xref: /linux/mm/hmm.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2013 Red Hat Inc.
4  *
5  * Authors: Jérôme Glisse <jglisse@redhat.com>
6  */
7 /*
8  * Refer to include/linux/hmm.h for information about heterogeneous memory
9  * management or HMM for short.
10  */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28 
29 #include "internal.h"
30 
31 struct hmm_vma_walk {
32 	struct hmm_range	*range;
33 	unsigned long		last;
34 };
35 
36 enum {
37 	HMM_NEED_FAULT = 1 << 0,
38 	HMM_NEED_WRITE_FAULT = 1 << 1,
39 	HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40 };
41 
42 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43 			 struct hmm_range *range, unsigned long cpu_flags)
44 {
45 	unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46 
47 	for (; addr < end; addr += PAGE_SIZE, i++)
48 		range->hmm_pfns[i] = cpu_flags;
49 	return 0;
50 }
51 
52 /*
53  * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54  * @addr: range virtual start address (inclusive)
55  * @end: range virtual end address (exclusive)
56  * @required_fault: HMM_NEED_* flags
57  * @walk: mm_walk structure
58  * Return: -EBUSY after page fault, or page fault error
59  *
60  * This function will be called whenever pmd_none() or pte_none() returns true,
61  * or whenever there is no page directory covering the virtual address range.
62  */
63 static int hmm_vma_fault(unsigned long addr, unsigned long end,
64 			 unsigned int required_fault, struct mm_walk *walk)
65 {
66 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
67 	struct vm_area_struct *vma = walk->vma;
68 	unsigned int fault_flags = FAULT_FLAG_REMOTE;
69 
70 	WARN_ON_ONCE(!required_fault);
71 	hmm_vma_walk->last = addr;
72 
73 	if (required_fault & HMM_NEED_WRITE_FAULT) {
74 		if (!(vma->vm_flags & VM_WRITE))
75 			return -EPERM;
76 		fault_flags |= FAULT_FLAG_WRITE;
77 	}
78 
79 	for (; addr < end; addr += PAGE_SIZE)
80 		if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81 		    VM_FAULT_ERROR)
82 			return -EFAULT;
83 	return -EBUSY;
84 }
85 
86 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87 				       unsigned long pfn_req_flags,
88 				       unsigned long cpu_flags)
89 {
90 	struct hmm_range *range = hmm_vma_walk->range;
91 
92 	/*
93 	 * So we not only consider the individual per page request we also
94 	 * consider the default flags requested for the range. The API can
95 	 * be used 2 ways. The first one where the HMM user coalesces
96 	 * multiple page faults into one request and sets flags per pfn for
97 	 * those faults. The second one where the HMM user wants to pre-
98 	 * fault a range with specific flags. For the latter one it is a
99 	 * waste to have the user pre-fill the pfn arrays with a default
100 	 * flags value.
101 	 */
102 	pfn_req_flags &= range->pfn_flags_mask;
103 	pfn_req_flags |= range->default_flags;
104 
105 	/* We aren't ask to do anything ... */
106 	if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107 		return 0;
108 
109 	/* Need to write fault ? */
110 	if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111 	    !(cpu_flags & HMM_PFN_WRITE))
112 		return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113 
114 	/* If CPU page table is not valid then we need to fault */
115 	if (!(cpu_flags & HMM_PFN_VALID))
116 		return HMM_NEED_FAULT;
117 	return 0;
118 }
119 
120 static unsigned int
121 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122 		     const unsigned long hmm_pfns[], unsigned long npages,
123 		     unsigned long cpu_flags)
124 {
125 	struct hmm_range *range = hmm_vma_walk->range;
126 	unsigned int required_fault = 0;
127 	unsigned long i;
128 
129 	/*
130 	 * If the default flags do not request to fault pages, and the mask does
131 	 * not allow for individual pages to be faulted, then
132 	 * hmm_pte_need_fault() will always return 0.
133 	 */
134 	if (!((range->default_flags | range->pfn_flags_mask) &
135 	      HMM_PFN_REQ_FAULT))
136 		return 0;
137 
138 	for (i = 0; i < npages; ++i) {
139 		required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140 						     cpu_flags);
141 		if (required_fault == HMM_NEED_ALL_BITS)
142 			return required_fault;
143 	}
144 	return required_fault;
145 }
146 
147 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148 			     __always_unused int depth, struct mm_walk *walk)
149 {
150 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
151 	struct hmm_range *range = hmm_vma_walk->range;
152 	unsigned int required_fault;
153 	unsigned long i, npages;
154 	unsigned long *hmm_pfns;
155 
156 	i = (addr - range->start) >> PAGE_SHIFT;
157 	npages = (end - addr) >> PAGE_SHIFT;
158 	hmm_pfns = &range->hmm_pfns[i];
159 	required_fault =
160 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161 	if (!walk->vma) {
162 		if (required_fault)
163 			return -EFAULT;
164 		return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165 	}
166 	if (required_fault)
167 		return hmm_vma_fault(addr, end, required_fault, walk);
168 	return hmm_pfns_fill(addr, end, range, 0);
169 }
170 
171 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172 {
173 	return order << HMM_PFN_ORDER_SHIFT;
174 }
175 
176 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177 						 pmd_t pmd)
178 {
179 	if (pmd_protnone(pmd))
180 		return 0;
181 	return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182 				 HMM_PFN_VALID) |
183 	       hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184 }
185 
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
187 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188 			      unsigned long end, unsigned long hmm_pfns[],
189 			      pmd_t pmd)
190 {
191 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
192 	struct hmm_range *range = hmm_vma_walk->range;
193 	unsigned long pfn, npages, i;
194 	unsigned int required_fault;
195 	unsigned long cpu_flags;
196 
197 	npages = (end - addr) >> PAGE_SHIFT;
198 	cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199 	required_fault =
200 		hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201 	if (required_fault)
202 		return hmm_vma_fault(addr, end, required_fault, walk);
203 
204 	pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205 	for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206 		hmm_pfns[i] = pfn | cpu_flags;
207 	return 0;
208 }
209 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
210 /* stub to allow the code below to compile */
211 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212 		unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214 
215 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
216 						 pte_t pte)
217 {
218 	if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
219 		return 0;
220 	return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
221 }
222 
223 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
224 			      unsigned long end, pmd_t *pmdp, pte_t *ptep,
225 			      unsigned long *hmm_pfn)
226 {
227 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
228 	struct hmm_range *range = hmm_vma_walk->range;
229 	unsigned int required_fault;
230 	unsigned long cpu_flags;
231 	pte_t pte = ptep_get(ptep);
232 	uint64_t pfn_req_flags = *hmm_pfn;
233 
234 	if (pte_none_mostly(pte)) {
235 		required_fault =
236 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
237 		if (required_fault)
238 			goto fault;
239 		*hmm_pfn = 0;
240 		return 0;
241 	}
242 
243 	if (!pte_present(pte)) {
244 		swp_entry_t entry = pte_to_swp_entry(pte);
245 
246 		/*
247 		 * Don't fault in device private pages owned by the caller,
248 		 * just report the PFN.
249 		 */
250 		if (is_device_private_entry(entry) &&
251 		    pfn_swap_entry_to_page(entry)->pgmap->owner ==
252 		    range->dev_private_owner) {
253 			cpu_flags = HMM_PFN_VALID;
254 			if (is_writable_device_private_entry(entry))
255 				cpu_flags |= HMM_PFN_WRITE;
256 			*hmm_pfn = swp_offset_pfn(entry) | cpu_flags;
257 			return 0;
258 		}
259 
260 		required_fault =
261 			hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
262 		if (!required_fault) {
263 			*hmm_pfn = 0;
264 			return 0;
265 		}
266 
267 		if (!non_swap_entry(entry))
268 			goto fault;
269 
270 		if (is_device_private_entry(entry))
271 			goto fault;
272 
273 		if (is_device_exclusive_entry(entry))
274 			goto fault;
275 
276 		if (is_migration_entry(entry)) {
277 			pte_unmap(ptep);
278 			hmm_vma_walk->last = addr;
279 			migration_entry_wait(walk->mm, pmdp, addr);
280 			return -EBUSY;
281 		}
282 
283 		/* Report error for everything else */
284 		pte_unmap(ptep);
285 		return -EFAULT;
286 	}
287 
288 	cpu_flags = pte_to_hmm_pfn_flags(range, pte);
289 	required_fault =
290 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
291 	if (required_fault)
292 		goto fault;
293 
294 	/*
295 	 * Bypass devmap pte such as DAX page when all pfn requested
296 	 * flags(pfn_req_flags) are fulfilled.
297 	 * Since each architecture defines a struct page for the zero page, just
298 	 * fall through and treat it like a normal page.
299 	 */
300 	if (!vm_normal_page(walk->vma, addr, pte) &&
301 	    !pte_devmap(pte) &&
302 	    !is_zero_pfn(pte_pfn(pte))) {
303 		if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
304 			pte_unmap(ptep);
305 			return -EFAULT;
306 		}
307 		*hmm_pfn = HMM_PFN_ERROR;
308 		return 0;
309 	}
310 
311 	*hmm_pfn = pte_pfn(pte) | cpu_flags;
312 	return 0;
313 
314 fault:
315 	pte_unmap(ptep);
316 	/* Fault any virtual address we were asked to fault */
317 	return hmm_vma_fault(addr, end, required_fault, walk);
318 }
319 
320 static int hmm_vma_walk_pmd(pmd_t *pmdp,
321 			    unsigned long start,
322 			    unsigned long end,
323 			    struct mm_walk *walk)
324 {
325 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
326 	struct hmm_range *range = hmm_vma_walk->range;
327 	unsigned long *hmm_pfns =
328 		&range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
329 	unsigned long npages = (end - start) >> PAGE_SHIFT;
330 	unsigned long addr = start;
331 	pte_t *ptep;
332 	pmd_t pmd;
333 
334 again:
335 	pmd = pmdp_get_lockless(pmdp);
336 	if (pmd_none(pmd))
337 		return hmm_vma_walk_hole(start, end, -1, walk);
338 
339 	if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
340 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
341 			hmm_vma_walk->last = addr;
342 			pmd_migration_entry_wait(walk->mm, pmdp);
343 			return -EBUSY;
344 		}
345 		return hmm_pfns_fill(start, end, range, 0);
346 	}
347 
348 	if (!pmd_present(pmd)) {
349 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
350 			return -EFAULT;
351 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
352 	}
353 
354 	if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
355 		/*
356 		 * No need to take pmd_lock here, even if some other thread
357 		 * is splitting the huge pmd we will get that event through
358 		 * mmu_notifier callback.
359 		 *
360 		 * So just read pmd value and check again it's a transparent
361 		 * huge or device mapping one and compute corresponding pfn
362 		 * values.
363 		 */
364 		pmd = pmdp_get_lockless(pmdp);
365 		if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
366 			goto again;
367 
368 		return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
369 	}
370 
371 	/*
372 	 * We have handled all the valid cases above ie either none, migration,
373 	 * huge or transparent huge. At this point either it is a valid pmd
374 	 * entry pointing to pte directory or it is a bad pmd that will not
375 	 * recover.
376 	 */
377 	if (pmd_bad(pmd)) {
378 		if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
379 			return -EFAULT;
380 		return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
381 	}
382 
383 	ptep = pte_offset_map(pmdp, addr);
384 	if (!ptep)
385 		goto again;
386 	for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
387 		int r;
388 
389 		r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
390 		if (r) {
391 			/* hmm_vma_handle_pte() did pte_unmap() */
392 			return r;
393 		}
394 	}
395 	pte_unmap(ptep - 1);
396 	return 0;
397 }
398 
399 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
400     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
401 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
402 						 pud_t pud)
403 {
404 	if (!pud_present(pud))
405 		return 0;
406 	return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
407 				 HMM_PFN_VALID) |
408 	       hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
409 }
410 
411 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
412 		struct mm_walk *walk)
413 {
414 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
415 	struct hmm_range *range = hmm_vma_walk->range;
416 	unsigned long addr = start;
417 	pud_t pud;
418 	spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
419 
420 	if (!ptl)
421 		return 0;
422 
423 	/* Normally we don't want to split the huge page */
424 	walk->action = ACTION_CONTINUE;
425 
426 	pud = READ_ONCE(*pudp);
427 	if (!pud_present(pud)) {
428 		spin_unlock(ptl);
429 		return hmm_vma_walk_hole(start, end, -1, walk);
430 	}
431 
432 	if (pud_leaf(pud) && pud_devmap(pud)) {
433 		unsigned long i, npages, pfn;
434 		unsigned int required_fault;
435 		unsigned long *hmm_pfns;
436 		unsigned long cpu_flags;
437 
438 		i = (addr - range->start) >> PAGE_SHIFT;
439 		npages = (end - addr) >> PAGE_SHIFT;
440 		hmm_pfns = &range->hmm_pfns[i];
441 
442 		cpu_flags = pud_to_hmm_pfn_flags(range, pud);
443 		required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
444 						      npages, cpu_flags);
445 		if (required_fault) {
446 			spin_unlock(ptl);
447 			return hmm_vma_fault(addr, end, required_fault, walk);
448 		}
449 
450 		pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
451 		for (i = 0; i < npages; ++i, ++pfn)
452 			hmm_pfns[i] = pfn | cpu_flags;
453 		goto out_unlock;
454 	}
455 
456 	/* Ask for the PUD to be split */
457 	walk->action = ACTION_SUBTREE;
458 
459 out_unlock:
460 	spin_unlock(ptl);
461 	return 0;
462 }
463 #else
464 #define hmm_vma_walk_pud	NULL
465 #endif
466 
467 #ifdef CONFIG_HUGETLB_PAGE
468 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
469 				      unsigned long start, unsigned long end,
470 				      struct mm_walk *walk)
471 {
472 	unsigned long addr = start, i, pfn;
473 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
474 	struct hmm_range *range = hmm_vma_walk->range;
475 	struct vm_area_struct *vma = walk->vma;
476 	unsigned int required_fault;
477 	unsigned long pfn_req_flags;
478 	unsigned long cpu_flags;
479 	spinlock_t *ptl;
480 	pte_t entry;
481 
482 	ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
483 	entry = huge_ptep_get(pte);
484 
485 	i = (start - range->start) >> PAGE_SHIFT;
486 	pfn_req_flags = range->hmm_pfns[i];
487 	cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
488 		    hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
489 	required_fault =
490 		hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
491 	if (required_fault) {
492 		int ret;
493 
494 		spin_unlock(ptl);
495 		hugetlb_vma_unlock_read(vma);
496 		/*
497 		 * Avoid deadlock: drop the vma lock before calling
498 		 * hmm_vma_fault(), which will itself potentially take and
499 		 * drop the vma lock. This is also correct from a
500 		 * protection point of view, because there is no further
501 		 * use here of either pte or ptl after dropping the vma
502 		 * lock.
503 		 */
504 		ret = hmm_vma_fault(addr, end, required_fault, walk);
505 		hugetlb_vma_lock_read(vma);
506 		return ret;
507 	}
508 
509 	pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
510 	for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
511 		range->hmm_pfns[i] = pfn | cpu_flags;
512 
513 	spin_unlock(ptl);
514 	return 0;
515 }
516 #else
517 #define hmm_vma_walk_hugetlb_entry NULL
518 #endif /* CONFIG_HUGETLB_PAGE */
519 
520 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
521 			     struct mm_walk *walk)
522 {
523 	struct hmm_vma_walk *hmm_vma_walk = walk->private;
524 	struct hmm_range *range = hmm_vma_walk->range;
525 	struct vm_area_struct *vma = walk->vma;
526 
527 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)) &&
528 	    vma->vm_flags & VM_READ)
529 		return 0;
530 
531 	/*
532 	 * vma ranges that don't have struct page backing them or map I/O
533 	 * devices directly cannot be handled by hmm_range_fault().
534 	 *
535 	 * If the vma does not allow read access, then assume that it does not
536 	 * allow write access either. HMM does not support architectures that
537 	 * allow write without read.
538 	 *
539 	 * If a fault is requested for an unsupported range then it is a hard
540 	 * failure.
541 	 */
542 	if (hmm_range_need_fault(hmm_vma_walk,
543 				 range->hmm_pfns +
544 					 ((start - range->start) >> PAGE_SHIFT),
545 				 (end - start) >> PAGE_SHIFT, 0))
546 		return -EFAULT;
547 
548 	hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
549 
550 	/* Skip this vma and continue processing the next vma. */
551 	return 1;
552 }
553 
554 static const struct mm_walk_ops hmm_walk_ops = {
555 	.pud_entry	= hmm_vma_walk_pud,
556 	.pmd_entry	= hmm_vma_walk_pmd,
557 	.pte_hole	= hmm_vma_walk_hole,
558 	.hugetlb_entry	= hmm_vma_walk_hugetlb_entry,
559 	.test_walk	= hmm_vma_walk_test,
560 	.walk_lock	= PGWALK_RDLOCK,
561 };
562 
563 /**
564  * hmm_range_fault - try to fault some address in a virtual address range
565  * @range:	argument structure
566  *
567  * Returns 0 on success or one of the following error codes:
568  *
569  * -EINVAL:	Invalid arguments or mm or virtual address is in an invalid vma
570  *		(e.g., device file vma).
571  * -ENOMEM:	Out of memory.
572  * -EPERM:	Invalid permission (e.g., asking for write and range is read
573  *		only).
574  * -EBUSY:	The range has been invalidated and the caller needs to wait for
575  *		the invalidation to finish.
576  * -EFAULT:     A page was requested to be valid and could not be made valid
577  *              ie it has no backing VMA or it is illegal to access
578  *
579  * This is similar to get_user_pages(), except that it can read the page tables
580  * without mutating them (ie causing faults).
581  */
582 int hmm_range_fault(struct hmm_range *range)
583 {
584 	struct hmm_vma_walk hmm_vma_walk = {
585 		.range = range,
586 		.last = range->start,
587 	};
588 	struct mm_struct *mm = range->notifier->mm;
589 	int ret;
590 
591 	mmap_assert_locked(mm);
592 
593 	do {
594 		/* If range is no longer valid force retry. */
595 		if (mmu_interval_check_retry(range->notifier,
596 					     range->notifier_seq))
597 			return -EBUSY;
598 		ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
599 				      &hmm_walk_ops, &hmm_vma_walk);
600 		/*
601 		 * When -EBUSY is returned the loop restarts with
602 		 * hmm_vma_walk.last set to an address that has not been stored
603 		 * in pfns. All entries < last in the pfn array are set to their
604 		 * output, and all >= are still at their input values.
605 		 */
606 	} while (ret == -EBUSY);
607 	return ret;
608 }
609 EXPORT_SYMBOL(hmm_range_fault);
610