferred_split_queue; 777 else 778 return &pgdat->deferred_split_queue; 779 } 780 #else 781 static inline 782 struct deferred_split *get_deferred_split_queue(struct folio *folio) 783 { 784 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio)); 785 786 return &pgdat->deferred_split_queue; 787 } 788 #endif 789 790 void folio_prep_large_rmappable(struct folio *folio) 791 { 792 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 793 INIT_LIST_HEAD(&folio->_deferred_list); 794 folio_set_large_rmappable(folio); 795 } 796 797 static inline bool is_transparent_hugepage(struct folio *folio) 798 { 799 if (!folio_test_large(folio)) 800 return false; 801 802 return is_huge_zero_page(&folio->page) || 803 folio_test_large_rmappable(folio); 804 } 805 806 static unsigned long __thp_get_unmapped_area(struct file *filp, 807 unsigned long addr, unsigned long len, 808 loff_t off, unsigned long flags, unsigned long size) 809 { 810 loff_t off_end = off + len; 811 loff_t off_align = round_up(off, size); 812 unsigned long len_pad, ret; 813 814 if (off_end <= off_align || (off_end - off_align) < size) 815 return 0; 816 817 len_pad = len + size; 818 if (len_pad < len || (off + len_pad) < off) 819 return 0; 820 821 ret = current->mm->get_unmapped_area(filp, addr, len_pad, 822 off >> PAGE_SHIFT, flags); 823 824 /* 825 * The failure might be due to length padding. The caller will retry 826 * without the padding. 827 */ 828 if (IS_ERR_VALUE(ret)) 829 return 0; 830 831 /* 832 * Do not try to align to THP boundary if allocation at the address 833 * hint succeeds. 834 */ 835 if (ret == addr) 836 return addr; 837 838 ret += (off - ret) & (size - 1); 839 return ret; 840 } 841 842 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr, 843 unsigned long len, unsigned long pgoff, unsigned long flags) 844 { 845 unsigned long ret; 846 loff_t off = (loff_t)pgoff << PAGE_SHIFT; 847 848 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE); 849 if (ret) 850 return ret; 851 852 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags); 853 } 854 EXPORT_SYMBOL_GPL(thp_get_unmapped_area); 855 856 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf, 857 struct page *page, gfp_t gfp) 858 { 859 struct vm_area_struct *vma = vmf->vma; 860 struct folio *folio = page_folio(page); 861 pgtable_t pgtable; 862 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 863 vm_fault_t ret = 0; 864 865 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 866 867 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 868 folio_put(folio); 869 count_vm_event(THP_FAULT_FALLBACK); 870 count_vm_event(THP_FAULT_FALLBACK_CHARGE); 871 return VM_FAULT_FALLBACK; 872 } 873 folio_throttle_swaprate(folio, gfp); 874 875 pgtable = pte_alloc_one(vma->vm_mm); 876 if (unlikely(!pgtable)) { 877 ret = VM_FAULT_OOM; 878 goto release; 879 } 880 881 clear_huge_page(page, vmf->address, HPAGE_PMD_NR); 882 /* 883 * The memory barrier inside __folio_mark_uptodate makes sure that 884 * clear_huge_page writes become visible before the set_pmd_at() 885 * write. 886 */ 887 __folio_mark_uptodate(folio); 888 889 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 890 if (unlikely(!pmd_none(*vmf->pmd))) { 891 goto unlock_release; 892 } else { 893 pmd_t entry; 894 895 ret = check_stable_address_space(vma->vm_mm); 896 if (ret) 897 goto unlock_release; 898 899 /* Deliver the page fault to userland */ 900 if (userfaultfd_missing(vma)) { 901 spin_unlock(vmf->ptl); 902 folio_put(folio); 903 pte_free(vma->vm_mm, pgtable); 904 ret = handle_userfault(vmf, VM_UFFD_MISSING); 905 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 906 return ret; 907 } 908 909 entry = mk_huge_pmd(page, vma->vm_page_prot); 910 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 911 folio_add_new_anon_rmap(folio, vma, haddr); 912 folio_add_lru_vma(folio, vma); 913 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 914 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 915 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 916 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR); 917 mm_inc_nr_ptes(vma->vm_mm); 918 spin_unlock(vmf->ptl); 919 count_vm_event(THP_FAULT_ALLOC); 920 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC); 921 } 922 923 return 0; 924 unlock_release: 925 spin_unlock(vmf->ptl); 926 release: 927 if (pgtable) 928 pte_free(vma->vm_mm, pgtable); 929 folio_put(folio); 930 return ret; 931 932 } 933 934 /* 935 * always: directly stall for all thp allocations 936 * defer: wake kswapd and fail if not immediately available 937 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise 938 * fail if not immediately available 939 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately 940 * available 941 * never: never stall for any thp allocation 942 */ 943 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma) 944 { 945 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE); 946 947 /* Always do synchronous compaction */ 948 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags)) 949 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY); 950 951 /* Kick kcompactd and fail quickly */ 952 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags)) 953 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM; 954 955 /* Synchronous compaction if madvised, otherwise kick kcompactd */ 956 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags)) 957 return GFP_TRANSHUGE_LIGHT | 958 (vma_madvised ? __GFP_DIRECT_RECLAIM : 959 __GFP_KSWAPD_RECLAIM); 960 961 /* Only do synchronous compaction if madvised */ 962 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags)) 963 return GFP_TRANSHUGE_LIGHT | 964 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0); 965 966 return GFP_TRANSHUGE_LIGHT; 967 } 968 969 /* Caller must hold page table lock. */ 970 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm, 971 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd, 972 struct page *zero_page) 973 { 974 pmd_t entry; 975 if (!pmd_none(*pmd)) 976 return; 977 entry = mk_pmd(zero_page, vma->vm_page_prot); 978 entry = pmd_mkhuge(entry); 979 pgtable_trans_huge_deposit(mm, pmd, pgtable); 980 set_pmd_at(mm, haddr, pmd, entry); 981 mm_inc_nr_ptes(mm); 982 } 983 984 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf) 985 { 986 struct vm_area_struct *vma = vmf->vma; 987 gfp_t gfp; 988 struct folio *folio; 989 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 990 991 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 992 return VM_FAULT_FALLBACK; 993 if (unlikely(anon_vma_prepare(vma))) 994 return VM_FAULT_OOM; 995 khugepaged_enter_vma(vma, vma->vm_flags); 996 997 if (!(vmf->flags & FAULT_FLAG_WRITE) && 998 !mm_forbids_zeropage(vma->vm_mm) && 999 transparent_hugepage_use_zero_page()) { 1000 pgtable_t pgtable; 1001 struct page *zero_page; 1002 vm_fault_t ret; 1003 pgtable = pte_alloc_one(vma->vm_mm); 1004 if (unlikely(!pgtable)) 1005 return VM_FAULT_OOM; 1006 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1007 if (unlikely(!zero_page)) { 1008 pte_free(vma->vm_mm, pgtable); 1009 count_vm_event(THP_FAULT_FALLBACK); 1010 return VM_FAULT_FALLBACK; 1011 } 1012 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1013 ret = 0; 1014 if (pmd_none(*vmf->pmd)) { 1015 ret = check_stable_address_space(vma->vm_mm); 1016 if (ret) { 1017 spin_unlock(vmf->ptl); 1018 pte_free(vma->vm_mm, pgtable); 1019 } else if (userfaultfd_missing(vma)) { 1020 spin_unlock(vmf->ptl); 1021 pte_free(vma->vm_mm, pgtable); 1022 ret = handle_userfault(vmf, VM_UFFD_MISSING); 1023 VM_BUG_ON(ret & VM_FAULT_FALLBACK); 1024 } else { 1025 set_huge_zero_page(pgtable, vma->vm_mm, vma, 1026 haddr, vmf->pmd, zero_page); 1027 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1028 spin_unlock(vmf->ptl); 1029 } 1030 } else { 1031 spin_unlock(vmf->ptl); 1032 pte_free(vma->vm_mm, pgtable); 1033 } 1034 return ret; 1035 } 1036 gfp = vma_thp_gfp_mask(vma); 1037 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true); 1038 if (unlikely(!folio)) { 1039 count_vm_event(THP_FAULT_FALLBACK); 1040 return VM_FAULT_FALLBACK; 1041 } 1042 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp); 1043 } 1044 1045 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr, 1046 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write, 1047 pgtable_t pgtable) 1048 { 1049 struct mm_struct *mm = vma->vm_mm; 1050 pmd_t entry; 1051 spinlock_t *ptl; 1052 1053 ptl = pmd_lock(mm, pmd); 1054 if (!pmd_none(*pmd)) { 1055 if (write) { 1056 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) { 1057 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd)); 1058 goto out_unlock; 1059 } 1060 entry = pmd_mkyoung(*pmd); 1061 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1062 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1)) 1063 update_mmu_cache_pmd(vma, addr, pmd); 1064 } 1065 1066 goto out_unlock; 1067 } 1068 1069 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); 1070 if (pfn_t_devmap(pfn)) 1071 entry = pmd_mkdevmap(entry); 1072 if (write) { 1073 entry = pmd_mkyoung(pmd_mkdirty(entry)); 1074 entry = maybe_pmd_mkwrite(entry, vma); 1075 } 1076 1077 if (pgtable) { 1078 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1079 mm_inc_nr_ptes(mm); 1080 pgtable = NULL; 1081 } 1082 1083 set_pmd_at(mm, addr, pmd, entry); 1084 update_mmu_cache_pmd(vma, addr, pmd); 1085 1086 out_unlock: 1087 spin_unlock(ptl); 1088 if (pgtable) 1089 pte_free(mm, pgtable); 1090 } 1091 1092 /** 1093 * vmf_insert_pfn_pmd - insert a pmd size pfn 1094 * @vmf: Structure describing the fault 1095 * @pfn: pfn to insert 1096 * @write: whether it's a write fault 1097 * 1098 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info. 1099 * 1100 * Return: vm_fault_t value. 1101 */ 1102 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write) 1103 { 1104 unsigned long addr = vmf->address & PMD_MASK; 1105 struct vm_area_struct *vma = vmf->vma; 1106 pgprot_t pgprot = vma->vm_page_prot; 1107 pgtable_t pgtable = NULL; 1108 1109 /* 1110 * If we had pmd_special, we could avoid all these restrictions, 1111 * but we need to be consistent with PTEs and architectures that 1112 * can't support a 'special' bit. 1113 */ 1114 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1115 !pfn_t_devmap(pfn)); 1116 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1117 (VM_PFNMAP|VM_MIXEDMAP)); 1118 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1119 1120 if (addr < vma->vm_start || addr >= vma->vm_end) 1121 return VM_FAULT_SIGBUS; 1122 1123 if (arch_needs_pgtable_deposit()) { 1124 pgtable = pte_alloc_one(vma->vm_mm); 1125 if (!pgtable) 1126 return VM_FAULT_OOM; 1127 } 1128 1129 track_pfn_insert(vma, &pgprot, pfn); 1130 1131 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable); 1132 return VM_FAULT_NOPAGE; 1133 } 1134 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd); 1135 1136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1137 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma) 1138 { 1139 if (likely(vma->vm_flags & VM_WRITE)) 1140 pud = pud_mkwrite(pud); 1141 return pud; 1142 } 1143 1144 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr, 1145 pud_t *pud, pfn_t pfn, bool write) 1146 { 1147 struct mm_struct *mm = vma->vm_mm; 1148 pgprot_t prot = vma->vm_page_prot; 1149 pud_t entry; 1150 spinlock_t *ptl; 1151 1152 ptl = pud_lock(mm, pud); 1153 if (!pud_none(*pud)) { 1154 if (write) { 1155 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) { 1156 WARN_ON_ONCE(!is_huge_zero_pud(*pud)); 1157 goto out_unlock; 1158 } 1159 entry = pud_mkyoung(*pud); 1160 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma); 1161 if (pudp_set_access_flags(vma, addr, pud, entry, 1)) 1162 update_mmu_cache_pud(vma, addr, pud); 1163 } 1164 goto out_unlock; 1165 } 1166 1167 entry = pud_mkhuge(pfn_t_pud(pfn, prot)); 1168 if (pfn_t_devmap(pfn)) 1169 entry = pud_mkdevmap(entry); 1170 if (write) { 1171 entry = pud_mkyoung(pud_mkdirty(entry)); 1172 entry = maybe_pud_mkwrite(entry, vma); 1173 } 1174 set_pud_at(mm, addr, pud, entry); 1175 update_mmu_cache_pud(vma, addr, pud); 1176 1177 out_unlock: 1178 spin_unlock(ptl); 1179 } 1180 1181 /** 1182 * vmf_insert_pfn_pud - insert a pud size pfn 1183 * @vmf: Structure describing the fault 1184 * @pfn: pfn to insert 1185 * @write: whether it's a write fault 1186 * 1187 * Insert a pud size pfn. See vmf_insert_pfn() for additional info. 1188 * 1189 * Return: vm_fault_t value. 1190 */ 1191 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write) 1192 { 1193 unsigned long addr = vmf->address & PUD_MASK; 1194 struct vm_area_struct *vma = vmf->vma; 1195 pgprot_t pgprot = vma->vm_page_prot; 1196 1197 /* 1198 * If we had pud_special, we could avoid all these restrictions, 1199 * but we need to be consistent with PTEs and architectures that 1200 * can't support a 'special' bit. 1201 */ 1202 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) && 1203 !pfn_t_devmap(pfn)); 1204 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1205 (VM_PFNMAP|VM_MIXEDMAP)); 1206 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1207 1208 if (addr < vma->vm_start || addr >= vma->vm_end) 1209 return VM_FAULT_SIGBUS; 1210 1211 track_pfn_insert(vma, &pgprot, pfn); 1212 1213 insert_pfn_pud(vma, addr, vmf->pud, pfn, write); 1214 return VM_FAULT_NOPAGE; 1215 } 1216 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud); 1217 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1218 1219 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr, 1220 pmd_t *pmd, bool write) 1221 { 1222 pmd_t _pmd; 1223 1224 _pmd = pmd_mkyoung(*pmd); 1225 if (write) 1226 _pmd = pmd_mkdirty(_pmd); 1227 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK, 1228 pmd, _pmd, write)) 1229 update_mmu_cache_pmd(vma, addr, pmd); 1230 } 1231 1232 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr, 1233 pmd_t *pmd, int flags, struct dev_pagemap **pgmap) 1234 { 1235 unsigned long pfn = pmd_pfn(*pmd); 1236 struct mm_struct *mm = vma->vm_mm; 1237 struct page *page; 1238 int ret; 1239 1240 assert_spin_locked(pmd_lockptr(mm, pmd)); 1241 1242 if (flags & FOLL_WRITE && !pmd_write(*pmd)) 1243 return NULL; 1244 1245 if (pmd_present(*pmd) && pmd_devmap(*pmd)) 1246 /* pass */; 1247 else 1248 return NULL; 1249 1250 if (flags & FOLL_TOUCH) 1251 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1252 1253 /* 1254 * device mapped pages can only be returned if the 1255 * caller will manage the page reference count. 1256 */ 1257 if (!(flags & (FOLL_GET | FOLL_PIN))) 1258 return ERR_PTR(-EEXIST); 1259 1260 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT; 1261 *pgmap = get_dev_pagemap(pfn, *pgmap); 1262 if (!*pgmap) 1263 return ERR_PTR(-EFAULT); 1264 page = pfn_to_page(pfn); 1265 ret = try_grab_page(page, flags); 1266 if (ret) 1267 page = ERR_PTR(ret); 1268 1269 return page; 1270 } 1271 1272 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1273 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1274 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1275 { 1276 spinlock_t *dst_ptl, *src_ptl; 1277 struct page *src_page; 1278 struct folio *src_folio; 1279 pmd_t pmd; 1280 pgtable_t pgtable = NULL; 1281 int ret = -ENOMEM; 1282 1283 /* Skip if can be re-fill on fault */ 1284 if (!vma_is_anonymous(dst_vma)) 1285 return 0; 1286 1287 pgtable = pte_alloc_one(dst_mm); 1288 if (unlikely(!pgtable)) 1289 goto out; 1290 1291 dst_ptl = pmd_lock(dst_mm, dst_pmd); 1292 src_ptl = pmd_lockptr(src_mm, src_pmd); 1293 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1294 1295 ret = -EAGAIN; 1296 pmd = *src_pmd; 1297 1298 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1299 if (unlikely(is_swap_pmd(pmd))) { 1300 swp_entry_t entry = pmd_to_swp_entry(pmd); 1301 1302 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1303 if (!is_readable_migration_entry(entry)) { 1304 entry = make_readable_migration_entry( 1305 swp_offset(entry)); 1306 pmd = swp_entry_to_pmd(entry); 1307 if (pmd_swp_soft_dirty(*src_pmd)) 1308 pmd = pmd_swp_mksoft_dirty(pmd); 1309 if (pmd_swp_uffd_wp(*src_pmd)) 1310 pmd = pmd_swp_mkuffd_wp(pmd); 1311 set_pmd_at(src_mm, addr, src_pmd, pmd); 1312 } 1313 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1314 mm_inc_nr_ptes(dst_mm); 1315 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1316 if (!userfaultfd_wp(dst_vma)) 1317 pmd = pmd_swp_clear_uffd_wp(pmd); 1318 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1319 ret = 0; 1320 goto out_unlock; 1321 } 1322 #endif 1323 1324 if (unlikely(!pmd_trans_huge(pmd))) { 1325 pte_free(dst_mm, pgtable); 1326 goto out_unlock; 1327 } 1328 /* 1329 * When page table lock is held, the huge zero pmd should not be 1330 * under splitting since we don't split the page itself, only pmd to 1331 * a page table. 1332 */ 1333 if (is_huge_zero_pmd(pmd)) { 1334 /* 1335 * get_huge_zero_page() will never allocate a new page here, 1336 * since we already have a zero page to copy. It just takes a 1337 * reference. 1338 */ 1339 mm_get_huge_zero_page(dst_mm); 1340 goto out_zero_page; 1341 } 1342 1343 src_page = pmd_page(pmd); 1344 VM_BUG_ON_PAGE(!PageHead(src_page), src_page); 1345 src_folio = page_folio(src_page); 1346 1347 folio_get(src_folio); 1348 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) { 1349 /* Page maybe pinned: split and retry the fault on PTEs. */ 1350 folio_put(src_folio); 1351 pte_free(dst_mm, pgtable); 1352 spin_unlock(src_ptl); 1353 spin_unlock(dst_ptl); 1354 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL); 1355 return -EAGAIN; 1356 } 1357 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR); 1358 out_zero_page: 1359 mm_inc_nr_ptes(dst_mm); 1360 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable); 1361 pmdp_set_wrprotect(src_mm, addr, src_pmd); 1362 if (!userfaultfd_wp(dst_vma)) 1363 pmd = pmd_clear_uffd_wp(pmd); 1364 pmd = pmd_mkold(pmd_wrprotect(pmd)); 1365 set_pmd_at(dst_mm, addr, dst_pmd, pmd); 1366 1367 ret = 0; 1368 out_unlock: 1369 spin_unlock(src_ptl); 1370 spin_unlock(dst_ptl); 1371 out: 1372 return ret; 1373 } 1374 1375 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 1376 static void touch_pud(struct vm_area_struct *vma, unsigned long addr, 1377 pud_t *pud, bool write) 1378 { 1379 pud_t _pud; 1380 1381 _pud = pud_mkyoung(*pud); 1382 if (write) 1383 _pud = pud_mkdirty(_pud); 1384 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK, 1385 pud, _pud, write)) 1386 update_mmu_cache_pud(vma, addr, pud); 1387 } 1388 1389 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr, 1390 pud_t *pud, int flags, struct dev_pagemap **pgmap) 1391 { 1392 unsigned long pfn = pud_pfn(*pud); 1393 struct mm_struct *mm = vma->vm_mm; 1394 struct page *page; 1395 int ret; 1396 1397 assert_spin_locked(pud_lockptr(mm, pud)); 1398 1399 if (flags & FOLL_WRITE && !pud_write(*pud)) 1400 return NULL; 1401 1402 if (pud_present(*pud) && pud_devmap(*pud)) 1403 /* pass */; 1404 else 1405 return NULL; 1406 1407 if (flags & FOLL_TOUCH) 1408 touch_pud(vma, addr, pud, flags & FOLL_WRITE); 1409 1410 /* 1411 * device mapped pages can only be returned if the 1412 * caller will manage the page reference count. 1413 * 1414 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here: 1415 */ 1416 if (!(flags & (FOLL_GET | FOLL_PIN))) 1417 return ERR_PTR(-EEXIST); 1418 1419 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 1420 *pgmap = get_dev_pagemap(pfn, *pgmap); 1421 if (!*pgmap) 1422 return ERR_PTR(-EFAULT); 1423 page = pfn_to_page(pfn); 1424 1425 ret = try_grab_page(page, flags); 1426 if (ret) 1427 page = ERR_PTR(ret); 1428 1429 return page; 1430 } 1431 1432 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1433 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1434 struct vm_area_struct *vma) 1435 { 1436 spinlock_t *dst_ptl, *src_ptl; 1437 pud_t pud; 1438 int ret; 1439 1440 dst_ptl = pud_lock(dst_mm, dst_pud); 1441 src_ptl = pud_lockptr(src_mm, src_pud); 1442 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1443 1444 ret = -EAGAIN; 1445 pud = *src_pud; 1446 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud))) 1447 goto out_unlock; 1448 1449 /* 1450 * When page table lock is held, the huge zero pud should not be 1451 * under splitting since we don't split the page itself, only pud to 1452 * a page table. 1453 */ 1454 if (is_huge_zero_pud(pud)) { 1455 /* No huge zero pud yet */ 1456 } 1457 1458 /* 1459 * TODO: once we support anonymous pages, use 1460 * folio_try_dup_anon_rmap_*() and split if duplicating fails. 1461 */ 1462 pudp_set_wrprotect(src_mm, addr, src_pud); 1463 pud = pud_mkold(pud_wrprotect(pud)); 1464 set_pud_at(dst_mm, addr, dst_pud, pud); 1465 1466 ret = 0; 1467 out_unlock: 1468 spin_unlock(src_ptl); 1469 spin_unlock(dst_ptl); 1470 return ret; 1471 } 1472 1473 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud) 1474 { 1475 bool write = vmf->flags & FAULT_FLAG_WRITE; 1476 1477 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud); 1478 if (unlikely(!pud_same(*vmf->pud, orig_pud))) 1479 goto unlock; 1480 1481 touch_pud(vmf->vma, vmf->address, vmf->pud, write); 1482 unlock: 1483 spin_unlock(vmf->ptl); 1484 } 1485 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 1486 1487 void huge_pmd_set_accessed(struct vm_fault *vmf) 1488 { 1489 bool write = vmf->flags & FAULT_FLAG_WRITE; 1490 1491 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1492 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd))) 1493 goto unlock; 1494 1495 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write); 1496 1497 unlock: 1498 spin_unlock(vmf->ptl); 1499 } 1500 1501 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf) 1502 { 1503 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 1504 struct vm_area_struct *vma = vmf->vma; 1505 struct folio *folio; 1506 struct page *page; 1507 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1508 pmd_t orig_pmd = vmf->orig_pmd; 1509 1510 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd); 1511 VM_BUG_ON_VMA(!vma->anon_vma, vma); 1512 1513 if (is_huge_zero_pmd(orig_pmd)) 1514 goto fallback; 1515 1516 spin_lock(vmf->ptl); 1517 1518 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1519 spin_unlock(vmf->ptl); 1520 return 0; 1521 } 1522 1523 page = pmd_page(orig_pmd); 1524 folio = page_folio(page); 1525 VM_BUG_ON_PAGE(!PageHead(page), page); 1526 1527 /* Early check when only holding the PT lock. */ 1528 if (PageAnonExclusive(page)) 1529 goto reuse; 1530 1531 if (!folio_trylock(folio)) { 1532 folio_get(folio); 1533 spin_unlock(vmf->ptl); 1534 folio_lock(folio); 1535 spin_lock(vmf->ptl); 1536 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) { 1537 spin_unlock(vmf->ptl); 1538 folio_unlock(folio); 1539 folio_put(folio); 1540 return 0; 1541 } 1542 folio_put(folio); 1543 } 1544 1545 /* Recheck after temporarily dropping the PT lock. */ 1546 if (PageAnonExclusive(page)) { 1547 folio_unlock(folio); 1548 goto reuse; 1549 } 1550 1551 /* 1552 * See do_wp_page(): we can only reuse the folio exclusively if 1553 * there are no additional references. Note that we always drain 1554 * the LRU cache immediately after adding a THP. 1555 */ 1556 if (folio_ref_count(folio) > 1557 1 + folio_test_swapcache(folio) * folio_nr_pages(folio)) 1558 goto unlock_fallback; 1559 if (folio_test_swapcache(folio)) 1560 folio_free_swap(folio); 1561 if (folio_ref_count(folio) == 1) { 1562 pmd_t entry; 1563 1564 folio_move_anon_rmap(folio, vma); 1565 SetPageAnonExclusive(page); 1566 folio_unlock(folio); 1567 reuse: 1568 if (unlikely(unshare)) { 1569 spin_unlock(vmf->ptl); 1570 return 0; 1571 } 1572 entry = pmd_mkyoung(orig_pmd); 1573 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 1574 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1)) 1575 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1576 spin_unlock(vmf->ptl); 1577 return 0; 1578 } 1579 1580 unlock_fallback: 1581 folio_unlock(folio); 1582 spin_unlock(vmf->ptl); 1583 fallback: 1584 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 1585 return VM_FAULT_FALLBACK; 1586 } 1587 1588 static inline bool can_change_pmd_writable(struct vm_area_struct *vma, 1589 unsigned long addr, pmd_t pmd) 1590 { 1591 struct page *page; 1592 1593 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE))) 1594 return false; 1595 1596 /* Don't touch entries that are not even readable (NUMA hinting). */ 1597 if (pmd_protnone(pmd)) 1598 return false; 1599 1600 /* Do we need write faults for softdirty tracking? */ 1601 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1602 return false; 1603 1604 /* Do we need write faults for uffd-wp tracking? */ 1605 if (userfaultfd_huge_pmd_wp(vma, pmd)) 1606 return false; 1607 1608 if (!(vma->vm_flags & VM_SHARED)) { 1609 /* See can_change_pte_writable(). */ 1610 page = vm_normal_page_pmd(vma, addr, pmd); 1611 return page && PageAnon(page) && PageAnonExclusive(page); 1612 } 1613 1614 /* See can_change_pte_writable(). */ 1615 return pmd_dirty(pmd); 1616 } 1617 1618 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 1619 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 1620 struct vm_area_struct *vma, 1621 unsigned int flags) 1622 { 1623 /* If the pmd is writable, we can write to the page. */ 1624 if (pmd_write(pmd)) 1625 return true; 1626 1627 /* Maybe FOLL_FORCE is set to override it? */ 1628 if (!(flags & FOLL_FORCE)) 1629 return false; 1630 1631 /* But FOLL_FORCE has no effect on shared mappings */ 1632 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 1633 return false; 1634 1635 /* ... or read-only private ones */ 1636 if (!(vma->vm_flags & VM_MAYWRITE)) 1637 return false; 1638 1639 /* ... or already writable ones that just need to take a write fault */ 1640 if (vma->vm_flags & VM_WRITE) 1641 return false; 1642 1643 /* 1644 * See can_change_pte_writable(): we broke COW and could map the page 1645 * writable if we have an exclusive anonymous page ... 1646 */ 1647 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 1648 return false; 1649 1650 /* ... and a write-fault isn't required for other reasons. */ 1651 if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) 1652 return false; 1653 return !userfaultfd_huge_pmd_wp(vma, pmd); 1654 } 1655 1656 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1657 unsigned long addr, 1658 pmd_t *pmd, 1659 unsigned int flags) 1660 { 1661 struct mm_struct *mm = vma->vm_mm; 1662 struct page *page; 1663 int ret; 1664 1665 assert_spin_locked(pmd_lockptr(mm, pmd)); 1666 1667 page = pmd_page(*pmd); 1668 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page); 1669 1670 if ((flags & FOLL_WRITE) && 1671 !can_follow_write_pmd(*pmd, page, vma, flags)) 1672 return NULL; 1673 1674 /* Avoid dumping huge zero page */ 1675 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd)) 1676 return ERR_PTR(-EFAULT); 1677 1678 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 1679 return NULL; 1680 1681 if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page)) 1682 return ERR_PTR(-EMLINK); 1683 1684 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 1685 !PageAnonExclusive(page), page); 1686 1687 ret = try_grab_page(page, flags); 1688 if (ret) 1689 return ERR_PTR(ret); 1690 1691 if (flags & FOLL_TOUCH) 1692 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 1693 1694 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 1695 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page); 1696 1697 return page; 1698 } 1699 1700 /* NUMA hinting page fault entry point for trans huge pmds */ 1701 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf) 1702 { 1703 struct vm_area_struct *vma = vmf->vma; 1704 pmd_t oldpmd = vmf->orig_pmd; 1705 pmd_t pmd; 1706 struct folio *folio; 1707 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 1708 int nid = NUMA_NO_NODE; 1709 int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK); 1710 bool migrated = false, writable = false; 1711 int flags = 0; 1712 1713 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1714 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1715 spin_unlock(vmf->ptl); 1716 goto out; 1717 } 1718 1719 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1720 1721 /* 1722 * Detect now whether the PMD could be writable; this information 1723 * is only valid while holding the PT lock. 1724 */ 1725 writable = pmd_write(pmd); 1726 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 1727 can_change_pmd_writable(vma, vmf->address, pmd)) 1728 writable = true; 1729 1730 folio = vm_normal_folio_pmd(vma, haddr, pmd); 1731 if (!folio) 1732 goto out_map; 1733 1734 /* See similar comment in do_numa_page for explanation */ 1735 if (!writable) 1736 flags |= TNF_NO_GROUP; 1737 1738 nid = folio_nid(folio); 1739 /* 1740 * For memory tiering mode, cpupid of slow memory page is used 1741 * to record page access time. So use default value. 1742 */ 1743 if (node_is_toptier(nid)) 1744 last_cpupid = folio_last_cpupid(folio); 1745 target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags); 1746 if (target_nid == NUMA_NO_NODE) { 1747 folio_put(folio); 1748 goto out_map; 1749 } 1750 1751 spin_unlock(vmf->ptl); 1752 writable = false; 1753 1754 migrated = migrate_misplaced_folio(folio, vma, target_nid); 1755 if (migrated) { 1756 flags |= TNF_MIGRATED; 1757 nid = target_nid; 1758 } else { 1759 flags |= TNF_MIGRATE_FAIL; 1760 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 1761 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) { 1762 spin_unlock(vmf->ptl); 1763 goto out; 1764 } 1765 goto out_map; 1766 } 1767 1768 out: 1769 if (nid != NUMA_NO_NODE) 1770 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags); 1771 1772 return 0; 1773 1774 out_map: 1775 /* Restore the PMD */ 1776 pmd = pmd_modify(oldpmd, vma->vm_page_prot); 1777 pmd = pmd_mkyoung(pmd); 1778 if (writable) 1779 pmd = pmd_mkwrite(pmd, vma); 1780 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd); 1781 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd); 1782 spin_unlock(vmf->ptl); 1783 goto out; 1784 } 1785 1786 /* 1787 * Return true if we do MADV_FREE successfully on entire pmd page. 1788 * Otherwise, return false. 1789 */ 1790 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1791 pmd_t *pmd, unsigned long addr, unsigned long next) 1792 { 1793 spinlock_t *ptl; 1794 pmd_t orig_pmd; 1795 struct folio *folio; 1796 struct mm_struct *mm = tlb->mm; 1797 bool ret = false; 1798 1799 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1800 1801 ptl = pmd_trans_huge_lock(pmd, vma); 1802 if (!ptl) 1803 goto out_unlocked; 1804 1805 orig_pmd = *pmd; 1806 if (is_huge_zero_pmd(orig_pmd)) 1807 goto out; 1808 1809 if (unlikely(!pmd_present(orig_pmd))) { 1810 VM_BUG_ON(thp_migration_supported() && 1811 !is_pmd_migration_entry(orig_pmd)); 1812 goto out; 1813 } 1814 1815 folio = pfn_folio(pmd_pfn(orig_pmd)); 1816 /* 1817 * If other processes are mapping this folio, we couldn't discard 1818 * the folio unless they all do MADV_FREE so let's skip the folio. 1819 */ 1820 if (folio_estimated_sharers(folio) != 1) 1821 goto out; 1822 1823 if (!folio_trylock(folio)) 1824 goto out; 1825 1826 /* 1827 * If user want to discard part-pages of THP, split it so MADV_FREE 1828 * will deactivate only them. 1829 */ 1830 if (next - addr != HPAGE_PMD_SIZE) { 1831 folio_get(folio); 1832 spin_unlock(ptl); 1833 split_folio(folio); 1834 folio_unlock(folio); 1835 folio_put(folio); 1836 goto out_unlocked; 1837 } 1838 1839 if (folio_test_dirty(folio)) 1840 folio_clear_dirty(folio); 1841 folio_unlock(folio); 1842 1843 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) { 1844 pmdp_invalidate(vma, addr, pmd); 1845 orig_pmd = pmd_mkold(orig_pmd); 1846 orig_pmd = pmd_mkclean(orig_pmd); 1847 1848 set_pmd_at(mm, addr, pmd, orig_pmd); 1849 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1850 } 1851 1852 folio_mark_lazyfree(folio); 1853 ret = true; 1854 out: 1855 spin_unlock(ptl); 1856 out_unlocked: 1857 return ret; 1858 } 1859 1860 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd) 1861 { 1862 pgtable_t pgtable; 1863 1864 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 1865 pte_free(mm, pgtable); 1866 mm_dec_nr_ptes(mm); 1867 } 1868 1869 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 1870 pmd_t *pmd, unsigned long addr) 1871 { 1872 pmd_t orig_pmd; 1873 spinlock_t *ptl; 1874 1875 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 1876 1877 ptl = __pmd_trans_huge_lock(pmd, vma); 1878 if (!ptl) 1879 return 0; 1880 /* 1881 * For architectures like ppc64 we look at deposited pgtable 1882 * when calling pmdp_huge_get_and_clear. So do the 1883 * pgtable_trans_huge_withdraw after finishing pmdp related 1884 * operations. 1885 */ 1886 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd, 1887 tlb->fullmm); 1888 arch_check_zapped_pmd(vma, orig_pmd); 1889 tlb_remove_pmd_tlb_entry(tlb, pmd, addr); 1890 if (vma_is_special_huge(vma)) { 1891 if (arch_needs_pgtable_deposit()) 1892 zap_deposited_table(tlb->mm, pmd); 1893 spin_unlock(ptl); 1894 } else if (is_huge_zero_pmd(orig_pmd)) { 1895 zap_deposited_table(tlb->mm, pmd); 1896 spin_unlock(ptl); 1897 } else { 1898 struct page *page = NULL; 1899 int flush_needed = 1; 1900 1901 if (pmd_present(orig_pmd)) { 1902 page = pmd_page(orig_pmd); 1903 folio_remove_rmap_pmd(page_folio(page), page, vma); 1904 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 1905 VM_BUG_ON_PAGE(!PageHead(page), page); 1906 } else if (thp_migration_supported()) { 1907 swp_entry_t entry; 1908 1909 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd)); 1910 entry = pmd_to_swp_entry(orig_pmd); 1911 page = pfn_swap_entry_to_page(entry); 1912 flush_needed = 0; 1913 } else 1914 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!"); 1915 1916 if (PageAnon(page)) { 1917 zap_deposited_table(tlb->mm, pmd); 1918 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR); 1919 } else { 1920 if (arch_needs_pgtable_deposit()) 1921 zap_deposited_table(tlb->mm, pmd); 1922 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR); 1923 } 1924 1925 spin_unlock(ptl); 1926 if (flush_needed) 1927 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE); 1928 } 1929 return 1; 1930 } 1931 1932 #ifndef pmd_move_must_withdraw 1933 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 1934 spinlock_t *old_pmd_ptl, 1935 struct vm_area_struct *vma) 1936 { 1937 /* 1938 * With split pmd lock we also need to move preallocated 1939 * PTE page table if new_pmd is on different PMD page table. 1940 * 1941 * We also don't deposit and withdraw tables for file pages. 1942 */ 1943 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma); 1944 } 1945 #endif 1946 1947 static pmd_t move_soft_dirty_pmd(pmd_t pmd) 1948 { 1949 #ifdef CONFIG_MEM_SOFT_DIRTY 1950 if (unlikely(is_pmd_migration_entry(pmd))) 1951 pmd = pmd_swp_mksoft_dirty(pmd); 1952 else if (pmd_present(pmd)) 1953 pmd = pmd_mksoft_dirty(pmd); 1954 #endif 1955 return pmd; 1956 } 1957 1958 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr, 1959 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd) 1960 { 1961 spinlock_t *old_ptl, *new_ptl; 1962 pmd_t pmd; 1963 struct mm_struct *mm = vma->vm_mm; 1964 bool force_flush = false; 1965 1966 /* 1967 * The destination pmd shouldn't be established, free_pgtables() 1968 * should have released it; but move_page_tables() might have already 1969 * inserted a page table, if racing against shmem/file collapse. 1970 */ 1971 if (!pmd_none(*new_pmd)) { 1972 VM_BUG_ON(pmd_trans_huge(*new_pmd)); 1973 return false; 1974 } 1975 1976 /* 1977 * We don't have to worry about the ordering of src and dst 1978 * ptlocks because exclusive mmap_lock prevents deadlock. 1979 */ 1980 old_ptl = __pmd_trans_huge_lock(old_pmd, vma); 1981 if (old_ptl) { 1982 new_ptl = pmd_lockptr(mm, new_pmd); 1983 if (new_ptl != old_ptl) 1984 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING); 1985 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd); 1986 if (pmd_present(pmd)) 1987 force_flush = true; 1988 VM_BUG_ON(!pmd_none(*new_pmd)); 1989 1990 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) { 1991 pgtable_t pgtable; 1992 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd); 1993 pgtable_trans_huge_deposit(mm, new_pmd, pgtable); 1994 } 1995 pmd = move_soft_dirty_pmd(pmd); 1996 set_pmd_at(mm, new_addr, new_pmd, pmd); 1997 if (force_flush) 1998 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE); 1999 if (new_ptl != old_ptl) 2000 spin_unlock(new_ptl); 2001 spin_unlock(old_ptl); 2002 return true; 2003 } 2004 return false; 2005 } 2006 2007 /* 2008 * Returns 2009 * - 0 if PMD could not be locked 2010 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary 2011 * or if prot_numa but THP migration is not supported 2012 * - HPAGE_PMD_NR if protections changed and TLB flush necessary 2013 */ 2014 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, 2015 pmd_t *pmd, unsigned long addr, pgprot_t newprot, 2016 unsigned long cp_flags) 2017 { 2018 struct mm_struct *mm = vma->vm_mm; 2019 spinlock_t *ptl; 2020 pmd_t oldpmd, entry; 2021 bool prot_numa = cp_flags & MM_CP_PROT_NUMA; 2022 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 2023 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 2024 int ret = 1; 2025 2026 tlb_change_page_size(tlb, HPAGE_PMD_SIZE); 2027 2028 if (prot_numa && !thp_migration_supported()) 2029 return 1; 2030 2031 ptl = __pmd_trans_huge_lock(pmd, vma); 2032 if (!ptl) 2033 return 0; 2034 2035 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 2036 if (is_swap_pmd(*pmd)) { 2037 swp_entry_t entry = pmd_to_swp_entry(*pmd); 2038 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 2039 pmd_t newpmd; 2040 2041 VM_BUG_ON(!is_pmd_migration_entry(*pmd)); 2042 if (is_writable_migration_entry(entry)) { 2043 /* 2044 * A protection check is difficult so 2045 * just be safe and disable write 2046 */ 2047 if (folio_test_anon(folio)) 2048 entry = make_readable_exclusive_migration_entry(swp_offset(entry)); 2049 else 2050 entry = make_readable_migration_entry(swp_offset(entry)); 2051 newpmd = swp_entry_to_pmd(entry); 2052 if (pmd_swp_soft_dirty(*pmd)) 2053 newpmd = pmd_swp_mksoft_dirty(newpmd); 2054 } else { 2055 newpmd = *pmd; 2056 } 2057 2058 if (uffd_wp) 2059 newpmd = pmd_swp_mkuffd_wp(newpmd); 2060 else if (uffd_wp_resolve) 2061 newpmd = pmd_swp_clear_uffd_wp(newpmd); 2062 if (!pmd_same(*pmd, newpmd)) 2063 set_pmd_at(mm, addr, pmd, newpmd); 2064 goto unlock; 2065 } 2066 #endif 2067 2068 if (prot_numa) { 2069 struct folio *folio; 2070 bool toptier; 2071 /* 2072 * Avoid trapping faults against the zero page. The read-only 2073 * data is likely to be read-cached on the local CPU and 2074 * local/remote hits to the zero page are not interesting. 2075 */ 2076 if (is_huge_zero_pmd(*pmd)) 2077 goto unlock; 2078 2079 if (pmd_protnone(*pmd)) 2080 goto unlock; 2081 2082 folio = page_folio(pmd_page(*pmd)); 2083 toptier = node_is_toptier(folio_nid(folio)); 2084 /* 2085 * Skip scanning top tier node if normal numa 2086 * balancing is disabled 2087 */ 2088 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) && 2089 toptier) 2090 goto unlock; 2091 2092 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 2093 !toptier) 2094 folio_xchg_access_time(folio, 2095 jiffies_to_msecs(jiffies)); 2096 } 2097 /* 2098 * In case prot_numa, we are under mmap_read_lock(mm). It's critical 2099 * to not clear pmd intermittently to avoid race with MADV_DONTNEED 2100 * which is also under mmap_read_lock(mm): 2101 * 2102 * CPU0: CPU1: 2103 * change_huge_pmd(prot_numa=1) 2104 * pmdp_huge_get_and_clear_notify() 2105 * madvise_dontneed() 2106 * zap_pmd_range() 2107 * pmd_trans_huge(*pmd) == 0 (without ptl) 2108 * // skip the pmd 2109 * set_pmd_at(); 2110 * // pmd is re-established 2111 * 2112 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it 2113 * which may break userspace. 2114 * 2115 * pmdp_invalidate_ad() is required to make sure we don't miss 2116 * dirty/young flags set by hardware. 2117 */ 2118 oldpmd = pmdp_invalidate_ad(vma, addr, pmd); 2119 2120 entry = pmd_modify(oldpmd, newprot); 2121 if (uffd_wp) 2122 entry = pmd_mkuffd_wp(entry); 2123 else if (uffd_wp_resolve) 2124 /* 2125 * Leave the write bit to be handled by PF interrupt 2126 * handler, then things like COW could be properly 2127 * handled. 2128 */ 2129 entry = pmd_clear_uffd_wp(entry); 2130 2131 /* See change_pte_range(). */ 2132 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) && 2133 can_change_pmd_writable(vma, addr, entry)) 2134 entry = pmd_mkwrite(entry, vma); 2135 2136 ret = HPAGE_PMD_NR; 2137 set_pmd_at(mm, addr, pmd, entry); 2138 2139 if (huge_pmd_needs_flush(oldpmd, entry)) 2140 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE); 2141 unlock: 2142 spin_unlock(ptl); 2143 return ret; 2144 } 2145 2146 #ifdef CONFIG_USERFAULTFD 2147 /* 2148 * The PT lock for src_pmd and the mmap_lock for reading are held by 2149 * the caller, but it must return after releasing the page_table_lock. 2150 * Just move the page from src_pmd to dst_pmd if possible. 2151 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be 2152 * repeated by the caller, or other errors in case of failure. 2153 */ 2154 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval, 2155 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 2156 unsigned long dst_addr, unsigned long src_addr) 2157 { 2158 pmd_t _dst_pmd, src_pmdval; 2159 struct page *src_page; 2160 struct folio *src_folio; 2161 struct anon_vma *src_anon_vma; 2162 spinlock_t *src_ptl, *dst_ptl; 2163 pgtable_t src_pgtable; 2164 struct mmu_notifier_range range; 2165 int err = 0; 2166 2167 src_pmdval = *src_pmd; 2168 src_ptl = pmd_lockptr(mm, src_pmd); 2169 2170 lockdep_assert_held(src_ptl); 2171 mmap_assert_locked(mm); 2172 2173 /* Sanity checks before the operation */ 2174 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) || 2175 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) { 2176 spin_unlock(src_ptl); 2177 return -EINVAL; 2178 } 2179 2180 if (!pmd_trans_huge(src_pmdval)) { 2181 spin_unlock(src_ptl); 2182 if (is_pmd_migration_entry(src_pmdval)) { 2183 pmd_migration_entry_wait(mm, &src_pmdval); 2184 return -EAGAIN; 2185 } 2186 return -ENOENT; 2187 } 2188 2189 src_page = pmd_page(src_pmdval); 2190 if (unlikely(!PageAnonExclusive(src_page))) { 2191 spin_unlock(src_ptl); 2192 return -EBUSY; 2193 } 2194 2195 src_folio = page_folio(src_page); 2196 folio_get(src_folio); 2197 spin_unlock(src_ptl); 2198 2199 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE); 2200 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr, 2201 src_addr + HPAGE_PMD_SIZE); 2202 mmu_notifier_invalidate_range_start(&range); 2203 2204 folio_lock(src_folio); 2205 2206 /* 2207 * split_huge_page walks the anon_vma chain without the page 2208 * lock. Serialize against it with the anon_vma lock, the page 2209 * lock is not enough. 2210 */ 2211 src_anon_vma = folio_get_anon_vma(src_folio); 2212 if (!src_anon_vma) { 2213 err = -EAGAIN; 2214 goto unlock_folio; 2215 } 2216 anon_vma_lock_write(src_anon_vma); 2217 2218 dst_ptl = pmd_lockptr(mm, dst_pmd); 2219 double_pt_lock(src_ptl, dst_ptl); 2220 if (unlikely(!pmd_same(*src_pmd, src_pmdval) || 2221 !pmd_same(*dst_pmd, dst_pmdval))) { 2222 err = -EAGAIN; 2223 goto unlock_ptls; 2224 } 2225 if (folio_maybe_dma_pinned(src_folio) || 2226 !PageAnonExclusive(&src_folio->page)) { 2227 err = -EBUSY; 2228 goto unlock_ptls; 2229 } 2230 2231 if (WARN_ON_ONCE(!folio_test_head(src_folio)) || 2232 WARN_ON_ONCE(!folio_test_anon(src_folio))) { 2233 err = -EBUSY; 2234 goto unlock_ptls; 2235 } 2236 2237 folio_move_anon_rmap(src_folio, dst_vma); 2238 WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr)); 2239 2240 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd); 2241 /* Folio got pinned from under us. Put it back and fail the move. */ 2242 if (folio_maybe_dma_pinned(src_folio)) { 2243 set_pmd_at(mm, src_addr, src_pmd, src_pmdval); 2244 err = -EBUSY; 2245 goto unlock_ptls; 2246 } 2247 2248 _dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot); 2249 /* Follow mremap() behavior and treat the entry dirty after the move */ 2250 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma); 2251 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd); 2252 2253 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd); 2254 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable); 2255 unlock_ptls: 2256 double_pt_unlock(src_ptl, dst_ptl); 2257 anon_vma_unlock_write(src_anon_vma); 2258 put_anon_vma(src_anon_vma); 2259 unlock_folio: 2260 /* unblock rmap walks */ 2261 folio_unlock(src_folio); 2262 mmu_notifier_invalidate_range_end(&range); 2263 folio_put(src_folio); 2264 return err; 2265 } 2266 #endif /* CONFIG_USERFAULTFD */ 2267 2268 /* 2269 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise. 2270 * 2271 * Note that if it returns page table lock pointer, this routine returns without 2272 * unlocking page table lock. So callers must unlock it. 2273 */ 2274 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma) 2275 { 2276 spinlock_t *ptl; 2277 ptl = pmd_lock(vma->vm_mm, pmd); 2278 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || 2279 pmd_devmap(*pmd))) 2280 return ptl; 2281 spin_unlock(ptl); 2282 return NULL; 2283 } 2284 2285 /* 2286 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise. 2287 * 2288 * Note that if it returns page table lock pointer, this routine returns without 2289 * unlocking page table lock. So callers must unlock it. 2290 */ 2291 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma) 2292 { 2293 spinlock_t *ptl; 2294 2295 ptl = pud_lock(vma->vm_mm, pud); 2296 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud))) 2297 return ptl; 2298 spin_unlock(ptl); 2299 return NULL; 2300 } 2301 2302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 2303 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, 2304 pud_t *pud, unsigned long addr) 2305 { 2306 spinlock_t *ptl; 2307 2308 ptl = __pud_trans_huge_lock(pud, vma); 2309 if (!ptl) 2310 return 0; 2311 2312 pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm); 2313 tlb_remove_pud_tlb_entry(tlb, pud, addr); 2314 if (vma_is_special_huge(vma)) { 2315 spin_unlock(ptl); 2316 /* No zero page support yet */ 2317 } else { 2318 /* No support for anonymous PUD pages yet */ 2319 BUG(); 2320 } 2321 return 1; 2322 } 2323 2324 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud, 2325 unsigned long haddr) 2326 { 2327 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK); 2328 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2329 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma); 2330 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud)); 2331 2332 count_vm_event(THP_SPLIT_PUD); 2333 2334 pudp_huge_clear_flush(vma, haddr, pud); 2335 } 2336 2337 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud, 2338 unsigned long address) 2339 { 2340 spinlock_t *ptl; 2341 struct mmu_notifier_range range; 2342 2343 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2344 address & HPAGE_PUD_MASK, 2345 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE); 2346 mmu_notifier_invalidate_range_start(&range); 2347 ptl = pud_lock(vma->vm_mm, pud); 2348 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud))) 2349 goto out; 2350 __split_huge_pud_locked(vma, pud, range.start); 2351 2352 out: 2353 spin_unlock(ptl); 2354 mmu_notifier_invalidate_range_end(&range); 2355 } 2356 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 2357 2358 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma, 2359 unsigned long haddr, pmd_t *pmd) 2360 { 2361 struct mm_struct *mm = vma->vm_mm; 2362 pgtable_t pgtable; 2363 pmd_t _pmd, old_pmd; 2364 unsigned long addr; 2365 pte_t *pte; 2366 int i; 2367 2368 /* 2369 * Leave pmd empty until pte is filled note that it is fine to delay 2370 * notification until mmu_notifier_invalidate_range_end() as we are 2371 * replacing a zero pmd write protected page with a zero pte write 2372 * protected page. 2373 * 2374 * See Documentation/mm/mmu_notifier.rst 2375 */ 2376 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2377 2378 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2379 pmd_populate(mm, &_pmd, pgtable); 2380 2381 pte = pte_offset_map(&_pmd, haddr); 2382 VM_BUG_ON(!pte); 2383 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2384 pte_t entry; 2385 2386 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot); 2387 entry = pte_mkspecial(entry); 2388 if (pmd_uffd_wp(old_pmd)) 2389 entry = pte_mkuffd_wp(entry); 2390 VM_BUG_ON(!pte_none(ptep_get(pte))); 2391 set_pte_at(mm, addr, pte, entry); 2392 pte++; 2393 } 2394 pte_unmap(pte - 1); 2395 smp_wmb(); /* make pte visible before pmd */ 2396 pmd_populate(mm, pmd, pgtable); 2397 } 2398 2399 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd, 2400 unsigned long haddr, bool freeze) 2401 { 2402 struct mm_struct *mm = vma->vm_mm; 2403 struct folio *folio; 2404 struct page *page; 2405 pgtable_t pgtable; 2406 pmd_t old_pmd, _pmd; 2407 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false; 2408 bool anon_exclusive = false, dirty = false; 2409 unsigned long addr; 2410 pte_t *pte; 2411 int i; 2412 2413 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK); 2414 VM_BUG_ON_VMA(vma->vm_start > haddr, vma); 2415 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma); 2416 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd) 2417 && !pmd_devmap(*pmd)); 2418 2419 count_vm_event(THP_SPLIT_PMD); 2420 2421 if (!vma_is_anonymous(vma)) { 2422 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd); 2423 /* 2424 * We are going to unmap this huge page. So 2425 * just go ahead and zap it 2426 */ 2427 if (arch_needs_pgtable_deposit()) 2428 zap_deposited_table(mm, pmd); 2429 if (vma_is_special_huge(vma)) 2430 return; 2431 if (unlikely(is_pmd_migration_entry(old_pmd))) { 2432 swp_entry_t entry; 2433 2434 entry = pmd_to_swp_entry(old_pmd); 2435 page = pfn_swap_entry_to_page(entry); 2436 } else { 2437 page = pmd_page(old_pmd); 2438 folio = page_folio(page); 2439 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd)) 2440 folio_set_dirty(folio); 2441 if (!folio_test_referenced(folio) && pmd_young(old_pmd)) 2442 folio_set_referenced(folio); 2443 folio_remove_rmap_pmd(folio, page, vma); 2444 folio_put(folio); 2445 } 2446 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR); 2447 return; 2448 } 2449 2450 if (is_huge_zero_pmd(*pmd)) { 2451 /* 2452 * FIXME: Do we want to invalidate secondary mmu by calling 2453 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below 2454 * inside __split_huge_pmd() ? 2455 * 2456 * We are going from a zero huge page write protected to zero 2457 * small page also write protected so it does not seems useful 2458 * to invalidate secondary mmu at this time. 2459 */ 2460 return __split_huge_zero_page_pmd(vma, haddr, pmd); 2461 } 2462 2463 /* 2464 * Up to this point the pmd is present and huge and userland has the 2465 * whole access to the hugepage during the split (which happens in 2466 * place). If we overwrite the pmd with the not-huge version pointing 2467 * to the pte here (which of course we could if all CPUs were bug 2468 * free), userland could trigger a small page size TLB miss on the 2469 * small sized TLB while the hugepage TLB entry is still established in 2470 * the huge TLB. Some CPU doesn't like that. 2471 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum 2472 * 383 on page 105. Intel should be safe but is also warns that it's 2473 * only safe if the permission and cache attributes of the two entries 2474 * loaded in the two TLB is identical (which should be the case here). 2475 * But it is generally safer to never allow small and huge TLB entries 2476 * for the same virtual address to be loaded simultaneously. So instead 2477 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the 2478 * current pmd notpresent (atomically because here the pmd_trans_huge 2479 * must remain set at all times on the pmd until the split is complete 2480 * for this pmd), then we flush the SMP TLB and finally we write the 2481 * non-huge version of the pmd entry with pmd_populate. 2482 */ 2483 old_pmd = pmdp_invalidate(vma, haddr, pmd); 2484 2485 pmd_migration = is_pmd_migration_entry(old_pmd); 2486 if (unlikely(pmd_migration)) { 2487 swp_entry_t entry; 2488 2489 entry = pmd_to_swp_entry(old_pmd); 2490 page = pfn_swap_entry_to_page(entry); 2491 write = is_writable_migration_entry(entry); 2492 if (PageAnon(page)) 2493 anon_exclusive = is_readable_exclusive_migration_entry(entry); 2494 young = is_migration_entry_young(entry); 2495 dirty = is_migration_entry_dirty(entry); 2496 soft_dirty = pmd_swp_soft_dirty(old_pmd); 2497 uffd_wp = pmd_swp_uffd_wp(old_pmd); 2498 } else { 2499 page = pmd_page(old_pmd); 2500 folio = page_folio(page); 2501 if (pmd_dirty(old_pmd)) { 2502 dirty = true; 2503 folio_set_dirty(folio); 2504 } 2505 write = pmd_write(old_pmd); 2506 young = pmd_young(old_pmd); 2507 soft_dirty = pmd_soft_dirty(old_pmd); 2508 uffd_wp = pmd_uffd_wp(old_pmd); 2509 2510 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio); 2511 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio); 2512 2513 /* 2514 * Without "freeze", we'll simply split the PMD, propagating the 2515 * PageAnonExclusive() flag for each PTE by setting it for 2516 * each subpage -- no need to (temporarily) clear. 2517 * 2518 * With "freeze" we want to replace mapped pages by 2519 * migration entries right away. This is only possible if we 2520 * managed to clear PageAnonExclusive() -- see 2521 * set_pmd_migration_entry(). 2522 * 2523 * In case we cannot clear PageAnonExclusive(), split the PMD 2524 * only and let try_to_migrate_one() fail later. 2525 * 2526 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first. 2527 */ 2528 anon_exclusive = PageAnonExclusive(page); 2529 if (freeze && anon_exclusive && 2530 folio_try_share_anon_rmap_pmd(folio, page)) 2531 freeze = false; 2532 if (!freeze) { 2533 rmap_t rmap_flags = RMAP_NONE; 2534 2535 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2536 if (anon_exclusive) 2537 rmap_flags |= RMAP_EXCLUSIVE; 2538 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR, 2539 vma, haddr, rmap_flags); 2540 } 2541 } 2542 2543 /* 2544 * Withdraw the table only after we mark the pmd entry invalid. 2545 * This's critical for some architectures (Power). 2546 */ 2547 pgtable = pgtable_trans_huge_withdraw(mm, pmd); 2548 pmd_populate(mm, &_pmd, pgtable); 2549 2550 pte = pte_offset_map(&_pmd, haddr); 2551 VM_BUG_ON(!pte); 2552 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) { 2553 pte_t entry; 2554 /* 2555 * Note that NUMA hinting access restrictions are not 2556 * transferred to avoid any possibility of altering 2557 * permissions across VMAs. 2558 */ 2559 if (freeze || pmd_migration) { 2560 swp_entry_t swp_entry; 2561 if (write) 2562 swp_entry = make_writable_migration_entry( 2563 page_to_pfn(page + i)); 2564 else if (anon_exclusive) 2565 swp_entry = make_readable_exclusive_migration_entry( 2566 page_to_pfn(page + i)); 2567 else 2568 swp_entry = make_readable_migration_entry( 2569 page_to_pfn(page + i)); 2570 if (young) 2571 swp_entry = make_migration_entry_young(swp_entry); 2572 if (dirty) 2573 swp_entry = make_migration_entry_dirty(swp_entry); 2574 entry = swp_entry_to_pte(swp_entry); 2575 if (soft_dirty) 2576 entry = pte_swp_mksoft_dirty(entry); 2577 if (uffd_wp) 2578 entry = pte_swp_mkuffd_wp(entry); 2579 } else { 2580 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot)); 2581 if (write) 2582 entry = pte_mkwrite(entry, vma); 2583 if (!young) 2584 entry = pte_mkold(entry); 2585 /* NOTE: this may set soft-dirty too on some archs */ 2586 if (dirty) 2587 entry = pte_mkdirty(entry); 2588 if (soft_dirty) 2589 entry = pte_mksoft_dirty(entry); 2590 if (uffd_wp) 2591 entry = pte_mkuffd_wp(entry); 2592 } 2593 VM_BUG_ON(!pte_none(ptep_get(pte))); 2594 set_pte_at(mm, addr, pte, entry); 2595 pte++; 2596 } 2597 pte_unmap(pte - 1); 2598 2599 if (!pmd_migration) 2600 folio_remove_rmap_pmd(folio, page, vma); 2601 if (freeze) 2602 put_page(page); 2603 2604 smp_wmb(); /* make pte visible before pmd */ 2605 pmd_populate(mm, pmd, pgtable); 2606 } 2607 2608 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, 2609 unsigned long address, bool freeze, struct folio *folio) 2610 { 2611 spinlock_t *ptl; 2612 struct mmu_notifier_range range; 2613 2614 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2615 address & HPAGE_PMD_MASK, 2616 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE); 2617 mmu_notifier_invalidate_range_start(&range); 2618 ptl = pmd_lock(vma->vm_mm, pmd); 2619 2620 /* 2621 * If caller asks to setup a migration entry, we need a folio to check 2622 * pmd against. Otherwise we can end up replacing wrong folio. 2623 */ 2624 VM_BUG_ON(freeze && !folio); 2625 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio)); 2626 2627 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || 2628 is_pmd_migration_entry(*pmd)) { 2629 /* 2630 * It's safe to call pmd_page when folio is set because it's 2631 * guaranteed that pmd is present. 2632 */ 2633 if (folio && folio != page_folio(pmd_page(*pmd))) 2634 goto out; 2635 __split_huge_pmd_locked(vma, pmd, range.start, freeze); 2636 } 2637 2638 out: 2639 spin_unlock(ptl); 2640 mmu_notifier_invalidate_range_end(&range); 2641 } 2642 2643 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address, 2644 bool freeze, struct folio *folio) 2645 { 2646 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address); 2647 2648 if (!pmd) 2649 return; 2650 2651 __split_huge_pmd(vma, pmd, address, freeze, folio); 2652 } 2653 2654 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address) 2655 { 2656 /* 2657 * If the new address isn't hpage aligned and it could previously 2658 * contain an hugepage: check if we need to split an huge pmd. 2659 */ 2660 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) && 2661 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE), 2662 ALIGN(address, HPAGE_PMD_SIZE))) 2663 split_huge_pmd_address(vma, address, false, NULL); 2664 } 2665 2666 void vma_adjust_trans_huge(struct vm_area_struct *vma, 2667 unsigned long start, 2668 unsigned long end, 2669 long adjust_next) 2670 { 2671 /* Check if we need to split start first. */ 2672 split_huge_pmd_if_needed(vma, start); 2673 2674 /* Check if we need to split end next. */ 2675 split_huge_pmd_if_needed(vma, end); 2676 2677 /* 2678 * If we're also updating the next vma vm_start, 2679 * check if we need to split it. 2680 */ 2681 if (adjust_next > 0) { 2682 struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); 2683 unsigned long nstart = next->vm_start; 2684 nstart += adjust_next; 2685 split_huge_pmd_if_needed(next, nstart); 2686 } 2687 } 2688 2689 static void unmap_folio(struct folio *folio) 2690 { 2691 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | 2692 TTU_SYNC | TTU_BATCH_FLUSH; 2693 2694 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2695 2696 /* 2697 * Anon pages need migration entries to preserve them, but file 2698 * pages can simply be left unmapped, then faulted back on demand. 2699 * If that is ever changed (perhaps for mlock), update remap_page(). 2700 */ 2701 if (folio_test_anon(folio)) 2702 try_to_migrate(folio, ttu_flags); 2703 else 2704 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK); 2705 2706 try_to_unmap_flush(); 2707 } 2708 2709 static void remap_page(struct folio *folio, unsigned long nr) 2710 { 2711 int i = 0; 2712 2713 /* If unmap_folio() uses try_to_migrate() on file, remove this check */ 2714 if (!folio_test_anon(folio)) 2715 return; 2716 for (;;) { 2717 remove_migration_ptes(folio, folio, true); 2718 i += folio_nr_pages(folio); 2719 if (i >= nr) 2720 break; 2721 folio = folio_next(folio); 2722 } 2723 } 2724 2725 static void lru_add_page_tail(struct page *head, struct page *tail, 2726 struct lruvec *lruvec, struct list_head *list) 2727 { 2728 VM_BUG_ON_PAGE(!PageHead(head), head); 2729 VM_BUG_ON_PAGE(PageCompound(tail), head); 2730 VM_BUG_ON_PAGE(PageLRU(tail), head); 2731 lockdep_assert_held(&lruvec->lru_lock); 2732 2733 if (list) { 2734 /* page reclaim is reclaiming a huge page */ 2735 VM_WARN_ON(PageLRU(head)); 2736 get_page(tail); 2737 list_add_tail(&tail->lru, list); 2738 } else { 2739 /* head is still on lru (and we have it frozen) */ 2740 VM_WARN_ON(!PageLRU(head)); 2741 if (PageUnevictable(tail)) 2742 tail->mlock_count = 0; 2743 else 2744 list_add_tail(&tail->lru, &head->lru); 2745 SetPageLRU(tail); 2746 } 2747 } 2748 2749 static void __split_huge_page_tail(struct folio *folio, int tail, 2750 struct lruvec *lruvec, struct list_head *list) 2751 { 2752 struct page *head = &folio->page; 2753 struct page *page_tail = head + tail; 2754 /* 2755 * Careful: new_folio is not a "real" folio before we cleared PageTail. 2756 * Don't pass it around before clear_compound_head(). 2757 */ 2758 struct folio *new_folio = (struct folio *)page_tail; 2759 2760 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail); 2761 2762 /* 2763 * Clone page flags before unfreezing refcount. 2764 * 2765 * After successful get_page_unless_zero() might follow flags change, 2766 * for example lock_page() which set PG_waiters. 2767 * 2768 * Note that for mapped sub-pages of an anonymous THP, 2769 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in 2770 * the migration entry instead from where remap_page() will restore it. 2771 * We can still have PG_anon_exclusive set on effectively unmapped and 2772 * unreferenced sub-pages of an anonymous THP: we can simply drop 2773 * PG_anon_exclusive (-> PG_mappedtodisk) for these here. 2774 */ 2775 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 2776 page_tail->flags |= (head->flags & 2777 ((1L << PG_referenced) | 2778 (1L << PG_swapbacked) | 2779 (1L << PG_swapcache) | 2780 (1L << PG_mlocked) | 2781 (1L << PG_uptodate) | 2782 (1L << PG_active) | 2783 (1L << PG_workingset) | 2784 (1L << PG_locked) | 2785 (1L << PG_unevictable) | 2786 #ifdef CONFIG_ARCH_USES_PG_ARCH_X 2787 (1L << PG_arch_2) | 2788 (1L << PG_arch_3) | 2789 #endif 2790 (1L << PG_dirty) | 2791 LRU_GEN_MASK | LRU_REFS_MASK)); 2792 2793 /* ->mapping in first and second tail page is replaced by other uses */ 2794 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING, 2795 page_tail); 2796 page_tail->mapping = head->mapping; 2797 page_tail->index = head->index + tail; 2798 2799 /* 2800 * page->private should not be set in tail pages. Fix up and warn once 2801 * if private is unexpectedly set. 2802 */ 2803 if (unlikely(page_tail->private)) { 2804 VM_WARN_ON_ONCE_PAGE(true, page_tail); 2805 page_tail->private = 0; 2806 } 2807 if (folio_test_swapcache(folio)) 2808 new_folio->swap.val = folio->swap.val + tail; 2809 2810 /* Page flags must be visible before we make the page non-compound. */ 2811 smp_wmb(); 2812 2813 /* 2814 * Clear PageTail before unfreezing page refcount. 2815 * 2816 * After successful get_page_unless_zero() might follow put_page() 2817 * which needs correct compound_head(). 2818 */ 2819 clear_compound_head(page_tail); 2820 2821 /* Finally unfreeze refcount. Additional reference from page cache. */ 2822 page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) || 2823 folio_test_swapcache(folio))); 2824 2825 if (folio_test_young(folio)) 2826 folio_set_young(new_folio); 2827 if (folio_test_idle(folio)) 2828 folio_set_idle(new_folio); 2829 2830 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio)); 2831 2832 /* 2833 * always add to the tail because some iterators expect new 2834 * pages to show after the currently processed elements - e.g. 2835 * migrate_pages 2836 */ 2837 lru_add_page_tail(head, page_tail, lruvec, list); 2838 } 2839 2840 static void __split_huge_page(struct page *page, struct list_head *list, 2841 pgoff_t end) 2842 { 2843 struct folio *folio = page_folio(page); 2844 struct page *head = &folio->page; 2845 struct lruvec *lruvec; 2846 struct address_space *swap_cache = NULL; 2847 unsigned long offset = 0; 2848 unsigned int nr = thp_nr_pages(head); 2849 int i, nr_dropped = 0; 2850 2851 /* complete memcg works before add pages to LRU */ 2852 split_page_memcg(head, nr); 2853 2854 if (folio_test_anon(folio) && folio_test_swapcache(folio)) { 2855 offset = swp_offset(folio->swap); 2856 swap_cache = swap_address_space(folio->swap); 2857 xa_lock(&swap_cache->i_pages); 2858 } 2859 2860 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */ 2861 lruvec = folio_lruvec_lock(folio); 2862 2863 ClearPageHasHWPoisoned(head); 2864 2865 for (i = nr - 1; i >= 1; i--) { 2866 __split_huge_page_tail(folio, i, lruvec, list); 2867 /* Some pages can be beyond EOF: drop them from page cache */ 2868 if (head[i].index >= end) { 2869 struct folio *tail = page_folio(head + i); 2870 2871 if (shmem_mapping(head->mapping)) 2872 nr_dropped++; 2873 else if (folio_test_clear_dirty(tail)) 2874 folio_account_cleaned(tail, 2875 inode_to_wb(folio->mapping->host)); 2876 __filemap_remove_folio(tail, NULL); 2877 folio_put(tail); 2878 } else if (!PageAnon(page)) { 2879 __xa_store(&head->mapping->i_pages, head[i].index, 2880 head + i, 0); 2881 } else if (swap_cache) { 2882 __xa_store(&swap_cache->i_pages, offset + i, 2883 head + i, 0); 2884 } 2885 } 2886 2887 ClearPageCompound(head); 2888 unlock_page_lruvec(lruvec); 2889 /* Caller disabled irqs, so they are still disabled here */ 2890 2891 split_page_owner(head, nr); 2892 2893 /* See comment in __split_huge_page_tail() */ 2894 if (PageAnon(head)) { 2895 /* Additional pin to swap cache */ 2896 if (PageSwapCache(head)) { 2897 page_ref_add(head, 2); 2898 xa_unlock(&swap_cache->i_pages); 2899 } else { 2900 page_ref_inc(head); 2901 } 2902 } else { 2903 /* Additional pin to page cache */ 2904 page_ref_add(head, 2); 2905 xa_unlock(&head->mapping->i_pages); 2906 } 2907 local_irq_enable(); 2908 2909 if (nr_dropped) 2910 shmem_uncharge(head->mapping->host, nr_dropped); 2911 remap_page(folio, nr); 2912 2913 if (folio_test_swapcache(folio)) 2914 split_swap_cluster(folio->swap); 2915 2916 for (i = 0; i < nr; i++) { 2917 struct page *subpage = head + i; 2918 if (subpage == page) 2919 continue; 2920 unlock_page(subpage); 2921 2922 /* 2923 * Subpages may be freed if there wasn't any mapping 2924 * like if add_to_swap() is running on a lru page that 2925 * had its mapping zapped. And freeing these pages 2926 * requires taking the lru_lock so we do the put_page 2927 * of the tail pages after the split is complete. 2928 */ 2929 free_page_and_swap_cache(subpage); 2930 } 2931 } 2932 2933 /* Racy check whether the huge page can be split */ 2934 bool can_split_folio(struct folio *folio, int *pextra_pins) 2935 { 2936 int extra_pins; 2937 2938 /* Additional pins from page cache */ 2939 if (folio_test_anon(folio)) 2940 extra_pins = folio_test_swapcache(folio) ? 2941 folio_nr_pages(folio) : 0; 2942 else 2943 extra_pins = folio_nr_pages(folio); 2944 if (pextra_pins) 2945 *pextra_pins = extra_pins; 2946 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1; 2947 } 2948 2949 /* 2950 * This function splits huge page into normal pages. @page can point to any 2951 * subpage of huge page to split. Split doesn't change the position of @page. 2952 * 2953 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY. 2954 * The huge page must be locked. 2955 * 2956 * If @list is null, tail pages will be added to LRU list, otherwise, to @list. 2957 * 2958 * Both head page and tail pages will inherit mapping, flags, and so on from 2959 * the hugepage. 2960 * 2961 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if 2962 * they are not mapped. 2963 * 2964 * Returns 0 if the hugepage is split successfully. 2965 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under 2966 * us. 2967 */ 2968 int split_huge_page_to_list(struct page *page, struct list_head *list) 2969 { 2970 struct folio *folio = page_folio(page); 2971 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 2972 XA_STATE(xas, &folio->mapping->i_pages, folio->index); 2973 struct anon_vma *anon_vma = NULL; 2974 struct address_space *mapping = NULL; 2975 int extra_pins, ret; 2976 pgoff_t end; 2977 bool is_hzp; 2978 2979 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2980 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 2981 2982 is_hzp = is_huge_zero_page(&folio->page); 2983 if (is_hzp) { 2984 pr_warn_ratelimited("Called split_huge_page for huge zero page\n"); 2985 return -EBUSY; 2986 } 2987 2988 if (folio_test_writeback(folio)) 2989 return -EBUSY; 2990 2991 if (folio_test_anon(folio)) { 2992 /* 2993 * The caller does not necessarily hold an mmap_lock that would 2994 * prevent the anon_vma disappearing so we first we take a 2995 * reference to it and then lock the anon_vma for write. This 2996 * is similar to folio_lock_anon_vma_read except the write lock 2997 * is taken to serialise against parallel split or collapse 2998 * operations. 2999 */ 3000 anon_vma = folio_get_anon_vma(folio); 3001 if (!anon_vma) { 3002 ret = -EBUSY; 3003 goto out; 3004 } 3005 end = -1; 3006 mapping = NULL; 3007 anon_vma_lock_write(anon_vma); 3008 } else { 3009 gfp_t gfp; 3010 3011 mapping = folio->mapping; 3012 3013 /* Truncated ? */ 3014 if (!mapping) { 3015 ret = -EBUSY; 3016 goto out; 3017 } 3018 3019 gfp = current_gfp_context(mapping_gfp_mask(mapping) & 3020 GFP_RECLAIM_MASK); 3021 3022 if (!filemap_release_folio(folio, gfp)) { 3023 ret = -EBUSY; 3024 goto out; 3025 } 3026 3027 xas_split_alloc(&xas, folio, folio_order(folio), gfp); 3028 if (xas_error(&xas)) { 3029 ret = xas_error(&xas); 3030 goto out; 3031 } 3032 3033 anon_vma = NULL; 3034 i_mmap_lock_read(mapping); 3035 3036 /* 3037 *__split_huge_page() may need to trim off pages beyond EOF: 3038 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock, 3039 * which cannot be nested inside the page tree lock. So note 3040 * end now: i_size itself may be changed at any moment, but 3041 * folio lock is good enough to serialize the trimming. 3042 */ 3043 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3044 if (shmem_mapping(mapping)) 3045 end = shmem_fallocend(mapping->host, end); 3046 } 3047 3048 /* 3049 * Racy check if we can split the page, before unmap_folio() will 3050 * split PMDs 3051 */ 3052 if (!can_split_folio(folio, &extra_pins)) { 3053 ret = -EAGAIN; 3054 goto out_unlock; 3055 } 3056 3057 unmap_folio(folio); 3058 3059 /* block interrupt reentry in xa_lock and spinlock */ 3060 local_irq_disable(); 3061 if (mapping) { 3062 /* 3063 * Check if the folio is present in page cache. 3064 * We assume all tail are present too, if folio is there. 3065 */ 3066 xas_lock(&xas); 3067 xas_reset(&xas); 3068 if (xas_load(&xas) != folio) 3069 goto fail; 3070 } 3071 3072 /* Prevent deferred_split_scan() touching ->_refcount */ 3073 spin_lock(&ds_queue->split_queue_lock); 3074 if (folio_ref_freeze(folio, 1 + extra_pins)) { 3075 if (!list_empty(&folio->_deferred_list)) { 3076 ds_queue->split_queue_len--; 3077 list_del(&folio->_deferred_list); 3078 } 3079 spin_unlock(&ds_queue->split_queue_lock); 3080 if (mapping) { 3081 int nr = folio_nr_pages(folio); 3082 3083 xas_split(&xas, folio, folio_order(folio)); 3084 if (folio_test_pmd_mappable(folio)) { 3085 if (folio_test_swapbacked(folio)) { 3086 __lruvec_stat_mod_folio(folio, 3087 NR_SHMEM_THPS, -nr); 3088 } else { 3089 __lruvec_stat_mod_folio(folio, 3090 NR_FILE_THPS, -nr); 3091 filemap_nr_thps_dec(mapping); 3092 } 3093 } 3094 } 3095 3096 __split_huge_page(page, list, end); 3097 ret = 0; 3098 } else { 3099 spin_unlock(&ds_queue->split_queue_lock); 3100 fail: 3101 if (mapping) 3102 xas_unlock(&xas); 3103 local_irq_enable(); 3104 remap_page(folio, folio_nr_pages(folio)); 3105 ret = -EAGAIN; 3106 } 3107 3108 out_unlock: 3109 if (anon_vma) { 3110 anon_vma_unlock_write(anon_vma); 3111 put_anon_vma(anon_vma); 3112 } 3113 if (mapping) 3114 i_mmap_unlock_read(mapping); 3115 out: 3116 xas_destroy(&xas); 3117 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED); 3118 return ret; 3119 } 3120 3121 void folio_undo_large_rmappable(struct folio *folio) 3122 { 3123 struct deferred_split *ds_queue; 3124 unsigned long flags; 3125 3126 /* 3127 * At this point, there is no one trying to add the folio to 3128 * deferred_list. If folio is not in deferred_list, it's safe 3129 * to check without acquiring the split_queue_lock. 3130 */ 3131 if (data_race(list_empty(&folio->_deferred_list))) 3132 return; 3133 3134 ds_queue = get_deferred_split_queue(folio); 3135 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3136 if (!list_empty(&folio->_deferred_list)) { 3137 ds_queue->split_queue_len--; 3138 list_del_init(&folio->_deferred_list); 3139 } 3140 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3141 } 3142 3143 void deferred_split_folio(struct folio *folio) 3144 { 3145 struct deferred_split *ds_queue = get_deferred_split_queue(folio); 3146 #ifdef CONFIG_MEMCG 3147 struct mem_cgroup *memcg = folio_memcg(folio); 3148 #endif 3149 unsigned long flags; 3150 3151 VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio); 3152 3153 /* 3154 * The try_to_unmap() in page reclaim path might reach here too, 3155 * this may cause a race condition to corrupt deferred split queue. 3156 * And, if page reclaim is already handling the same folio, it is 3157 * unnecessary to handle it again in shrinker. 3158 * 3159 * Check the swapcache flag to determine if the folio is being 3160 * handled by page reclaim since THP swap would add the folio into 3161 * swap cache before calling try_to_unmap(). 3162 */ 3163 if (folio_test_swapcache(folio)) 3164 return; 3165 3166 if (!list_empty(&folio->_deferred_list)) 3167 return; 3168 3169 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3170 if (list_empty(&folio->_deferred_list)) { 3171 count_vm_event(THP_DEFERRED_SPLIT_PAGE); 3172 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue); 3173 ds_queue->split_queue_len++; 3174 #ifdef CONFIG_MEMCG 3175 if (memcg) 3176 set_shrinker_bit(memcg, folio_nid(folio), 3177 deferred_split_shrinker->id); 3178 #endif 3179 } 3180 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3181 } 3182 3183 static unsigned long deferred_split_count(struct shrinker *shrink, 3184 struct shrink_control *sc) 3185 { 3186 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3187 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3188 3189 #ifdef CONFIG_MEMCG 3190 if (sc->memcg) 3191 ds_queue = &sc->memcg->deferred_split_queue; 3192 #endif 3193 return READ_ONCE(ds_queue->split_queue_len); 3194 } 3195 3196 static unsigned long deferred_split_scan(struct shrinker *shrink, 3197 struct shrink_control *sc) 3198 { 3199 struct pglist_data *pgdata = NODE_DATA(sc->nid); 3200 struct deferred_split *ds_queue = &pgdata->deferred_split_queue; 3201 unsigned long flags; 3202 LIST_HEAD(list); 3203 struct folio *folio, *next; 3204 int split = 0; 3205 3206 #ifdef CONFIG_MEMCG 3207 if (sc->memcg) 3208 ds_queue = &sc->memcg->deferred_split_queue; 3209 #endif 3210 3211 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3212 /* Take pin on all head pages to avoid freeing them under us */ 3213 list_for_each_entry_safe(folio, next, &ds_queue->split_queue, 3214 _deferred_list) { 3215 if (folio_try_get(folio)) { 3216 list_move(&folio->_deferred_list, &list); 3217 } else { 3218 /* We lost race with folio_put() */ 3219 list_del_init(&folio->_deferred_list); 3220 ds_queue->split_queue_len--; 3221 } 3222 if (!--sc->nr_to_scan) 3223 break; 3224 } 3225 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3226 3227 list_for_each_entry_safe(folio, next, &list, _deferred_list) { 3228 if (!folio_trylock(folio)) 3229 goto next; 3230 /* split_huge_page() removes page from list on success */ 3231 if (!split_folio(folio)) 3232 split++; 3233 folio_unlock(folio); 3234 next: 3235 folio_put(folio); 3236 } 3237 3238 spin_lock_irqsave(&ds_queue->split_queue_lock, flags); 3239 list_splice_tail(&list, &ds_queue->split_queue); 3240 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags); 3241 3242 /* 3243 * Stop shrinker if we didn't split any page, but the queue is empty. 3244 * This can happen if pages were freed under us. 3245 */ 3246 if (!split && list_empty(&ds_queue->split_queue)) 3247 return SHRINK_STOP; 3248 return split; 3249 } 3250 3251 #ifdef CONFIG_DEBUG_FS 3252 static void split_huge_pages_all(void) 3253 { 3254 struct zone *zone; 3255 struct page *page; 3256 struct folio *folio; 3257 unsigned long pfn, max_zone_pfn; 3258 unsigned long total = 0, split = 0; 3259 3260 pr_debug("Split all THPs\n"); 3261 for_each_zone(zone) { 3262 if (!managed_zone(zone)) 3263 continue; 3264 max_zone_pfn = zone_end_pfn(zone); 3265 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { 3266 int nr_pages; 3267 3268 page = pfn_to_online_page(pfn); 3269 if (!page || PageTail(page)) 3270 continue; 3271 folio = page_folio(page); 3272 if (!folio_try_get(folio)) 3273 continue; 3274 3275 if (unlikely(page_folio(page) != folio)) 3276 goto next; 3277 3278 if (zone != folio_zone(folio)) 3279 goto next; 3280 3281 if (!folio_test_large(folio) 3282 || folio_test_hugetlb(folio) 3283 || !folio_test_lru(folio)) 3284 goto next; 3285 3286 total++; 3287 folio_lock(folio); 3288 nr_pages = folio_nr_pages(folio); 3289 if (!split_folio(folio)) 3290 split++; 3291 pfn += nr_pages - 1; 3292 folio_unlock(folio); 3293 next: 3294 folio_put(folio); 3295 cond_resched(); 3296 } 3297 } 3298 3299 pr_debug("%lu of %lu THP split\n", split, total); 3300 } 3301 3302 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma) 3303 { 3304 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) || 3305 is_vm_hugetlb_page(vma); 3306 } 3307 3308 static int split_huge_pages_pid(int pid, unsigned long vaddr_start, 3309 unsigned long vaddr_end) 3310 { 3311 int ret = 0; 3312 struct task_struct *task; 3313 struct mm_struct *mm; 3314 unsigned long total = 0, split = 0; 3315 unsigned long addr; 3316 3317 vaddr_start &= PAGE_MASK; 3318 vaddr_end &= PAGE_MASK; 3319 3320 /* Find the task_struct from pid */ 3321 rcu_read_lock(); 3322 task = find_task_by_vpid(pid); 3323 if (!task) { 3324 rcu_read_unlock(); 3325 ret = -ESRCH; 3326 goto out; 3327 } 3328 get_task_struct(task); 3329 rcu_read_unlock(); 3330 3331 /* Find the mm_struct */ 3332 mm = get_task_mm(task); 3333 put_task_struct(task); 3334 3335 if (!mm) { 3336 ret = -EINVAL; 3337 goto out; 3338 } 3339 3340 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n", 3341 pid, vaddr_start, vaddr_end); 3342 3343 mmap_read_lock(mm); 3344 /* 3345 * always increase addr by PAGE_SIZE, since we could have a PTE page 3346 * table filled with PTE-mapped THPs, each of which is distinct. 3347 */ 3348 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) { 3349 struct vm_area_struct *vma = vma_lookup(mm, addr); 3350 struct page *page; 3351 struct folio *folio; 3352 3353 if (!vma) 3354 break; 3355 3356 /* skip special VMA and hugetlb VMA */ 3357 if (vma_not_suitable_for_thp_split(vma)) { 3358 addr = vma->vm_end; 3359 continue; 3360 } 3361 3362 /* FOLL_DUMP to ignore special (like zero) pages */ 3363 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP); 3364 3365 if (IS_ERR_OR_NULL(page)) 3366 continue; 3367 3368 folio = page_folio(page); 3369 if (!is_transparent_hugepage(folio)) 3370 goto next; 3371 3372 total++; 3373 if (!can_split_folio(folio, NULL)) 3374 goto next; 3375 3376 if (!folio_trylock(folio)) 3377 goto next; 3378 3379 if (!split_folio(folio)) 3380 split++; 3381 3382 folio_unlock(folio); 3383 next: 3384 folio_put(folio); 3385 cond_resched(); 3386 } 3387 mmap_read_unlock(mm); 3388 mmput(mm); 3389 3390 pr_debug("%lu of %lu THP split\n", split, total); 3391 3392 out: 3393 return ret; 3394 } 3395 3396 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start, 3397 pgoff_t off_end) 3398 { 3399 struct filename *file; 3400 struct file *candidate; 3401 struct address_space *mapping; 3402 int ret = -EINVAL; 3403 pgoff_t index; 3404 int nr_pages = 1; 3405 unsigned long total = 0, split = 0; 3406 3407 file = getname_kernel(file_path); 3408 if (IS_ERR(file)) 3409 return ret; 3410 3411 candidate = file_open_name(file, O_RDONLY, 0); 3412 if (IS_ERR(candidate)) 3413 goto out; 3414 3415 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n", 3416 file_path, off_start, off_end); 3417 3418 mapping = candidate->f_mapping; 3419 3420 for (index = off_start; index < off_end; index += nr_pages) { 3421 struct folio *folio = filemap_get_folio(mapping, index); 3422 3423 nr_pages = 1; 3424 if (IS_ERR(folio)) 3425 continue; 3426 3427 if (!folio_test_large(folio)) 3428 goto next; 3429 3430 total++; 3431 nr_pages = folio_nr_pages(folio); 3432 3433 if (!folio_trylock(folio)) 3434 goto next; 3435 3436 if (!split_folio(folio)) 3437 split++; 3438 3439 folio_unlock(folio); 3440 next: 3441 folio_put(folio); 3442 cond_resched(); 3443 } 3444 3445 filp_close(candidate, NULL); 3446 ret = 0; 3447 3448 pr_debug("%lu of %lu file-backed THP split\n", split, total); 3449 out: 3450 putname(file); 3451 return ret; 3452 } 3453 3454 #define MAX_INPUT_BUF_SZ 255 3455 3456 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf, 3457 size_t count, loff_t *ppops) 3458 { 3459 static DEFINE_MUTEX(split_debug_mutex); 3460 ssize_t ret; 3461 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */ 3462 char input_buf[MAX_INPUT_BUF_SZ]; 3463 int pid; 3464 unsigned long vaddr_start, vaddr_end; 3465 3466 ret = mutex_lock_interruptible(&split_debug_mutex); 3467 if (ret) 3468 return ret; 3469 3470 ret = -EFAULT; 3471 3472 memset(input_buf, 0, MAX_INPUT_BUF_SZ); 3473 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ))) 3474 goto out; 3475 3476 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0'; 3477 3478 if (input_buf[0] == '/') { 3479 char *tok; 3480 char *buf = input_buf; 3481 char file_path[MAX_INPUT_BUF_SZ]; 3482 pgoff_t off_start = 0, off_end = 0; 3483 size_t input_len = strlen(input_buf); 3484 3485 tok = strsep(&buf, ","); 3486 if (tok) { 3487 strcpy(file_path, tok); 3488 } else { 3489 ret = -EINVAL; 3490 goto out; 3491 } 3492 3493 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end); 3494 if (ret != 2) { 3495 ret = -EINVAL; 3496 goto out; 3497 } 3498 ret = split_huge_pages_in_file(file_path, off_start, off_end); 3499 if (!ret) 3500 ret = input_len; 3501 3502 goto out; 3503 } 3504 3505 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end); 3506 if (ret == 1 && pid == 1) { 3507 split_huge_pages_all(); 3508 ret = strlen(input_buf); 3509 goto out; 3510 } else if (ret != 3) { 3511 ret = -EINVAL; 3512 goto out; 3513 } 3514 3515 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end); 3516 if (!ret) 3517 ret = strlen(input_buf); 3518 out: 3519 mutex_unlock(&split_debug_mutex); 3520 return ret; 3521 3522 } 3523 3524 static const struct file_operations split_huge_pages_fops = { 3525 .owner = THIS_MODULE, 3526 .write = split_huge_pages_write, 3527 .llseek = no_llseek, 3528 }; 3529 3530 static int __init split_huge_pages_debugfs(void) 3531 { 3532 debugfs_create_file("split_huge_pages", 0200, NULL, NULL, 3533 &split_huge_pages_fops); 3534 return 0; 3535 } 3536 late_initcall(split_huge_pages_debugfs); 3537 #endif 3538 3539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 3540 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw, 3541 struct page *page) 3542 { 3543 struct folio *folio = page_folio(page); 3544 struct vm_area_struct *vma = pvmw->vma; 3545 struct mm_struct *mm = vma->vm_mm; 3546 unsigned long address = pvmw->address; 3547 bool anon_exclusive; 3548 pmd_t pmdval; 3549 swp_entry_t entry; 3550 pmd_t pmdswp; 3551 3552 if (!(pvmw->pmd && !pvmw->pte)) 3553 return 0; 3554 3555 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE); 3556 pmdval = pmdp_invalidate(vma, address, pvmw->pmd); 3557 3558 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */ 3559 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page); 3560 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) { 3561 set_pmd_at(mm, address, pvmw->pmd, pmdval); 3562 return -EBUSY; 3563 } 3564 3565 if (pmd_dirty(pmdval)) 3566 folio_set_dirty(folio); 3567 if (pmd_write(pmdval)) 3568 entry = make_writable_migration_entry(page_to_pfn(page)); 3569 else if (anon_exclusive) 3570 entry = make_readable_exclusive_migration_entry(page_to_pfn(page)); 3571 else 3572 entry = make_readable_migration_entry(page_to_pfn(page)); 3573 if (pmd_young(pmdval)) 3574 entry = make_migration_entry_young(entry); 3575 if (pmd_dirty(pmdval)) 3576 entry = make_migration_entry_dirty(entry); 3577 pmdswp = swp_entry_to_pmd(entry); 3578 if (pmd_soft_dirty(pmdval)) 3579 pmdswp = pmd_swp_mksoft_dirty(pmdswp); 3580 if (pmd_uffd_wp(pmdval)) 3581 pmdswp = pmd_swp_mkuffd_wp(pmdswp); 3582 set_pmd_at(mm, address, pvmw->pmd, pmdswp); 3583 folio_remove_rmap_pmd(folio, page, vma); 3584 folio_put(folio); 3585 trace_set_migration_pmd(address, pmd_val(pmdswp)); 3586 3587 return 0; 3588 } 3589 3590 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new) 3591 { 3592 struct folio *folio = page_folio(new); 3593 struct vm_area_struct *vma = pvmw->vma; 3594 struct mm_struct *mm = vma->vm_mm; 3595 unsigned long address = pvmw->address; 3596 unsigned long haddr = address & HPAGE_PMD_MASK; 3597 pmd_t pmde; 3598 swp_entry_t entry; 3599 3600 if (!(pvmw->pmd && !pvmw->pte)) 3601 return; 3602 3603 entry = pmd_to_swp_entry(*pvmw->pmd); 3604 folio_get(folio); 3605 pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot)); 3606 if (pmd_swp_soft_dirty(*pvmw->pmd)) 3607 pmde = pmd_mksoft_dirty(pmde); 3608 if (is_writable_migration_entry(entry)) 3609 pmde = pmd_mkwrite(pmde, vma); 3610 if (pmd_swp_uffd_wp(*pvmw->pmd)) 3611 pmde = pmd_mkuffd_wp(pmde); 3612 if (!is_migration_entry_young(entry)) 3613 pmde = pmd_mkold(pmde); 3614 /* NOTE: this may contain setting soft-dirty on some archs */ 3615 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry)) 3616 pmde = pmd_mkdirty(pmde); 3617 3618 if (folio_test_anon(folio)) { 3619 rmap_t rmap_flags = RMAP_NONE; 3620 3621 if (!is_readable_migration_entry(entry)) 3622 rmap_flags |= RMAP_EXCLUSIVE; 3623 3624 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags); 3625 } else { 3626 folio_add_file_rmap_pmd(folio, new, vma); 3627 } 3628 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new)); 3629 set_pmd_at(mm, haddr, pvmw->pmd, pmde); 3630 3631 /* No need to invalidate - it was non-present before */ 3632 update_mmu_cache_pmd(vma, address, pvmw->pmd); 3633 trace_remove_migration_pmd(address, pmd_val(pmde)); 3634 } 3635 #endif 3636