xref: /linux/mm/huge_memory.c (revision 040f404b731207935ed644b14bcc2bb8b8488d00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 2009  Red Hat, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39 #include <linux/memory-tiers.h>
40 #include <linux/compat.h>
41 #include <linux/pgalloc_tag.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlb.h>
45 #include <asm/pgalloc.h>
46 #include "internal.h"
47 #include "swap.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/thp.h>
51 
52 /*
53  * By default, transparent hugepage support is disabled in order to avoid
54  * risking an increased memory footprint for applications that are not
55  * guaranteed to benefit from it. When transparent hugepage support is
56  * enabled, it is for all mappings, and khugepaged scans all mappings.
57  * Defrag is invoked by khugepaged hugepage allocations and by page faults
58  * for all hugepage allocations.
59  */
60 unsigned long transparent_hugepage_flags __read_mostly =
61 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
62 	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
63 #endif
64 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
65 	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
66 #endif
67 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
68 	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
69 	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
70 
71 static struct shrinker *deferred_split_shrinker;
72 static unsigned long deferred_split_count(struct shrinker *shrink,
73 					  struct shrink_control *sc);
74 static unsigned long deferred_split_scan(struct shrinker *shrink,
75 					 struct shrink_control *sc);
76 static bool split_underused_thp = true;
77 
78 static atomic_t huge_zero_refcount;
79 struct folio *huge_zero_folio __read_mostly;
80 unsigned long huge_zero_pfn __read_mostly = ~0UL;
81 unsigned long huge_anon_orders_always __read_mostly;
82 unsigned long huge_anon_orders_madvise __read_mostly;
83 unsigned long huge_anon_orders_inherit __read_mostly;
84 static bool anon_orders_configured __initdata;
85 
86 static inline bool file_thp_enabled(struct vm_area_struct *vma)
87 {
88 	struct inode *inode;
89 
90 	if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
91 		return false;
92 
93 	if (!vma->vm_file)
94 		return false;
95 
96 	inode = file_inode(vma->vm_file);
97 
98 	return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
99 }
100 
101 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
102 					 unsigned long vm_flags,
103 					 unsigned long tva_flags,
104 					 unsigned long orders)
105 {
106 	bool smaps = tva_flags & TVA_SMAPS;
107 	bool in_pf = tva_flags & TVA_IN_PF;
108 	bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
109 	unsigned long supported_orders;
110 
111 	/* Check the intersection of requested and supported orders. */
112 	if (vma_is_anonymous(vma))
113 		supported_orders = THP_ORDERS_ALL_ANON;
114 	else if (vma_is_special_huge(vma))
115 		supported_orders = THP_ORDERS_ALL_SPECIAL;
116 	else
117 		supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
118 
119 	orders &= supported_orders;
120 	if (!orders)
121 		return 0;
122 
123 	if (!vma->vm_mm)		/* vdso */
124 		return 0;
125 
126 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
127 		return 0;
128 
129 	/* khugepaged doesn't collapse DAX vma, but page fault is fine. */
130 	if (vma_is_dax(vma))
131 		return in_pf ? orders : 0;
132 
133 	/*
134 	 * khugepaged special VMA and hugetlb VMA.
135 	 * Must be checked after dax since some dax mappings may have
136 	 * VM_MIXEDMAP set.
137 	 */
138 	if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
139 		return 0;
140 
141 	/*
142 	 * Check alignment for file vma and size for both file and anon vma by
143 	 * filtering out the unsuitable orders.
144 	 *
145 	 * Skip the check for page fault. Huge fault does the check in fault
146 	 * handlers.
147 	 */
148 	if (!in_pf) {
149 		int order = highest_order(orders);
150 		unsigned long addr;
151 
152 		while (orders) {
153 			addr = vma->vm_end - (PAGE_SIZE << order);
154 			if (thp_vma_suitable_order(vma, addr, order))
155 				break;
156 			order = next_order(&orders, order);
157 		}
158 
159 		if (!orders)
160 			return 0;
161 	}
162 
163 	/*
164 	 * Enabled via shmem mount options or sysfs settings.
165 	 * Must be done before hugepage flags check since shmem has its
166 	 * own flags.
167 	 */
168 	if (!in_pf && shmem_file(vma->vm_file))
169 		return shmem_allowable_huge_orders(file_inode(vma->vm_file),
170 						   vma, vma->vm_pgoff, 0,
171 						   !enforce_sysfs);
172 
173 	if (!vma_is_anonymous(vma)) {
174 		/*
175 		 * Enforce sysfs THP requirements as necessary. Anonymous vmas
176 		 * were already handled in thp_vma_allowable_orders().
177 		 */
178 		if (enforce_sysfs &&
179 		    (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
180 						    !hugepage_global_always())))
181 			return 0;
182 
183 		/*
184 		 * Trust that ->huge_fault() handlers know what they are doing
185 		 * in fault path.
186 		 */
187 		if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
188 			return orders;
189 		/* Only regular file is valid in collapse path */
190 		if (((!in_pf || smaps)) && file_thp_enabled(vma))
191 			return orders;
192 		return 0;
193 	}
194 
195 	if (vma_is_temporary_stack(vma))
196 		return 0;
197 
198 	/*
199 	 * THPeligible bit of smaps should show 1 for proper VMAs even
200 	 * though anon_vma is not initialized yet.
201 	 *
202 	 * Allow page fault since anon_vma may be not initialized until
203 	 * the first page fault.
204 	 */
205 	if (!vma->anon_vma)
206 		return (smaps || in_pf) ? orders : 0;
207 
208 	return orders;
209 }
210 
211 static bool get_huge_zero_page(void)
212 {
213 	struct folio *zero_folio;
214 retry:
215 	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 		return true;
217 
218 	zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 			HPAGE_PMD_ORDER);
220 	if (!zero_folio) {
221 		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 		return false;
223 	}
224 	/* Ensure zero folio won't have large_rmappable flag set. */
225 	folio_clear_large_rmappable(zero_folio);
226 	preempt_disable();
227 	if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
228 		preempt_enable();
229 		folio_put(zero_folio);
230 		goto retry;
231 	}
232 	WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
233 
234 	/* We take additional reference here. It will be put back by shrinker */
235 	atomic_set(&huge_zero_refcount, 2);
236 	preempt_enable();
237 	count_vm_event(THP_ZERO_PAGE_ALLOC);
238 	return true;
239 }
240 
241 static void put_huge_zero_page(void)
242 {
243 	/*
244 	 * Counter should never go to zero here. Only shrinker can put
245 	 * last reference.
246 	 */
247 	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
248 }
249 
250 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
251 {
252 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
253 		return READ_ONCE(huge_zero_folio);
254 
255 	if (!get_huge_zero_page())
256 		return NULL;
257 
258 	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
259 		put_huge_zero_page();
260 
261 	return READ_ONCE(huge_zero_folio);
262 }
263 
264 void mm_put_huge_zero_folio(struct mm_struct *mm)
265 {
266 	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
267 		put_huge_zero_page();
268 }
269 
270 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
271 					struct shrink_control *sc)
272 {
273 	/* we can free zero page only if last reference remains */
274 	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
275 }
276 
277 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
278 				       struct shrink_control *sc)
279 {
280 	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
281 		struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
282 		BUG_ON(zero_folio == NULL);
283 		WRITE_ONCE(huge_zero_pfn, ~0UL);
284 		folio_put(zero_folio);
285 		return HPAGE_PMD_NR;
286 	}
287 
288 	return 0;
289 }
290 
291 static struct shrinker *huge_zero_page_shrinker;
292 
293 #ifdef CONFIG_SYSFS
294 static ssize_t enabled_show(struct kobject *kobj,
295 			    struct kobj_attribute *attr, char *buf)
296 {
297 	const char *output;
298 
299 	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
300 		output = "[always] madvise never";
301 	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
302 			  &transparent_hugepage_flags))
303 		output = "always [madvise] never";
304 	else
305 		output = "always madvise [never]";
306 
307 	return sysfs_emit(buf, "%s\n", output);
308 }
309 
310 static ssize_t enabled_store(struct kobject *kobj,
311 			     struct kobj_attribute *attr,
312 			     const char *buf, size_t count)
313 {
314 	ssize_t ret = count;
315 
316 	if (sysfs_streq(buf, "always")) {
317 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
318 		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
319 	} else if (sysfs_streq(buf, "madvise")) {
320 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
321 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
322 	} else if (sysfs_streq(buf, "never")) {
323 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
324 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
325 	} else
326 		ret = -EINVAL;
327 
328 	if (ret > 0) {
329 		int err = start_stop_khugepaged();
330 		if (err)
331 			ret = err;
332 	}
333 	return ret;
334 }
335 
336 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
337 
338 ssize_t single_hugepage_flag_show(struct kobject *kobj,
339 				  struct kobj_attribute *attr, char *buf,
340 				  enum transparent_hugepage_flag flag)
341 {
342 	return sysfs_emit(buf, "%d\n",
343 			  !!test_bit(flag, &transparent_hugepage_flags));
344 }
345 
346 ssize_t single_hugepage_flag_store(struct kobject *kobj,
347 				 struct kobj_attribute *attr,
348 				 const char *buf, size_t count,
349 				 enum transparent_hugepage_flag flag)
350 {
351 	unsigned long value;
352 	int ret;
353 
354 	ret = kstrtoul(buf, 10, &value);
355 	if (ret < 0)
356 		return ret;
357 	if (value > 1)
358 		return -EINVAL;
359 
360 	if (value)
361 		set_bit(flag, &transparent_hugepage_flags);
362 	else
363 		clear_bit(flag, &transparent_hugepage_flags);
364 
365 	return count;
366 }
367 
368 static ssize_t defrag_show(struct kobject *kobj,
369 			   struct kobj_attribute *attr, char *buf)
370 {
371 	const char *output;
372 
373 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
374 		     &transparent_hugepage_flags))
375 		output = "[always] defer defer+madvise madvise never";
376 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
377 			  &transparent_hugepage_flags))
378 		output = "always [defer] defer+madvise madvise never";
379 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
380 			  &transparent_hugepage_flags))
381 		output = "always defer [defer+madvise] madvise never";
382 	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
383 			  &transparent_hugepage_flags))
384 		output = "always defer defer+madvise [madvise] never";
385 	else
386 		output = "always defer defer+madvise madvise [never]";
387 
388 	return sysfs_emit(buf, "%s\n", output);
389 }
390 
391 static ssize_t defrag_store(struct kobject *kobj,
392 			    struct kobj_attribute *attr,
393 			    const char *buf, size_t count)
394 {
395 	if (sysfs_streq(buf, "always")) {
396 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
397 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
398 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
399 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
400 	} else if (sysfs_streq(buf, "defer+madvise")) {
401 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
402 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
403 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
404 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
405 	} else if (sysfs_streq(buf, "defer")) {
406 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
407 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
408 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
409 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
410 	} else if (sysfs_streq(buf, "madvise")) {
411 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
412 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
413 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
414 		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
415 	} else if (sysfs_streq(buf, "never")) {
416 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
417 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
418 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
419 		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
420 	} else
421 		return -EINVAL;
422 
423 	return count;
424 }
425 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
426 
427 static ssize_t use_zero_page_show(struct kobject *kobj,
428 				  struct kobj_attribute *attr, char *buf)
429 {
430 	return single_hugepage_flag_show(kobj, attr, buf,
431 					 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
432 }
433 static ssize_t use_zero_page_store(struct kobject *kobj,
434 		struct kobj_attribute *attr, const char *buf, size_t count)
435 {
436 	return single_hugepage_flag_store(kobj, attr, buf, count,
437 				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
438 }
439 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
440 
441 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
442 				   struct kobj_attribute *attr, char *buf)
443 {
444 	return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
445 }
446 static struct kobj_attribute hpage_pmd_size_attr =
447 	__ATTR_RO(hpage_pmd_size);
448 
449 static ssize_t split_underused_thp_show(struct kobject *kobj,
450 			    struct kobj_attribute *attr, char *buf)
451 {
452 	return sysfs_emit(buf, "%d\n", split_underused_thp);
453 }
454 
455 static ssize_t split_underused_thp_store(struct kobject *kobj,
456 			     struct kobj_attribute *attr,
457 			     const char *buf, size_t count)
458 {
459 	int err = kstrtobool(buf, &split_underused_thp);
460 
461 	if (err < 0)
462 		return err;
463 
464 	return count;
465 }
466 
467 static struct kobj_attribute split_underused_thp_attr = __ATTR(
468 	shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
469 
470 static struct attribute *hugepage_attr[] = {
471 	&enabled_attr.attr,
472 	&defrag_attr.attr,
473 	&use_zero_page_attr.attr,
474 	&hpage_pmd_size_attr.attr,
475 #ifdef CONFIG_SHMEM
476 	&shmem_enabled_attr.attr,
477 #endif
478 	&split_underused_thp_attr.attr,
479 	NULL,
480 };
481 
482 static const struct attribute_group hugepage_attr_group = {
483 	.attrs = hugepage_attr,
484 };
485 
486 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
487 static void thpsize_release(struct kobject *kobj);
488 static DEFINE_SPINLOCK(huge_anon_orders_lock);
489 static LIST_HEAD(thpsize_list);
490 
491 static ssize_t anon_enabled_show(struct kobject *kobj,
492 				 struct kobj_attribute *attr, char *buf)
493 {
494 	int order = to_thpsize(kobj)->order;
495 	const char *output;
496 
497 	if (test_bit(order, &huge_anon_orders_always))
498 		output = "[always] inherit madvise never";
499 	else if (test_bit(order, &huge_anon_orders_inherit))
500 		output = "always [inherit] madvise never";
501 	else if (test_bit(order, &huge_anon_orders_madvise))
502 		output = "always inherit [madvise] never";
503 	else
504 		output = "always inherit madvise [never]";
505 
506 	return sysfs_emit(buf, "%s\n", output);
507 }
508 
509 static ssize_t anon_enabled_store(struct kobject *kobj,
510 				  struct kobj_attribute *attr,
511 				  const char *buf, size_t count)
512 {
513 	int order = to_thpsize(kobj)->order;
514 	ssize_t ret = count;
515 
516 	if (sysfs_streq(buf, "always")) {
517 		spin_lock(&huge_anon_orders_lock);
518 		clear_bit(order, &huge_anon_orders_inherit);
519 		clear_bit(order, &huge_anon_orders_madvise);
520 		set_bit(order, &huge_anon_orders_always);
521 		spin_unlock(&huge_anon_orders_lock);
522 	} else if (sysfs_streq(buf, "inherit")) {
523 		spin_lock(&huge_anon_orders_lock);
524 		clear_bit(order, &huge_anon_orders_always);
525 		clear_bit(order, &huge_anon_orders_madvise);
526 		set_bit(order, &huge_anon_orders_inherit);
527 		spin_unlock(&huge_anon_orders_lock);
528 	} else if (sysfs_streq(buf, "madvise")) {
529 		spin_lock(&huge_anon_orders_lock);
530 		clear_bit(order, &huge_anon_orders_always);
531 		clear_bit(order, &huge_anon_orders_inherit);
532 		set_bit(order, &huge_anon_orders_madvise);
533 		spin_unlock(&huge_anon_orders_lock);
534 	} else if (sysfs_streq(buf, "never")) {
535 		spin_lock(&huge_anon_orders_lock);
536 		clear_bit(order, &huge_anon_orders_always);
537 		clear_bit(order, &huge_anon_orders_inherit);
538 		clear_bit(order, &huge_anon_orders_madvise);
539 		spin_unlock(&huge_anon_orders_lock);
540 	} else
541 		ret = -EINVAL;
542 
543 	if (ret > 0) {
544 		int err;
545 
546 		err = start_stop_khugepaged();
547 		if (err)
548 			ret = err;
549 	}
550 	return ret;
551 }
552 
553 static struct kobj_attribute anon_enabled_attr =
554 	__ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
555 
556 static struct attribute *anon_ctrl_attrs[] = {
557 	&anon_enabled_attr.attr,
558 	NULL,
559 };
560 
561 static const struct attribute_group anon_ctrl_attr_grp = {
562 	.attrs = anon_ctrl_attrs,
563 };
564 
565 static struct attribute *file_ctrl_attrs[] = {
566 #ifdef CONFIG_SHMEM
567 	&thpsize_shmem_enabled_attr.attr,
568 #endif
569 	NULL,
570 };
571 
572 static const struct attribute_group file_ctrl_attr_grp = {
573 	.attrs = file_ctrl_attrs,
574 };
575 
576 static struct attribute *any_ctrl_attrs[] = {
577 	NULL,
578 };
579 
580 static const struct attribute_group any_ctrl_attr_grp = {
581 	.attrs = any_ctrl_attrs,
582 };
583 
584 static const struct kobj_type thpsize_ktype = {
585 	.release = &thpsize_release,
586 	.sysfs_ops = &kobj_sysfs_ops,
587 };
588 
589 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
590 
591 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
592 {
593 	unsigned long sum = 0;
594 	int cpu;
595 
596 	for_each_possible_cpu(cpu) {
597 		struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
598 
599 		sum += this->stats[order][item];
600 	}
601 
602 	return sum;
603 }
604 
605 #define DEFINE_MTHP_STAT_ATTR(_name, _index)				\
606 static ssize_t _name##_show(struct kobject *kobj,			\
607 			struct kobj_attribute *attr, char *buf)		\
608 {									\
609 	int order = to_thpsize(kobj)->order;				\
610 									\
611 	return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index));	\
612 }									\
613 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
614 
615 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
617 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
618 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
619 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
620 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
621 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
622 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
623 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
624 #ifdef CONFIG_SHMEM
625 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
626 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
627 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
628 #endif
629 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
630 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
631 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
632 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
633 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
634 
635 static struct attribute *anon_stats_attrs[] = {
636 	&anon_fault_alloc_attr.attr,
637 	&anon_fault_fallback_attr.attr,
638 	&anon_fault_fallback_charge_attr.attr,
639 #ifndef CONFIG_SHMEM
640 	&zswpout_attr.attr,
641 	&swpin_attr.attr,
642 	&swpin_fallback_attr.attr,
643 	&swpin_fallback_charge_attr.attr,
644 	&swpout_attr.attr,
645 	&swpout_fallback_attr.attr,
646 #endif
647 	&split_deferred_attr.attr,
648 	&nr_anon_attr.attr,
649 	&nr_anon_partially_mapped_attr.attr,
650 	NULL,
651 };
652 
653 static struct attribute_group anon_stats_attr_grp = {
654 	.name = "stats",
655 	.attrs = anon_stats_attrs,
656 };
657 
658 static struct attribute *file_stats_attrs[] = {
659 #ifdef CONFIG_SHMEM
660 	&shmem_alloc_attr.attr,
661 	&shmem_fallback_attr.attr,
662 	&shmem_fallback_charge_attr.attr,
663 #endif
664 	NULL,
665 };
666 
667 static struct attribute_group file_stats_attr_grp = {
668 	.name = "stats",
669 	.attrs = file_stats_attrs,
670 };
671 
672 static struct attribute *any_stats_attrs[] = {
673 #ifdef CONFIG_SHMEM
674 	&zswpout_attr.attr,
675 	&swpin_attr.attr,
676 	&swpin_fallback_attr.attr,
677 	&swpin_fallback_charge_attr.attr,
678 	&swpout_attr.attr,
679 	&swpout_fallback_attr.attr,
680 #endif
681 	&split_attr.attr,
682 	&split_failed_attr.attr,
683 	NULL,
684 };
685 
686 static struct attribute_group any_stats_attr_grp = {
687 	.name = "stats",
688 	.attrs = any_stats_attrs,
689 };
690 
691 static int sysfs_add_group(struct kobject *kobj,
692 			   const struct attribute_group *grp)
693 {
694 	int ret = -ENOENT;
695 
696 	/*
697 	 * If the group is named, try to merge first, assuming the subdirectory
698 	 * was already created. This avoids the warning emitted by
699 	 * sysfs_create_group() if the directory already exists.
700 	 */
701 	if (grp->name)
702 		ret = sysfs_merge_group(kobj, grp);
703 	if (ret)
704 		ret = sysfs_create_group(kobj, grp);
705 
706 	return ret;
707 }
708 
709 static struct thpsize *thpsize_create(int order, struct kobject *parent)
710 {
711 	unsigned long size = (PAGE_SIZE << order) / SZ_1K;
712 	struct thpsize *thpsize;
713 	int ret = -ENOMEM;
714 
715 	thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
716 	if (!thpsize)
717 		goto err;
718 
719 	thpsize->order = order;
720 
721 	ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
722 				   "hugepages-%lukB", size);
723 	if (ret) {
724 		kfree(thpsize);
725 		goto err;
726 	}
727 
728 
729 	ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
730 	if (ret)
731 		goto err_put;
732 
733 	ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
734 	if (ret)
735 		goto err_put;
736 
737 	if (BIT(order) & THP_ORDERS_ALL_ANON) {
738 		ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
739 		if (ret)
740 			goto err_put;
741 
742 		ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
743 		if (ret)
744 			goto err_put;
745 	}
746 
747 	if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
748 		ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
749 		if (ret)
750 			goto err_put;
751 
752 		ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
753 		if (ret)
754 			goto err_put;
755 	}
756 
757 	return thpsize;
758 err_put:
759 	kobject_put(&thpsize->kobj);
760 err:
761 	return ERR_PTR(ret);
762 }
763 
764 static void thpsize_release(struct kobject *kobj)
765 {
766 	kfree(to_thpsize(kobj));
767 }
768 
769 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
770 {
771 	int err;
772 	struct thpsize *thpsize;
773 	unsigned long orders;
774 	int order;
775 
776 	/*
777 	 * Default to setting PMD-sized THP to inherit the global setting and
778 	 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
779 	 * constant so we have to do this here.
780 	 */
781 	if (!anon_orders_configured)
782 		huge_anon_orders_inherit = BIT(PMD_ORDER);
783 
784 	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
785 	if (unlikely(!*hugepage_kobj)) {
786 		pr_err("failed to create transparent hugepage kobject\n");
787 		return -ENOMEM;
788 	}
789 
790 	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
791 	if (err) {
792 		pr_err("failed to register transparent hugepage group\n");
793 		goto delete_obj;
794 	}
795 
796 	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
797 	if (err) {
798 		pr_err("failed to register transparent hugepage group\n");
799 		goto remove_hp_group;
800 	}
801 
802 	orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
803 	order = highest_order(orders);
804 	while (orders) {
805 		thpsize = thpsize_create(order, *hugepage_kobj);
806 		if (IS_ERR(thpsize)) {
807 			pr_err("failed to create thpsize for order %d\n", order);
808 			err = PTR_ERR(thpsize);
809 			goto remove_all;
810 		}
811 		list_add(&thpsize->node, &thpsize_list);
812 		order = next_order(&orders, order);
813 	}
814 
815 	return 0;
816 
817 remove_all:
818 	hugepage_exit_sysfs(*hugepage_kobj);
819 	return err;
820 remove_hp_group:
821 	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
822 delete_obj:
823 	kobject_put(*hugepage_kobj);
824 	return err;
825 }
826 
827 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
828 {
829 	struct thpsize *thpsize, *tmp;
830 
831 	list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
832 		list_del(&thpsize->node);
833 		kobject_put(&thpsize->kobj);
834 	}
835 
836 	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
837 	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
838 	kobject_put(hugepage_kobj);
839 }
840 #else
841 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
842 {
843 	return 0;
844 }
845 
846 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
847 {
848 }
849 #endif /* CONFIG_SYSFS */
850 
851 static int __init thp_shrinker_init(void)
852 {
853 	huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
854 	if (!huge_zero_page_shrinker)
855 		return -ENOMEM;
856 
857 	deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
858 						 SHRINKER_MEMCG_AWARE |
859 						 SHRINKER_NONSLAB,
860 						 "thp-deferred_split");
861 	if (!deferred_split_shrinker) {
862 		shrinker_free(huge_zero_page_shrinker);
863 		return -ENOMEM;
864 	}
865 
866 	huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
867 	huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
868 	shrinker_register(huge_zero_page_shrinker);
869 
870 	deferred_split_shrinker->count_objects = deferred_split_count;
871 	deferred_split_shrinker->scan_objects = deferred_split_scan;
872 	shrinker_register(deferred_split_shrinker);
873 
874 	return 0;
875 }
876 
877 static void __init thp_shrinker_exit(void)
878 {
879 	shrinker_free(huge_zero_page_shrinker);
880 	shrinker_free(deferred_split_shrinker);
881 }
882 
883 static int __init hugepage_init(void)
884 {
885 	int err;
886 	struct kobject *hugepage_kobj;
887 
888 	if (!has_transparent_hugepage()) {
889 		transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
890 		return -EINVAL;
891 	}
892 
893 	/*
894 	 * hugepages can't be allocated by the buddy allocator
895 	 */
896 	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
897 
898 	err = hugepage_init_sysfs(&hugepage_kobj);
899 	if (err)
900 		goto err_sysfs;
901 
902 	err = khugepaged_init();
903 	if (err)
904 		goto err_slab;
905 
906 	err = thp_shrinker_init();
907 	if (err)
908 		goto err_shrinker;
909 
910 	/*
911 	 * By default disable transparent hugepages on smaller systems,
912 	 * where the extra memory used could hurt more than TLB overhead
913 	 * is likely to save.  The admin can still enable it through /sys.
914 	 */
915 	if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
916 		transparent_hugepage_flags = 0;
917 		return 0;
918 	}
919 
920 	err = start_stop_khugepaged();
921 	if (err)
922 		goto err_khugepaged;
923 
924 	return 0;
925 err_khugepaged:
926 	thp_shrinker_exit();
927 err_shrinker:
928 	khugepaged_destroy();
929 err_slab:
930 	hugepage_exit_sysfs(hugepage_kobj);
931 err_sysfs:
932 	return err;
933 }
934 subsys_initcall(hugepage_init);
935 
936 static int __init setup_transparent_hugepage(char *str)
937 {
938 	int ret = 0;
939 	if (!str)
940 		goto out;
941 	if (!strcmp(str, "always")) {
942 		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
943 			&transparent_hugepage_flags);
944 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
945 			  &transparent_hugepage_flags);
946 		ret = 1;
947 	} else if (!strcmp(str, "madvise")) {
948 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
949 			  &transparent_hugepage_flags);
950 		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
951 			&transparent_hugepage_flags);
952 		ret = 1;
953 	} else if (!strcmp(str, "never")) {
954 		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
955 			  &transparent_hugepage_flags);
956 		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
957 			  &transparent_hugepage_flags);
958 		ret = 1;
959 	}
960 out:
961 	if (!ret)
962 		pr_warn("transparent_hugepage= cannot parse, ignored\n");
963 	return ret;
964 }
965 __setup("transparent_hugepage=", setup_transparent_hugepage);
966 
967 static char str_dup[PAGE_SIZE] __initdata;
968 static int __init setup_thp_anon(char *str)
969 {
970 	char *token, *range, *policy, *subtoken;
971 	unsigned long always, inherit, madvise;
972 	char *start_size, *end_size;
973 	int start, end, nr;
974 	char *p;
975 
976 	if (!str || strlen(str) + 1 > PAGE_SIZE)
977 		goto err;
978 	strscpy(str_dup, str);
979 
980 	always = huge_anon_orders_always;
981 	madvise = huge_anon_orders_madvise;
982 	inherit = huge_anon_orders_inherit;
983 	p = str_dup;
984 	while ((token = strsep(&p, ";")) != NULL) {
985 		range = strsep(&token, ":");
986 		policy = token;
987 
988 		if (!policy)
989 			goto err;
990 
991 		while ((subtoken = strsep(&range, ",")) != NULL) {
992 			if (strchr(subtoken, '-')) {
993 				start_size = strsep(&subtoken, "-");
994 				end_size = subtoken;
995 
996 				start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
997 				end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
998 			} else {
999 				start_size = end_size = subtoken;
1000 				start = end = get_order_from_str(subtoken,
1001 								 THP_ORDERS_ALL_ANON);
1002 			}
1003 
1004 			if (start == -EINVAL) {
1005 				pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1006 				goto err;
1007 			}
1008 
1009 			if (end == -EINVAL) {
1010 				pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1011 				goto err;
1012 			}
1013 
1014 			if (start < 0 || end < 0 || start > end)
1015 				goto err;
1016 
1017 			nr = end - start + 1;
1018 			if (!strcmp(policy, "always")) {
1019 				bitmap_set(&always, start, nr);
1020 				bitmap_clear(&inherit, start, nr);
1021 				bitmap_clear(&madvise, start, nr);
1022 			} else if (!strcmp(policy, "madvise")) {
1023 				bitmap_set(&madvise, start, nr);
1024 				bitmap_clear(&inherit, start, nr);
1025 				bitmap_clear(&always, start, nr);
1026 			} else if (!strcmp(policy, "inherit")) {
1027 				bitmap_set(&inherit, start, nr);
1028 				bitmap_clear(&madvise, start, nr);
1029 				bitmap_clear(&always, start, nr);
1030 			} else if (!strcmp(policy, "never")) {
1031 				bitmap_clear(&inherit, start, nr);
1032 				bitmap_clear(&madvise, start, nr);
1033 				bitmap_clear(&always, start, nr);
1034 			} else {
1035 				pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1036 				goto err;
1037 			}
1038 		}
1039 	}
1040 
1041 	huge_anon_orders_always = always;
1042 	huge_anon_orders_madvise = madvise;
1043 	huge_anon_orders_inherit = inherit;
1044 	anon_orders_configured = true;
1045 	return 1;
1046 
1047 err:
1048 	pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1049 	return 0;
1050 }
1051 __setup("thp_anon=", setup_thp_anon);
1052 
1053 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1054 {
1055 	if (likely(vma->vm_flags & VM_WRITE))
1056 		pmd = pmd_mkwrite(pmd, vma);
1057 	return pmd;
1058 }
1059 
1060 #ifdef CONFIG_MEMCG
1061 static inline
1062 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1063 {
1064 	struct mem_cgroup *memcg = folio_memcg(folio);
1065 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1066 
1067 	if (memcg)
1068 		return &memcg->deferred_split_queue;
1069 	else
1070 		return &pgdat->deferred_split_queue;
1071 }
1072 #else
1073 static inline
1074 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1075 {
1076 	struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1077 
1078 	return &pgdat->deferred_split_queue;
1079 }
1080 #endif
1081 
1082 static inline bool is_transparent_hugepage(const struct folio *folio)
1083 {
1084 	if (!folio_test_large(folio))
1085 		return false;
1086 
1087 	return is_huge_zero_folio(folio) ||
1088 		folio_test_large_rmappable(folio);
1089 }
1090 
1091 static unsigned long __thp_get_unmapped_area(struct file *filp,
1092 		unsigned long addr, unsigned long len,
1093 		loff_t off, unsigned long flags, unsigned long size,
1094 		vm_flags_t vm_flags)
1095 {
1096 	loff_t off_end = off + len;
1097 	loff_t off_align = round_up(off, size);
1098 	unsigned long len_pad, ret, off_sub;
1099 
1100 	if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1101 		return 0;
1102 
1103 	if (off_end <= off_align || (off_end - off_align) < size)
1104 		return 0;
1105 
1106 	len_pad = len + size;
1107 	if (len_pad < len || (off + len_pad) < off)
1108 		return 0;
1109 
1110 	ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1111 					   off >> PAGE_SHIFT, flags, vm_flags);
1112 
1113 	/*
1114 	 * The failure might be due to length padding. The caller will retry
1115 	 * without the padding.
1116 	 */
1117 	if (IS_ERR_VALUE(ret))
1118 		return 0;
1119 
1120 	/*
1121 	 * Do not try to align to THP boundary if allocation at the address
1122 	 * hint succeeds.
1123 	 */
1124 	if (ret == addr)
1125 		return addr;
1126 
1127 	off_sub = (off - ret) & (size - 1);
1128 
1129 	if (test_bit(MMF_TOPDOWN, &current->mm->flags) && !off_sub)
1130 		return ret + size;
1131 
1132 	ret += off_sub;
1133 	return ret;
1134 }
1135 
1136 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1137 		unsigned long len, unsigned long pgoff, unsigned long flags,
1138 		vm_flags_t vm_flags)
1139 {
1140 	unsigned long ret;
1141 	loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1142 
1143 	ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1144 	if (ret)
1145 		return ret;
1146 
1147 	return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1148 					    vm_flags);
1149 }
1150 
1151 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1152 		unsigned long len, unsigned long pgoff, unsigned long flags)
1153 {
1154 	return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1155 }
1156 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1157 
1158 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1159 		unsigned long addr)
1160 {
1161 	gfp_t gfp = vma_thp_gfp_mask(vma);
1162 	const int order = HPAGE_PMD_ORDER;
1163 	struct folio *folio;
1164 
1165 	folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1166 
1167 	if (unlikely(!folio)) {
1168 		count_vm_event(THP_FAULT_FALLBACK);
1169 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1170 		return NULL;
1171 	}
1172 
1173 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1174 	if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1175 		folio_put(folio);
1176 		count_vm_event(THP_FAULT_FALLBACK);
1177 		count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1178 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1179 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1180 		return NULL;
1181 	}
1182 	folio_throttle_swaprate(folio, gfp);
1183 
1184        /*
1185 	* When a folio is not zeroed during allocation (__GFP_ZERO not used)
1186 	* or user folios require special handling, folio_zero_user() is used to
1187 	* make sure that the page corresponding to the faulting address will be
1188 	* hot in the cache after zeroing.
1189 	*/
1190 	if (user_alloc_needs_zeroing())
1191 		folio_zero_user(folio, addr);
1192 	/*
1193 	 * The memory barrier inside __folio_mark_uptodate makes sure that
1194 	 * folio_zero_user writes become visible before the set_pmd_at()
1195 	 * write.
1196 	 */
1197 	__folio_mark_uptodate(folio);
1198 	return folio;
1199 }
1200 
1201 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1202 		struct vm_area_struct *vma, unsigned long haddr)
1203 {
1204 	pmd_t entry;
1205 
1206 	entry = folio_mk_pmd(folio, vma->vm_page_prot);
1207 	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1208 	folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1209 	folio_add_lru_vma(folio, vma);
1210 	set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1211 	update_mmu_cache_pmd(vma, haddr, pmd);
1212 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1213 	count_vm_event(THP_FAULT_ALLOC);
1214 	count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1215 	count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1216 }
1217 
1218 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1219 {
1220 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1221 	struct vm_area_struct *vma = vmf->vma;
1222 	struct folio *folio;
1223 	pgtable_t pgtable;
1224 	vm_fault_t ret = 0;
1225 
1226 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1227 	if (unlikely(!folio))
1228 		return VM_FAULT_FALLBACK;
1229 
1230 	pgtable = pte_alloc_one(vma->vm_mm);
1231 	if (unlikely(!pgtable)) {
1232 		ret = VM_FAULT_OOM;
1233 		goto release;
1234 	}
1235 
1236 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1237 	if (unlikely(!pmd_none(*vmf->pmd))) {
1238 		goto unlock_release;
1239 	} else {
1240 		ret = check_stable_address_space(vma->vm_mm);
1241 		if (ret)
1242 			goto unlock_release;
1243 
1244 		/* Deliver the page fault to userland */
1245 		if (userfaultfd_missing(vma)) {
1246 			spin_unlock(vmf->ptl);
1247 			folio_put(folio);
1248 			pte_free(vma->vm_mm, pgtable);
1249 			ret = handle_userfault(vmf, VM_UFFD_MISSING);
1250 			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1251 			return ret;
1252 		}
1253 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1254 		map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1255 		mm_inc_nr_ptes(vma->vm_mm);
1256 		deferred_split_folio(folio, false);
1257 		spin_unlock(vmf->ptl);
1258 	}
1259 
1260 	return 0;
1261 unlock_release:
1262 	spin_unlock(vmf->ptl);
1263 release:
1264 	if (pgtable)
1265 		pte_free(vma->vm_mm, pgtable);
1266 	folio_put(folio);
1267 	return ret;
1268 
1269 }
1270 
1271 /*
1272  * always: directly stall for all thp allocations
1273  * defer: wake kswapd and fail if not immediately available
1274  * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1275  *		  fail if not immediately available
1276  * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1277  *	    available
1278  * never: never stall for any thp allocation
1279  */
1280 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1281 {
1282 	const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1283 
1284 	/* Always do synchronous compaction */
1285 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1286 		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1287 
1288 	/* Kick kcompactd and fail quickly */
1289 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1290 		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1291 
1292 	/* Synchronous compaction if madvised, otherwise kick kcompactd */
1293 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1294 		return GFP_TRANSHUGE_LIGHT |
1295 			(vma_madvised ? __GFP_DIRECT_RECLAIM :
1296 					__GFP_KSWAPD_RECLAIM);
1297 
1298 	/* Only do synchronous compaction if madvised */
1299 	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1300 		return GFP_TRANSHUGE_LIGHT |
1301 		       (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1302 
1303 	return GFP_TRANSHUGE_LIGHT;
1304 }
1305 
1306 /* Caller must hold page table lock. */
1307 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1308 		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1309 		struct folio *zero_folio)
1310 {
1311 	pmd_t entry;
1312 	entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1313 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1314 	set_pmd_at(mm, haddr, pmd, entry);
1315 	mm_inc_nr_ptes(mm);
1316 }
1317 
1318 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1319 {
1320 	struct vm_area_struct *vma = vmf->vma;
1321 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1322 	vm_fault_t ret;
1323 
1324 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1325 		return VM_FAULT_FALLBACK;
1326 	ret = vmf_anon_prepare(vmf);
1327 	if (ret)
1328 		return ret;
1329 	khugepaged_enter_vma(vma, vma->vm_flags);
1330 
1331 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1332 			!mm_forbids_zeropage(vma->vm_mm) &&
1333 			transparent_hugepage_use_zero_page()) {
1334 		pgtable_t pgtable;
1335 		struct folio *zero_folio;
1336 		vm_fault_t ret;
1337 
1338 		pgtable = pte_alloc_one(vma->vm_mm);
1339 		if (unlikely(!pgtable))
1340 			return VM_FAULT_OOM;
1341 		zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1342 		if (unlikely(!zero_folio)) {
1343 			pte_free(vma->vm_mm, pgtable);
1344 			count_vm_event(THP_FAULT_FALLBACK);
1345 			return VM_FAULT_FALLBACK;
1346 		}
1347 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1348 		ret = 0;
1349 		if (pmd_none(*vmf->pmd)) {
1350 			ret = check_stable_address_space(vma->vm_mm);
1351 			if (ret) {
1352 				spin_unlock(vmf->ptl);
1353 				pte_free(vma->vm_mm, pgtable);
1354 			} else if (userfaultfd_missing(vma)) {
1355 				spin_unlock(vmf->ptl);
1356 				pte_free(vma->vm_mm, pgtable);
1357 				ret = handle_userfault(vmf, VM_UFFD_MISSING);
1358 				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1359 			} else {
1360 				set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1361 						   haddr, vmf->pmd, zero_folio);
1362 				update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1363 				spin_unlock(vmf->ptl);
1364 			}
1365 		} else {
1366 			spin_unlock(vmf->ptl);
1367 			pte_free(vma->vm_mm, pgtable);
1368 		}
1369 		return ret;
1370 	}
1371 
1372 	return __do_huge_pmd_anonymous_page(vmf);
1373 }
1374 
1375 static int insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1376 		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
1377 		pgtable_t pgtable)
1378 {
1379 	struct mm_struct *mm = vma->vm_mm;
1380 	pmd_t entry;
1381 
1382 	lockdep_assert_held(pmd_lockptr(mm, pmd));
1383 
1384 	if (!pmd_none(*pmd)) {
1385 		if (write) {
1386 			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
1387 				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1388 				return -EEXIST;
1389 			}
1390 			entry = pmd_mkyoung(*pmd);
1391 			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1392 			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1393 				update_mmu_cache_pmd(vma, addr, pmd);
1394 		}
1395 
1396 		return -EEXIST;
1397 	}
1398 
1399 	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1400 	if (pfn_t_devmap(pfn))
1401 		entry = pmd_mkdevmap(entry);
1402 	else
1403 		entry = pmd_mkspecial(entry);
1404 	if (write) {
1405 		entry = pmd_mkyoung(pmd_mkdirty(entry));
1406 		entry = maybe_pmd_mkwrite(entry, vma);
1407 	}
1408 
1409 	if (pgtable) {
1410 		pgtable_trans_huge_deposit(mm, pmd, pgtable);
1411 		mm_inc_nr_ptes(mm);
1412 	}
1413 
1414 	set_pmd_at(mm, addr, pmd, entry);
1415 	update_mmu_cache_pmd(vma, addr, pmd);
1416 	return 0;
1417 }
1418 
1419 /**
1420  * vmf_insert_pfn_pmd - insert a pmd size pfn
1421  * @vmf: Structure describing the fault
1422  * @pfn: pfn to insert
1423  * @write: whether it's a write fault
1424  *
1425  * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1426  *
1427  * Return: vm_fault_t value.
1428  */
1429 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
1430 {
1431 	unsigned long addr = vmf->address & PMD_MASK;
1432 	struct vm_area_struct *vma = vmf->vma;
1433 	pgprot_t pgprot = vma->vm_page_prot;
1434 	pgtable_t pgtable = NULL;
1435 	spinlock_t *ptl;
1436 	int error;
1437 
1438 	/*
1439 	 * If we had pmd_special, we could avoid all these restrictions,
1440 	 * but we need to be consistent with PTEs and architectures that
1441 	 * can't support a 'special' bit.
1442 	 */
1443 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1444 			!pfn_t_devmap(pfn));
1445 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1446 						(VM_PFNMAP|VM_MIXEDMAP));
1447 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1448 
1449 	if (addr < vma->vm_start || addr >= vma->vm_end)
1450 		return VM_FAULT_SIGBUS;
1451 
1452 	if (arch_needs_pgtable_deposit()) {
1453 		pgtable = pte_alloc_one(vma->vm_mm);
1454 		if (!pgtable)
1455 			return VM_FAULT_OOM;
1456 	}
1457 
1458 	track_pfn_insert(vma, &pgprot, pfn);
1459 	ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1460 	error = insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write,
1461 			pgtable);
1462 	spin_unlock(ptl);
1463 	if (error && pgtable)
1464 		pte_free(vma->vm_mm, pgtable);
1465 
1466 	return VM_FAULT_NOPAGE;
1467 }
1468 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1469 
1470 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1471 				bool write)
1472 {
1473 	struct vm_area_struct *vma = vmf->vma;
1474 	unsigned long addr = vmf->address & PMD_MASK;
1475 	struct mm_struct *mm = vma->vm_mm;
1476 	spinlock_t *ptl;
1477 	pgtable_t pgtable = NULL;
1478 	int error;
1479 
1480 	if (addr < vma->vm_start || addr >= vma->vm_end)
1481 		return VM_FAULT_SIGBUS;
1482 
1483 	if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1484 		return VM_FAULT_SIGBUS;
1485 
1486 	if (arch_needs_pgtable_deposit()) {
1487 		pgtable = pte_alloc_one(vma->vm_mm);
1488 		if (!pgtable)
1489 			return VM_FAULT_OOM;
1490 	}
1491 
1492 	ptl = pmd_lock(mm, vmf->pmd);
1493 	if (pmd_none(*vmf->pmd)) {
1494 		folio_get(folio);
1495 		folio_add_file_rmap_pmd(folio, &folio->page, vma);
1496 		add_mm_counter(mm, mm_counter_file(folio), HPAGE_PMD_NR);
1497 	}
1498 	error = insert_pfn_pmd(vma, addr, vmf->pmd,
1499 			pfn_to_pfn_t(folio_pfn(folio)), vma->vm_page_prot,
1500 			write, pgtable);
1501 	spin_unlock(ptl);
1502 	if (error && pgtable)
1503 		pte_free(mm, pgtable);
1504 
1505 	return VM_FAULT_NOPAGE;
1506 }
1507 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1508 
1509 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1510 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1511 {
1512 	if (likely(vma->vm_flags & VM_WRITE))
1513 		pud = pud_mkwrite(pud);
1514 	return pud;
1515 }
1516 
1517 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
1518 		pud_t *pud, pfn_t pfn, bool write)
1519 {
1520 	struct mm_struct *mm = vma->vm_mm;
1521 	pgprot_t prot = vma->vm_page_prot;
1522 	pud_t entry;
1523 
1524 	if (!pud_none(*pud)) {
1525 		if (write) {
1526 			if (WARN_ON_ONCE(pud_pfn(*pud) != pfn_t_to_pfn(pfn)))
1527 				return;
1528 			entry = pud_mkyoung(*pud);
1529 			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1530 			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1531 				update_mmu_cache_pud(vma, addr, pud);
1532 		}
1533 		return;
1534 	}
1535 
1536 	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
1537 	if (pfn_t_devmap(pfn))
1538 		entry = pud_mkdevmap(entry);
1539 	else
1540 		entry = pud_mkspecial(entry);
1541 	if (write) {
1542 		entry = pud_mkyoung(pud_mkdirty(entry));
1543 		entry = maybe_pud_mkwrite(entry, vma);
1544 	}
1545 	set_pud_at(mm, addr, pud, entry);
1546 	update_mmu_cache_pud(vma, addr, pud);
1547 }
1548 
1549 /**
1550  * vmf_insert_pfn_pud - insert a pud size pfn
1551  * @vmf: Structure describing the fault
1552  * @pfn: pfn to insert
1553  * @write: whether it's a write fault
1554  *
1555  * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1556  *
1557  * Return: vm_fault_t value.
1558  */
1559 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
1560 {
1561 	unsigned long addr = vmf->address & PUD_MASK;
1562 	struct vm_area_struct *vma = vmf->vma;
1563 	pgprot_t pgprot = vma->vm_page_prot;
1564 	spinlock_t *ptl;
1565 
1566 	/*
1567 	 * If we had pud_special, we could avoid all these restrictions,
1568 	 * but we need to be consistent with PTEs and architectures that
1569 	 * can't support a 'special' bit.
1570 	 */
1571 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
1572 			!pfn_t_devmap(pfn));
1573 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1574 						(VM_PFNMAP|VM_MIXEDMAP));
1575 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1576 
1577 	if (addr < vma->vm_start || addr >= vma->vm_end)
1578 		return VM_FAULT_SIGBUS;
1579 
1580 	track_pfn_insert(vma, &pgprot, pfn);
1581 
1582 	ptl = pud_lock(vma->vm_mm, vmf->pud);
1583 	insert_pfn_pud(vma, addr, vmf->pud, pfn, write);
1584 	spin_unlock(ptl);
1585 
1586 	return VM_FAULT_NOPAGE;
1587 }
1588 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1589 
1590 /**
1591  * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1592  * @vmf: Structure describing the fault
1593  * @folio: folio to insert
1594  * @write: whether it's a write fault
1595  *
1596  * Return: vm_fault_t value.
1597  */
1598 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1599 				bool write)
1600 {
1601 	struct vm_area_struct *vma = vmf->vma;
1602 	unsigned long addr = vmf->address & PUD_MASK;
1603 	pud_t *pud = vmf->pud;
1604 	struct mm_struct *mm = vma->vm_mm;
1605 	spinlock_t *ptl;
1606 
1607 	if (addr < vma->vm_start || addr >= vma->vm_end)
1608 		return VM_FAULT_SIGBUS;
1609 
1610 	if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1611 		return VM_FAULT_SIGBUS;
1612 
1613 	ptl = pud_lock(mm, pud);
1614 
1615 	/*
1616 	 * If there is already an entry present we assume the folio is
1617 	 * already mapped, hence no need to take another reference. We
1618 	 * still call insert_pfn_pud() though in case the mapping needs
1619 	 * upgrading to writeable.
1620 	 */
1621 	if (pud_none(*vmf->pud)) {
1622 		folio_get(folio);
1623 		folio_add_file_rmap_pud(folio, &folio->page, vma);
1624 		add_mm_counter(mm, mm_counter_file(folio), HPAGE_PUD_NR);
1625 	}
1626 	insert_pfn_pud(vma, addr, vmf->pud, pfn_to_pfn_t(folio_pfn(folio)),
1627 		write);
1628 	spin_unlock(ptl);
1629 
1630 	return VM_FAULT_NOPAGE;
1631 }
1632 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1633 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1634 
1635 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1636 	       pmd_t *pmd, bool write)
1637 {
1638 	pmd_t _pmd;
1639 
1640 	_pmd = pmd_mkyoung(*pmd);
1641 	if (write)
1642 		_pmd = pmd_mkdirty(_pmd);
1643 	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1644 				  pmd, _pmd, write))
1645 		update_mmu_cache_pmd(vma, addr, pmd);
1646 }
1647 
1648 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1649 		pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
1650 {
1651 	unsigned long pfn = pmd_pfn(*pmd);
1652 	struct mm_struct *mm = vma->vm_mm;
1653 	struct page *page;
1654 	int ret;
1655 
1656 	assert_spin_locked(pmd_lockptr(mm, pmd));
1657 
1658 	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1659 		return NULL;
1660 
1661 	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1662 		/* pass */;
1663 	else
1664 		return NULL;
1665 
1666 	if (flags & FOLL_TOUCH)
1667 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
1668 
1669 	/*
1670 	 * device mapped pages can only be returned if the
1671 	 * caller will manage the page reference count.
1672 	 */
1673 	if (!(flags & (FOLL_GET | FOLL_PIN)))
1674 		return ERR_PTR(-EEXIST);
1675 
1676 	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1677 	*pgmap = get_dev_pagemap(pfn, *pgmap);
1678 	if (!*pgmap)
1679 		return ERR_PTR(-EFAULT);
1680 	page = pfn_to_page(pfn);
1681 	ret = try_grab_folio(page_folio(page), 1, flags);
1682 	if (ret)
1683 		page = ERR_PTR(ret);
1684 
1685 	return page;
1686 }
1687 
1688 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1689 		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1690 		  struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1691 {
1692 	spinlock_t *dst_ptl, *src_ptl;
1693 	struct page *src_page;
1694 	struct folio *src_folio;
1695 	pmd_t pmd;
1696 	pgtable_t pgtable = NULL;
1697 	int ret = -ENOMEM;
1698 
1699 	pmd = pmdp_get_lockless(src_pmd);
1700 	if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1701 		dst_ptl = pmd_lock(dst_mm, dst_pmd);
1702 		src_ptl = pmd_lockptr(src_mm, src_pmd);
1703 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1704 		/*
1705 		 * No need to recheck the pmd, it can't change with write
1706 		 * mmap lock held here.
1707 		 *
1708 		 * Meanwhile, making sure it's not a CoW VMA with writable
1709 		 * mapping, otherwise it means either the anon page wrongly
1710 		 * applied special bit, or we made the PRIVATE mapping be
1711 		 * able to wrongly write to the backend MMIO.
1712 		 */
1713 		VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1714 		goto set_pmd;
1715 	}
1716 
1717 	/* Skip if can be re-fill on fault */
1718 	if (!vma_is_anonymous(dst_vma))
1719 		return 0;
1720 
1721 	pgtable = pte_alloc_one(dst_mm);
1722 	if (unlikely(!pgtable))
1723 		goto out;
1724 
1725 	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1726 	src_ptl = pmd_lockptr(src_mm, src_pmd);
1727 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1728 
1729 	ret = -EAGAIN;
1730 	pmd = *src_pmd;
1731 
1732 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1733 	if (unlikely(is_swap_pmd(pmd))) {
1734 		swp_entry_t entry = pmd_to_swp_entry(pmd);
1735 
1736 		VM_BUG_ON(!is_pmd_migration_entry(pmd));
1737 		if (!is_readable_migration_entry(entry)) {
1738 			entry = make_readable_migration_entry(
1739 							swp_offset(entry));
1740 			pmd = swp_entry_to_pmd(entry);
1741 			if (pmd_swp_soft_dirty(*src_pmd))
1742 				pmd = pmd_swp_mksoft_dirty(pmd);
1743 			if (pmd_swp_uffd_wp(*src_pmd))
1744 				pmd = pmd_swp_mkuffd_wp(pmd);
1745 			set_pmd_at(src_mm, addr, src_pmd, pmd);
1746 		}
1747 		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1748 		mm_inc_nr_ptes(dst_mm);
1749 		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1750 		if (!userfaultfd_wp(dst_vma))
1751 			pmd = pmd_swp_clear_uffd_wp(pmd);
1752 		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1753 		ret = 0;
1754 		goto out_unlock;
1755 	}
1756 #endif
1757 
1758 	if (unlikely(!pmd_trans_huge(pmd))) {
1759 		pte_free(dst_mm, pgtable);
1760 		goto out_unlock;
1761 	}
1762 	/*
1763 	 * When page table lock is held, the huge zero pmd should not be
1764 	 * under splitting since we don't split the page itself, only pmd to
1765 	 * a page table.
1766 	 */
1767 	if (is_huge_zero_pmd(pmd)) {
1768 		/*
1769 		 * mm_get_huge_zero_folio() will never allocate a new
1770 		 * folio here, since we already have a zero page to
1771 		 * copy. It just takes a reference.
1772 		 */
1773 		mm_get_huge_zero_folio(dst_mm);
1774 		goto out_zero_page;
1775 	}
1776 
1777 	src_page = pmd_page(pmd);
1778 	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1779 	src_folio = page_folio(src_page);
1780 
1781 	folio_get(src_folio);
1782 	if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1783 		/* Page maybe pinned: split and retry the fault on PTEs. */
1784 		folio_put(src_folio);
1785 		pte_free(dst_mm, pgtable);
1786 		spin_unlock(src_ptl);
1787 		spin_unlock(dst_ptl);
1788 		__split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1789 		return -EAGAIN;
1790 	}
1791 	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1792 out_zero_page:
1793 	mm_inc_nr_ptes(dst_mm);
1794 	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1795 	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1796 	if (!userfaultfd_wp(dst_vma))
1797 		pmd = pmd_clear_uffd_wp(pmd);
1798 	pmd = pmd_wrprotect(pmd);
1799 set_pmd:
1800 	pmd = pmd_mkold(pmd);
1801 	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1802 
1803 	ret = 0;
1804 out_unlock:
1805 	spin_unlock(src_ptl);
1806 	spin_unlock(dst_ptl);
1807 out:
1808 	return ret;
1809 }
1810 
1811 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1812 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1813 	       pud_t *pud, bool write)
1814 {
1815 	pud_t _pud;
1816 
1817 	_pud = pud_mkyoung(*pud);
1818 	if (write)
1819 		_pud = pud_mkdirty(_pud);
1820 	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1821 				  pud, _pud, write))
1822 		update_mmu_cache_pud(vma, addr, pud);
1823 }
1824 
1825 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1826 		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1827 		  struct vm_area_struct *vma)
1828 {
1829 	spinlock_t *dst_ptl, *src_ptl;
1830 	pud_t pud;
1831 	int ret;
1832 
1833 	dst_ptl = pud_lock(dst_mm, dst_pud);
1834 	src_ptl = pud_lockptr(src_mm, src_pud);
1835 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1836 
1837 	ret = -EAGAIN;
1838 	pud = *src_pud;
1839 	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1840 		goto out_unlock;
1841 
1842 	/*
1843 	 * TODO: once we support anonymous pages, use
1844 	 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1845 	 */
1846 	if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1847 		pudp_set_wrprotect(src_mm, addr, src_pud);
1848 		pud = pud_wrprotect(pud);
1849 	}
1850 	pud = pud_mkold(pud);
1851 	set_pud_at(dst_mm, addr, dst_pud, pud);
1852 
1853 	ret = 0;
1854 out_unlock:
1855 	spin_unlock(src_ptl);
1856 	spin_unlock(dst_ptl);
1857 	return ret;
1858 }
1859 
1860 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1861 {
1862 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1863 
1864 	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1865 	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1866 		goto unlock;
1867 
1868 	touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1869 unlock:
1870 	spin_unlock(vmf->ptl);
1871 }
1872 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1873 
1874 void huge_pmd_set_accessed(struct vm_fault *vmf)
1875 {
1876 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1877 
1878 	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1879 	if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1880 		goto unlock;
1881 
1882 	touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1883 
1884 unlock:
1885 	spin_unlock(vmf->ptl);
1886 }
1887 
1888 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1889 {
1890 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1891 	struct vm_area_struct *vma = vmf->vma;
1892 	struct mmu_notifier_range range;
1893 	struct folio *folio;
1894 	vm_fault_t ret = 0;
1895 
1896 	folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1897 	if (unlikely(!folio))
1898 		return VM_FAULT_FALLBACK;
1899 
1900 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1901 				haddr + HPAGE_PMD_SIZE);
1902 	mmu_notifier_invalidate_range_start(&range);
1903 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1904 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1905 		goto release;
1906 	ret = check_stable_address_space(vma->vm_mm);
1907 	if (ret)
1908 		goto release;
1909 	(void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1910 	map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1911 	goto unlock;
1912 release:
1913 	folio_put(folio);
1914 unlock:
1915 	spin_unlock(vmf->ptl);
1916 	mmu_notifier_invalidate_range_end(&range);
1917 	return ret;
1918 }
1919 
1920 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1921 {
1922 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1923 	struct vm_area_struct *vma = vmf->vma;
1924 	struct folio *folio;
1925 	struct page *page;
1926 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1927 	pmd_t orig_pmd = vmf->orig_pmd;
1928 
1929 	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1930 	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1931 
1932 	if (is_huge_zero_pmd(orig_pmd)) {
1933 		vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1934 
1935 		if (!(ret & VM_FAULT_FALLBACK))
1936 			return ret;
1937 
1938 		/* Fallback to splitting PMD if THP cannot be allocated */
1939 		goto fallback;
1940 	}
1941 
1942 	spin_lock(vmf->ptl);
1943 
1944 	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1945 		spin_unlock(vmf->ptl);
1946 		return 0;
1947 	}
1948 
1949 	page = pmd_page(orig_pmd);
1950 	folio = page_folio(page);
1951 	VM_BUG_ON_PAGE(!PageHead(page), page);
1952 
1953 	/* Early check when only holding the PT lock. */
1954 	if (PageAnonExclusive(page))
1955 		goto reuse;
1956 
1957 	if (!folio_trylock(folio)) {
1958 		folio_get(folio);
1959 		spin_unlock(vmf->ptl);
1960 		folio_lock(folio);
1961 		spin_lock(vmf->ptl);
1962 		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1963 			spin_unlock(vmf->ptl);
1964 			folio_unlock(folio);
1965 			folio_put(folio);
1966 			return 0;
1967 		}
1968 		folio_put(folio);
1969 	}
1970 
1971 	/* Recheck after temporarily dropping the PT lock. */
1972 	if (PageAnonExclusive(page)) {
1973 		folio_unlock(folio);
1974 		goto reuse;
1975 	}
1976 
1977 	/*
1978 	 * See do_wp_page(): we can only reuse the folio exclusively if
1979 	 * there are no additional references. Note that we always drain
1980 	 * the LRU cache immediately after adding a THP.
1981 	 */
1982 	if (folio_ref_count(folio) >
1983 			1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1984 		goto unlock_fallback;
1985 	if (folio_test_swapcache(folio))
1986 		folio_free_swap(folio);
1987 	if (folio_ref_count(folio) == 1) {
1988 		pmd_t entry;
1989 
1990 		folio_move_anon_rmap(folio, vma);
1991 		SetPageAnonExclusive(page);
1992 		folio_unlock(folio);
1993 reuse:
1994 		if (unlikely(unshare)) {
1995 			spin_unlock(vmf->ptl);
1996 			return 0;
1997 		}
1998 		entry = pmd_mkyoung(orig_pmd);
1999 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2000 		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
2001 			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2002 		spin_unlock(vmf->ptl);
2003 		return 0;
2004 	}
2005 
2006 unlock_fallback:
2007 	folio_unlock(folio);
2008 	spin_unlock(vmf->ptl);
2009 fallback:
2010 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
2011 	return VM_FAULT_FALLBACK;
2012 }
2013 
2014 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
2015 					   unsigned long addr, pmd_t pmd)
2016 {
2017 	struct page *page;
2018 
2019 	if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
2020 		return false;
2021 
2022 	/* Don't touch entries that are not even readable (NUMA hinting). */
2023 	if (pmd_protnone(pmd))
2024 		return false;
2025 
2026 	/* Do we need write faults for softdirty tracking? */
2027 	if (pmd_needs_soft_dirty_wp(vma, pmd))
2028 		return false;
2029 
2030 	/* Do we need write faults for uffd-wp tracking? */
2031 	if (userfaultfd_huge_pmd_wp(vma, pmd))
2032 		return false;
2033 
2034 	if (!(vma->vm_flags & VM_SHARED)) {
2035 		/* See can_change_pte_writable(). */
2036 		page = vm_normal_page_pmd(vma, addr, pmd);
2037 		return page && PageAnon(page) && PageAnonExclusive(page);
2038 	}
2039 
2040 	/* See can_change_pte_writable(). */
2041 	return pmd_dirty(pmd);
2042 }
2043 
2044 /* NUMA hinting page fault entry point for trans huge pmds */
2045 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2046 {
2047 	struct vm_area_struct *vma = vmf->vma;
2048 	struct folio *folio;
2049 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2050 	int nid = NUMA_NO_NODE;
2051 	int target_nid, last_cpupid;
2052 	pmd_t pmd, old_pmd;
2053 	bool writable = false;
2054 	int flags = 0;
2055 
2056 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2057 	old_pmd = pmdp_get(vmf->pmd);
2058 
2059 	if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2060 		spin_unlock(vmf->ptl);
2061 		return 0;
2062 	}
2063 
2064 	pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2065 
2066 	/*
2067 	 * Detect now whether the PMD could be writable; this information
2068 	 * is only valid while holding the PT lock.
2069 	 */
2070 	writable = pmd_write(pmd);
2071 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2072 	    can_change_pmd_writable(vma, vmf->address, pmd))
2073 		writable = true;
2074 
2075 	folio = vm_normal_folio_pmd(vma, haddr, pmd);
2076 	if (!folio)
2077 		goto out_map;
2078 
2079 	nid = folio_nid(folio);
2080 
2081 	target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2082 					&last_cpupid);
2083 	if (target_nid == NUMA_NO_NODE)
2084 		goto out_map;
2085 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2086 		flags |= TNF_MIGRATE_FAIL;
2087 		goto out_map;
2088 	}
2089 	/* The folio is isolated and isolation code holds a folio reference. */
2090 	spin_unlock(vmf->ptl);
2091 	writable = false;
2092 
2093 	if (!migrate_misplaced_folio(folio, target_nid)) {
2094 		flags |= TNF_MIGRATED;
2095 		nid = target_nid;
2096 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2097 		return 0;
2098 	}
2099 
2100 	flags |= TNF_MIGRATE_FAIL;
2101 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2102 	if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2103 		spin_unlock(vmf->ptl);
2104 		return 0;
2105 	}
2106 out_map:
2107 	/* Restore the PMD */
2108 	pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2109 	pmd = pmd_mkyoung(pmd);
2110 	if (writable)
2111 		pmd = pmd_mkwrite(pmd, vma);
2112 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2113 	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2114 	spin_unlock(vmf->ptl);
2115 
2116 	if (nid != NUMA_NO_NODE)
2117 		task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2118 	return 0;
2119 }
2120 
2121 /*
2122  * Return true if we do MADV_FREE successfully on entire pmd page.
2123  * Otherwise, return false.
2124  */
2125 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2126 		pmd_t *pmd, unsigned long addr, unsigned long next)
2127 {
2128 	spinlock_t *ptl;
2129 	pmd_t orig_pmd;
2130 	struct folio *folio;
2131 	struct mm_struct *mm = tlb->mm;
2132 	bool ret = false;
2133 
2134 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2135 
2136 	ptl = pmd_trans_huge_lock(pmd, vma);
2137 	if (!ptl)
2138 		goto out_unlocked;
2139 
2140 	orig_pmd = *pmd;
2141 	if (is_huge_zero_pmd(orig_pmd))
2142 		goto out;
2143 
2144 	if (unlikely(!pmd_present(orig_pmd))) {
2145 		VM_BUG_ON(thp_migration_supported() &&
2146 				  !is_pmd_migration_entry(orig_pmd));
2147 		goto out;
2148 	}
2149 
2150 	folio = pmd_folio(orig_pmd);
2151 	/*
2152 	 * If other processes are mapping this folio, we couldn't discard
2153 	 * the folio unless they all do MADV_FREE so let's skip the folio.
2154 	 */
2155 	if (folio_maybe_mapped_shared(folio))
2156 		goto out;
2157 
2158 	if (!folio_trylock(folio))
2159 		goto out;
2160 
2161 	/*
2162 	 * If user want to discard part-pages of THP, split it so MADV_FREE
2163 	 * will deactivate only them.
2164 	 */
2165 	if (next - addr != HPAGE_PMD_SIZE) {
2166 		folio_get(folio);
2167 		spin_unlock(ptl);
2168 		split_folio(folio);
2169 		folio_unlock(folio);
2170 		folio_put(folio);
2171 		goto out_unlocked;
2172 	}
2173 
2174 	if (folio_test_dirty(folio))
2175 		folio_clear_dirty(folio);
2176 	folio_unlock(folio);
2177 
2178 	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2179 		pmdp_invalidate(vma, addr, pmd);
2180 		orig_pmd = pmd_mkold(orig_pmd);
2181 		orig_pmd = pmd_mkclean(orig_pmd);
2182 
2183 		set_pmd_at(mm, addr, pmd, orig_pmd);
2184 		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2185 	}
2186 
2187 	folio_mark_lazyfree(folio);
2188 	ret = true;
2189 out:
2190 	spin_unlock(ptl);
2191 out_unlocked:
2192 	return ret;
2193 }
2194 
2195 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2196 {
2197 	pgtable_t pgtable;
2198 
2199 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2200 	pte_free(mm, pgtable);
2201 	mm_dec_nr_ptes(mm);
2202 }
2203 
2204 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2205 		 pmd_t *pmd, unsigned long addr)
2206 {
2207 	pmd_t orig_pmd;
2208 	spinlock_t *ptl;
2209 
2210 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2211 
2212 	ptl = __pmd_trans_huge_lock(pmd, vma);
2213 	if (!ptl)
2214 		return 0;
2215 	/*
2216 	 * For architectures like ppc64 we look at deposited pgtable
2217 	 * when calling pmdp_huge_get_and_clear. So do the
2218 	 * pgtable_trans_huge_withdraw after finishing pmdp related
2219 	 * operations.
2220 	 */
2221 	orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2222 						tlb->fullmm);
2223 	arch_check_zapped_pmd(vma, orig_pmd);
2224 	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2225 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2226 		if (arch_needs_pgtable_deposit())
2227 			zap_deposited_table(tlb->mm, pmd);
2228 		spin_unlock(ptl);
2229 	} else if (is_huge_zero_pmd(orig_pmd)) {
2230 		if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2231 			zap_deposited_table(tlb->mm, pmd);
2232 		spin_unlock(ptl);
2233 	} else {
2234 		struct folio *folio = NULL;
2235 		int flush_needed = 1;
2236 
2237 		if (pmd_present(orig_pmd)) {
2238 			struct page *page = pmd_page(orig_pmd);
2239 
2240 			folio = page_folio(page);
2241 			folio_remove_rmap_pmd(folio, page, vma);
2242 			WARN_ON_ONCE(folio_mapcount(folio) < 0);
2243 			VM_BUG_ON_PAGE(!PageHead(page), page);
2244 		} else if (thp_migration_supported()) {
2245 			swp_entry_t entry;
2246 
2247 			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2248 			entry = pmd_to_swp_entry(orig_pmd);
2249 			folio = pfn_swap_entry_folio(entry);
2250 			flush_needed = 0;
2251 		} else
2252 			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2253 
2254 		if (folio_test_anon(folio)) {
2255 			zap_deposited_table(tlb->mm, pmd);
2256 			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2257 		} else {
2258 			if (arch_needs_pgtable_deposit())
2259 				zap_deposited_table(tlb->mm, pmd);
2260 			add_mm_counter(tlb->mm, mm_counter_file(folio),
2261 				       -HPAGE_PMD_NR);
2262 		}
2263 
2264 		spin_unlock(ptl);
2265 		if (flush_needed)
2266 			tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2267 	}
2268 	return 1;
2269 }
2270 
2271 #ifndef pmd_move_must_withdraw
2272 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2273 					 spinlock_t *old_pmd_ptl,
2274 					 struct vm_area_struct *vma)
2275 {
2276 	/*
2277 	 * With split pmd lock we also need to move preallocated
2278 	 * PTE page table if new_pmd is on different PMD page table.
2279 	 *
2280 	 * We also don't deposit and withdraw tables for file pages.
2281 	 */
2282 	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2283 }
2284 #endif
2285 
2286 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2287 {
2288 #ifdef CONFIG_MEM_SOFT_DIRTY
2289 	if (unlikely(is_pmd_migration_entry(pmd)))
2290 		pmd = pmd_swp_mksoft_dirty(pmd);
2291 	else if (pmd_present(pmd))
2292 		pmd = pmd_mksoft_dirty(pmd);
2293 #endif
2294 	return pmd;
2295 }
2296 
2297 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2298 {
2299 	if (pmd_present(pmd))
2300 		pmd = pmd_clear_uffd_wp(pmd);
2301 	else if (is_swap_pmd(pmd))
2302 		pmd = pmd_swp_clear_uffd_wp(pmd);
2303 
2304 	return pmd;
2305 }
2306 
2307 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2308 		  unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2309 {
2310 	spinlock_t *old_ptl, *new_ptl;
2311 	pmd_t pmd;
2312 	struct mm_struct *mm = vma->vm_mm;
2313 	bool force_flush = false;
2314 
2315 	/*
2316 	 * The destination pmd shouldn't be established, free_pgtables()
2317 	 * should have released it; but move_page_tables() might have already
2318 	 * inserted a page table, if racing against shmem/file collapse.
2319 	 */
2320 	if (!pmd_none(*new_pmd)) {
2321 		VM_BUG_ON(pmd_trans_huge(*new_pmd));
2322 		return false;
2323 	}
2324 
2325 	/*
2326 	 * We don't have to worry about the ordering of src and dst
2327 	 * ptlocks because exclusive mmap_lock prevents deadlock.
2328 	 */
2329 	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2330 	if (old_ptl) {
2331 		new_ptl = pmd_lockptr(mm, new_pmd);
2332 		if (new_ptl != old_ptl)
2333 			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2334 		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2335 		if (pmd_present(pmd))
2336 			force_flush = true;
2337 		VM_BUG_ON(!pmd_none(*new_pmd));
2338 
2339 		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2340 			pgtable_t pgtable;
2341 			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2342 			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2343 		}
2344 		pmd = move_soft_dirty_pmd(pmd);
2345 		if (vma_has_uffd_without_event_remap(vma))
2346 			pmd = clear_uffd_wp_pmd(pmd);
2347 		set_pmd_at(mm, new_addr, new_pmd, pmd);
2348 		if (force_flush)
2349 			flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2350 		if (new_ptl != old_ptl)
2351 			spin_unlock(new_ptl);
2352 		spin_unlock(old_ptl);
2353 		return true;
2354 	}
2355 	return false;
2356 }
2357 
2358 /*
2359  * Returns
2360  *  - 0 if PMD could not be locked
2361  *  - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2362  *      or if prot_numa but THP migration is not supported
2363  *  - HPAGE_PMD_NR if protections changed and TLB flush necessary
2364  */
2365 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2366 		    pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2367 		    unsigned long cp_flags)
2368 {
2369 	struct mm_struct *mm = vma->vm_mm;
2370 	spinlock_t *ptl;
2371 	pmd_t oldpmd, entry;
2372 	bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2373 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2374 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2375 	int ret = 1;
2376 
2377 	tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2378 
2379 	if (prot_numa && !thp_migration_supported())
2380 		return 1;
2381 
2382 	ptl = __pmd_trans_huge_lock(pmd, vma);
2383 	if (!ptl)
2384 		return 0;
2385 
2386 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2387 	if (is_swap_pmd(*pmd)) {
2388 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
2389 		struct folio *folio = pfn_swap_entry_folio(entry);
2390 		pmd_t newpmd;
2391 
2392 		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2393 		if (is_writable_migration_entry(entry)) {
2394 			/*
2395 			 * A protection check is difficult so
2396 			 * just be safe and disable write
2397 			 */
2398 			if (folio_test_anon(folio))
2399 				entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2400 			else
2401 				entry = make_readable_migration_entry(swp_offset(entry));
2402 			newpmd = swp_entry_to_pmd(entry);
2403 			if (pmd_swp_soft_dirty(*pmd))
2404 				newpmd = pmd_swp_mksoft_dirty(newpmd);
2405 		} else {
2406 			newpmd = *pmd;
2407 		}
2408 
2409 		if (uffd_wp)
2410 			newpmd = pmd_swp_mkuffd_wp(newpmd);
2411 		else if (uffd_wp_resolve)
2412 			newpmd = pmd_swp_clear_uffd_wp(newpmd);
2413 		if (!pmd_same(*pmd, newpmd))
2414 			set_pmd_at(mm, addr, pmd, newpmd);
2415 		goto unlock;
2416 	}
2417 #endif
2418 
2419 	if (prot_numa) {
2420 		struct folio *folio;
2421 		bool toptier;
2422 		/*
2423 		 * Avoid trapping faults against the zero page. The read-only
2424 		 * data is likely to be read-cached on the local CPU and
2425 		 * local/remote hits to the zero page are not interesting.
2426 		 */
2427 		if (is_huge_zero_pmd(*pmd))
2428 			goto unlock;
2429 
2430 		if (pmd_protnone(*pmd))
2431 			goto unlock;
2432 
2433 		folio = pmd_folio(*pmd);
2434 		toptier = node_is_toptier(folio_nid(folio));
2435 		/*
2436 		 * Skip scanning top tier node if normal numa
2437 		 * balancing is disabled
2438 		 */
2439 		if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2440 		    toptier)
2441 			goto unlock;
2442 
2443 		if (folio_use_access_time(folio))
2444 			folio_xchg_access_time(folio,
2445 					       jiffies_to_msecs(jiffies));
2446 	}
2447 	/*
2448 	 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2449 	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2450 	 * which is also under mmap_read_lock(mm):
2451 	 *
2452 	 *	CPU0:				CPU1:
2453 	 *				change_huge_pmd(prot_numa=1)
2454 	 *				 pmdp_huge_get_and_clear_notify()
2455 	 * madvise_dontneed()
2456 	 *  zap_pmd_range()
2457 	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
2458 	 *   // skip the pmd
2459 	 *				 set_pmd_at();
2460 	 *				 // pmd is re-established
2461 	 *
2462 	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2463 	 * which may break userspace.
2464 	 *
2465 	 * pmdp_invalidate_ad() is required to make sure we don't miss
2466 	 * dirty/young flags set by hardware.
2467 	 */
2468 	oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2469 
2470 	entry = pmd_modify(oldpmd, newprot);
2471 	if (uffd_wp)
2472 		entry = pmd_mkuffd_wp(entry);
2473 	else if (uffd_wp_resolve)
2474 		/*
2475 		 * Leave the write bit to be handled by PF interrupt
2476 		 * handler, then things like COW could be properly
2477 		 * handled.
2478 		 */
2479 		entry = pmd_clear_uffd_wp(entry);
2480 
2481 	/* See change_pte_range(). */
2482 	if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2483 	    can_change_pmd_writable(vma, addr, entry))
2484 		entry = pmd_mkwrite(entry, vma);
2485 
2486 	ret = HPAGE_PMD_NR;
2487 	set_pmd_at(mm, addr, pmd, entry);
2488 
2489 	if (huge_pmd_needs_flush(oldpmd, entry))
2490 		tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2491 unlock:
2492 	spin_unlock(ptl);
2493 	return ret;
2494 }
2495 
2496 /*
2497  * Returns:
2498  *
2499  * - 0: if pud leaf changed from under us
2500  * - 1: if pud can be skipped
2501  * - HPAGE_PUD_NR: if pud was successfully processed
2502  */
2503 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2504 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2505 		    pud_t *pudp, unsigned long addr, pgprot_t newprot,
2506 		    unsigned long cp_flags)
2507 {
2508 	struct mm_struct *mm = vma->vm_mm;
2509 	pud_t oldpud, entry;
2510 	spinlock_t *ptl;
2511 
2512 	tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2513 
2514 	/* NUMA balancing doesn't apply to dax */
2515 	if (cp_flags & MM_CP_PROT_NUMA)
2516 		return 1;
2517 
2518 	/*
2519 	 * Huge entries on userfault-wp only works with anonymous, while we
2520 	 * don't have anonymous PUDs yet.
2521 	 */
2522 	if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2523 		return 1;
2524 
2525 	ptl = __pud_trans_huge_lock(pudp, vma);
2526 	if (!ptl)
2527 		return 0;
2528 
2529 	/*
2530 	 * Can't clear PUD or it can race with concurrent zapping.  See
2531 	 * change_huge_pmd().
2532 	 */
2533 	oldpud = pudp_invalidate(vma, addr, pudp);
2534 	entry = pud_modify(oldpud, newprot);
2535 	set_pud_at(mm, addr, pudp, entry);
2536 	tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2537 
2538 	spin_unlock(ptl);
2539 	return HPAGE_PUD_NR;
2540 }
2541 #endif
2542 
2543 #ifdef CONFIG_USERFAULTFD
2544 /*
2545  * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2546  * the caller, but it must return after releasing the page_table_lock.
2547  * Just move the page from src_pmd to dst_pmd if possible.
2548  * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2549  * repeated by the caller, or other errors in case of failure.
2550  */
2551 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2552 			struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2553 			unsigned long dst_addr, unsigned long src_addr)
2554 {
2555 	pmd_t _dst_pmd, src_pmdval;
2556 	struct page *src_page;
2557 	struct folio *src_folio;
2558 	struct anon_vma *src_anon_vma;
2559 	spinlock_t *src_ptl, *dst_ptl;
2560 	pgtable_t src_pgtable;
2561 	struct mmu_notifier_range range;
2562 	int err = 0;
2563 
2564 	src_pmdval = *src_pmd;
2565 	src_ptl = pmd_lockptr(mm, src_pmd);
2566 
2567 	lockdep_assert_held(src_ptl);
2568 	vma_assert_locked(src_vma);
2569 	vma_assert_locked(dst_vma);
2570 
2571 	/* Sanity checks before the operation */
2572 	if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2573 	    WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2574 		spin_unlock(src_ptl);
2575 		return -EINVAL;
2576 	}
2577 
2578 	if (!pmd_trans_huge(src_pmdval)) {
2579 		spin_unlock(src_ptl);
2580 		if (is_pmd_migration_entry(src_pmdval)) {
2581 			pmd_migration_entry_wait(mm, &src_pmdval);
2582 			return -EAGAIN;
2583 		}
2584 		return -ENOENT;
2585 	}
2586 
2587 	src_page = pmd_page(src_pmdval);
2588 
2589 	if (!is_huge_zero_pmd(src_pmdval)) {
2590 		if (unlikely(!PageAnonExclusive(src_page))) {
2591 			spin_unlock(src_ptl);
2592 			return -EBUSY;
2593 		}
2594 
2595 		src_folio = page_folio(src_page);
2596 		folio_get(src_folio);
2597 	} else
2598 		src_folio = NULL;
2599 
2600 	spin_unlock(src_ptl);
2601 
2602 	flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2603 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2604 				src_addr + HPAGE_PMD_SIZE);
2605 	mmu_notifier_invalidate_range_start(&range);
2606 
2607 	if (src_folio) {
2608 		folio_lock(src_folio);
2609 
2610 		/*
2611 		 * split_huge_page walks the anon_vma chain without the page
2612 		 * lock. Serialize against it with the anon_vma lock, the page
2613 		 * lock is not enough.
2614 		 */
2615 		src_anon_vma = folio_get_anon_vma(src_folio);
2616 		if (!src_anon_vma) {
2617 			err = -EAGAIN;
2618 			goto unlock_folio;
2619 		}
2620 		anon_vma_lock_write(src_anon_vma);
2621 	} else
2622 		src_anon_vma = NULL;
2623 
2624 	dst_ptl = pmd_lockptr(mm, dst_pmd);
2625 	double_pt_lock(src_ptl, dst_ptl);
2626 	if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2627 		     !pmd_same(*dst_pmd, dst_pmdval))) {
2628 		err = -EAGAIN;
2629 		goto unlock_ptls;
2630 	}
2631 	if (src_folio) {
2632 		if (folio_maybe_dma_pinned(src_folio) ||
2633 		    !PageAnonExclusive(&src_folio->page)) {
2634 			err = -EBUSY;
2635 			goto unlock_ptls;
2636 		}
2637 
2638 		if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2639 		    WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2640 			err = -EBUSY;
2641 			goto unlock_ptls;
2642 		}
2643 
2644 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2645 		/* Folio got pinned from under us. Put it back and fail the move. */
2646 		if (folio_maybe_dma_pinned(src_folio)) {
2647 			set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2648 			err = -EBUSY;
2649 			goto unlock_ptls;
2650 		}
2651 
2652 		folio_move_anon_rmap(src_folio, dst_vma);
2653 		src_folio->index = linear_page_index(dst_vma, dst_addr);
2654 
2655 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2656 		/* Follow mremap() behavior and treat the entry dirty after the move */
2657 		_dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2658 	} else {
2659 		src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2660 		_dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2661 	}
2662 	set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2663 
2664 	src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2665 	pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2666 unlock_ptls:
2667 	double_pt_unlock(src_ptl, dst_ptl);
2668 	if (src_anon_vma) {
2669 		anon_vma_unlock_write(src_anon_vma);
2670 		put_anon_vma(src_anon_vma);
2671 	}
2672 unlock_folio:
2673 	/* unblock rmap walks */
2674 	if (src_folio)
2675 		folio_unlock(src_folio);
2676 	mmu_notifier_invalidate_range_end(&range);
2677 	if (src_folio)
2678 		folio_put(src_folio);
2679 	return err;
2680 }
2681 #endif /* CONFIG_USERFAULTFD */
2682 
2683 /*
2684  * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2685  *
2686  * Note that if it returns page table lock pointer, this routine returns without
2687  * unlocking page table lock. So callers must unlock it.
2688  */
2689 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2690 {
2691 	spinlock_t *ptl;
2692 	ptl = pmd_lock(vma->vm_mm, pmd);
2693 	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2694 			pmd_devmap(*pmd)))
2695 		return ptl;
2696 	spin_unlock(ptl);
2697 	return NULL;
2698 }
2699 
2700 /*
2701  * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2702  *
2703  * Note that if it returns page table lock pointer, this routine returns without
2704  * unlocking page table lock. So callers must unlock it.
2705  */
2706 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2707 {
2708 	spinlock_t *ptl;
2709 
2710 	ptl = pud_lock(vma->vm_mm, pud);
2711 	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2712 		return ptl;
2713 	spin_unlock(ptl);
2714 	return NULL;
2715 }
2716 
2717 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2718 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2719 		 pud_t *pud, unsigned long addr)
2720 {
2721 	spinlock_t *ptl;
2722 	pud_t orig_pud;
2723 
2724 	ptl = __pud_trans_huge_lock(pud, vma);
2725 	if (!ptl)
2726 		return 0;
2727 
2728 	orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2729 	arch_check_zapped_pud(vma, orig_pud);
2730 	tlb_remove_pud_tlb_entry(tlb, pud, addr);
2731 	if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2732 		spin_unlock(ptl);
2733 		/* No zero page support yet */
2734 	} else {
2735 		struct page *page = NULL;
2736 		struct folio *folio;
2737 
2738 		/* No support for anonymous PUD pages or migration yet */
2739 		VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2740 				!pud_present(orig_pud));
2741 
2742 		page = pud_page(orig_pud);
2743 		folio = page_folio(page);
2744 		folio_remove_rmap_pud(folio, page, vma);
2745 		add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2746 
2747 		spin_unlock(ptl);
2748 		tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2749 	}
2750 	return 1;
2751 }
2752 
2753 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2754 		unsigned long haddr)
2755 {
2756 	struct folio *folio;
2757 	struct page *page;
2758 	pud_t old_pud;
2759 
2760 	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2761 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2762 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2763 	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2764 
2765 	count_vm_event(THP_SPLIT_PUD);
2766 
2767 	old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2768 
2769 	if (!vma_is_dax(vma))
2770 		return;
2771 
2772 	page = pud_page(old_pud);
2773 	folio = page_folio(page);
2774 
2775 	if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2776 		folio_mark_dirty(folio);
2777 	if (!folio_test_referenced(folio) && pud_young(old_pud))
2778 		folio_set_referenced(folio);
2779 	folio_remove_rmap_pud(folio, page, vma);
2780 	folio_put(folio);
2781 	add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2782 		-HPAGE_PUD_NR);
2783 }
2784 
2785 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2786 		unsigned long address)
2787 {
2788 	spinlock_t *ptl;
2789 	struct mmu_notifier_range range;
2790 
2791 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2792 				address & HPAGE_PUD_MASK,
2793 				(address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2794 	mmu_notifier_invalidate_range_start(&range);
2795 	ptl = pud_lock(vma->vm_mm, pud);
2796 	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2797 		goto out;
2798 	__split_huge_pud_locked(vma, pud, range.start);
2799 
2800 out:
2801 	spin_unlock(ptl);
2802 	mmu_notifier_invalidate_range_end(&range);
2803 }
2804 #else
2805 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2806 		unsigned long address)
2807 {
2808 }
2809 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2810 
2811 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2812 		unsigned long haddr, pmd_t *pmd)
2813 {
2814 	struct mm_struct *mm = vma->vm_mm;
2815 	pgtable_t pgtable;
2816 	pmd_t _pmd, old_pmd;
2817 	unsigned long addr;
2818 	pte_t *pte;
2819 	int i;
2820 
2821 	/*
2822 	 * Leave pmd empty until pte is filled note that it is fine to delay
2823 	 * notification until mmu_notifier_invalidate_range_end() as we are
2824 	 * replacing a zero pmd write protected page with a zero pte write
2825 	 * protected page.
2826 	 *
2827 	 * See Documentation/mm/mmu_notifier.rst
2828 	 */
2829 	old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2830 
2831 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2832 	pmd_populate(mm, &_pmd, pgtable);
2833 
2834 	pte = pte_offset_map(&_pmd, haddr);
2835 	VM_BUG_ON(!pte);
2836 	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2837 		pte_t entry;
2838 
2839 		entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2840 		entry = pte_mkspecial(entry);
2841 		if (pmd_uffd_wp(old_pmd))
2842 			entry = pte_mkuffd_wp(entry);
2843 		VM_BUG_ON(!pte_none(ptep_get(pte)));
2844 		set_pte_at(mm, addr, pte, entry);
2845 		pte++;
2846 	}
2847 	pte_unmap(pte - 1);
2848 	smp_wmb(); /* make pte visible before pmd */
2849 	pmd_populate(mm, pmd, pgtable);
2850 }
2851 
2852 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2853 		unsigned long haddr, bool freeze)
2854 {
2855 	struct mm_struct *mm = vma->vm_mm;
2856 	struct folio *folio;
2857 	struct page *page;
2858 	pgtable_t pgtable;
2859 	pmd_t old_pmd, _pmd;
2860 	bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2861 	bool anon_exclusive = false, dirty = false;
2862 	unsigned long addr;
2863 	pte_t *pte;
2864 	int i;
2865 
2866 	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2867 	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2868 	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2869 	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2870 				&& !pmd_devmap(*pmd));
2871 
2872 	count_vm_event(THP_SPLIT_PMD);
2873 
2874 	if (!vma_is_anonymous(vma)) {
2875 		old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2876 		/*
2877 		 * We are going to unmap this huge page. So
2878 		 * just go ahead and zap it
2879 		 */
2880 		if (arch_needs_pgtable_deposit())
2881 			zap_deposited_table(mm, pmd);
2882 		if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2883 			return;
2884 		if (unlikely(is_pmd_migration_entry(old_pmd))) {
2885 			swp_entry_t entry;
2886 
2887 			entry = pmd_to_swp_entry(old_pmd);
2888 			folio = pfn_swap_entry_folio(entry);
2889 		} else if (is_huge_zero_pmd(old_pmd)) {
2890 			return;
2891 		} else {
2892 			page = pmd_page(old_pmd);
2893 			folio = page_folio(page);
2894 			if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2895 				folio_mark_dirty(folio);
2896 			if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2897 				folio_set_referenced(folio);
2898 			folio_remove_rmap_pmd(folio, page, vma);
2899 			folio_put(folio);
2900 		}
2901 		add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2902 		return;
2903 	}
2904 
2905 	if (is_huge_zero_pmd(*pmd)) {
2906 		/*
2907 		 * FIXME: Do we want to invalidate secondary mmu by calling
2908 		 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2909 		 * inside __split_huge_pmd() ?
2910 		 *
2911 		 * We are going from a zero huge page write protected to zero
2912 		 * small page also write protected so it does not seems useful
2913 		 * to invalidate secondary mmu at this time.
2914 		 */
2915 		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2916 	}
2917 
2918 	pmd_migration = is_pmd_migration_entry(*pmd);
2919 	if (unlikely(pmd_migration)) {
2920 		swp_entry_t entry;
2921 
2922 		old_pmd = *pmd;
2923 		entry = pmd_to_swp_entry(old_pmd);
2924 		page = pfn_swap_entry_to_page(entry);
2925 		write = is_writable_migration_entry(entry);
2926 		if (PageAnon(page))
2927 			anon_exclusive = is_readable_exclusive_migration_entry(entry);
2928 		young = is_migration_entry_young(entry);
2929 		dirty = is_migration_entry_dirty(entry);
2930 		soft_dirty = pmd_swp_soft_dirty(old_pmd);
2931 		uffd_wp = pmd_swp_uffd_wp(old_pmd);
2932 	} else {
2933 		/*
2934 		 * Up to this point the pmd is present and huge and userland has
2935 		 * the whole access to the hugepage during the split (which
2936 		 * happens in place). If we overwrite the pmd with the not-huge
2937 		 * version pointing to the pte here (which of course we could if
2938 		 * all CPUs were bug free), userland could trigger a small page
2939 		 * size TLB miss on the small sized TLB while the hugepage TLB
2940 		 * entry is still established in the huge TLB. Some CPU doesn't
2941 		 * like that. See
2942 		 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2943 		 * 383 on page 105. Intel should be safe but is also warns that
2944 		 * it's only safe if the permission and cache attributes of the
2945 		 * two entries loaded in the two TLB is identical (which should
2946 		 * be the case here). But it is generally safer to never allow
2947 		 * small and huge TLB entries for the same virtual address to be
2948 		 * loaded simultaneously. So instead of doing "pmd_populate();
2949 		 * flush_pmd_tlb_range();" we first mark the current pmd
2950 		 * notpresent (atomically because here the pmd_trans_huge must
2951 		 * remain set at all times on the pmd until the split is
2952 		 * complete for this pmd), then we flush the SMP TLB and finally
2953 		 * we write the non-huge version of the pmd entry with
2954 		 * pmd_populate.
2955 		 */
2956 		old_pmd = pmdp_invalidate(vma, haddr, pmd);
2957 		page = pmd_page(old_pmd);
2958 		folio = page_folio(page);
2959 		if (pmd_dirty(old_pmd)) {
2960 			dirty = true;
2961 			folio_set_dirty(folio);
2962 		}
2963 		write = pmd_write(old_pmd);
2964 		young = pmd_young(old_pmd);
2965 		soft_dirty = pmd_soft_dirty(old_pmd);
2966 		uffd_wp = pmd_uffd_wp(old_pmd);
2967 
2968 		VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2969 		VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2970 
2971 		/*
2972 		 * Without "freeze", we'll simply split the PMD, propagating the
2973 		 * PageAnonExclusive() flag for each PTE by setting it for
2974 		 * each subpage -- no need to (temporarily) clear.
2975 		 *
2976 		 * With "freeze" we want to replace mapped pages by
2977 		 * migration entries right away. This is only possible if we
2978 		 * managed to clear PageAnonExclusive() -- see
2979 		 * set_pmd_migration_entry().
2980 		 *
2981 		 * In case we cannot clear PageAnonExclusive(), split the PMD
2982 		 * only and let try_to_migrate_one() fail later.
2983 		 *
2984 		 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2985 		 */
2986 		anon_exclusive = PageAnonExclusive(page);
2987 		if (freeze && anon_exclusive &&
2988 		    folio_try_share_anon_rmap_pmd(folio, page))
2989 			freeze = false;
2990 		if (!freeze) {
2991 			rmap_t rmap_flags = RMAP_NONE;
2992 
2993 			folio_ref_add(folio, HPAGE_PMD_NR - 1);
2994 			if (anon_exclusive)
2995 				rmap_flags |= RMAP_EXCLUSIVE;
2996 			folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2997 						 vma, haddr, rmap_flags);
2998 		}
2999 	}
3000 
3001 	/*
3002 	 * Withdraw the table only after we mark the pmd entry invalid.
3003 	 * This's critical for some architectures (Power).
3004 	 */
3005 	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3006 	pmd_populate(mm, &_pmd, pgtable);
3007 
3008 	pte = pte_offset_map(&_pmd, haddr);
3009 	VM_BUG_ON(!pte);
3010 
3011 	/*
3012 	 * Note that NUMA hinting access restrictions are not transferred to
3013 	 * avoid any possibility of altering permissions across VMAs.
3014 	 */
3015 	if (freeze || pmd_migration) {
3016 		for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3017 			pte_t entry;
3018 			swp_entry_t swp_entry;
3019 
3020 			if (write)
3021 				swp_entry = make_writable_migration_entry(
3022 							page_to_pfn(page + i));
3023 			else if (anon_exclusive)
3024 				swp_entry = make_readable_exclusive_migration_entry(
3025 							page_to_pfn(page + i));
3026 			else
3027 				swp_entry = make_readable_migration_entry(
3028 							page_to_pfn(page + i));
3029 			if (young)
3030 				swp_entry = make_migration_entry_young(swp_entry);
3031 			if (dirty)
3032 				swp_entry = make_migration_entry_dirty(swp_entry);
3033 			entry = swp_entry_to_pte(swp_entry);
3034 			if (soft_dirty)
3035 				entry = pte_swp_mksoft_dirty(entry);
3036 			if (uffd_wp)
3037 				entry = pte_swp_mkuffd_wp(entry);
3038 
3039 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3040 			set_pte_at(mm, addr, pte + i, entry);
3041 		}
3042 	} else {
3043 		pte_t entry;
3044 
3045 		entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3046 		if (write)
3047 			entry = pte_mkwrite(entry, vma);
3048 		if (!young)
3049 			entry = pte_mkold(entry);
3050 		/* NOTE: this may set soft-dirty too on some archs */
3051 		if (dirty)
3052 			entry = pte_mkdirty(entry);
3053 		if (soft_dirty)
3054 			entry = pte_mksoft_dirty(entry);
3055 		if (uffd_wp)
3056 			entry = pte_mkuffd_wp(entry);
3057 
3058 		for (i = 0; i < HPAGE_PMD_NR; i++)
3059 			VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3060 
3061 		set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3062 	}
3063 	pte_unmap(pte);
3064 
3065 	if (!pmd_migration)
3066 		folio_remove_rmap_pmd(folio, page, vma);
3067 	if (freeze)
3068 		put_page(page);
3069 
3070 	smp_wmb(); /* make pte visible before pmd */
3071 	pmd_populate(mm, pmd, pgtable);
3072 }
3073 
3074 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3075 			   pmd_t *pmd, bool freeze, struct folio *folio)
3076 {
3077 	bool pmd_migration = is_pmd_migration_entry(*pmd);
3078 
3079 	VM_WARN_ON_ONCE(folio && !folio_test_pmd_mappable(folio));
3080 	VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3081 	VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
3082 	VM_BUG_ON(freeze && !folio);
3083 
3084 	/*
3085 	 * When the caller requests to set up a migration entry, we
3086 	 * require a folio to check the PMD against. Otherwise, there
3087 	 * is a risk of replacing the wrong folio.
3088 	 */
3089 	if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) || pmd_migration) {
3090 		/*
3091 		 * Do not apply pmd_folio() to a migration entry; and folio lock
3092 		 * guarantees that it must be of the wrong folio anyway.
3093 		 */
3094 		if (folio && (pmd_migration || folio != pmd_folio(*pmd)))
3095 			return;
3096 		__split_huge_pmd_locked(vma, pmd, address, freeze);
3097 	}
3098 }
3099 
3100 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3101 		unsigned long address, bool freeze, struct folio *folio)
3102 {
3103 	spinlock_t *ptl;
3104 	struct mmu_notifier_range range;
3105 
3106 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3107 				address & HPAGE_PMD_MASK,
3108 				(address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3109 	mmu_notifier_invalidate_range_start(&range);
3110 	ptl = pmd_lock(vma->vm_mm, pmd);
3111 	split_huge_pmd_locked(vma, range.start, pmd, freeze, folio);
3112 	spin_unlock(ptl);
3113 	mmu_notifier_invalidate_range_end(&range);
3114 }
3115 
3116 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3117 		bool freeze, struct folio *folio)
3118 {
3119 	pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3120 
3121 	if (!pmd)
3122 		return;
3123 
3124 	__split_huge_pmd(vma, pmd, address, freeze, folio);
3125 }
3126 
3127 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3128 {
3129 	/*
3130 	 * If the new address isn't hpage aligned and it could previously
3131 	 * contain an hugepage: check if we need to split an huge pmd.
3132 	 */
3133 	if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3134 	    range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3135 			 ALIGN(address, HPAGE_PMD_SIZE)))
3136 		split_huge_pmd_address(vma, address, false, NULL);
3137 }
3138 
3139 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3140 			   unsigned long start,
3141 			   unsigned long end,
3142 			   struct vm_area_struct *next)
3143 {
3144 	/* Check if we need to split start first. */
3145 	split_huge_pmd_if_needed(vma, start);
3146 
3147 	/* Check if we need to split end next. */
3148 	split_huge_pmd_if_needed(vma, end);
3149 
3150 	/* If we're incrementing next->vm_start, we might need to split it. */
3151 	if (next)
3152 		split_huge_pmd_if_needed(next, end);
3153 }
3154 
3155 static void unmap_folio(struct folio *folio)
3156 {
3157 	enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3158 		TTU_BATCH_FLUSH;
3159 
3160 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3161 
3162 	if (folio_test_pmd_mappable(folio))
3163 		ttu_flags |= TTU_SPLIT_HUGE_PMD;
3164 
3165 	/*
3166 	 * Anon pages need migration entries to preserve them, but file
3167 	 * pages can simply be left unmapped, then faulted back on demand.
3168 	 * If that is ever changed (perhaps for mlock), update remap_page().
3169 	 */
3170 	if (folio_test_anon(folio))
3171 		try_to_migrate(folio, ttu_flags);
3172 	else
3173 		try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3174 
3175 	try_to_unmap_flush();
3176 }
3177 
3178 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3179 					    unsigned long addr, pmd_t *pmdp,
3180 					    struct folio *folio)
3181 {
3182 	struct mm_struct *mm = vma->vm_mm;
3183 	int ref_count, map_count;
3184 	pmd_t orig_pmd = *pmdp;
3185 
3186 	if (pmd_dirty(orig_pmd))
3187 		folio_set_dirty(folio);
3188 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3189 		folio_set_swapbacked(folio);
3190 		return false;
3191 	}
3192 
3193 	orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3194 
3195 	/*
3196 	 * Syncing against concurrent GUP-fast:
3197 	 * - clear PMD; barrier; read refcount
3198 	 * - inc refcount; barrier; read PMD
3199 	 */
3200 	smp_mb();
3201 
3202 	ref_count = folio_ref_count(folio);
3203 	map_count = folio_mapcount(folio);
3204 
3205 	/*
3206 	 * Order reads for folio refcount and dirty flag
3207 	 * (see comments in __remove_mapping()).
3208 	 */
3209 	smp_rmb();
3210 
3211 	/*
3212 	 * If the folio or its PMD is redirtied at this point, or if there
3213 	 * are unexpected references, we will give up to discard this folio
3214 	 * and remap it.
3215 	 *
3216 	 * The only folio refs must be one from isolation plus the rmap(s).
3217 	 */
3218 	if (pmd_dirty(orig_pmd))
3219 		folio_set_dirty(folio);
3220 	if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3221 		folio_set_swapbacked(folio);
3222 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3223 		return false;
3224 	}
3225 
3226 	if (ref_count != map_count + 1) {
3227 		set_pmd_at(mm, addr, pmdp, orig_pmd);
3228 		return false;
3229 	}
3230 
3231 	folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3232 	zap_deposited_table(mm, pmdp);
3233 	add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3234 	if (vma->vm_flags & VM_LOCKED)
3235 		mlock_drain_local();
3236 	folio_put(folio);
3237 
3238 	return true;
3239 }
3240 
3241 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3242 			   pmd_t *pmdp, struct folio *folio)
3243 {
3244 	VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3245 	VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3246 	VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3247 	VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3248 	VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3249 
3250 	return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3251 }
3252 
3253 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3254 {
3255 	int i = 0;
3256 
3257 	/* If unmap_folio() uses try_to_migrate() on file, remove this check */
3258 	if (!folio_test_anon(folio))
3259 		return;
3260 	for (;;) {
3261 		remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3262 		i += folio_nr_pages(folio);
3263 		if (i >= nr)
3264 			break;
3265 		folio = folio_next(folio);
3266 	}
3267 }
3268 
3269 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3270 		struct lruvec *lruvec, struct list_head *list)
3271 {
3272 	VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3273 	lockdep_assert_held(&lruvec->lru_lock);
3274 
3275 	if (list) {
3276 		/* page reclaim is reclaiming a huge page */
3277 		VM_WARN_ON(folio_test_lru(folio));
3278 		folio_get(new_folio);
3279 		list_add_tail(&new_folio->lru, list);
3280 	} else {
3281 		/* head is still on lru (and we have it frozen) */
3282 		VM_WARN_ON(!folio_test_lru(folio));
3283 		if (folio_test_unevictable(folio))
3284 			new_folio->mlock_count = 0;
3285 		else
3286 			list_add_tail(&new_folio->lru, &folio->lru);
3287 		folio_set_lru(new_folio);
3288 	}
3289 }
3290 
3291 /* Racy check whether the huge page can be split */
3292 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3293 {
3294 	int extra_pins;
3295 
3296 	/* Additional pins from page cache */
3297 	if (folio_test_anon(folio))
3298 		extra_pins = folio_test_swapcache(folio) ?
3299 				folio_nr_pages(folio) : 0;
3300 	else
3301 		extra_pins = folio_nr_pages(folio);
3302 	if (pextra_pins)
3303 		*pextra_pins = extra_pins;
3304 	return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3305 					caller_pins;
3306 }
3307 
3308 /*
3309  * It splits @folio into @new_order folios and copies the @folio metadata to
3310  * all the resulting folios.
3311  */
3312 static void __split_folio_to_order(struct folio *folio, int old_order,
3313 		int new_order)
3314 {
3315 	long new_nr_pages = 1 << new_order;
3316 	long nr_pages = 1 << old_order;
3317 	long i;
3318 
3319 	/*
3320 	 * Skip the first new_nr_pages, since the new folio from them have all
3321 	 * the flags from the original folio.
3322 	 */
3323 	for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3324 		struct page *new_head = &folio->page + i;
3325 
3326 		/*
3327 		 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3328 		 * Don't pass it around before clear_compound_head().
3329 		 */
3330 		struct folio *new_folio = (struct folio *)new_head;
3331 
3332 		VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3333 
3334 		/*
3335 		 * Clone page flags before unfreezing refcount.
3336 		 *
3337 		 * After successful get_page_unless_zero() might follow flags change,
3338 		 * for example lock_page() which set PG_waiters.
3339 		 *
3340 		 * Note that for mapped sub-pages of an anonymous THP,
3341 		 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3342 		 * the migration entry instead from where remap_page() will restore it.
3343 		 * We can still have PG_anon_exclusive set on effectively unmapped and
3344 		 * unreferenced sub-pages of an anonymous THP: we can simply drop
3345 		 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3346 		 */
3347 		new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3348 		new_folio->flags |= (folio->flags &
3349 				((1L << PG_referenced) |
3350 				 (1L << PG_swapbacked) |
3351 				 (1L << PG_swapcache) |
3352 				 (1L << PG_mlocked) |
3353 				 (1L << PG_uptodate) |
3354 				 (1L << PG_active) |
3355 				 (1L << PG_workingset) |
3356 				 (1L << PG_locked) |
3357 				 (1L << PG_unevictable) |
3358 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3359 				 (1L << PG_arch_2) |
3360 #endif
3361 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3362 				 (1L << PG_arch_3) |
3363 #endif
3364 				 (1L << PG_dirty) |
3365 				 LRU_GEN_MASK | LRU_REFS_MASK));
3366 
3367 		new_folio->mapping = folio->mapping;
3368 		new_folio->index = folio->index + i;
3369 
3370 		/*
3371 		 * page->private should not be set in tail pages. Fix up and warn once
3372 		 * if private is unexpectedly set.
3373 		 */
3374 		if (unlikely(new_folio->private)) {
3375 			VM_WARN_ON_ONCE_PAGE(true, new_head);
3376 			new_folio->private = NULL;
3377 		}
3378 
3379 		if (folio_test_swapcache(folio))
3380 			new_folio->swap.val = folio->swap.val + i;
3381 
3382 		/* Page flags must be visible before we make the page non-compound. */
3383 		smp_wmb();
3384 
3385 		/*
3386 		 * Clear PageTail before unfreezing page refcount.
3387 		 *
3388 		 * After successful get_page_unless_zero() might follow put_page()
3389 		 * which needs correct compound_head().
3390 		 */
3391 		clear_compound_head(new_head);
3392 		if (new_order) {
3393 			prep_compound_page(new_head, new_order);
3394 			folio_set_large_rmappable(new_folio);
3395 		}
3396 
3397 		if (folio_test_young(folio))
3398 			folio_set_young(new_folio);
3399 		if (folio_test_idle(folio))
3400 			folio_set_idle(new_folio);
3401 #ifdef CONFIG_MEMCG
3402 		new_folio->memcg_data = folio->memcg_data;
3403 #endif
3404 
3405 		folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3406 	}
3407 
3408 	if (new_order)
3409 		folio_set_order(folio, new_order);
3410 	else
3411 		ClearPageCompound(&folio->page);
3412 }
3413 
3414 /*
3415  * It splits an unmapped @folio to lower order smaller folios in two ways.
3416  * @folio: the to-be-split folio
3417  * @new_order: the smallest order of the after split folios (since buddy
3418  *             allocator like split generates folios with orders from @folio's
3419  *             order - 1 to new_order).
3420  * @split_at: in buddy allocator like split, the folio containing @split_at
3421  *            will be split until its order becomes @new_order.
3422  * @lock_at: the folio containing @lock_at is left locked for caller.
3423  * @list: the after split folios will be added to @list if it is not NULL,
3424  *        otherwise to LRU lists.
3425  * @end: the end of the file @folio maps to. -1 if @folio is anonymous memory.
3426  * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3427  * @mapping: @folio->mapping
3428  * @uniform_split: if the split is uniform or not (buddy allocator like split)
3429  *
3430  *
3431  * 1. uniform split: the given @folio into multiple @new_order small folios,
3432  *    where all small folios have the same order. This is done when
3433  *    uniform_split is true.
3434  * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3435  *    half and one of the half (containing the given page) is split into half
3436  *    until the given @page's order becomes @new_order. This is done when
3437  *    uniform_split is false.
3438  *
3439  * The high level flow for these two methods are:
3440  * 1. uniform split: a single __split_folio_to_order() is called to split the
3441  *    @folio into @new_order, then we traverse all the resulting folios one by
3442  *    one in PFN ascending order and perform stats, unfreeze, adding to list,
3443  *    and file mapping index operations.
3444  * 2. non-uniform split: in general, folio_order - @new_order calls to
3445  *    __split_folio_to_order() are made in a for loop to split the @folio
3446  *    to one lower order at a time. The resulting small folios are processed
3447  *    like what is done during the traversal in 1, except the one containing
3448  *    @page, which is split in next for loop.
3449  *
3450  * After splitting, the caller's folio reference will be transferred to the
3451  * folio containing @page. The other folios may be freed if they are not mapped.
3452  *
3453  * In terms of locking, after splitting,
3454  * 1. uniform split leaves @page (or the folio contains it) locked;
3455  * 2. buddy allocator like (non-uniform) split leaves @folio locked.
3456  *
3457  *
3458  * For !uniform_split, when -ENOMEM is returned, the original folio might be
3459  * split. The caller needs to check the input folio.
3460  */
3461 static int __split_unmapped_folio(struct folio *folio, int new_order,
3462 		struct page *split_at, struct page *lock_at,
3463 		struct list_head *list, pgoff_t end,
3464 		struct xa_state *xas, struct address_space *mapping,
3465 		bool uniform_split)
3466 {
3467 	struct lruvec *lruvec;
3468 	struct address_space *swap_cache = NULL;
3469 	struct folio *origin_folio = folio;
3470 	struct folio *next_folio = folio_next(folio);
3471 	struct folio *new_folio;
3472 	struct folio *next;
3473 	int order = folio_order(folio);
3474 	int split_order;
3475 	int start_order = uniform_split ? new_order : order - 1;
3476 	int nr_dropped = 0;
3477 	int ret = 0;
3478 	bool stop_split = false;
3479 
3480 	if (folio_test_swapcache(folio)) {
3481 		VM_BUG_ON(mapping);
3482 
3483 		/* a swapcache folio can only be uniformly split to order-0 */
3484 		if (!uniform_split || new_order != 0)
3485 			return -EINVAL;
3486 
3487 		swap_cache = swap_address_space(folio->swap);
3488 		xa_lock(&swap_cache->i_pages);
3489 	}
3490 
3491 	if (folio_test_anon(folio))
3492 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3493 
3494 	/* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3495 	lruvec = folio_lruvec_lock(folio);
3496 
3497 	folio_clear_has_hwpoisoned(folio);
3498 
3499 	/*
3500 	 * split to new_order one order at a time. For uniform split,
3501 	 * folio is split to new_order directly.
3502 	 */
3503 	for (split_order = start_order;
3504 	     split_order >= new_order && !stop_split;
3505 	     split_order--) {
3506 		int old_order = folio_order(folio);
3507 		struct folio *release;
3508 		struct folio *end_folio = folio_next(folio);
3509 
3510 		/* order-1 anonymous folio is not supported */
3511 		if (folio_test_anon(folio) && split_order == 1)
3512 			continue;
3513 		if (uniform_split && split_order != new_order)
3514 			continue;
3515 
3516 		if (mapping) {
3517 			/*
3518 			 * uniform split has xas_split_alloc() called before
3519 			 * irq is disabled to allocate enough memory, whereas
3520 			 * non-uniform split can handle ENOMEM.
3521 			 */
3522 			if (uniform_split)
3523 				xas_split(xas, folio, old_order);
3524 			else {
3525 				xas_set_order(xas, folio->index, split_order);
3526 				xas_try_split(xas, folio, old_order);
3527 				if (xas_error(xas)) {
3528 					ret = xas_error(xas);
3529 					stop_split = true;
3530 					goto after_split;
3531 				}
3532 			}
3533 		}
3534 
3535 		folio_split_memcg_refs(folio, old_order, split_order);
3536 		split_page_owner(&folio->page, old_order, split_order);
3537 		pgalloc_tag_split(folio, old_order, split_order);
3538 
3539 		__split_folio_to_order(folio, old_order, split_order);
3540 
3541 after_split:
3542 		/*
3543 		 * Iterate through after-split folios and perform related
3544 		 * operations. But in buddy allocator like split, the folio
3545 		 * containing the specified page is skipped until its order
3546 		 * is new_order, since the folio will be worked on in next
3547 		 * iteration.
3548 		 */
3549 		for (release = folio; release != end_folio; release = next) {
3550 			next = folio_next(release);
3551 			/*
3552 			 * for buddy allocator like split, the folio containing
3553 			 * page will be split next and should not be released,
3554 			 * until the folio's order is new_order or stop_split
3555 			 * is set to true by the above xas_split() failure.
3556 			 */
3557 			if (release == page_folio(split_at)) {
3558 				folio = release;
3559 				if (split_order != new_order && !stop_split)
3560 					continue;
3561 			}
3562 			if (folio_test_anon(release)) {
3563 				mod_mthp_stat(folio_order(release),
3564 						MTHP_STAT_NR_ANON, 1);
3565 			}
3566 
3567 			/*
3568 			 * origin_folio should be kept frozon until page cache
3569 			 * entries are updated with all the other after-split
3570 			 * folios to prevent others seeing stale page cache
3571 			 * entries.
3572 			 */
3573 			if (release == origin_folio)
3574 				continue;
3575 
3576 			folio_ref_unfreeze(release, 1 +
3577 					((mapping || swap_cache) ?
3578 						folio_nr_pages(release) : 0));
3579 
3580 			lru_add_split_folio(origin_folio, release, lruvec,
3581 					list);
3582 
3583 			/* Some pages can be beyond EOF: drop them from cache */
3584 			if (release->index >= end) {
3585 				if (shmem_mapping(mapping))
3586 					nr_dropped += folio_nr_pages(release);
3587 				else if (folio_test_clear_dirty(release))
3588 					folio_account_cleaned(release,
3589 						inode_to_wb(mapping->host));
3590 				__filemap_remove_folio(release, NULL);
3591 				folio_put_refs(release, folio_nr_pages(release));
3592 			} else if (mapping) {
3593 				__xa_store(&mapping->i_pages,
3594 						release->index, release, 0);
3595 			} else if (swap_cache) {
3596 				__xa_store(&swap_cache->i_pages,
3597 						swap_cache_index(release->swap),
3598 						release, 0);
3599 			}
3600 		}
3601 	}
3602 
3603 	/*
3604 	 * Unfreeze origin_folio only after all page cache entries, which used
3605 	 * to point to it, have been updated with new folios. Otherwise,
3606 	 * a parallel folio_try_get() can grab origin_folio and its caller can
3607 	 * see stale page cache entries.
3608 	 */
3609 	folio_ref_unfreeze(origin_folio, 1 +
3610 		((mapping || swap_cache) ? folio_nr_pages(origin_folio) : 0));
3611 
3612 	unlock_page_lruvec(lruvec);
3613 
3614 	if (swap_cache)
3615 		xa_unlock(&swap_cache->i_pages);
3616 	if (mapping)
3617 		xa_unlock(&mapping->i_pages);
3618 
3619 	/* Caller disabled irqs, so they are still disabled here */
3620 	local_irq_enable();
3621 
3622 	if (nr_dropped)
3623 		shmem_uncharge(mapping->host, nr_dropped);
3624 
3625 	remap_page(origin_folio, 1 << order,
3626 			folio_test_anon(origin_folio) ?
3627 				RMP_USE_SHARED_ZEROPAGE : 0);
3628 
3629 	/*
3630 	 * At this point, folio should contain the specified page.
3631 	 * For uniform split, it is left for caller to unlock.
3632 	 * For buddy allocator like split, the first after-split folio is left
3633 	 * for caller to unlock.
3634 	 */
3635 	for (new_folio = origin_folio; new_folio != next_folio; new_folio = next) {
3636 		next = folio_next(new_folio);
3637 		if (new_folio == page_folio(lock_at))
3638 			continue;
3639 
3640 		folio_unlock(new_folio);
3641 		/*
3642 		 * Subpages may be freed if there wasn't any mapping
3643 		 * like if add_to_swap() is running on a lru page that
3644 		 * had its mapping zapped. And freeing these pages
3645 		 * requires taking the lru_lock so we do the put_page
3646 		 * of the tail pages after the split is complete.
3647 		 */
3648 		free_page_and_swap_cache(&new_folio->page);
3649 	}
3650 	return ret;
3651 }
3652 
3653 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3654 		bool warns)
3655 {
3656 	if (folio_test_anon(folio)) {
3657 		/* order-1 is not supported for anonymous THP. */
3658 		VM_WARN_ONCE(warns && new_order == 1,
3659 				"Cannot split to order-1 folio");
3660 		return new_order != 1;
3661 	} else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3662 	    !mapping_large_folio_support(folio->mapping)) {
3663 		/*
3664 		 * No split if the file system does not support large folio.
3665 		 * Note that we might still have THPs in such mappings due to
3666 		 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3667 		 * does not actually support large folios properly.
3668 		 */
3669 		VM_WARN_ONCE(warns,
3670 			"Cannot split file folio to non-0 order");
3671 		return false;
3672 	}
3673 
3674 	/* Only swapping a whole PMD-mapped folio is supported */
3675 	if (folio_test_swapcache(folio)) {
3676 		VM_WARN_ONCE(warns,
3677 			"Cannot split swapcache folio to non-0 order");
3678 		return false;
3679 	}
3680 
3681 	return true;
3682 }
3683 
3684 /* See comments in non_uniform_split_supported() */
3685 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3686 		bool warns)
3687 {
3688 	if (folio_test_anon(folio)) {
3689 		VM_WARN_ONCE(warns && new_order == 1,
3690 				"Cannot split to order-1 folio");
3691 		return new_order != 1;
3692 	} else  if (new_order) {
3693 		if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3694 		    !mapping_large_folio_support(folio->mapping)) {
3695 			VM_WARN_ONCE(warns,
3696 				"Cannot split file folio to non-0 order");
3697 			return false;
3698 		}
3699 	}
3700 
3701 	if (new_order && folio_test_swapcache(folio)) {
3702 		VM_WARN_ONCE(warns,
3703 			"Cannot split swapcache folio to non-0 order");
3704 		return false;
3705 	}
3706 
3707 	return true;
3708 }
3709 
3710 /*
3711  * __folio_split: split a folio at @split_at to a @new_order folio
3712  * @folio: folio to split
3713  * @new_order: the order of the new folio
3714  * @split_at: a page within the new folio
3715  * @lock_at: a page within @folio to be left locked to caller
3716  * @list: after-split folios will be put on it if non NULL
3717  * @uniform_split: perform uniform split or not (non-uniform split)
3718  *
3719  * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3720  * It is in charge of checking whether the split is supported or not and
3721  * preparing @folio for __split_unmapped_folio().
3722  *
3723  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3724  * split but not to @new_order, the caller needs to check)
3725  */
3726 static int __folio_split(struct folio *folio, unsigned int new_order,
3727 		struct page *split_at, struct page *lock_at,
3728 		struct list_head *list, bool uniform_split)
3729 {
3730 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3731 	XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3732 	bool is_anon = folio_test_anon(folio);
3733 	struct address_space *mapping = NULL;
3734 	struct anon_vma *anon_vma = NULL;
3735 	int order = folio_order(folio);
3736 	int extra_pins, ret;
3737 	pgoff_t end;
3738 	bool is_hzp;
3739 
3740 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3741 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3742 
3743 	if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3744 		return -EINVAL;
3745 
3746 	if (new_order >= folio_order(folio))
3747 		return -EINVAL;
3748 
3749 	if (uniform_split && !uniform_split_supported(folio, new_order, true))
3750 		return -EINVAL;
3751 
3752 	if (!uniform_split &&
3753 	    !non_uniform_split_supported(folio, new_order, true))
3754 		return -EINVAL;
3755 
3756 	is_hzp = is_huge_zero_folio(folio);
3757 	if (is_hzp) {
3758 		pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3759 		return -EBUSY;
3760 	}
3761 
3762 	if (folio_test_writeback(folio))
3763 		return -EBUSY;
3764 
3765 	if (is_anon) {
3766 		/*
3767 		 * The caller does not necessarily hold an mmap_lock that would
3768 		 * prevent the anon_vma disappearing so we first we take a
3769 		 * reference to it and then lock the anon_vma for write. This
3770 		 * is similar to folio_lock_anon_vma_read except the write lock
3771 		 * is taken to serialise against parallel split or collapse
3772 		 * operations.
3773 		 */
3774 		anon_vma = folio_get_anon_vma(folio);
3775 		if (!anon_vma) {
3776 			ret = -EBUSY;
3777 			goto out;
3778 		}
3779 		end = -1;
3780 		mapping = NULL;
3781 		anon_vma_lock_write(anon_vma);
3782 	} else {
3783 		unsigned int min_order;
3784 		gfp_t gfp;
3785 
3786 		mapping = folio->mapping;
3787 
3788 		/* Truncated ? */
3789 		/*
3790 		 * TODO: add support for large shmem folio in swap cache.
3791 		 * When shmem is in swap cache, mapping is NULL and
3792 		 * folio_test_swapcache() is true.
3793 		 */
3794 		if (!mapping) {
3795 			ret = -EBUSY;
3796 			goto out;
3797 		}
3798 
3799 		min_order = mapping_min_folio_order(folio->mapping);
3800 		if (new_order < min_order) {
3801 			VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3802 				     min_order);
3803 			ret = -EINVAL;
3804 			goto out;
3805 		}
3806 
3807 		gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3808 							GFP_RECLAIM_MASK);
3809 
3810 		if (!filemap_release_folio(folio, gfp)) {
3811 			ret = -EBUSY;
3812 			goto out;
3813 		}
3814 
3815 		if (uniform_split) {
3816 			xas_set_order(&xas, folio->index, new_order);
3817 			xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3818 			if (xas_error(&xas)) {
3819 				ret = xas_error(&xas);
3820 				goto out;
3821 			}
3822 		}
3823 
3824 		anon_vma = NULL;
3825 		i_mmap_lock_read(mapping);
3826 
3827 		/*
3828 		 *__split_unmapped_folio() may need to trim off pages beyond
3829 		 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3830 		 * seqlock, which cannot be nested inside the page tree lock.
3831 		 * So note end now: i_size itself may be changed at any moment,
3832 		 * but folio lock is good enough to serialize the trimming.
3833 		 */
3834 		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3835 		if (shmem_mapping(mapping))
3836 			end = shmem_fallocend(mapping->host, end);
3837 	}
3838 
3839 	/*
3840 	 * Racy check if we can split the page, before unmap_folio() will
3841 	 * split PMDs
3842 	 */
3843 	if (!can_split_folio(folio, 1, &extra_pins)) {
3844 		ret = -EAGAIN;
3845 		goto out_unlock;
3846 	}
3847 
3848 	unmap_folio(folio);
3849 
3850 	/* block interrupt reentry in xa_lock and spinlock */
3851 	local_irq_disable();
3852 	if (mapping) {
3853 		/*
3854 		 * Check if the folio is present in page cache.
3855 		 * We assume all tail are present too, if folio is there.
3856 		 */
3857 		xas_lock(&xas);
3858 		xas_reset(&xas);
3859 		if (xas_load(&xas) != folio)
3860 			goto fail;
3861 	}
3862 
3863 	/* Prevent deferred_split_scan() touching ->_refcount */
3864 	spin_lock(&ds_queue->split_queue_lock);
3865 	if (folio_ref_freeze(folio, 1 + extra_pins)) {
3866 		if (folio_order(folio) > 1 &&
3867 		    !list_empty(&folio->_deferred_list)) {
3868 			ds_queue->split_queue_len--;
3869 			if (folio_test_partially_mapped(folio)) {
3870 				folio_clear_partially_mapped(folio);
3871 				mod_mthp_stat(folio_order(folio),
3872 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3873 			}
3874 			/*
3875 			 * Reinitialize page_deferred_list after removing the
3876 			 * page from the split_queue, otherwise a subsequent
3877 			 * split will see list corruption when checking the
3878 			 * page_deferred_list.
3879 			 */
3880 			list_del_init(&folio->_deferred_list);
3881 		}
3882 		spin_unlock(&ds_queue->split_queue_lock);
3883 		if (mapping) {
3884 			int nr = folio_nr_pages(folio);
3885 
3886 			if (folio_test_pmd_mappable(folio) &&
3887 			    new_order < HPAGE_PMD_ORDER) {
3888 				if (folio_test_swapbacked(folio)) {
3889 					__lruvec_stat_mod_folio(folio,
3890 							NR_SHMEM_THPS, -nr);
3891 				} else {
3892 					__lruvec_stat_mod_folio(folio,
3893 							NR_FILE_THPS, -nr);
3894 					filemap_nr_thps_dec(mapping);
3895 				}
3896 			}
3897 		}
3898 
3899 		ret = __split_unmapped_folio(folio, new_order,
3900 				split_at, lock_at, list, end, &xas, mapping,
3901 				uniform_split);
3902 	} else {
3903 		spin_unlock(&ds_queue->split_queue_lock);
3904 fail:
3905 		if (mapping)
3906 			xas_unlock(&xas);
3907 		local_irq_enable();
3908 		remap_page(folio, folio_nr_pages(folio), 0);
3909 		ret = -EAGAIN;
3910 	}
3911 
3912 out_unlock:
3913 	if (anon_vma) {
3914 		anon_vma_unlock_write(anon_vma);
3915 		put_anon_vma(anon_vma);
3916 	}
3917 	if (mapping)
3918 		i_mmap_unlock_read(mapping);
3919 out:
3920 	xas_destroy(&xas);
3921 	if (order == HPAGE_PMD_ORDER)
3922 		count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3923 	count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3924 	return ret;
3925 }
3926 
3927 /*
3928  * This function splits a large folio into smaller folios of order @new_order.
3929  * @page can point to any page of the large folio to split. The split operation
3930  * does not change the position of @page.
3931  *
3932  * Prerequisites:
3933  *
3934  * 1) The caller must hold a reference on the @page's owning folio, also known
3935  *    as the large folio.
3936  *
3937  * 2) The large folio must be locked.
3938  *
3939  * 3) The folio must not be pinned. Any unexpected folio references, including
3940  *    GUP pins, will result in the folio not getting split; instead, the caller
3941  *    will receive an -EAGAIN.
3942  *
3943  * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3944  *    supported for non-file-backed folios, because folio->_deferred_list, which
3945  *    is used by partially mapped folios, is stored in subpage 2, but an order-1
3946  *    folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3947  *    since they do not use _deferred_list.
3948  *
3949  * After splitting, the caller's folio reference will be transferred to @page,
3950  * resulting in a raised refcount of @page after this call. The other pages may
3951  * be freed if they are not mapped.
3952  *
3953  * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3954  *
3955  * Pages in @new_order will inherit the mapping, flags, and so on from the
3956  * huge page.
3957  *
3958  * Returns 0 if the huge page was split successfully.
3959  *
3960  * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3961  * the folio was concurrently removed from the page cache.
3962  *
3963  * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3964  * under writeback, if fs-specific folio metadata cannot currently be
3965  * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3966  * truncation).
3967  *
3968  * Callers should ensure that the order respects the address space mapping
3969  * min-order if one is set for non-anonymous folios.
3970  *
3971  * Returns -EINVAL when trying to split to an order that is incompatible
3972  * with the folio. Splitting to order 0 is compatible with all folios.
3973  */
3974 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3975 				     unsigned int new_order)
3976 {
3977 	struct folio *folio = page_folio(page);
3978 
3979 	return __folio_split(folio, new_order, &folio->page, page, list, true);
3980 }
3981 
3982 /*
3983  * folio_split: split a folio at @split_at to a @new_order folio
3984  * @folio: folio to split
3985  * @new_order: the order of the new folio
3986  * @split_at: a page within the new folio
3987  *
3988  * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3989  * split but not to @new_order, the caller needs to check)
3990  *
3991  * It has the same prerequisites and returns as
3992  * split_huge_page_to_list_to_order().
3993  *
3994  * Split a folio at @split_at to a new_order folio, leave the
3995  * remaining subpages of the original folio as large as possible. For example,
3996  * in the case of splitting an order-9 folio at its third order-3 subpages to
3997  * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3998  * After the split, there will be a group of folios with different orders and
3999  * the new folio containing @split_at is marked in bracket:
4000  * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
4001  *
4002  * After split, folio is left locked for caller.
4003  */
4004 int folio_split(struct folio *folio, unsigned int new_order,
4005 		struct page *split_at, struct list_head *list)
4006 {
4007 	return __folio_split(folio, new_order, split_at, &folio->page, list,
4008 			false);
4009 }
4010 
4011 int min_order_for_split(struct folio *folio)
4012 {
4013 	if (folio_test_anon(folio))
4014 		return 0;
4015 
4016 	if (!folio->mapping) {
4017 		if (folio_test_pmd_mappable(folio))
4018 			count_vm_event(THP_SPLIT_PAGE_FAILED);
4019 		return -EBUSY;
4020 	}
4021 
4022 	return mapping_min_folio_order(folio->mapping);
4023 }
4024 
4025 int split_folio_to_list(struct folio *folio, struct list_head *list)
4026 {
4027 	int ret = min_order_for_split(folio);
4028 
4029 	if (ret < 0)
4030 		return ret;
4031 
4032 	return split_huge_page_to_list_to_order(&folio->page, list, ret);
4033 }
4034 
4035 /*
4036  * __folio_unqueue_deferred_split() is not to be called directly:
4037  * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4038  * limits its calls to those folios which may have a _deferred_list for
4039  * queueing THP splits, and that list is (racily observed to be) non-empty.
4040  *
4041  * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4042  * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4043  * might be in use on deferred_split_scan()'s unlocked on-stack list.
4044  *
4045  * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4046  * therefore important to unqueue deferred split before changing folio memcg.
4047  */
4048 bool __folio_unqueue_deferred_split(struct folio *folio)
4049 {
4050 	struct deferred_split *ds_queue;
4051 	unsigned long flags;
4052 	bool unqueued = false;
4053 
4054 	WARN_ON_ONCE(folio_ref_count(folio));
4055 	WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4056 
4057 	ds_queue = get_deferred_split_queue(folio);
4058 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4059 	if (!list_empty(&folio->_deferred_list)) {
4060 		ds_queue->split_queue_len--;
4061 		if (folio_test_partially_mapped(folio)) {
4062 			folio_clear_partially_mapped(folio);
4063 			mod_mthp_stat(folio_order(folio),
4064 				      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4065 		}
4066 		list_del_init(&folio->_deferred_list);
4067 		unqueued = true;
4068 	}
4069 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4070 
4071 	return unqueued;	/* useful for debug warnings */
4072 }
4073 
4074 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
4075 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4076 {
4077 	struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4078 #ifdef CONFIG_MEMCG
4079 	struct mem_cgroup *memcg = folio_memcg(folio);
4080 #endif
4081 	unsigned long flags;
4082 
4083 	/*
4084 	 * Order 1 folios have no space for a deferred list, but we also
4085 	 * won't waste much memory by not adding them to the deferred list.
4086 	 */
4087 	if (folio_order(folio) <= 1)
4088 		return;
4089 
4090 	if (!partially_mapped && !split_underused_thp)
4091 		return;
4092 
4093 	/*
4094 	 * Exclude swapcache: originally to avoid a corrupt deferred split
4095 	 * queue. Nowadays that is fully prevented by memcg1_swapout();
4096 	 * but if page reclaim is already handling the same folio, it is
4097 	 * unnecessary to handle it again in the shrinker, so excluding
4098 	 * swapcache here may still be a useful optimization.
4099 	 */
4100 	if (folio_test_swapcache(folio))
4101 		return;
4102 
4103 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4104 	if (partially_mapped) {
4105 		if (!folio_test_partially_mapped(folio)) {
4106 			folio_set_partially_mapped(folio);
4107 			if (folio_test_pmd_mappable(folio))
4108 				count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4109 			count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4110 			mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4111 
4112 		}
4113 	} else {
4114 		/* partially mapped folios cannot become non-partially mapped */
4115 		VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4116 	}
4117 	if (list_empty(&folio->_deferred_list)) {
4118 		list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4119 		ds_queue->split_queue_len++;
4120 #ifdef CONFIG_MEMCG
4121 		if (memcg)
4122 			set_shrinker_bit(memcg, folio_nid(folio),
4123 					 deferred_split_shrinker->id);
4124 #endif
4125 	}
4126 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4127 }
4128 
4129 static unsigned long deferred_split_count(struct shrinker *shrink,
4130 		struct shrink_control *sc)
4131 {
4132 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4133 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4134 
4135 #ifdef CONFIG_MEMCG
4136 	if (sc->memcg)
4137 		ds_queue = &sc->memcg->deferred_split_queue;
4138 #endif
4139 	return READ_ONCE(ds_queue->split_queue_len);
4140 }
4141 
4142 static bool thp_underused(struct folio *folio)
4143 {
4144 	int num_zero_pages = 0, num_filled_pages = 0;
4145 	void *kaddr;
4146 	int i;
4147 
4148 	if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4149 		return false;
4150 
4151 	for (i = 0; i < folio_nr_pages(folio); i++) {
4152 		kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4153 		if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4154 			num_zero_pages++;
4155 			if (num_zero_pages > khugepaged_max_ptes_none) {
4156 				kunmap_local(kaddr);
4157 				return true;
4158 			}
4159 		} else {
4160 			/*
4161 			 * Another path for early exit once the number
4162 			 * of non-zero filled pages exceeds threshold.
4163 			 */
4164 			num_filled_pages++;
4165 			if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4166 				kunmap_local(kaddr);
4167 				return false;
4168 			}
4169 		}
4170 		kunmap_local(kaddr);
4171 	}
4172 	return false;
4173 }
4174 
4175 static unsigned long deferred_split_scan(struct shrinker *shrink,
4176 		struct shrink_control *sc)
4177 {
4178 	struct pglist_data *pgdata = NODE_DATA(sc->nid);
4179 	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4180 	unsigned long flags;
4181 	LIST_HEAD(list);
4182 	struct folio *folio, *next, *prev = NULL;
4183 	int split = 0, removed = 0;
4184 
4185 #ifdef CONFIG_MEMCG
4186 	if (sc->memcg)
4187 		ds_queue = &sc->memcg->deferred_split_queue;
4188 #endif
4189 
4190 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4191 	/* Take pin on all head pages to avoid freeing them under us */
4192 	list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4193 							_deferred_list) {
4194 		if (folio_try_get(folio)) {
4195 			list_move(&folio->_deferred_list, &list);
4196 		} else {
4197 			/* We lost race with folio_put() */
4198 			if (folio_test_partially_mapped(folio)) {
4199 				folio_clear_partially_mapped(folio);
4200 				mod_mthp_stat(folio_order(folio),
4201 					      MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4202 			}
4203 			list_del_init(&folio->_deferred_list);
4204 			ds_queue->split_queue_len--;
4205 		}
4206 		if (!--sc->nr_to_scan)
4207 			break;
4208 	}
4209 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4210 
4211 	list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4212 		bool did_split = false;
4213 		bool underused = false;
4214 
4215 		if (!folio_test_partially_mapped(folio)) {
4216 			underused = thp_underused(folio);
4217 			if (!underused)
4218 				goto next;
4219 		}
4220 		if (!folio_trylock(folio))
4221 			goto next;
4222 		if (!split_folio(folio)) {
4223 			did_split = true;
4224 			if (underused)
4225 				count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4226 			split++;
4227 		}
4228 		folio_unlock(folio);
4229 next:
4230 		/*
4231 		 * split_folio() removes folio from list on success.
4232 		 * Only add back to the queue if folio is partially mapped.
4233 		 * If thp_underused returns false, or if split_folio fails
4234 		 * in the case it was underused, then consider it used and
4235 		 * don't add it back to split_queue.
4236 		 */
4237 		if (did_split) {
4238 			; /* folio already removed from list */
4239 		} else if (!folio_test_partially_mapped(folio)) {
4240 			list_del_init(&folio->_deferred_list);
4241 			removed++;
4242 		} else {
4243 			/*
4244 			 * That unlocked list_del_init() above would be unsafe,
4245 			 * unless its folio is separated from any earlier folios
4246 			 * left on the list (which may be concurrently unqueued)
4247 			 * by one safe folio with refcount still raised.
4248 			 */
4249 			swap(folio, prev);
4250 		}
4251 		if (folio)
4252 			folio_put(folio);
4253 	}
4254 
4255 	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4256 	list_splice_tail(&list, &ds_queue->split_queue);
4257 	ds_queue->split_queue_len -= removed;
4258 	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4259 
4260 	if (prev)
4261 		folio_put(prev);
4262 
4263 	/*
4264 	 * Stop shrinker if we didn't split any page, but the queue is empty.
4265 	 * This can happen if pages were freed under us.
4266 	 */
4267 	if (!split && list_empty(&ds_queue->split_queue))
4268 		return SHRINK_STOP;
4269 	return split;
4270 }
4271 
4272 #ifdef CONFIG_DEBUG_FS
4273 static void split_huge_pages_all(void)
4274 {
4275 	struct zone *zone;
4276 	struct page *page;
4277 	struct folio *folio;
4278 	unsigned long pfn, max_zone_pfn;
4279 	unsigned long total = 0, split = 0;
4280 
4281 	pr_debug("Split all THPs\n");
4282 	for_each_zone(zone) {
4283 		if (!managed_zone(zone))
4284 			continue;
4285 		max_zone_pfn = zone_end_pfn(zone);
4286 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4287 			int nr_pages;
4288 
4289 			page = pfn_to_online_page(pfn);
4290 			if (!page || PageTail(page))
4291 				continue;
4292 			folio = page_folio(page);
4293 			if (!folio_try_get(folio))
4294 				continue;
4295 
4296 			if (unlikely(page_folio(page) != folio))
4297 				goto next;
4298 
4299 			if (zone != folio_zone(folio))
4300 				goto next;
4301 
4302 			if (!folio_test_large(folio)
4303 				|| folio_test_hugetlb(folio)
4304 				|| !folio_test_lru(folio))
4305 				goto next;
4306 
4307 			total++;
4308 			folio_lock(folio);
4309 			nr_pages = folio_nr_pages(folio);
4310 			if (!split_folio(folio))
4311 				split++;
4312 			pfn += nr_pages - 1;
4313 			folio_unlock(folio);
4314 next:
4315 			folio_put(folio);
4316 			cond_resched();
4317 		}
4318 	}
4319 
4320 	pr_debug("%lu of %lu THP split\n", split, total);
4321 }
4322 
4323 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4324 {
4325 	return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4326 		    is_vm_hugetlb_page(vma);
4327 }
4328 
4329 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4330 				unsigned long vaddr_end, unsigned int new_order,
4331 				long in_folio_offset)
4332 {
4333 	int ret = 0;
4334 	struct task_struct *task;
4335 	struct mm_struct *mm;
4336 	unsigned long total = 0, split = 0;
4337 	unsigned long addr;
4338 
4339 	vaddr_start &= PAGE_MASK;
4340 	vaddr_end &= PAGE_MASK;
4341 
4342 	task = find_get_task_by_vpid(pid);
4343 	if (!task) {
4344 		ret = -ESRCH;
4345 		goto out;
4346 	}
4347 
4348 	/* Find the mm_struct */
4349 	mm = get_task_mm(task);
4350 	put_task_struct(task);
4351 
4352 	if (!mm) {
4353 		ret = -EINVAL;
4354 		goto out;
4355 	}
4356 
4357 	pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
4358 		 pid, vaddr_start, vaddr_end);
4359 
4360 	mmap_read_lock(mm);
4361 	/*
4362 	 * always increase addr by PAGE_SIZE, since we could have a PTE page
4363 	 * table filled with PTE-mapped THPs, each of which is distinct.
4364 	 */
4365 	for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4366 		struct vm_area_struct *vma = vma_lookup(mm, addr);
4367 		struct folio_walk fw;
4368 		struct folio *folio;
4369 		struct address_space *mapping;
4370 		unsigned int target_order = new_order;
4371 
4372 		if (!vma)
4373 			break;
4374 
4375 		/* skip special VMA and hugetlb VMA */
4376 		if (vma_not_suitable_for_thp_split(vma)) {
4377 			addr = vma->vm_end;
4378 			continue;
4379 		}
4380 
4381 		folio = folio_walk_start(&fw, vma, addr, 0);
4382 		if (!folio)
4383 			continue;
4384 
4385 		if (!is_transparent_hugepage(folio))
4386 			goto next;
4387 
4388 		if (!folio_test_anon(folio)) {
4389 			mapping = folio->mapping;
4390 			target_order = max(new_order,
4391 					   mapping_min_folio_order(mapping));
4392 		}
4393 
4394 		if (target_order >= folio_order(folio))
4395 			goto next;
4396 
4397 		total++;
4398 		/*
4399 		 * For folios with private, split_huge_page_to_list_to_order()
4400 		 * will try to drop it before split and then check if the folio
4401 		 * can be split or not. So skip the check here.
4402 		 */
4403 		if (!folio_test_private(folio) &&
4404 		    !can_split_folio(folio, 0, NULL))
4405 			goto next;
4406 
4407 		if (!folio_trylock(folio))
4408 			goto next;
4409 		folio_get(folio);
4410 		folio_walk_end(&fw, vma);
4411 
4412 		if (!folio_test_anon(folio) && folio->mapping != mapping)
4413 			goto unlock;
4414 
4415 		if (in_folio_offset < 0 ||
4416 		    in_folio_offset >= folio_nr_pages(folio)) {
4417 			if (!split_folio_to_order(folio, target_order))
4418 				split++;
4419 		} else {
4420 			struct page *split_at = folio_page(folio,
4421 							   in_folio_offset);
4422 			if (!folio_split(folio, target_order, split_at, NULL))
4423 				split++;
4424 		}
4425 
4426 unlock:
4427 
4428 		folio_unlock(folio);
4429 		folio_put(folio);
4430 
4431 		cond_resched();
4432 		continue;
4433 next:
4434 		folio_walk_end(&fw, vma);
4435 		cond_resched();
4436 	}
4437 	mmap_read_unlock(mm);
4438 	mmput(mm);
4439 
4440 	pr_debug("%lu of %lu THP split\n", split, total);
4441 
4442 out:
4443 	return ret;
4444 }
4445 
4446 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4447 				pgoff_t off_end, unsigned int new_order,
4448 				long in_folio_offset)
4449 {
4450 	struct filename *file;
4451 	struct file *candidate;
4452 	struct address_space *mapping;
4453 	int ret = -EINVAL;
4454 	pgoff_t index;
4455 	int nr_pages = 1;
4456 	unsigned long total = 0, split = 0;
4457 	unsigned int min_order;
4458 	unsigned int target_order;
4459 
4460 	file = getname_kernel(file_path);
4461 	if (IS_ERR(file))
4462 		return ret;
4463 
4464 	candidate = file_open_name(file, O_RDONLY, 0);
4465 	if (IS_ERR(candidate))
4466 		goto out;
4467 
4468 	pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4469 		 file_path, off_start, off_end);
4470 
4471 	mapping = candidate->f_mapping;
4472 	min_order = mapping_min_folio_order(mapping);
4473 	target_order = max(new_order, min_order);
4474 
4475 	for (index = off_start; index < off_end; index += nr_pages) {
4476 		struct folio *folio = filemap_get_folio(mapping, index);
4477 
4478 		nr_pages = 1;
4479 		if (IS_ERR(folio))
4480 			continue;
4481 
4482 		if (!folio_test_large(folio))
4483 			goto next;
4484 
4485 		total++;
4486 		nr_pages = folio_nr_pages(folio);
4487 
4488 		if (target_order >= folio_order(folio))
4489 			goto next;
4490 
4491 		if (!folio_trylock(folio))
4492 			goto next;
4493 
4494 		if (folio->mapping != mapping)
4495 			goto unlock;
4496 
4497 		if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4498 			if (!split_folio_to_order(folio, target_order))
4499 				split++;
4500 		} else {
4501 			struct page *split_at = folio_page(folio,
4502 							   in_folio_offset);
4503 			if (!folio_split(folio, target_order, split_at, NULL))
4504 				split++;
4505 		}
4506 
4507 unlock:
4508 		folio_unlock(folio);
4509 next:
4510 		folio_put(folio);
4511 		cond_resched();
4512 	}
4513 
4514 	filp_close(candidate, NULL);
4515 	ret = 0;
4516 
4517 	pr_debug("%lu of %lu file-backed THP split\n", split, total);
4518 out:
4519 	putname(file);
4520 	return ret;
4521 }
4522 
4523 #define MAX_INPUT_BUF_SZ 255
4524 
4525 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4526 				size_t count, loff_t *ppops)
4527 {
4528 	static DEFINE_MUTEX(split_debug_mutex);
4529 	ssize_t ret;
4530 	/*
4531 	 * hold pid, start_vaddr, end_vaddr, new_order or
4532 	 * file_path, off_start, off_end, new_order
4533 	 */
4534 	char input_buf[MAX_INPUT_BUF_SZ];
4535 	int pid;
4536 	unsigned long vaddr_start, vaddr_end;
4537 	unsigned int new_order = 0;
4538 	long in_folio_offset = -1;
4539 
4540 	ret = mutex_lock_interruptible(&split_debug_mutex);
4541 	if (ret)
4542 		return ret;
4543 
4544 	ret = -EFAULT;
4545 
4546 	memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4547 	if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4548 		goto out;
4549 
4550 	input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4551 
4552 	if (input_buf[0] == '/') {
4553 		char *tok;
4554 		char *tok_buf = input_buf;
4555 		char file_path[MAX_INPUT_BUF_SZ];
4556 		pgoff_t off_start = 0, off_end = 0;
4557 		size_t input_len = strlen(input_buf);
4558 
4559 		tok = strsep(&tok_buf, ",");
4560 		if (tok && tok_buf) {
4561 			strscpy(file_path, tok);
4562 		} else {
4563 			ret = -EINVAL;
4564 			goto out;
4565 		}
4566 
4567 		ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4568 				&new_order, &in_folio_offset);
4569 		if (ret != 2 && ret != 3 && ret != 4) {
4570 			ret = -EINVAL;
4571 			goto out;
4572 		}
4573 		ret = split_huge_pages_in_file(file_path, off_start, off_end,
4574 				new_order, in_folio_offset);
4575 		if (!ret)
4576 			ret = input_len;
4577 
4578 		goto out;
4579 	}
4580 
4581 	ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4582 			&vaddr_end, &new_order, &in_folio_offset);
4583 	if (ret == 1 && pid == 1) {
4584 		split_huge_pages_all();
4585 		ret = strlen(input_buf);
4586 		goto out;
4587 	} else if (ret != 3 && ret != 4 && ret != 5) {
4588 		ret = -EINVAL;
4589 		goto out;
4590 	}
4591 
4592 	ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4593 			in_folio_offset);
4594 	if (!ret)
4595 		ret = strlen(input_buf);
4596 out:
4597 	mutex_unlock(&split_debug_mutex);
4598 	return ret;
4599 
4600 }
4601 
4602 static const struct file_operations split_huge_pages_fops = {
4603 	.owner	 = THIS_MODULE,
4604 	.write	 = split_huge_pages_write,
4605 };
4606 
4607 static int __init split_huge_pages_debugfs(void)
4608 {
4609 	debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4610 			    &split_huge_pages_fops);
4611 	return 0;
4612 }
4613 late_initcall(split_huge_pages_debugfs);
4614 #endif
4615 
4616 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
4617 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4618 		struct page *page)
4619 {
4620 	struct folio *folio = page_folio(page);
4621 	struct vm_area_struct *vma = pvmw->vma;
4622 	struct mm_struct *mm = vma->vm_mm;
4623 	unsigned long address = pvmw->address;
4624 	bool anon_exclusive;
4625 	pmd_t pmdval;
4626 	swp_entry_t entry;
4627 	pmd_t pmdswp;
4628 
4629 	if (!(pvmw->pmd && !pvmw->pte))
4630 		return 0;
4631 
4632 	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4633 	pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4634 
4635 	/* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4636 	anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4637 	if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4638 		set_pmd_at(mm, address, pvmw->pmd, pmdval);
4639 		return -EBUSY;
4640 	}
4641 
4642 	if (pmd_dirty(pmdval))
4643 		folio_mark_dirty(folio);
4644 	if (pmd_write(pmdval))
4645 		entry = make_writable_migration_entry(page_to_pfn(page));
4646 	else if (anon_exclusive)
4647 		entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4648 	else
4649 		entry = make_readable_migration_entry(page_to_pfn(page));
4650 	if (pmd_young(pmdval))
4651 		entry = make_migration_entry_young(entry);
4652 	if (pmd_dirty(pmdval))
4653 		entry = make_migration_entry_dirty(entry);
4654 	pmdswp = swp_entry_to_pmd(entry);
4655 	if (pmd_soft_dirty(pmdval))
4656 		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4657 	if (pmd_uffd_wp(pmdval))
4658 		pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4659 	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4660 	folio_remove_rmap_pmd(folio, page, vma);
4661 	folio_put(folio);
4662 	trace_set_migration_pmd(address, pmd_val(pmdswp));
4663 
4664 	return 0;
4665 }
4666 
4667 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4668 {
4669 	struct folio *folio = page_folio(new);
4670 	struct vm_area_struct *vma = pvmw->vma;
4671 	struct mm_struct *mm = vma->vm_mm;
4672 	unsigned long address = pvmw->address;
4673 	unsigned long haddr = address & HPAGE_PMD_MASK;
4674 	pmd_t pmde;
4675 	swp_entry_t entry;
4676 
4677 	if (!(pvmw->pmd && !pvmw->pte))
4678 		return;
4679 
4680 	entry = pmd_to_swp_entry(*pvmw->pmd);
4681 	folio_get(folio);
4682 	pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4683 	if (pmd_swp_soft_dirty(*pvmw->pmd))
4684 		pmde = pmd_mksoft_dirty(pmde);
4685 	if (is_writable_migration_entry(entry))
4686 		pmde = pmd_mkwrite(pmde, vma);
4687 	if (pmd_swp_uffd_wp(*pvmw->pmd))
4688 		pmde = pmd_mkuffd_wp(pmde);
4689 	if (!is_migration_entry_young(entry))
4690 		pmde = pmd_mkold(pmde);
4691 	/* NOTE: this may contain setting soft-dirty on some archs */
4692 	if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4693 		pmde = pmd_mkdirty(pmde);
4694 
4695 	if (folio_test_anon(folio)) {
4696 		rmap_t rmap_flags = RMAP_NONE;
4697 
4698 		if (!is_readable_migration_entry(entry))
4699 			rmap_flags |= RMAP_EXCLUSIVE;
4700 
4701 		folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4702 	} else {
4703 		folio_add_file_rmap_pmd(folio, new, vma);
4704 	}
4705 	VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4706 	set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4707 
4708 	/* No need to invalidate - it was non-present before */
4709 	update_mmu_cache_pmd(vma, address, pvmw->pmd);
4710 	trace_remove_migration_pmd(address, pmd_val(pmde));
4711 }
4712 #endif
4713