xref: /linux/mm/highmem.c (revision 6ee738610f41b59733f63718f0bdbcba7d3a3f12)
1 /*
2  * High memory handling common code and variables.
3  *
4  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
5  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
6  *
7  *
8  * Redesigned the x86 32-bit VM architecture to deal with
9  * 64-bit physical space. With current x86 CPUs this
10  * means up to 64 Gigabytes physical RAM.
11  *
12  * Rewrote high memory support to move the page cache into
13  * high memory. Implemented permanent (schedulable) kmaps
14  * based on Linus' idea.
15  *
16  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/swap.h>
22 #include <linux/bio.h>
23 #include <linux/pagemap.h>
24 #include <linux/mempool.h>
25 #include <linux/blkdev.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <asm/tlbflush.h>
30 
31 /*
32  * Virtual_count is not a pure "count".
33  *  0 means that it is not mapped, and has not been mapped
34  *    since a TLB flush - it is usable.
35  *  1 means that there are no users, but it has been mapped
36  *    since the last TLB flush - so we can't use it.
37  *  n means that there are (n-1) current users of it.
38  */
39 #ifdef CONFIG_HIGHMEM
40 
41 unsigned long totalhigh_pages __read_mostly;
42 EXPORT_SYMBOL(totalhigh_pages);
43 
44 unsigned int nr_free_highpages (void)
45 {
46 	pg_data_t *pgdat;
47 	unsigned int pages = 0;
48 
49 	for_each_online_pgdat(pgdat) {
50 		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
51 			NR_FREE_PAGES);
52 		if (zone_movable_is_highmem())
53 			pages += zone_page_state(
54 					&pgdat->node_zones[ZONE_MOVABLE],
55 					NR_FREE_PAGES);
56 	}
57 
58 	return pages;
59 }
60 
61 static int pkmap_count[LAST_PKMAP];
62 static unsigned int last_pkmap_nr;
63 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
64 
65 pte_t * pkmap_page_table;
66 
67 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
68 
69 /*
70  * Most architectures have no use for kmap_high_get(), so let's abstract
71  * the disabling of IRQ out of the locking in that case to save on a
72  * potential useless overhead.
73  */
74 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
75 #define lock_kmap()             spin_lock_irq(&kmap_lock)
76 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
77 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
78 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
79 #else
80 #define lock_kmap()             spin_lock(&kmap_lock)
81 #define unlock_kmap()           spin_unlock(&kmap_lock)
82 #define lock_kmap_any(flags)    \
83 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
84 #define unlock_kmap_any(flags)  \
85 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
86 #endif
87 
88 static void flush_all_zero_pkmaps(void)
89 {
90 	int i;
91 	int need_flush = 0;
92 
93 	flush_cache_kmaps();
94 
95 	for (i = 0; i < LAST_PKMAP; i++) {
96 		struct page *page;
97 
98 		/*
99 		 * zero means we don't have anything to do,
100 		 * >1 means that it is still in use. Only
101 		 * a count of 1 means that it is free but
102 		 * needs to be unmapped
103 		 */
104 		if (pkmap_count[i] != 1)
105 			continue;
106 		pkmap_count[i] = 0;
107 
108 		/* sanity check */
109 		BUG_ON(pte_none(pkmap_page_table[i]));
110 
111 		/*
112 		 * Don't need an atomic fetch-and-clear op here;
113 		 * no-one has the page mapped, and cannot get at
114 		 * its virtual address (and hence PTE) without first
115 		 * getting the kmap_lock (which is held here).
116 		 * So no dangers, even with speculative execution.
117 		 */
118 		page = pte_page(pkmap_page_table[i]);
119 		pte_clear(&init_mm, (unsigned long)page_address(page),
120 			  &pkmap_page_table[i]);
121 
122 		set_page_address(page, NULL);
123 		need_flush = 1;
124 	}
125 	if (need_flush)
126 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
127 }
128 
129 /**
130  * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
131  */
132 void kmap_flush_unused(void)
133 {
134 	lock_kmap();
135 	flush_all_zero_pkmaps();
136 	unlock_kmap();
137 }
138 
139 static inline unsigned long map_new_virtual(struct page *page)
140 {
141 	unsigned long vaddr;
142 	int count;
143 
144 start:
145 	count = LAST_PKMAP;
146 	/* Find an empty entry */
147 	for (;;) {
148 		last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
149 		if (!last_pkmap_nr) {
150 			flush_all_zero_pkmaps();
151 			count = LAST_PKMAP;
152 		}
153 		if (!pkmap_count[last_pkmap_nr])
154 			break;	/* Found a usable entry */
155 		if (--count)
156 			continue;
157 
158 		/*
159 		 * Sleep for somebody else to unmap their entries
160 		 */
161 		{
162 			DECLARE_WAITQUEUE(wait, current);
163 
164 			__set_current_state(TASK_UNINTERRUPTIBLE);
165 			add_wait_queue(&pkmap_map_wait, &wait);
166 			unlock_kmap();
167 			schedule();
168 			remove_wait_queue(&pkmap_map_wait, &wait);
169 			lock_kmap();
170 
171 			/* Somebody else might have mapped it while we slept */
172 			if (page_address(page))
173 				return (unsigned long)page_address(page);
174 
175 			/* Re-start */
176 			goto start;
177 		}
178 	}
179 	vaddr = PKMAP_ADDR(last_pkmap_nr);
180 	set_pte_at(&init_mm, vaddr,
181 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
182 
183 	pkmap_count[last_pkmap_nr] = 1;
184 	set_page_address(page, (void *)vaddr);
185 
186 	return vaddr;
187 }
188 
189 /**
190  * kmap_high - map a highmem page into memory
191  * @page: &struct page to map
192  *
193  * Returns the page's virtual memory address.
194  *
195  * We cannot call this from interrupts, as it may block.
196  */
197 void *kmap_high(struct page *page)
198 {
199 	unsigned long vaddr;
200 
201 	/*
202 	 * For highmem pages, we can't trust "virtual" until
203 	 * after we have the lock.
204 	 */
205 	lock_kmap();
206 	vaddr = (unsigned long)page_address(page);
207 	if (!vaddr)
208 		vaddr = map_new_virtual(page);
209 	pkmap_count[PKMAP_NR(vaddr)]++;
210 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
211 	unlock_kmap();
212 	return (void*) vaddr;
213 }
214 
215 EXPORT_SYMBOL(kmap_high);
216 
217 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
218 /**
219  * kmap_high_get - pin a highmem page into memory
220  * @page: &struct page to pin
221  *
222  * Returns the page's current virtual memory address, or NULL if no mapping
223  * exists.  When and only when a non null address is returned then a
224  * matching call to kunmap_high() is necessary.
225  *
226  * This can be called from any context.
227  */
228 void *kmap_high_get(struct page *page)
229 {
230 	unsigned long vaddr, flags;
231 
232 	lock_kmap_any(flags);
233 	vaddr = (unsigned long)page_address(page);
234 	if (vaddr) {
235 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
236 		pkmap_count[PKMAP_NR(vaddr)]++;
237 	}
238 	unlock_kmap_any(flags);
239 	return (void*) vaddr;
240 }
241 #endif
242 
243 /**
244  * kunmap_high - map a highmem page into memory
245  * @page: &struct page to unmap
246  *
247  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
248  * only from user context.
249  */
250 void kunmap_high(struct page *page)
251 {
252 	unsigned long vaddr;
253 	unsigned long nr;
254 	unsigned long flags;
255 	int need_wakeup;
256 
257 	lock_kmap_any(flags);
258 	vaddr = (unsigned long)page_address(page);
259 	BUG_ON(!vaddr);
260 	nr = PKMAP_NR(vaddr);
261 
262 	/*
263 	 * A count must never go down to zero
264 	 * without a TLB flush!
265 	 */
266 	need_wakeup = 0;
267 	switch (--pkmap_count[nr]) {
268 	case 0:
269 		BUG();
270 	case 1:
271 		/*
272 		 * Avoid an unnecessary wake_up() function call.
273 		 * The common case is pkmap_count[] == 1, but
274 		 * no waiters.
275 		 * The tasks queued in the wait-queue are guarded
276 		 * by both the lock in the wait-queue-head and by
277 		 * the kmap_lock.  As the kmap_lock is held here,
278 		 * no need for the wait-queue-head's lock.  Simply
279 		 * test if the queue is empty.
280 		 */
281 		need_wakeup = waitqueue_active(&pkmap_map_wait);
282 	}
283 	unlock_kmap_any(flags);
284 
285 	/* do wake-up, if needed, race-free outside of the spin lock */
286 	if (need_wakeup)
287 		wake_up(&pkmap_map_wait);
288 }
289 
290 EXPORT_SYMBOL(kunmap_high);
291 #endif
292 
293 #if defined(HASHED_PAGE_VIRTUAL)
294 
295 #define PA_HASH_ORDER	7
296 
297 /*
298  * Describes one page->virtual association
299  */
300 struct page_address_map {
301 	struct page *page;
302 	void *virtual;
303 	struct list_head list;
304 };
305 
306 /*
307  * page_address_map freelist, allocated from page_address_maps.
308  */
309 static struct list_head page_address_pool;	/* freelist */
310 static spinlock_t pool_lock;			/* protects page_address_pool */
311 
312 /*
313  * Hash table bucket
314  */
315 static struct page_address_slot {
316 	struct list_head lh;			/* List of page_address_maps */
317 	spinlock_t lock;			/* Protect this bucket's list */
318 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
319 
320 static struct page_address_slot *page_slot(struct page *page)
321 {
322 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
323 }
324 
325 /**
326  * page_address - get the mapped virtual address of a page
327  * @page: &struct page to get the virtual address of
328  *
329  * Returns the page's virtual address.
330  */
331 void *page_address(struct page *page)
332 {
333 	unsigned long flags;
334 	void *ret;
335 	struct page_address_slot *pas;
336 
337 	if (!PageHighMem(page))
338 		return lowmem_page_address(page);
339 
340 	pas = page_slot(page);
341 	ret = NULL;
342 	spin_lock_irqsave(&pas->lock, flags);
343 	if (!list_empty(&pas->lh)) {
344 		struct page_address_map *pam;
345 
346 		list_for_each_entry(pam, &pas->lh, list) {
347 			if (pam->page == page) {
348 				ret = pam->virtual;
349 				goto done;
350 			}
351 		}
352 	}
353 done:
354 	spin_unlock_irqrestore(&pas->lock, flags);
355 	return ret;
356 }
357 
358 EXPORT_SYMBOL(page_address);
359 
360 /**
361  * set_page_address - set a page's virtual address
362  * @page: &struct page to set
363  * @virtual: virtual address to use
364  */
365 void set_page_address(struct page *page, void *virtual)
366 {
367 	unsigned long flags;
368 	struct page_address_slot *pas;
369 	struct page_address_map *pam;
370 
371 	BUG_ON(!PageHighMem(page));
372 
373 	pas = page_slot(page);
374 	if (virtual) {		/* Add */
375 		BUG_ON(list_empty(&page_address_pool));
376 
377 		spin_lock_irqsave(&pool_lock, flags);
378 		pam = list_entry(page_address_pool.next,
379 				struct page_address_map, list);
380 		list_del(&pam->list);
381 		spin_unlock_irqrestore(&pool_lock, flags);
382 
383 		pam->page = page;
384 		pam->virtual = virtual;
385 
386 		spin_lock_irqsave(&pas->lock, flags);
387 		list_add_tail(&pam->list, &pas->lh);
388 		spin_unlock_irqrestore(&pas->lock, flags);
389 	} else {		/* Remove */
390 		spin_lock_irqsave(&pas->lock, flags);
391 		list_for_each_entry(pam, &pas->lh, list) {
392 			if (pam->page == page) {
393 				list_del(&pam->list);
394 				spin_unlock_irqrestore(&pas->lock, flags);
395 				spin_lock_irqsave(&pool_lock, flags);
396 				list_add_tail(&pam->list, &page_address_pool);
397 				spin_unlock_irqrestore(&pool_lock, flags);
398 				goto done;
399 			}
400 		}
401 		spin_unlock_irqrestore(&pas->lock, flags);
402 	}
403 done:
404 	return;
405 }
406 
407 static struct page_address_map page_address_maps[LAST_PKMAP];
408 
409 void __init page_address_init(void)
410 {
411 	int i;
412 
413 	INIT_LIST_HEAD(&page_address_pool);
414 	for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
415 		list_add(&page_address_maps[i].list, &page_address_pool);
416 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
417 		INIT_LIST_HEAD(&page_address_htable[i].lh);
418 		spin_lock_init(&page_address_htable[i].lock);
419 	}
420 	spin_lock_init(&pool_lock);
421 }
422 
423 #endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
424 
425 #if defined(CONFIG_DEBUG_HIGHMEM) && defined(CONFIG_TRACE_IRQFLAGS_SUPPORT)
426 
427 void debug_kmap_atomic(enum km_type type)
428 {
429 	static int warn_count = 10;
430 
431 	if (unlikely(warn_count < 0))
432 		return;
433 
434 	if (unlikely(in_interrupt())) {
435 		if (in_nmi()) {
436 			if (type != KM_NMI && type != KM_NMI_PTE) {
437 				WARN_ON(1);
438 				warn_count--;
439 			}
440 		} else if (in_irq()) {
441 			if (type != KM_IRQ0 && type != KM_IRQ1 &&
442 			    type != KM_BIO_SRC_IRQ && type != KM_BIO_DST_IRQ &&
443 			    type != KM_BOUNCE_READ && type != KM_IRQ_PTE) {
444 				WARN_ON(1);
445 				warn_count--;
446 			}
447 		} else if (!irqs_disabled()) {	/* softirq */
448 			if (type != KM_IRQ0 && type != KM_IRQ1 &&
449 			    type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 &&
450 			    type != KM_SKB_SUNRPC_DATA &&
451 			    type != KM_SKB_DATA_SOFTIRQ &&
452 			    type != KM_BOUNCE_READ) {
453 				WARN_ON(1);
454 				warn_count--;
455 			}
456 		}
457 	}
458 
459 	if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ ||
460 			type == KM_BIO_SRC_IRQ || type == KM_BIO_DST_IRQ ||
461 			type == KM_IRQ_PTE || type == KM_NMI ||
462 			type == KM_NMI_PTE ) {
463 		if (!irqs_disabled()) {
464 			WARN_ON(1);
465 			warn_count--;
466 		}
467 	} else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) {
468 		if (irq_count() == 0 && !irqs_disabled()) {
469 			WARN_ON(1);
470 			warn_count--;
471 		}
472 	}
473 }
474 
475 #endif
476