xref: /linux/mm/hmm.c (revision 25f23a0c7127b65c4d8200ccda8a352ad5ce1e1d)
1 /*
2  * Copyright 2013 Red Hat Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * Authors: Jérôme Glisse <jglisse@redhat.com>
15  */
16 /*
17  * Refer to include/linux/hmm.h for information about heterogeneous memory
18  * management or HMM for short.
19  */
20 #include <linux/mm.h>
21 #include <linux/hmm.h>
22 #include <linux/init.h>
23 #include <linux/rmap.h>
24 #include <linux/swap.h>
25 #include <linux/slab.h>
26 #include <linux/sched.h>
27 #include <linux/mmzone.h>
28 #include <linux/pagemap.h>
29 #include <linux/swapops.h>
30 #include <linux/hugetlb.h>
31 #include <linux/memremap.h>
32 #include <linux/jump_label.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/memory_hotplug.h>
35 
36 #define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
37 
38 #if IS_ENABLED(CONFIG_HMM_MIRROR)
39 static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
40 
41 /*
42  * struct hmm - HMM per mm struct
43  *
44  * @mm: mm struct this HMM struct is bound to
45  * @lock: lock protecting ranges list
46  * @ranges: list of range being snapshotted
47  * @mirrors: list of mirrors for this mm
48  * @mmu_notifier: mmu notifier to track updates to CPU page table
49  * @mirrors_sem: read/write semaphore protecting the mirrors list
50  */
51 struct hmm {
52 	struct mm_struct	*mm;
53 	struct kref		kref;
54 	spinlock_t		lock;
55 	struct list_head	ranges;
56 	struct list_head	mirrors;
57 	struct mmu_notifier	mmu_notifier;
58 	struct rw_semaphore	mirrors_sem;
59 };
60 
61 static inline struct hmm *mm_get_hmm(struct mm_struct *mm)
62 {
63 	struct hmm *hmm = READ_ONCE(mm->hmm);
64 
65 	if (hmm && kref_get_unless_zero(&hmm->kref))
66 		return hmm;
67 
68 	return NULL;
69 }
70 
71 /**
72  * hmm_get_or_create - register HMM against an mm (HMM internal)
73  *
74  * @mm: mm struct to attach to
75  * Returns: returns an HMM object, either by referencing the existing
76  *          (per-process) object, or by creating a new one.
77  *
78  * This is not intended to be used directly by device drivers. If mm already
79  * has an HMM struct then it get a reference on it and returns it. Otherwise
80  * it allocates an HMM struct, initializes it, associate it with the mm and
81  * returns it.
82  */
83 static struct hmm *hmm_get_or_create(struct mm_struct *mm)
84 {
85 	struct hmm *hmm = mm_get_hmm(mm);
86 	bool cleanup = false;
87 
88 	if (hmm)
89 		return hmm;
90 
91 	hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
92 	if (!hmm)
93 		return NULL;
94 	INIT_LIST_HEAD(&hmm->mirrors);
95 	init_rwsem(&hmm->mirrors_sem);
96 	hmm->mmu_notifier.ops = NULL;
97 	INIT_LIST_HEAD(&hmm->ranges);
98 	spin_lock_init(&hmm->lock);
99 	kref_init(&hmm->kref);
100 	hmm->mm = mm;
101 
102 	spin_lock(&mm->page_table_lock);
103 	if (!mm->hmm)
104 		mm->hmm = hmm;
105 	else
106 		cleanup = true;
107 	spin_unlock(&mm->page_table_lock);
108 
109 	if (cleanup)
110 		goto error;
111 
112 	/*
113 	 * We should only get here if hold the mmap_sem in write mode ie on
114 	 * registration of first mirror through hmm_mirror_register()
115 	 */
116 	hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
117 	if (__mmu_notifier_register(&hmm->mmu_notifier, mm))
118 		goto error_mm;
119 
120 	return hmm;
121 
122 error_mm:
123 	spin_lock(&mm->page_table_lock);
124 	if (mm->hmm == hmm)
125 		mm->hmm = NULL;
126 	spin_unlock(&mm->page_table_lock);
127 error:
128 	kfree(hmm);
129 	return NULL;
130 }
131 
132 static void hmm_free(struct kref *kref)
133 {
134 	struct hmm *hmm = container_of(kref, struct hmm, kref);
135 	struct mm_struct *mm = hmm->mm;
136 
137 	mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
138 
139 	spin_lock(&mm->page_table_lock);
140 	if (mm->hmm == hmm)
141 		mm->hmm = NULL;
142 	spin_unlock(&mm->page_table_lock);
143 
144 	kfree(hmm);
145 }
146 
147 static inline void hmm_put(struct hmm *hmm)
148 {
149 	kref_put(&hmm->kref, hmm_free);
150 }
151 
152 void hmm_mm_destroy(struct mm_struct *mm)
153 {
154 	struct hmm *hmm;
155 
156 	spin_lock(&mm->page_table_lock);
157 	hmm = mm_get_hmm(mm);
158 	mm->hmm = NULL;
159 	if (hmm) {
160 		hmm->mm = NULL;
161 		spin_unlock(&mm->page_table_lock);
162 		hmm_put(hmm);
163 		return;
164 	}
165 
166 	spin_unlock(&mm->page_table_lock);
167 }
168 
169 static int hmm_invalidate_range(struct hmm *hmm, bool device,
170 				const struct hmm_update *update)
171 {
172 	struct hmm_mirror *mirror;
173 	struct hmm_range *range;
174 
175 	spin_lock(&hmm->lock);
176 	list_for_each_entry(range, &hmm->ranges, list) {
177 		if (update->end < range->start || update->start >= range->end)
178 			continue;
179 
180 		range->valid = false;
181 	}
182 	spin_unlock(&hmm->lock);
183 
184 	if (!device)
185 		return 0;
186 
187 	down_read(&hmm->mirrors_sem);
188 	list_for_each_entry(mirror, &hmm->mirrors, list) {
189 		int ret;
190 
191 		ret = mirror->ops->sync_cpu_device_pagetables(mirror, update);
192 		if (!update->blockable && ret == -EAGAIN) {
193 			up_read(&hmm->mirrors_sem);
194 			return -EAGAIN;
195 		}
196 	}
197 	up_read(&hmm->mirrors_sem);
198 
199 	return 0;
200 }
201 
202 static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
203 {
204 	struct hmm_mirror *mirror;
205 	struct hmm *hmm = mm_get_hmm(mm);
206 
207 	down_write(&hmm->mirrors_sem);
208 	mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
209 					  list);
210 	while (mirror) {
211 		list_del_init(&mirror->list);
212 		if (mirror->ops->release) {
213 			/*
214 			 * Drop mirrors_sem so callback can wait on any pending
215 			 * work that might itself trigger mmu_notifier callback
216 			 * and thus would deadlock with us.
217 			 */
218 			up_write(&hmm->mirrors_sem);
219 			mirror->ops->release(mirror);
220 			down_write(&hmm->mirrors_sem);
221 		}
222 		mirror = list_first_entry_or_null(&hmm->mirrors,
223 						  struct hmm_mirror, list);
224 	}
225 	up_write(&hmm->mirrors_sem);
226 
227 	hmm_put(hmm);
228 }
229 
230 static int hmm_invalidate_range_start(struct mmu_notifier *mn,
231 			const struct mmu_notifier_range *range)
232 {
233 	struct hmm *hmm = mm_get_hmm(range->mm);
234 	struct hmm_update update;
235 	int ret;
236 
237 	VM_BUG_ON(!hmm);
238 
239 	update.start = range->start;
240 	update.end = range->end;
241 	update.event = HMM_UPDATE_INVALIDATE;
242 	update.blockable = range->blockable;
243 	ret = hmm_invalidate_range(hmm, true, &update);
244 	hmm_put(hmm);
245 	return ret;
246 }
247 
248 static void hmm_invalidate_range_end(struct mmu_notifier *mn,
249 			const struct mmu_notifier_range *range)
250 {
251 	struct hmm *hmm = mm_get_hmm(range->mm);
252 	struct hmm_update update;
253 
254 	VM_BUG_ON(!hmm);
255 
256 	update.start = range->start;
257 	update.end = range->end;
258 	update.event = HMM_UPDATE_INVALIDATE;
259 	update.blockable = true;
260 	hmm_invalidate_range(hmm, false, &update);
261 	hmm_put(hmm);
262 }
263 
264 static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
265 	.release		= hmm_release,
266 	.invalidate_range_start	= hmm_invalidate_range_start,
267 	.invalidate_range_end	= hmm_invalidate_range_end,
268 };
269 
270 /*
271  * hmm_mirror_register() - register a mirror against an mm
272  *
273  * @mirror: new mirror struct to register
274  * @mm: mm to register against
275  *
276  * To start mirroring a process address space, the device driver must register
277  * an HMM mirror struct.
278  *
279  * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
280  */
281 int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
282 {
283 	/* Sanity check */
284 	if (!mm || !mirror || !mirror->ops)
285 		return -EINVAL;
286 
287 	mirror->hmm = hmm_get_or_create(mm);
288 	if (!mirror->hmm)
289 		return -ENOMEM;
290 
291 	down_write(&mirror->hmm->mirrors_sem);
292 	list_add(&mirror->list, &mirror->hmm->mirrors);
293 	up_write(&mirror->hmm->mirrors_sem);
294 
295 	return 0;
296 }
297 EXPORT_SYMBOL(hmm_mirror_register);
298 
299 /*
300  * hmm_mirror_unregister() - unregister a mirror
301  *
302  * @mirror: new mirror struct to register
303  *
304  * Stop mirroring a process address space, and cleanup.
305  */
306 void hmm_mirror_unregister(struct hmm_mirror *mirror)
307 {
308 	struct hmm *hmm = READ_ONCE(mirror->hmm);
309 
310 	if (hmm == NULL)
311 		return;
312 
313 	down_write(&hmm->mirrors_sem);
314 	list_del_init(&mirror->list);
315 	/* To protect us against double unregister ... */
316 	mirror->hmm = NULL;
317 	up_write(&hmm->mirrors_sem);
318 
319 	hmm_put(hmm);
320 }
321 EXPORT_SYMBOL(hmm_mirror_unregister);
322 
323 struct hmm_vma_walk {
324 	struct hmm_range	*range;
325 	unsigned long		last;
326 	bool			fault;
327 	bool			block;
328 };
329 
330 static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
331 			    bool write_fault, uint64_t *pfn)
332 {
333 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
334 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
335 	struct hmm_range *range = hmm_vma_walk->range;
336 	struct vm_area_struct *vma = walk->vma;
337 	vm_fault_t ret;
338 
339 	flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
340 	flags |= write_fault ? FAULT_FLAG_WRITE : 0;
341 	ret = handle_mm_fault(vma, addr, flags);
342 	if (ret & VM_FAULT_RETRY)
343 		return -EBUSY;
344 	if (ret & VM_FAULT_ERROR) {
345 		*pfn = range->values[HMM_PFN_ERROR];
346 		return -EFAULT;
347 	}
348 
349 	return -EAGAIN;
350 }
351 
352 static int hmm_pfns_bad(unsigned long addr,
353 			unsigned long end,
354 			struct mm_walk *walk)
355 {
356 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
357 	struct hmm_range *range = hmm_vma_walk->range;
358 	uint64_t *pfns = range->pfns;
359 	unsigned long i;
360 
361 	i = (addr - range->start) >> PAGE_SHIFT;
362 	for (; addr < end; addr += PAGE_SIZE, i++)
363 		pfns[i] = range->values[HMM_PFN_ERROR];
364 
365 	return 0;
366 }
367 
368 /*
369  * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
370  * @start: range virtual start address (inclusive)
371  * @end: range virtual end address (exclusive)
372  * @fault: should we fault or not ?
373  * @write_fault: write fault ?
374  * @walk: mm_walk structure
375  * Returns: 0 on success, -EAGAIN after page fault, or page fault error
376  *
377  * This function will be called whenever pmd_none() or pte_none() returns true,
378  * or whenever there is no page directory covering the virtual address range.
379  */
380 static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
381 			      bool fault, bool write_fault,
382 			      struct mm_walk *walk)
383 {
384 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
385 	struct hmm_range *range = hmm_vma_walk->range;
386 	uint64_t *pfns = range->pfns;
387 	unsigned long i;
388 
389 	hmm_vma_walk->last = addr;
390 	i = (addr - range->start) >> PAGE_SHIFT;
391 	for (; addr < end; addr += PAGE_SIZE, i++) {
392 		pfns[i] = range->values[HMM_PFN_NONE];
393 		if (fault || write_fault) {
394 			int ret;
395 
396 			ret = hmm_vma_do_fault(walk, addr, write_fault,
397 					       &pfns[i]);
398 			if (ret != -EAGAIN)
399 				return ret;
400 		}
401 	}
402 
403 	return (fault || write_fault) ? -EAGAIN : 0;
404 }
405 
406 static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
407 				      uint64_t pfns, uint64_t cpu_flags,
408 				      bool *fault, bool *write_fault)
409 {
410 	struct hmm_range *range = hmm_vma_walk->range;
411 
412 	*fault = *write_fault = false;
413 	if (!hmm_vma_walk->fault)
414 		return;
415 
416 	/* We aren't ask to do anything ... */
417 	if (!(pfns & range->flags[HMM_PFN_VALID]))
418 		return;
419 	/* If this is device memory than only fault if explicitly requested */
420 	if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
421 		/* Do we fault on device memory ? */
422 		if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
423 			*write_fault = pfns & range->flags[HMM_PFN_WRITE];
424 			*fault = true;
425 		}
426 		return;
427 	}
428 
429 	/* If CPU page table is not valid then we need to fault */
430 	*fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
431 	/* Need to write fault ? */
432 	if ((pfns & range->flags[HMM_PFN_WRITE]) &&
433 	    !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
434 		*write_fault = true;
435 		*fault = true;
436 	}
437 }
438 
439 static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
440 				 const uint64_t *pfns, unsigned long npages,
441 				 uint64_t cpu_flags, bool *fault,
442 				 bool *write_fault)
443 {
444 	unsigned long i;
445 
446 	if (!hmm_vma_walk->fault) {
447 		*fault = *write_fault = false;
448 		return;
449 	}
450 
451 	for (i = 0; i < npages; ++i) {
452 		hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
453 				   fault, write_fault);
454 		if ((*fault) || (*write_fault))
455 			return;
456 	}
457 }
458 
459 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
460 			     struct mm_walk *walk)
461 {
462 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
463 	struct hmm_range *range = hmm_vma_walk->range;
464 	bool fault, write_fault;
465 	unsigned long i, npages;
466 	uint64_t *pfns;
467 
468 	i = (addr - range->start) >> PAGE_SHIFT;
469 	npages = (end - addr) >> PAGE_SHIFT;
470 	pfns = &range->pfns[i];
471 	hmm_range_need_fault(hmm_vma_walk, pfns, npages,
472 			     0, &fault, &write_fault);
473 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
474 }
475 
476 static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
477 {
478 	if (pmd_protnone(pmd))
479 		return 0;
480 	return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
481 				range->flags[HMM_PFN_WRITE] :
482 				range->flags[HMM_PFN_VALID];
483 }
484 
485 static int hmm_vma_handle_pmd(struct mm_walk *walk,
486 			      unsigned long addr,
487 			      unsigned long end,
488 			      uint64_t *pfns,
489 			      pmd_t pmd)
490 {
491 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
492 	struct hmm_range *range = hmm_vma_walk->range;
493 	unsigned long pfn, npages, i;
494 	bool fault, write_fault;
495 	uint64_t cpu_flags;
496 
497 	npages = (end - addr) >> PAGE_SHIFT;
498 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
499 	hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
500 			     &fault, &write_fault);
501 
502 	if (pmd_protnone(pmd) || fault || write_fault)
503 		return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
504 
505 	pfn = pmd_pfn(pmd) + pte_index(addr);
506 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
507 		pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
508 	hmm_vma_walk->last = end;
509 	return 0;
510 }
511 
512 static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
513 {
514 	if (pte_none(pte) || !pte_present(pte))
515 		return 0;
516 	return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
517 				range->flags[HMM_PFN_WRITE] :
518 				range->flags[HMM_PFN_VALID];
519 }
520 
521 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
522 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
523 			      uint64_t *pfn)
524 {
525 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
526 	struct hmm_range *range = hmm_vma_walk->range;
527 	struct vm_area_struct *vma = walk->vma;
528 	bool fault, write_fault;
529 	uint64_t cpu_flags;
530 	pte_t pte = *ptep;
531 	uint64_t orig_pfn = *pfn;
532 
533 	*pfn = range->values[HMM_PFN_NONE];
534 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
535 	hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
536 			   &fault, &write_fault);
537 
538 	if (pte_none(pte)) {
539 		if (fault || write_fault)
540 			goto fault;
541 		return 0;
542 	}
543 
544 	if (!pte_present(pte)) {
545 		swp_entry_t entry = pte_to_swp_entry(pte);
546 
547 		if (!non_swap_entry(entry)) {
548 			if (fault || write_fault)
549 				goto fault;
550 			return 0;
551 		}
552 
553 		/*
554 		 * This is a special swap entry, ignore migration, use
555 		 * device and report anything else as error.
556 		 */
557 		if (is_device_private_entry(entry)) {
558 			cpu_flags = range->flags[HMM_PFN_VALID] |
559 				range->flags[HMM_PFN_DEVICE_PRIVATE];
560 			cpu_flags |= is_write_device_private_entry(entry) ?
561 				range->flags[HMM_PFN_WRITE] : 0;
562 			hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
563 					   &fault, &write_fault);
564 			if (fault || write_fault)
565 				goto fault;
566 			*pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
567 			*pfn |= cpu_flags;
568 			return 0;
569 		}
570 
571 		if (is_migration_entry(entry)) {
572 			if (fault || write_fault) {
573 				pte_unmap(ptep);
574 				hmm_vma_walk->last = addr;
575 				migration_entry_wait(vma->vm_mm,
576 						     pmdp, addr);
577 				return -EAGAIN;
578 			}
579 			return 0;
580 		}
581 
582 		/* Report error for everything else */
583 		*pfn = range->values[HMM_PFN_ERROR];
584 		return -EFAULT;
585 	}
586 
587 	if (fault || write_fault)
588 		goto fault;
589 
590 	*pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
591 	return 0;
592 
593 fault:
594 	pte_unmap(ptep);
595 	/* Fault any virtual address we were asked to fault */
596 	return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
597 }
598 
599 static int hmm_vma_walk_pmd(pmd_t *pmdp,
600 			    unsigned long start,
601 			    unsigned long end,
602 			    struct mm_walk *walk)
603 {
604 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
605 	struct hmm_range *range = hmm_vma_walk->range;
606 	struct vm_area_struct *vma = walk->vma;
607 	uint64_t *pfns = range->pfns;
608 	unsigned long addr = start, i;
609 	pte_t *ptep;
610 	pmd_t pmd;
611 
612 
613 again:
614 	pmd = READ_ONCE(*pmdp);
615 	if (pmd_none(pmd))
616 		return hmm_vma_walk_hole(start, end, walk);
617 
618 	if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
619 		return hmm_pfns_bad(start, end, walk);
620 
621 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
622 		bool fault, write_fault;
623 		unsigned long npages;
624 		uint64_t *pfns;
625 
626 		i = (addr - range->start) >> PAGE_SHIFT;
627 		npages = (end - addr) >> PAGE_SHIFT;
628 		pfns = &range->pfns[i];
629 
630 		hmm_range_need_fault(hmm_vma_walk, pfns, npages,
631 				     0, &fault, &write_fault);
632 		if (fault || write_fault) {
633 			hmm_vma_walk->last = addr;
634 			pmd_migration_entry_wait(vma->vm_mm, pmdp);
635 			return -EAGAIN;
636 		}
637 		return 0;
638 	} else if (!pmd_present(pmd))
639 		return hmm_pfns_bad(start, end, walk);
640 
641 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
642 		/*
643 		 * No need to take pmd_lock here, even if some other threads
644 		 * is splitting the huge pmd we will get that event through
645 		 * mmu_notifier callback.
646 		 *
647 		 * So just read pmd value and check again its a transparent
648 		 * huge or device mapping one and compute corresponding pfn
649 		 * values.
650 		 */
651 		pmd = pmd_read_atomic(pmdp);
652 		barrier();
653 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
654 			goto again;
655 
656 		i = (addr - range->start) >> PAGE_SHIFT;
657 		return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
658 	}
659 
660 	/*
661 	 * We have handled all the valid case above ie either none, migration,
662 	 * huge or transparent huge. At this point either it is a valid pmd
663 	 * entry pointing to pte directory or it is a bad pmd that will not
664 	 * recover.
665 	 */
666 	if (pmd_bad(pmd))
667 		return hmm_pfns_bad(start, end, walk);
668 
669 	ptep = pte_offset_map(pmdp, addr);
670 	i = (addr - range->start) >> PAGE_SHIFT;
671 	for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
672 		int r;
673 
674 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
675 		if (r) {
676 			/* hmm_vma_handle_pte() did unmap pte directory */
677 			hmm_vma_walk->last = addr;
678 			return r;
679 		}
680 	}
681 	pte_unmap(ptep - 1);
682 
683 	hmm_vma_walk->last = addr;
684 	return 0;
685 }
686 
687 static void hmm_pfns_clear(struct hmm_range *range,
688 			   uint64_t *pfns,
689 			   unsigned long addr,
690 			   unsigned long end)
691 {
692 	for (; addr < end; addr += PAGE_SIZE, pfns++)
693 		*pfns = range->values[HMM_PFN_NONE];
694 }
695 
696 static void hmm_pfns_special(struct hmm_range *range)
697 {
698 	unsigned long addr = range->start, i = 0;
699 
700 	for (; addr < range->end; addr += PAGE_SIZE, i++)
701 		range->pfns[i] = range->values[HMM_PFN_SPECIAL];
702 }
703 
704 /*
705  * hmm_range_snapshot() - snapshot CPU page table for a range
706  * @range: range
707  * Returns: number of valid pages in range->pfns[] (from range start
708  *          address). This may be zero. If the return value is negative,
709  *          then one of the following values may be returned:
710  *
711  *           -EINVAL  invalid arguments or mm or virtual address are in an
712  *                    invalid vma (ie either hugetlbfs or device file vma).
713  *           -EPERM   For example, asking for write, when the range is
714  *                    read-only
715  *           -EAGAIN  Caller needs to retry
716  *           -EFAULT  Either no valid vma exists for this range, or it is
717  *                    illegal to access the range
718  *
719  * This snapshots the CPU page table for a range of virtual addresses. Snapshot
720  * validity is tracked by range struct. See hmm_vma_range_done() for further
721  * information.
722  */
723 long hmm_range_snapshot(struct hmm_range *range)
724 {
725 	struct vm_area_struct *vma = range->vma;
726 	struct hmm_vma_walk hmm_vma_walk;
727 	struct mm_walk mm_walk;
728 	struct hmm *hmm;
729 
730 	range->hmm = NULL;
731 
732 	/* Sanity check, this really should not happen ! */
733 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
734 		return -EINVAL;
735 	if (range->end < vma->vm_start || range->end > vma->vm_end)
736 		return -EINVAL;
737 
738 	hmm = hmm_get_or_create(vma->vm_mm);
739 	if (!hmm)
740 		return -ENOMEM;
741 
742 	/* Check if hmm_mm_destroy() was call. */
743 	if (hmm->mm == NULL) {
744 		hmm_put(hmm);
745 		return -EINVAL;
746 	}
747 
748 	/* FIXME support hugetlb fs */
749 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
750 			vma_is_dax(vma)) {
751 		hmm_pfns_special(range);
752 		hmm_put(hmm);
753 		return -EINVAL;
754 	}
755 
756 	if (!(vma->vm_flags & VM_READ)) {
757 		/*
758 		 * If vma do not allow read access, then assume that it does
759 		 * not allow write access, either. Architecture that allow
760 		 * write without read access are not supported by HMM, because
761 		 * operations such has atomic access would not work.
762 		 */
763 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
764 		hmm_put(hmm);
765 		return -EPERM;
766 	}
767 
768 	/* Initialize range to track CPU page table update */
769 	spin_lock(&hmm->lock);
770 	range->valid = true;
771 	list_add_rcu(&range->list, &hmm->ranges);
772 	spin_unlock(&hmm->lock);
773 
774 	hmm_vma_walk.fault = false;
775 	hmm_vma_walk.range = range;
776 	mm_walk.private = &hmm_vma_walk;
777 	hmm_vma_walk.last = range->start;
778 
779 	mm_walk.vma = vma;
780 	mm_walk.mm = vma->vm_mm;
781 	mm_walk.pte_entry = NULL;
782 	mm_walk.test_walk = NULL;
783 	mm_walk.hugetlb_entry = NULL;
784 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
785 	mm_walk.pte_hole = hmm_vma_walk_hole;
786 
787 	walk_page_range(range->start, range->end, &mm_walk);
788 	/*
789 	 * Transfer hmm reference to the range struct it will be drop inside
790 	 * the hmm_vma_range_done() function (which _must_ be call if this
791 	 * function return 0).
792 	 */
793 	range->hmm = hmm;
794 	return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
795 }
796 EXPORT_SYMBOL(hmm_range_snapshot);
797 
798 /*
799  * hmm_vma_range_done() - stop tracking change to CPU page table over a range
800  * @range: range being tracked
801  * Returns: false if range data has been invalidated, true otherwise
802  *
803  * Range struct is used to track updates to the CPU page table after a call to
804  * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
805  * using the data,  or wants to lock updates to the data it got from those
806  * functions, it must call the hmm_vma_range_done() function, which will then
807  * stop tracking CPU page table updates.
808  *
809  * Note that device driver must still implement general CPU page table update
810  * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
811  * the mmu_notifier API directly.
812  *
813  * CPU page table update tracking done through hmm_range is only temporary and
814  * to be used while trying to duplicate CPU page table contents for a range of
815  * virtual addresses.
816  *
817  * There are two ways to use this :
818  * again:
819  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
820  *   trans = device_build_page_table_update_transaction(pfns);
821  *   device_page_table_lock();
822  *   if (!hmm_vma_range_done(range)) {
823  *     device_page_table_unlock();
824  *     goto again;
825  *   }
826  *   device_commit_transaction(trans);
827  *   device_page_table_unlock();
828  *
829  * Or:
830  *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
831  *   device_page_table_lock();
832  *   hmm_vma_range_done(range);
833  *   device_update_page_table(range->pfns);
834  *   device_page_table_unlock();
835  */
836 bool hmm_vma_range_done(struct hmm_range *range)
837 {
838 	bool ret = false;
839 
840 	/* Sanity check this really should not happen. */
841 	if (range->hmm == NULL || range->end <= range->start) {
842 		BUG();
843 		return false;
844 	}
845 
846 	spin_lock(&range->hmm->lock);
847 	list_del_rcu(&range->list);
848 	ret = range->valid;
849 	spin_unlock(&range->hmm->lock);
850 
851 	/* Is the mm still alive ? */
852 	if (range->hmm->mm == NULL)
853 		ret = false;
854 
855 	/* Drop reference taken by hmm_vma_fault() or hmm_vma_get_pfns() */
856 	hmm_put(range->hmm);
857 	range->hmm = NULL;
858 	return ret;
859 }
860 EXPORT_SYMBOL(hmm_vma_range_done);
861 
862 /*
863  * hmm_vma_fault() - try to fault some address in a virtual address range
864  * @range: range being faulted
865  * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
866  * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
867  *
868  * This is similar to a regular CPU page fault except that it will not trigger
869  * any memory migration if the memory being faulted is not accessible by CPUs.
870  *
871  * On error, for one virtual address in the range, the function will mark the
872  * corresponding HMM pfn entry with an error flag.
873  *
874  * Expected use pattern:
875  * retry:
876  *   down_read(&mm->mmap_sem);
877  *   // Find vma and address device wants to fault, initialize hmm_pfn_t
878  *   // array accordingly
879  *   ret = hmm_vma_fault(range, write, block);
880  *   switch (ret) {
881  *   case -EAGAIN:
882  *     hmm_vma_range_done(range);
883  *     // You might want to rate limit or yield to play nicely, you may
884  *     // also commit any valid pfn in the array assuming that you are
885  *     // getting true from hmm_vma_range_monitor_end()
886  *     goto retry;
887  *   case 0:
888  *     break;
889  *   case -ENOMEM:
890  *   case -EINVAL:
891  *   case -EPERM:
892  *   default:
893  *     // Handle error !
894  *     up_read(&mm->mmap_sem)
895  *     return;
896  *   }
897  *   // Take device driver lock that serialize device page table update
898  *   driver_lock_device_page_table_update();
899  *   hmm_vma_range_done(range);
900  *   // Commit pfns we got from hmm_vma_fault()
901  *   driver_unlock_device_page_table_update();
902  *   up_read(&mm->mmap_sem)
903  *
904  * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
905  * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
906  *
907  * YOU HAVE BEEN WARNED !
908  */
909 int hmm_vma_fault(struct hmm_range *range, bool block)
910 {
911 	struct vm_area_struct *vma = range->vma;
912 	unsigned long start = range->start;
913 	struct hmm_vma_walk hmm_vma_walk;
914 	struct mm_walk mm_walk;
915 	struct hmm *hmm;
916 	int ret;
917 
918 	range->hmm = NULL;
919 
920 	/* Sanity check, this really should not happen ! */
921 	if (range->start < vma->vm_start || range->start >= vma->vm_end)
922 		return -EINVAL;
923 	if (range->end < vma->vm_start || range->end > vma->vm_end)
924 		return -EINVAL;
925 
926 	hmm = hmm_get_or_create(vma->vm_mm);
927 	if (!hmm) {
928 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
929 		return -ENOMEM;
930 	}
931 
932 	/* Check if hmm_mm_destroy() was call. */
933 	if (hmm->mm == NULL) {
934 		hmm_put(hmm);
935 		return -EINVAL;
936 	}
937 
938 	/* FIXME support hugetlb fs */
939 	if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
940 			vma_is_dax(vma)) {
941 		hmm_pfns_special(range);
942 		hmm_put(hmm);
943 		return -EINVAL;
944 	}
945 
946 	if (!(vma->vm_flags & VM_READ)) {
947 		/*
948 		 * If vma do not allow read access, then assume that it does
949 		 * not allow write access, either. Architecture that allow
950 		 * write without read access are not supported by HMM, because
951 		 * operations such has atomic access would not work.
952 		 */
953 		hmm_pfns_clear(range, range->pfns, range->start, range->end);
954 		hmm_put(hmm);
955 		return -EPERM;
956 	}
957 
958 	/* Initialize range to track CPU page table update */
959 	spin_lock(&hmm->lock);
960 	range->valid = true;
961 	list_add_rcu(&range->list, &hmm->ranges);
962 	spin_unlock(&hmm->lock);
963 
964 	hmm_vma_walk.fault = true;
965 	hmm_vma_walk.block = block;
966 	hmm_vma_walk.range = range;
967 	mm_walk.private = &hmm_vma_walk;
968 	hmm_vma_walk.last = range->start;
969 
970 	mm_walk.vma = vma;
971 	mm_walk.mm = vma->vm_mm;
972 	mm_walk.pte_entry = NULL;
973 	mm_walk.test_walk = NULL;
974 	mm_walk.hugetlb_entry = NULL;
975 	mm_walk.pmd_entry = hmm_vma_walk_pmd;
976 	mm_walk.pte_hole = hmm_vma_walk_hole;
977 
978 	do {
979 		ret = walk_page_range(start, range->end, &mm_walk);
980 		start = hmm_vma_walk.last;
981 	} while (ret == -EAGAIN);
982 
983 	if (ret) {
984 		unsigned long i;
985 
986 		i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
987 		hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
988 			       range->end);
989 		hmm_vma_range_done(range);
990 		hmm_put(hmm);
991 	} else {
992 		/*
993 		 * Transfer hmm reference to the range struct it will be drop
994 		 * inside the hmm_vma_range_done() function (which _must_ be
995 		 * call if this function return 0).
996 		 */
997 		range->hmm = hmm;
998 	}
999 
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL(hmm_vma_fault);
1003 #endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
1004 
1005 
1006 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
1007 struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1008 				       unsigned long addr)
1009 {
1010 	struct page *page;
1011 
1012 	page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1013 	if (!page)
1014 		return NULL;
1015 	lock_page(page);
1016 	return page;
1017 }
1018 EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1019 
1020 
1021 static void hmm_devmem_ref_release(struct percpu_ref *ref)
1022 {
1023 	struct hmm_devmem *devmem;
1024 
1025 	devmem = container_of(ref, struct hmm_devmem, ref);
1026 	complete(&devmem->completion);
1027 }
1028 
1029 static void hmm_devmem_ref_exit(void *data)
1030 {
1031 	struct percpu_ref *ref = data;
1032 	struct hmm_devmem *devmem;
1033 
1034 	devmem = container_of(ref, struct hmm_devmem, ref);
1035 	wait_for_completion(&devmem->completion);
1036 	percpu_ref_exit(ref);
1037 }
1038 
1039 static void hmm_devmem_ref_kill(struct percpu_ref *ref)
1040 {
1041 	percpu_ref_kill(ref);
1042 }
1043 
1044 static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
1045 			    unsigned long addr,
1046 			    const struct page *page,
1047 			    unsigned int flags,
1048 			    pmd_t *pmdp)
1049 {
1050 	struct hmm_devmem *devmem = page->pgmap->data;
1051 
1052 	return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1053 }
1054 
1055 static void hmm_devmem_free(struct page *page, void *data)
1056 {
1057 	struct hmm_devmem *devmem = data;
1058 
1059 	page->mapping = NULL;
1060 
1061 	devmem->ops->free(devmem, page);
1062 }
1063 
1064 /*
1065  * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1066  *
1067  * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1068  * @device: device struct to bind the resource too
1069  * @size: size in bytes of the device memory to add
1070  * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1071  *
1072  * This function first finds an empty range of physical address big enough to
1073  * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1074  * in turn allocates struct pages. It does not do anything beyond that; all
1075  * events affecting the memory will go through the various callbacks provided
1076  * by hmm_devmem_ops struct.
1077  *
1078  * Device driver should call this function during device initialization and
1079  * is then responsible of memory management. HMM only provides helpers.
1080  */
1081 struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1082 				  struct device *device,
1083 				  unsigned long size)
1084 {
1085 	struct hmm_devmem *devmem;
1086 	resource_size_t addr;
1087 	void *result;
1088 	int ret;
1089 
1090 	dev_pagemap_get_ops();
1091 
1092 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1093 	if (!devmem)
1094 		return ERR_PTR(-ENOMEM);
1095 
1096 	init_completion(&devmem->completion);
1097 	devmem->pfn_first = -1UL;
1098 	devmem->pfn_last = -1UL;
1099 	devmem->resource = NULL;
1100 	devmem->device = device;
1101 	devmem->ops = ops;
1102 
1103 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1104 			      0, GFP_KERNEL);
1105 	if (ret)
1106 		return ERR_PTR(ret);
1107 
1108 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
1109 	if (ret)
1110 		return ERR_PTR(ret);
1111 
1112 	size = ALIGN(size, PA_SECTION_SIZE);
1113 	addr = min((unsigned long)iomem_resource.end,
1114 		   (1UL << MAX_PHYSMEM_BITS) - 1);
1115 	addr = addr - size + 1UL;
1116 
1117 	/*
1118 	 * FIXME add a new helper to quickly walk resource tree and find free
1119 	 * range
1120 	 *
1121 	 * FIXME what about ioport_resource resource ?
1122 	 */
1123 	for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1124 		ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1125 		if (ret != REGION_DISJOINT)
1126 			continue;
1127 
1128 		devmem->resource = devm_request_mem_region(device, addr, size,
1129 							   dev_name(device));
1130 		if (!devmem->resource)
1131 			return ERR_PTR(-ENOMEM);
1132 		break;
1133 	}
1134 	if (!devmem->resource)
1135 		return ERR_PTR(-ERANGE);
1136 
1137 	devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1138 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1139 	devmem->pfn_last = devmem->pfn_first +
1140 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1141 	devmem->page_fault = hmm_devmem_fault;
1142 
1143 	devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1144 	devmem->pagemap.res = *devmem->resource;
1145 	devmem->pagemap.page_free = hmm_devmem_free;
1146 	devmem->pagemap.altmap_valid = false;
1147 	devmem->pagemap.ref = &devmem->ref;
1148 	devmem->pagemap.data = devmem;
1149 	devmem->pagemap.kill = hmm_devmem_ref_kill;
1150 
1151 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1152 	if (IS_ERR(result))
1153 		return result;
1154 	return devmem;
1155 }
1156 EXPORT_SYMBOL_GPL(hmm_devmem_add);
1157 
1158 struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1159 					   struct device *device,
1160 					   struct resource *res)
1161 {
1162 	struct hmm_devmem *devmem;
1163 	void *result;
1164 	int ret;
1165 
1166 	if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1167 		return ERR_PTR(-EINVAL);
1168 
1169 	dev_pagemap_get_ops();
1170 
1171 	devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
1172 	if (!devmem)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	init_completion(&devmem->completion);
1176 	devmem->pfn_first = -1UL;
1177 	devmem->pfn_last = -1UL;
1178 	devmem->resource = res;
1179 	devmem->device = device;
1180 	devmem->ops = ops;
1181 
1182 	ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1183 			      0, GFP_KERNEL);
1184 	if (ret)
1185 		return ERR_PTR(ret);
1186 
1187 	ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1188 			&devmem->ref);
1189 	if (ret)
1190 		return ERR_PTR(ret);
1191 
1192 	devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1193 	devmem->pfn_last = devmem->pfn_first +
1194 			   (resource_size(devmem->resource) >> PAGE_SHIFT);
1195 	devmem->page_fault = hmm_devmem_fault;
1196 
1197 	devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1198 	devmem->pagemap.res = *devmem->resource;
1199 	devmem->pagemap.page_free = hmm_devmem_free;
1200 	devmem->pagemap.altmap_valid = false;
1201 	devmem->pagemap.ref = &devmem->ref;
1202 	devmem->pagemap.data = devmem;
1203 	devmem->pagemap.kill = hmm_devmem_ref_kill;
1204 
1205 	result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1206 	if (IS_ERR(result))
1207 		return result;
1208 	return devmem;
1209 }
1210 EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
1211 
1212 /*
1213  * A device driver that wants to handle multiple devices memory through a
1214  * single fake device can use hmm_device to do so. This is purely a helper
1215  * and it is not needed to make use of any HMM functionality.
1216  */
1217 #define HMM_DEVICE_MAX 256
1218 
1219 static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1220 static DEFINE_SPINLOCK(hmm_device_lock);
1221 static struct class *hmm_device_class;
1222 static dev_t hmm_device_devt;
1223 
1224 static void hmm_device_release(struct device *device)
1225 {
1226 	struct hmm_device *hmm_device;
1227 
1228 	hmm_device = container_of(device, struct hmm_device, device);
1229 	spin_lock(&hmm_device_lock);
1230 	clear_bit(hmm_device->minor, hmm_device_mask);
1231 	spin_unlock(&hmm_device_lock);
1232 
1233 	kfree(hmm_device);
1234 }
1235 
1236 struct hmm_device *hmm_device_new(void *drvdata)
1237 {
1238 	struct hmm_device *hmm_device;
1239 
1240 	hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1241 	if (!hmm_device)
1242 		return ERR_PTR(-ENOMEM);
1243 
1244 	spin_lock(&hmm_device_lock);
1245 	hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1246 	if (hmm_device->minor >= HMM_DEVICE_MAX) {
1247 		spin_unlock(&hmm_device_lock);
1248 		kfree(hmm_device);
1249 		return ERR_PTR(-EBUSY);
1250 	}
1251 	set_bit(hmm_device->minor, hmm_device_mask);
1252 	spin_unlock(&hmm_device_lock);
1253 
1254 	dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1255 	hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1256 					hmm_device->minor);
1257 	hmm_device->device.release = hmm_device_release;
1258 	dev_set_drvdata(&hmm_device->device, drvdata);
1259 	hmm_device->device.class = hmm_device_class;
1260 	device_initialize(&hmm_device->device);
1261 
1262 	return hmm_device;
1263 }
1264 EXPORT_SYMBOL(hmm_device_new);
1265 
1266 void hmm_device_put(struct hmm_device *hmm_device)
1267 {
1268 	put_device(&hmm_device->device);
1269 }
1270 EXPORT_SYMBOL(hmm_device_put);
1271 
1272 static int __init hmm_init(void)
1273 {
1274 	int ret;
1275 
1276 	ret = alloc_chrdev_region(&hmm_device_devt, 0,
1277 				  HMM_DEVICE_MAX,
1278 				  "hmm_device");
1279 	if (ret)
1280 		return ret;
1281 
1282 	hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1283 	if (IS_ERR(hmm_device_class)) {
1284 		unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1285 		return PTR_ERR(hmm_device_class);
1286 	}
1287 	return 0;
1288 }
1289 
1290 device_initcall(hmm_init);
1291 #endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1292