xref: /linux/mm/highmem.c (revision 69050f8d6d075dc01af7a5f2f550a8067510366f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * High memory handling common code and variables.
4  *
5  * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
6  *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
7  *
8  *
9  * Redesigned the x86 32-bit VM architecture to deal with
10  * 64-bit physical space. With current x86 CPUs this
11  * means up to 64 Gigabytes physical RAM.
12  *
13  * Rewrote high memory support to move the page cache into
14  * high memory. Implemented permanent (schedulable) kmaps
15  * based on Linus' idea.
16  *
17  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
18  */
19 
20 #include <linux/mm.h>
21 #include <linux/export.h>
22 #include <linux/swap.h>
23 #include <linux/bio.h>
24 #include <linux/pagemap.h>
25 #include <linux/mempool.h>
26 #include <linux/init.h>
27 #include <linux/hash.h>
28 #include <linux/highmem.h>
29 #include <linux/kgdb.h>
30 #include <asm/tlbflush.h>
31 #include <linux/vmalloc.h>
32 
33 #ifdef CONFIG_KMAP_LOCAL
34 static inline int kmap_local_calc_idx(int idx)
35 {
36 	return idx + KM_MAX_IDX * smp_processor_id();
37 }
38 
39 #ifndef arch_kmap_local_map_idx
40 #define arch_kmap_local_map_idx(idx, pfn)	kmap_local_calc_idx(idx)
41 #endif
42 #endif /* CONFIG_KMAP_LOCAL */
43 
44 /*
45  * Virtual_count is not a pure "count".
46  *  0 means that it is not mapped, and has not been mapped
47  *    since a TLB flush - it is usable.
48  *  1 means that there are no users, but it has been mapped
49  *    since the last TLB flush - so we can't use it.
50  *  n means that there are (n-1) current users of it.
51  */
52 #ifdef CONFIG_HIGHMEM
53 
54 /*
55  * Architecture with aliasing data cache may define the following family of
56  * helper functions in its asm/highmem.h to control cache color of virtual
57  * addresses where physical memory pages are mapped by kmap.
58  */
59 #ifndef get_pkmap_color
60 
61 /*
62  * Determine color of virtual address where the page should be mapped.
63  */
64 static inline unsigned int get_pkmap_color(const struct page *page)
65 {
66 	return 0;
67 }
68 #define get_pkmap_color get_pkmap_color
69 
70 /*
71  * Get next index for mapping inside PKMAP region for page with given color.
72  */
73 static inline unsigned int get_next_pkmap_nr(unsigned int color)
74 {
75 	static unsigned int last_pkmap_nr;
76 
77 	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
78 	return last_pkmap_nr;
79 }
80 
81 /*
82  * Determine if page index inside PKMAP region (pkmap_nr) of given color
83  * has wrapped around PKMAP region end. When this happens an attempt to
84  * flush all unused PKMAP slots is made.
85  */
86 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
87 {
88 	return pkmap_nr == 0;
89 }
90 
91 /*
92  * Get the number of PKMAP entries of the given color. If no free slot is
93  * found after checking that many entries, kmap will sleep waiting for
94  * someone to call kunmap and free PKMAP slot.
95  */
96 static inline int get_pkmap_entries_count(unsigned int color)
97 {
98 	return LAST_PKMAP;
99 }
100 
101 /*
102  * Get head of a wait queue for PKMAP entries of the given color.
103  * Wait queues for different mapping colors should be independent to avoid
104  * unnecessary wakeups caused by freeing of slots of other colors.
105  */
106 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
107 {
108 	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
109 
110 	return &pkmap_map_wait;
111 }
112 #endif
113 
114 unsigned long __nr_free_highpages(void)
115 {
116 	unsigned long pages = 0;
117 	struct zone *zone;
118 
119 	for_each_populated_zone(zone) {
120 		if (is_highmem(zone))
121 			pages += zone_page_state(zone, NR_FREE_PAGES);
122 	}
123 
124 	return pages;
125 }
126 
127 unsigned long __totalhigh_pages(void)
128 {
129 	unsigned long pages = 0;
130 	struct zone *zone;
131 
132 	for_each_populated_zone(zone) {
133 		if (is_highmem(zone))
134 			pages += zone_managed_pages(zone);
135 	}
136 
137 	return pages;
138 }
139 EXPORT_SYMBOL(__totalhigh_pages);
140 
141 static int pkmap_count[LAST_PKMAP];
142 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
143 
144 pte_t *pkmap_page_table;
145 
146 /*
147  * Most architectures have no use for kmap_high_get(), so let's abstract
148  * the disabling of IRQ out of the locking in that case to save on a
149  * potential useless overhead.
150  */
151 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
152 #define lock_kmap()             spin_lock_irq(&kmap_lock)
153 #define unlock_kmap()           spin_unlock_irq(&kmap_lock)
154 #define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
155 #define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
156 #else
157 #define lock_kmap()             spin_lock(&kmap_lock)
158 #define unlock_kmap()           spin_unlock(&kmap_lock)
159 #define lock_kmap_any(flags)    \
160 		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
161 #define unlock_kmap_any(flags)  \
162 		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
163 #endif
164 
165 struct page *__kmap_to_page(void *vaddr)
166 {
167 	unsigned long base = (unsigned long) vaddr & PAGE_MASK;
168 	struct kmap_ctrl *kctrl = &current->kmap_ctrl;
169 	unsigned long addr = (unsigned long)vaddr;
170 	int i;
171 
172 	/* kmap() mappings */
173 	if (WARN_ON_ONCE(addr >= PKMAP_ADDR(0) &&
174 			 addr < PKMAP_ADDR(LAST_PKMAP)))
175 		return pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(addr)]));
176 
177 	/* kmap_local_page() mappings */
178 	if (WARN_ON_ONCE(base >= __fix_to_virt(FIX_KMAP_END) &&
179 			 base < __fix_to_virt(FIX_KMAP_BEGIN))) {
180 		for (i = 0; i < kctrl->idx; i++) {
181 			unsigned long base_addr;
182 			int idx;
183 			pte_t pteval = kctrl->pteval[i];
184 
185 			idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
186 			base_addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
187 
188 			if (base_addr == base)
189 				return pte_page(pteval);
190 		}
191 	}
192 
193 	return virt_to_page(vaddr);
194 }
195 EXPORT_SYMBOL(__kmap_to_page);
196 
197 static void flush_all_zero_pkmaps(void)
198 {
199 	int i;
200 	int need_flush = 0;
201 
202 	flush_cache_kmaps();
203 
204 	for (i = 0; i < LAST_PKMAP; i++) {
205 		struct page *page;
206 		pte_t ptent;
207 
208 		/*
209 		 * zero means we don't have anything to do,
210 		 * >1 means that it is still in use. Only
211 		 * a count of 1 means that it is free but
212 		 * needs to be unmapped
213 		 */
214 		if (pkmap_count[i] != 1)
215 			continue;
216 		pkmap_count[i] = 0;
217 
218 		/* sanity check */
219 		ptent = ptep_get(&pkmap_page_table[i]);
220 		BUG_ON(pte_none(ptent));
221 
222 		/*
223 		 * Don't need an atomic fetch-and-clear op here;
224 		 * no-one has the page mapped, and cannot get at
225 		 * its virtual address (and hence PTE) without first
226 		 * getting the kmap_lock (which is held here).
227 		 * So no dangers, even with speculative execution.
228 		 */
229 		page = pte_page(ptent);
230 		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
231 
232 		set_page_address(page, NULL);
233 		need_flush = 1;
234 	}
235 	if (need_flush)
236 		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
237 }
238 
239 void __kmap_flush_unused(void)
240 {
241 	lock_kmap();
242 	flush_all_zero_pkmaps();
243 	unlock_kmap();
244 }
245 
246 static inline unsigned long map_new_virtual(struct page *page)
247 {
248 	unsigned long vaddr;
249 	int count;
250 	unsigned int last_pkmap_nr;
251 	unsigned int color = get_pkmap_color(page);
252 
253 start:
254 	count = get_pkmap_entries_count(color);
255 	/* Find an empty entry */
256 	for (;;) {
257 		last_pkmap_nr = get_next_pkmap_nr(color);
258 		if (no_more_pkmaps(last_pkmap_nr, color)) {
259 			flush_all_zero_pkmaps();
260 			count = get_pkmap_entries_count(color);
261 		}
262 		if (!pkmap_count[last_pkmap_nr])
263 			break;	/* Found a usable entry */
264 		if (--count)
265 			continue;
266 
267 		/*
268 		 * Sleep for somebody else to unmap their entries
269 		 */
270 		{
271 			DECLARE_WAITQUEUE(wait, current);
272 			wait_queue_head_t *pkmap_map_wait =
273 				get_pkmap_wait_queue_head(color);
274 
275 			__set_current_state(TASK_UNINTERRUPTIBLE);
276 			add_wait_queue(pkmap_map_wait, &wait);
277 			unlock_kmap();
278 			schedule();
279 			remove_wait_queue(pkmap_map_wait, &wait);
280 			lock_kmap();
281 
282 			/* Somebody else might have mapped it while we slept */
283 			if (page_address(page))
284 				return (unsigned long)page_address(page);
285 
286 			/* Re-start */
287 			goto start;
288 		}
289 	}
290 	vaddr = PKMAP_ADDR(last_pkmap_nr);
291 	set_pte_at(&init_mm, vaddr,
292 		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
293 
294 	pkmap_count[last_pkmap_nr] = 1;
295 	set_page_address(page, (void *)vaddr);
296 
297 	return vaddr;
298 }
299 
300 /**
301  * kmap_high - map a highmem page into memory
302  * @page: &struct page to map
303  *
304  * Returns the page's virtual memory address.
305  *
306  * We cannot call this from interrupts, as it may block.
307  */
308 void *kmap_high(struct page *page)
309 {
310 	unsigned long vaddr;
311 
312 	/*
313 	 * For highmem pages, we can't trust "virtual" until
314 	 * after we have the lock.
315 	 */
316 	lock_kmap();
317 	vaddr = (unsigned long)page_address(page);
318 	if (!vaddr)
319 		vaddr = map_new_virtual(page);
320 	pkmap_count[PKMAP_NR(vaddr)]++;
321 	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
322 	unlock_kmap();
323 	return (void *) vaddr;
324 }
325 EXPORT_SYMBOL(kmap_high);
326 
327 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
328 /**
329  * kmap_high_get - pin a highmem page into memory
330  * @page: &struct page to pin
331  *
332  * Returns the page's current virtual memory address, or NULL if no mapping
333  * exists.  If and only if a non null address is returned then a
334  * matching call to kunmap_high() is necessary.
335  *
336  * This can be called from any context.
337  */
338 void *kmap_high_get(const struct page *page)
339 {
340 	unsigned long vaddr, flags;
341 
342 	lock_kmap_any(flags);
343 	vaddr = (unsigned long)page_address(page);
344 	if (vaddr) {
345 		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
346 		pkmap_count[PKMAP_NR(vaddr)]++;
347 	}
348 	unlock_kmap_any(flags);
349 	return (void *) vaddr;
350 }
351 #endif
352 
353 /**
354  * kunmap_high - unmap a highmem page into memory
355  * @page: &struct page to unmap
356  *
357  * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
358  * only from user context.
359  */
360 void kunmap_high(const struct page *page)
361 {
362 	unsigned long vaddr;
363 	unsigned long nr;
364 	unsigned long flags;
365 	int need_wakeup;
366 	unsigned int color = get_pkmap_color(page);
367 	wait_queue_head_t *pkmap_map_wait;
368 
369 	lock_kmap_any(flags);
370 	vaddr = (unsigned long)page_address(page);
371 	BUG_ON(!vaddr);
372 	nr = PKMAP_NR(vaddr);
373 
374 	/*
375 	 * A count must never go down to zero
376 	 * without a TLB flush!
377 	 */
378 	need_wakeup = 0;
379 	switch (--pkmap_count[nr]) {
380 	case 0:
381 		BUG();
382 	case 1:
383 		/*
384 		 * Avoid an unnecessary wake_up() function call.
385 		 * The common case is pkmap_count[] == 1, but
386 		 * no waiters.
387 		 * The tasks queued in the wait-queue are guarded
388 		 * by both the lock in the wait-queue-head and by
389 		 * the kmap_lock.  As the kmap_lock is held here,
390 		 * no need for the wait-queue-head's lock.  Simply
391 		 * test if the queue is empty.
392 		 */
393 		pkmap_map_wait = get_pkmap_wait_queue_head(color);
394 		need_wakeup = waitqueue_active(pkmap_map_wait);
395 	}
396 	unlock_kmap_any(flags);
397 
398 	/* do wake-up, if needed, race-free outside of the spin lock */
399 	if (need_wakeup)
400 		wake_up(pkmap_map_wait);
401 }
402 EXPORT_SYMBOL(kunmap_high);
403 
404 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
405 		unsigned start2, unsigned end2)
406 {
407 	unsigned int i;
408 
409 	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
410 
411 	if (start1 >= end1)
412 		start1 = end1 = 0;
413 	if (start2 >= end2)
414 		start2 = end2 = 0;
415 
416 	for (i = 0; i < compound_nr(page); i++) {
417 		void *kaddr = NULL;
418 
419 		if (start1 >= PAGE_SIZE) {
420 			start1 -= PAGE_SIZE;
421 			end1 -= PAGE_SIZE;
422 		} else {
423 			unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
424 
425 			if (end1 > start1) {
426 				kaddr = kmap_local_page(page + i);
427 				memset(kaddr + start1, 0, this_end - start1);
428 			}
429 			end1 -= this_end;
430 			start1 = 0;
431 		}
432 
433 		if (start2 >= PAGE_SIZE) {
434 			start2 -= PAGE_SIZE;
435 			end2 -= PAGE_SIZE;
436 		} else {
437 			unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
438 
439 			if (end2 > start2) {
440 				if (!kaddr)
441 					kaddr = kmap_local_page(page + i);
442 				memset(kaddr + start2, 0, this_end - start2);
443 			}
444 			end2 -= this_end;
445 			start2 = 0;
446 		}
447 
448 		if (kaddr) {
449 			kunmap_local(kaddr);
450 			flush_dcache_page(page + i);
451 		}
452 
453 		if (!end1 && !end2)
454 			break;
455 	}
456 
457 	BUG_ON((start1 | start2 | end1 | end2) != 0);
458 }
459 EXPORT_SYMBOL(zero_user_segments);
460 #endif /* CONFIG_HIGHMEM */
461 
462 #ifdef CONFIG_KMAP_LOCAL
463 
464 #include <asm/kmap_size.h>
465 
466 /*
467  * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
468  * slot is unused which acts as a guard page
469  */
470 #ifdef CONFIG_DEBUG_KMAP_LOCAL
471 # define KM_INCR	2
472 #else
473 # define KM_INCR	1
474 #endif
475 
476 static inline int kmap_local_idx_push(void)
477 {
478 	WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
479 	current->kmap_ctrl.idx += KM_INCR;
480 	BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
481 	return current->kmap_ctrl.idx - 1;
482 }
483 
484 static inline int kmap_local_idx(void)
485 {
486 	return current->kmap_ctrl.idx - 1;
487 }
488 
489 static inline void kmap_local_idx_pop(void)
490 {
491 	current->kmap_ctrl.idx -= KM_INCR;
492 	BUG_ON(current->kmap_ctrl.idx < 0);
493 }
494 
495 #ifndef arch_kmap_local_post_map
496 # define arch_kmap_local_post_map(vaddr, pteval)	do { } while (0)
497 #endif
498 
499 #ifndef arch_kmap_local_pre_unmap
500 # define arch_kmap_local_pre_unmap(vaddr)		do { } while (0)
501 #endif
502 
503 #ifndef arch_kmap_local_post_unmap
504 # define arch_kmap_local_post_unmap(vaddr)		do { } while (0)
505 #endif
506 
507 #ifndef arch_kmap_local_unmap_idx
508 #define arch_kmap_local_unmap_idx(idx, vaddr)	kmap_local_calc_idx(idx)
509 #endif
510 
511 #ifndef arch_kmap_local_high_get
512 static inline void *arch_kmap_local_high_get(const struct page *page)
513 {
514 	return NULL;
515 }
516 #endif
517 
518 #ifndef arch_kmap_local_set_pte
519 #define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev)	\
520 	set_pte_at(mm, vaddr, ptep, ptev)
521 #endif
522 
523 /* Unmap a local mapping which was obtained by kmap_high_get() */
524 static inline bool kmap_high_unmap_local(unsigned long vaddr)
525 {
526 #ifdef ARCH_NEEDS_KMAP_HIGH_GET
527 	if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
528 		kunmap_high(pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(vaddr)])));
529 		return true;
530 	}
531 #endif
532 	return false;
533 }
534 
535 static pte_t *__kmap_pte;
536 
537 static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
538 {
539 	if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
540 		/*
541 		 * Set by the arch if __kmap_pte[-idx] does not produce
542 		 * the correct entry.
543 		 */
544 		return virt_to_kpte(vaddr);
545 	if (!__kmap_pte)
546 		__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
547 	return &__kmap_pte[-idx];
548 }
549 
550 void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
551 {
552 	pte_t pteval, *kmap_pte;
553 	unsigned long vaddr;
554 	int idx;
555 
556 	/*
557 	 * Disable migration so resulting virtual address is stable
558 	 * across preemption.
559 	 */
560 	migrate_disable();
561 	preempt_disable();
562 	idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
563 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
564 	kmap_pte = kmap_get_pte(vaddr, idx);
565 	BUG_ON(!pte_none(ptep_get(kmap_pte)));
566 	pteval = pfn_pte(pfn, prot);
567 	arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
568 	arch_kmap_local_post_map(vaddr, pteval);
569 	current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
570 	preempt_enable();
571 
572 	return (void *)vaddr;
573 }
574 EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
575 
576 void *__kmap_local_page_prot(const struct page *page, pgprot_t prot)
577 {
578 	void *kmap;
579 
580 	/*
581 	 * To broaden the usage of the actual kmap_local() machinery always map
582 	 * pages when debugging is enabled and the architecture has no problems
583 	 * with alias mappings.
584 	 */
585 	if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
586 		return page_address(page);
587 
588 	/* Try kmap_high_get() if architecture has it enabled */
589 	kmap = arch_kmap_local_high_get(page);
590 	if (kmap)
591 		return kmap;
592 
593 	return __kmap_local_pfn_prot(page_to_pfn(page), prot);
594 }
595 EXPORT_SYMBOL(__kmap_local_page_prot);
596 
597 void kunmap_local_indexed(const void *vaddr)
598 {
599 	unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
600 	pte_t *kmap_pte;
601 	int idx;
602 
603 	if (addr < __fix_to_virt(FIX_KMAP_END) ||
604 	    addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
605 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
606 			/* This _should_ never happen! See above. */
607 			WARN_ON_ONCE(1);
608 			return;
609 		}
610 		/*
611 		 * Handle mappings which were obtained by kmap_high_get()
612 		 * first as the virtual address of such mappings is below
613 		 * PAGE_OFFSET. Warn for all other addresses which are in
614 		 * the user space part of the virtual address space.
615 		 */
616 		if (!kmap_high_unmap_local(addr))
617 			WARN_ON_ONCE(addr < PAGE_OFFSET);
618 		return;
619 	}
620 
621 	preempt_disable();
622 	idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
623 	WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
624 
625 	kmap_pte = kmap_get_pte(addr, idx);
626 	arch_kmap_local_pre_unmap(addr);
627 	pte_clear(&init_mm, addr, kmap_pte);
628 	arch_kmap_local_post_unmap(addr);
629 	current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
630 	kmap_local_idx_pop();
631 	preempt_enable();
632 	migrate_enable();
633 }
634 EXPORT_SYMBOL(kunmap_local_indexed);
635 
636 /*
637  * Invoked before switch_to(). This is safe even when during or after
638  * clearing the maps an interrupt which needs a kmap_local happens because
639  * the task::kmap_ctrl.idx is not modified by the unmapping code so a
640  * nested kmap_local will use the next unused index and restore the index
641  * on unmap. The already cleared kmaps of the outgoing task are irrelevant
642  * because the interrupt context does not know about them. The same applies
643  * when scheduling back in for an interrupt which happens before the
644  * restore is complete.
645  */
646 void __kmap_local_sched_out(void)
647 {
648 	struct task_struct *tsk = current;
649 	pte_t *kmap_pte;
650 	int i;
651 
652 	/* Clear kmaps */
653 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
654 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
655 		unsigned long addr;
656 		int idx;
657 
658 		/* With debug all even slots are unmapped and act as guard */
659 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
660 			WARN_ON_ONCE(pte_val(pteval) != 0);
661 			continue;
662 		}
663 		if (WARN_ON_ONCE(pte_none(pteval)))
664 			continue;
665 
666 		/*
667 		 * This is a horrible hack for XTENSA to calculate the
668 		 * coloured PTE index. Uses the PFN encoded into the pteval
669 		 * and the map index calculation because the actual mapped
670 		 * virtual address is not stored in task::kmap_ctrl.
671 		 * For any sane architecture this is optimized out.
672 		 */
673 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
674 
675 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
676 		kmap_pte = kmap_get_pte(addr, idx);
677 		arch_kmap_local_pre_unmap(addr);
678 		pte_clear(&init_mm, addr, kmap_pte);
679 		arch_kmap_local_post_unmap(addr);
680 	}
681 }
682 
683 void __kmap_local_sched_in(void)
684 {
685 	struct task_struct *tsk = current;
686 	pte_t *kmap_pte;
687 	int i;
688 
689 	/* Restore kmaps */
690 	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
691 		pte_t pteval = tsk->kmap_ctrl.pteval[i];
692 		unsigned long addr;
693 		int idx;
694 
695 		/* With debug all even slots are unmapped and act as guard */
696 		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
697 			WARN_ON_ONCE(pte_val(pteval) != 0);
698 			continue;
699 		}
700 		if (WARN_ON_ONCE(pte_none(pteval)))
701 			continue;
702 
703 		/* See comment in __kmap_local_sched_out() */
704 		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
705 		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
706 		kmap_pte = kmap_get_pte(addr, idx);
707 		set_pte_at(&init_mm, addr, kmap_pte, pteval);
708 		arch_kmap_local_post_map(addr, pteval);
709 	}
710 }
711 
712 void kmap_local_fork(struct task_struct *tsk)
713 {
714 	if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
715 		memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
716 }
717 
718 #endif
719 
720 #if defined(HASHED_PAGE_VIRTUAL)
721 
722 #define PA_HASH_ORDER	7
723 
724 /*
725  * Describes one page->virtual association
726  */
727 struct page_address_map {
728 	struct page *page;
729 	void *virtual;
730 	struct list_head list;
731 };
732 
733 static struct page_address_map page_address_maps[LAST_PKMAP];
734 
735 /*
736  * Hash table bucket
737  */
738 static struct page_address_slot {
739 	struct list_head lh;			/* List of page_address_maps */
740 	spinlock_t lock;			/* Protect this bucket's list */
741 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
742 
743 static struct page_address_slot *page_slot(const struct page *page)
744 {
745 	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
746 }
747 
748 /**
749  * page_address - get the mapped virtual address of a page
750  * @page: &struct page to get the virtual address of
751  *
752  * Returns the page's virtual address.
753  */
754 void *page_address(const struct page *page)
755 {
756 	unsigned long flags;
757 	void *ret;
758 	struct page_address_slot *pas;
759 
760 	if (!PageHighMem(page))
761 		return lowmem_page_address(page);
762 
763 	pas = page_slot(page);
764 	ret = NULL;
765 	spin_lock_irqsave(&pas->lock, flags);
766 	if (!list_empty(&pas->lh)) {
767 		struct page_address_map *pam;
768 
769 		list_for_each_entry(pam, &pas->lh, list) {
770 			if (pam->page == page) {
771 				ret = pam->virtual;
772 				break;
773 			}
774 		}
775 	}
776 
777 	spin_unlock_irqrestore(&pas->lock, flags);
778 	return ret;
779 }
780 EXPORT_SYMBOL(page_address);
781 
782 /**
783  * set_page_address - set a page's virtual address
784  * @page: &struct page to set
785  * @virtual: virtual address to use
786  */
787 void set_page_address(struct page *page, void *virtual)
788 {
789 	unsigned long flags;
790 	struct page_address_slot *pas;
791 	struct page_address_map *pam;
792 
793 	BUG_ON(!PageHighMem(page));
794 
795 	pas = page_slot(page);
796 	if (virtual) {		/* Add */
797 		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
798 		pam->page = page;
799 		pam->virtual = virtual;
800 
801 		spin_lock_irqsave(&pas->lock, flags);
802 		list_add_tail(&pam->list, &pas->lh);
803 		spin_unlock_irqrestore(&pas->lock, flags);
804 	} else {		/* Remove */
805 		spin_lock_irqsave(&pas->lock, flags);
806 		list_for_each_entry(pam, &pas->lh, list) {
807 			if (pam->page == page) {
808 				list_del(&pam->list);
809 				break;
810 			}
811 		}
812 		spin_unlock_irqrestore(&pas->lock, flags);
813 	}
814 }
815 
816 void __init page_address_init(void)
817 {
818 	int i;
819 
820 	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
821 		INIT_LIST_HEAD(&page_address_htable[i].lh);
822 		spin_lock_init(&page_address_htable[i].lock);
823 	}
824 }
825 
826 #endif	/* defined(HASHED_PAGE_VIRTUAL) */
827