xref: /linux/mm/highmem.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/export.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 
32 
33 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
34 DEFINE_PER_CPU(int, __kmap_atomic_idx);
35 #endif
36 
37 /*
38  * Virtual_count is not a pure "count".
39  *  0 means that it is not mapped, and has not been mapped
40  *    since a TLB flush - it is usable.
41  *  1 means that there are no users, but it has been mapped
42  *    since the last TLB flush - so we can't use it.
43  *  n means that there are (n-1) current users of it.
44  */
45 #ifdef CONFIG_HIGHMEM
46 
47 unsigned long totalhigh_pages __read_mostly;
48 EXPORT_SYMBOL(totalhigh_pages);
49 
50 
51 EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
52 
53 unsigned int nr_free_highpages (void)
54 {
55 	pg_data_t *pgdat;
56 	unsigned int pages = 0;
57 
58 	for_each_online_pgdat(pgdat) {
59 		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
60 			NR_FREE_PAGES);
61 		if (zone_movable_is_highmem())
62 			pages += zone_page_state(
63 					&pgdat->node_zones[ZONE_MOVABLE],
64 					NR_FREE_PAGES);
65 	}
66 
67 	return pages;
68 }
69 
70 static int pkmap_count[LAST_PKMAP];
71 static unsigned int last_pkmap_nr;
72 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
73 
74 pte_t * pkmap_page_table;
75 
76 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
77 
78 /*
79  * Most architectures have no use for kmap_high_get(), so let's abstract
80  * the disabling of IRQ out of the locking in that case to save on a
81  * potential useless overhead.
82  */
83 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
84 #define lock_kmap()             spin_lock_irq(&kmap_lock)
85 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
86 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
87 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
88 #else
89 #define lock_kmap()             spin_lock(&kmap_lock)
90 #define unlock_kmap()           spin_unlock(&kmap_lock)
91 #define lock_kmap_any(flags)    \
92 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
93 #define unlock_kmap_any(flags)  \
94 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
95 #endif
96 
97 struct page *kmap_to_page(void *vaddr)
98 {
99 	unsigned long addr = (unsigned long)vaddr;
100 
101 	if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
102 		int i = PKMAP_NR(addr);
103 		return pte_page(pkmap_page_table[i]);
104 	}
105 
106 	return virt_to_page(addr);
107 }
108 EXPORT_SYMBOL(kmap_to_page);
109 
110 static void flush_all_zero_pkmaps(void)
111 {
112 	int i;
113 	int need_flush = 0;
114 
115 	flush_cache_kmaps();
116 
117 	for (i = 0; i < LAST_PKMAP; i++) {
118 		struct page *page;
119 
120 		/*
121 		 * zero means we don't have anything to do,
122 		 * >1 means that it is still in use. Only
123 		 * a count of 1 means that it is free but
124 		 * needs to be unmapped
125 		 */
126 		if (pkmap_count[i] != 1)
127 			continue;
128 		pkmap_count[i] = 0;
129 
130 		/* sanity check */
131 		BUG_ON(pte_none(pkmap_page_table[i]));
132 
133 		/*
134 		 * Don't need an atomic fetch-and-clear op here;
135 		 * no-one has the page mapped, and cannot get at
136 		 * its virtual address (and hence PTE) without first
137 		 * getting the kmap_lock (which is held here).
138 		 * So no dangers, even with speculative execution.
139 		 */
140 		page = pte_page(pkmap_page_table[i]);
141 		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
142 
143 		set_page_address(page, NULL);
144 		need_flush = 1;
145 	}
146 	if (need_flush)
147 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
148 }
149 
150 /**
151  * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
152  */
153 void kmap_flush_unused(void)
154 {
155 	lock_kmap();
156 	flush_all_zero_pkmaps();
157 	unlock_kmap();
158 }
159 
160 static inline unsigned long map_new_virtual(struct page *page)
161 {
162 	unsigned long vaddr;
163 	int count;
164 
165 start:
166 	count = LAST_PKMAP;
167 	/* Find an empty entry */
168 	for (;;) {
169 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
170 		if (!last_pkmap_nr) {
171 			flush_all_zero_pkmaps();
172 			count = LAST_PKMAP;
173 		}
174 		if (!pkmap_count[last_pkmap_nr])
175 			break;	/* Found a usable entry */
176 		if (--count)
177 			continue;
178 
179 		/*
180 		 * Sleep for somebody else to unmap their entries
181 		 */
182 		{
183 			DECLARE_WAITQUEUE(wait, current);
184 
185 			__set_current_state(TASK_UNINTERRUPTIBLE);
186 			add_wait_queue(&pkmap_map_wait, &wait);
187 			unlock_kmap();
188 			schedule();
189 			remove_wait_queue(&pkmap_map_wait, &wait);
190 			lock_kmap();
191 
192 			/* Somebody else might have mapped it while we slept */
193 			if (page_address(page))
194 				return (unsigned long)page_address(page);
195 
196 			/* Re-start */
197 			goto start;
198 		}
199 	}
200 	vaddr = PKMAP_ADDR(last_pkmap_nr);
201 	set_pte_at(&init_mm, vaddr,
202 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
203 
204 	pkmap_count[last_pkmap_nr] = 1;
205 	set_page_address(page, (void *)vaddr);
206 
207 	return vaddr;
208 }
209 
210 /**
211  * kmap_high - map a highmem page into memory
212  * @page: &struct page to map
213  *
214  * Returns the page's virtual memory address.
215  *
216  * We cannot call this from interrupts, as it may block.
217  */
218 void *kmap_high(struct page *page)
219 {
220 	unsigned long vaddr;
221 
222 	/*
223 	 * For highmem pages, we can't trust "virtual" until
224 	 * after we have the lock.
225 	 */
226 	lock_kmap();
227 	vaddr = (unsigned long)page_address(page);
228 	if (!vaddr)
229 		vaddr = map_new_virtual(page);
230 	pkmap_count[PKMAP_NR(vaddr)]++;
231 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
232 	unlock_kmap();
233 	return (void*) vaddr;
234 }
235 
236 EXPORT_SYMBOL(kmap_high);
237 
238 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
239 /**
240  * kmap_high_get - pin a highmem page into memory
241  * @page: &struct page to pin
242  *
243  * Returns the page's current virtual memory address, or NULL if no mapping
244  * exists.  If and only if a non null address is returned then a
245  * matching call to kunmap_high() is necessary.
246  *
247  * This can be called from any context.
248  */
249 void *kmap_high_get(struct page *page)
250 {
251 	unsigned long vaddr, flags;
252 
253 	lock_kmap_any(flags);
254 	vaddr = (unsigned long)page_address(page);
255 	if (vaddr) {
256 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
257 		pkmap_count[PKMAP_NR(vaddr)]++;
258 	}
259 	unlock_kmap_any(flags);
260 	return (void*) vaddr;
261 }
262 #endif
263 
264 /**
265  * kunmap_high - unmap a highmem page into memory
266  * @page: &struct page to unmap
267  *
268  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
269  * only from user context.
270  */
271 void kunmap_high(struct page *page)
272 {
273 	unsigned long vaddr;
274 	unsigned long nr;
275 	unsigned long flags;
276 	int need_wakeup;
277 
278 	lock_kmap_any(flags);
279 	vaddr = (unsigned long)page_address(page);
280 	BUG_ON(!vaddr);
281 	nr = PKMAP_NR(vaddr);
282 
283 	/*
284 	 * A count must never go down to zero
285 	 * without a TLB flush!
286 	 */
287 	need_wakeup = 0;
288 	switch (--pkmap_count[nr]) {
289 	case 0:
290 		BUG();
291 	case 1:
292 		/*
293 		 * Avoid an unnecessary wake_up() function call.
294 		 * The common case is pkmap_count[] == 1, but
295 		 * no waiters.
296 		 * The tasks queued in the wait-queue are guarded
297 		 * by both the lock in the wait-queue-head and by
298 		 * the kmap_lock.  As the kmap_lock is held here,
299 		 * no need for the wait-queue-head's lock.  Simply
300 		 * test if the queue is empty.
301 		 */
302 		need_wakeup = waitqueue_active(&pkmap_map_wait);
303 	}
304 	unlock_kmap_any(flags);
305 
306 	/* do wake-up, if needed, race-free outside of the spin lock */
307 	if (need_wakeup)
308 		wake_up(&pkmap_map_wait);
309 }
310 
311 EXPORT_SYMBOL(kunmap_high);
312 #endif
313 
314 #if defined(HASHED_PAGE_VIRTUAL)
315 
316 #define PA_HASH_ORDER	7
317 
318 /*
319  * Describes one page->virtual association
320  */
321 struct page_address_map {
322 	struct page *page;
323 	void *virtual;
324 	struct list_head list;
325 };
326 
327 static struct page_address_map page_address_maps[LAST_PKMAP];
328 
329 /*
330  * Hash table bucket
331  */
332 static struct page_address_slot {
333 	struct list_head lh;			/* List of page_address_maps */
334 	spinlock_t lock;			/* Protect this bucket's list */
335 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
336 
337 static struct page_address_slot *page_slot(const struct page *page)
338 {
339 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
340 }
341 
342 /**
343  * page_address - get the mapped virtual address of a page
344  * @page: &struct page to get the virtual address of
345  *
346  * Returns the page's virtual address.
347  */
348 void *page_address(const struct page *page)
349 {
350 	unsigned long flags;
351 	void *ret;
352 	struct page_address_slot *pas;
353 
354 	if (!PageHighMem(page))
355 		return lowmem_page_address(page);
356 
357 	pas = page_slot(page);
358 	ret = NULL;
359 	spin_lock_irqsave(&pas->lock, flags);
360 	if (!list_empty(&pas->lh)) {
361 		struct page_address_map *pam;
362 
363 		list_for_each_entry(pam, &pas->lh, list) {
364 			if (pam->page == page) {
365 				ret = pam->virtual;
366 				goto done;
367 			}
368 		}
369 	}
370 done:
371 	spin_unlock_irqrestore(&pas->lock, flags);
372 	return ret;
373 }
374 
375 EXPORT_SYMBOL(page_address);
376 
377 /**
378  * set_page_address - set a page's virtual address
379  * @page: &struct page to set
380  * @virtual: virtual address to use
381  */
382 void set_page_address(struct page *page, void *virtual)
383 {
384 	unsigned long flags;
385 	struct page_address_slot *pas;
386 	struct page_address_map *pam;
387 
388 	BUG_ON(!PageHighMem(page));
389 
390 	pas = page_slot(page);
391 	if (virtual) {		/* Add */
392 		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
393 		pam->page = page;
394 		pam->virtual = virtual;
395 
396 		spin_lock_irqsave(&pas->lock, flags);
397 		list_add_tail(&pam->list, &pas->lh);
398 		spin_unlock_irqrestore(&pas->lock, flags);
399 	} else {		/* Remove */
400 		spin_lock_irqsave(&pas->lock, flags);
401 		list_for_each_entry(pam, &pas->lh, list) {
402 			if (pam->page == page) {
403 				list_del(&pam->list);
404 				spin_unlock_irqrestore(&pas->lock, flags);
405 				goto done;
406 			}
407 		}
408 		spin_unlock_irqrestore(&pas->lock, flags);
409 	}
410 done:
411 	return;
412 }
413 
414 void __init page_address_init(void)
415 {
416 	int i;
417 
418 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
419 		INIT_LIST_HEAD(&page_address_htable[i].lh);
420 		spin_lock_init(&page_address_htable[i].lock);
421 	}
422 }
423 
424 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
425