1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2013 Red Hat Inc. 4 * 5 * Authors: Jérôme Glisse <jglisse@redhat.com> 6 */ 7 /* 8 * Refer to include/linux/hmm.h for information about heterogeneous memory 9 * management or HMM for short. 10 */ 11 #include <linux/pagewalk.h> 12 #include <linux/hmm.h> 13 #include <linux/hmm-dma.h> 14 #include <linux/init.h> 15 #include <linux/rmap.h> 16 #include <linux/swap.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/mmzone.h> 20 #include <linux/pagemap.h> 21 #include <linux/leafops.h> 22 #include <linux/hugetlb.h> 23 #include <linux/memremap.h> 24 #include <linux/sched/mm.h> 25 #include <linux/jump_label.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/pci-p2pdma.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memory_hotplug.h> 30 31 #include "internal.h" 32 33 struct hmm_vma_walk { 34 struct hmm_range *range; 35 unsigned long last; 36 }; 37 38 enum { 39 HMM_NEED_FAULT = 1 << 0, 40 HMM_NEED_WRITE_FAULT = 1 << 1, 41 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT, 42 }; 43 44 enum { 45 /* These flags are carried from input-to-output */ 46 HMM_PFN_INOUT_FLAGS = HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | 47 HMM_PFN_P2PDMA_BUS, 48 }; 49 50 static int hmm_pfns_fill(unsigned long addr, unsigned long end, 51 struct hmm_range *range, unsigned long cpu_flags) 52 { 53 unsigned long i = (addr - range->start) >> PAGE_SHIFT; 54 55 for (; addr < end; addr += PAGE_SIZE, i++) { 56 range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; 57 range->hmm_pfns[i] |= cpu_flags; 58 } 59 return 0; 60 } 61 62 /* 63 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s) 64 * @addr: range virtual start address (inclusive) 65 * @end: range virtual end address (exclusive) 66 * @required_fault: HMM_NEED_* flags 67 * @walk: mm_walk structure 68 * Return: -EBUSY after page fault, or page fault error 69 * 70 * This function will be called whenever pmd_none() or pte_none() returns true, 71 * or whenever there is no page directory covering the virtual address range. 72 */ 73 static int hmm_vma_fault(unsigned long addr, unsigned long end, 74 unsigned int required_fault, struct mm_walk *walk) 75 { 76 struct hmm_vma_walk *hmm_vma_walk = walk->private; 77 struct vm_area_struct *vma = walk->vma; 78 unsigned int fault_flags = FAULT_FLAG_REMOTE; 79 80 WARN_ON_ONCE(!required_fault); 81 hmm_vma_walk->last = addr; 82 83 if (required_fault & HMM_NEED_WRITE_FAULT) { 84 if (!(vma->vm_flags & VM_WRITE)) 85 return -EPERM; 86 fault_flags |= FAULT_FLAG_WRITE; 87 } 88 89 for (; addr < end; addr += PAGE_SIZE) 90 if (handle_mm_fault(vma, addr, fault_flags, NULL) & 91 VM_FAULT_ERROR) 92 return -EFAULT; 93 return -EBUSY; 94 } 95 96 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 97 unsigned long pfn_req_flags, 98 unsigned long cpu_flags) 99 { 100 struct hmm_range *range = hmm_vma_walk->range; 101 102 /* 103 * So we not only consider the individual per page request we also 104 * consider the default flags requested for the range. The API can 105 * be used 2 ways. The first one where the HMM user coalesces 106 * multiple page faults into one request and sets flags per pfn for 107 * those faults. The second one where the HMM user wants to pre- 108 * fault a range with specific flags. For the latter one it is a 109 * waste to have the user pre-fill the pfn arrays with a default 110 * flags value. 111 */ 112 pfn_req_flags &= range->pfn_flags_mask; 113 pfn_req_flags |= range->default_flags; 114 115 /* We aren't ask to do anything ... */ 116 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT)) 117 return 0; 118 119 /* Need to write fault ? */ 120 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) && 121 !(cpu_flags & HMM_PFN_WRITE)) 122 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT; 123 124 /* If CPU page table is not valid then we need to fault */ 125 if (!(cpu_flags & HMM_PFN_VALID)) 126 return HMM_NEED_FAULT; 127 return 0; 128 } 129 130 static unsigned int 131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk, 132 const unsigned long hmm_pfns[], unsigned long npages, 133 unsigned long cpu_flags) 134 { 135 struct hmm_range *range = hmm_vma_walk->range; 136 unsigned int required_fault = 0; 137 unsigned long i; 138 139 /* 140 * If the default flags do not request to fault pages, and the mask does 141 * not allow for individual pages to be faulted, then 142 * hmm_pte_need_fault() will always return 0. 143 */ 144 if (!((range->default_flags | range->pfn_flags_mask) & 145 HMM_PFN_REQ_FAULT)) 146 return 0; 147 148 for (i = 0; i < npages; ++i) { 149 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i], 150 cpu_flags); 151 if (required_fault == HMM_NEED_ALL_BITS) 152 return required_fault; 153 } 154 return required_fault; 155 } 156 157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end, 158 __always_unused int depth, struct mm_walk *walk) 159 { 160 struct hmm_vma_walk *hmm_vma_walk = walk->private; 161 struct hmm_range *range = hmm_vma_walk->range; 162 unsigned int required_fault; 163 unsigned long i, npages; 164 unsigned long *hmm_pfns; 165 166 i = (addr - range->start) >> PAGE_SHIFT; 167 npages = (end - addr) >> PAGE_SHIFT; 168 hmm_pfns = &range->hmm_pfns[i]; 169 required_fault = 170 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0); 171 if (!walk->vma) { 172 if (required_fault) 173 return -EFAULT; 174 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR); 175 } 176 if (required_fault) 177 return hmm_vma_fault(addr, end, required_fault, walk); 178 return hmm_pfns_fill(addr, end, range, 0); 179 } 180 181 static inline unsigned long hmm_pfn_flags_order(unsigned long order) 182 { 183 return order << HMM_PFN_ORDER_SHIFT; 184 } 185 186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 187 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range, 188 pmd_t pmd) 189 { 190 if (pmd_protnone(pmd)) 191 return 0; 192 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 193 HMM_PFN_VALID) | 194 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); 195 } 196 197 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 198 unsigned long end, unsigned long hmm_pfns[], 199 pmd_t pmd) 200 { 201 struct hmm_vma_walk *hmm_vma_walk = walk->private; 202 struct hmm_range *range = hmm_vma_walk->range; 203 unsigned long pfn, npages, i; 204 unsigned int required_fault; 205 unsigned long cpu_flags; 206 207 npages = (end - addr) >> PAGE_SHIFT; 208 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd); 209 required_fault = 210 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags); 211 if (required_fault) 212 return hmm_vma_fault(addr, end, required_fault, walk); 213 214 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 215 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { 216 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; 217 hmm_pfns[i] |= pfn | cpu_flags; 218 } 219 return 0; 220 } 221 #else /* CONFIG_TRANSPARENT_HUGEPAGE */ 222 /* stub to allow the code below to compile */ 223 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr, 224 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd); 225 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 226 227 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range, 228 pte_t pte) 229 { 230 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte)) 231 return 0; 232 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID; 233 } 234 235 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr, 236 unsigned long end, pmd_t *pmdp, pte_t *ptep, 237 unsigned long *hmm_pfn) 238 { 239 struct hmm_vma_walk *hmm_vma_walk = walk->private; 240 struct hmm_range *range = hmm_vma_walk->range; 241 unsigned int required_fault; 242 unsigned long cpu_flags; 243 pte_t pte = ptep_get(ptep); 244 uint64_t pfn_req_flags = *hmm_pfn; 245 uint64_t new_pfn_flags = 0; 246 247 /* 248 * Any other marker than a UFFD WP marker will result in a fault error 249 * that will be correctly handled, so we need only check for UFFD WP 250 * here. 251 */ 252 if (pte_none(pte) || pte_is_uffd_wp_marker(pte)) { 253 required_fault = 254 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 255 if (required_fault) 256 goto fault; 257 goto out; 258 } 259 260 if (!pte_present(pte)) { 261 const softleaf_t entry = softleaf_from_pte(pte); 262 263 /* 264 * Don't fault in device private pages owned by the caller, 265 * just report the PFN. 266 */ 267 if (softleaf_is_device_private(entry) && 268 page_pgmap(softleaf_to_page(entry))->owner == 269 range->dev_private_owner) { 270 cpu_flags = HMM_PFN_VALID; 271 if (softleaf_is_device_private_write(entry)) 272 cpu_flags |= HMM_PFN_WRITE; 273 new_pfn_flags = softleaf_to_pfn(entry) | cpu_flags; 274 goto out; 275 } 276 277 required_fault = 278 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0); 279 if (!required_fault) 280 goto out; 281 282 if (softleaf_is_swap(entry)) 283 goto fault; 284 285 if (softleaf_is_device_private(entry)) 286 goto fault; 287 288 if (softleaf_is_device_exclusive(entry)) 289 goto fault; 290 291 if (softleaf_is_migration(entry)) { 292 pte_unmap(ptep); 293 hmm_vma_walk->last = addr; 294 migration_entry_wait(walk->mm, pmdp, addr); 295 return -EBUSY; 296 } 297 298 /* Report error for everything else */ 299 pte_unmap(ptep); 300 return -EFAULT; 301 } 302 303 cpu_flags = pte_to_hmm_pfn_flags(range, pte); 304 required_fault = 305 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 306 if (required_fault) 307 goto fault; 308 309 /* 310 * Since each architecture defines a struct page for the zero page, just 311 * fall through and treat it like a normal page. 312 */ 313 if (!vm_normal_page(walk->vma, addr, pte) && 314 !is_zero_pfn(pte_pfn(pte))) { 315 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) { 316 pte_unmap(ptep); 317 return -EFAULT; 318 } 319 new_pfn_flags = HMM_PFN_ERROR; 320 goto out; 321 } 322 323 new_pfn_flags = pte_pfn(pte) | cpu_flags; 324 out: 325 *hmm_pfn = (*hmm_pfn & HMM_PFN_INOUT_FLAGS) | new_pfn_flags; 326 return 0; 327 328 fault: 329 pte_unmap(ptep); 330 /* Fault any virtual address we were asked to fault */ 331 return hmm_vma_fault(addr, end, required_fault, walk); 332 } 333 334 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 335 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start, 336 unsigned long end, unsigned long *hmm_pfns, 337 pmd_t pmd) 338 { 339 struct hmm_vma_walk *hmm_vma_walk = walk->private; 340 struct hmm_range *range = hmm_vma_walk->range; 341 unsigned long npages = (end - start) >> PAGE_SHIFT; 342 const softleaf_t entry = softleaf_from_pmd(pmd); 343 unsigned long addr = start; 344 unsigned int required_fault; 345 346 if (softleaf_is_device_private(entry) && 347 softleaf_to_folio(entry)->pgmap->owner == 348 range->dev_private_owner) { 349 unsigned long cpu_flags = HMM_PFN_VALID | 350 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT); 351 unsigned long pfn = softleaf_to_pfn(entry); 352 unsigned long i; 353 354 if (softleaf_is_device_private_write(entry)) 355 cpu_flags |= HMM_PFN_WRITE; 356 357 /* 358 * Fully populate the PFN list though subsequent PFNs could be 359 * inferred, because drivers which are not yet aware of large 360 * folios probably do not support sparsely populated PFN lists. 361 */ 362 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) { 363 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; 364 hmm_pfns[i] |= pfn | cpu_flags; 365 } 366 367 return 0; 368 } 369 370 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 371 npages, 0); 372 if (required_fault) { 373 if (softleaf_is_device_private(entry)) 374 return hmm_vma_fault(addr, end, required_fault, walk); 375 else 376 return -EFAULT; 377 } 378 379 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 380 } 381 #else 382 static int hmm_vma_handle_absent_pmd(struct mm_walk *walk, unsigned long start, 383 unsigned long end, unsigned long *hmm_pfns, 384 pmd_t pmd) 385 { 386 struct hmm_vma_walk *hmm_vma_walk = walk->private; 387 struct hmm_range *range = hmm_vma_walk->range; 388 unsigned long npages = (end - start) >> PAGE_SHIFT; 389 390 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 391 return -EFAULT; 392 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 393 } 394 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 395 396 static int hmm_vma_walk_pmd(pmd_t *pmdp, 397 unsigned long start, 398 unsigned long end, 399 struct mm_walk *walk) 400 { 401 struct hmm_vma_walk *hmm_vma_walk = walk->private; 402 struct hmm_range *range = hmm_vma_walk->range; 403 unsigned long *hmm_pfns = 404 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT]; 405 unsigned long npages = (end - start) >> PAGE_SHIFT; 406 unsigned long addr = start; 407 pte_t *ptep; 408 pmd_t pmd; 409 410 again: 411 pmd = pmdp_get_lockless(pmdp); 412 if (pmd_none(pmd)) 413 return hmm_vma_walk_hole(start, end, -1, walk); 414 415 if (thp_migration_supported() && pmd_is_migration_entry(pmd)) { 416 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) { 417 hmm_vma_walk->last = addr; 418 pmd_migration_entry_wait(walk->mm, pmdp); 419 return -EBUSY; 420 } 421 return hmm_pfns_fill(start, end, range, 0); 422 } 423 424 if (!pmd_present(pmd)) 425 return hmm_vma_handle_absent_pmd(walk, start, end, hmm_pfns, 426 pmd); 427 428 if (pmd_trans_huge(pmd)) { 429 /* 430 * No need to take pmd_lock here, even if some other thread 431 * is splitting the huge pmd we will get that event through 432 * mmu_notifier callback. 433 * 434 * So just read pmd value and check again it's a transparent 435 * huge or device mapping one and compute corresponding pfn 436 * values. 437 */ 438 pmd = pmdp_get_lockless(pmdp); 439 if (!pmd_trans_huge(pmd)) 440 goto again; 441 442 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd); 443 } 444 445 /* 446 * We have handled all the valid cases above ie either none, migration, 447 * huge or transparent huge. At this point either it is a valid pmd 448 * entry pointing to pte directory or it is a bad pmd that will not 449 * recover. 450 */ 451 if (pmd_bad(pmd)) { 452 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) 453 return -EFAULT; 454 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 455 } 456 457 ptep = pte_offset_map(pmdp, addr); 458 if (!ptep) 459 goto again; 460 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) { 461 int r; 462 463 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns); 464 if (r) { 465 /* hmm_vma_handle_pte() did pte_unmap() */ 466 return r; 467 } 468 } 469 pte_unmap(ptep - 1); 470 return 0; 471 } 472 473 #if defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 474 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range, 475 pud_t pud) 476 { 477 if (!pud_present(pud)) 478 return 0; 479 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : 480 HMM_PFN_VALID) | 481 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT); 482 } 483 484 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end, 485 struct mm_walk *walk) 486 { 487 struct hmm_vma_walk *hmm_vma_walk = walk->private; 488 struct hmm_range *range = hmm_vma_walk->range; 489 unsigned long addr = start; 490 pud_t pud; 491 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma); 492 493 if (!ptl) 494 return 0; 495 496 /* Normally we don't want to split the huge page */ 497 walk->action = ACTION_CONTINUE; 498 499 pud = pudp_get(pudp); 500 if (!pud_present(pud)) { 501 spin_unlock(ptl); 502 return hmm_vma_walk_hole(start, end, -1, walk); 503 } 504 505 if (pud_leaf(pud)) { 506 unsigned long i, npages, pfn; 507 unsigned int required_fault; 508 unsigned long *hmm_pfns; 509 unsigned long cpu_flags; 510 511 i = (addr - range->start) >> PAGE_SHIFT; 512 npages = (end - addr) >> PAGE_SHIFT; 513 hmm_pfns = &range->hmm_pfns[i]; 514 515 cpu_flags = pud_to_hmm_pfn_flags(range, pud); 516 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns, 517 npages, cpu_flags); 518 if (required_fault) { 519 spin_unlock(ptl); 520 return hmm_vma_fault(addr, end, required_fault, walk); 521 } 522 523 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 524 for (i = 0; i < npages; ++i, ++pfn) { 525 hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; 526 hmm_pfns[i] |= pfn | cpu_flags; 527 } 528 goto out_unlock; 529 } 530 531 /* Ask for the PUD to be split */ 532 walk->action = ACTION_SUBTREE; 533 534 out_unlock: 535 spin_unlock(ptl); 536 return 0; 537 } 538 #else 539 #define hmm_vma_walk_pud NULL 540 #endif 541 542 #ifdef CONFIG_HUGETLB_PAGE 543 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask, 544 unsigned long start, unsigned long end, 545 struct mm_walk *walk) 546 { 547 unsigned long addr = start, i, pfn; 548 struct hmm_vma_walk *hmm_vma_walk = walk->private; 549 struct hmm_range *range = hmm_vma_walk->range; 550 struct vm_area_struct *vma = walk->vma; 551 unsigned int required_fault; 552 unsigned long pfn_req_flags; 553 unsigned long cpu_flags; 554 spinlock_t *ptl; 555 pte_t entry; 556 557 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte); 558 entry = huge_ptep_get(walk->mm, addr, pte); 559 560 i = (start - range->start) >> PAGE_SHIFT; 561 pfn_req_flags = range->hmm_pfns[i]; 562 cpu_flags = pte_to_hmm_pfn_flags(range, entry) | 563 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma))); 564 required_fault = 565 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags); 566 if (required_fault) { 567 int ret; 568 569 spin_unlock(ptl); 570 hugetlb_vma_unlock_read(vma); 571 /* 572 * Avoid deadlock: drop the vma lock before calling 573 * hmm_vma_fault(), which will itself potentially take and 574 * drop the vma lock. This is also correct from a 575 * protection point of view, because there is no further 576 * use here of either pte or ptl after dropping the vma 577 * lock. 578 */ 579 ret = hmm_vma_fault(addr, end, required_fault, walk); 580 hugetlb_vma_lock_read(vma); 581 return ret; 582 } 583 584 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT); 585 for (; addr < end; addr += PAGE_SIZE, i++, pfn++) { 586 range->hmm_pfns[i] &= HMM_PFN_INOUT_FLAGS; 587 range->hmm_pfns[i] |= pfn | cpu_flags; 588 } 589 590 spin_unlock(ptl); 591 return 0; 592 } 593 #else 594 #define hmm_vma_walk_hugetlb_entry NULL 595 #endif /* CONFIG_HUGETLB_PAGE */ 596 597 static int hmm_vma_walk_test(unsigned long start, unsigned long end, 598 struct mm_walk *walk) 599 { 600 struct hmm_vma_walk *hmm_vma_walk = walk->private; 601 struct hmm_range *range = hmm_vma_walk->range; 602 struct vm_area_struct *vma = walk->vma; 603 604 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) && 605 vma->vm_flags & VM_READ) 606 return 0; 607 608 /* 609 * vma ranges that don't have struct page backing them or map I/O 610 * devices directly cannot be handled by hmm_range_fault(). 611 * 612 * If the vma does not allow read access, then assume that it does not 613 * allow write access either. HMM does not support architectures that 614 * allow write without read. 615 * 616 * If a fault is requested for an unsupported range then it is a hard 617 * failure. 618 */ 619 if (hmm_range_need_fault(hmm_vma_walk, 620 range->hmm_pfns + 621 ((start - range->start) >> PAGE_SHIFT), 622 (end - start) >> PAGE_SHIFT, 0)) 623 return -EFAULT; 624 625 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR); 626 627 /* Skip this vma and continue processing the next vma. */ 628 return 1; 629 } 630 631 static const struct mm_walk_ops hmm_walk_ops = { 632 .pud_entry = hmm_vma_walk_pud, 633 .pmd_entry = hmm_vma_walk_pmd, 634 .pte_hole = hmm_vma_walk_hole, 635 .hugetlb_entry = hmm_vma_walk_hugetlb_entry, 636 .test_walk = hmm_vma_walk_test, 637 .walk_lock = PGWALK_RDLOCK, 638 }; 639 640 /** 641 * hmm_range_fault - try to fault some address in a virtual address range 642 * @range: argument structure 643 * 644 * Returns 0 on success or one of the following error codes: 645 * 646 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma 647 * (e.g., device file vma). 648 * -ENOMEM: Out of memory. 649 * -EPERM: Invalid permission (e.g., asking for write and range is read 650 * only). 651 * -EBUSY: The range has been invalidated and the caller needs to wait for 652 * the invalidation to finish. 653 * -EFAULT: A page was requested to be valid and could not be made valid 654 * ie it has no backing VMA or it is illegal to access 655 * 656 * This is similar to get_user_pages(), except that it can read the page tables 657 * without mutating them (ie causing faults). 658 */ 659 int hmm_range_fault(struct hmm_range *range) 660 { 661 struct hmm_vma_walk hmm_vma_walk = { 662 .range = range, 663 .last = range->start, 664 }; 665 struct mm_struct *mm = range->notifier->mm; 666 int ret; 667 668 mmap_assert_locked(mm); 669 670 do { 671 /* If range is no longer valid force retry. */ 672 if (mmu_interval_check_retry(range->notifier, 673 range->notifier_seq)) 674 return -EBUSY; 675 ret = walk_page_range(mm, hmm_vma_walk.last, range->end, 676 &hmm_walk_ops, &hmm_vma_walk); 677 /* 678 * When -EBUSY is returned the loop restarts with 679 * hmm_vma_walk.last set to an address that has not been stored 680 * in pfns. All entries < last in the pfn array are set to their 681 * output, and all >= are still at their input values. 682 */ 683 } while (ret == -EBUSY); 684 return ret; 685 } 686 EXPORT_SYMBOL(hmm_range_fault); 687 688 /** 689 * hmm_dma_map_alloc - Allocate HMM map structure 690 * @dev: device to allocate structure for 691 * @map: HMM map to allocate 692 * @nr_entries: number of entries in the map 693 * @dma_entry_size: size of the DMA entry in the map 694 * 695 * Allocate the HMM map structure and all the lists it contains. 696 * Return 0 on success, -ENOMEM on failure. 697 */ 698 int hmm_dma_map_alloc(struct device *dev, struct hmm_dma_map *map, 699 size_t nr_entries, size_t dma_entry_size) 700 { 701 bool dma_need_sync = false; 702 bool use_iova; 703 704 WARN_ON_ONCE(!(nr_entries * PAGE_SIZE / dma_entry_size)); 705 706 /* 707 * The HMM API violates our normal DMA buffer ownership rules and can't 708 * transfer buffer ownership. The dma_addressing_limited() check is a 709 * best approximation to ensure no swiotlb buffering happens. 710 */ 711 #ifdef CONFIG_DMA_NEED_SYNC 712 dma_need_sync = !dev->dma_skip_sync; 713 #endif /* CONFIG_DMA_NEED_SYNC */ 714 if (dma_need_sync || dma_addressing_limited(dev)) 715 return -EOPNOTSUPP; 716 717 map->dma_entry_size = dma_entry_size; 718 map->pfn_list = kvcalloc(nr_entries, sizeof(*map->pfn_list), 719 GFP_KERNEL | __GFP_NOWARN); 720 if (!map->pfn_list) 721 return -ENOMEM; 722 723 use_iova = dma_iova_try_alloc(dev, &map->state, 0, 724 nr_entries * PAGE_SIZE); 725 if (!use_iova && dma_need_unmap(dev)) { 726 map->dma_list = kvcalloc(nr_entries, sizeof(*map->dma_list), 727 GFP_KERNEL | __GFP_NOWARN); 728 if (!map->dma_list) 729 goto err_dma; 730 } 731 return 0; 732 733 err_dma: 734 kvfree(map->pfn_list); 735 return -ENOMEM; 736 } 737 EXPORT_SYMBOL_GPL(hmm_dma_map_alloc); 738 739 /** 740 * hmm_dma_map_free - iFree HMM map structure 741 * @dev: device to free structure from 742 * @map: HMM map containing the various lists and state 743 * 744 * Free the HMM map structure and all the lists it contains. 745 */ 746 void hmm_dma_map_free(struct device *dev, struct hmm_dma_map *map) 747 { 748 if (dma_use_iova(&map->state)) 749 dma_iova_free(dev, &map->state); 750 kvfree(map->pfn_list); 751 kvfree(map->dma_list); 752 } 753 EXPORT_SYMBOL_GPL(hmm_dma_map_free); 754 755 /** 756 * hmm_dma_map_pfn - Map a physical HMM page to DMA address 757 * @dev: Device to map the page for 758 * @map: HMM map 759 * @idx: Index into the PFN and dma address arrays 760 * @p2pdma_state: PCI P2P state. 761 * 762 * dma_alloc_iova() allocates IOVA based on the size specified by their use in 763 * iova->size. Call this function after IOVA allocation to link whole @page 764 * to get the DMA address. Note that very first call to this function 765 * will have @offset set to 0 in the IOVA space allocated from 766 * dma_alloc_iova(). For subsequent calls to this function on same @iova, 767 * @offset needs to be advanced by the caller with the size of previous 768 * page that was linked + DMA address returned for the previous page that was 769 * linked by this function. 770 */ 771 dma_addr_t hmm_dma_map_pfn(struct device *dev, struct hmm_dma_map *map, 772 size_t idx, 773 struct pci_p2pdma_map_state *p2pdma_state) 774 { 775 struct dma_iova_state *state = &map->state; 776 dma_addr_t *dma_addrs = map->dma_list; 777 unsigned long *pfns = map->pfn_list; 778 struct page *page = hmm_pfn_to_page(pfns[idx]); 779 phys_addr_t paddr = hmm_pfn_to_phys(pfns[idx]); 780 size_t offset = idx * map->dma_entry_size; 781 unsigned long attrs = 0; 782 dma_addr_t dma_addr; 783 int ret; 784 785 if ((pfns[idx] & HMM_PFN_DMA_MAPPED) && 786 !(pfns[idx] & HMM_PFN_P2PDMA_BUS)) { 787 /* 788 * We are in this flow when there is a need to resync flags, 789 * for example when page was already linked in prefetch call 790 * with READ flag and now we need to add WRITE flag 791 * 792 * This page was already programmed to HW and we don't want/need 793 * to unlink and link it again just to resync flags. 794 */ 795 if (dma_use_iova(state)) 796 return state->addr + offset; 797 798 /* 799 * Without dma_need_unmap, the dma_addrs array is NULL, thus we 800 * need to regenerate the address below even if there already 801 * was a mapping. But !dma_need_unmap implies that the 802 * mapping stateless, so this is fine. 803 */ 804 if (dma_need_unmap(dev)) 805 return dma_addrs[idx]; 806 807 /* Continue to remapping */ 808 } 809 810 switch (pci_p2pdma_state(p2pdma_state, dev, page)) { 811 case PCI_P2PDMA_MAP_NONE: 812 break; 813 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 814 attrs |= DMA_ATTR_MMIO; 815 pfns[idx] |= HMM_PFN_P2PDMA; 816 break; 817 case PCI_P2PDMA_MAP_BUS_ADDR: 818 pfns[idx] |= HMM_PFN_P2PDMA_BUS | HMM_PFN_DMA_MAPPED; 819 return pci_p2pdma_bus_addr_map(p2pdma_state->mem, paddr); 820 default: 821 return DMA_MAPPING_ERROR; 822 } 823 824 if (dma_use_iova(state)) { 825 ret = dma_iova_link(dev, state, paddr, offset, 826 map->dma_entry_size, DMA_BIDIRECTIONAL, 827 attrs); 828 if (ret) 829 goto error; 830 831 ret = dma_iova_sync(dev, state, offset, map->dma_entry_size); 832 if (ret) { 833 dma_iova_unlink(dev, state, offset, map->dma_entry_size, 834 DMA_BIDIRECTIONAL, attrs); 835 goto error; 836 } 837 838 dma_addr = state->addr + offset; 839 } else { 840 if (WARN_ON_ONCE(dma_need_unmap(dev) && !dma_addrs)) 841 goto error; 842 843 dma_addr = dma_map_phys(dev, paddr, map->dma_entry_size, 844 DMA_BIDIRECTIONAL, attrs); 845 if (dma_mapping_error(dev, dma_addr)) 846 goto error; 847 848 if (dma_need_unmap(dev)) 849 dma_addrs[idx] = dma_addr; 850 } 851 pfns[idx] |= HMM_PFN_DMA_MAPPED; 852 return dma_addr; 853 error: 854 pfns[idx] &= ~HMM_PFN_P2PDMA; 855 return DMA_MAPPING_ERROR; 856 857 } 858 EXPORT_SYMBOL_GPL(hmm_dma_map_pfn); 859 860 /** 861 * hmm_dma_unmap_pfn - Unmap a physical HMM page from DMA address 862 * @dev: Device to unmap the page from 863 * @map: HMM map 864 * @idx: Index of the PFN to unmap 865 * 866 * Returns true if the PFN was mapped and has been unmapped, false otherwise. 867 */ 868 bool hmm_dma_unmap_pfn(struct device *dev, struct hmm_dma_map *map, size_t idx) 869 { 870 const unsigned long valid_dma = HMM_PFN_VALID | HMM_PFN_DMA_MAPPED; 871 struct dma_iova_state *state = &map->state; 872 dma_addr_t *dma_addrs = map->dma_list; 873 unsigned long *pfns = map->pfn_list; 874 unsigned long attrs = 0; 875 876 if ((pfns[idx] & valid_dma) != valid_dma) 877 return false; 878 879 if (pfns[idx] & HMM_PFN_P2PDMA) 880 attrs |= DMA_ATTR_MMIO; 881 882 if (pfns[idx] & HMM_PFN_P2PDMA_BUS) 883 ; /* no need to unmap bus address P2P mappings */ 884 else if (dma_use_iova(state)) 885 dma_iova_unlink(dev, state, idx * map->dma_entry_size, 886 map->dma_entry_size, DMA_BIDIRECTIONAL, attrs); 887 else if (dma_need_unmap(dev)) 888 dma_unmap_phys(dev, dma_addrs[idx], map->dma_entry_size, 889 DMA_BIDIRECTIONAL, attrs); 890 891 pfns[idx] &= 892 ~(HMM_PFN_DMA_MAPPED | HMM_PFN_P2PDMA | HMM_PFN_P2PDMA_BUS); 893 return true; 894 } 895 EXPORT_SYMBOL_GPL(hmm_dma_unmap_pfn); 896