xref: /linux/mm/highmem.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High memory handling common code and variables.
4  *
5  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7  *
8  *
9  * Redesigned the x86 32-bit VM architecture to deal with
10  * 64-bit physical space. With current x86 CPUs this
11  * means up to 64 Gigabytes physical RAM.
12  *
13  * Rewrote high memory support to move the page cache into
14  * high memory. Implemented permanent (schedulable) kmaps
15  * based on Linus' idea.
16  *
17  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18  */
19 
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 #include <linux/vmalloc.h>
32 
33 #ifdef CONFIG_KMAP_LOCAL
34 static inline int kmap_local_calc_idx(int idx)
35 {
36 	return idx + KM_MAX_IDX * smp_processor_id();
37 }
38 
39 #ifndef arch_kmap_local_map_idx
40 #define arch_kmap_local_map_idx(idx, pfn)	kmap_local_calc_idx(idx)
41 #endif
42 #endif /* CONFIG_KMAP_LOCAL */
43 
44 /*
45  * Virtual_count is not a pure "count".
46  *  0 means that it is not mapped, and has not been mapped
47  *    since a TLB flush - it is usable.
48  *  1 means that there are no users, but it has been mapped
49  *    since the last TLB flush - so we can't use it.
50  *  n means that there are (n-1) current users of it.
51  */
52 #ifdef CONFIG_HIGHMEM
53 
54 /*
55  * Architecture with aliasing data cache may define the following family of
56  * helper functions in its asm/highmem.h to control cache color of virtual
57  * addresses where physical memory pages are mapped by kmap.
58  */
59 #ifndef get_pkmap_color
60 
61 /*
62  * Determine color of virtual address where the page should be mapped.
63  */
64 static inline unsigned int get_pkmap_color(struct page *page)
65 {
66 	return 0;
67 }
68 #define get_pkmap_color get_pkmap_color
69 
70 /*
71  * Get next index for mapping inside PKMAP region for page with given color.
72  */
73 static inline unsigned int get_next_pkmap_nr(unsigned int color)
74 {
75 	static unsigned int last_pkmap_nr;
76 
77 	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
78 	return last_pkmap_nr;
79 }
80 
81 /*
82  * Determine if page index inside PKMAP region (pkmap_nr) of given color
83  * has wrapped around PKMAP region end. When this happens an attempt to
84  * flush all unused PKMAP slots is made.
85  */
86 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
87 {
88 	return pkmap_nr == 0;
89 }
90 
91 /*
92  * Get the number of PKMAP entries of the given color. If no free slot is
93  * found after checking that many entries, kmap will sleep waiting for
94  * someone to call kunmap and free PKMAP slot.
95  */
96 static inline int get_pkmap_entries_count(unsigned int color)
97 {
98 	return LAST_PKMAP;
99 }
100 
101 /*
102  * Get head of a wait queue for PKMAP entries of the given color.
103  * Wait queues for different mapping colors should be independent to avoid
104  * unnecessary wakeups caused by freeing of slots of other colors.
105  */
106 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
107 {
108 	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
109 
110 	return &pkmap_map_wait;
111 }
112 #endif
113 
114 unsigned long __nr_free_highpages(void)
115 {
116 	unsigned long pages = 0;
117 	struct zone *zone;
118 
119 	for_each_populated_zone(zone) {
120 		if (is_highmem(zone))
121 			pages += zone_page_state(zone, NR_FREE_PAGES);
122 	}
123 
124 	return pages;
125 }
126 
127 unsigned long __totalhigh_pages(void)
128 {
129 	unsigned long pages = 0;
130 	struct zone *zone;
131 
132 	for_each_populated_zone(zone) {
133 		if (is_highmem(zone))
134 			pages += zone_managed_pages(zone);
135 	}
136 
137 	return pages;
138 }
139 EXPORT_SYMBOL(__totalhigh_pages);
140 
141 static int pkmap_count[LAST_PKMAP];
142 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
143 
144 pte_t *pkmap_page_table;
145 
146 /*
147  * Most architectures have no use for kmap_high_get(), so let's abstract
148  * the disabling of IRQ out of the locking in that case to save on a
149  * potential useless overhead.
150  */
151 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
152 #define lock_kmap()             spin_lock_irq(&kmap_lock)
153 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
154 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
155 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
156 #else
157 #define lock_kmap()             spin_lock(&kmap_lock)
158 #define unlock_kmap()           spin_unlock(&kmap_lock)
159 #define lock_kmap_any(flags)    \
160 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
161 #define unlock_kmap_any(flags)  \
162 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
163 #endif
164 
165 struct page *__kmap_to_page(void *vaddr)
166 {
167 	unsigned long base = (unsigned long) vaddr & PAGE_MASK;
168 	struct kmap_ctrl *kctrl = &current->kmap_ctrl;
169 	unsigned long addr = (unsigned long)vaddr;
170 	int i;
171 
172 	/* kmap() mappings */
173 	if (WARN_ON_ONCE(addr >= PKMAP_ADDR(0) &&
174 			 addr < PKMAP_ADDR(LAST_PKMAP)))
175 		return pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(addr)]));
176 
177 	/* kmap_local_page() mappings */
178 	if (WARN_ON_ONCE(base >= __fix_to_virt(FIX_KMAP_END) &&
179 			 base < __fix_to_virt(FIX_KMAP_BEGIN))) {
180 		for (i = 0; i < kctrl->idx; i++) {
181 			unsigned long base_addr;
182 			int idx;
183 
184 			idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
185 			base_addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
186 
187 			if (base_addr == base)
188 				return pte_page(kctrl->pteval[i]);
189 		}
190 	}
191 
192 	return virt_to_page(vaddr);
193 }
194 EXPORT_SYMBOL(__kmap_to_page);
195 
196 static void flush_all_zero_pkmaps(void)
197 {
198 	int i;
199 	int need_flush = 0;
200 
201 	flush_cache_kmaps();
202 
203 	for (i = 0; i < LAST_PKMAP; i++) {
204 		struct page *page;
205 		pte_t ptent;
206 
207 		/*
208 		 * zero means we don't have anything to do,
209 		 * >1 means that it is still in use. Only
210 		 * a count of 1 means that it is free but
211 		 * needs to be unmapped
212 		 */
213 		if (pkmap_count[i] != 1)
214 			continue;
215 		pkmap_count[i] = 0;
216 
217 		/* sanity check */
218 		ptent = ptep_get(&pkmap_page_table[i]);
219 		BUG_ON(pte_none(ptent));
220 
221 		/*
222 		 * Don't need an atomic fetch-and-clear op here;
223 		 * no-one has the page mapped, and cannot get at
224 		 * its virtual address (and hence PTE) without first
225 		 * getting the kmap_lock (which is held here).
226 		 * So no dangers, even with speculative execution.
227 		 */
228 		page = pte_page(ptent);
229 		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
230 
231 		set_page_address(page, NULL);
232 		need_flush = 1;
233 	}
234 	if (need_flush)
235 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
236 }
237 
238 void __kmap_flush_unused(void)
239 {
240 	lock_kmap();
241 	flush_all_zero_pkmaps();
242 	unlock_kmap();
243 }
244 
245 static inline unsigned long map_new_virtual(struct page *page)
246 {
247 	unsigned long vaddr;
248 	int count;
249 	unsigned int last_pkmap_nr;
250 	unsigned int color = get_pkmap_color(page);
251 
252 start:
253 	count = get_pkmap_entries_count(color);
254 	/* Find an empty entry */
255 	for (;;) {
256 		last_pkmap_nr = get_next_pkmap_nr(color);
257 		if (no_more_pkmaps(last_pkmap_nr, color)) {
258 			flush_all_zero_pkmaps();
259 			count = get_pkmap_entries_count(color);
260 		}
261 		if (!pkmap_count[last_pkmap_nr])
262 			break;	/* Found a usable entry */
263 		if (--count)
264 			continue;
265 
266 		/*
267 		 * Sleep for somebody else to unmap their entries
268 		 */
269 		{
270 			DECLARE_WAITQUEUE(wait, current);
271 			wait_queue_head_t *pkmap_map_wait =
272 				get_pkmap_wait_queue_head(color);
273 
274 			__set_current_state(TASK_UNINTERRUPTIBLE);
275 			add_wait_queue(pkmap_map_wait, &wait);
276 			unlock_kmap();
277 			schedule();
278 			remove_wait_queue(pkmap_map_wait, &wait);
279 			lock_kmap();
280 
281 			/* Somebody else might have mapped it while we slept */
282 			if (page_address(page))
283 				return (unsigned long)page_address(page);
284 
285 			/* Re-start */
286 			goto start;
287 		}
288 	}
289 	vaddr = PKMAP_ADDR(last_pkmap_nr);
290 	set_pte_at(&init_mm, vaddr,
291 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
292 
293 	pkmap_count[last_pkmap_nr] = 1;
294 	set_page_address(page, (void *)vaddr);
295 
296 	return vaddr;
297 }
298 
299 /**
300  * kmap_high - map a highmem page into memory
301  * @page: &struct page to map
302  *
303  * Returns the page's virtual memory address.
304  *
305  * We cannot call this from interrupts, as it may block.
306  */
307 void *kmap_high(struct page *page)
308 {
309 	unsigned long vaddr;
310 
311 	/*
312 	 * For highmem pages, we can't trust "virtual" until
313 	 * after we have the lock.
314 	 */
315 	lock_kmap();
316 	vaddr = (unsigned long)page_address(page);
317 	if (!vaddr)
318 		vaddr = map_new_virtual(page);
319 	pkmap_count[PKMAP_NR(vaddr)]++;
320 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
321 	unlock_kmap();
322 	return (void *) vaddr;
323 }
324 EXPORT_SYMBOL(kmap_high);
325 
326 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
327 /**
328  * kmap_high_get - pin a highmem page into memory
329  * @page: &struct page to pin
330  *
331  * Returns the page's current virtual memory address, or NULL if no mapping
332  * exists.  If and only if a non null address is returned then a
333  * matching call to kunmap_high() is necessary.
334  *
335  * This can be called from any context.
336  */
337 void *kmap_high_get(struct page *page)
338 {
339 	unsigned long vaddr, flags;
340 
341 	lock_kmap_any(flags);
342 	vaddr = (unsigned long)page_address(page);
343 	if (vaddr) {
344 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
345 		pkmap_count[PKMAP_NR(vaddr)]++;
346 	}
347 	unlock_kmap_any(flags);
348 	return (void *) vaddr;
349 }
350 #endif
351 
352 /**
353  * kunmap_high - unmap a highmem page into memory
354  * @page: &struct page to unmap
355  *
356  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
357  * only from user context.
358  */
359 void kunmap_high(struct page *page)
360 {
361 	unsigned long vaddr;
362 	unsigned long nr;
363 	unsigned long flags;
364 	int need_wakeup;
365 	unsigned int color = get_pkmap_color(page);
366 	wait_queue_head_t *pkmap_map_wait;
367 
368 	lock_kmap_any(flags);
369 	vaddr = (unsigned long)page_address(page);
370 	BUG_ON(!vaddr);
371 	nr = PKMAP_NR(vaddr);
372 
373 	/*
374 	 * A count must never go down to zero
375 	 * without a TLB flush!
376 	 */
377 	need_wakeup = 0;
378 	switch (--pkmap_count[nr]) {
379 	case 0:
380 		BUG();
381 	case 1:
382 		/*
383 		 * Avoid an unnecessary wake_up() function call.
384 		 * The common case is pkmap_count[] == 1, but
385 		 * no waiters.
386 		 * The tasks queued in the wait-queue are guarded
387 		 * by both the lock in the wait-queue-head and by
388 		 * the kmap_lock.  As the kmap_lock is held here,
389 		 * no need for the wait-queue-head's lock.  Simply
390 		 * test if the queue is empty.
391 		 */
392 		pkmap_map_wait = get_pkmap_wait_queue_head(color);
393 		need_wakeup = waitqueue_active(pkmap_map_wait);
394 	}
395 	unlock_kmap_any(flags);
396 
397 	/* do wake-up, if needed, race-free outside of the spin lock */
398 	if (need_wakeup)
399 		wake_up(pkmap_map_wait);
400 }
401 EXPORT_SYMBOL(kunmap_high);
402 
403 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
404 		unsigned start2, unsigned end2)
405 {
406 	unsigned int i;
407 
408 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
409 
410 	if (start1 >= end1)
411 		start1 = end1 = 0;
412 	if (start2 >= end2)
413 		start2 = end2 = 0;
414 
415 	for (i = 0; i < compound_nr(page); i++) {
416 		void *kaddr = NULL;
417 
418 		if (start1 >= PAGE_SIZE) {
419 			start1 -= PAGE_SIZE;
420 			end1 -= PAGE_SIZE;
421 		} else {
422 			unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
423 
424 			if (end1 > start1) {
425 				kaddr = kmap_local_page(page + i);
426 				memset(kaddr + start1, 0, this_end - start1);
427 			}
428 			end1 -= this_end;
429 			start1 = 0;
430 		}
431 
432 		if (start2 >= PAGE_SIZE) {
433 			start2 -= PAGE_SIZE;
434 			end2 -= PAGE_SIZE;
435 		} else {
436 			unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
437 
438 			if (end2 > start2) {
439 				if (!kaddr)
440 					kaddr = kmap_local_page(page + i);
441 				memset(kaddr + start2, 0, this_end - start2);
442 			}
443 			end2 -= this_end;
444 			start2 = 0;
445 		}
446 
447 		if (kaddr) {
448 			kunmap_local(kaddr);
449 			flush_dcache_page(page + i);
450 		}
451 
452 		if (!end1 && !end2)
453 			break;
454 	}
455 
456 	BUG_ON((start1 | start2 | end1 | end2) != 0);
457 }
458 EXPORT_SYMBOL(zero_user_segments);
459 #endif /* CONFIG_HIGHMEM */
460 
461 #ifdef CONFIG_KMAP_LOCAL
462 
463 #include <asm/kmap_size.h>
464 
465 /*
466  * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
467  * slot is unused which acts as a guard page
468  */
469 #ifdef CONFIG_DEBUG_KMAP_LOCAL
470 # define KM_INCR	2
471 #else
472 # define KM_INCR	1
473 #endif
474 
475 static inline int kmap_local_idx_push(void)
476 {
477 	WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
478 	current->kmap_ctrl.idx += KM_INCR;
479 	BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
480 	return current->kmap_ctrl.idx - 1;
481 }
482 
483 static inline int kmap_local_idx(void)
484 {
485 	return current->kmap_ctrl.idx - 1;
486 }
487 
488 static inline void kmap_local_idx_pop(void)
489 {
490 	current->kmap_ctrl.idx -= KM_INCR;
491 	BUG_ON(current->kmap_ctrl.idx < 0);
492 }
493 
494 #ifndef arch_kmap_local_post_map
495 # define arch_kmap_local_post_map(vaddr, pteval)	do { } while (0)
496 #endif
497 
498 #ifndef arch_kmap_local_pre_unmap
499 # define arch_kmap_local_pre_unmap(vaddr)		do { } while (0)
500 #endif
501 
502 #ifndef arch_kmap_local_post_unmap
503 # define arch_kmap_local_post_unmap(vaddr)		do { } while (0)
504 #endif
505 
506 #ifndef arch_kmap_local_unmap_idx
507 #define arch_kmap_local_unmap_idx(idx, vaddr)	kmap_local_calc_idx(idx)
508 #endif
509 
510 #ifndef arch_kmap_local_high_get
511 static inline void *arch_kmap_local_high_get(struct page *page)
512 {
513 	return NULL;
514 }
515 #endif
516 
517 #ifndef arch_kmap_local_set_pte
518 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev)	\
519 	set_pte_at(mm, vaddr, ptep, ptev)
520 #endif
521 
522 /* Unmap a local mapping which was obtained by kmap_high_get() */
523 static inline bool kmap_high_unmap_local(unsigned long vaddr)
524 {
525 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
526 	if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
527 		kunmap_high(pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(vaddr)])));
528 		return true;
529 	}
530 #endif
531 	return false;
532 }
533 
534 static pte_t *__kmap_pte;
535 
536 static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
537 {
538 	if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
539 		/*
540 		 * Set by the arch if __kmap_pte[-idx] does not produce
541 		 * the correct entry.
542 		 */
543 		return virt_to_kpte(vaddr);
544 	if (!__kmap_pte)
545 		__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
546 	return &__kmap_pte[-idx];
547 }
548 
549 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
550 {
551 	pte_t pteval, *kmap_pte;
552 	unsigned long vaddr;
553 	int idx;
554 
555 	/*
556 	 * Disable migration so resulting virtual address is stable
557 	 * across preemption.
558 	 */
559 	migrate_disable();
560 	preempt_disable();
561 	idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
562 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
563 	kmap_pte = kmap_get_pte(vaddr, idx);
564 	BUG_ON(!pte_none(ptep_get(kmap_pte)));
565 	pteval = pfn_pte(pfn, prot);
566 	arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
567 	arch_kmap_local_post_map(vaddr, pteval);
568 	current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
569 	preempt_enable();
570 
571 	return (void *)vaddr;
572 }
573 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
574 
575 void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
576 {
577 	void *kmap;
578 
579 	/*
580 	 * To broaden the usage of the actual kmap_local() machinery always map
581 	 * pages when debugging is enabled and the architecture has no problems
582 	 * with alias mappings.
583 	 */
584 	if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
585 		return page_address(page);
586 
587 	/* Try kmap_high_get() if architecture has it enabled */
588 	kmap = arch_kmap_local_high_get(page);
589 	if (kmap)
590 		return kmap;
591 
592 	return __kmap_local_pfn_prot(page_to_pfn(page), prot);
593 }
594 EXPORT_SYMBOL(__kmap_local_page_prot);
595 
596 void kunmap_local_indexed(const void *vaddr)
597 {
598 	unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
599 	pte_t *kmap_pte;
600 	int idx;
601 
602 	if (addr < __fix_to_virt(FIX_KMAP_END) ||
603 	    addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
604 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
605 			/* This _should_ never happen! See above. */
606 			WARN_ON_ONCE(1);
607 			return;
608 		}
609 		/*
610 		 * Handle mappings which were obtained by kmap_high_get()
611 		 * first as the virtual address of such mappings is below
612 		 * PAGE_OFFSET. Warn for all other addresses which are in
613 		 * the user space part of the virtual address space.
614 		 */
615 		if (!kmap_high_unmap_local(addr))
616 			WARN_ON_ONCE(addr < PAGE_OFFSET);
617 		return;
618 	}
619 
620 	preempt_disable();
621 	idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
622 	WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
623 
624 	kmap_pte = kmap_get_pte(addr, idx);
625 	arch_kmap_local_pre_unmap(addr);
626 	pte_clear(&init_mm, addr, kmap_pte);
627 	arch_kmap_local_post_unmap(addr);
628 	current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
629 	kmap_local_idx_pop();
630 	preempt_enable();
631 	migrate_enable();
632 }
633 EXPORT_SYMBOL(kunmap_local_indexed);
634 
635 /*
636  * Invoked before switch_to(). This is safe even when during or after
637  * clearing the maps an interrupt which needs a kmap_local happens because
638  * the task::kmap_ctrl.idx is not modified by the unmapping code so a
639  * nested kmap_local will use the next unused index and restore the index
640  * on unmap. The already cleared kmaps of the outgoing task are irrelevant
641  * because the interrupt context does not know about them. The same applies
642  * when scheduling back in for an interrupt which happens before the
643  * restore is complete.
644  */
645 void __kmap_local_sched_out(void)
646 {
647 	struct task_struct *tsk = current;
648 	pte_t *kmap_pte;
649 	int i;
650 
651 	/* Clear kmaps */
652 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
653 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
654 		unsigned long addr;
655 		int idx;
656 
657 		/* With debug all even slots are unmapped and act as guard */
658 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
659 			WARN_ON_ONCE(pte_val(pteval) != 0);
660 			continue;
661 		}
662 		if (WARN_ON_ONCE(pte_none(pteval)))
663 			continue;
664 
665 		/*
666 		 * This is a horrible hack for XTENSA to calculate the
667 		 * coloured PTE index. Uses the PFN encoded into the pteval
668 		 * and the map index calculation because the actual mapped
669 		 * virtual address is not stored in task::kmap_ctrl.
670 		 * For any sane architecture this is optimized out.
671 		 */
672 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
673 
674 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
675 		kmap_pte = kmap_get_pte(addr, idx);
676 		arch_kmap_local_pre_unmap(addr);
677 		pte_clear(&init_mm, addr, kmap_pte);
678 		arch_kmap_local_post_unmap(addr);
679 	}
680 }
681 
682 void __kmap_local_sched_in(void)
683 {
684 	struct task_struct *tsk = current;
685 	pte_t *kmap_pte;
686 	int i;
687 
688 	/* Restore kmaps */
689 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
690 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
691 		unsigned long addr;
692 		int idx;
693 
694 		/* With debug all even slots are unmapped and act as guard */
695 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
696 			WARN_ON_ONCE(pte_val(pteval) != 0);
697 			continue;
698 		}
699 		if (WARN_ON_ONCE(pte_none(pteval)))
700 			continue;
701 
702 		/* See comment in __kmap_local_sched_out() */
703 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
704 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
705 		kmap_pte = kmap_get_pte(addr, idx);
706 		set_pte_at(&init_mm, addr, kmap_pte, pteval);
707 		arch_kmap_local_post_map(addr, pteval);
708 	}
709 }
710 
711 void kmap_local_fork(struct task_struct *tsk)
712 {
713 	if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
714 		memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
715 }
716 
717 #endif
718 
719 #if defined(HASHED_PAGE_VIRTUAL)
720 
721 #define PA_HASH_ORDER	7
722 
723 /*
724  * Describes one page->virtual association
725  */
726 struct page_address_map {
727 	struct page *page;
728 	void *virtual;
729 	struct list_head list;
730 };
731 
732 static struct page_address_map page_address_maps[LAST_PKMAP];
733 
734 /*
735  * Hash table bucket
736  */
737 static struct page_address_slot {
738 	struct list_head lh;			/* List of page_address_maps */
739 	spinlock_t lock;			/* Protect this bucket's list */
740 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
741 
742 static struct page_address_slot *page_slot(const struct page *page)
743 {
744 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
745 }
746 
747 /**
748  * page_address - get the mapped virtual address of a page
749  * @page: &struct page to get the virtual address of
750  *
751  * Returns the page's virtual address.
752  */
753 void *page_address(const struct page *page)
754 {
755 	unsigned long flags;
756 	void *ret;
757 	struct page_address_slot *pas;
758 
759 	if (!PageHighMem(page))
760 		return lowmem_page_address(page);
761 
762 	pas = page_slot(page);
763 	ret = NULL;
764 	spin_lock_irqsave(&pas->lock, flags);
765 	if (!list_empty(&pas->lh)) {
766 		struct page_address_map *pam;
767 
768 		list_for_each_entry(pam, &pas->lh, list) {
769 			if (pam->page == page) {
770 				ret = pam->virtual;
771 				break;
772 			}
773 		}
774 	}
775 
776 	spin_unlock_irqrestore(&pas->lock, flags);
777 	return ret;
778 }
779 EXPORT_SYMBOL(page_address);
780 
781 /**
782  * set_page_address - set a page's virtual address
783  * @page: &struct page to set
784  * @virtual: virtual address to use
785  */
786 void set_page_address(struct page *page, void *virtual)
787 {
788 	unsigned long flags;
789 	struct page_address_slot *pas;
790 	struct page_address_map *pam;
791 
792 	BUG_ON(!PageHighMem(page));
793 
794 	pas = page_slot(page);
795 	if (virtual) {		/* Add */
796 		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
797 		pam->page = page;
798 		pam->virtual = virtual;
799 
800 		spin_lock_irqsave(&pas->lock, flags);
801 		list_add_tail(&pam->list, &pas->lh);
802 		spin_unlock_irqrestore(&pas->lock, flags);
803 	} else {		/* Remove */
804 		spin_lock_irqsave(&pas->lock, flags);
805 		list_for_each_entry(pam, &pas->lh, list) {
806 			if (pam->page == page) {
807 				list_del(&pam->list);
808 				break;
809 			}
810 		}
811 		spin_unlock_irqrestore(&pas->lock, flags);
812 	}
813 }
814 
815 void __init page_address_init(void)
816 {
817 	int i;
818 
819 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
820 		INIT_LIST_HEAD(&page_address_htable[i].lh);
821 		spin_lock_init(&page_address_htable[i].lock);
822 	}
823 }
824 
825 #endif	/* defined(HASHED_PAGE_VIRTUAL) */
826