xref: /linux/mm/hmm.c (revision e0cbf2f0a756f27d7b468947123d6ac9d3fc059f)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright 2013 Red Hat Inc.
4   *
5   * Authors: Jérôme Glisse <jglisse@redhat.com>
6   */
7  /*
8   * Refer to include/linux/hmm.h for information about heterogeneous memory
9   * management or HMM for short.
10   */
11  #include <linux/pagewalk.h>
12  #include <linux/hmm.h>
13  #include <linux/init.h>
14  #include <linux/rmap.h>
15  #include <linux/swap.h>
16  #include <linux/slab.h>
17  #include <linux/sched.h>
18  #include <linux/mmzone.h>
19  #include <linux/pagemap.h>
20  #include <linux/swapops.h>
21  #include <linux/hugetlb.h>
22  #include <linux/memremap.h>
23  #include <linux/sched/mm.h>
24  #include <linux/jump_label.h>
25  #include <linux/dma-mapping.h>
26  #include <linux/mmu_notifier.h>
27  #include <linux/memory_hotplug.h>
28  
29  struct hmm_vma_walk {
30  	struct hmm_range	*range;
31  	unsigned long		last;
32  };
33  
34  enum {
35  	HMM_NEED_FAULT = 1 << 0,
36  	HMM_NEED_WRITE_FAULT = 1 << 1,
37  	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38  };
39  
40  static int hmm_pfns_fill(unsigned long addr, unsigned long end,
41  			 struct hmm_range *range, unsigned long cpu_flags)
42  {
43  	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
44  
45  	for (; addr < end; addr += PAGE_SIZE, i++)
46  		range->hmm_pfns[i] = cpu_flags;
47  	return 0;
48  }
49  
50  /*
51   * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
52   * @addr: range virtual start address (inclusive)
53   * @end: range virtual end address (exclusive)
54   * @required_fault: HMM_NEED_* flags
55   * @walk: mm_walk structure
56   * Return: -EBUSY after page fault, or page fault error
57   *
58   * This function will be called whenever pmd_none() or pte_none() returns true,
59   * or whenever there is no page directory covering the virtual address range.
60   */
61  static int hmm_vma_fault(unsigned long addr, unsigned long end,
62  			 unsigned int required_fault, struct mm_walk *walk)
63  {
64  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
65  	struct vm_area_struct *vma = walk->vma;
66  	unsigned int fault_flags = FAULT_FLAG_REMOTE;
67  
68  	WARN_ON_ONCE(!required_fault);
69  	hmm_vma_walk->last = addr;
70  
71  	if (required_fault & HMM_NEED_WRITE_FAULT) {
72  		if (!(vma->vm_flags & VM_WRITE))
73  			return -EPERM;
74  		fault_flags |= FAULT_FLAG_WRITE;
75  	}
76  
77  	for (; addr < end; addr += PAGE_SIZE)
78  		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
79  		    VM_FAULT_ERROR)
80  			return -EFAULT;
81  	return -EBUSY;
82  }
83  
84  static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
85  				       unsigned long pfn_req_flags,
86  				       unsigned long cpu_flags)
87  {
88  	struct hmm_range *range = hmm_vma_walk->range;
89  
90  	/*
91  	 * So we not only consider the individual per page request we also
92  	 * consider the default flags requested for the range. The API can
93  	 * be used 2 ways. The first one where the HMM user coalesces
94  	 * multiple page faults into one request and sets flags per pfn for
95  	 * those faults. The second one where the HMM user wants to pre-
96  	 * fault a range with specific flags. For the latter one it is a
97  	 * waste to have the user pre-fill the pfn arrays with a default
98  	 * flags value.
99  	 */
100  	pfn_req_flags &= range->pfn_flags_mask;
101  	pfn_req_flags |= range->default_flags;
102  
103  	/* We aren't ask to do anything ... */
104  	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
105  		return 0;
106  
107  	/* Need to write fault ? */
108  	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
109  	    !(cpu_flags & HMM_PFN_WRITE))
110  		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
111  
112  	/* If CPU page table is not valid then we need to fault */
113  	if (!(cpu_flags & HMM_PFN_VALID))
114  		return HMM_NEED_FAULT;
115  	return 0;
116  }
117  
118  static unsigned int
119  hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
120  		     const unsigned long hmm_pfns[], unsigned long npages,
121  		     unsigned long cpu_flags)
122  {
123  	struct hmm_range *range = hmm_vma_walk->range;
124  	unsigned int required_fault = 0;
125  	unsigned long i;
126  
127  	/*
128  	 * If the default flags do not request to fault pages, and the mask does
129  	 * not allow for individual pages to be faulted, then
130  	 * hmm_pte_need_fault() will always return 0.
131  	 */
132  	if (!((range->default_flags | range->pfn_flags_mask) &
133  	      HMM_PFN_REQ_FAULT))
134  		return 0;
135  
136  	for (i = 0; i < npages; ++i) {
137  		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
138  						     cpu_flags);
139  		if (required_fault == HMM_NEED_ALL_BITS)
140  			return required_fault;
141  	}
142  	return required_fault;
143  }
144  
145  static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
146  			     __always_unused int depth, struct mm_walk *walk)
147  {
148  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
149  	struct hmm_range *range = hmm_vma_walk->range;
150  	unsigned int required_fault;
151  	unsigned long i, npages;
152  	unsigned long *hmm_pfns;
153  
154  	i = (addr - range->start) >> PAGE_SHIFT;
155  	npages = (end - addr) >> PAGE_SHIFT;
156  	hmm_pfns = &range->hmm_pfns[i];
157  	required_fault =
158  		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
159  	if (!walk->vma) {
160  		if (required_fault)
161  			return -EFAULT;
162  		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
163  	}
164  	if (required_fault)
165  		return hmm_vma_fault(addr, end, required_fault, walk);
166  	return hmm_pfns_fill(addr, end, range, 0);
167  }
168  
169  static inline unsigned long hmm_pfn_flags_order(unsigned long order)
170  {
171  	return order << HMM_PFN_ORDER_SHIFT;
172  }
173  
174  static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
175  						 pmd_t pmd)
176  {
177  	if (pmd_protnone(pmd))
178  		return 0;
179  	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
180  				 HMM_PFN_VALID) |
181  	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
182  }
183  
184  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
185  static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
186  			      unsigned long end, unsigned long hmm_pfns[],
187  			      pmd_t pmd)
188  {
189  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
190  	struct hmm_range *range = hmm_vma_walk->range;
191  	unsigned long pfn, npages, i;
192  	unsigned int required_fault;
193  	unsigned long cpu_flags;
194  
195  	npages = (end - addr) >> PAGE_SHIFT;
196  	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
197  	required_fault =
198  		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
199  	if (required_fault)
200  		return hmm_vma_fault(addr, end, required_fault, walk);
201  
202  	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
203  	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
204  		hmm_pfns[i] = pfn | cpu_flags;
205  	return 0;
206  }
207  #else /* CONFIG_TRANSPARENT_HUGEPAGE */
208  /* stub to allow the code below to compile */
209  int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
210  		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
211  #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
212  
213  static inline bool hmm_is_device_private_entry(struct hmm_range *range,
214  		swp_entry_t entry)
215  {
216  	return is_device_private_entry(entry) &&
217  		device_private_entry_to_page(entry)->pgmap->owner ==
218  		range->dev_private_owner;
219  }
220  
221  static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
222  						 pte_t pte)
223  {
224  	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
225  		return 0;
226  	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
227  }
228  
229  static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
230  			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
231  			      unsigned long *hmm_pfn)
232  {
233  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
234  	struct hmm_range *range = hmm_vma_walk->range;
235  	unsigned int required_fault;
236  	unsigned long cpu_flags;
237  	pte_t pte = *ptep;
238  	uint64_t pfn_req_flags = *hmm_pfn;
239  
240  	if (pte_none(pte)) {
241  		required_fault =
242  			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
243  		if (required_fault)
244  			goto fault;
245  		*hmm_pfn = 0;
246  		return 0;
247  	}
248  
249  	if (!pte_present(pte)) {
250  		swp_entry_t entry = pte_to_swp_entry(pte);
251  
252  		/*
253  		 * Never fault in device private pages, but just report
254  		 * the PFN even if not present.
255  		 */
256  		if (hmm_is_device_private_entry(range, entry)) {
257  			cpu_flags = HMM_PFN_VALID;
258  			if (is_write_device_private_entry(entry))
259  				cpu_flags |= HMM_PFN_WRITE;
260  			*hmm_pfn = device_private_entry_to_pfn(entry) |
261  					cpu_flags;
262  			return 0;
263  		}
264  
265  		required_fault =
266  			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
267  		if (!required_fault) {
268  			*hmm_pfn = 0;
269  			return 0;
270  		}
271  
272  		if (!non_swap_entry(entry))
273  			goto fault;
274  
275  		if (is_migration_entry(entry)) {
276  			pte_unmap(ptep);
277  			hmm_vma_walk->last = addr;
278  			migration_entry_wait(walk->mm, pmdp, addr);
279  			return -EBUSY;
280  		}
281  
282  		/* Report error for everything else */
283  		pte_unmap(ptep);
284  		return -EFAULT;
285  	}
286  
287  	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
288  	required_fault =
289  		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
290  	if (required_fault)
291  		goto fault;
292  
293  	/*
294  	 * Since each architecture defines a struct page for the zero page, just
295  	 * fall through and treat it like a normal page.
296  	 */
297  	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
298  		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
299  			pte_unmap(ptep);
300  			return -EFAULT;
301  		}
302  		*hmm_pfn = HMM_PFN_ERROR;
303  		return 0;
304  	}
305  
306  	*hmm_pfn = pte_pfn(pte) | cpu_flags;
307  	return 0;
308  
309  fault:
310  	pte_unmap(ptep);
311  	/* Fault any virtual address we were asked to fault */
312  	return hmm_vma_fault(addr, end, required_fault, walk);
313  }
314  
315  static int hmm_vma_walk_pmd(pmd_t *pmdp,
316  			    unsigned long start,
317  			    unsigned long end,
318  			    struct mm_walk *walk)
319  {
320  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
321  	struct hmm_range *range = hmm_vma_walk->range;
322  	unsigned long *hmm_pfns =
323  		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
324  	unsigned long npages = (end - start) >> PAGE_SHIFT;
325  	unsigned long addr = start;
326  	pte_t *ptep;
327  	pmd_t pmd;
328  
329  again:
330  	pmd = READ_ONCE(*pmdp);
331  	if (pmd_none(pmd))
332  		return hmm_vma_walk_hole(start, end, -1, walk);
333  
334  	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
335  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
336  			hmm_vma_walk->last = addr;
337  			pmd_migration_entry_wait(walk->mm, pmdp);
338  			return -EBUSY;
339  		}
340  		return hmm_pfns_fill(start, end, range, 0);
341  	}
342  
343  	if (!pmd_present(pmd)) {
344  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
345  			return -EFAULT;
346  		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
347  	}
348  
349  	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
350  		/*
351  		 * No need to take pmd_lock here, even if some other thread
352  		 * is splitting the huge pmd we will get that event through
353  		 * mmu_notifier callback.
354  		 *
355  		 * So just read pmd value and check again it's a transparent
356  		 * huge or device mapping one and compute corresponding pfn
357  		 * values.
358  		 */
359  		pmd = pmd_read_atomic(pmdp);
360  		barrier();
361  		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
362  			goto again;
363  
364  		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
365  	}
366  
367  	/*
368  	 * We have handled all the valid cases above ie either none, migration,
369  	 * huge or transparent huge. At this point either it is a valid pmd
370  	 * entry pointing to pte directory or it is a bad pmd that will not
371  	 * recover.
372  	 */
373  	if (pmd_bad(pmd)) {
374  		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
375  			return -EFAULT;
376  		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
377  	}
378  
379  	ptep = pte_offset_map(pmdp, addr);
380  	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
381  		int r;
382  
383  		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
384  		if (r) {
385  			/* hmm_vma_handle_pte() did pte_unmap() */
386  			return r;
387  		}
388  	}
389  	pte_unmap(ptep - 1);
390  	return 0;
391  }
392  
393  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
394      defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
395  static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
396  						 pud_t pud)
397  {
398  	if (!pud_present(pud))
399  		return 0;
400  	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
401  				 HMM_PFN_VALID) |
402  	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
403  }
404  
405  static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
406  		struct mm_walk *walk)
407  {
408  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
409  	struct hmm_range *range = hmm_vma_walk->range;
410  	unsigned long addr = start;
411  	pud_t pud;
412  	int ret = 0;
413  	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
414  
415  	if (!ptl)
416  		return 0;
417  
418  	/* Normally we don't want to split the huge page */
419  	walk->action = ACTION_CONTINUE;
420  
421  	pud = READ_ONCE(*pudp);
422  	if (pud_none(pud)) {
423  		spin_unlock(ptl);
424  		return hmm_vma_walk_hole(start, end, -1, walk);
425  	}
426  
427  	if (pud_huge(pud) && pud_devmap(pud)) {
428  		unsigned long i, npages, pfn;
429  		unsigned int required_fault;
430  		unsigned long *hmm_pfns;
431  		unsigned long cpu_flags;
432  
433  		if (!pud_present(pud)) {
434  			spin_unlock(ptl);
435  			return hmm_vma_walk_hole(start, end, -1, walk);
436  		}
437  
438  		i = (addr - range->start) >> PAGE_SHIFT;
439  		npages = (end - addr) >> PAGE_SHIFT;
440  		hmm_pfns = &range->hmm_pfns[i];
441  
442  		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
443  		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
444  						      npages, cpu_flags);
445  		if (required_fault) {
446  			spin_unlock(ptl);
447  			return hmm_vma_fault(addr, end, required_fault, walk);
448  		}
449  
450  		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
451  		for (i = 0; i < npages; ++i, ++pfn)
452  			hmm_pfns[i] = pfn | cpu_flags;
453  		goto out_unlock;
454  	}
455  
456  	/* Ask for the PUD to be split */
457  	walk->action = ACTION_SUBTREE;
458  
459  out_unlock:
460  	spin_unlock(ptl);
461  	return ret;
462  }
463  #else
464  #define hmm_vma_walk_pud	NULL
465  #endif
466  
467  #ifdef CONFIG_HUGETLB_PAGE
468  static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
469  				      unsigned long start, unsigned long end,
470  				      struct mm_walk *walk)
471  {
472  	unsigned long addr = start, i, pfn;
473  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
474  	struct hmm_range *range = hmm_vma_walk->range;
475  	struct vm_area_struct *vma = walk->vma;
476  	unsigned int required_fault;
477  	unsigned long pfn_req_flags;
478  	unsigned long cpu_flags;
479  	spinlock_t *ptl;
480  	pte_t entry;
481  
482  	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
483  	entry = huge_ptep_get(pte);
484  
485  	i = (start - range->start) >> PAGE_SHIFT;
486  	pfn_req_flags = range->hmm_pfns[i];
487  	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
488  		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
489  	required_fault =
490  		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
491  	if (required_fault) {
492  		spin_unlock(ptl);
493  		return hmm_vma_fault(addr, end, required_fault, walk);
494  	}
495  
496  	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
497  	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
498  		range->hmm_pfns[i] = pfn | cpu_flags;
499  
500  	spin_unlock(ptl);
501  	return 0;
502  }
503  #else
504  #define hmm_vma_walk_hugetlb_entry NULL
505  #endif /* CONFIG_HUGETLB_PAGE */
506  
507  static int hmm_vma_walk_test(unsigned long start, unsigned long end,
508  			     struct mm_walk *walk)
509  {
510  	struct hmm_vma_walk *hmm_vma_walk = walk->private;
511  	struct hmm_range *range = hmm_vma_walk->range;
512  	struct vm_area_struct *vma = walk->vma;
513  
514  	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
515  	    vma->vm_flags & VM_READ)
516  		return 0;
517  
518  	/*
519  	 * vma ranges that don't have struct page backing them or map I/O
520  	 * devices directly cannot be handled by hmm_range_fault().
521  	 *
522  	 * If the vma does not allow read access, then assume that it does not
523  	 * allow write access either. HMM does not support architectures that
524  	 * allow write without read.
525  	 *
526  	 * If a fault is requested for an unsupported range then it is a hard
527  	 * failure.
528  	 */
529  	if (hmm_range_need_fault(hmm_vma_walk,
530  				 range->hmm_pfns +
531  					 ((start - range->start) >> PAGE_SHIFT),
532  				 (end - start) >> PAGE_SHIFT, 0))
533  		return -EFAULT;
534  
535  	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
536  
537  	/* Skip this vma and continue processing the next vma. */
538  	return 1;
539  }
540  
541  static const struct mm_walk_ops hmm_walk_ops = {
542  	.pud_entry	= hmm_vma_walk_pud,
543  	.pmd_entry	= hmm_vma_walk_pmd,
544  	.pte_hole	= hmm_vma_walk_hole,
545  	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
546  	.test_walk	= hmm_vma_walk_test,
547  };
548  
549  /**
550   * hmm_range_fault - try to fault some address in a virtual address range
551   * @range:	argument structure
552   *
553   * Returns 0 on success or one of the following error codes:
554   *
555   * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
556   *		(e.g., device file vma).
557   * -ENOMEM:	Out of memory.
558   * -EPERM:	Invalid permission (e.g., asking for write and range is read
559   *		only).
560   * -EBUSY:	The range has been invalidated and the caller needs to wait for
561   *		the invalidation to finish.
562   * -EFAULT:     A page was requested to be valid and could not be made valid
563   *              ie it has no backing VMA or it is illegal to access
564   *
565   * This is similar to get_user_pages(), except that it can read the page tables
566   * without mutating them (ie causing faults).
567   */
568  int hmm_range_fault(struct hmm_range *range)
569  {
570  	struct hmm_vma_walk hmm_vma_walk = {
571  		.range = range,
572  		.last = range->start,
573  	};
574  	struct mm_struct *mm = range->notifier->mm;
575  	int ret;
576  
577  	mmap_assert_locked(mm);
578  
579  	do {
580  		/* If range is no longer valid force retry. */
581  		if (mmu_interval_check_retry(range->notifier,
582  					     range->notifier_seq))
583  			return -EBUSY;
584  		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
585  				      &hmm_walk_ops, &hmm_vma_walk);
586  		/*
587  		 * When -EBUSY is returned the loop restarts with
588  		 * hmm_vma_walk.last set to an address that has not been stored
589  		 * in pfns. All entries < last in the pfn array are set to their
590  		 * output, and all >= are still at their input values.
591  		 */
592  	} while (ret == -EBUSY);
593  	return ret;
594  }
595  EXPORT_SYMBOL(hmm_range_fault);
596