xref: /linux/mm/huge_memory.c (revision 063a7ce32ddc2c4f2404b0dfd29e60e3dbcdffac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 
41 #include <asm/tlb.h>
42 #include <asm/pgalloc.h>
43 #include "internal.h"
44 #include "swap.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/thp.h>
48 
49 /*
50  * By default, transparent hugepage support is disabled in order to avoid
51  * risking an increased memory footprint for applications that are not
52  * guaranteed to benefit from it. When transparent hugepage support is
53  * enabled, it is for all mappings, and khugepaged scans all mappings.
54  * Defrag is invoked by khugepaged hugepage allocations and by page faults
55  * for all hugepage allocations.
56  */
57 unsigned long transparent_hugepage_flags __read_mostly =
58 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
59 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
60 #endif
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
62 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
63 #endif
64 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
65 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
66 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
67 
68 static struct shrinker *deferred_split_shrinker;
69 static unsigned long deferred_split_count(struct shrinker *shrink,
70 					  struct shrink_control *sc);
71 static unsigned long deferred_split_scan(struct shrinker *shrink,
72 					 struct shrink_control *sc);
73 
74 static atomic_t huge_zero_refcount;
75 struct page *huge_zero_page __read_mostly;
76 unsigned long huge_zero_pfn __read_mostly = ~0UL;
77 unsigned long huge_anon_orders_always __read_mostly;
78 unsigned long huge_anon_orders_madvise __read_mostly;
79 unsigned long huge_anon_orders_inherit __read_mostly;
80 
81 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
82 					 unsigned long vm_flags, bool smaps,
83 					 bool in_pf, bool enforce_sysfs,
84 					 unsigned long orders)
85 {
86 	/* Check the intersection of requested and supported orders. */
87 	orders &= vma_is_anonymous(vma) ?
88 			THP_ORDERS_ALL_ANON : THP_ORDERS_ALL_FILE;
89 	if (!orders)
90 		return 0;
91 
92 	if (!vma->vm_mm)		/* vdso */
93 		return 0;
94 
95 	/*
96 	 * Explicitly disabled through madvise or prctl, or some
97 	 * architectures may disable THP for some mappings, for
98 	 * example, s390 kvm.
99 	 * */
100 	if ((vm_flags & VM_NOHUGEPAGE) ||
101 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
102 		return 0;
103 	/*
104 	 * If the hardware/firmware marked hugepage support disabled.
105 	 */
106 	if (transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED))
107 		return 0;
108 
109 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
110 	if (vma_is_dax(vma))
111 		return in_pf ? orders : 0;
112 
113 	/*
114 	 * khugepaged special VMA and hugetlb VMA.
115 	 * Must be checked after dax since some dax mappings may have
116 	 * VM_MIXEDMAP set.
117 	 */
118 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
119 		return 0;
120 
121 	/*
122 	 * Check alignment for file vma and size for both file and anon vma by
123 	 * filtering out the unsuitable orders.
124 	 *
125 	 * Skip the check for page fault. Huge fault does the check in fault
126 	 * handlers.
127 	 */
128 	if (!in_pf) {
129 		int order = highest_order(orders);
130 		unsigned long addr;
131 
132 		while (orders) {
133 			addr = vma->vm_end - (PAGE_SIZE << order);
134 			if (thp_vma_suitable_order(vma, addr, order))
135 				break;
136 			order = next_order(&orders, order);
137 		}
138 
139 		if (!orders)
140 			return 0;
141 	}
142 
143 	/*
144 	 * Enabled via shmem mount options or sysfs settings.
145 	 * Must be done before hugepage flags check since shmem has its
146 	 * own flags.
147 	 */
148 	if (!in_pf && shmem_file(vma->vm_file))
149 		return shmem_is_huge(file_inode(vma->vm_file), vma->vm_pgoff,
150 				     !enforce_sysfs, vma->vm_mm, vm_flags)
151 			? orders : 0;
152 
153 	if (!vma_is_anonymous(vma)) {
154 		/*
155 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
156 		 * were already handled in thp_vma_allowable_orders().
157 		 */
158 		if (enforce_sysfs &&
159 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
160 						    !hugepage_global_always())))
161 			return 0;
162 
163 		/*
164 		 * Trust that ->huge_fault() handlers know what they are doing
165 		 * in fault path.
166 		 */
167 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
168 			return orders;
169 		/* Only regular file is valid in collapse path */
170 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
171 			return orders;
172 		return 0;
173 	}
174 
175 	if (vma_is_temporary_stack(vma))
176 		return 0;
177 
178 	/*
179 	 * THPeligible bit of smaps should show 1 for proper VMAs even
180 	 * though anon_vma is not initialized yet.
181 	 *
182 	 * Allow page fault since anon_vma may be not initialized until
183 	 * the first page fault.
184 	 */
185 	if (!vma->anon_vma)
186 		return (smaps || in_pf) ? orders : 0;
187 
188 	return orders;
189 }
190 
191 static bool get_huge_zero_page(void)
192 {
193 	struct page *zero_page;
194 retry:
195 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
196 		return true;
197 
198 	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
199 			HPAGE_PMD_ORDER);
200 	if (!zero_page) {
201 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
202 		return false;
203 	}
204 	preempt_disable();
205 	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
206 		preempt_enable();
207 		__free_pages(zero_page, compound_order(zero_page));
208 		goto retry;
209 	}
210 	WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
211 
212 	/* We take additional reference here. It will be put back by shrinker */
213 	atomic_set(&huge_zero_refcount, 2);
214 	preempt_enable();
215 	count_vm_event(THP_ZERO_PAGE_ALLOC);
216 	return true;
217 }
218 
219 static void put_huge_zero_page(void)
220 {
221 	/*
222 	 * Counter should never go to zero here. Only shrinker can put
223 	 * last reference.
224 	 */
225 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
226 }
227 
228 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
229 {
230 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
231 		return READ_ONCE(huge_zero_page);
232 
233 	if (!get_huge_zero_page())
234 		return NULL;
235 
236 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
237 		put_huge_zero_page();
238 
239 	return READ_ONCE(huge_zero_page);
240 }
241 
242 void mm_put_huge_zero_page(struct mm_struct *mm)
243 {
244 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
245 		put_huge_zero_page();
246 }
247 
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249 					struct shrink_control *sc)
250 {
251 	/* we can free zero page only if last reference remains */
252 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254 
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256 				       struct shrink_control *sc)
257 {
258 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259 		struct page *zero_page = xchg(&huge_zero_page, NULL);
260 		BUG_ON(zero_page == NULL);
261 		WRITE_ONCE(huge_zero_pfn, ~0UL);
262 		__free_pages(zero_page, compound_order(zero_page));
263 		return HPAGE_PMD_NR;
264 	}
265 
266 	return 0;
267 }
268 
269 static struct shrinker *huge_zero_page_shrinker;
270 
271 #ifdef CONFIG_SYSFS
272 static ssize_t enabled_show(struct kobject *kobj,
273 			    struct kobj_attribute *attr, char *buf)
274 {
275 	const char *output;
276 
277 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
278 		output = "[always] madvise never";
279 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
280 			  &transparent_hugepage_flags))
281 		output = "always [madvise] never";
282 	else
283 		output = "always madvise [never]";
284 
285 	return sysfs_emit(buf, "%s\n", output);
286 }
287 
288 static ssize_t enabled_store(struct kobject *kobj,
289 			     struct kobj_attribute *attr,
290 			     const char *buf, size_t count)
291 {
292 	ssize_t ret = count;
293 
294 	if (sysfs_streq(buf, "always")) {
295 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
296 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
297 	} else if (sysfs_streq(buf, "madvise")) {
298 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
299 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
300 	} else if (sysfs_streq(buf, "never")) {
301 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
302 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
303 	} else
304 		ret = -EINVAL;
305 
306 	if (ret > 0) {
307 		int err = start_stop_khugepaged();
308 		if (err)
309 			ret = err;
310 	}
311 	return ret;
312 }
313 
314 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
315 
316 ssize_t single_hugepage_flag_show(struct kobject *kobj,
317 				  struct kobj_attribute *attr, char *buf,
318 				  enum transparent_hugepage_flag flag)
319 {
320 	return sysfs_emit(buf, "%d\n",
321 			  !!test_bit(flag, &transparent_hugepage_flags));
322 }
323 
324 ssize_t single_hugepage_flag_store(struct kobject *kobj,
325 				 struct kobj_attribute *attr,
326 				 const char *buf, size_t count,
327 				 enum transparent_hugepage_flag flag)
328 {
329 	unsigned long value;
330 	int ret;
331 
332 	ret = kstrtoul(buf, 10, &value);
333 	if (ret < 0)
334 		return ret;
335 	if (value > 1)
336 		return -EINVAL;
337 
338 	if (value)
339 		set_bit(flag, &transparent_hugepage_flags);
340 	else
341 		clear_bit(flag, &transparent_hugepage_flags);
342 
343 	return count;
344 }
345 
346 static ssize_t defrag_show(struct kobject *kobj,
347 			   struct kobj_attribute *attr, char *buf)
348 {
349 	const char *output;
350 
351 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
352 		     &transparent_hugepage_flags))
353 		output = "[always] defer defer+madvise madvise never";
354 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
355 			  &transparent_hugepage_flags))
356 		output = "always [defer] defer+madvise madvise never";
357 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
358 			  &transparent_hugepage_flags))
359 		output = "always defer [defer+madvise] madvise never";
360 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
361 			  &transparent_hugepage_flags))
362 		output = "always defer defer+madvise [madvise] never";
363 	else
364 		output = "always defer defer+madvise madvise [never]";
365 
366 	return sysfs_emit(buf, "%s\n", output);
367 }
368 
369 static ssize_t defrag_store(struct kobject *kobj,
370 			    struct kobj_attribute *attr,
371 			    const char *buf, size_t count)
372 {
373 	if (sysfs_streq(buf, "always")) {
374 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
375 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
376 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
377 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
378 	} else if (sysfs_streq(buf, "defer+madvise")) {
379 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
380 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
381 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
382 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
383 	} else if (sysfs_streq(buf, "defer")) {
384 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
385 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
386 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
387 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
388 	} else if (sysfs_streq(buf, "madvise")) {
389 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
390 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
391 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
392 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
393 	} else if (sysfs_streq(buf, "never")) {
394 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
395 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
398 	} else
399 		return -EINVAL;
400 
401 	return count;
402 }
403 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
404 
405 static ssize_t use_zero_page_show(struct kobject *kobj,
406 				  struct kobj_attribute *attr, char *buf)
407 {
408 	return single_hugepage_flag_show(kobj, attr, buf,
409 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410 }
411 static ssize_t use_zero_page_store(struct kobject *kobj,
412 		struct kobj_attribute *attr, const char *buf, size_t count)
413 {
414 	return single_hugepage_flag_store(kobj, attr, buf, count,
415 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416 }
417 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
418 
419 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
420 				   struct kobj_attribute *attr, char *buf)
421 {
422 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
423 }
424 static struct kobj_attribute hpage_pmd_size_attr =
425 	__ATTR_RO(hpage_pmd_size);
426 
427 static struct attribute *hugepage_attr[] = {
428 	&enabled_attr.attr,
429 	&defrag_attr.attr,
430 	&use_zero_page_attr.attr,
431 	&hpage_pmd_size_attr.attr,
432 #ifdef CONFIG_SHMEM
433 	&shmem_enabled_attr.attr,
434 #endif
435 	NULL,
436 };
437 
438 static const struct attribute_group hugepage_attr_group = {
439 	.attrs = hugepage_attr,
440 };
441 
442 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
443 static void thpsize_release(struct kobject *kobj);
444 static DEFINE_SPINLOCK(huge_anon_orders_lock);
445 static LIST_HEAD(thpsize_list);
446 
447 struct thpsize {
448 	struct kobject kobj;
449 	struct list_head node;
450 	int order;
451 };
452 
453 #define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
454 
455 static ssize_t thpsize_enabled_show(struct kobject *kobj,
456 				    struct kobj_attribute *attr, char *buf)
457 {
458 	int order = to_thpsize(kobj)->order;
459 	const char *output;
460 
461 	if (test_bit(order, &huge_anon_orders_always))
462 		output = "[always] inherit madvise never";
463 	else if (test_bit(order, &huge_anon_orders_inherit))
464 		output = "always [inherit] madvise never";
465 	else if (test_bit(order, &huge_anon_orders_madvise))
466 		output = "always inherit [madvise] never";
467 	else
468 		output = "always inherit madvise [never]";
469 
470 	return sysfs_emit(buf, "%s\n", output);
471 }
472 
473 static ssize_t thpsize_enabled_store(struct kobject *kobj,
474 				     struct kobj_attribute *attr,
475 				     const char *buf, size_t count)
476 {
477 	int order = to_thpsize(kobj)->order;
478 	ssize_t ret = count;
479 
480 	if (sysfs_streq(buf, "always")) {
481 		spin_lock(&huge_anon_orders_lock);
482 		clear_bit(order, &huge_anon_orders_inherit);
483 		clear_bit(order, &huge_anon_orders_madvise);
484 		set_bit(order, &huge_anon_orders_always);
485 		spin_unlock(&huge_anon_orders_lock);
486 	} else if (sysfs_streq(buf, "inherit")) {
487 		spin_lock(&huge_anon_orders_lock);
488 		clear_bit(order, &huge_anon_orders_always);
489 		clear_bit(order, &huge_anon_orders_madvise);
490 		set_bit(order, &huge_anon_orders_inherit);
491 		spin_unlock(&huge_anon_orders_lock);
492 	} else if (sysfs_streq(buf, "madvise")) {
493 		spin_lock(&huge_anon_orders_lock);
494 		clear_bit(order, &huge_anon_orders_always);
495 		clear_bit(order, &huge_anon_orders_inherit);
496 		set_bit(order, &huge_anon_orders_madvise);
497 		spin_unlock(&huge_anon_orders_lock);
498 	} else if (sysfs_streq(buf, "never")) {
499 		spin_lock(&huge_anon_orders_lock);
500 		clear_bit(order, &huge_anon_orders_always);
501 		clear_bit(order, &huge_anon_orders_inherit);
502 		clear_bit(order, &huge_anon_orders_madvise);
503 		spin_unlock(&huge_anon_orders_lock);
504 	} else
505 		ret = -EINVAL;
506 
507 	return ret;
508 }
509 
510 static struct kobj_attribute thpsize_enabled_attr =
511 	__ATTR(enabled, 0644, thpsize_enabled_show, thpsize_enabled_store);
512 
513 static struct attribute *thpsize_attrs[] = {
514 	&thpsize_enabled_attr.attr,
515 	NULL,
516 };
517 
518 static const struct attribute_group thpsize_attr_group = {
519 	.attrs = thpsize_attrs,
520 };
521 
522 static const struct kobj_type thpsize_ktype = {
523 	.release = &thpsize_release,
524 	.sysfs_ops = &kobj_sysfs_ops,
525 };
526 
527 static struct thpsize *thpsize_create(int order, struct kobject *parent)
528 {
529 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
530 	struct thpsize *thpsize;
531 	int ret;
532 
533 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
534 	if (!thpsize)
535 		return ERR_PTR(-ENOMEM);
536 
537 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
538 				   "hugepages-%lukB", size);
539 	if (ret) {
540 		kfree(thpsize);
541 		return ERR_PTR(ret);
542 	}
543 
544 	ret = sysfs_create_group(&thpsize->kobj, &thpsize_attr_group);
545 	if (ret) {
546 		kobject_put(&thpsize->kobj);
547 		return ERR_PTR(ret);
548 	}
549 
550 	thpsize->order = order;
551 	return thpsize;
552 }
553 
554 static void thpsize_release(struct kobject *kobj)
555 {
556 	kfree(to_thpsize(kobj));
557 }
558 
559 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
560 {
561 	int err;
562 	struct thpsize *thpsize;
563 	unsigned long orders;
564 	int order;
565 
566 	/*
567 	 * Default to setting PMD-sized THP to inherit the global setting and
568 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
569 	 * constant so we have to do this here.
570 	 */
571 	huge_anon_orders_inherit = BIT(PMD_ORDER);
572 
573 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574 	if (unlikely(!*hugepage_kobj)) {
575 		pr_err("failed to create transparent hugepage kobject\n");
576 		return -ENOMEM;
577 	}
578 
579 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
580 	if (err) {
581 		pr_err("failed to register transparent hugepage group\n");
582 		goto delete_obj;
583 	}
584 
585 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
586 	if (err) {
587 		pr_err("failed to register transparent hugepage group\n");
588 		goto remove_hp_group;
589 	}
590 
591 	orders = THP_ORDERS_ALL_ANON;
592 	order = highest_order(orders);
593 	while (orders) {
594 		thpsize = thpsize_create(order, *hugepage_kobj);
595 		if (IS_ERR(thpsize)) {
596 			pr_err("failed to create thpsize for order %d\n", order);
597 			err = PTR_ERR(thpsize);
598 			goto remove_all;
599 		}
600 		list_add(&thpsize->node, &thpsize_list);
601 		order = next_order(&orders, order);
602 	}
603 
604 	return 0;
605 
606 remove_all:
607 	hugepage_exit_sysfs(*hugepage_kobj);
608 	return err;
609 remove_hp_group:
610 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
611 delete_obj:
612 	kobject_put(*hugepage_kobj);
613 	return err;
614 }
615 
616 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
617 {
618 	struct thpsize *thpsize, *tmp;
619 
620 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
621 		list_del(&thpsize->node);
622 		kobject_put(&thpsize->kobj);
623 	}
624 
625 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
626 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
627 	kobject_put(hugepage_kobj);
628 }
629 #else
630 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
631 {
632 	return 0;
633 }
634 
635 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
636 {
637 }
638 #endif /* CONFIG_SYSFS */
639 
640 static int __init thp_shrinker_init(void)
641 {
642 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
643 	if (!huge_zero_page_shrinker)
644 		return -ENOMEM;
645 
646 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
647 						 SHRINKER_MEMCG_AWARE |
648 						 SHRINKER_NONSLAB,
649 						 "thp-deferred_split");
650 	if (!deferred_split_shrinker) {
651 		shrinker_free(huge_zero_page_shrinker);
652 		return -ENOMEM;
653 	}
654 
655 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
656 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
657 	shrinker_register(huge_zero_page_shrinker);
658 
659 	deferred_split_shrinker->count_objects = deferred_split_count;
660 	deferred_split_shrinker->scan_objects = deferred_split_scan;
661 	shrinker_register(deferred_split_shrinker);
662 
663 	return 0;
664 }
665 
666 static void __init thp_shrinker_exit(void)
667 {
668 	shrinker_free(huge_zero_page_shrinker);
669 	shrinker_free(deferred_split_shrinker);
670 }
671 
672 static int __init hugepage_init(void)
673 {
674 	int err;
675 	struct kobject *hugepage_kobj;
676 
677 	if (!has_transparent_hugepage()) {
678 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
679 		return -EINVAL;
680 	}
681 
682 	/*
683 	 * hugepages can't be allocated by the buddy allocator
684 	 */
685 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
686 	/*
687 	 * we use page->mapping and page->index in second tail page
688 	 * as list_head: assuming THP order >= 2
689 	 */
690 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
691 
692 	err = hugepage_init_sysfs(&hugepage_kobj);
693 	if (err)
694 		goto err_sysfs;
695 
696 	err = khugepaged_init();
697 	if (err)
698 		goto err_slab;
699 
700 	err = thp_shrinker_init();
701 	if (err)
702 		goto err_shrinker;
703 
704 	/*
705 	 * By default disable transparent hugepages on smaller systems,
706 	 * where the extra memory used could hurt more than TLB overhead
707 	 * is likely to save.  The admin can still enable it through /sys.
708 	 */
709 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
710 		transparent_hugepage_flags = 0;
711 		return 0;
712 	}
713 
714 	err = start_stop_khugepaged();
715 	if (err)
716 		goto err_khugepaged;
717 
718 	return 0;
719 err_khugepaged:
720 	thp_shrinker_exit();
721 err_shrinker:
722 	khugepaged_destroy();
723 err_slab:
724 	hugepage_exit_sysfs(hugepage_kobj);
725 err_sysfs:
726 	return err;
727 }
728 subsys_initcall(hugepage_init);
729 
730 static int __init setup_transparent_hugepage(char *str)
731 {
732 	int ret = 0;
733 	if (!str)
734 		goto out;
735 	if (!strcmp(str, "always")) {
736 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
737 			&transparent_hugepage_flags);
738 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
739 			  &transparent_hugepage_flags);
740 		ret = 1;
741 	} else if (!strcmp(str, "madvise")) {
742 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
743 			  &transparent_hugepage_flags);
744 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
745 			&transparent_hugepage_flags);
746 		ret = 1;
747 	} else if (!strcmp(str, "never")) {
748 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
749 			  &transparent_hugepage_flags);
750 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
751 			  &transparent_hugepage_flags);
752 		ret = 1;
753 	}
754 out:
755 	if (!ret)
756 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
757 	return ret;
758 }
759 __setup("transparent_hugepage=", setup_transparent_hugepage);
760 
761 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
762 {
763 	if (likely(vma->vm_flags & VM_WRITE))
764 		pmd = pmd_mkwrite(pmd, vma);
765 	return pmd;
766 }
767 
768 #ifdef CONFIG_MEMCG
769 static inline
770 struct deferred_split *get_deferred_split_queue(struct folio *folio)
771 {
772 	struct mem_cgroup *memcg = folio_memcg(folio);
773 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
774 
775 	if (memcg)
776 		return &memcg->deferred_split_queue;
777 	else
778 		return &pgdat->deferred_split_queue;
779 }
780 #else
781 static inline
782 struct deferred_split *get_deferred_split_queue(struct folio *folio)
783 {
784 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
785 
786 	return &pgdat->deferred_split_queue;
787 }
788 #endif
789 
790 void folio_prep_large_rmappable(struct folio *folio)
791 {
792 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
793 	INIT_LIST_HEAD(&folio->_deferred_list);
794 	folio_set_large_rmappable(folio);
795 }
796 
797 static inline bool is_transparent_hugepage(struct folio *folio)
798 {
799 	if (!folio_test_large(folio))
800 		return false;
801 
802 	return is_huge_zero_page(&folio->page) ||
803 		folio_test_large_rmappable(folio);
804 }
805 
806 static unsigned long __thp_get_unmapped_area(struct file *filp,
807 		unsigned long addr, unsigned long len,
808 		loff_t off, unsigned long flags, unsigned long size)
809 {
810 	loff_t off_end = off + len;
811 	loff_t off_align = round_up(off, size);
812 	unsigned long len_pad, ret;
813 
814 	if (off_end <= off_align || (off_end - off_align) < size)
815 		return 0;
816 
817 	len_pad = len + size;
818 	if (len_pad < len || (off + len_pad) < off)
819 		return 0;
820 
821 	ret = current->mm->get_unmapped_area(filp, addr, len_pad,
822 					      off >> PAGE_SHIFT, flags);
823 
824 	/*
825 	 * The failure might be due to length padding. The caller will retry
826 	 * without the padding.
827 	 */
828 	if (IS_ERR_VALUE(ret))
829 		return 0;
830 
831 	/*
832 	 * Do not try to align to THP boundary if allocation at the address
833 	 * hint succeeds.
834 	 */
835 	if (ret == addr)
836 		return addr;
837 
838 	ret += (off - ret) & (size - 1);
839 	return ret;
840 }
841 
842 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
843 		unsigned long len, unsigned long pgoff, unsigned long flags)
844 {
845 	unsigned long ret;
846 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
847 
848 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
849 	if (ret)
850 		return ret;
851 
852 	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
853 }
854 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
855 
856 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
857 			struct page *page, gfp_t gfp)
858 {
859 	struct vm_area_struct *vma = vmf->vma;
860 	struct folio *folio = page_folio(page);
861 	pgtable_t pgtable;
862 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
863 	vm_fault_t ret = 0;
864 
865 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
866 
867 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
868 		folio_put(folio);
869 		count_vm_event(THP_FAULT_FALLBACK);
870 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
871 		return VM_FAULT_FALLBACK;
872 	}
873 	folio_throttle_swaprate(folio, gfp);
874 
875 	pgtable = pte_alloc_one(vma->vm_mm);
876 	if (unlikely(!pgtable)) {
877 		ret = VM_FAULT_OOM;
878 		goto release;
879 	}
880 
881 	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
882 	/*
883 	 * The memory barrier inside __folio_mark_uptodate makes sure that
884 	 * clear_huge_page writes become visible before the set_pmd_at()
885 	 * write.
886 	 */
887 	__folio_mark_uptodate(folio);
888 
889 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
890 	if (unlikely(!pmd_none(*vmf->pmd))) {
891 		goto unlock_release;
892 	} else {
893 		pmd_t entry;
894 
895 		ret = check_stable_address_space(vma->vm_mm);
896 		if (ret)
897 			goto unlock_release;
898 
899 		/* Deliver the page fault to userland */
900 		if (userfaultfd_missing(vma)) {
901 			spin_unlock(vmf->ptl);
902 			folio_put(folio);
903 			pte_free(vma->vm_mm, pgtable);
904 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
905 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
906 			return ret;
907 		}
908 
909 		entry = mk_huge_pmd(page, vma->vm_page_prot);
910 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
911 		folio_add_new_anon_rmap(folio, vma, haddr);
912 		folio_add_lru_vma(folio, vma);
913 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
914 		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
915 		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
916 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
917 		mm_inc_nr_ptes(vma->vm_mm);
918 		spin_unlock(vmf->ptl);
919 		count_vm_event(THP_FAULT_ALLOC);
920 		count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
921 	}
922 
923 	return 0;
924 unlock_release:
925 	spin_unlock(vmf->ptl);
926 release:
927 	if (pgtable)
928 		pte_free(vma->vm_mm, pgtable);
929 	folio_put(folio);
930 	return ret;
931 
932 }
933 
934 /*
935  * always: directly stall for all thp allocations
936  * defer: wake kswapd and fail if not immediately available
937  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
938  *		  fail if not immediately available
939  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
940  *	    available
941  * never: never stall for any thp allocation
942  */
943 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
944 {
945 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
946 
947 	/* Always do synchronous compaction */
948 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
949 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
950 
951 	/* Kick kcompactd and fail quickly */
952 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
953 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
954 
955 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
956 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
957 		return GFP_TRANSHUGE_LIGHT |
958 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
959 					__GFP_KSWAPD_RECLAIM);
960 
961 	/* Only do synchronous compaction if madvised */
962 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
963 		return GFP_TRANSHUGE_LIGHT |
964 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
965 
966 	return GFP_TRANSHUGE_LIGHT;
967 }
968 
969 /* Caller must hold page table lock. */
970 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
971 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
972 		struct page *zero_page)
973 {
974 	pmd_t entry;
975 	if (!pmd_none(*pmd))
976 		return;
977 	entry = mk_pmd(zero_page, vma->vm_page_prot);
978 	entry = pmd_mkhuge(entry);
979 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
980 	set_pmd_at(mm, haddr, pmd, entry);
981 	mm_inc_nr_ptes(mm);
982 }
983 
984 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
985 {
986 	struct vm_area_struct *vma = vmf->vma;
987 	gfp_t gfp;
988 	struct folio *folio;
989 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
990 
991 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
992 		return VM_FAULT_FALLBACK;
993 	if (unlikely(anon_vma_prepare(vma)))
994 		return VM_FAULT_OOM;
995 	khugepaged_enter_vma(vma, vma->vm_flags);
996 
997 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
998 			!mm_forbids_zeropage(vma->vm_mm) &&
999 			transparent_hugepage_use_zero_page()) {
1000 		pgtable_t pgtable;
1001 		struct page *zero_page;
1002 		vm_fault_t ret;
1003 		pgtable = pte_alloc_one(vma->vm_mm);
1004 		if (unlikely(!pgtable))
1005 			return VM_FAULT_OOM;
1006 		zero_page = mm_get_huge_zero_page(vma->vm_mm);
1007 		if (unlikely(!zero_page)) {
1008 			pte_free(vma->vm_mm, pgtable);
1009 			count_vm_event(THP_FAULT_FALLBACK);
1010 			return VM_FAULT_FALLBACK;
1011 		}
1012 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1013 		ret = 0;
1014 		if (pmd_none(*vmf->pmd)) {
1015 			ret = check_stable_address_space(vma->vm_mm);
1016 			if (ret) {
1017 				spin_unlock(vmf->ptl);
1018 				pte_free(vma->vm_mm, pgtable);
1019 			} else if (userfaultfd_missing(vma)) {
1020 				spin_unlock(vmf->ptl);
1021 				pte_free(vma->vm_mm, pgtable);
1022 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1023 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1024 			} else {
1025 				set_huge_zero_page(pgtable, vma->vm_mm, vma,
1026 						   haddr, vmf->pmd, zero_page);
1027 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1028 				spin_unlock(vmf->ptl);
1029 			}
1030 		} else {
1031 			spin_unlock(vmf->ptl);
1032 			pte_free(vma->vm_mm, pgtable);
1033 		}
1034 		return ret;
1035 	}
1036 	gfp = vma_thp_gfp_mask(vma);
1037 	folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
1038 	if (unlikely(!folio)) {
1039 		count_vm_event(THP_FAULT_FALLBACK);
1040 		return VM_FAULT_FALLBACK;
1041 	}
1042 	return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
1043 }
1044 
1045 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1046 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1047 		pgtable_t pgtable)
1048 {
1049 	struct mm_struct *mm = vma->vm_mm;
1050 	pmd_t entry;
1051 	spinlock_t *ptl;
1052 
1053 	ptl = pmd_lock(mm, pmd);
1054 	if (!pmd_none(*pmd)) {
1055 		if (write) {
1056 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1057 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1058 				goto out_unlock;
1059 			}
1060 			entry = pmd_mkyoung(*pmd);
1061 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1062 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1063 				update_mmu_cache_pmd(vma, addr, pmd);
1064 		}
1065 
1066 		goto out_unlock;
1067 	}
1068 
1069 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1070 	if (pfn_t_devmap(pfn))
1071 		entry = pmd_mkdevmap(entry);
1072 	if (write) {
1073 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1074 		entry = maybe_pmd_mkwrite(entry, vma);
1075 	}
1076 
1077 	if (pgtable) {
1078 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1079 		mm_inc_nr_ptes(mm);
1080 		pgtable = NULL;
1081 	}
1082 
1083 	set_pmd_at(mm, addr, pmd, entry);
1084 	update_mmu_cache_pmd(vma, addr, pmd);
1085 
1086 out_unlock:
1087 	spin_unlock(ptl);
1088 	if (pgtable)
1089 		pte_free(mm, pgtable);
1090 }
1091 
1092 /**
1093  * vmf_insert_pfn_pmd - insert a pmd size pfn
1094  * @vmf: Structure describing the fault
1095  * @pfn: pfn to insert
1096  * @write: whether it's a write fault
1097  *
1098  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1099  *
1100  * Return: vm_fault_t value.
1101  */
1102 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1103 {
1104 	unsigned long addr = vmf->address & PMD_MASK;
1105 	struct vm_area_struct *vma = vmf->vma;
1106 	pgprot_t pgprot = vma->vm_page_prot;
1107 	pgtable_t pgtable = NULL;
1108 
1109 	/*
1110 	 * If we had pmd_special, we could avoid all these restrictions,
1111 	 * but we need to be consistent with PTEs and architectures that
1112 	 * can't support a 'special' bit.
1113 	 */
1114 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1115 			!pfn_t_devmap(pfn));
1116 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1117 						(VM_PFNMAP|VM_MIXEDMAP));
1118 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1119 
1120 	if (addr < vma->vm_start || addr >= vma->vm_end)
1121 		return VM_FAULT_SIGBUS;
1122 
1123 	if (arch_needs_pgtable_deposit()) {
1124 		pgtable = pte_alloc_one(vma->vm_mm);
1125 		if (!pgtable)
1126 			return VM_FAULT_OOM;
1127 	}
1128 
1129 	track_pfn_insert(vma, &pgprot, pfn);
1130 
1131 	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
1132 	return VM_FAULT_NOPAGE;
1133 }
1134 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1135 
1136 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1137 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1138 {
1139 	if (likely(vma->vm_flags & VM_WRITE))
1140 		pud = pud_mkwrite(pud);
1141 	return pud;
1142 }
1143 
1144 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1145 		pud_t *pud, pfn_t pfn, bool write)
1146 {
1147 	struct mm_struct *mm = vma->vm_mm;
1148 	pgprot_t prot = vma->vm_page_prot;
1149 	pud_t entry;
1150 	spinlock_t *ptl;
1151 
1152 	ptl = pud_lock(mm, pud);
1153 	if (!pud_none(*pud)) {
1154 		if (write) {
1155 			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
1156 				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
1157 				goto out_unlock;
1158 			}
1159 			entry = pud_mkyoung(*pud);
1160 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1161 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1162 				update_mmu_cache_pud(vma, addr, pud);
1163 		}
1164 		goto out_unlock;
1165 	}
1166 
1167 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1168 	if (pfn_t_devmap(pfn))
1169 		entry = pud_mkdevmap(entry);
1170 	if (write) {
1171 		entry = pud_mkyoung(pud_mkdirty(entry));
1172 		entry = maybe_pud_mkwrite(entry, vma);
1173 	}
1174 	set_pud_at(mm, addr, pud, entry);
1175 	update_mmu_cache_pud(vma, addr, pud);
1176 
1177 out_unlock:
1178 	spin_unlock(ptl);
1179 }
1180 
1181 /**
1182  * vmf_insert_pfn_pud - insert a pud size pfn
1183  * @vmf: Structure describing the fault
1184  * @pfn: pfn to insert
1185  * @write: whether it's a write fault
1186  *
1187  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1188  *
1189  * Return: vm_fault_t value.
1190  */
1191 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1192 {
1193 	unsigned long addr = vmf->address & PUD_MASK;
1194 	struct vm_area_struct *vma = vmf->vma;
1195 	pgprot_t pgprot = vma->vm_page_prot;
1196 
1197 	/*
1198 	 * If we had pud_special, we could avoid all these restrictions,
1199 	 * but we need to be consistent with PTEs and architectures that
1200 	 * can't support a 'special' bit.
1201 	 */
1202 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1203 			!pfn_t_devmap(pfn));
1204 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1205 						(VM_PFNMAP|VM_MIXEDMAP));
1206 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1207 
1208 	if (addr < vma->vm_start || addr >= vma->vm_end)
1209 		return VM_FAULT_SIGBUS;
1210 
1211 	track_pfn_insert(vma, &pgprot, pfn);
1212 
1213 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1214 	return VM_FAULT_NOPAGE;
1215 }
1216 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1217 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1218 
1219 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1220 		      pmd_t *pmd, bool write)
1221 {
1222 	pmd_t _pmd;
1223 
1224 	_pmd = pmd_mkyoung(*pmd);
1225 	if (write)
1226 		_pmd = pmd_mkdirty(_pmd);
1227 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1228 				  pmd, _pmd, write))
1229 		update_mmu_cache_pmd(vma, addr, pmd);
1230 }
1231 
1232 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1233 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1234 {
1235 	unsigned long pfn = pmd_pfn(*pmd);
1236 	struct mm_struct *mm = vma->vm_mm;
1237 	struct page *page;
1238 	int ret;
1239 
1240 	assert_spin_locked(pmd_lockptr(mm, pmd));
1241 
1242 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1243 		return NULL;
1244 
1245 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1246 		/* pass */;
1247 	else
1248 		return NULL;
1249 
1250 	if (flags & FOLL_TOUCH)
1251 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1252 
1253 	/*
1254 	 * device mapped pages can only be returned if the
1255 	 * caller will manage the page reference count.
1256 	 */
1257 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1258 		return ERR_PTR(-EEXIST);
1259 
1260 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1261 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1262 	if (!*pgmap)
1263 		return ERR_PTR(-EFAULT);
1264 	page = pfn_to_page(pfn);
1265 	ret = try_grab_page(page, flags);
1266 	if (ret)
1267 		page = ERR_PTR(ret);
1268 
1269 	return page;
1270 }
1271 
1272 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1273 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1274 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1275 {
1276 	spinlock_t *dst_ptl, *src_ptl;
1277 	struct page *src_page;
1278 	struct folio *src_folio;
1279 	pmd_t pmd;
1280 	pgtable_t pgtable = NULL;
1281 	int ret = -ENOMEM;
1282 
1283 	/* Skip if can be re-fill on fault */
1284 	if (!vma_is_anonymous(dst_vma))
1285 		return 0;
1286 
1287 	pgtable = pte_alloc_one(dst_mm);
1288 	if (unlikely(!pgtable))
1289 		goto out;
1290 
1291 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1292 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1293 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1294 
1295 	ret = -EAGAIN;
1296 	pmd = *src_pmd;
1297 
1298 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1299 	if (unlikely(is_swap_pmd(pmd))) {
1300 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1301 
1302 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1303 		if (!is_readable_migration_entry(entry)) {
1304 			entry = make_readable_migration_entry(
1305 							swp_offset(entry));
1306 			pmd = swp_entry_to_pmd(entry);
1307 			if (pmd_swp_soft_dirty(*src_pmd))
1308 				pmd = pmd_swp_mksoft_dirty(pmd);
1309 			if (pmd_swp_uffd_wp(*src_pmd))
1310 				pmd = pmd_swp_mkuffd_wp(pmd);
1311 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1312 		}
1313 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1314 		mm_inc_nr_ptes(dst_mm);
1315 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1316 		if (!userfaultfd_wp(dst_vma))
1317 			pmd = pmd_swp_clear_uffd_wp(pmd);
1318 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1319 		ret = 0;
1320 		goto out_unlock;
1321 	}
1322 #endif
1323 
1324 	if (unlikely(!pmd_trans_huge(pmd))) {
1325 		pte_free(dst_mm, pgtable);
1326 		goto out_unlock;
1327 	}
1328 	/*
1329 	 * When page table lock is held, the huge zero pmd should not be
1330 	 * under splitting since we don't split the page itself, only pmd to
1331 	 * a page table.
1332 	 */
1333 	if (is_huge_zero_pmd(pmd)) {
1334 		/*
1335 		 * get_huge_zero_page() will never allocate a new page here,
1336 		 * since we already have a zero page to copy. It just takes a
1337 		 * reference.
1338 		 */
1339 		mm_get_huge_zero_page(dst_mm);
1340 		goto out_zero_page;
1341 	}
1342 
1343 	src_page = pmd_page(pmd);
1344 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1345 	src_folio = page_folio(src_page);
1346 
1347 	folio_get(src_folio);
1348 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, src_vma))) {
1349 		/* Page maybe pinned: split and retry the fault on PTEs. */
1350 		folio_put(src_folio);
1351 		pte_free(dst_mm, pgtable);
1352 		spin_unlock(src_ptl);
1353 		spin_unlock(dst_ptl);
1354 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1355 		return -EAGAIN;
1356 	}
1357 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1358 out_zero_page:
1359 	mm_inc_nr_ptes(dst_mm);
1360 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1361 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1362 	if (!userfaultfd_wp(dst_vma))
1363 		pmd = pmd_clear_uffd_wp(pmd);
1364 	pmd = pmd_mkold(pmd_wrprotect(pmd));
1365 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1366 
1367 	ret = 0;
1368 out_unlock:
1369 	spin_unlock(src_ptl);
1370 	spin_unlock(dst_ptl);
1371 out:
1372 	return ret;
1373 }
1374 
1375 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1376 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1377 		      pud_t *pud, bool write)
1378 {
1379 	pud_t _pud;
1380 
1381 	_pud = pud_mkyoung(*pud);
1382 	if (write)
1383 		_pud = pud_mkdirty(_pud);
1384 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1385 				  pud, _pud, write))
1386 		update_mmu_cache_pud(vma, addr, pud);
1387 }
1388 
1389 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1390 		pud_t *pud, int flags, struct dev_pagemap **pgmap)
1391 {
1392 	unsigned long pfn = pud_pfn(*pud);
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	struct page *page;
1395 	int ret;
1396 
1397 	assert_spin_locked(pud_lockptr(mm, pud));
1398 
1399 	if (flags & FOLL_WRITE && !pud_write(*pud))
1400 		return NULL;
1401 
1402 	if (pud_present(*pud) && pud_devmap(*pud))
1403 		/* pass */;
1404 	else
1405 		return NULL;
1406 
1407 	if (flags & FOLL_TOUCH)
1408 		touch_pud(vma, addr, pud, flags & FOLL_WRITE);
1409 
1410 	/*
1411 	 * device mapped pages can only be returned if the
1412 	 * caller will manage the page reference count.
1413 	 *
1414 	 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1415 	 */
1416 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1417 		return ERR_PTR(-EEXIST);
1418 
1419 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1420 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1421 	if (!*pgmap)
1422 		return ERR_PTR(-EFAULT);
1423 	page = pfn_to_page(pfn);
1424 
1425 	ret = try_grab_page(page, flags);
1426 	if (ret)
1427 		page = ERR_PTR(ret);
1428 
1429 	return page;
1430 }
1431 
1432 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1433 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1434 		  struct vm_area_struct *vma)
1435 {
1436 	spinlock_t *dst_ptl, *src_ptl;
1437 	pud_t pud;
1438 	int ret;
1439 
1440 	dst_ptl = pud_lock(dst_mm, dst_pud);
1441 	src_ptl = pud_lockptr(src_mm, src_pud);
1442 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1443 
1444 	ret = -EAGAIN;
1445 	pud = *src_pud;
1446 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1447 		goto out_unlock;
1448 
1449 	/*
1450 	 * When page table lock is held, the huge zero pud should not be
1451 	 * under splitting since we don't split the page itself, only pud to
1452 	 * a page table.
1453 	 */
1454 	if (is_huge_zero_pud(pud)) {
1455 		/* No huge zero pud yet */
1456 	}
1457 
1458 	/*
1459 	 * TODO: once we support anonymous pages, use
1460 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1461 	 */
1462 	pudp_set_wrprotect(src_mm, addr, src_pud);
1463 	pud = pud_mkold(pud_wrprotect(pud));
1464 	set_pud_at(dst_mm, addr, dst_pud, pud);
1465 
1466 	ret = 0;
1467 out_unlock:
1468 	spin_unlock(src_ptl);
1469 	spin_unlock(dst_ptl);
1470 	return ret;
1471 }
1472 
1473 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1474 {
1475 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1476 
1477 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1478 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1479 		goto unlock;
1480 
1481 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1482 unlock:
1483 	spin_unlock(vmf->ptl);
1484 }
1485 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1486 
1487 void huge_pmd_set_accessed(struct vm_fault *vmf)
1488 {
1489 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1490 
1491 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1492 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1493 		goto unlock;
1494 
1495 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1496 
1497 unlock:
1498 	spin_unlock(vmf->ptl);
1499 }
1500 
1501 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1502 {
1503 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1504 	struct vm_area_struct *vma = vmf->vma;
1505 	struct folio *folio;
1506 	struct page *page;
1507 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1508 	pmd_t orig_pmd = vmf->orig_pmd;
1509 
1510 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1511 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1512 
1513 	if (is_huge_zero_pmd(orig_pmd))
1514 		goto fallback;
1515 
1516 	spin_lock(vmf->ptl);
1517 
1518 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1519 		spin_unlock(vmf->ptl);
1520 		return 0;
1521 	}
1522 
1523 	page = pmd_page(orig_pmd);
1524 	folio = page_folio(page);
1525 	VM_BUG_ON_PAGE(!PageHead(page), page);
1526 
1527 	/* Early check when only holding the PT lock. */
1528 	if (PageAnonExclusive(page))
1529 		goto reuse;
1530 
1531 	if (!folio_trylock(folio)) {
1532 		folio_get(folio);
1533 		spin_unlock(vmf->ptl);
1534 		folio_lock(folio);
1535 		spin_lock(vmf->ptl);
1536 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1537 			spin_unlock(vmf->ptl);
1538 			folio_unlock(folio);
1539 			folio_put(folio);
1540 			return 0;
1541 		}
1542 		folio_put(folio);
1543 	}
1544 
1545 	/* Recheck after temporarily dropping the PT lock. */
1546 	if (PageAnonExclusive(page)) {
1547 		folio_unlock(folio);
1548 		goto reuse;
1549 	}
1550 
1551 	/*
1552 	 * See do_wp_page(): we can only reuse the folio exclusively if
1553 	 * there are no additional references. Note that we always drain
1554 	 * the LRU cache immediately after adding a THP.
1555 	 */
1556 	if (folio_ref_count(folio) >
1557 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1558 		goto unlock_fallback;
1559 	if (folio_test_swapcache(folio))
1560 		folio_free_swap(folio);
1561 	if (folio_ref_count(folio) == 1) {
1562 		pmd_t entry;
1563 
1564 		folio_move_anon_rmap(folio, vma);
1565 		SetPageAnonExclusive(page);
1566 		folio_unlock(folio);
1567 reuse:
1568 		if (unlikely(unshare)) {
1569 			spin_unlock(vmf->ptl);
1570 			return 0;
1571 		}
1572 		entry = pmd_mkyoung(orig_pmd);
1573 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1574 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1575 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1576 		spin_unlock(vmf->ptl);
1577 		return 0;
1578 	}
1579 
1580 unlock_fallback:
1581 	folio_unlock(folio);
1582 	spin_unlock(vmf->ptl);
1583 fallback:
1584 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1585 	return VM_FAULT_FALLBACK;
1586 }
1587 
1588 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1589 					   unsigned long addr, pmd_t pmd)
1590 {
1591 	struct page *page;
1592 
1593 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1594 		return false;
1595 
1596 	/* Don't touch entries that are not even readable (NUMA hinting). */
1597 	if (pmd_protnone(pmd))
1598 		return false;
1599 
1600 	/* Do we need write faults for softdirty tracking? */
1601 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1602 		return false;
1603 
1604 	/* Do we need write faults for uffd-wp tracking? */
1605 	if (userfaultfd_huge_pmd_wp(vma, pmd))
1606 		return false;
1607 
1608 	if (!(vma->vm_flags & VM_SHARED)) {
1609 		/* See can_change_pte_writable(). */
1610 		page = vm_normal_page_pmd(vma, addr, pmd);
1611 		return page && PageAnon(page) && PageAnonExclusive(page);
1612 	}
1613 
1614 	/* See can_change_pte_writable(). */
1615 	return pmd_dirty(pmd);
1616 }
1617 
1618 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
1619 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1620 					struct vm_area_struct *vma,
1621 					unsigned int flags)
1622 {
1623 	/* If the pmd is writable, we can write to the page. */
1624 	if (pmd_write(pmd))
1625 		return true;
1626 
1627 	/* Maybe FOLL_FORCE is set to override it? */
1628 	if (!(flags & FOLL_FORCE))
1629 		return false;
1630 
1631 	/* But FOLL_FORCE has no effect on shared mappings */
1632 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1633 		return false;
1634 
1635 	/* ... or read-only private ones */
1636 	if (!(vma->vm_flags & VM_MAYWRITE))
1637 		return false;
1638 
1639 	/* ... or already writable ones that just need to take a write fault */
1640 	if (vma->vm_flags & VM_WRITE)
1641 		return false;
1642 
1643 	/*
1644 	 * See can_change_pte_writable(): we broke COW and could map the page
1645 	 * writable if we have an exclusive anonymous page ...
1646 	 */
1647 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1648 		return false;
1649 
1650 	/* ... and a write-fault isn't required for other reasons. */
1651 	if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd))
1652 		return false;
1653 	return !userfaultfd_huge_pmd_wp(vma, pmd);
1654 }
1655 
1656 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1657 				   unsigned long addr,
1658 				   pmd_t *pmd,
1659 				   unsigned int flags)
1660 {
1661 	struct mm_struct *mm = vma->vm_mm;
1662 	struct page *page;
1663 	int ret;
1664 
1665 	assert_spin_locked(pmd_lockptr(mm, pmd));
1666 
1667 	page = pmd_page(*pmd);
1668 	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1669 
1670 	if ((flags & FOLL_WRITE) &&
1671 	    !can_follow_write_pmd(*pmd, page, vma, flags))
1672 		return NULL;
1673 
1674 	/* Avoid dumping huge zero page */
1675 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1676 		return ERR_PTR(-EFAULT);
1677 
1678 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
1679 		return NULL;
1680 
1681 	if (!pmd_write(*pmd) && gup_must_unshare(vma, flags, page))
1682 		return ERR_PTR(-EMLINK);
1683 
1684 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1685 			!PageAnonExclusive(page), page);
1686 
1687 	ret = try_grab_page(page, flags);
1688 	if (ret)
1689 		return ERR_PTR(ret);
1690 
1691 	if (flags & FOLL_TOUCH)
1692 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1693 
1694 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1695 	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1696 
1697 	return page;
1698 }
1699 
1700 /* NUMA hinting page fault entry point for trans huge pmds */
1701 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1702 {
1703 	struct vm_area_struct *vma = vmf->vma;
1704 	pmd_t oldpmd = vmf->orig_pmd;
1705 	pmd_t pmd;
1706 	struct folio *folio;
1707 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1708 	int nid = NUMA_NO_NODE;
1709 	int target_nid, last_cpupid = (-1 & LAST_CPUPID_MASK);
1710 	bool migrated = false, writable = false;
1711 	int flags = 0;
1712 
1713 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1714 	if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1715 		spin_unlock(vmf->ptl);
1716 		goto out;
1717 	}
1718 
1719 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1720 
1721 	/*
1722 	 * Detect now whether the PMD could be writable; this information
1723 	 * is only valid while holding the PT lock.
1724 	 */
1725 	writable = pmd_write(pmd);
1726 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
1727 	    can_change_pmd_writable(vma, vmf->address, pmd))
1728 		writable = true;
1729 
1730 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
1731 	if (!folio)
1732 		goto out_map;
1733 
1734 	/* See similar comment in do_numa_page for explanation */
1735 	if (!writable)
1736 		flags |= TNF_NO_GROUP;
1737 
1738 	nid = folio_nid(folio);
1739 	/*
1740 	 * For memory tiering mode, cpupid of slow memory page is used
1741 	 * to record page access time.  So use default value.
1742 	 */
1743 	if (node_is_toptier(nid))
1744 		last_cpupid = folio_last_cpupid(folio);
1745 	target_nid = numa_migrate_prep(folio, vma, haddr, nid, &flags);
1746 	if (target_nid == NUMA_NO_NODE) {
1747 		folio_put(folio);
1748 		goto out_map;
1749 	}
1750 
1751 	spin_unlock(vmf->ptl);
1752 	writable = false;
1753 
1754 	migrated = migrate_misplaced_folio(folio, vma, target_nid);
1755 	if (migrated) {
1756 		flags |= TNF_MIGRATED;
1757 		nid = target_nid;
1758 	} else {
1759 		flags |= TNF_MIGRATE_FAIL;
1760 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1761 		if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1762 			spin_unlock(vmf->ptl);
1763 			goto out;
1764 		}
1765 		goto out_map;
1766 	}
1767 
1768 out:
1769 	if (nid != NUMA_NO_NODE)
1770 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
1771 
1772 	return 0;
1773 
1774 out_map:
1775 	/* Restore the PMD */
1776 	pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1777 	pmd = pmd_mkyoung(pmd);
1778 	if (writable)
1779 		pmd = pmd_mkwrite(pmd, vma);
1780 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1781 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1782 	spin_unlock(vmf->ptl);
1783 	goto out;
1784 }
1785 
1786 /*
1787  * Return true if we do MADV_FREE successfully on entire pmd page.
1788  * Otherwise, return false.
1789  */
1790 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1791 		pmd_t *pmd, unsigned long addr, unsigned long next)
1792 {
1793 	spinlock_t *ptl;
1794 	pmd_t orig_pmd;
1795 	struct folio *folio;
1796 	struct mm_struct *mm = tlb->mm;
1797 	bool ret = false;
1798 
1799 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1800 
1801 	ptl = pmd_trans_huge_lock(pmd, vma);
1802 	if (!ptl)
1803 		goto out_unlocked;
1804 
1805 	orig_pmd = *pmd;
1806 	if (is_huge_zero_pmd(orig_pmd))
1807 		goto out;
1808 
1809 	if (unlikely(!pmd_present(orig_pmd))) {
1810 		VM_BUG_ON(thp_migration_supported() &&
1811 				  !is_pmd_migration_entry(orig_pmd));
1812 		goto out;
1813 	}
1814 
1815 	folio = pfn_folio(pmd_pfn(orig_pmd));
1816 	/*
1817 	 * If other processes are mapping this folio, we couldn't discard
1818 	 * the folio unless they all do MADV_FREE so let's skip the folio.
1819 	 */
1820 	if (folio_estimated_sharers(folio) != 1)
1821 		goto out;
1822 
1823 	if (!folio_trylock(folio))
1824 		goto out;
1825 
1826 	/*
1827 	 * If user want to discard part-pages of THP, split it so MADV_FREE
1828 	 * will deactivate only them.
1829 	 */
1830 	if (next - addr != HPAGE_PMD_SIZE) {
1831 		folio_get(folio);
1832 		spin_unlock(ptl);
1833 		split_folio(folio);
1834 		folio_unlock(folio);
1835 		folio_put(folio);
1836 		goto out_unlocked;
1837 	}
1838 
1839 	if (folio_test_dirty(folio))
1840 		folio_clear_dirty(folio);
1841 	folio_unlock(folio);
1842 
1843 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1844 		pmdp_invalidate(vma, addr, pmd);
1845 		orig_pmd = pmd_mkold(orig_pmd);
1846 		orig_pmd = pmd_mkclean(orig_pmd);
1847 
1848 		set_pmd_at(mm, addr, pmd, orig_pmd);
1849 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1850 	}
1851 
1852 	folio_mark_lazyfree(folio);
1853 	ret = true;
1854 out:
1855 	spin_unlock(ptl);
1856 out_unlocked:
1857 	return ret;
1858 }
1859 
1860 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1861 {
1862 	pgtable_t pgtable;
1863 
1864 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1865 	pte_free(mm, pgtable);
1866 	mm_dec_nr_ptes(mm);
1867 }
1868 
1869 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1870 		 pmd_t *pmd, unsigned long addr)
1871 {
1872 	pmd_t orig_pmd;
1873 	spinlock_t *ptl;
1874 
1875 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1876 
1877 	ptl = __pmd_trans_huge_lock(pmd, vma);
1878 	if (!ptl)
1879 		return 0;
1880 	/*
1881 	 * For architectures like ppc64 we look at deposited pgtable
1882 	 * when calling pmdp_huge_get_and_clear. So do the
1883 	 * pgtable_trans_huge_withdraw after finishing pmdp related
1884 	 * operations.
1885 	 */
1886 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1887 						tlb->fullmm);
1888 	arch_check_zapped_pmd(vma, orig_pmd);
1889 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1890 	if (vma_is_special_huge(vma)) {
1891 		if (arch_needs_pgtable_deposit())
1892 			zap_deposited_table(tlb->mm, pmd);
1893 		spin_unlock(ptl);
1894 	} else if (is_huge_zero_pmd(orig_pmd)) {
1895 		zap_deposited_table(tlb->mm, pmd);
1896 		spin_unlock(ptl);
1897 	} else {
1898 		struct page *page = NULL;
1899 		int flush_needed = 1;
1900 
1901 		if (pmd_present(orig_pmd)) {
1902 			page = pmd_page(orig_pmd);
1903 			folio_remove_rmap_pmd(page_folio(page), page, vma);
1904 			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1905 			VM_BUG_ON_PAGE(!PageHead(page), page);
1906 		} else if (thp_migration_supported()) {
1907 			swp_entry_t entry;
1908 
1909 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1910 			entry = pmd_to_swp_entry(orig_pmd);
1911 			page = pfn_swap_entry_to_page(entry);
1912 			flush_needed = 0;
1913 		} else
1914 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1915 
1916 		if (PageAnon(page)) {
1917 			zap_deposited_table(tlb->mm, pmd);
1918 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1919 		} else {
1920 			if (arch_needs_pgtable_deposit())
1921 				zap_deposited_table(tlb->mm, pmd);
1922 			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1923 		}
1924 
1925 		spin_unlock(ptl);
1926 		if (flush_needed)
1927 			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1928 	}
1929 	return 1;
1930 }
1931 
1932 #ifndef pmd_move_must_withdraw
1933 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1934 					 spinlock_t *old_pmd_ptl,
1935 					 struct vm_area_struct *vma)
1936 {
1937 	/*
1938 	 * With split pmd lock we also need to move preallocated
1939 	 * PTE page table if new_pmd is on different PMD page table.
1940 	 *
1941 	 * We also don't deposit and withdraw tables for file pages.
1942 	 */
1943 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1944 }
1945 #endif
1946 
1947 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1948 {
1949 #ifdef CONFIG_MEM_SOFT_DIRTY
1950 	if (unlikely(is_pmd_migration_entry(pmd)))
1951 		pmd = pmd_swp_mksoft_dirty(pmd);
1952 	else if (pmd_present(pmd))
1953 		pmd = pmd_mksoft_dirty(pmd);
1954 #endif
1955 	return pmd;
1956 }
1957 
1958 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1959 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1960 {
1961 	spinlock_t *old_ptl, *new_ptl;
1962 	pmd_t pmd;
1963 	struct mm_struct *mm = vma->vm_mm;
1964 	bool force_flush = false;
1965 
1966 	/*
1967 	 * The destination pmd shouldn't be established, free_pgtables()
1968 	 * should have released it; but move_page_tables() might have already
1969 	 * inserted a page table, if racing against shmem/file collapse.
1970 	 */
1971 	if (!pmd_none(*new_pmd)) {
1972 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1973 		return false;
1974 	}
1975 
1976 	/*
1977 	 * We don't have to worry about the ordering of src and dst
1978 	 * ptlocks because exclusive mmap_lock prevents deadlock.
1979 	 */
1980 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1981 	if (old_ptl) {
1982 		new_ptl = pmd_lockptr(mm, new_pmd);
1983 		if (new_ptl != old_ptl)
1984 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1985 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1986 		if (pmd_present(pmd))
1987 			force_flush = true;
1988 		VM_BUG_ON(!pmd_none(*new_pmd));
1989 
1990 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1991 			pgtable_t pgtable;
1992 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1993 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1994 		}
1995 		pmd = move_soft_dirty_pmd(pmd);
1996 		set_pmd_at(mm, new_addr, new_pmd, pmd);
1997 		if (force_flush)
1998 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1999 		if (new_ptl != old_ptl)
2000 			spin_unlock(new_ptl);
2001 		spin_unlock(old_ptl);
2002 		return true;
2003 	}
2004 	return false;
2005 }
2006 
2007 /*
2008  * Returns
2009  *  - 0 if PMD could not be locked
2010  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2011  *      or if prot_numa but THP migration is not supported
2012  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2013  */
2014 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2015 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2016 		    unsigned long cp_flags)
2017 {
2018 	struct mm_struct *mm = vma->vm_mm;
2019 	spinlock_t *ptl;
2020 	pmd_t oldpmd, entry;
2021 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2022 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2023 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2024 	int ret = 1;
2025 
2026 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2027 
2028 	if (prot_numa && !thp_migration_supported())
2029 		return 1;
2030 
2031 	ptl = __pmd_trans_huge_lock(pmd, vma);
2032 	if (!ptl)
2033 		return 0;
2034 
2035 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2036 	if (is_swap_pmd(*pmd)) {
2037 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2038 		struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
2039 		pmd_t newpmd;
2040 
2041 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2042 		if (is_writable_migration_entry(entry)) {
2043 			/*
2044 			 * A protection check is difficult so
2045 			 * just be safe and disable write
2046 			 */
2047 			if (folio_test_anon(folio))
2048 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2049 			else
2050 				entry = make_readable_migration_entry(swp_offset(entry));
2051 			newpmd = swp_entry_to_pmd(entry);
2052 			if (pmd_swp_soft_dirty(*pmd))
2053 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2054 		} else {
2055 			newpmd = *pmd;
2056 		}
2057 
2058 		if (uffd_wp)
2059 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2060 		else if (uffd_wp_resolve)
2061 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2062 		if (!pmd_same(*pmd, newpmd))
2063 			set_pmd_at(mm, addr, pmd, newpmd);
2064 		goto unlock;
2065 	}
2066 #endif
2067 
2068 	if (prot_numa) {
2069 		struct folio *folio;
2070 		bool toptier;
2071 		/*
2072 		 * Avoid trapping faults against the zero page. The read-only
2073 		 * data is likely to be read-cached on the local CPU and
2074 		 * local/remote hits to the zero page are not interesting.
2075 		 */
2076 		if (is_huge_zero_pmd(*pmd))
2077 			goto unlock;
2078 
2079 		if (pmd_protnone(*pmd))
2080 			goto unlock;
2081 
2082 		folio = page_folio(pmd_page(*pmd));
2083 		toptier = node_is_toptier(folio_nid(folio));
2084 		/*
2085 		 * Skip scanning top tier node if normal numa
2086 		 * balancing is disabled
2087 		 */
2088 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2089 		    toptier)
2090 			goto unlock;
2091 
2092 		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
2093 		    !toptier)
2094 			folio_xchg_access_time(folio,
2095 					       jiffies_to_msecs(jiffies));
2096 	}
2097 	/*
2098 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2099 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2100 	 * which is also under mmap_read_lock(mm):
2101 	 *
2102 	 *	CPU0:				CPU1:
2103 	 *				change_huge_pmd(prot_numa=1)
2104 	 *				 pmdp_huge_get_and_clear_notify()
2105 	 * madvise_dontneed()
2106 	 *  zap_pmd_range()
2107 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2108 	 *   // skip the pmd
2109 	 *				 set_pmd_at();
2110 	 *				 // pmd is re-established
2111 	 *
2112 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2113 	 * which may break userspace.
2114 	 *
2115 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2116 	 * dirty/young flags set by hardware.
2117 	 */
2118 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2119 
2120 	entry = pmd_modify(oldpmd, newprot);
2121 	if (uffd_wp)
2122 		entry = pmd_mkuffd_wp(entry);
2123 	else if (uffd_wp_resolve)
2124 		/*
2125 		 * Leave the write bit to be handled by PF interrupt
2126 		 * handler, then things like COW could be properly
2127 		 * handled.
2128 		 */
2129 		entry = pmd_clear_uffd_wp(entry);
2130 
2131 	/* See change_pte_range(). */
2132 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2133 	    can_change_pmd_writable(vma, addr, entry))
2134 		entry = pmd_mkwrite(entry, vma);
2135 
2136 	ret = HPAGE_PMD_NR;
2137 	set_pmd_at(mm, addr, pmd, entry);
2138 
2139 	if (huge_pmd_needs_flush(oldpmd, entry))
2140 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2141 unlock:
2142 	spin_unlock(ptl);
2143 	return ret;
2144 }
2145 
2146 #ifdef CONFIG_USERFAULTFD
2147 /*
2148  * The PT lock for src_pmd and the mmap_lock for reading are held by
2149  * the caller, but it must return after releasing the page_table_lock.
2150  * Just move the page from src_pmd to dst_pmd if possible.
2151  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2152  * repeated by the caller, or other errors in case of failure.
2153  */
2154 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2155 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2156 			unsigned long dst_addr, unsigned long src_addr)
2157 {
2158 	pmd_t _dst_pmd, src_pmdval;
2159 	struct page *src_page;
2160 	struct folio *src_folio;
2161 	struct anon_vma *src_anon_vma;
2162 	spinlock_t *src_ptl, *dst_ptl;
2163 	pgtable_t src_pgtable;
2164 	struct mmu_notifier_range range;
2165 	int err = 0;
2166 
2167 	src_pmdval = *src_pmd;
2168 	src_ptl = pmd_lockptr(mm, src_pmd);
2169 
2170 	lockdep_assert_held(src_ptl);
2171 	mmap_assert_locked(mm);
2172 
2173 	/* Sanity checks before the operation */
2174 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2175 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2176 		spin_unlock(src_ptl);
2177 		return -EINVAL;
2178 	}
2179 
2180 	if (!pmd_trans_huge(src_pmdval)) {
2181 		spin_unlock(src_ptl);
2182 		if (is_pmd_migration_entry(src_pmdval)) {
2183 			pmd_migration_entry_wait(mm, &src_pmdval);
2184 			return -EAGAIN;
2185 		}
2186 		return -ENOENT;
2187 	}
2188 
2189 	src_page = pmd_page(src_pmdval);
2190 	if (unlikely(!PageAnonExclusive(src_page))) {
2191 		spin_unlock(src_ptl);
2192 		return -EBUSY;
2193 	}
2194 
2195 	src_folio = page_folio(src_page);
2196 	folio_get(src_folio);
2197 	spin_unlock(src_ptl);
2198 
2199 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2200 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2201 				src_addr + HPAGE_PMD_SIZE);
2202 	mmu_notifier_invalidate_range_start(&range);
2203 
2204 	folio_lock(src_folio);
2205 
2206 	/*
2207 	 * split_huge_page walks the anon_vma chain without the page
2208 	 * lock. Serialize against it with the anon_vma lock, the page
2209 	 * lock is not enough.
2210 	 */
2211 	src_anon_vma = folio_get_anon_vma(src_folio);
2212 	if (!src_anon_vma) {
2213 		err = -EAGAIN;
2214 		goto unlock_folio;
2215 	}
2216 	anon_vma_lock_write(src_anon_vma);
2217 
2218 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2219 	double_pt_lock(src_ptl, dst_ptl);
2220 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2221 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2222 		err = -EAGAIN;
2223 		goto unlock_ptls;
2224 	}
2225 	if (folio_maybe_dma_pinned(src_folio) ||
2226 	    !PageAnonExclusive(&src_folio->page)) {
2227 		err = -EBUSY;
2228 		goto unlock_ptls;
2229 	}
2230 
2231 	if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2232 	    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2233 		err = -EBUSY;
2234 		goto unlock_ptls;
2235 	}
2236 
2237 	folio_move_anon_rmap(src_folio, dst_vma);
2238 	WRITE_ONCE(src_folio->index, linear_page_index(dst_vma, dst_addr));
2239 
2240 	src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2241 	/* Folio got pinned from under us. Put it back and fail the move. */
2242 	if (folio_maybe_dma_pinned(src_folio)) {
2243 		set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2244 		err = -EBUSY;
2245 		goto unlock_ptls;
2246 	}
2247 
2248 	_dst_pmd = mk_huge_pmd(&src_folio->page, dst_vma->vm_page_prot);
2249 	/* Follow mremap() behavior and treat the entry dirty after the move */
2250 	_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2251 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2252 
2253 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2254 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2255 unlock_ptls:
2256 	double_pt_unlock(src_ptl, dst_ptl);
2257 	anon_vma_unlock_write(src_anon_vma);
2258 	put_anon_vma(src_anon_vma);
2259 unlock_folio:
2260 	/* unblock rmap walks */
2261 	folio_unlock(src_folio);
2262 	mmu_notifier_invalidate_range_end(&range);
2263 	folio_put(src_folio);
2264 	return err;
2265 }
2266 #endif /* CONFIG_USERFAULTFD */
2267 
2268 /*
2269  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2270  *
2271  * Note that if it returns page table lock pointer, this routine returns without
2272  * unlocking page table lock. So callers must unlock it.
2273  */
2274 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2275 {
2276 	spinlock_t *ptl;
2277 	ptl = pmd_lock(vma->vm_mm, pmd);
2278 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2279 			pmd_devmap(*pmd)))
2280 		return ptl;
2281 	spin_unlock(ptl);
2282 	return NULL;
2283 }
2284 
2285 /*
2286  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2287  *
2288  * Note that if it returns page table lock pointer, this routine returns without
2289  * unlocking page table lock. So callers must unlock it.
2290  */
2291 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2292 {
2293 	spinlock_t *ptl;
2294 
2295 	ptl = pud_lock(vma->vm_mm, pud);
2296 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2297 		return ptl;
2298 	spin_unlock(ptl);
2299 	return NULL;
2300 }
2301 
2302 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2303 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2304 		 pud_t *pud, unsigned long addr)
2305 {
2306 	spinlock_t *ptl;
2307 
2308 	ptl = __pud_trans_huge_lock(pud, vma);
2309 	if (!ptl)
2310 		return 0;
2311 
2312 	pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2313 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2314 	if (vma_is_special_huge(vma)) {
2315 		spin_unlock(ptl);
2316 		/* No zero page support yet */
2317 	} else {
2318 		/* No support for anonymous PUD pages yet */
2319 		BUG();
2320 	}
2321 	return 1;
2322 }
2323 
2324 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2325 		unsigned long haddr)
2326 {
2327 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2328 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2329 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2330 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2331 
2332 	count_vm_event(THP_SPLIT_PUD);
2333 
2334 	pudp_huge_clear_flush(vma, haddr, pud);
2335 }
2336 
2337 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2338 		unsigned long address)
2339 {
2340 	spinlock_t *ptl;
2341 	struct mmu_notifier_range range;
2342 
2343 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2344 				address & HPAGE_PUD_MASK,
2345 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2346 	mmu_notifier_invalidate_range_start(&range);
2347 	ptl = pud_lock(vma->vm_mm, pud);
2348 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2349 		goto out;
2350 	__split_huge_pud_locked(vma, pud, range.start);
2351 
2352 out:
2353 	spin_unlock(ptl);
2354 	mmu_notifier_invalidate_range_end(&range);
2355 }
2356 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2357 
2358 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2359 		unsigned long haddr, pmd_t *pmd)
2360 {
2361 	struct mm_struct *mm = vma->vm_mm;
2362 	pgtable_t pgtable;
2363 	pmd_t _pmd, old_pmd;
2364 	unsigned long addr;
2365 	pte_t *pte;
2366 	int i;
2367 
2368 	/*
2369 	 * Leave pmd empty until pte is filled note that it is fine to delay
2370 	 * notification until mmu_notifier_invalidate_range_end() as we are
2371 	 * replacing a zero pmd write protected page with a zero pte write
2372 	 * protected page.
2373 	 *
2374 	 * See Documentation/mm/mmu_notifier.rst
2375 	 */
2376 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2377 
2378 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2379 	pmd_populate(mm, &_pmd, pgtable);
2380 
2381 	pte = pte_offset_map(&_pmd, haddr);
2382 	VM_BUG_ON(!pte);
2383 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2384 		pte_t entry;
2385 
2386 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2387 		entry = pte_mkspecial(entry);
2388 		if (pmd_uffd_wp(old_pmd))
2389 			entry = pte_mkuffd_wp(entry);
2390 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2391 		set_pte_at(mm, addr, pte, entry);
2392 		pte++;
2393 	}
2394 	pte_unmap(pte - 1);
2395 	smp_wmb(); /* make pte visible before pmd */
2396 	pmd_populate(mm, pmd, pgtable);
2397 }
2398 
2399 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2400 		unsigned long haddr, bool freeze)
2401 {
2402 	struct mm_struct *mm = vma->vm_mm;
2403 	struct folio *folio;
2404 	struct page *page;
2405 	pgtable_t pgtable;
2406 	pmd_t old_pmd, _pmd;
2407 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2408 	bool anon_exclusive = false, dirty = false;
2409 	unsigned long addr;
2410 	pte_t *pte;
2411 	int i;
2412 
2413 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2414 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2415 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2416 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2417 				&& !pmd_devmap(*pmd));
2418 
2419 	count_vm_event(THP_SPLIT_PMD);
2420 
2421 	if (!vma_is_anonymous(vma)) {
2422 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2423 		/*
2424 		 * We are going to unmap this huge page. So
2425 		 * just go ahead and zap it
2426 		 */
2427 		if (arch_needs_pgtable_deposit())
2428 			zap_deposited_table(mm, pmd);
2429 		if (vma_is_special_huge(vma))
2430 			return;
2431 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2432 			swp_entry_t entry;
2433 
2434 			entry = pmd_to_swp_entry(old_pmd);
2435 			page = pfn_swap_entry_to_page(entry);
2436 		} else {
2437 			page = pmd_page(old_pmd);
2438 			folio = page_folio(page);
2439 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2440 				folio_set_dirty(folio);
2441 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2442 				folio_set_referenced(folio);
2443 			folio_remove_rmap_pmd(folio, page, vma);
2444 			folio_put(folio);
2445 		}
2446 		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2447 		return;
2448 	}
2449 
2450 	if (is_huge_zero_pmd(*pmd)) {
2451 		/*
2452 		 * FIXME: Do we want to invalidate secondary mmu by calling
2453 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2454 		 * inside __split_huge_pmd() ?
2455 		 *
2456 		 * We are going from a zero huge page write protected to zero
2457 		 * small page also write protected so it does not seems useful
2458 		 * to invalidate secondary mmu at this time.
2459 		 */
2460 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2461 	}
2462 
2463 	/*
2464 	 * Up to this point the pmd is present and huge and userland has the
2465 	 * whole access to the hugepage during the split (which happens in
2466 	 * place). If we overwrite the pmd with the not-huge version pointing
2467 	 * to the pte here (which of course we could if all CPUs were bug
2468 	 * free), userland could trigger a small page size TLB miss on the
2469 	 * small sized TLB while the hugepage TLB entry is still established in
2470 	 * the huge TLB. Some CPU doesn't like that.
2471 	 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2472 	 * 383 on page 105. Intel should be safe but is also warns that it's
2473 	 * only safe if the permission and cache attributes of the two entries
2474 	 * loaded in the two TLB is identical (which should be the case here).
2475 	 * But it is generally safer to never allow small and huge TLB entries
2476 	 * for the same virtual address to be loaded simultaneously. So instead
2477 	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2478 	 * current pmd notpresent (atomically because here the pmd_trans_huge
2479 	 * must remain set at all times on the pmd until the split is complete
2480 	 * for this pmd), then we flush the SMP TLB and finally we write the
2481 	 * non-huge version of the pmd entry with pmd_populate.
2482 	 */
2483 	old_pmd = pmdp_invalidate(vma, haddr, pmd);
2484 
2485 	pmd_migration = is_pmd_migration_entry(old_pmd);
2486 	if (unlikely(pmd_migration)) {
2487 		swp_entry_t entry;
2488 
2489 		entry = pmd_to_swp_entry(old_pmd);
2490 		page = pfn_swap_entry_to_page(entry);
2491 		write = is_writable_migration_entry(entry);
2492 		if (PageAnon(page))
2493 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2494 		young = is_migration_entry_young(entry);
2495 		dirty = is_migration_entry_dirty(entry);
2496 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2497 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2498 	} else {
2499 		page = pmd_page(old_pmd);
2500 		folio = page_folio(page);
2501 		if (pmd_dirty(old_pmd)) {
2502 			dirty = true;
2503 			folio_set_dirty(folio);
2504 		}
2505 		write = pmd_write(old_pmd);
2506 		young = pmd_young(old_pmd);
2507 		soft_dirty = pmd_soft_dirty(old_pmd);
2508 		uffd_wp = pmd_uffd_wp(old_pmd);
2509 
2510 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2511 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2512 
2513 		/*
2514 		 * Without "freeze", we'll simply split the PMD, propagating the
2515 		 * PageAnonExclusive() flag for each PTE by setting it for
2516 		 * each subpage -- no need to (temporarily) clear.
2517 		 *
2518 		 * With "freeze" we want to replace mapped pages by
2519 		 * migration entries right away. This is only possible if we
2520 		 * managed to clear PageAnonExclusive() -- see
2521 		 * set_pmd_migration_entry().
2522 		 *
2523 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2524 		 * only and let try_to_migrate_one() fail later.
2525 		 *
2526 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2527 		 */
2528 		anon_exclusive = PageAnonExclusive(page);
2529 		if (freeze && anon_exclusive &&
2530 		    folio_try_share_anon_rmap_pmd(folio, page))
2531 			freeze = false;
2532 		if (!freeze) {
2533 			rmap_t rmap_flags = RMAP_NONE;
2534 
2535 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2536 			if (anon_exclusive)
2537 				rmap_flags |= RMAP_EXCLUSIVE;
2538 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2539 						 vma, haddr, rmap_flags);
2540 		}
2541 	}
2542 
2543 	/*
2544 	 * Withdraw the table only after we mark the pmd entry invalid.
2545 	 * This's critical for some architectures (Power).
2546 	 */
2547 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2548 	pmd_populate(mm, &_pmd, pgtable);
2549 
2550 	pte = pte_offset_map(&_pmd, haddr);
2551 	VM_BUG_ON(!pte);
2552 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2553 		pte_t entry;
2554 		/*
2555 		 * Note that NUMA hinting access restrictions are not
2556 		 * transferred to avoid any possibility of altering
2557 		 * permissions across VMAs.
2558 		 */
2559 		if (freeze || pmd_migration) {
2560 			swp_entry_t swp_entry;
2561 			if (write)
2562 				swp_entry = make_writable_migration_entry(
2563 							page_to_pfn(page + i));
2564 			else if (anon_exclusive)
2565 				swp_entry = make_readable_exclusive_migration_entry(
2566 							page_to_pfn(page + i));
2567 			else
2568 				swp_entry = make_readable_migration_entry(
2569 							page_to_pfn(page + i));
2570 			if (young)
2571 				swp_entry = make_migration_entry_young(swp_entry);
2572 			if (dirty)
2573 				swp_entry = make_migration_entry_dirty(swp_entry);
2574 			entry = swp_entry_to_pte(swp_entry);
2575 			if (soft_dirty)
2576 				entry = pte_swp_mksoft_dirty(entry);
2577 			if (uffd_wp)
2578 				entry = pte_swp_mkuffd_wp(entry);
2579 		} else {
2580 			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2581 			if (write)
2582 				entry = pte_mkwrite(entry, vma);
2583 			if (!young)
2584 				entry = pte_mkold(entry);
2585 			/* NOTE: this may set soft-dirty too on some archs */
2586 			if (dirty)
2587 				entry = pte_mkdirty(entry);
2588 			if (soft_dirty)
2589 				entry = pte_mksoft_dirty(entry);
2590 			if (uffd_wp)
2591 				entry = pte_mkuffd_wp(entry);
2592 		}
2593 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2594 		set_pte_at(mm, addr, pte, entry);
2595 		pte++;
2596 	}
2597 	pte_unmap(pte - 1);
2598 
2599 	if (!pmd_migration)
2600 		folio_remove_rmap_pmd(folio, page, vma);
2601 	if (freeze)
2602 		put_page(page);
2603 
2604 	smp_wmb(); /* make pte visible before pmd */
2605 	pmd_populate(mm, pmd, pgtable);
2606 }
2607 
2608 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2609 		unsigned long address, bool freeze, struct folio *folio)
2610 {
2611 	spinlock_t *ptl;
2612 	struct mmu_notifier_range range;
2613 
2614 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2615 				address & HPAGE_PMD_MASK,
2616 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2617 	mmu_notifier_invalidate_range_start(&range);
2618 	ptl = pmd_lock(vma->vm_mm, pmd);
2619 
2620 	/*
2621 	 * If caller asks to setup a migration entry, we need a folio to check
2622 	 * pmd against. Otherwise we can end up replacing wrong folio.
2623 	 */
2624 	VM_BUG_ON(freeze && !folio);
2625 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2626 
2627 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2628 	    is_pmd_migration_entry(*pmd)) {
2629 		/*
2630 		 * It's safe to call pmd_page when folio is set because it's
2631 		 * guaranteed that pmd is present.
2632 		 */
2633 		if (folio && folio != page_folio(pmd_page(*pmd)))
2634 			goto out;
2635 		__split_huge_pmd_locked(vma, pmd, range.start, freeze);
2636 	}
2637 
2638 out:
2639 	spin_unlock(ptl);
2640 	mmu_notifier_invalidate_range_end(&range);
2641 }
2642 
2643 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2644 		bool freeze, struct folio *folio)
2645 {
2646 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
2647 
2648 	if (!pmd)
2649 		return;
2650 
2651 	__split_huge_pmd(vma, pmd, address, freeze, folio);
2652 }
2653 
2654 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2655 {
2656 	/*
2657 	 * If the new address isn't hpage aligned and it could previously
2658 	 * contain an hugepage: check if we need to split an huge pmd.
2659 	 */
2660 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2661 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2662 			 ALIGN(address, HPAGE_PMD_SIZE)))
2663 		split_huge_pmd_address(vma, address, false, NULL);
2664 }
2665 
2666 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2667 			     unsigned long start,
2668 			     unsigned long end,
2669 			     long adjust_next)
2670 {
2671 	/* Check if we need to split start first. */
2672 	split_huge_pmd_if_needed(vma, start);
2673 
2674 	/* Check if we need to split end next. */
2675 	split_huge_pmd_if_needed(vma, end);
2676 
2677 	/*
2678 	 * If we're also updating the next vma vm_start,
2679 	 * check if we need to split it.
2680 	 */
2681 	if (adjust_next > 0) {
2682 		struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end);
2683 		unsigned long nstart = next->vm_start;
2684 		nstart += adjust_next;
2685 		split_huge_pmd_if_needed(next, nstart);
2686 	}
2687 }
2688 
2689 static void unmap_folio(struct folio *folio)
2690 {
2691 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2692 		TTU_SYNC | TTU_BATCH_FLUSH;
2693 
2694 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2695 
2696 	/*
2697 	 * Anon pages need migration entries to preserve them, but file
2698 	 * pages can simply be left unmapped, then faulted back on demand.
2699 	 * If that is ever changed (perhaps for mlock), update remap_page().
2700 	 */
2701 	if (folio_test_anon(folio))
2702 		try_to_migrate(folio, ttu_flags);
2703 	else
2704 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2705 
2706 	try_to_unmap_flush();
2707 }
2708 
2709 static void remap_page(struct folio *folio, unsigned long nr)
2710 {
2711 	int i = 0;
2712 
2713 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
2714 	if (!folio_test_anon(folio))
2715 		return;
2716 	for (;;) {
2717 		remove_migration_ptes(folio, folio, true);
2718 		i += folio_nr_pages(folio);
2719 		if (i >= nr)
2720 			break;
2721 		folio = folio_next(folio);
2722 	}
2723 }
2724 
2725 static void lru_add_page_tail(struct page *head, struct page *tail,
2726 		struct lruvec *lruvec, struct list_head *list)
2727 {
2728 	VM_BUG_ON_PAGE(!PageHead(head), head);
2729 	VM_BUG_ON_PAGE(PageCompound(tail), head);
2730 	VM_BUG_ON_PAGE(PageLRU(tail), head);
2731 	lockdep_assert_held(&lruvec->lru_lock);
2732 
2733 	if (list) {
2734 		/* page reclaim is reclaiming a huge page */
2735 		VM_WARN_ON(PageLRU(head));
2736 		get_page(tail);
2737 		list_add_tail(&tail->lru, list);
2738 	} else {
2739 		/* head is still on lru (and we have it frozen) */
2740 		VM_WARN_ON(!PageLRU(head));
2741 		if (PageUnevictable(tail))
2742 			tail->mlock_count = 0;
2743 		else
2744 			list_add_tail(&tail->lru, &head->lru);
2745 		SetPageLRU(tail);
2746 	}
2747 }
2748 
2749 static void __split_huge_page_tail(struct folio *folio, int tail,
2750 		struct lruvec *lruvec, struct list_head *list)
2751 {
2752 	struct page *head = &folio->page;
2753 	struct page *page_tail = head + tail;
2754 	/*
2755 	 * Careful: new_folio is not a "real" folio before we cleared PageTail.
2756 	 * Don't pass it around before clear_compound_head().
2757 	 */
2758 	struct folio *new_folio = (struct folio *)page_tail;
2759 
2760 	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2761 
2762 	/*
2763 	 * Clone page flags before unfreezing refcount.
2764 	 *
2765 	 * After successful get_page_unless_zero() might follow flags change,
2766 	 * for example lock_page() which set PG_waiters.
2767 	 *
2768 	 * Note that for mapped sub-pages of an anonymous THP,
2769 	 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
2770 	 * the migration entry instead from where remap_page() will restore it.
2771 	 * We can still have PG_anon_exclusive set on effectively unmapped and
2772 	 * unreferenced sub-pages of an anonymous THP: we can simply drop
2773 	 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2774 	 */
2775 	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2776 	page_tail->flags |= (head->flags &
2777 			((1L << PG_referenced) |
2778 			 (1L << PG_swapbacked) |
2779 			 (1L << PG_swapcache) |
2780 			 (1L << PG_mlocked) |
2781 			 (1L << PG_uptodate) |
2782 			 (1L << PG_active) |
2783 			 (1L << PG_workingset) |
2784 			 (1L << PG_locked) |
2785 			 (1L << PG_unevictable) |
2786 #ifdef CONFIG_ARCH_USES_PG_ARCH_X
2787 			 (1L << PG_arch_2) |
2788 			 (1L << PG_arch_3) |
2789 #endif
2790 			 (1L << PG_dirty) |
2791 			 LRU_GEN_MASK | LRU_REFS_MASK));
2792 
2793 	/* ->mapping in first and second tail page is replaced by other uses */
2794 	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2795 			page_tail);
2796 	page_tail->mapping = head->mapping;
2797 	page_tail->index = head->index + tail;
2798 
2799 	/*
2800 	 * page->private should not be set in tail pages. Fix up and warn once
2801 	 * if private is unexpectedly set.
2802 	 */
2803 	if (unlikely(page_tail->private)) {
2804 		VM_WARN_ON_ONCE_PAGE(true, page_tail);
2805 		page_tail->private = 0;
2806 	}
2807 	if (folio_test_swapcache(folio))
2808 		new_folio->swap.val = folio->swap.val + tail;
2809 
2810 	/* Page flags must be visible before we make the page non-compound. */
2811 	smp_wmb();
2812 
2813 	/*
2814 	 * Clear PageTail before unfreezing page refcount.
2815 	 *
2816 	 * After successful get_page_unless_zero() might follow put_page()
2817 	 * which needs correct compound_head().
2818 	 */
2819 	clear_compound_head(page_tail);
2820 
2821 	/* Finally unfreeze refcount. Additional reference from page cache. */
2822 	page_ref_unfreeze(page_tail, 1 + (!folio_test_anon(folio) ||
2823 					  folio_test_swapcache(folio)));
2824 
2825 	if (folio_test_young(folio))
2826 		folio_set_young(new_folio);
2827 	if (folio_test_idle(folio))
2828 		folio_set_idle(new_folio);
2829 
2830 	folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
2831 
2832 	/*
2833 	 * always add to the tail because some iterators expect new
2834 	 * pages to show after the currently processed elements - e.g.
2835 	 * migrate_pages
2836 	 */
2837 	lru_add_page_tail(head, page_tail, lruvec, list);
2838 }
2839 
2840 static void __split_huge_page(struct page *page, struct list_head *list,
2841 		pgoff_t end)
2842 {
2843 	struct folio *folio = page_folio(page);
2844 	struct page *head = &folio->page;
2845 	struct lruvec *lruvec;
2846 	struct address_space *swap_cache = NULL;
2847 	unsigned long offset = 0;
2848 	unsigned int nr = thp_nr_pages(head);
2849 	int i, nr_dropped = 0;
2850 
2851 	/* complete memcg works before add pages to LRU */
2852 	split_page_memcg(head, nr);
2853 
2854 	if (folio_test_anon(folio) && folio_test_swapcache(folio)) {
2855 		offset = swp_offset(folio->swap);
2856 		swap_cache = swap_address_space(folio->swap);
2857 		xa_lock(&swap_cache->i_pages);
2858 	}
2859 
2860 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2861 	lruvec = folio_lruvec_lock(folio);
2862 
2863 	ClearPageHasHWPoisoned(head);
2864 
2865 	for (i = nr - 1; i >= 1; i--) {
2866 		__split_huge_page_tail(folio, i, lruvec, list);
2867 		/* Some pages can be beyond EOF: drop them from page cache */
2868 		if (head[i].index >= end) {
2869 			struct folio *tail = page_folio(head + i);
2870 
2871 			if (shmem_mapping(head->mapping))
2872 				nr_dropped++;
2873 			else if (folio_test_clear_dirty(tail))
2874 				folio_account_cleaned(tail,
2875 					inode_to_wb(folio->mapping->host));
2876 			__filemap_remove_folio(tail, NULL);
2877 			folio_put(tail);
2878 		} else if (!PageAnon(page)) {
2879 			__xa_store(&head->mapping->i_pages, head[i].index,
2880 					head + i, 0);
2881 		} else if (swap_cache) {
2882 			__xa_store(&swap_cache->i_pages, offset + i,
2883 					head + i, 0);
2884 		}
2885 	}
2886 
2887 	ClearPageCompound(head);
2888 	unlock_page_lruvec(lruvec);
2889 	/* Caller disabled irqs, so they are still disabled here */
2890 
2891 	split_page_owner(head, nr);
2892 
2893 	/* See comment in __split_huge_page_tail() */
2894 	if (PageAnon(head)) {
2895 		/* Additional pin to swap cache */
2896 		if (PageSwapCache(head)) {
2897 			page_ref_add(head, 2);
2898 			xa_unlock(&swap_cache->i_pages);
2899 		} else {
2900 			page_ref_inc(head);
2901 		}
2902 	} else {
2903 		/* Additional pin to page cache */
2904 		page_ref_add(head, 2);
2905 		xa_unlock(&head->mapping->i_pages);
2906 	}
2907 	local_irq_enable();
2908 
2909 	if (nr_dropped)
2910 		shmem_uncharge(head->mapping->host, nr_dropped);
2911 	remap_page(folio, nr);
2912 
2913 	if (folio_test_swapcache(folio))
2914 		split_swap_cluster(folio->swap);
2915 
2916 	for (i = 0; i < nr; i++) {
2917 		struct page *subpage = head + i;
2918 		if (subpage == page)
2919 			continue;
2920 		unlock_page(subpage);
2921 
2922 		/*
2923 		 * Subpages may be freed if there wasn't any mapping
2924 		 * like if add_to_swap() is running on a lru page that
2925 		 * had its mapping zapped. And freeing these pages
2926 		 * requires taking the lru_lock so we do the put_page
2927 		 * of the tail pages after the split is complete.
2928 		 */
2929 		free_page_and_swap_cache(subpage);
2930 	}
2931 }
2932 
2933 /* Racy check whether the huge page can be split */
2934 bool can_split_folio(struct folio *folio, int *pextra_pins)
2935 {
2936 	int extra_pins;
2937 
2938 	/* Additional pins from page cache */
2939 	if (folio_test_anon(folio))
2940 		extra_pins = folio_test_swapcache(folio) ?
2941 				folio_nr_pages(folio) : 0;
2942 	else
2943 		extra_pins = folio_nr_pages(folio);
2944 	if (pextra_pins)
2945 		*pextra_pins = extra_pins;
2946 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2947 }
2948 
2949 /*
2950  * This function splits huge page into normal pages. @page can point to any
2951  * subpage of huge page to split. Split doesn't change the position of @page.
2952  *
2953  * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2954  * The huge page must be locked.
2955  *
2956  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2957  *
2958  * Both head page and tail pages will inherit mapping, flags, and so on from
2959  * the hugepage.
2960  *
2961  * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2962  * they are not mapped.
2963  *
2964  * Returns 0 if the hugepage is split successfully.
2965  * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2966  * us.
2967  */
2968 int split_huge_page_to_list(struct page *page, struct list_head *list)
2969 {
2970 	struct folio *folio = page_folio(page);
2971 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
2972 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
2973 	struct anon_vma *anon_vma = NULL;
2974 	struct address_space *mapping = NULL;
2975 	int extra_pins, ret;
2976 	pgoff_t end;
2977 	bool is_hzp;
2978 
2979 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2980 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
2981 
2982 	is_hzp = is_huge_zero_page(&folio->page);
2983 	if (is_hzp) {
2984 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
2985 		return -EBUSY;
2986 	}
2987 
2988 	if (folio_test_writeback(folio))
2989 		return -EBUSY;
2990 
2991 	if (folio_test_anon(folio)) {
2992 		/*
2993 		 * The caller does not necessarily hold an mmap_lock that would
2994 		 * prevent the anon_vma disappearing so we first we take a
2995 		 * reference to it and then lock the anon_vma for write. This
2996 		 * is similar to folio_lock_anon_vma_read except the write lock
2997 		 * is taken to serialise against parallel split or collapse
2998 		 * operations.
2999 		 */
3000 		anon_vma = folio_get_anon_vma(folio);
3001 		if (!anon_vma) {
3002 			ret = -EBUSY;
3003 			goto out;
3004 		}
3005 		end = -1;
3006 		mapping = NULL;
3007 		anon_vma_lock_write(anon_vma);
3008 	} else {
3009 		gfp_t gfp;
3010 
3011 		mapping = folio->mapping;
3012 
3013 		/* Truncated ? */
3014 		if (!mapping) {
3015 			ret = -EBUSY;
3016 			goto out;
3017 		}
3018 
3019 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3020 							GFP_RECLAIM_MASK);
3021 
3022 		if (!filemap_release_folio(folio, gfp)) {
3023 			ret = -EBUSY;
3024 			goto out;
3025 		}
3026 
3027 		xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3028 		if (xas_error(&xas)) {
3029 			ret = xas_error(&xas);
3030 			goto out;
3031 		}
3032 
3033 		anon_vma = NULL;
3034 		i_mmap_lock_read(mapping);
3035 
3036 		/*
3037 		 *__split_huge_page() may need to trim off pages beyond EOF:
3038 		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
3039 		 * which cannot be nested inside the page tree lock. So note
3040 		 * end now: i_size itself may be changed at any moment, but
3041 		 * folio lock is good enough to serialize the trimming.
3042 		 */
3043 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3044 		if (shmem_mapping(mapping))
3045 			end = shmem_fallocend(mapping->host, end);
3046 	}
3047 
3048 	/*
3049 	 * Racy check if we can split the page, before unmap_folio() will
3050 	 * split PMDs
3051 	 */
3052 	if (!can_split_folio(folio, &extra_pins)) {
3053 		ret = -EAGAIN;
3054 		goto out_unlock;
3055 	}
3056 
3057 	unmap_folio(folio);
3058 
3059 	/* block interrupt reentry in xa_lock and spinlock */
3060 	local_irq_disable();
3061 	if (mapping) {
3062 		/*
3063 		 * Check if the folio is present in page cache.
3064 		 * We assume all tail are present too, if folio is there.
3065 		 */
3066 		xas_lock(&xas);
3067 		xas_reset(&xas);
3068 		if (xas_load(&xas) != folio)
3069 			goto fail;
3070 	}
3071 
3072 	/* Prevent deferred_split_scan() touching ->_refcount */
3073 	spin_lock(&ds_queue->split_queue_lock);
3074 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3075 		if (!list_empty(&folio->_deferred_list)) {
3076 			ds_queue->split_queue_len--;
3077 			list_del(&folio->_deferred_list);
3078 		}
3079 		spin_unlock(&ds_queue->split_queue_lock);
3080 		if (mapping) {
3081 			int nr = folio_nr_pages(folio);
3082 
3083 			xas_split(&xas, folio, folio_order(folio));
3084 			if (folio_test_pmd_mappable(folio)) {
3085 				if (folio_test_swapbacked(folio)) {
3086 					__lruvec_stat_mod_folio(folio,
3087 							NR_SHMEM_THPS, -nr);
3088 				} else {
3089 					__lruvec_stat_mod_folio(folio,
3090 							NR_FILE_THPS, -nr);
3091 					filemap_nr_thps_dec(mapping);
3092 				}
3093 			}
3094 		}
3095 
3096 		__split_huge_page(page, list, end);
3097 		ret = 0;
3098 	} else {
3099 		spin_unlock(&ds_queue->split_queue_lock);
3100 fail:
3101 		if (mapping)
3102 			xas_unlock(&xas);
3103 		local_irq_enable();
3104 		remap_page(folio, folio_nr_pages(folio));
3105 		ret = -EAGAIN;
3106 	}
3107 
3108 out_unlock:
3109 	if (anon_vma) {
3110 		anon_vma_unlock_write(anon_vma);
3111 		put_anon_vma(anon_vma);
3112 	}
3113 	if (mapping)
3114 		i_mmap_unlock_read(mapping);
3115 out:
3116 	xas_destroy(&xas);
3117 	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3118 	return ret;
3119 }
3120 
3121 void folio_undo_large_rmappable(struct folio *folio)
3122 {
3123 	struct deferred_split *ds_queue;
3124 	unsigned long flags;
3125 
3126 	/*
3127 	 * At this point, there is no one trying to add the folio to
3128 	 * deferred_list. If folio is not in deferred_list, it's safe
3129 	 * to check without acquiring the split_queue_lock.
3130 	 */
3131 	if (data_race(list_empty(&folio->_deferred_list)))
3132 		return;
3133 
3134 	ds_queue = get_deferred_split_queue(folio);
3135 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3136 	if (!list_empty(&folio->_deferred_list)) {
3137 		ds_queue->split_queue_len--;
3138 		list_del_init(&folio->_deferred_list);
3139 	}
3140 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3141 }
3142 
3143 void deferred_split_folio(struct folio *folio)
3144 {
3145 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3146 #ifdef CONFIG_MEMCG
3147 	struct mem_cgroup *memcg = folio_memcg(folio);
3148 #endif
3149 	unsigned long flags;
3150 
3151 	VM_BUG_ON_FOLIO(folio_order(folio) < 2, folio);
3152 
3153 	/*
3154 	 * The try_to_unmap() in page reclaim path might reach here too,
3155 	 * this may cause a race condition to corrupt deferred split queue.
3156 	 * And, if page reclaim is already handling the same folio, it is
3157 	 * unnecessary to handle it again in shrinker.
3158 	 *
3159 	 * Check the swapcache flag to determine if the folio is being
3160 	 * handled by page reclaim since THP swap would add the folio into
3161 	 * swap cache before calling try_to_unmap().
3162 	 */
3163 	if (folio_test_swapcache(folio))
3164 		return;
3165 
3166 	if (!list_empty(&folio->_deferred_list))
3167 		return;
3168 
3169 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3170 	if (list_empty(&folio->_deferred_list)) {
3171 		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3172 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
3173 		ds_queue->split_queue_len++;
3174 #ifdef CONFIG_MEMCG
3175 		if (memcg)
3176 			set_shrinker_bit(memcg, folio_nid(folio),
3177 					 deferred_split_shrinker->id);
3178 #endif
3179 	}
3180 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3181 }
3182 
3183 static unsigned long deferred_split_count(struct shrinker *shrink,
3184 		struct shrink_control *sc)
3185 {
3186 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3187 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3188 
3189 #ifdef CONFIG_MEMCG
3190 	if (sc->memcg)
3191 		ds_queue = &sc->memcg->deferred_split_queue;
3192 #endif
3193 	return READ_ONCE(ds_queue->split_queue_len);
3194 }
3195 
3196 static unsigned long deferred_split_scan(struct shrinker *shrink,
3197 		struct shrink_control *sc)
3198 {
3199 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3200 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
3201 	unsigned long flags;
3202 	LIST_HEAD(list);
3203 	struct folio *folio, *next;
3204 	int split = 0;
3205 
3206 #ifdef CONFIG_MEMCG
3207 	if (sc->memcg)
3208 		ds_queue = &sc->memcg->deferred_split_queue;
3209 #endif
3210 
3211 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3212 	/* Take pin on all head pages to avoid freeing them under us */
3213 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
3214 							_deferred_list) {
3215 		if (folio_try_get(folio)) {
3216 			list_move(&folio->_deferred_list, &list);
3217 		} else {
3218 			/* We lost race with folio_put() */
3219 			list_del_init(&folio->_deferred_list);
3220 			ds_queue->split_queue_len--;
3221 		}
3222 		if (!--sc->nr_to_scan)
3223 			break;
3224 	}
3225 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3226 
3227 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
3228 		if (!folio_trylock(folio))
3229 			goto next;
3230 		/* split_huge_page() removes page from list on success */
3231 		if (!split_folio(folio))
3232 			split++;
3233 		folio_unlock(folio);
3234 next:
3235 		folio_put(folio);
3236 	}
3237 
3238 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
3239 	list_splice_tail(&list, &ds_queue->split_queue);
3240 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3241 
3242 	/*
3243 	 * Stop shrinker if we didn't split any page, but the queue is empty.
3244 	 * This can happen if pages were freed under us.
3245 	 */
3246 	if (!split && list_empty(&ds_queue->split_queue))
3247 		return SHRINK_STOP;
3248 	return split;
3249 }
3250 
3251 #ifdef CONFIG_DEBUG_FS
3252 static void split_huge_pages_all(void)
3253 {
3254 	struct zone *zone;
3255 	struct page *page;
3256 	struct folio *folio;
3257 	unsigned long pfn, max_zone_pfn;
3258 	unsigned long total = 0, split = 0;
3259 
3260 	pr_debug("Split all THPs\n");
3261 	for_each_zone(zone) {
3262 		if (!managed_zone(zone))
3263 			continue;
3264 		max_zone_pfn = zone_end_pfn(zone);
3265 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3266 			int nr_pages;
3267 
3268 			page = pfn_to_online_page(pfn);
3269 			if (!page || PageTail(page))
3270 				continue;
3271 			folio = page_folio(page);
3272 			if (!folio_try_get(folio))
3273 				continue;
3274 
3275 			if (unlikely(page_folio(page) != folio))
3276 				goto next;
3277 
3278 			if (zone != folio_zone(folio))
3279 				goto next;
3280 
3281 			if (!folio_test_large(folio)
3282 				|| folio_test_hugetlb(folio)
3283 				|| !folio_test_lru(folio))
3284 				goto next;
3285 
3286 			total++;
3287 			folio_lock(folio);
3288 			nr_pages = folio_nr_pages(folio);
3289 			if (!split_folio(folio))
3290 				split++;
3291 			pfn += nr_pages - 1;
3292 			folio_unlock(folio);
3293 next:
3294 			folio_put(folio);
3295 			cond_resched();
3296 		}
3297 	}
3298 
3299 	pr_debug("%lu of %lu THP split\n", split, total);
3300 }
3301 
3302 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
3303 {
3304 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
3305 		    is_vm_hugetlb_page(vma);
3306 }
3307 
3308 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
3309 				unsigned long vaddr_end)
3310 {
3311 	int ret = 0;
3312 	struct task_struct *task;
3313 	struct mm_struct *mm;
3314 	unsigned long total = 0, split = 0;
3315 	unsigned long addr;
3316 
3317 	vaddr_start &= PAGE_MASK;
3318 	vaddr_end &= PAGE_MASK;
3319 
3320 	/* Find the task_struct from pid */
3321 	rcu_read_lock();
3322 	task = find_task_by_vpid(pid);
3323 	if (!task) {
3324 		rcu_read_unlock();
3325 		ret = -ESRCH;
3326 		goto out;
3327 	}
3328 	get_task_struct(task);
3329 	rcu_read_unlock();
3330 
3331 	/* Find the mm_struct */
3332 	mm = get_task_mm(task);
3333 	put_task_struct(task);
3334 
3335 	if (!mm) {
3336 		ret = -EINVAL;
3337 		goto out;
3338 	}
3339 
3340 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3341 		 pid, vaddr_start, vaddr_end);
3342 
3343 	mmap_read_lock(mm);
3344 	/*
3345 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
3346 	 * table filled with PTE-mapped THPs, each of which is distinct.
3347 	 */
3348 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3349 		struct vm_area_struct *vma = vma_lookup(mm, addr);
3350 		struct page *page;
3351 		struct folio *folio;
3352 
3353 		if (!vma)
3354 			break;
3355 
3356 		/* skip special VMA and hugetlb VMA */
3357 		if (vma_not_suitable_for_thp_split(vma)) {
3358 			addr = vma->vm_end;
3359 			continue;
3360 		}
3361 
3362 		/* FOLL_DUMP to ignore special (like zero) pages */
3363 		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
3364 
3365 		if (IS_ERR_OR_NULL(page))
3366 			continue;
3367 
3368 		folio = page_folio(page);
3369 		if (!is_transparent_hugepage(folio))
3370 			goto next;
3371 
3372 		total++;
3373 		if (!can_split_folio(folio, NULL))
3374 			goto next;
3375 
3376 		if (!folio_trylock(folio))
3377 			goto next;
3378 
3379 		if (!split_folio(folio))
3380 			split++;
3381 
3382 		folio_unlock(folio);
3383 next:
3384 		folio_put(folio);
3385 		cond_resched();
3386 	}
3387 	mmap_read_unlock(mm);
3388 	mmput(mm);
3389 
3390 	pr_debug("%lu of %lu THP split\n", split, total);
3391 
3392 out:
3393 	return ret;
3394 }
3395 
3396 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3397 				pgoff_t off_end)
3398 {
3399 	struct filename *file;
3400 	struct file *candidate;
3401 	struct address_space *mapping;
3402 	int ret = -EINVAL;
3403 	pgoff_t index;
3404 	int nr_pages = 1;
3405 	unsigned long total = 0, split = 0;
3406 
3407 	file = getname_kernel(file_path);
3408 	if (IS_ERR(file))
3409 		return ret;
3410 
3411 	candidate = file_open_name(file, O_RDONLY, 0);
3412 	if (IS_ERR(candidate))
3413 		goto out;
3414 
3415 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3416 		 file_path, off_start, off_end);
3417 
3418 	mapping = candidate->f_mapping;
3419 
3420 	for (index = off_start; index < off_end; index += nr_pages) {
3421 		struct folio *folio = filemap_get_folio(mapping, index);
3422 
3423 		nr_pages = 1;
3424 		if (IS_ERR(folio))
3425 			continue;
3426 
3427 		if (!folio_test_large(folio))
3428 			goto next;
3429 
3430 		total++;
3431 		nr_pages = folio_nr_pages(folio);
3432 
3433 		if (!folio_trylock(folio))
3434 			goto next;
3435 
3436 		if (!split_folio(folio))
3437 			split++;
3438 
3439 		folio_unlock(folio);
3440 next:
3441 		folio_put(folio);
3442 		cond_resched();
3443 	}
3444 
3445 	filp_close(candidate, NULL);
3446 	ret = 0;
3447 
3448 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
3449 out:
3450 	putname(file);
3451 	return ret;
3452 }
3453 
3454 #define MAX_INPUT_BUF_SZ 255
3455 
3456 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3457 				size_t count, loff_t *ppops)
3458 {
3459 	static DEFINE_MUTEX(split_debug_mutex);
3460 	ssize_t ret;
3461 	/* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3462 	char input_buf[MAX_INPUT_BUF_SZ];
3463 	int pid;
3464 	unsigned long vaddr_start, vaddr_end;
3465 
3466 	ret = mutex_lock_interruptible(&split_debug_mutex);
3467 	if (ret)
3468 		return ret;
3469 
3470 	ret = -EFAULT;
3471 
3472 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3473 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3474 		goto out;
3475 
3476 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3477 
3478 	if (input_buf[0] == '/') {
3479 		char *tok;
3480 		char *buf = input_buf;
3481 		char file_path[MAX_INPUT_BUF_SZ];
3482 		pgoff_t off_start = 0, off_end = 0;
3483 		size_t input_len = strlen(input_buf);
3484 
3485 		tok = strsep(&buf, ",");
3486 		if (tok) {
3487 			strcpy(file_path, tok);
3488 		} else {
3489 			ret = -EINVAL;
3490 			goto out;
3491 		}
3492 
3493 		ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3494 		if (ret != 2) {
3495 			ret = -EINVAL;
3496 			goto out;
3497 		}
3498 		ret = split_huge_pages_in_file(file_path, off_start, off_end);
3499 		if (!ret)
3500 			ret = input_len;
3501 
3502 		goto out;
3503 	}
3504 
3505 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3506 	if (ret == 1 && pid == 1) {
3507 		split_huge_pages_all();
3508 		ret = strlen(input_buf);
3509 		goto out;
3510 	} else if (ret != 3) {
3511 		ret = -EINVAL;
3512 		goto out;
3513 	}
3514 
3515 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3516 	if (!ret)
3517 		ret = strlen(input_buf);
3518 out:
3519 	mutex_unlock(&split_debug_mutex);
3520 	return ret;
3521 
3522 }
3523 
3524 static const struct file_operations split_huge_pages_fops = {
3525 	.owner	 = THIS_MODULE,
3526 	.write	 = split_huge_pages_write,
3527 	.llseek  = no_llseek,
3528 };
3529 
3530 static int __init split_huge_pages_debugfs(void)
3531 {
3532 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3533 			    &split_huge_pages_fops);
3534 	return 0;
3535 }
3536 late_initcall(split_huge_pages_debugfs);
3537 #endif
3538 
3539 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3540 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3541 		struct page *page)
3542 {
3543 	struct folio *folio = page_folio(page);
3544 	struct vm_area_struct *vma = pvmw->vma;
3545 	struct mm_struct *mm = vma->vm_mm;
3546 	unsigned long address = pvmw->address;
3547 	bool anon_exclusive;
3548 	pmd_t pmdval;
3549 	swp_entry_t entry;
3550 	pmd_t pmdswp;
3551 
3552 	if (!(pvmw->pmd && !pvmw->pte))
3553 		return 0;
3554 
3555 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3556 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3557 
3558 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
3559 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
3560 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
3561 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
3562 		return -EBUSY;
3563 	}
3564 
3565 	if (pmd_dirty(pmdval))
3566 		folio_set_dirty(folio);
3567 	if (pmd_write(pmdval))
3568 		entry = make_writable_migration_entry(page_to_pfn(page));
3569 	else if (anon_exclusive)
3570 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3571 	else
3572 		entry = make_readable_migration_entry(page_to_pfn(page));
3573 	if (pmd_young(pmdval))
3574 		entry = make_migration_entry_young(entry);
3575 	if (pmd_dirty(pmdval))
3576 		entry = make_migration_entry_dirty(entry);
3577 	pmdswp = swp_entry_to_pmd(entry);
3578 	if (pmd_soft_dirty(pmdval))
3579 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3580 	if (pmd_uffd_wp(pmdval))
3581 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
3582 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3583 	folio_remove_rmap_pmd(folio, page, vma);
3584 	folio_put(folio);
3585 	trace_set_migration_pmd(address, pmd_val(pmdswp));
3586 
3587 	return 0;
3588 }
3589 
3590 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3591 {
3592 	struct folio *folio = page_folio(new);
3593 	struct vm_area_struct *vma = pvmw->vma;
3594 	struct mm_struct *mm = vma->vm_mm;
3595 	unsigned long address = pvmw->address;
3596 	unsigned long haddr = address & HPAGE_PMD_MASK;
3597 	pmd_t pmde;
3598 	swp_entry_t entry;
3599 
3600 	if (!(pvmw->pmd && !pvmw->pte))
3601 		return;
3602 
3603 	entry = pmd_to_swp_entry(*pvmw->pmd);
3604 	folio_get(folio);
3605 	pmde = mk_huge_pmd(new, READ_ONCE(vma->vm_page_prot));
3606 	if (pmd_swp_soft_dirty(*pvmw->pmd))
3607 		pmde = pmd_mksoft_dirty(pmde);
3608 	if (is_writable_migration_entry(entry))
3609 		pmde = pmd_mkwrite(pmde, vma);
3610 	if (pmd_swp_uffd_wp(*pvmw->pmd))
3611 		pmde = pmd_mkuffd_wp(pmde);
3612 	if (!is_migration_entry_young(entry))
3613 		pmde = pmd_mkold(pmde);
3614 	/* NOTE: this may contain setting soft-dirty on some archs */
3615 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
3616 		pmde = pmd_mkdirty(pmde);
3617 
3618 	if (folio_test_anon(folio)) {
3619 		rmap_t rmap_flags = RMAP_NONE;
3620 
3621 		if (!is_readable_migration_entry(entry))
3622 			rmap_flags |= RMAP_EXCLUSIVE;
3623 
3624 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
3625 	} else {
3626 		folio_add_file_rmap_pmd(folio, new, vma);
3627 	}
3628 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
3629 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
3630 
3631 	/* No need to invalidate - it was non-present before */
3632 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
3633 	trace_remove_migration_pmd(address, pmd_val(pmde));
3634 }
3635 #endif
3636