xref: /linux/mm/highmem.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/blktrace_api.h>
30 #include <asm/tlbflush.h>
31 
32 static mempool_t *page_pool, *isa_page_pool;
33 
34 static void *mempool_alloc_pages_isa(gfp_t gfp_mask, void *data)
35 {
36 	return mempool_alloc_pages(gfp_mask | GFP_DMA, data);
37 }
38 
39 /*
40  * Virtual_count is not a pure "count".
41  *  0 means that it is not mapped, and has not been mapped
42  *    since a TLB flush - it is usable.
43  *  1 means that there are no users, but it has been mapped
44  *    since the last TLB flush - so we can't use it.
45  *  n means that there are (n-1) current users of it.
46  */
47 #ifdef CONFIG_HIGHMEM
48 
49 static int pkmap_count[LAST_PKMAP];
50 static unsigned int last_pkmap_nr;
51 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
52 
53 pte_t * pkmap_page_table;
54 
55 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
56 
57 static void flush_all_zero_pkmaps(void)
58 {
59 	int i;
60 
61 	flush_cache_kmaps();
62 
63 	for (i = 0; i < LAST_PKMAP; i++) {
64 		struct page *page;
65 
66 		/*
67 		 * zero means we don't have anything to do,
68 		 * >1 means that it is still in use. Only
69 		 * a count of 1 means that it is free but
70 		 * needs to be unmapped
71 		 */
72 		if (pkmap_count[i] != 1)
73 			continue;
74 		pkmap_count[i] = 0;
75 
76 		/* sanity check */
77 		if (pte_none(pkmap_page_table[i]))
78 			BUG();
79 
80 		/*
81 		 * Don't need an atomic fetch-and-clear op here;
82 		 * no-one has the page mapped, and cannot get at
83 		 * its virtual address (and hence PTE) without first
84 		 * getting the kmap_lock (which is held here).
85 		 * So no dangers, even with speculative execution.
86 		 */
87 		page = pte_page(pkmap_page_table[i]);
88 		pte_clear(&init_mm, (unsigned long)page_address(page),
89 			  &pkmap_page_table[i]);
90 
91 		set_page_address(page, NULL);
92 	}
93 	flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
94 }
95 
96 static inline unsigned long map_new_virtual(struct page *page)
97 {
98 	unsigned long vaddr;
99 	int count;
100 
101 start:
102 	count = LAST_PKMAP;
103 	/* Find an empty entry */
104 	for (;;) {
105 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
106 		if (!last_pkmap_nr) {
107 			flush_all_zero_pkmaps();
108 			count = LAST_PKMAP;
109 		}
110 		if (!pkmap_count[last_pkmap_nr])
111 			break;	/* Found a usable entry */
112 		if (--count)
113 			continue;
114 
115 		/*
116 		 * Sleep for somebody else to unmap their entries
117 		 */
118 		{
119 			DECLARE_WAITQUEUE(wait, current);
120 
121 			__set_current_state(TASK_UNINTERRUPTIBLE);
122 			add_wait_queue(&pkmap_map_wait, &wait);
123 			spin_unlock(&kmap_lock);
124 			schedule();
125 			remove_wait_queue(&pkmap_map_wait, &wait);
126 			spin_lock(&kmap_lock);
127 
128 			/* Somebody else might have mapped it while we slept */
129 			if (page_address(page))
130 				return (unsigned long)page_address(page);
131 
132 			/* Re-start */
133 			goto start;
134 		}
135 	}
136 	vaddr = PKMAP_ADDR(last_pkmap_nr);
137 	set_pte_at(&init_mm, vaddr,
138 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
139 
140 	pkmap_count[last_pkmap_nr] = 1;
141 	set_page_address(page, (void *)vaddr);
142 
143 	return vaddr;
144 }
145 
146 void fastcall *kmap_high(struct page *page)
147 {
148 	unsigned long vaddr;
149 
150 	/*
151 	 * For highmem pages, we can't trust "virtual" until
152 	 * after we have the lock.
153 	 *
154 	 * We cannot call this from interrupts, as it may block
155 	 */
156 	spin_lock(&kmap_lock);
157 	vaddr = (unsigned long)page_address(page);
158 	if (!vaddr)
159 		vaddr = map_new_virtual(page);
160 	pkmap_count[PKMAP_NR(vaddr)]++;
161 	if (pkmap_count[PKMAP_NR(vaddr)] < 2)
162 		BUG();
163 	spin_unlock(&kmap_lock);
164 	return (void*) vaddr;
165 }
166 
167 EXPORT_SYMBOL(kmap_high);
168 
169 void fastcall kunmap_high(struct page *page)
170 {
171 	unsigned long vaddr;
172 	unsigned long nr;
173 	int need_wakeup;
174 
175 	spin_lock(&kmap_lock);
176 	vaddr = (unsigned long)page_address(page);
177 	if (!vaddr)
178 		BUG();
179 	nr = PKMAP_NR(vaddr);
180 
181 	/*
182 	 * A count must never go down to zero
183 	 * without a TLB flush!
184 	 */
185 	need_wakeup = 0;
186 	switch (--pkmap_count[nr]) {
187 	case 0:
188 		BUG();
189 	case 1:
190 		/*
191 		 * Avoid an unnecessary wake_up() function call.
192 		 * The common case is pkmap_count[] == 1, but
193 		 * no waiters.
194 		 * The tasks queued in the wait-queue are guarded
195 		 * by both the lock in the wait-queue-head and by
196 		 * the kmap_lock.  As the kmap_lock is held here,
197 		 * no need for the wait-queue-head's lock.  Simply
198 		 * test if the queue is empty.
199 		 */
200 		need_wakeup = waitqueue_active(&pkmap_map_wait);
201 	}
202 	spin_unlock(&kmap_lock);
203 
204 	/* do wake-up, if needed, race-free outside of the spin lock */
205 	if (need_wakeup)
206 		wake_up(&pkmap_map_wait);
207 }
208 
209 EXPORT_SYMBOL(kunmap_high);
210 
211 #define POOL_SIZE	64
212 
213 static __init int init_emergency_pool(void)
214 {
215 	struct sysinfo i;
216 	si_meminfo(&i);
217 	si_swapinfo(&i);
218 
219 	if (!i.totalhigh)
220 		return 0;
221 
222 	page_pool = mempool_create_page_pool(POOL_SIZE, 0);
223 	if (!page_pool)
224 		BUG();
225 	printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
226 
227 	return 0;
228 }
229 
230 __initcall(init_emergency_pool);
231 
232 /*
233  * highmem version, map in to vec
234  */
235 static void bounce_copy_vec(struct bio_vec *to, unsigned char *vfrom)
236 {
237 	unsigned long flags;
238 	unsigned char *vto;
239 
240 	local_irq_save(flags);
241 	vto = kmap_atomic(to->bv_page, KM_BOUNCE_READ);
242 	memcpy(vto + to->bv_offset, vfrom, to->bv_len);
243 	kunmap_atomic(vto, KM_BOUNCE_READ);
244 	local_irq_restore(flags);
245 }
246 
247 #else /* CONFIG_HIGHMEM */
248 
249 #define bounce_copy_vec(to, vfrom)	\
250 	memcpy(page_address((to)->bv_page) + (to)->bv_offset, vfrom, (to)->bv_len)
251 
252 #endif
253 
254 #define ISA_POOL_SIZE	16
255 
256 /*
257  * gets called "every" time someone init's a queue with BLK_BOUNCE_ISA
258  * as the max address, so check if the pool has already been created.
259  */
260 int init_emergency_isa_pool(void)
261 {
262 	if (isa_page_pool)
263 		return 0;
264 
265 	isa_page_pool = mempool_create(ISA_POOL_SIZE, mempool_alloc_pages_isa,
266 				       mempool_free_pages, (void *) 0);
267 	if (!isa_page_pool)
268 		BUG();
269 
270 	printk("isa bounce pool size: %d pages\n", ISA_POOL_SIZE);
271 	return 0;
272 }
273 
274 /*
275  * Simple bounce buffer support for highmem pages. Depending on the
276  * queue gfp mask set, *to may or may not be a highmem page. kmap it
277  * always, it will do the Right Thing
278  */
279 static void copy_to_high_bio_irq(struct bio *to, struct bio *from)
280 {
281 	unsigned char *vfrom;
282 	struct bio_vec *tovec, *fromvec;
283 	int i;
284 
285 	__bio_for_each_segment(tovec, to, i, 0) {
286 		fromvec = from->bi_io_vec + i;
287 
288 		/*
289 		 * not bounced
290 		 */
291 		if (tovec->bv_page == fromvec->bv_page)
292 			continue;
293 
294 		/*
295 		 * fromvec->bv_offset and fromvec->bv_len might have been
296 		 * modified by the block layer, so use the original copy,
297 		 * bounce_copy_vec already uses tovec->bv_len
298 		 */
299 		vfrom = page_address(fromvec->bv_page) + tovec->bv_offset;
300 
301 		flush_dcache_page(tovec->bv_page);
302 		bounce_copy_vec(tovec, vfrom);
303 	}
304 }
305 
306 static void bounce_end_io(struct bio *bio, mempool_t *pool, int err)
307 {
308 	struct bio *bio_orig = bio->bi_private;
309 	struct bio_vec *bvec, *org_vec;
310 	int i;
311 
312 	if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
313 		set_bit(BIO_EOPNOTSUPP, &bio_orig->bi_flags);
314 
315 	/*
316 	 * free up bounce indirect pages used
317 	 */
318 	__bio_for_each_segment(bvec, bio, i, 0) {
319 		org_vec = bio_orig->bi_io_vec + i;
320 		if (bvec->bv_page == org_vec->bv_page)
321 			continue;
322 
323 		mempool_free(bvec->bv_page, pool);
324 		dec_page_state(nr_bounce);
325 	}
326 
327 	bio_endio(bio_orig, bio_orig->bi_size, err);
328 	bio_put(bio);
329 }
330 
331 static int bounce_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
332 {
333 	if (bio->bi_size)
334 		return 1;
335 
336 	bounce_end_io(bio, page_pool, err);
337 	return 0;
338 }
339 
340 static int bounce_end_io_write_isa(struct bio *bio, unsigned int bytes_done, int err)
341 {
342 	if (bio->bi_size)
343 		return 1;
344 
345 	bounce_end_io(bio, isa_page_pool, err);
346 	return 0;
347 }
348 
349 static void __bounce_end_io_read(struct bio *bio, mempool_t *pool, int err)
350 {
351 	struct bio *bio_orig = bio->bi_private;
352 
353 	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
354 		copy_to_high_bio_irq(bio_orig, bio);
355 
356 	bounce_end_io(bio, pool, err);
357 }
358 
359 static int bounce_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
360 {
361 	if (bio->bi_size)
362 		return 1;
363 
364 	__bounce_end_io_read(bio, page_pool, err);
365 	return 0;
366 }
367 
368 static int bounce_end_io_read_isa(struct bio *bio, unsigned int bytes_done, int err)
369 {
370 	if (bio->bi_size)
371 		return 1;
372 
373 	__bounce_end_io_read(bio, isa_page_pool, err);
374 	return 0;
375 }
376 
377 static void __blk_queue_bounce(request_queue_t *q, struct bio **bio_orig,
378 			       mempool_t *pool)
379 {
380 	struct page *page;
381 	struct bio *bio = NULL;
382 	int i, rw = bio_data_dir(*bio_orig);
383 	struct bio_vec *to, *from;
384 
385 	bio_for_each_segment(from, *bio_orig, i) {
386 		page = from->bv_page;
387 
388 		/*
389 		 * is destination page below bounce pfn?
390 		 */
391 		if (page_to_pfn(page) < q->bounce_pfn)
392 			continue;
393 
394 		/*
395 		 * irk, bounce it
396 		 */
397 		if (!bio)
398 			bio = bio_alloc(GFP_NOIO, (*bio_orig)->bi_vcnt);
399 
400 		to = bio->bi_io_vec + i;
401 
402 		to->bv_page = mempool_alloc(pool, q->bounce_gfp);
403 		to->bv_len = from->bv_len;
404 		to->bv_offset = from->bv_offset;
405 		inc_page_state(nr_bounce);
406 
407 		if (rw == WRITE) {
408 			char *vto, *vfrom;
409 
410 			flush_dcache_page(from->bv_page);
411 			vto = page_address(to->bv_page) + to->bv_offset;
412 			vfrom = kmap(from->bv_page) + from->bv_offset;
413 			memcpy(vto, vfrom, to->bv_len);
414 			kunmap(from->bv_page);
415 		}
416 	}
417 
418 	/*
419 	 * no pages bounced
420 	 */
421 	if (!bio)
422 		return;
423 
424 	/*
425 	 * at least one page was bounced, fill in possible non-highmem
426 	 * pages
427 	 */
428 	__bio_for_each_segment(from, *bio_orig, i, 0) {
429 		to = bio_iovec_idx(bio, i);
430 		if (!to->bv_page) {
431 			to->bv_page = from->bv_page;
432 			to->bv_len = from->bv_len;
433 			to->bv_offset = from->bv_offset;
434 		}
435 	}
436 
437 	bio->bi_bdev = (*bio_orig)->bi_bdev;
438 	bio->bi_flags |= (1 << BIO_BOUNCED);
439 	bio->bi_sector = (*bio_orig)->bi_sector;
440 	bio->bi_rw = (*bio_orig)->bi_rw;
441 
442 	bio->bi_vcnt = (*bio_orig)->bi_vcnt;
443 	bio->bi_idx = (*bio_orig)->bi_idx;
444 	bio->bi_size = (*bio_orig)->bi_size;
445 
446 	if (pool == page_pool) {
447 		bio->bi_end_io = bounce_end_io_write;
448 		if (rw == READ)
449 			bio->bi_end_io = bounce_end_io_read;
450 	} else {
451 		bio->bi_end_io = bounce_end_io_write_isa;
452 		if (rw == READ)
453 			bio->bi_end_io = bounce_end_io_read_isa;
454 	}
455 
456 	bio->bi_private = *bio_orig;
457 	*bio_orig = bio;
458 }
459 
460 void blk_queue_bounce(request_queue_t *q, struct bio **bio_orig)
461 {
462 	mempool_t *pool;
463 
464 	/*
465 	 * for non-isa bounce case, just check if the bounce pfn is equal
466 	 * to or bigger than the highest pfn in the system -- in that case,
467 	 * don't waste time iterating over bio segments
468 	 */
469 	if (!(q->bounce_gfp & GFP_DMA)) {
470 		if (q->bounce_pfn >= blk_max_pfn)
471 			return;
472 		pool = page_pool;
473 	} else {
474 		BUG_ON(!isa_page_pool);
475 		pool = isa_page_pool;
476 	}
477 
478 	blk_add_trace_bio(q, *bio_orig, BLK_TA_BOUNCE);
479 
480 	/*
481 	 * slow path
482 	 */
483 	__blk_queue_bounce(q, bio_orig, pool);
484 }
485 
486 EXPORT_SYMBOL(blk_queue_bounce);
487 
488 #if defined(HASHED_PAGE_VIRTUAL)
489 
490 #define PA_HASH_ORDER	7
491 
492 /*
493  * Describes one page->virtual association
494  */
495 struct page_address_map {
496 	struct page *page;
497 	void *virtual;
498 	struct list_head list;
499 };
500 
501 /*
502  * page_address_map freelist, allocated from page_address_maps.
503  */
504 static struct list_head page_address_pool;	/* freelist */
505 static spinlock_t pool_lock;			/* protects page_address_pool */
506 
507 /*
508  * Hash table bucket
509  */
510 static struct page_address_slot {
511 	struct list_head lh;			/* List of page_address_maps */
512 	spinlock_t lock;			/* Protect this bucket's list */
513 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
514 
515 static struct page_address_slot *page_slot(struct page *page)
516 {
517 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
518 }
519 
520 void *page_address(struct page *page)
521 {
522 	unsigned long flags;
523 	void *ret;
524 	struct page_address_slot *pas;
525 
526 	if (!PageHighMem(page))
527 		return lowmem_page_address(page);
528 
529 	pas = page_slot(page);
530 	ret = NULL;
531 	spin_lock_irqsave(&pas->lock, flags);
532 	if (!list_empty(&pas->lh)) {
533 		struct page_address_map *pam;
534 
535 		list_for_each_entry(pam, &pas->lh, list) {
536 			if (pam->page == page) {
537 				ret = pam->virtual;
538 				goto done;
539 			}
540 		}
541 	}
542 done:
543 	spin_unlock_irqrestore(&pas->lock, flags);
544 	return ret;
545 }
546 
547 EXPORT_SYMBOL(page_address);
548 
549 void set_page_address(struct page *page, void *virtual)
550 {
551 	unsigned long flags;
552 	struct page_address_slot *pas;
553 	struct page_address_map *pam;
554 
555 	BUG_ON(!PageHighMem(page));
556 
557 	pas = page_slot(page);
558 	if (virtual) {		/* Add */
559 		BUG_ON(list_empty(&page_address_pool));
560 
561 		spin_lock_irqsave(&pool_lock, flags);
562 		pam = list_entry(page_address_pool.next,
563 				struct page_address_map, list);
564 		list_del(&pam->list);
565 		spin_unlock_irqrestore(&pool_lock, flags);
566 
567 		pam->page = page;
568 		pam->virtual = virtual;
569 
570 		spin_lock_irqsave(&pas->lock, flags);
571 		list_add_tail(&pam->list, &pas->lh);
572 		spin_unlock_irqrestore(&pas->lock, flags);
573 	} else {		/* Remove */
574 		spin_lock_irqsave(&pas->lock, flags);
575 		list_for_each_entry(pam, &pas->lh, list) {
576 			if (pam->page == page) {
577 				list_del(&pam->list);
578 				spin_unlock_irqrestore(&pas->lock, flags);
579 				spin_lock_irqsave(&pool_lock, flags);
580 				list_add_tail(&pam->list, &page_address_pool);
581 				spin_unlock_irqrestore(&pool_lock, flags);
582 				goto done;
583 			}
584 		}
585 		spin_unlock_irqrestore(&pas->lock, flags);
586 	}
587 done:
588 	return;
589 }
590 
591 static struct page_address_map page_address_maps[LAST_PKMAP];
592 
593 void __init page_address_init(void)
594 {
595 	int i;
596 
597 	INIT_LIST_HEAD(&page_address_pool);
598 	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
599 		list_add(&page_address_maps[i].list, &page_address_pool);
600 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
601 		INIT_LIST_HEAD(&page_address_htable[i].lh);
602 		spin_lock_init(&page_address_htable[i].lock);
603 	}
604 	spin_lock_init(&pool_lock);
605 }
606 
607 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
608