xref: /linux/mm/hmm.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 struct hmm_vma_walk {
30 	struct hmm_range	*range;
31 	unsigned long		last;
32 };
33 
34 enum {
35 	HMM_NEED_FAULT = 1 << 0,
36 	HMM_NEED_WRITE_FAULT = 1 << 1,
37 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
38 };
39 
40 /*
41  * hmm_device_entry_from_pfn() - create a valid device entry value from pfn
42  * @range: range use to encode HMM pfn value
43  * @pfn: pfn value for which to create the device entry
44  * Return: valid device entry for the pfn
45  */
46 static uint64_t hmm_device_entry_from_pfn(const struct hmm_range *range,
47 					  unsigned long pfn)
48 {
49 	return (pfn << range->pfn_shift) | range->flags[HMM_PFN_VALID];
50 }
51 
52 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
53 		struct hmm_range *range, enum hmm_pfn_value_e value)
54 {
55 	uint64_t *pfns = range->pfns;
56 	unsigned long i;
57 
58 	i = (addr - range->start) >> PAGE_SHIFT;
59 	for (; addr < end; addr += PAGE_SIZE, i++)
60 		pfns[i] = range->values[value];
61 
62 	return 0;
63 }
64 
65 /*
66  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
67  * @addr: range virtual start address (inclusive)
68  * @end: range virtual end address (exclusive)
69  * @required_fault: HMM_NEED_* flags
70  * @walk: mm_walk structure
71  * Return: -EBUSY after page fault, or page fault error
72  *
73  * This function will be called whenever pmd_none() or pte_none() returns true,
74  * or whenever there is no page directory covering the virtual address range.
75  */
76 static int hmm_vma_fault(unsigned long addr, unsigned long end,
77 			 unsigned int required_fault, struct mm_walk *walk)
78 {
79 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
80 	struct vm_area_struct *vma = walk->vma;
81 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
82 
83 	WARN_ON_ONCE(!required_fault);
84 	hmm_vma_walk->last = addr;
85 
86 	if (required_fault & HMM_NEED_WRITE_FAULT) {
87 		if (!(vma->vm_flags & VM_WRITE))
88 			return -EPERM;
89 		fault_flags |= FAULT_FLAG_WRITE;
90 	}
91 
92 	for (; addr < end; addr += PAGE_SIZE)
93 		if (handle_mm_fault(vma, addr, fault_flags) & VM_FAULT_ERROR)
94 			return -EFAULT;
95 	return -EBUSY;
96 }
97 
98 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
99 				       uint64_t pfns, uint64_t cpu_flags)
100 {
101 	struct hmm_range *range = hmm_vma_walk->range;
102 
103 	/*
104 	 * So we not only consider the individual per page request we also
105 	 * consider the default flags requested for the range. The API can
106 	 * be used 2 ways. The first one where the HMM user coalesces
107 	 * multiple page faults into one request and sets flags per pfn for
108 	 * those faults. The second one where the HMM user wants to pre-
109 	 * fault a range with specific flags. For the latter one it is a
110 	 * waste to have the user pre-fill the pfn arrays with a default
111 	 * flags value.
112 	 */
113 	pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
114 
115 	/* We aren't ask to do anything ... */
116 	if (!(pfns & range->flags[HMM_PFN_VALID]))
117 		return 0;
118 
119 	/* Need to write fault ? */
120 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
121 	    !(cpu_flags & range->flags[HMM_PFN_WRITE]))
122 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
123 
124 	/* If CPU page table is not valid then we need to fault */
125 	if (!(cpu_flags & range->flags[HMM_PFN_VALID]))
126 		return HMM_NEED_FAULT;
127 	return 0;
128 }
129 
130 static unsigned int
131 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
132 		     const uint64_t *pfns, unsigned long npages,
133 		     uint64_t cpu_flags)
134 {
135 	struct hmm_range *range = hmm_vma_walk->range;
136 	unsigned int required_fault = 0;
137 	unsigned long i;
138 
139 	/*
140 	 * If the default flags do not request to fault pages, and the mask does
141 	 * not allow for individual pages to be faulted, then
142 	 * hmm_pte_need_fault() will always return 0.
143 	 */
144 	if (!((range->default_flags | range->pfn_flags_mask) &
145 	      range->flags[HMM_PFN_VALID]))
146 		return 0;
147 
148 	for (i = 0; i < npages; ++i) {
149 		required_fault |=
150 			hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags);
151 		if (required_fault == HMM_NEED_ALL_BITS)
152 			return required_fault;
153 	}
154 	return required_fault;
155 }
156 
157 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
158 			     __always_unused int depth, struct mm_walk *walk)
159 {
160 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
161 	struct hmm_range *range = hmm_vma_walk->range;
162 	unsigned int required_fault;
163 	unsigned long i, npages;
164 	uint64_t *pfns;
165 
166 	i = (addr - range->start) >> PAGE_SHIFT;
167 	npages = (end - addr) >> PAGE_SHIFT;
168 	pfns = &range->pfns[i];
169 	required_fault = hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0);
170 	if (!walk->vma) {
171 		if (required_fault)
172 			return -EFAULT;
173 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
174 	}
175 	if (required_fault)
176 		return hmm_vma_fault(addr, end, required_fault, walk);
177 	hmm_vma_walk->last = addr;
178 	return hmm_pfns_fill(addr, end, range, HMM_PFN_NONE);
179 }
180 
181 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
182 {
183 	if (pmd_protnone(pmd))
184 		return 0;
185 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
186 				range->flags[HMM_PFN_WRITE] :
187 				range->flags[HMM_PFN_VALID];
188 }
189 
190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
191 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
192 		unsigned long end, uint64_t *pfns, pmd_t pmd)
193 {
194 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
195 	struct hmm_range *range = hmm_vma_walk->range;
196 	unsigned long pfn, npages, i;
197 	unsigned int required_fault;
198 	uint64_t cpu_flags;
199 
200 	npages = (end - addr) >> PAGE_SHIFT;
201 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
202 	required_fault =
203 		hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags);
204 	if (required_fault)
205 		return hmm_vma_fault(addr, end, required_fault, walk);
206 
207 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
208 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
209 		pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
210 	hmm_vma_walk->last = end;
211 	return 0;
212 }
213 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
214 /* stub to allow the code below to compile */
215 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
216 		unsigned long end, uint64_t *pfns, pmd_t pmd);
217 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
218 
219 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
220 		swp_entry_t entry)
221 {
222 	return is_device_private_entry(entry) &&
223 		device_private_entry_to_page(entry)->pgmap->owner ==
224 		range->dev_private_owner;
225 }
226 
227 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
228 {
229 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
230 		return 0;
231 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
232 				range->flags[HMM_PFN_WRITE] :
233 				range->flags[HMM_PFN_VALID];
234 }
235 
236 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
237 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
238 			      uint64_t *pfn)
239 {
240 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
241 	struct hmm_range *range = hmm_vma_walk->range;
242 	unsigned int required_fault;
243 	uint64_t cpu_flags;
244 	pte_t pte = *ptep;
245 	uint64_t orig_pfn = *pfn;
246 
247 	if (pte_none(pte)) {
248 		required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
249 		if (required_fault)
250 			goto fault;
251 		*pfn = range->values[HMM_PFN_NONE];
252 		return 0;
253 	}
254 
255 	if (!pte_present(pte)) {
256 		swp_entry_t entry = pte_to_swp_entry(pte);
257 
258 		/*
259 		 * Never fault in device private pages pages, but just report
260 		 * the PFN even if not present.
261 		 */
262 		if (hmm_is_device_private_entry(range, entry)) {
263 			*pfn = hmm_device_entry_from_pfn(range,
264 				device_private_entry_to_pfn(entry));
265 			*pfn |= range->flags[HMM_PFN_VALID];
266 			if (is_write_device_private_entry(entry))
267 				*pfn |= range->flags[HMM_PFN_WRITE];
268 			return 0;
269 		}
270 
271 		required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0);
272 		if (!required_fault) {
273 			*pfn = range->values[HMM_PFN_NONE];
274 			return 0;
275 		}
276 
277 		if (!non_swap_entry(entry))
278 			goto fault;
279 
280 		if (is_migration_entry(entry)) {
281 			pte_unmap(ptep);
282 			hmm_vma_walk->last = addr;
283 			migration_entry_wait(walk->mm, pmdp, addr);
284 			return -EBUSY;
285 		}
286 
287 		/* Report error for everything else */
288 		pte_unmap(ptep);
289 		return -EFAULT;
290 	}
291 
292 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
293 	required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
294 	if (required_fault)
295 		goto fault;
296 
297 	/*
298 	 * Since each architecture defines a struct page for the zero page, just
299 	 * fall through and treat it like a normal page.
300 	 */
301 	if (pte_special(pte) && !is_zero_pfn(pte_pfn(pte))) {
302 		if (hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0)) {
303 			pte_unmap(ptep);
304 			return -EFAULT;
305 		}
306 		*pfn = range->values[HMM_PFN_SPECIAL];
307 		return 0;
308 	}
309 
310 	*pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
311 	return 0;
312 
313 fault:
314 	pte_unmap(ptep);
315 	/* Fault any virtual address we were asked to fault */
316 	return hmm_vma_fault(addr, end, required_fault, walk);
317 }
318 
319 static int hmm_vma_walk_pmd(pmd_t *pmdp,
320 			    unsigned long start,
321 			    unsigned long end,
322 			    struct mm_walk *walk)
323 {
324 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
325 	struct hmm_range *range = hmm_vma_walk->range;
326 	uint64_t *pfns = &range->pfns[(start - range->start) >> PAGE_SHIFT];
327 	unsigned long npages = (end - start) >> PAGE_SHIFT;
328 	unsigned long addr = start;
329 	pte_t *ptep;
330 	pmd_t pmd;
331 
332 again:
333 	pmd = READ_ONCE(*pmdp);
334 	if (pmd_none(pmd))
335 		return hmm_vma_walk_hole(start, end, -1, walk);
336 
337 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
338 		if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0)) {
339 			hmm_vma_walk->last = addr;
340 			pmd_migration_entry_wait(walk->mm, pmdp);
341 			return -EBUSY;
342 		}
343 		return hmm_pfns_fill(start, end, range, HMM_PFN_NONE);
344 	}
345 
346 	if (!pmd_present(pmd)) {
347 		if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
348 			return -EFAULT;
349 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
350 	}
351 
352 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
353 		/*
354 		 * No need to take pmd_lock here, even if some other thread
355 		 * is splitting the huge pmd we will get that event through
356 		 * mmu_notifier callback.
357 		 *
358 		 * So just read pmd value and check again it's a transparent
359 		 * huge or device mapping one and compute corresponding pfn
360 		 * values.
361 		 */
362 		pmd = pmd_read_atomic(pmdp);
363 		barrier();
364 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
365 			goto again;
366 
367 		return hmm_vma_handle_pmd(walk, addr, end, pfns, pmd);
368 	}
369 
370 	/*
371 	 * We have handled all the valid cases above ie either none, migration,
372 	 * huge or transparent huge. At this point either it is a valid pmd
373 	 * entry pointing to pte directory or it is a bad pmd that will not
374 	 * recover.
375 	 */
376 	if (pmd_bad(pmd)) {
377 		if (hmm_range_need_fault(hmm_vma_walk, pfns, npages, 0))
378 			return -EFAULT;
379 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
380 	}
381 
382 	ptep = pte_offset_map(pmdp, addr);
383 	for (; addr < end; addr += PAGE_SIZE, ptep++, pfns++) {
384 		int r;
385 
386 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, pfns);
387 		if (r) {
388 			/* hmm_vma_handle_pte() did pte_unmap() */
389 			hmm_vma_walk->last = addr;
390 			return r;
391 		}
392 	}
393 	pte_unmap(ptep - 1);
394 
395 	hmm_vma_walk->last = addr;
396 	return 0;
397 }
398 
399 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
400     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
401 static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
402 {
403 	if (!pud_present(pud))
404 		return 0;
405 	return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
406 				range->flags[HMM_PFN_WRITE] :
407 				range->flags[HMM_PFN_VALID];
408 }
409 
410 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
411 		struct mm_walk *walk)
412 {
413 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
414 	struct hmm_range *range = hmm_vma_walk->range;
415 	unsigned long addr = start;
416 	pud_t pud;
417 	int ret = 0;
418 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
419 
420 	if (!ptl)
421 		return 0;
422 
423 	/* Normally we don't want to split the huge page */
424 	walk->action = ACTION_CONTINUE;
425 
426 	pud = READ_ONCE(*pudp);
427 	if (pud_none(pud)) {
428 		spin_unlock(ptl);
429 		return hmm_vma_walk_hole(start, end, -1, walk);
430 	}
431 
432 	if (pud_huge(pud) && pud_devmap(pud)) {
433 		unsigned long i, npages, pfn;
434 		unsigned int required_fault;
435 		uint64_t *pfns, cpu_flags;
436 
437 		if (!pud_present(pud)) {
438 			spin_unlock(ptl);
439 			return hmm_vma_walk_hole(start, end, -1, walk);
440 		}
441 
442 		i = (addr - range->start) >> PAGE_SHIFT;
443 		npages = (end - addr) >> PAGE_SHIFT;
444 		pfns = &range->pfns[i];
445 
446 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
447 		required_fault = hmm_range_need_fault(hmm_vma_walk, pfns,
448 						      npages, cpu_flags);
449 		if (required_fault) {
450 			spin_unlock(ptl);
451 			return hmm_vma_fault(addr, end, required_fault, walk);
452 		}
453 
454 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
455 		for (i = 0; i < npages; ++i, ++pfn)
456 			pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
457 				  cpu_flags;
458 		hmm_vma_walk->last = end;
459 		goto out_unlock;
460 	}
461 
462 	/* Ask for the PUD to be split */
463 	walk->action = ACTION_SUBTREE;
464 
465 out_unlock:
466 	spin_unlock(ptl);
467 	return ret;
468 }
469 #else
470 #define hmm_vma_walk_pud	NULL
471 #endif
472 
473 #ifdef CONFIG_HUGETLB_PAGE
474 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
475 				      unsigned long start, unsigned long end,
476 				      struct mm_walk *walk)
477 {
478 	unsigned long addr = start, i, pfn;
479 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
480 	struct hmm_range *range = hmm_vma_walk->range;
481 	struct vm_area_struct *vma = walk->vma;
482 	uint64_t orig_pfn, cpu_flags;
483 	unsigned int required_fault;
484 	spinlock_t *ptl;
485 	pte_t entry;
486 
487 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
488 	entry = huge_ptep_get(pte);
489 
490 	i = (start - range->start) >> PAGE_SHIFT;
491 	orig_pfn = range->pfns[i];
492 	cpu_flags = pte_to_hmm_pfn_flags(range, entry);
493 	required_fault = hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags);
494 	if (required_fault) {
495 		spin_unlock(ptl);
496 		return hmm_vma_fault(addr, end, required_fault, walk);
497 	}
498 
499 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
500 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
501 		range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
502 				 cpu_flags;
503 	hmm_vma_walk->last = end;
504 	spin_unlock(ptl);
505 	return 0;
506 }
507 #else
508 #define hmm_vma_walk_hugetlb_entry NULL
509 #endif /* CONFIG_HUGETLB_PAGE */
510 
511 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
512 			     struct mm_walk *walk)
513 {
514 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
515 	struct hmm_range *range = hmm_vma_walk->range;
516 	struct vm_area_struct *vma = walk->vma;
517 
518 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
519 	    vma->vm_flags & VM_READ)
520 		return 0;
521 
522 	/*
523 	 * vma ranges that don't have struct page backing them or map I/O
524 	 * devices directly cannot be handled by hmm_range_fault().
525 	 *
526 	 * If the vma does not allow read access, then assume that it does not
527 	 * allow write access either. HMM does not support architectures that
528 	 * allow write without read.
529 	 *
530 	 * If a fault is requested for an unsupported range then it is a hard
531 	 * failure.
532 	 */
533 	if (hmm_range_need_fault(hmm_vma_walk,
534 				 range->pfns +
535 					 ((start - range->start) >> PAGE_SHIFT),
536 				 (end - start) >> PAGE_SHIFT, 0))
537 		return -EFAULT;
538 
539 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
540 	hmm_vma_walk->last = end;
541 
542 	/* Skip this vma and continue processing the next vma. */
543 	return 1;
544 }
545 
546 static const struct mm_walk_ops hmm_walk_ops = {
547 	.pud_entry	= hmm_vma_walk_pud,
548 	.pmd_entry	= hmm_vma_walk_pmd,
549 	.pte_hole	= hmm_vma_walk_hole,
550 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
551 	.test_walk	= hmm_vma_walk_test,
552 };
553 
554 /**
555  * hmm_range_fault - try to fault some address in a virtual address range
556  * @range:	argument structure
557  *
558  * Return: the number of valid pages in range->pfns[] (from range start
559  * address), which may be zero.  On error one of the following status codes
560  * can be returned:
561  *
562  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
563  *		(e.g., device file vma).
564  * -ENOMEM:	Out of memory.
565  * -EPERM:	Invalid permission (e.g., asking for write and range is read
566  *		only).
567  * -EBUSY:	The range has been invalidated and the caller needs to wait for
568  *		the invalidation to finish.
569  * -EFAULT:     A page was requested to be valid and could not be made valid
570  *              ie it has no backing VMA or it is illegal to access
571  *
572  * This is similar to get_user_pages(), except that it can read the page tables
573  * without mutating them (ie causing faults).
574  */
575 long hmm_range_fault(struct hmm_range *range)
576 {
577 	struct hmm_vma_walk hmm_vma_walk = {
578 		.range = range,
579 		.last = range->start,
580 	};
581 	struct mm_struct *mm = range->notifier->mm;
582 	int ret;
583 
584 	lockdep_assert_held(&mm->mmap_sem);
585 
586 	do {
587 		/* If range is no longer valid force retry. */
588 		if (mmu_interval_check_retry(range->notifier,
589 					     range->notifier_seq))
590 			return -EBUSY;
591 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
592 				      &hmm_walk_ops, &hmm_vma_walk);
593 	} while (ret == -EBUSY);
594 
595 	if (ret)
596 		return ret;
597 	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
598 }
599 EXPORT_SYMBOL(hmm_range_fault);
600