1 /* 2 * High memory handling common code and variables. 3 * 4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de 5 * Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de 6 * 7 * 8 * Redesigned the x86 32-bit VM architecture to deal with 9 * 64-bit physical space. With current x86 CPUs this 10 * means up to 64 Gigabytes physical RAM. 11 * 12 * Rewrote high memory support to move the page cache into 13 * high memory. Implemented permanent (schedulable) kmaps 14 * based on Linus' idea. 15 * 16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/export.h> 21 #include <linux/swap.h> 22 #include <linux/bio.h> 23 #include <linux/pagemap.h> 24 #include <linux/mempool.h> 25 #include <linux/blkdev.h> 26 #include <linux/init.h> 27 #include <linux/hash.h> 28 #include <linux/highmem.h> 29 #include <linux/kgdb.h> 30 #include <asm/tlbflush.h> 31 32 33 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32) 34 DEFINE_PER_CPU(int, __kmap_atomic_idx); 35 #endif 36 37 /* 38 * Virtual_count is not a pure "count". 39 * 0 means that it is not mapped, and has not been mapped 40 * since a TLB flush - it is usable. 41 * 1 means that there are no users, but it has been mapped 42 * since the last TLB flush - so we can't use it. 43 * n means that there are (n-1) current users of it. 44 */ 45 #ifdef CONFIG_HIGHMEM 46 47 /* 48 * Architecture with aliasing data cache may define the following family of 49 * helper functions in its asm/highmem.h to control cache color of virtual 50 * addresses where physical memory pages are mapped by kmap. 51 */ 52 #ifndef get_pkmap_color 53 54 /* 55 * Determine color of virtual address where the page should be mapped. 56 */ 57 static inline unsigned int get_pkmap_color(struct page *page) 58 { 59 return 0; 60 } 61 #define get_pkmap_color get_pkmap_color 62 63 /* 64 * Get next index for mapping inside PKMAP region for page with given color. 65 */ 66 static inline unsigned int get_next_pkmap_nr(unsigned int color) 67 { 68 static unsigned int last_pkmap_nr; 69 70 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK; 71 return last_pkmap_nr; 72 } 73 74 /* 75 * Determine if page index inside PKMAP region (pkmap_nr) of given color 76 * has wrapped around PKMAP region end. When this happens an attempt to 77 * flush all unused PKMAP slots is made. 78 */ 79 static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color) 80 { 81 return pkmap_nr == 0; 82 } 83 84 /* 85 * Get the number of PKMAP entries of the given color. If no free slot is 86 * found after checking that many entries, kmap will sleep waiting for 87 * someone to call kunmap and free PKMAP slot. 88 */ 89 static inline int get_pkmap_entries_count(unsigned int color) 90 { 91 return LAST_PKMAP; 92 } 93 94 /* 95 * Get head of a wait queue for PKMAP entries of the given color. 96 * Wait queues for different mapping colors should be independent to avoid 97 * unnecessary wakeups caused by freeing of slots of other colors. 98 */ 99 static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color) 100 { 101 static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait); 102 103 return &pkmap_map_wait; 104 } 105 #endif 106 107 unsigned long totalhigh_pages __read_mostly; 108 EXPORT_SYMBOL(totalhigh_pages); 109 110 111 EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx); 112 113 unsigned int nr_free_highpages (void) 114 { 115 pg_data_t *pgdat; 116 unsigned int pages = 0; 117 118 for_each_online_pgdat(pgdat) { 119 pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 120 NR_FREE_PAGES); 121 if (zone_movable_is_highmem()) 122 pages += zone_page_state( 123 &pgdat->node_zones[ZONE_MOVABLE], 124 NR_FREE_PAGES); 125 } 126 127 return pages; 128 } 129 130 static int pkmap_count[LAST_PKMAP]; 131 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock); 132 133 pte_t * pkmap_page_table; 134 135 /* 136 * Most architectures have no use for kmap_high_get(), so let's abstract 137 * the disabling of IRQ out of the locking in that case to save on a 138 * potential useless overhead. 139 */ 140 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 141 #define lock_kmap() spin_lock_irq(&kmap_lock) 142 #define unlock_kmap() spin_unlock_irq(&kmap_lock) 143 #define lock_kmap_any(flags) spin_lock_irqsave(&kmap_lock, flags) 144 #define unlock_kmap_any(flags) spin_unlock_irqrestore(&kmap_lock, flags) 145 #else 146 #define lock_kmap() spin_lock(&kmap_lock) 147 #define unlock_kmap() spin_unlock(&kmap_lock) 148 #define lock_kmap_any(flags) \ 149 do { spin_lock(&kmap_lock); (void)(flags); } while (0) 150 #define unlock_kmap_any(flags) \ 151 do { spin_unlock(&kmap_lock); (void)(flags); } while (0) 152 #endif 153 154 struct page *kmap_to_page(void *vaddr) 155 { 156 unsigned long addr = (unsigned long)vaddr; 157 158 if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) { 159 int i = PKMAP_NR(addr); 160 return pte_page(pkmap_page_table[i]); 161 } 162 163 return virt_to_page(addr); 164 } 165 EXPORT_SYMBOL(kmap_to_page); 166 167 static void flush_all_zero_pkmaps(void) 168 { 169 int i; 170 int need_flush = 0; 171 172 flush_cache_kmaps(); 173 174 for (i = 0; i < LAST_PKMAP; i++) { 175 struct page *page; 176 177 /* 178 * zero means we don't have anything to do, 179 * >1 means that it is still in use. Only 180 * a count of 1 means that it is free but 181 * needs to be unmapped 182 */ 183 if (pkmap_count[i] != 1) 184 continue; 185 pkmap_count[i] = 0; 186 187 /* sanity check */ 188 BUG_ON(pte_none(pkmap_page_table[i])); 189 190 /* 191 * Don't need an atomic fetch-and-clear op here; 192 * no-one has the page mapped, and cannot get at 193 * its virtual address (and hence PTE) without first 194 * getting the kmap_lock (which is held here). 195 * So no dangers, even with speculative execution. 196 */ 197 page = pte_page(pkmap_page_table[i]); 198 pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]); 199 200 set_page_address(page, NULL); 201 need_flush = 1; 202 } 203 if (need_flush) 204 flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP)); 205 } 206 207 /** 208 * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings 209 */ 210 void kmap_flush_unused(void) 211 { 212 lock_kmap(); 213 flush_all_zero_pkmaps(); 214 unlock_kmap(); 215 } 216 217 static inline unsigned long map_new_virtual(struct page *page) 218 { 219 unsigned long vaddr; 220 int count; 221 unsigned int last_pkmap_nr; 222 unsigned int color = get_pkmap_color(page); 223 224 start: 225 count = get_pkmap_entries_count(color); 226 /* Find an empty entry */ 227 for (;;) { 228 last_pkmap_nr = get_next_pkmap_nr(color); 229 if (no_more_pkmaps(last_pkmap_nr, color)) { 230 flush_all_zero_pkmaps(); 231 count = get_pkmap_entries_count(color); 232 } 233 if (!pkmap_count[last_pkmap_nr]) 234 break; /* Found a usable entry */ 235 if (--count) 236 continue; 237 238 /* 239 * Sleep for somebody else to unmap their entries 240 */ 241 { 242 DECLARE_WAITQUEUE(wait, current); 243 wait_queue_head_t *pkmap_map_wait = 244 get_pkmap_wait_queue_head(color); 245 246 __set_current_state(TASK_UNINTERRUPTIBLE); 247 add_wait_queue(pkmap_map_wait, &wait); 248 unlock_kmap(); 249 schedule(); 250 remove_wait_queue(pkmap_map_wait, &wait); 251 lock_kmap(); 252 253 /* Somebody else might have mapped it while we slept */ 254 if (page_address(page)) 255 return (unsigned long)page_address(page); 256 257 /* Re-start */ 258 goto start; 259 } 260 } 261 vaddr = PKMAP_ADDR(last_pkmap_nr); 262 set_pte_at(&init_mm, vaddr, 263 &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot)); 264 265 pkmap_count[last_pkmap_nr] = 1; 266 set_page_address(page, (void *)vaddr); 267 268 return vaddr; 269 } 270 271 /** 272 * kmap_high - map a highmem page into memory 273 * @page: &struct page to map 274 * 275 * Returns the page's virtual memory address. 276 * 277 * We cannot call this from interrupts, as it may block. 278 */ 279 void *kmap_high(struct page *page) 280 { 281 unsigned long vaddr; 282 283 /* 284 * For highmem pages, we can't trust "virtual" until 285 * after we have the lock. 286 */ 287 lock_kmap(); 288 vaddr = (unsigned long)page_address(page); 289 if (!vaddr) 290 vaddr = map_new_virtual(page); 291 pkmap_count[PKMAP_NR(vaddr)]++; 292 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2); 293 unlock_kmap(); 294 return (void*) vaddr; 295 } 296 297 EXPORT_SYMBOL(kmap_high); 298 299 #ifdef ARCH_NEEDS_KMAP_HIGH_GET 300 /** 301 * kmap_high_get - pin a highmem page into memory 302 * @page: &struct page to pin 303 * 304 * Returns the page's current virtual memory address, or NULL if no mapping 305 * exists. If and only if a non null address is returned then a 306 * matching call to kunmap_high() is necessary. 307 * 308 * This can be called from any context. 309 */ 310 void *kmap_high_get(struct page *page) 311 { 312 unsigned long vaddr, flags; 313 314 lock_kmap_any(flags); 315 vaddr = (unsigned long)page_address(page); 316 if (vaddr) { 317 BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1); 318 pkmap_count[PKMAP_NR(vaddr)]++; 319 } 320 unlock_kmap_any(flags); 321 return (void*) vaddr; 322 } 323 #endif 324 325 /** 326 * kunmap_high - unmap a highmem page into memory 327 * @page: &struct page to unmap 328 * 329 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called 330 * only from user context. 331 */ 332 void kunmap_high(struct page *page) 333 { 334 unsigned long vaddr; 335 unsigned long nr; 336 unsigned long flags; 337 int need_wakeup; 338 unsigned int color = get_pkmap_color(page); 339 wait_queue_head_t *pkmap_map_wait; 340 341 lock_kmap_any(flags); 342 vaddr = (unsigned long)page_address(page); 343 BUG_ON(!vaddr); 344 nr = PKMAP_NR(vaddr); 345 346 /* 347 * A count must never go down to zero 348 * without a TLB flush! 349 */ 350 need_wakeup = 0; 351 switch (--pkmap_count[nr]) { 352 case 0: 353 BUG(); 354 case 1: 355 /* 356 * Avoid an unnecessary wake_up() function call. 357 * The common case is pkmap_count[] == 1, but 358 * no waiters. 359 * The tasks queued in the wait-queue are guarded 360 * by both the lock in the wait-queue-head and by 361 * the kmap_lock. As the kmap_lock is held here, 362 * no need for the wait-queue-head's lock. Simply 363 * test if the queue is empty. 364 */ 365 pkmap_map_wait = get_pkmap_wait_queue_head(color); 366 need_wakeup = waitqueue_active(pkmap_map_wait); 367 } 368 unlock_kmap_any(flags); 369 370 /* do wake-up, if needed, race-free outside of the spin lock */ 371 if (need_wakeup) 372 wake_up(pkmap_map_wait); 373 } 374 375 EXPORT_SYMBOL(kunmap_high); 376 #endif 377 378 #if defined(HASHED_PAGE_VIRTUAL) 379 380 #define PA_HASH_ORDER 7 381 382 /* 383 * Describes one page->virtual association 384 */ 385 struct page_address_map { 386 struct page *page; 387 void *virtual; 388 struct list_head list; 389 }; 390 391 static struct page_address_map page_address_maps[LAST_PKMAP]; 392 393 /* 394 * Hash table bucket 395 */ 396 static struct page_address_slot { 397 struct list_head lh; /* List of page_address_maps */ 398 spinlock_t lock; /* Protect this bucket's list */ 399 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; 400 401 static struct page_address_slot *page_slot(const struct page *page) 402 { 403 return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)]; 404 } 405 406 /** 407 * page_address - get the mapped virtual address of a page 408 * @page: &struct page to get the virtual address of 409 * 410 * Returns the page's virtual address. 411 */ 412 void *page_address(const struct page *page) 413 { 414 unsigned long flags; 415 void *ret; 416 struct page_address_slot *pas; 417 418 if (!PageHighMem(page)) 419 return lowmem_page_address(page); 420 421 pas = page_slot(page); 422 ret = NULL; 423 spin_lock_irqsave(&pas->lock, flags); 424 if (!list_empty(&pas->lh)) { 425 struct page_address_map *pam; 426 427 list_for_each_entry(pam, &pas->lh, list) { 428 if (pam->page == page) { 429 ret = pam->virtual; 430 goto done; 431 } 432 } 433 } 434 done: 435 spin_unlock_irqrestore(&pas->lock, flags); 436 return ret; 437 } 438 439 EXPORT_SYMBOL(page_address); 440 441 /** 442 * set_page_address - set a page's virtual address 443 * @page: &struct page to set 444 * @virtual: virtual address to use 445 */ 446 void set_page_address(struct page *page, void *virtual) 447 { 448 unsigned long flags; 449 struct page_address_slot *pas; 450 struct page_address_map *pam; 451 452 BUG_ON(!PageHighMem(page)); 453 454 pas = page_slot(page); 455 if (virtual) { /* Add */ 456 pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)]; 457 pam->page = page; 458 pam->virtual = virtual; 459 460 spin_lock_irqsave(&pas->lock, flags); 461 list_add_tail(&pam->list, &pas->lh); 462 spin_unlock_irqrestore(&pas->lock, flags); 463 } else { /* Remove */ 464 spin_lock_irqsave(&pas->lock, flags); 465 list_for_each_entry(pam, &pas->lh, list) { 466 if (pam->page == page) { 467 list_del(&pam->list); 468 spin_unlock_irqrestore(&pas->lock, flags); 469 goto done; 470 } 471 } 472 spin_unlock_irqrestore(&pas->lock, flags); 473 } 474 done: 475 return; 476 } 477 478 void __init page_address_init(void) 479 { 480 int i; 481 482 for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) { 483 INIT_LIST_HEAD(&page_address_htable[i].lh); 484 spin_lock_init(&page_address_htable[i].lock); 485 } 486 } 487 488 #endif /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */ 489