1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio; 56 57 if (!page) 58 continue; 59 60 folio = page_folio(page); 61 62 if (is_zero_page(page) || 63 !folio_test_anon(folio)) 64 continue; 65 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 66 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 67 else 68 /* Either a PTE-mapped or a PMD-mapped THP. */ 69 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 70 !PageAnonExclusive(page), page); 71 } 72 } 73 74 /* 75 * Return the folio with ref appropriately incremented, 76 * or NULL if that failed. 77 */ 78 static inline struct folio *try_get_folio(struct page *page, int refs) 79 { 80 struct folio *folio; 81 82 retry: 83 folio = page_folio(page); 84 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 85 return NULL; 86 if (unlikely(!folio_ref_try_add(folio, refs))) 87 return NULL; 88 89 /* 90 * At this point we have a stable reference to the folio; but it 91 * could be that between calling page_folio() and the refcount 92 * increment, the folio was split, in which case we'd end up 93 * holding a reference on a folio that has nothing to do with the page 94 * we were given anymore. 95 * So now that the folio is stable, recheck that the page still 96 * belongs to this folio. 97 */ 98 if (unlikely(page_folio(page) != folio)) { 99 folio_put_refs(folio, refs); 100 goto retry; 101 } 102 103 return folio; 104 } 105 106 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 107 { 108 if (flags & FOLL_PIN) { 109 if (is_zero_folio(folio)) 110 return; 111 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 112 if (folio_has_pincount(folio)) 113 atomic_sub(refs, &folio->_pincount); 114 else 115 refs *= GUP_PIN_COUNTING_BIAS; 116 } 117 118 folio_put_refs(folio, refs); 119 } 120 121 /** 122 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 123 * @folio: pointer to folio to be grabbed 124 * @refs: the value to (effectively) add to the folio's refcount 125 * @flags: gup flags: these are the FOLL_* flag values 126 * 127 * This might not do anything at all, depending on the flags argument. 128 * 129 * "grab" names in this file mean, "look at flags to decide whether to use 130 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 131 * 132 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 133 * time. 134 * 135 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 136 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 137 * 138 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 139 * be grabbed. 140 * 141 * It is called when we have a stable reference for the folio, typically in 142 * GUP slow path. 143 */ 144 int __must_check try_grab_folio(struct folio *folio, int refs, 145 unsigned int flags) 146 { 147 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 148 return -ENOMEM; 149 150 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 151 return -EREMOTEIO; 152 153 if (flags & FOLL_GET) 154 folio_ref_add(folio, refs); 155 else if (flags & FOLL_PIN) { 156 /* 157 * Don't take a pin on the zero page - it's not going anywhere 158 * and it is used in a *lot* of places. 159 */ 160 if (is_zero_folio(folio)) 161 return 0; 162 163 /* 164 * Increment the normal page refcount field at least once, 165 * so that the page really is pinned. 166 */ 167 if (folio_has_pincount(folio)) { 168 folio_ref_add(folio, refs); 169 atomic_add(refs, &folio->_pincount); 170 } else { 171 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 172 } 173 174 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 175 } 176 177 return 0; 178 } 179 180 /** 181 * unpin_user_page() - release a dma-pinned page 182 * @page: pointer to page to be released 183 * 184 * Pages that were pinned via pin_user_pages*() must be released via either 185 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 186 * that such pages can be separately tracked and uniquely handled. In 187 * particular, interactions with RDMA and filesystems need special handling. 188 */ 189 void unpin_user_page(struct page *page) 190 { 191 sanity_check_pinned_pages(&page, 1); 192 gup_put_folio(page_folio(page), 1, FOLL_PIN); 193 } 194 EXPORT_SYMBOL(unpin_user_page); 195 196 /** 197 * unpin_folio() - release a dma-pinned folio 198 * @folio: pointer to folio to be released 199 * 200 * Folios that were pinned via memfd_pin_folios() or other similar routines 201 * must be released either using unpin_folio() or unpin_folios(). 202 */ 203 void unpin_folio(struct folio *folio) 204 { 205 gup_put_folio(folio, 1, FOLL_PIN); 206 } 207 EXPORT_SYMBOL_GPL(unpin_folio); 208 209 /** 210 * folio_add_pin - Try to get an additional pin on a pinned folio 211 * @folio: The folio to be pinned 212 * 213 * Get an additional pin on a folio we already have a pin on. Makes no change 214 * if the folio is a zero_page. 215 */ 216 void folio_add_pin(struct folio *folio) 217 { 218 if (is_zero_folio(folio)) 219 return; 220 221 /* 222 * Similar to try_grab_folio(): be sure to *also* increment the normal 223 * page refcount field at least once, so that the page really is 224 * pinned. 225 */ 226 if (folio_has_pincount(folio)) { 227 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 228 folio_ref_inc(folio); 229 atomic_inc(&folio->_pincount); 230 } else { 231 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 232 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 233 } 234 } 235 236 static inline struct folio *gup_folio_range_next(struct page *start, 237 unsigned long npages, unsigned long i, unsigned int *ntails) 238 { 239 struct page *next = nth_page(start, i); 240 struct folio *folio = page_folio(next); 241 unsigned int nr = 1; 242 243 if (folio_test_large(folio)) 244 nr = min_t(unsigned int, npages - i, 245 folio_nr_pages(folio) - folio_page_idx(folio, next)); 246 247 *ntails = nr; 248 return folio; 249 } 250 251 static inline struct folio *gup_folio_next(struct page **list, 252 unsigned long npages, unsigned long i, unsigned int *ntails) 253 { 254 struct folio *folio = page_folio(list[i]); 255 unsigned int nr; 256 257 for (nr = i + 1; nr < npages; nr++) { 258 if (page_folio(list[nr]) != folio) 259 break; 260 } 261 262 *ntails = nr - i; 263 return folio; 264 } 265 266 /** 267 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 268 * @pages: array of pages to be maybe marked dirty, and definitely released. 269 * @npages: number of pages in the @pages array. 270 * @make_dirty: whether to mark the pages dirty 271 * 272 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 273 * variants called on that page. 274 * 275 * For each page in the @pages array, make that page (or its head page, if a 276 * compound page) dirty, if @make_dirty is true, and if the page was previously 277 * listed as clean. In any case, releases all pages using unpin_user_page(), 278 * possibly via unpin_user_pages(), for the non-dirty case. 279 * 280 * Please see the unpin_user_page() documentation for details. 281 * 282 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 283 * required, then the caller should a) verify that this is really correct, 284 * because _lock() is usually required, and b) hand code it: 285 * set_page_dirty_lock(), unpin_user_page(). 286 * 287 */ 288 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 289 bool make_dirty) 290 { 291 unsigned long i; 292 struct folio *folio; 293 unsigned int nr; 294 295 if (!make_dirty) { 296 unpin_user_pages(pages, npages); 297 return; 298 } 299 300 sanity_check_pinned_pages(pages, npages); 301 for (i = 0; i < npages; i += nr) { 302 folio = gup_folio_next(pages, npages, i, &nr); 303 /* 304 * Checking PageDirty at this point may race with 305 * clear_page_dirty_for_io(), but that's OK. Two key 306 * cases: 307 * 308 * 1) This code sees the page as already dirty, so it 309 * skips the call to set_page_dirty(). That could happen 310 * because clear_page_dirty_for_io() called 311 * folio_mkclean(), followed by set_page_dirty(). 312 * However, now the page is going to get written back, 313 * which meets the original intention of setting it 314 * dirty, so all is well: clear_page_dirty_for_io() goes 315 * on to call TestClearPageDirty(), and write the page 316 * back. 317 * 318 * 2) This code sees the page as clean, so it calls 319 * set_page_dirty(). The page stays dirty, despite being 320 * written back, so it gets written back again in the 321 * next writeback cycle. This is harmless. 322 */ 323 if (!folio_test_dirty(folio)) { 324 folio_lock(folio); 325 folio_mark_dirty(folio); 326 folio_unlock(folio); 327 } 328 gup_put_folio(folio, nr, FOLL_PIN); 329 } 330 } 331 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 332 333 /** 334 * unpin_user_page_range_dirty_lock() - release and optionally dirty 335 * gup-pinned page range 336 * 337 * @page: the starting page of a range maybe marked dirty, and definitely released. 338 * @npages: number of consecutive pages to release. 339 * @make_dirty: whether to mark the pages dirty 340 * 341 * "gup-pinned page range" refers to a range of pages that has had one of the 342 * pin_user_pages() variants called on that page. 343 * 344 * For the page ranges defined by [page .. page+npages], make that range (or 345 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 346 * page range was previously listed as clean. 347 * 348 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 349 * required, then the caller should a) verify that this is really correct, 350 * because _lock() is usually required, and b) hand code it: 351 * set_page_dirty_lock(), unpin_user_page(). 352 * 353 */ 354 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 355 bool make_dirty) 356 { 357 unsigned long i; 358 struct folio *folio; 359 unsigned int nr; 360 361 for (i = 0; i < npages; i += nr) { 362 folio = gup_folio_range_next(page, npages, i, &nr); 363 if (make_dirty && !folio_test_dirty(folio)) { 364 folio_lock(folio); 365 folio_mark_dirty(folio); 366 folio_unlock(folio); 367 } 368 gup_put_folio(folio, nr, FOLL_PIN); 369 } 370 } 371 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 372 373 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 374 { 375 unsigned long i; 376 struct folio *folio; 377 unsigned int nr; 378 379 /* 380 * Don't perform any sanity checks because we might have raced with 381 * fork() and some anonymous pages might now actually be shared -- 382 * which is why we're unpinning after all. 383 */ 384 for (i = 0; i < npages; i += nr) { 385 folio = gup_folio_next(pages, npages, i, &nr); 386 gup_put_folio(folio, nr, FOLL_PIN); 387 } 388 } 389 390 /** 391 * unpin_user_pages() - release an array of gup-pinned pages. 392 * @pages: array of pages to be marked dirty and released. 393 * @npages: number of pages in the @pages array. 394 * 395 * For each page in the @pages array, release the page using unpin_user_page(). 396 * 397 * Please see the unpin_user_page() documentation for details. 398 */ 399 void unpin_user_pages(struct page **pages, unsigned long npages) 400 { 401 unsigned long i; 402 struct folio *folio; 403 unsigned int nr; 404 405 /* 406 * If this WARN_ON() fires, then the system *might* be leaking pages (by 407 * leaving them pinned), but probably not. More likely, gup/pup returned 408 * a hard -ERRNO error to the caller, who erroneously passed it here. 409 */ 410 if (WARN_ON(IS_ERR_VALUE(npages))) 411 return; 412 413 sanity_check_pinned_pages(pages, npages); 414 for (i = 0; i < npages; i += nr) { 415 if (!pages[i]) { 416 nr = 1; 417 continue; 418 } 419 folio = gup_folio_next(pages, npages, i, &nr); 420 gup_put_folio(folio, nr, FOLL_PIN); 421 } 422 } 423 EXPORT_SYMBOL(unpin_user_pages); 424 425 /** 426 * unpin_user_folio() - release pages of a folio 427 * @folio: pointer to folio to be released 428 * @npages: number of pages of same folio 429 * 430 * Release npages of the folio 431 */ 432 void unpin_user_folio(struct folio *folio, unsigned long npages) 433 { 434 gup_put_folio(folio, npages, FOLL_PIN); 435 } 436 EXPORT_SYMBOL(unpin_user_folio); 437 438 /** 439 * unpin_folios() - release an array of gup-pinned folios. 440 * @folios: array of folios to be marked dirty and released. 441 * @nfolios: number of folios in the @folios array. 442 * 443 * For each folio in the @folios array, release the folio using gup_put_folio. 444 * 445 * Please see the unpin_folio() documentation for details. 446 */ 447 void unpin_folios(struct folio **folios, unsigned long nfolios) 448 { 449 unsigned long i = 0, j; 450 451 /* 452 * If this WARN_ON() fires, then the system *might* be leaking folios 453 * (by leaving them pinned), but probably not. More likely, gup/pup 454 * returned a hard -ERRNO error to the caller, who erroneously passed 455 * it here. 456 */ 457 if (WARN_ON(IS_ERR_VALUE(nfolios))) 458 return; 459 460 while (i < nfolios) { 461 for (j = i + 1; j < nfolios; j++) 462 if (folios[i] != folios[j]) 463 break; 464 465 if (folios[i]) 466 gup_put_folio(folios[i], j - i, FOLL_PIN); 467 i = j; 468 } 469 } 470 EXPORT_SYMBOL_GPL(unpin_folios); 471 472 /* 473 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 474 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 475 * cache bouncing on large SMP machines for concurrent pinned gups. 476 */ 477 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 478 { 479 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 480 set_bit(MMF_HAS_PINNED, mm_flags); 481 } 482 483 #ifdef CONFIG_MMU 484 485 #ifdef CONFIG_HAVE_GUP_FAST 486 static int record_subpages(struct page *page, unsigned long sz, 487 unsigned long addr, unsigned long end, 488 struct page **pages) 489 { 490 struct page *start_page; 491 int nr; 492 493 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 494 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 495 pages[nr] = nth_page(start_page, nr); 496 497 return nr; 498 } 499 500 /** 501 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 502 * @page: pointer to page to be grabbed 503 * @refs: the value to (effectively) add to the folio's refcount 504 * @flags: gup flags: these are the FOLL_* flag values. 505 * 506 * "grab" names in this file mean, "look at flags to decide whether to use 507 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 508 * 509 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 510 * same time. (That's true throughout the get_user_pages*() and 511 * pin_user_pages*() APIs.) Cases: 512 * 513 * FOLL_GET: folio's refcount will be incremented by @refs. 514 * 515 * FOLL_PIN on large folios: folio's refcount will be incremented by 516 * @refs, and its pincount will be incremented by @refs. 517 * 518 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 519 * @refs * GUP_PIN_COUNTING_BIAS. 520 * 521 * Return: The folio containing @page (with refcount appropriately 522 * incremented) for success, or NULL upon failure. If neither FOLL_GET 523 * nor FOLL_PIN was set, that's considered failure, and furthermore, 524 * a likely bug in the caller, so a warning is also emitted. 525 * 526 * It uses add ref unless zero to elevate the folio refcount and must be called 527 * in fast path only. 528 */ 529 static struct folio *try_grab_folio_fast(struct page *page, int refs, 530 unsigned int flags) 531 { 532 struct folio *folio; 533 534 /* Raise warn if it is not called in fast GUP */ 535 VM_WARN_ON_ONCE(!irqs_disabled()); 536 537 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 538 return NULL; 539 540 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 541 return NULL; 542 543 if (flags & FOLL_GET) 544 return try_get_folio(page, refs); 545 546 /* FOLL_PIN is set */ 547 548 /* 549 * Don't take a pin on the zero page - it's not going anywhere 550 * and it is used in a *lot* of places. 551 */ 552 if (is_zero_page(page)) 553 return page_folio(page); 554 555 folio = try_get_folio(page, refs); 556 if (!folio) 557 return NULL; 558 559 /* 560 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 561 * right zone, so fail and let the caller fall back to the slow 562 * path. 563 */ 564 if (unlikely((flags & FOLL_LONGTERM) && 565 !folio_is_longterm_pinnable(folio))) { 566 folio_put_refs(folio, refs); 567 return NULL; 568 } 569 570 /* 571 * When pinning a large folio, use an exact count to track it. 572 * 573 * However, be sure to *also* increment the normal folio 574 * refcount field at least once, so that the folio really 575 * is pinned. That's why the refcount from the earlier 576 * try_get_folio() is left intact. 577 */ 578 if (folio_has_pincount(folio)) 579 atomic_add(refs, &folio->_pincount); 580 else 581 folio_ref_add(folio, 582 refs * (GUP_PIN_COUNTING_BIAS - 1)); 583 /* 584 * Adjust the pincount before re-checking the PTE for changes. 585 * This is essentially a smp_mb() and is paired with a memory 586 * barrier in folio_try_share_anon_rmap_*(). 587 */ 588 smp_mb__after_atomic(); 589 590 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 591 592 return folio; 593 } 594 #endif /* CONFIG_HAVE_GUP_FAST */ 595 596 /* Common code for can_follow_write_* */ 597 static inline bool can_follow_write_common(struct page *page, 598 struct vm_area_struct *vma, unsigned int flags) 599 { 600 /* Maybe FOLL_FORCE is set to override it? */ 601 if (!(flags & FOLL_FORCE)) 602 return false; 603 604 /* But FOLL_FORCE has no effect on shared mappings */ 605 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 606 return false; 607 608 /* ... or read-only private ones */ 609 if (!(vma->vm_flags & VM_MAYWRITE)) 610 return false; 611 612 /* ... or already writable ones that just need to take a write fault */ 613 if (vma->vm_flags & VM_WRITE) 614 return false; 615 616 /* 617 * See can_change_pte_writable(): we broke COW and could map the page 618 * writable if we have an exclusive anonymous page ... 619 */ 620 return page && PageAnon(page) && PageAnonExclusive(page); 621 } 622 623 static struct page *no_page_table(struct vm_area_struct *vma, 624 unsigned int flags, unsigned long address) 625 { 626 if (!(flags & FOLL_DUMP)) 627 return NULL; 628 629 /* 630 * When core dumping, we don't want to allocate unnecessary pages or 631 * page tables. Return error instead of NULL to skip handle_mm_fault, 632 * then get_dump_page() will return NULL to leave a hole in the dump. 633 * But we can only make this optimization where a hole would surely 634 * be zero-filled if handle_mm_fault() actually did handle it. 635 */ 636 if (is_vm_hugetlb_page(vma)) { 637 struct hstate *h = hstate_vma(vma); 638 639 if (!hugetlbfs_pagecache_present(h, vma, address)) 640 return ERR_PTR(-EFAULT); 641 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 642 return ERR_PTR(-EFAULT); 643 } 644 645 return NULL; 646 } 647 648 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 649 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ 650 static inline bool can_follow_write_pud(pud_t pud, struct page *page, 651 struct vm_area_struct *vma, 652 unsigned int flags) 653 { 654 /* If the pud is writable, we can write to the page. */ 655 if (pud_write(pud)) 656 return true; 657 658 return can_follow_write_common(page, vma, flags); 659 } 660 661 static struct page *follow_huge_pud(struct vm_area_struct *vma, 662 unsigned long addr, pud_t *pudp, 663 int flags, struct follow_page_context *ctx) 664 { 665 struct mm_struct *mm = vma->vm_mm; 666 struct page *page; 667 pud_t pud = *pudp; 668 unsigned long pfn = pud_pfn(pud); 669 int ret; 670 671 assert_spin_locked(pud_lockptr(mm, pudp)); 672 673 if (!pud_present(pud)) 674 return NULL; 675 676 if ((flags & FOLL_WRITE) && 677 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) 678 return NULL; 679 680 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 681 682 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 683 pud_devmap(pud)) { 684 /* 685 * device mapped pages can only be returned if the caller 686 * will manage the page reference count. 687 * 688 * At least one of FOLL_GET | FOLL_PIN must be set, so 689 * assert that here: 690 */ 691 if (!(flags & (FOLL_GET | FOLL_PIN))) 692 return ERR_PTR(-EEXIST); 693 694 if (flags & FOLL_TOUCH) 695 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 696 697 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 698 if (!ctx->pgmap) 699 return ERR_PTR(-EFAULT); 700 } 701 702 page = pfn_to_page(pfn); 703 704 if (!pud_devmap(pud) && !pud_write(pud) && 705 gup_must_unshare(vma, flags, page)) 706 return ERR_PTR(-EMLINK); 707 708 ret = try_grab_folio(page_folio(page), 1, flags); 709 if (ret) 710 page = ERR_PTR(ret); 711 else 712 ctx->page_mask = HPAGE_PUD_NR - 1; 713 714 return page; 715 } 716 717 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 718 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 719 struct vm_area_struct *vma, 720 unsigned int flags) 721 { 722 /* If the pmd is writable, we can write to the page. */ 723 if (pmd_write(pmd)) 724 return true; 725 726 if (!can_follow_write_common(page, vma, flags)) 727 return false; 728 729 /* ... and a write-fault isn't required for other reasons. */ 730 if (pmd_needs_soft_dirty_wp(vma, pmd)) 731 return false; 732 return !userfaultfd_huge_pmd_wp(vma, pmd); 733 } 734 735 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 736 unsigned long addr, pmd_t *pmd, 737 unsigned int flags, 738 struct follow_page_context *ctx) 739 { 740 struct mm_struct *mm = vma->vm_mm; 741 pmd_t pmdval = *pmd; 742 struct page *page; 743 int ret; 744 745 assert_spin_locked(pmd_lockptr(mm, pmd)); 746 747 page = pmd_page(pmdval); 748 if ((flags & FOLL_WRITE) && 749 !can_follow_write_pmd(pmdval, page, vma, flags)) 750 return NULL; 751 752 /* Avoid dumping huge zero page */ 753 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 754 return ERR_PTR(-EFAULT); 755 756 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 757 return NULL; 758 759 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 760 return ERR_PTR(-EMLINK); 761 762 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 763 !PageAnonExclusive(page), page); 764 765 ret = try_grab_folio(page_folio(page), 1, flags); 766 if (ret) 767 return ERR_PTR(ret); 768 769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 770 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 771 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 772 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 773 774 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 775 ctx->page_mask = HPAGE_PMD_NR - 1; 776 777 return page; 778 } 779 780 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 781 static struct page *follow_huge_pud(struct vm_area_struct *vma, 782 unsigned long addr, pud_t *pudp, 783 int flags, struct follow_page_context *ctx) 784 { 785 return NULL; 786 } 787 788 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 789 unsigned long addr, pmd_t *pmd, 790 unsigned int flags, 791 struct follow_page_context *ctx) 792 { 793 return NULL; 794 } 795 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 796 797 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 798 pte_t *pte, unsigned int flags) 799 { 800 if (flags & FOLL_TOUCH) { 801 pte_t orig_entry = ptep_get(pte); 802 pte_t entry = orig_entry; 803 804 if (flags & FOLL_WRITE) 805 entry = pte_mkdirty(entry); 806 entry = pte_mkyoung(entry); 807 808 if (!pte_same(orig_entry, entry)) { 809 set_pte_at(vma->vm_mm, address, pte, entry); 810 update_mmu_cache(vma, address, pte); 811 } 812 } 813 814 /* Proper page table entry exists, but no corresponding struct page */ 815 return -EEXIST; 816 } 817 818 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 819 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 820 struct vm_area_struct *vma, 821 unsigned int flags) 822 { 823 /* If the pte is writable, we can write to the page. */ 824 if (pte_write(pte)) 825 return true; 826 827 if (!can_follow_write_common(page, vma, flags)) 828 return false; 829 830 /* ... and a write-fault isn't required for other reasons. */ 831 if (pte_needs_soft_dirty_wp(vma, pte)) 832 return false; 833 return !userfaultfd_pte_wp(vma, pte); 834 } 835 836 static struct page *follow_page_pte(struct vm_area_struct *vma, 837 unsigned long address, pmd_t *pmd, unsigned int flags, 838 struct dev_pagemap **pgmap) 839 { 840 struct mm_struct *mm = vma->vm_mm; 841 struct folio *folio; 842 struct page *page; 843 spinlock_t *ptl; 844 pte_t *ptep, pte; 845 int ret; 846 847 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 848 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 849 (FOLL_PIN | FOLL_GET))) 850 return ERR_PTR(-EINVAL); 851 852 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 853 if (!ptep) 854 return no_page_table(vma, flags, address); 855 pte = ptep_get(ptep); 856 if (!pte_present(pte)) 857 goto no_page; 858 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 859 goto no_page; 860 861 page = vm_normal_page(vma, address, pte); 862 863 /* 864 * We only care about anon pages in can_follow_write_pte() and don't 865 * have to worry about pte_devmap() because they are never anon. 866 */ 867 if ((flags & FOLL_WRITE) && 868 !can_follow_write_pte(pte, page, vma, flags)) { 869 page = NULL; 870 goto out; 871 } 872 873 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 874 /* 875 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 876 * case since they are only valid while holding the pgmap 877 * reference. 878 */ 879 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 880 if (*pgmap) 881 page = pte_page(pte); 882 else 883 goto no_page; 884 } else if (unlikely(!page)) { 885 if (flags & FOLL_DUMP) { 886 /* Avoid special (like zero) pages in core dumps */ 887 page = ERR_PTR(-EFAULT); 888 goto out; 889 } 890 891 if (is_zero_pfn(pte_pfn(pte))) { 892 page = pte_page(pte); 893 } else { 894 ret = follow_pfn_pte(vma, address, ptep, flags); 895 page = ERR_PTR(ret); 896 goto out; 897 } 898 } 899 folio = page_folio(page); 900 901 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 902 page = ERR_PTR(-EMLINK); 903 goto out; 904 } 905 906 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 907 !PageAnonExclusive(page), page); 908 909 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 910 ret = try_grab_folio(folio, 1, flags); 911 if (unlikely(ret)) { 912 page = ERR_PTR(ret); 913 goto out; 914 } 915 916 /* 917 * We need to make the page accessible if and only if we are going 918 * to access its content (the FOLL_PIN case). Please see 919 * Documentation/core-api/pin_user_pages.rst for details. 920 */ 921 if (flags & FOLL_PIN) { 922 ret = arch_make_folio_accessible(folio); 923 if (ret) { 924 unpin_user_page(page); 925 page = ERR_PTR(ret); 926 goto out; 927 } 928 } 929 if (flags & FOLL_TOUCH) { 930 if ((flags & FOLL_WRITE) && 931 !pte_dirty(pte) && !folio_test_dirty(folio)) 932 folio_mark_dirty(folio); 933 /* 934 * pte_mkyoung() would be more correct here, but atomic care 935 * is needed to avoid losing the dirty bit: it is easier to use 936 * folio_mark_accessed(). 937 */ 938 folio_mark_accessed(folio); 939 } 940 out: 941 pte_unmap_unlock(ptep, ptl); 942 return page; 943 no_page: 944 pte_unmap_unlock(ptep, ptl); 945 if (!pte_none(pte)) 946 return NULL; 947 return no_page_table(vma, flags, address); 948 } 949 950 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 951 unsigned long address, pud_t *pudp, 952 unsigned int flags, 953 struct follow_page_context *ctx) 954 { 955 pmd_t *pmd, pmdval; 956 spinlock_t *ptl; 957 struct page *page; 958 struct mm_struct *mm = vma->vm_mm; 959 960 pmd = pmd_offset(pudp, address); 961 pmdval = pmdp_get_lockless(pmd); 962 if (pmd_none(pmdval)) 963 return no_page_table(vma, flags, address); 964 if (!pmd_present(pmdval)) 965 return no_page_table(vma, flags, address); 966 if (pmd_devmap(pmdval)) { 967 ptl = pmd_lock(mm, pmd); 968 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 969 spin_unlock(ptl); 970 if (page) 971 return page; 972 return no_page_table(vma, flags, address); 973 } 974 if (likely(!pmd_leaf(pmdval))) 975 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 976 977 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 978 return no_page_table(vma, flags, address); 979 980 ptl = pmd_lock(mm, pmd); 981 pmdval = *pmd; 982 if (unlikely(!pmd_present(pmdval))) { 983 spin_unlock(ptl); 984 return no_page_table(vma, flags, address); 985 } 986 if (unlikely(!pmd_leaf(pmdval))) { 987 spin_unlock(ptl); 988 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 989 } 990 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 991 spin_unlock(ptl); 992 split_huge_pmd(vma, pmd, address); 993 /* If pmd was left empty, stuff a page table in there quickly */ 994 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 995 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 996 } 997 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 998 spin_unlock(ptl); 999 return page; 1000 } 1001 1002 static struct page *follow_pud_mask(struct vm_area_struct *vma, 1003 unsigned long address, p4d_t *p4dp, 1004 unsigned int flags, 1005 struct follow_page_context *ctx) 1006 { 1007 pud_t *pudp, pud; 1008 spinlock_t *ptl; 1009 struct page *page; 1010 struct mm_struct *mm = vma->vm_mm; 1011 1012 pudp = pud_offset(p4dp, address); 1013 pud = READ_ONCE(*pudp); 1014 if (!pud_present(pud)) 1015 return no_page_table(vma, flags, address); 1016 if (pud_leaf(pud)) { 1017 ptl = pud_lock(mm, pudp); 1018 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1019 spin_unlock(ptl); 1020 if (page) 1021 return page; 1022 return no_page_table(vma, flags, address); 1023 } 1024 if (unlikely(pud_bad(pud))) 1025 return no_page_table(vma, flags, address); 1026 1027 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1028 } 1029 1030 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1031 unsigned long address, pgd_t *pgdp, 1032 unsigned int flags, 1033 struct follow_page_context *ctx) 1034 { 1035 p4d_t *p4dp, p4d; 1036 1037 p4dp = p4d_offset(pgdp, address); 1038 p4d = READ_ONCE(*p4dp); 1039 BUILD_BUG_ON(p4d_leaf(p4d)); 1040 1041 if (!p4d_present(p4d) || p4d_bad(p4d)) 1042 return no_page_table(vma, flags, address); 1043 1044 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1045 } 1046 1047 /** 1048 * follow_page_mask - look up a page descriptor from a user-virtual address 1049 * @vma: vm_area_struct mapping @address 1050 * @address: virtual address to look up 1051 * @flags: flags modifying lookup behaviour 1052 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1053 * pointer to output page_mask 1054 * 1055 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1056 * 1057 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1058 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1059 * 1060 * When getting an anonymous page and the caller has to trigger unsharing 1061 * of a shared anonymous page first, -EMLINK is returned. The caller should 1062 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1063 * relevant with FOLL_PIN and !FOLL_WRITE. 1064 * 1065 * On output, the @ctx->page_mask is set according to the size of the page. 1066 * 1067 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1068 * an error pointer if there is a mapping to something not represented 1069 * by a page descriptor (see also vm_normal_page()). 1070 */ 1071 static struct page *follow_page_mask(struct vm_area_struct *vma, 1072 unsigned long address, unsigned int flags, 1073 struct follow_page_context *ctx) 1074 { 1075 pgd_t *pgd; 1076 struct mm_struct *mm = vma->vm_mm; 1077 struct page *page; 1078 1079 vma_pgtable_walk_begin(vma); 1080 1081 ctx->page_mask = 0; 1082 pgd = pgd_offset(mm, address); 1083 1084 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1085 page = no_page_table(vma, flags, address); 1086 else 1087 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1088 1089 vma_pgtable_walk_end(vma); 1090 1091 return page; 1092 } 1093 1094 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1095 unsigned int gup_flags, struct vm_area_struct **vma, 1096 struct page **page) 1097 { 1098 pgd_t *pgd; 1099 p4d_t *p4d; 1100 pud_t *pud; 1101 pmd_t *pmd; 1102 pte_t *pte; 1103 pte_t entry; 1104 int ret = -EFAULT; 1105 1106 /* user gate pages are read-only */ 1107 if (gup_flags & FOLL_WRITE) 1108 return -EFAULT; 1109 if (address > TASK_SIZE) 1110 pgd = pgd_offset_k(address); 1111 else 1112 pgd = pgd_offset_gate(mm, address); 1113 if (pgd_none(*pgd)) 1114 return -EFAULT; 1115 p4d = p4d_offset(pgd, address); 1116 if (p4d_none(*p4d)) 1117 return -EFAULT; 1118 pud = pud_offset(p4d, address); 1119 if (pud_none(*pud)) 1120 return -EFAULT; 1121 pmd = pmd_offset(pud, address); 1122 if (!pmd_present(*pmd)) 1123 return -EFAULT; 1124 pte = pte_offset_map(pmd, address); 1125 if (!pte) 1126 return -EFAULT; 1127 entry = ptep_get(pte); 1128 if (pte_none(entry)) 1129 goto unmap; 1130 *vma = get_gate_vma(mm); 1131 if (!page) 1132 goto out; 1133 *page = vm_normal_page(*vma, address, entry); 1134 if (!*page) { 1135 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1136 goto unmap; 1137 *page = pte_page(entry); 1138 } 1139 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1140 if (unlikely(ret)) 1141 goto unmap; 1142 out: 1143 ret = 0; 1144 unmap: 1145 pte_unmap(pte); 1146 return ret; 1147 } 1148 1149 /* 1150 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1151 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1152 * to 0 and -EBUSY returned. 1153 */ 1154 static int faultin_page(struct vm_area_struct *vma, 1155 unsigned long address, unsigned int flags, bool unshare, 1156 int *locked) 1157 { 1158 unsigned int fault_flags = 0; 1159 vm_fault_t ret; 1160 1161 if (flags & FOLL_NOFAULT) 1162 return -EFAULT; 1163 if (flags & FOLL_WRITE) 1164 fault_flags |= FAULT_FLAG_WRITE; 1165 if (flags & FOLL_REMOTE) 1166 fault_flags |= FAULT_FLAG_REMOTE; 1167 if (flags & FOLL_UNLOCKABLE) { 1168 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1169 /* 1170 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1171 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1172 * That's because some callers may not be prepared to 1173 * handle early exits caused by non-fatal signals. 1174 */ 1175 if (flags & FOLL_INTERRUPTIBLE) 1176 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1177 } 1178 if (flags & FOLL_NOWAIT) 1179 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1180 if (flags & FOLL_TRIED) { 1181 /* 1182 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1183 * can co-exist 1184 */ 1185 fault_flags |= FAULT_FLAG_TRIED; 1186 } 1187 if (unshare) { 1188 fault_flags |= FAULT_FLAG_UNSHARE; 1189 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1190 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1191 } 1192 1193 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1194 1195 if (ret & VM_FAULT_COMPLETED) { 1196 /* 1197 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1198 * mmap lock in the page fault handler. Sanity check this. 1199 */ 1200 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1201 *locked = 0; 1202 1203 /* 1204 * We should do the same as VM_FAULT_RETRY, but let's not 1205 * return -EBUSY since that's not reflecting the reality of 1206 * what has happened - we've just fully completed a page 1207 * fault, with the mmap lock released. Use -EAGAIN to show 1208 * that we want to take the mmap lock _again_. 1209 */ 1210 return -EAGAIN; 1211 } 1212 1213 if (ret & VM_FAULT_ERROR) { 1214 int err = vm_fault_to_errno(ret, flags); 1215 1216 if (err) 1217 return err; 1218 BUG(); 1219 } 1220 1221 if (ret & VM_FAULT_RETRY) { 1222 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1223 *locked = 0; 1224 return -EBUSY; 1225 } 1226 1227 return 0; 1228 } 1229 1230 /* 1231 * Writing to file-backed mappings which require folio dirty tracking using GUP 1232 * is a fundamentally broken operation, as kernel write access to GUP mappings 1233 * do not adhere to the semantics expected by a file system. 1234 * 1235 * Consider the following scenario:- 1236 * 1237 * 1. A folio is written to via GUP which write-faults the memory, notifying 1238 * the file system and dirtying the folio. 1239 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1240 * the PTE being marked read-only. 1241 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1242 * direct mapping. 1243 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1244 * (though it does not have to). 1245 * 1246 * This results in both data being written to a folio without writenotify, and 1247 * the folio being dirtied unexpectedly (if the caller decides to do so). 1248 */ 1249 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1250 unsigned long gup_flags) 1251 { 1252 /* 1253 * If we aren't pinning then no problematic write can occur. A long term 1254 * pin is the most egregious case so this is the case we disallow. 1255 */ 1256 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1257 (FOLL_PIN | FOLL_LONGTERM)) 1258 return true; 1259 1260 /* 1261 * If the VMA does not require dirty tracking then no problematic write 1262 * can occur either. 1263 */ 1264 return !vma_needs_dirty_tracking(vma); 1265 } 1266 1267 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1268 { 1269 vm_flags_t vm_flags = vma->vm_flags; 1270 int write = (gup_flags & FOLL_WRITE); 1271 int foreign = (gup_flags & FOLL_REMOTE); 1272 bool vma_anon = vma_is_anonymous(vma); 1273 1274 if (vm_flags & (VM_IO | VM_PFNMAP)) 1275 return -EFAULT; 1276 1277 if ((gup_flags & FOLL_ANON) && !vma_anon) 1278 return -EFAULT; 1279 1280 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1281 return -EOPNOTSUPP; 1282 1283 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) 1284 return -EOPNOTSUPP; 1285 1286 if (vma_is_secretmem(vma)) 1287 return -EFAULT; 1288 1289 if (write) { 1290 if (!vma_anon && 1291 !writable_file_mapping_allowed(vma, gup_flags)) 1292 return -EFAULT; 1293 1294 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1295 if (!(gup_flags & FOLL_FORCE)) 1296 return -EFAULT; 1297 /* 1298 * We used to let the write,force case do COW in a 1299 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1300 * set a breakpoint in a read-only mapping of an 1301 * executable, without corrupting the file (yet only 1302 * when that file had been opened for writing!). 1303 * Anon pages in shared mappings are surprising: now 1304 * just reject it. 1305 */ 1306 if (!is_cow_mapping(vm_flags)) 1307 return -EFAULT; 1308 } 1309 } else if (!(vm_flags & VM_READ)) { 1310 if (!(gup_flags & FOLL_FORCE)) 1311 return -EFAULT; 1312 /* 1313 * Is there actually any vma we can reach here which does not 1314 * have VM_MAYREAD set? 1315 */ 1316 if (!(vm_flags & VM_MAYREAD)) 1317 return -EFAULT; 1318 } 1319 /* 1320 * gups are always data accesses, not instruction 1321 * fetches, so execute=false here 1322 */ 1323 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1324 return -EFAULT; 1325 return 0; 1326 } 1327 1328 /* 1329 * This is "vma_lookup()", but with a warning if we would have 1330 * historically expanded the stack in the GUP code. 1331 */ 1332 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1333 unsigned long addr) 1334 { 1335 #ifdef CONFIG_STACK_GROWSUP 1336 return vma_lookup(mm, addr); 1337 #else 1338 static volatile unsigned long next_warn; 1339 struct vm_area_struct *vma; 1340 unsigned long now, next; 1341 1342 vma = find_vma(mm, addr); 1343 if (!vma || (addr >= vma->vm_start)) 1344 return vma; 1345 1346 /* Only warn for half-way relevant accesses */ 1347 if (!(vma->vm_flags & VM_GROWSDOWN)) 1348 return NULL; 1349 if (vma->vm_start - addr > 65536) 1350 return NULL; 1351 1352 /* Let's not warn more than once an hour.. */ 1353 now = jiffies; next = next_warn; 1354 if (next && time_before(now, next)) 1355 return NULL; 1356 next_warn = now + 60*60*HZ; 1357 1358 /* Let people know things may have changed. */ 1359 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1360 current->comm, task_pid_nr(current), 1361 vma->vm_start, vma->vm_end, addr); 1362 dump_stack(); 1363 return NULL; 1364 #endif 1365 } 1366 1367 /** 1368 * __get_user_pages() - pin user pages in memory 1369 * @mm: mm_struct of target mm 1370 * @start: starting user address 1371 * @nr_pages: number of pages from start to pin 1372 * @gup_flags: flags modifying pin behaviour 1373 * @pages: array that receives pointers to the pages pinned. 1374 * Should be at least nr_pages long. Or NULL, if caller 1375 * only intends to ensure the pages are faulted in. 1376 * @locked: whether we're still with the mmap_lock held 1377 * 1378 * Returns either number of pages pinned (which may be less than the 1379 * number requested), or an error. Details about the return value: 1380 * 1381 * -- If nr_pages is 0, returns 0. 1382 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1383 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1384 * pages pinned. Again, this may be less than nr_pages. 1385 * -- 0 return value is possible when the fault would need to be retried. 1386 * 1387 * The caller is responsible for releasing returned @pages, via put_page(). 1388 * 1389 * Must be called with mmap_lock held. It may be released. See below. 1390 * 1391 * __get_user_pages walks a process's page tables and takes a reference to 1392 * each struct page that each user address corresponds to at a given 1393 * instant. That is, it takes the page that would be accessed if a user 1394 * thread accesses the given user virtual address at that instant. 1395 * 1396 * This does not guarantee that the page exists in the user mappings when 1397 * __get_user_pages returns, and there may even be a completely different 1398 * page there in some cases (eg. if mmapped pagecache has been invalidated 1399 * and subsequently re-faulted). However it does guarantee that the page 1400 * won't be freed completely. And mostly callers simply care that the page 1401 * contains data that was valid *at some point in time*. Typically, an IO 1402 * or similar operation cannot guarantee anything stronger anyway because 1403 * locks can't be held over the syscall boundary. 1404 * 1405 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1406 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1407 * appropriate) must be called after the page is finished with, and 1408 * before put_page is called. 1409 * 1410 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1411 * be released. If this happens *@locked will be set to 0 on return. 1412 * 1413 * A caller using such a combination of @gup_flags must therefore hold the 1414 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1415 * it must be held for either reading or writing and will not be released. 1416 * 1417 * In most cases, get_user_pages or get_user_pages_fast should be used 1418 * instead of __get_user_pages. __get_user_pages should be used only if 1419 * you need some special @gup_flags. 1420 */ 1421 static long __get_user_pages(struct mm_struct *mm, 1422 unsigned long start, unsigned long nr_pages, 1423 unsigned int gup_flags, struct page **pages, 1424 int *locked) 1425 { 1426 long ret = 0, i = 0; 1427 struct vm_area_struct *vma = NULL; 1428 struct follow_page_context ctx = { NULL }; 1429 1430 if (!nr_pages) 1431 return 0; 1432 1433 start = untagged_addr_remote(mm, start); 1434 1435 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1436 1437 do { 1438 struct page *page; 1439 unsigned int page_increm; 1440 1441 /* first iteration or cross vma bound */ 1442 if (!vma || start >= vma->vm_end) { 1443 /* 1444 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1445 * lookups+error reporting differently. 1446 */ 1447 if (gup_flags & FOLL_MADV_POPULATE) { 1448 vma = vma_lookup(mm, start); 1449 if (!vma) { 1450 ret = -ENOMEM; 1451 goto out; 1452 } 1453 if (check_vma_flags(vma, gup_flags)) { 1454 ret = -EINVAL; 1455 goto out; 1456 } 1457 goto retry; 1458 } 1459 vma = gup_vma_lookup(mm, start); 1460 if (!vma && in_gate_area(mm, start)) { 1461 ret = get_gate_page(mm, start & PAGE_MASK, 1462 gup_flags, &vma, 1463 pages ? &page : NULL); 1464 if (ret) 1465 goto out; 1466 ctx.page_mask = 0; 1467 goto next_page; 1468 } 1469 1470 if (!vma) { 1471 ret = -EFAULT; 1472 goto out; 1473 } 1474 ret = check_vma_flags(vma, gup_flags); 1475 if (ret) 1476 goto out; 1477 } 1478 retry: 1479 /* 1480 * If we have a pending SIGKILL, don't keep faulting pages and 1481 * potentially allocating memory. 1482 */ 1483 if (fatal_signal_pending(current)) { 1484 ret = -EINTR; 1485 goto out; 1486 } 1487 cond_resched(); 1488 1489 page = follow_page_mask(vma, start, gup_flags, &ctx); 1490 if (!page || PTR_ERR(page) == -EMLINK) { 1491 ret = faultin_page(vma, start, gup_flags, 1492 PTR_ERR(page) == -EMLINK, locked); 1493 switch (ret) { 1494 case 0: 1495 goto retry; 1496 case -EBUSY: 1497 case -EAGAIN: 1498 ret = 0; 1499 fallthrough; 1500 case -EFAULT: 1501 case -ENOMEM: 1502 case -EHWPOISON: 1503 goto out; 1504 } 1505 BUG(); 1506 } else if (PTR_ERR(page) == -EEXIST) { 1507 /* 1508 * Proper page table entry exists, but no corresponding 1509 * struct page. If the caller expects **pages to be 1510 * filled in, bail out now, because that can't be done 1511 * for this page. 1512 */ 1513 if (pages) { 1514 ret = PTR_ERR(page); 1515 goto out; 1516 } 1517 } else if (IS_ERR(page)) { 1518 ret = PTR_ERR(page); 1519 goto out; 1520 } 1521 next_page: 1522 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1523 if (page_increm > nr_pages) 1524 page_increm = nr_pages; 1525 1526 if (pages) { 1527 struct page *subpage; 1528 unsigned int j; 1529 1530 /* 1531 * This must be a large folio (and doesn't need to 1532 * be the whole folio; it can be part of it), do 1533 * the refcount work for all the subpages too. 1534 * 1535 * NOTE: here the page may not be the head page 1536 * e.g. when start addr is not thp-size aligned. 1537 * try_grab_folio() should have taken care of tail 1538 * pages. 1539 */ 1540 if (page_increm > 1) { 1541 struct folio *folio = page_folio(page); 1542 1543 /* 1544 * Since we already hold refcount on the 1545 * large folio, this should never fail. 1546 */ 1547 if (try_grab_folio(folio, page_increm - 1, 1548 gup_flags)) { 1549 /* 1550 * Release the 1st page ref if the 1551 * folio is problematic, fail hard. 1552 */ 1553 gup_put_folio(folio, 1, gup_flags); 1554 ret = -EFAULT; 1555 goto out; 1556 } 1557 } 1558 1559 for (j = 0; j < page_increm; j++) { 1560 subpage = nth_page(page, j); 1561 pages[i + j] = subpage; 1562 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1563 flush_dcache_page(subpage); 1564 } 1565 } 1566 1567 i += page_increm; 1568 start += page_increm * PAGE_SIZE; 1569 nr_pages -= page_increm; 1570 } while (nr_pages); 1571 out: 1572 if (ctx.pgmap) 1573 put_dev_pagemap(ctx.pgmap); 1574 return i ? i : ret; 1575 } 1576 1577 static bool vma_permits_fault(struct vm_area_struct *vma, 1578 unsigned int fault_flags) 1579 { 1580 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1581 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1582 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1583 1584 if (!(vm_flags & vma->vm_flags)) 1585 return false; 1586 1587 /* 1588 * The architecture might have a hardware protection 1589 * mechanism other than read/write that can deny access. 1590 * 1591 * gup always represents data access, not instruction 1592 * fetches, so execute=false here: 1593 */ 1594 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1595 return false; 1596 1597 return true; 1598 } 1599 1600 /** 1601 * fixup_user_fault() - manually resolve a user page fault 1602 * @mm: mm_struct of target mm 1603 * @address: user address 1604 * @fault_flags:flags to pass down to handle_mm_fault() 1605 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1606 * does not allow retry. If NULL, the caller must guarantee 1607 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1608 * 1609 * This is meant to be called in the specific scenario where for locking reasons 1610 * we try to access user memory in atomic context (within a pagefault_disable() 1611 * section), this returns -EFAULT, and we want to resolve the user fault before 1612 * trying again. 1613 * 1614 * Typically this is meant to be used by the futex code. 1615 * 1616 * The main difference with get_user_pages() is that this function will 1617 * unconditionally call handle_mm_fault() which will in turn perform all the 1618 * necessary SW fixup of the dirty and young bits in the PTE, while 1619 * get_user_pages() only guarantees to update these in the struct page. 1620 * 1621 * This is important for some architectures where those bits also gate the 1622 * access permission to the page because they are maintained in software. On 1623 * such architectures, gup() will not be enough to make a subsequent access 1624 * succeed. 1625 * 1626 * This function will not return with an unlocked mmap_lock. So it has not the 1627 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1628 */ 1629 int fixup_user_fault(struct mm_struct *mm, 1630 unsigned long address, unsigned int fault_flags, 1631 bool *unlocked) 1632 { 1633 struct vm_area_struct *vma; 1634 vm_fault_t ret; 1635 1636 address = untagged_addr_remote(mm, address); 1637 1638 if (unlocked) 1639 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1640 1641 retry: 1642 vma = gup_vma_lookup(mm, address); 1643 if (!vma) 1644 return -EFAULT; 1645 1646 if (!vma_permits_fault(vma, fault_flags)) 1647 return -EFAULT; 1648 1649 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1650 fatal_signal_pending(current)) 1651 return -EINTR; 1652 1653 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1654 1655 if (ret & VM_FAULT_COMPLETED) { 1656 /* 1657 * NOTE: it's a pity that we need to retake the lock here 1658 * to pair with the unlock() in the callers. Ideally we 1659 * could tell the callers so they do not need to unlock. 1660 */ 1661 mmap_read_lock(mm); 1662 *unlocked = true; 1663 return 0; 1664 } 1665 1666 if (ret & VM_FAULT_ERROR) { 1667 int err = vm_fault_to_errno(ret, 0); 1668 1669 if (err) 1670 return err; 1671 BUG(); 1672 } 1673 1674 if (ret & VM_FAULT_RETRY) { 1675 mmap_read_lock(mm); 1676 *unlocked = true; 1677 fault_flags |= FAULT_FLAG_TRIED; 1678 goto retry; 1679 } 1680 1681 return 0; 1682 } 1683 EXPORT_SYMBOL_GPL(fixup_user_fault); 1684 1685 /* 1686 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1687 * specified, it'll also respond to generic signals. The caller of GUP 1688 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1689 */ 1690 static bool gup_signal_pending(unsigned int flags) 1691 { 1692 if (fatal_signal_pending(current)) 1693 return true; 1694 1695 if (!(flags & FOLL_INTERRUPTIBLE)) 1696 return false; 1697 1698 return signal_pending(current); 1699 } 1700 1701 /* 1702 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1703 * the caller. This function may drop the mmap_lock. If it does so, then it will 1704 * set (*locked = 0). 1705 * 1706 * (*locked == 0) means that the caller expects this function to acquire and 1707 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1708 * the function returns, even though it may have changed temporarily during 1709 * function execution. 1710 * 1711 * Please note that this function, unlike __get_user_pages(), will not return 0 1712 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1713 */ 1714 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1715 unsigned long start, 1716 unsigned long nr_pages, 1717 struct page **pages, 1718 int *locked, 1719 unsigned int flags) 1720 { 1721 long ret, pages_done; 1722 bool must_unlock = false; 1723 1724 if (!nr_pages) 1725 return 0; 1726 1727 /* 1728 * The internal caller expects GUP to manage the lock internally and the 1729 * lock must be released when this returns. 1730 */ 1731 if (!*locked) { 1732 if (mmap_read_lock_killable(mm)) 1733 return -EAGAIN; 1734 must_unlock = true; 1735 *locked = 1; 1736 } 1737 else 1738 mmap_assert_locked(mm); 1739 1740 if (flags & FOLL_PIN) 1741 mm_set_has_pinned_flag(&mm->flags); 1742 1743 /* 1744 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1745 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1746 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1747 * for FOLL_GET, not for the newer FOLL_PIN. 1748 * 1749 * FOLL_PIN always expects pages to be non-null, but no need to assert 1750 * that here, as any failures will be obvious enough. 1751 */ 1752 if (pages && !(flags & FOLL_PIN)) 1753 flags |= FOLL_GET; 1754 1755 pages_done = 0; 1756 for (;;) { 1757 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1758 locked); 1759 if (!(flags & FOLL_UNLOCKABLE)) { 1760 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1761 pages_done = ret; 1762 break; 1763 } 1764 1765 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1766 if (!*locked) { 1767 BUG_ON(ret < 0); 1768 BUG_ON(ret >= nr_pages); 1769 } 1770 1771 if (ret > 0) { 1772 nr_pages -= ret; 1773 pages_done += ret; 1774 if (!nr_pages) 1775 break; 1776 } 1777 if (*locked) { 1778 /* 1779 * VM_FAULT_RETRY didn't trigger or it was a 1780 * FOLL_NOWAIT. 1781 */ 1782 if (!pages_done) 1783 pages_done = ret; 1784 break; 1785 } 1786 /* 1787 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1788 * For the prefault case (!pages) we only update counts. 1789 */ 1790 if (likely(pages)) 1791 pages += ret; 1792 start += ret << PAGE_SHIFT; 1793 1794 /* The lock was temporarily dropped, so we must unlock later */ 1795 must_unlock = true; 1796 1797 retry: 1798 /* 1799 * Repeat on the address that fired VM_FAULT_RETRY 1800 * with both FAULT_FLAG_ALLOW_RETRY and 1801 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1802 * by fatal signals of even common signals, depending on 1803 * the caller's request. So we need to check it before we 1804 * start trying again otherwise it can loop forever. 1805 */ 1806 if (gup_signal_pending(flags)) { 1807 if (!pages_done) 1808 pages_done = -EINTR; 1809 break; 1810 } 1811 1812 ret = mmap_read_lock_killable(mm); 1813 if (ret) { 1814 BUG_ON(ret > 0); 1815 if (!pages_done) 1816 pages_done = ret; 1817 break; 1818 } 1819 1820 *locked = 1; 1821 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1822 pages, locked); 1823 if (!*locked) { 1824 /* Continue to retry until we succeeded */ 1825 BUG_ON(ret != 0); 1826 goto retry; 1827 } 1828 if (ret != 1) { 1829 BUG_ON(ret > 1); 1830 if (!pages_done) 1831 pages_done = ret; 1832 break; 1833 } 1834 nr_pages--; 1835 pages_done++; 1836 if (!nr_pages) 1837 break; 1838 if (likely(pages)) 1839 pages++; 1840 start += PAGE_SIZE; 1841 } 1842 if (must_unlock && *locked) { 1843 /* 1844 * We either temporarily dropped the lock, or the caller 1845 * requested that we both acquire and drop the lock. Either way, 1846 * we must now unlock, and notify the caller of that state. 1847 */ 1848 mmap_read_unlock(mm); 1849 *locked = 0; 1850 } 1851 1852 /* 1853 * Failing to pin anything implies something has gone wrong (except when 1854 * FOLL_NOWAIT is specified). 1855 */ 1856 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1857 return -EFAULT; 1858 1859 return pages_done; 1860 } 1861 1862 /** 1863 * populate_vma_page_range() - populate a range of pages in the vma. 1864 * @vma: target vma 1865 * @start: start address 1866 * @end: end address 1867 * @locked: whether the mmap_lock is still held 1868 * 1869 * This takes care of mlocking the pages too if VM_LOCKED is set. 1870 * 1871 * Return either number of pages pinned in the vma, or a negative error 1872 * code on error. 1873 * 1874 * vma->vm_mm->mmap_lock must be held. 1875 * 1876 * If @locked is NULL, it may be held for read or write and will 1877 * be unperturbed. 1878 * 1879 * If @locked is non-NULL, it must held for read only and may be 1880 * released. If it's released, *@locked will be set to 0. 1881 */ 1882 long populate_vma_page_range(struct vm_area_struct *vma, 1883 unsigned long start, unsigned long end, int *locked) 1884 { 1885 struct mm_struct *mm = vma->vm_mm; 1886 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1887 int local_locked = 1; 1888 int gup_flags; 1889 long ret; 1890 1891 VM_BUG_ON(!PAGE_ALIGNED(start)); 1892 VM_BUG_ON(!PAGE_ALIGNED(end)); 1893 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1894 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1895 mmap_assert_locked(mm); 1896 1897 /* 1898 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1899 * faultin_page() to break COW, so it has no work to do here. 1900 */ 1901 if (vma->vm_flags & VM_LOCKONFAULT) 1902 return nr_pages; 1903 1904 /* ... similarly, we've never faulted in PROT_NONE pages */ 1905 if (!vma_is_accessible(vma)) 1906 return -EFAULT; 1907 1908 gup_flags = FOLL_TOUCH; 1909 /* 1910 * We want to touch writable mappings with a write fault in order 1911 * to break COW, except for shared mappings because these don't COW 1912 * and we would not want to dirty them for nothing. 1913 * 1914 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1915 * readable (ie write-only or executable). 1916 */ 1917 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1918 gup_flags |= FOLL_WRITE; 1919 else 1920 gup_flags |= FOLL_FORCE; 1921 1922 if (locked) 1923 gup_flags |= FOLL_UNLOCKABLE; 1924 1925 /* 1926 * We made sure addr is within a VMA, so the following will 1927 * not result in a stack expansion that recurses back here. 1928 */ 1929 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1930 NULL, locked ? locked : &local_locked); 1931 lru_add_drain(); 1932 return ret; 1933 } 1934 1935 /* 1936 * faultin_page_range() - populate (prefault) page tables inside the 1937 * given range readable/writable 1938 * 1939 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1940 * 1941 * @mm: the mm to populate page tables in 1942 * @start: start address 1943 * @end: end address 1944 * @write: whether to prefault readable or writable 1945 * @locked: whether the mmap_lock is still held 1946 * 1947 * Returns either number of processed pages in the MM, or a negative error 1948 * code on error (see __get_user_pages()). Note that this function reports 1949 * errors related to VMAs, such as incompatible mappings, as expected by 1950 * MADV_POPULATE_(READ|WRITE). 1951 * 1952 * The range must be page-aligned. 1953 * 1954 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1955 */ 1956 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1957 unsigned long end, bool write, int *locked) 1958 { 1959 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1960 int gup_flags; 1961 long ret; 1962 1963 VM_BUG_ON(!PAGE_ALIGNED(start)); 1964 VM_BUG_ON(!PAGE_ALIGNED(end)); 1965 mmap_assert_locked(mm); 1966 1967 /* 1968 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1969 * the page dirty with FOLL_WRITE -- which doesn't make a 1970 * difference with !FOLL_FORCE, because the page is writable 1971 * in the page table. 1972 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1973 * a poisoned page. 1974 * !FOLL_FORCE: Require proper access permissions. 1975 */ 1976 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1977 FOLL_MADV_POPULATE; 1978 if (write) 1979 gup_flags |= FOLL_WRITE; 1980 1981 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1982 gup_flags); 1983 lru_add_drain(); 1984 return ret; 1985 } 1986 1987 /* 1988 * __mm_populate - populate and/or mlock pages within a range of address space. 1989 * 1990 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1991 * flags. VMAs must be already marked with the desired vm_flags, and 1992 * mmap_lock must not be held. 1993 */ 1994 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1995 { 1996 struct mm_struct *mm = current->mm; 1997 unsigned long end, nstart, nend; 1998 struct vm_area_struct *vma = NULL; 1999 int locked = 0; 2000 long ret = 0; 2001 2002 end = start + len; 2003 2004 for (nstart = start; nstart < end; nstart = nend) { 2005 /* 2006 * We want to fault in pages for [nstart; end) address range. 2007 * Find first corresponding VMA. 2008 */ 2009 if (!locked) { 2010 locked = 1; 2011 mmap_read_lock(mm); 2012 vma = find_vma_intersection(mm, nstart, end); 2013 } else if (nstart >= vma->vm_end) 2014 vma = find_vma_intersection(mm, vma->vm_end, end); 2015 2016 if (!vma) 2017 break; 2018 /* 2019 * Set [nstart; nend) to intersection of desired address 2020 * range with the first VMA. Also, skip undesirable VMA types. 2021 */ 2022 nend = min(end, vma->vm_end); 2023 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2024 continue; 2025 if (nstart < vma->vm_start) 2026 nstart = vma->vm_start; 2027 /* 2028 * Now fault in a range of pages. populate_vma_page_range() 2029 * double checks the vma flags, so that it won't mlock pages 2030 * if the vma was already munlocked. 2031 */ 2032 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2033 if (ret < 0) { 2034 if (ignore_errors) { 2035 ret = 0; 2036 continue; /* continue at next VMA */ 2037 } 2038 break; 2039 } 2040 nend = nstart + ret * PAGE_SIZE; 2041 ret = 0; 2042 } 2043 if (locked) 2044 mmap_read_unlock(mm); 2045 return ret; /* 0 or negative error code */ 2046 } 2047 #else /* CONFIG_MMU */ 2048 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2049 unsigned long nr_pages, struct page **pages, 2050 int *locked, unsigned int foll_flags) 2051 { 2052 struct vm_area_struct *vma; 2053 bool must_unlock = false; 2054 unsigned long vm_flags; 2055 long i; 2056 2057 if (!nr_pages) 2058 return 0; 2059 2060 /* 2061 * The internal caller expects GUP to manage the lock internally and the 2062 * lock must be released when this returns. 2063 */ 2064 if (!*locked) { 2065 if (mmap_read_lock_killable(mm)) 2066 return -EAGAIN; 2067 must_unlock = true; 2068 *locked = 1; 2069 } 2070 2071 /* calculate required read or write permissions. 2072 * If FOLL_FORCE is set, we only require the "MAY" flags. 2073 */ 2074 vm_flags = (foll_flags & FOLL_WRITE) ? 2075 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2076 vm_flags &= (foll_flags & FOLL_FORCE) ? 2077 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2078 2079 for (i = 0; i < nr_pages; i++) { 2080 vma = find_vma(mm, start); 2081 if (!vma) 2082 break; 2083 2084 /* protect what we can, including chardevs */ 2085 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2086 !(vm_flags & vma->vm_flags)) 2087 break; 2088 2089 if (pages) { 2090 pages[i] = virt_to_page((void *)start); 2091 if (pages[i]) 2092 get_page(pages[i]); 2093 } 2094 2095 start = (start + PAGE_SIZE) & PAGE_MASK; 2096 } 2097 2098 if (must_unlock && *locked) { 2099 mmap_read_unlock(mm); 2100 *locked = 0; 2101 } 2102 2103 return i ? : -EFAULT; 2104 } 2105 #endif /* !CONFIG_MMU */ 2106 2107 /** 2108 * fault_in_writeable - fault in userspace address range for writing 2109 * @uaddr: start of address range 2110 * @size: size of address range 2111 * 2112 * Returns the number of bytes not faulted in (like copy_to_user() and 2113 * copy_from_user()). 2114 */ 2115 size_t fault_in_writeable(char __user *uaddr, size_t size) 2116 { 2117 char __user *start = uaddr, *end; 2118 2119 if (unlikely(size == 0)) 2120 return 0; 2121 if (!user_write_access_begin(uaddr, size)) 2122 return size; 2123 if (!PAGE_ALIGNED(uaddr)) { 2124 unsafe_put_user(0, uaddr, out); 2125 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2126 } 2127 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2128 if (unlikely(end < start)) 2129 end = NULL; 2130 while (uaddr != end) { 2131 unsafe_put_user(0, uaddr, out); 2132 uaddr += PAGE_SIZE; 2133 } 2134 2135 out: 2136 user_write_access_end(); 2137 if (size > uaddr - start) 2138 return size - (uaddr - start); 2139 return 0; 2140 } 2141 EXPORT_SYMBOL(fault_in_writeable); 2142 2143 /** 2144 * fault_in_subpage_writeable - fault in an address range for writing 2145 * @uaddr: start of address range 2146 * @size: size of address range 2147 * 2148 * Fault in a user address range for writing while checking for permissions at 2149 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2150 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2151 * 2152 * Returns the number of bytes not faulted in (like copy_to_user() and 2153 * copy_from_user()). 2154 */ 2155 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2156 { 2157 size_t faulted_in; 2158 2159 /* 2160 * Attempt faulting in at page granularity first for page table 2161 * permission checking. The arch-specific probe_subpage_writeable() 2162 * functions may not check for this. 2163 */ 2164 faulted_in = size - fault_in_writeable(uaddr, size); 2165 if (faulted_in) 2166 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2167 2168 return size - faulted_in; 2169 } 2170 EXPORT_SYMBOL(fault_in_subpage_writeable); 2171 2172 /* 2173 * fault_in_safe_writeable - fault in an address range for writing 2174 * @uaddr: start of address range 2175 * @size: length of address range 2176 * 2177 * Faults in an address range for writing. This is primarily useful when we 2178 * already know that some or all of the pages in the address range aren't in 2179 * memory. 2180 * 2181 * Unlike fault_in_writeable(), this function is non-destructive. 2182 * 2183 * Note that we don't pin or otherwise hold the pages referenced that we fault 2184 * in. There's no guarantee that they'll stay in memory for any duration of 2185 * time. 2186 * 2187 * Returns the number of bytes not faulted in, like copy_to_user() and 2188 * copy_from_user(). 2189 */ 2190 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2191 { 2192 unsigned long start = (unsigned long)uaddr, end; 2193 struct mm_struct *mm = current->mm; 2194 bool unlocked = false; 2195 2196 if (unlikely(size == 0)) 2197 return 0; 2198 end = PAGE_ALIGN(start + size); 2199 if (end < start) 2200 end = 0; 2201 2202 mmap_read_lock(mm); 2203 do { 2204 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2205 break; 2206 start = (start + PAGE_SIZE) & PAGE_MASK; 2207 } while (start != end); 2208 mmap_read_unlock(mm); 2209 2210 if (size > (unsigned long)uaddr - start) 2211 return size - ((unsigned long)uaddr - start); 2212 return 0; 2213 } 2214 EXPORT_SYMBOL(fault_in_safe_writeable); 2215 2216 /** 2217 * fault_in_readable - fault in userspace address range for reading 2218 * @uaddr: start of user address range 2219 * @size: size of user address range 2220 * 2221 * Returns the number of bytes not faulted in (like copy_to_user() and 2222 * copy_from_user()). 2223 */ 2224 size_t fault_in_readable(const char __user *uaddr, size_t size) 2225 { 2226 const char __user *start = uaddr, *end; 2227 volatile char c; 2228 2229 if (unlikely(size == 0)) 2230 return 0; 2231 if (!user_read_access_begin(uaddr, size)) 2232 return size; 2233 if (!PAGE_ALIGNED(uaddr)) { 2234 unsafe_get_user(c, uaddr, out); 2235 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2236 } 2237 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2238 if (unlikely(end < start)) 2239 end = NULL; 2240 while (uaddr != end) { 2241 unsafe_get_user(c, uaddr, out); 2242 uaddr += PAGE_SIZE; 2243 } 2244 2245 out: 2246 user_read_access_end(); 2247 (void)c; 2248 if (size > uaddr - start) 2249 return size - (uaddr - start); 2250 return 0; 2251 } 2252 EXPORT_SYMBOL(fault_in_readable); 2253 2254 /** 2255 * get_dump_page() - pin user page in memory while writing it to core dump 2256 * @addr: user address 2257 * @locked: a pointer to an int denoting whether the mmap sem is held 2258 * 2259 * Returns struct page pointer of user page pinned for dump, 2260 * to be freed afterwards by put_page(). 2261 * 2262 * Returns NULL on any kind of failure - a hole must then be inserted into 2263 * the corefile, to preserve alignment with its headers; and also returns 2264 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2265 * allowing a hole to be left in the corefile to save disk space. 2266 * 2267 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2268 */ 2269 #ifdef CONFIG_ELF_CORE 2270 struct page *get_dump_page(unsigned long addr, int *locked) 2271 { 2272 struct page *page; 2273 int ret; 2274 2275 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, 2276 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2277 return (ret == 1) ? page : NULL; 2278 } 2279 #endif /* CONFIG_ELF_CORE */ 2280 2281 #ifdef CONFIG_MIGRATION 2282 2283 /* 2284 * An array of either pages or folios ("pofs"). Although it may seem tempting to 2285 * avoid this complication, by simply interpreting a list of folios as a list of 2286 * pages, that approach won't work in the longer term, because eventually the 2287 * layouts of struct page and struct folio will become completely different. 2288 * Furthermore, this pof approach avoids excessive page_folio() calls. 2289 */ 2290 struct pages_or_folios { 2291 union { 2292 struct page **pages; 2293 struct folio **folios; 2294 void **entries; 2295 }; 2296 bool has_folios; 2297 long nr_entries; 2298 }; 2299 2300 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) 2301 { 2302 if (pofs->has_folios) 2303 return pofs->folios[i]; 2304 return page_folio(pofs->pages[i]); 2305 } 2306 2307 static void pofs_clear_entry(struct pages_or_folios *pofs, long i) 2308 { 2309 pofs->entries[i] = NULL; 2310 } 2311 2312 static void pofs_unpin(struct pages_or_folios *pofs) 2313 { 2314 if (pofs->has_folios) 2315 unpin_folios(pofs->folios, pofs->nr_entries); 2316 else 2317 unpin_user_pages(pofs->pages, pofs->nr_entries); 2318 } 2319 2320 /* 2321 * Returns the number of collected folios. Return value is always >= 0. 2322 */ 2323 static void collect_longterm_unpinnable_folios( 2324 struct list_head *movable_folio_list, 2325 struct pages_or_folios *pofs) 2326 { 2327 struct folio *prev_folio = NULL; 2328 bool drain_allow = true; 2329 unsigned long i; 2330 2331 for (i = 0; i < pofs->nr_entries; i++) { 2332 struct folio *folio = pofs_get_folio(pofs, i); 2333 2334 if (folio == prev_folio) 2335 continue; 2336 prev_folio = folio; 2337 2338 if (folio_is_longterm_pinnable(folio)) 2339 continue; 2340 2341 if (folio_is_device_coherent(folio)) 2342 continue; 2343 2344 if (folio_test_hugetlb(folio)) { 2345 folio_isolate_hugetlb(folio, movable_folio_list); 2346 continue; 2347 } 2348 2349 if (!folio_test_lru(folio) && drain_allow) { 2350 lru_add_drain_all(); 2351 drain_allow = false; 2352 } 2353 2354 if (!folio_isolate_lru(folio)) 2355 continue; 2356 2357 list_add_tail(&folio->lru, movable_folio_list); 2358 node_stat_mod_folio(folio, 2359 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2360 folio_nr_pages(folio)); 2361 } 2362 } 2363 2364 /* 2365 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2366 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2367 * failure (or partial success). 2368 */ 2369 static int 2370 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, 2371 struct pages_or_folios *pofs) 2372 { 2373 int ret; 2374 unsigned long i; 2375 2376 for (i = 0; i < pofs->nr_entries; i++) { 2377 struct folio *folio = pofs_get_folio(pofs, i); 2378 2379 if (folio_is_device_coherent(folio)) { 2380 /* 2381 * Migration will fail if the folio is pinned, so 2382 * convert the pin on the source folio to a normal 2383 * reference. 2384 */ 2385 pofs_clear_entry(pofs, i); 2386 folio_get(folio); 2387 gup_put_folio(folio, 1, FOLL_PIN); 2388 2389 if (migrate_device_coherent_folio(folio)) { 2390 ret = -EBUSY; 2391 goto err; 2392 } 2393 2394 continue; 2395 } 2396 2397 /* 2398 * We can't migrate folios with unexpected references, so drop 2399 * the reference obtained by __get_user_pages_locked(). 2400 * Migrating folios have been added to movable_folio_list after 2401 * calling folio_isolate_lru() which takes a reference so the 2402 * folio won't be freed if it's migrating. 2403 */ 2404 unpin_folio(folio); 2405 pofs_clear_entry(pofs, i); 2406 } 2407 2408 if (!list_empty(movable_folio_list)) { 2409 struct migration_target_control mtc = { 2410 .nid = NUMA_NO_NODE, 2411 .gfp_mask = GFP_USER | __GFP_NOWARN, 2412 .reason = MR_LONGTERM_PIN, 2413 }; 2414 2415 if (migrate_pages(movable_folio_list, alloc_migration_target, 2416 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2417 MR_LONGTERM_PIN, NULL)) { 2418 ret = -ENOMEM; 2419 goto err; 2420 } 2421 } 2422 2423 putback_movable_pages(movable_folio_list); 2424 2425 return -EAGAIN; 2426 2427 err: 2428 pofs_unpin(pofs); 2429 putback_movable_pages(movable_folio_list); 2430 2431 return ret; 2432 } 2433 2434 static long 2435 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) 2436 { 2437 LIST_HEAD(movable_folio_list); 2438 2439 collect_longterm_unpinnable_folios(&movable_folio_list, pofs); 2440 if (list_empty(&movable_folio_list)) 2441 return 0; 2442 2443 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); 2444 } 2445 2446 /* 2447 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2448 * Rather confusingly, all folios in the range are required to be pinned via 2449 * FOLL_PIN, before calling this routine. 2450 * 2451 * Return values: 2452 * 2453 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2454 * then this routine leaves all folios pinned and returns zero for success. 2455 * 2456 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2457 * routine will migrate those folios away, unpin all the folios in the range. If 2458 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2459 * caller should re-pin the entire range with FOLL_PIN and then call this 2460 * routine again. 2461 * 2462 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2463 * indicates a migration failure. The caller should give up, and propagate the 2464 * error back up the call stack. The caller does not need to unpin any folios in 2465 * that case, because this routine will do the unpinning. 2466 */ 2467 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2468 struct folio **folios) 2469 { 2470 struct pages_or_folios pofs = { 2471 .folios = folios, 2472 .has_folios = true, 2473 .nr_entries = nr_folios, 2474 }; 2475 2476 return check_and_migrate_movable_pages_or_folios(&pofs); 2477 } 2478 2479 /* 2480 * Return values and behavior are the same as those for 2481 * check_and_migrate_movable_folios(). 2482 */ 2483 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2484 struct page **pages) 2485 { 2486 struct pages_or_folios pofs = { 2487 .pages = pages, 2488 .has_folios = false, 2489 .nr_entries = nr_pages, 2490 }; 2491 2492 return check_and_migrate_movable_pages_or_folios(&pofs); 2493 } 2494 #else 2495 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2496 struct page **pages) 2497 { 2498 return 0; 2499 } 2500 2501 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2502 struct folio **folios) 2503 { 2504 return 0; 2505 } 2506 #endif /* CONFIG_MIGRATION */ 2507 2508 /* 2509 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2510 * allows us to process the FOLL_LONGTERM flag. 2511 */ 2512 static long __gup_longterm_locked(struct mm_struct *mm, 2513 unsigned long start, 2514 unsigned long nr_pages, 2515 struct page **pages, 2516 int *locked, 2517 unsigned int gup_flags) 2518 { 2519 unsigned int flags; 2520 long rc, nr_pinned_pages; 2521 2522 if (!(gup_flags & FOLL_LONGTERM)) 2523 return __get_user_pages_locked(mm, start, nr_pages, pages, 2524 locked, gup_flags); 2525 2526 flags = memalloc_pin_save(); 2527 do { 2528 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2529 pages, locked, 2530 gup_flags); 2531 if (nr_pinned_pages <= 0) { 2532 rc = nr_pinned_pages; 2533 break; 2534 } 2535 2536 /* FOLL_LONGTERM implies FOLL_PIN */ 2537 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2538 } while (rc == -EAGAIN); 2539 memalloc_pin_restore(flags); 2540 return rc ? rc : nr_pinned_pages; 2541 } 2542 2543 /* 2544 * Check that the given flags are valid for the exported gup/pup interface, and 2545 * update them with the required flags that the caller must have set. 2546 */ 2547 static bool is_valid_gup_args(struct page **pages, int *locked, 2548 unsigned int *gup_flags_p, unsigned int to_set) 2549 { 2550 unsigned int gup_flags = *gup_flags_p; 2551 2552 /* 2553 * These flags not allowed to be specified externally to the gup 2554 * interfaces: 2555 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2556 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2557 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2558 */ 2559 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2560 return false; 2561 2562 gup_flags |= to_set; 2563 if (locked) { 2564 /* At the external interface locked must be set */ 2565 if (WARN_ON_ONCE(*locked != 1)) 2566 return false; 2567 2568 gup_flags |= FOLL_UNLOCKABLE; 2569 } 2570 2571 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2572 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2573 (FOLL_PIN | FOLL_GET))) 2574 return false; 2575 2576 /* LONGTERM can only be specified when pinning */ 2577 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2578 return false; 2579 2580 /* Pages input must be given if using GET/PIN */ 2581 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2582 return false; 2583 2584 /* We want to allow the pgmap to be hot-unplugged at all times */ 2585 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2586 (gup_flags & FOLL_PCI_P2PDMA))) 2587 return false; 2588 2589 *gup_flags_p = gup_flags; 2590 return true; 2591 } 2592 2593 #ifdef CONFIG_MMU 2594 /** 2595 * get_user_pages_remote() - pin user pages in memory 2596 * @mm: mm_struct of target mm 2597 * @start: starting user address 2598 * @nr_pages: number of pages from start to pin 2599 * @gup_flags: flags modifying lookup behaviour 2600 * @pages: array that receives pointers to the pages pinned. 2601 * Should be at least nr_pages long. Or NULL, if caller 2602 * only intends to ensure the pages are faulted in. 2603 * @locked: pointer to lock flag indicating whether lock is held and 2604 * subsequently whether VM_FAULT_RETRY functionality can be 2605 * utilised. Lock must initially be held. 2606 * 2607 * Returns either number of pages pinned (which may be less than the 2608 * number requested), or an error. Details about the return value: 2609 * 2610 * -- If nr_pages is 0, returns 0. 2611 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2612 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2613 * pages pinned. Again, this may be less than nr_pages. 2614 * 2615 * The caller is responsible for releasing returned @pages, via put_page(). 2616 * 2617 * Must be called with mmap_lock held for read or write. 2618 * 2619 * get_user_pages_remote walks a process's page tables and takes a reference 2620 * to each struct page that each user address corresponds to at a given 2621 * instant. That is, it takes the page that would be accessed if a user 2622 * thread accesses the given user virtual address at that instant. 2623 * 2624 * This does not guarantee that the page exists in the user mappings when 2625 * get_user_pages_remote returns, and there may even be a completely different 2626 * page there in some cases (eg. if mmapped pagecache has been invalidated 2627 * and subsequently re-faulted). However it does guarantee that the page 2628 * won't be freed completely. And mostly callers simply care that the page 2629 * contains data that was valid *at some point in time*. Typically, an IO 2630 * or similar operation cannot guarantee anything stronger anyway because 2631 * locks can't be held over the syscall boundary. 2632 * 2633 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2634 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2635 * be called after the page is finished with, and before put_page is called. 2636 * 2637 * get_user_pages_remote is typically used for fewer-copy IO operations, 2638 * to get a handle on the memory by some means other than accesses 2639 * via the user virtual addresses. The pages may be submitted for 2640 * DMA to devices or accessed via their kernel linear mapping (via the 2641 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2642 * 2643 * See also get_user_pages_fast, for performance critical applications. 2644 * 2645 * get_user_pages_remote should be phased out in favor of 2646 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2647 * should use get_user_pages_remote because it cannot pass 2648 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2649 */ 2650 long get_user_pages_remote(struct mm_struct *mm, 2651 unsigned long start, unsigned long nr_pages, 2652 unsigned int gup_flags, struct page **pages, 2653 int *locked) 2654 { 2655 int local_locked = 1; 2656 2657 if (!is_valid_gup_args(pages, locked, &gup_flags, 2658 FOLL_TOUCH | FOLL_REMOTE)) 2659 return -EINVAL; 2660 2661 return __get_user_pages_locked(mm, start, nr_pages, pages, 2662 locked ? locked : &local_locked, 2663 gup_flags); 2664 } 2665 EXPORT_SYMBOL(get_user_pages_remote); 2666 2667 #else /* CONFIG_MMU */ 2668 long get_user_pages_remote(struct mm_struct *mm, 2669 unsigned long start, unsigned long nr_pages, 2670 unsigned int gup_flags, struct page **pages, 2671 int *locked) 2672 { 2673 return 0; 2674 } 2675 #endif /* !CONFIG_MMU */ 2676 2677 /** 2678 * get_user_pages() - pin user pages in memory 2679 * @start: starting user address 2680 * @nr_pages: number of pages from start to pin 2681 * @gup_flags: flags modifying lookup behaviour 2682 * @pages: array that receives pointers to the pages pinned. 2683 * Should be at least nr_pages long. Or NULL, if caller 2684 * only intends to ensure the pages are faulted in. 2685 * 2686 * This is the same as get_user_pages_remote(), just with a less-flexible 2687 * calling convention where we assume that the mm being operated on belongs to 2688 * the current task, and doesn't allow passing of a locked parameter. We also 2689 * obviously don't pass FOLL_REMOTE in here. 2690 */ 2691 long get_user_pages(unsigned long start, unsigned long nr_pages, 2692 unsigned int gup_flags, struct page **pages) 2693 { 2694 int locked = 1; 2695 2696 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2697 return -EINVAL; 2698 2699 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2700 &locked, gup_flags); 2701 } 2702 EXPORT_SYMBOL(get_user_pages); 2703 2704 /* 2705 * get_user_pages_unlocked() is suitable to replace the form: 2706 * 2707 * mmap_read_lock(mm); 2708 * get_user_pages(mm, ..., pages, NULL); 2709 * mmap_read_unlock(mm); 2710 * 2711 * with: 2712 * 2713 * get_user_pages_unlocked(mm, ..., pages); 2714 * 2715 * It is functionally equivalent to get_user_pages_fast so 2716 * get_user_pages_fast should be used instead if specific gup_flags 2717 * (e.g. FOLL_FORCE) are not required. 2718 */ 2719 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2720 struct page **pages, unsigned int gup_flags) 2721 { 2722 int locked = 0; 2723 2724 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2725 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2726 return -EINVAL; 2727 2728 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2729 &locked, gup_flags); 2730 } 2731 EXPORT_SYMBOL(get_user_pages_unlocked); 2732 2733 /* 2734 * GUP-fast 2735 * 2736 * get_user_pages_fast attempts to pin user pages by walking the page 2737 * tables directly and avoids taking locks. Thus the walker needs to be 2738 * protected from page table pages being freed from under it, and should 2739 * block any THP splits. 2740 * 2741 * One way to achieve this is to have the walker disable interrupts, and 2742 * rely on IPIs from the TLB flushing code blocking before the page table 2743 * pages are freed. This is unsuitable for architectures that do not need 2744 * to broadcast an IPI when invalidating TLBs. 2745 * 2746 * Another way to achieve this is to batch up page table containing pages 2747 * belonging to more than one mm_user, then rcu_sched a callback to free those 2748 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2749 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2750 * (which is a relatively rare event). The code below adopts this strategy. 2751 * 2752 * Before activating this code, please be aware that the following assumptions 2753 * are currently made: 2754 * 2755 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2756 * free pages containing page tables or TLB flushing requires IPI broadcast. 2757 * 2758 * *) ptes can be read atomically by the architecture. 2759 * 2760 * *) valid user addesses are below TASK_MAX_SIZE 2761 * 2762 * The last two assumptions can be relaxed by the addition of helper functions. 2763 * 2764 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2765 */ 2766 #ifdef CONFIG_HAVE_GUP_FAST 2767 /* 2768 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2769 * a specific folio. 2770 * 2771 * This call assumes the caller has pinned the folio, that the lowest page table 2772 * level still points to this folio, and that interrupts have been disabled. 2773 * 2774 * GUP-fast must reject all secretmem folios. 2775 * 2776 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2777 * (see comment describing the writable_file_mapping_allowed() function). We 2778 * therefore try to avoid the most egregious case of a long-term mapping doing 2779 * so. 2780 * 2781 * This function cannot be as thorough as that one as the VMA is not available 2782 * in the fast path, so instead we whitelist known good cases and if in doubt, 2783 * fall back to the slow path. 2784 */ 2785 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2786 { 2787 bool reject_file_backed = false; 2788 struct address_space *mapping; 2789 bool check_secretmem = false; 2790 unsigned long mapping_flags; 2791 2792 /* 2793 * If we aren't pinning then no problematic write can occur. A long term 2794 * pin is the most egregious case so this is the one we disallow. 2795 */ 2796 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2797 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2798 reject_file_backed = true; 2799 2800 /* We hold a folio reference, so we can safely access folio fields. */ 2801 2802 /* secretmem folios are always order-0 folios. */ 2803 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2804 check_secretmem = true; 2805 2806 if (!reject_file_backed && !check_secretmem) 2807 return true; 2808 2809 if (WARN_ON_ONCE(folio_test_slab(folio))) 2810 return false; 2811 2812 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2813 if (folio_test_hugetlb(folio)) 2814 return true; 2815 2816 /* 2817 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2818 * cannot proceed, which means no actions performed under RCU can 2819 * proceed either. 2820 * 2821 * inodes and thus their mappings are freed under RCU, which means the 2822 * mapping cannot be freed beneath us and thus we can safely dereference 2823 * it. 2824 */ 2825 lockdep_assert_irqs_disabled(); 2826 2827 /* 2828 * However, there may be operations which _alter_ the mapping, so ensure 2829 * we read it once and only once. 2830 */ 2831 mapping = READ_ONCE(folio->mapping); 2832 2833 /* 2834 * The mapping may have been truncated, in any case we cannot determine 2835 * if this mapping is safe - fall back to slow path to determine how to 2836 * proceed. 2837 */ 2838 if (!mapping) 2839 return false; 2840 2841 /* Anonymous folios pose no problem. */ 2842 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2843 if (mapping_flags) 2844 return mapping_flags & PAGE_MAPPING_ANON; 2845 2846 /* 2847 * At this point, we know the mapping is non-null and points to an 2848 * address_space object. 2849 */ 2850 if (check_secretmem && secretmem_mapping(mapping)) 2851 return false; 2852 /* The only remaining allowed file system is shmem. */ 2853 return !reject_file_backed || shmem_mapping(mapping); 2854 } 2855 2856 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2857 unsigned int flags, struct page **pages) 2858 { 2859 while ((*nr) - nr_start) { 2860 struct folio *folio = page_folio(pages[--(*nr)]); 2861 2862 folio_clear_referenced(folio); 2863 gup_put_folio(folio, 1, flags); 2864 } 2865 } 2866 2867 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2868 /* 2869 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2870 * operations. 2871 * 2872 * To pin the page, GUP-fast needs to do below in order: 2873 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2874 * 2875 * For the rest of pgtable operations where pgtable updates can be racy 2876 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2877 * is pinned. 2878 * 2879 * Above will work for all pte-level operations, including THP split. 2880 * 2881 * For THP collapse, it's a bit more complicated because GUP-fast may be 2882 * walking a pgtable page that is being freed (pte is still valid but pmd 2883 * can be cleared already). To avoid race in such condition, we need to 2884 * also check pmd here to make sure pmd doesn't change (corresponds to 2885 * pmdp_collapse_flush() in the THP collapse code path). 2886 */ 2887 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2888 unsigned long end, unsigned int flags, struct page **pages, 2889 int *nr) 2890 { 2891 struct dev_pagemap *pgmap = NULL; 2892 int nr_start = *nr, ret = 0; 2893 pte_t *ptep, *ptem; 2894 2895 ptem = ptep = pte_offset_map(&pmd, addr); 2896 if (!ptep) 2897 return 0; 2898 do { 2899 pte_t pte = ptep_get_lockless(ptep); 2900 struct page *page; 2901 struct folio *folio; 2902 2903 /* 2904 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2905 * pte_access_permitted() better should reject these pages 2906 * either way: otherwise, GUP-fast might succeed in 2907 * cases where ordinary GUP would fail due to VMA access 2908 * permissions. 2909 */ 2910 if (pte_protnone(pte)) 2911 goto pte_unmap; 2912 2913 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2914 goto pte_unmap; 2915 2916 if (pte_devmap(pte)) { 2917 if (unlikely(flags & FOLL_LONGTERM)) 2918 goto pte_unmap; 2919 2920 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2921 if (unlikely(!pgmap)) { 2922 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2923 goto pte_unmap; 2924 } 2925 } else if (pte_special(pte)) 2926 goto pte_unmap; 2927 2928 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2929 page = pte_page(pte); 2930 2931 folio = try_grab_folio_fast(page, 1, flags); 2932 if (!folio) 2933 goto pte_unmap; 2934 2935 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2936 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2937 gup_put_folio(folio, 1, flags); 2938 goto pte_unmap; 2939 } 2940 2941 if (!gup_fast_folio_allowed(folio, flags)) { 2942 gup_put_folio(folio, 1, flags); 2943 goto pte_unmap; 2944 } 2945 2946 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2947 gup_put_folio(folio, 1, flags); 2948 goto pte_unmap; 2949 } 2950 2951 /* 2952 * We need to make the page accessible if and only if we are 2953 * going to access its content (the FOLL_PIN case). Please 2954 * see Documentation/core-api/pin_user_pages.rst for 2955 * details. 2956 */ 2957 if (flags & FOLL_PIN) { 2958 ret = arch_make_folio_accessible(folio); 2959 if (ret) { 2960 gup_put_folio(folio, 1, flags); 2961 goto pte_unmap; 2962 } 2963 } 2964 folio_set_referenced(folio); 2965 pages[*nr] = page; 2966 (*nr)++; 2967 } while (ptep++, addr += PAGE_SIZE, addr != end); 2968 2969 ret = 1; 2970 2971 pte_unmap: 2972 if (pgmap) 2973 put_dev_pagemap(pgmap); 2974 pte_unmap(ptem); 2975 return ret; 2976 } 2977 #else 2978 2979 /* 2980 * If we can't determine whether or not a pte is special, then fail immediately 2981 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2982 * to be special. 2983 * 2984 * For a futex to be placed on a THP tail page, get_futex_key requires a 2985 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2986 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2987 */ 2988 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2989 unsigned long end, unsigned int flags, struct page **pages, 2990 int *nr) 2991 { 2992 return 0; 2993 } 2994 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2995 2996 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2997 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2998 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2999 { 3000 int nr_start = *nr; 3001 struct dev_pagemap *pgmap = NULL; 3002 3003 do { 3004 struct folio *folio; 3005 struct page *page = pfn_to_page(pfn); 3006 3007 pgmap = get_dev_pagemap(pfn, pgmap); 3008 if (unlikely(!pgmap)) { 3009 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3010 break; 3011 } 3012 3013 folio = try_grab_folio_fast(page, 1, flags); 3014 if (!folio) { 3015 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3016 break; 3017 } 3018 folio_set_referenced(folio); 3019 pages[*nr] = page; 3020 (*nr)++; 3021 pfn++; 3022 } while (addr += PAGE_SIZE, addr != end); 3023 3024 put_dev_pagemap(pgmap); 3025 return addr == end; 3026 } 3027 3028 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3029 unsigned long end, unsigned int flags, struct page **pages, 3030 int *nr) 3031 { 3032 unsigned long fault_pfn; 3033 int nr_start = *nr; 3034 3035 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 3036 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3037 return 0; 3038 3039 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3040 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3041 return 0; 3042 } 3043 return 1; 3044 } 3045 3046 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3047 unsigned long end, unsigned int flags, struct page **pages, 3048 int *nr) 3049 { 3050 unsigned long fault_pfn; 3051 int nr_start = *nr; 3052 3053 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3054 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3055 return 0; 3056 3057 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3058 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3059 return 0; 3060 } 3061 return 1; 3062 } 3063 #else 3064 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3065 unsigned long end, unsigned int flags, struct page **pages, 3066 int *nr) 3067 { 3068 BUILD_BUG(); 3069 return 0; 3070 } 3071 3072 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3073 unsigned long end, unsigned int flags, struct page **pages, 3074 int *nr) 3075 { 3076 BUILD_BUG(); 3077 return 0; 3078 } 3079 #endif 3080 3081 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3082 unsigned long end, unsigned int flags, struct page **pages, 3083 int *nr) 3084 { 3085 struct page *page; 3086 struct folio *folio; 3087 int refs; 3088 3089 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3090 return 0; 3091 3092 if (pmd_special(orig)) 3093 return 0; 3094 3095 if (pmd_devmap(orig)) { 3096 if (unlikely(flags & FOLL_LONGTERM)) 3097 return 0; 3098 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3099 pages, nr); 3100 } 3101 3102 page = pmd_page(orig); 3103 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3104 3105 folio = try_grab_folio_fast(page, refs, flags); 3106 if (!folio) 3107 return 0; 3108 3109 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3110 gup_put_folio(folio, refs, flags); 3111 return 0; 3112 } 3113 3114 if (!gup_fast_folio_allowed(folio, flags)) { 3115 gup_put_folio(folio, refs, flags); 3116 return 0; 3117 } 3118 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3119 gup_put_folio(folio, refs, flags); 3120 return 0; 3121 } 3122 3123 *nr += refs; 3124 folio_set_referenced(folio); 3125 return 1; 3126 } 3127 3128 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3129 unsigned long end, unsigned int flags, struct page **pages, 3130 int *nr) 3131 { 3132 struct page *page; 3133 struct folio *folio; 3134 int refs; 3135 3136 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3137 return 0; 3138 3139 if (pud_special(orig)) 3140 return 0; 3141 3142 if (pud_devmap(orig)) { 3143 if (unlikely(flags & FOLL_LONGTERM)) 3144 return 0; 3145 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3146 pages, nr); 3147 } 3148 3149 page = pud_page(orig); 3150 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3151 3152 folio = try_grab_folio_fast(page, refs, flags); 3153 if (!folio) 3154 return 0; 3155 3156 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3157 gup_put_folio(folio, refs, flags); 3158 return 0; 3159 } 3160 3161 if (!gup_fast_folio_allowed(folio, flags)) { 3162 gup_put_folio(folio, refs, flags); 3163 return 0; 3164 } 3165 3166 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3167 gup_put_folio(folio, refs, flags); 3168 return 0; 3169 } 3170 3171 *nr += refs; 3172 folio_set_referenced(folio); 3173 return 1; 3174 } 3175 3176 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3177 unsigned long end, unsigned int flags, struct page **pages, 3178 int *nr) 3179 { 3180 int refs; 3181 struct page *page; 3182 struct folio *folio; 3183 3184 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3185 return 0; 3186 3187 BUILD_BUG_ON(pgd_devmap(orig)); 3188 3189 page = pgd_page(orig); 3190 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3191 3192 folio = try_grab_folio_fast(page, refs, flags); 3193 if (!folio) 3194 return 0; 3195 3196 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3197 gup_put_folio(folio, refs, flags); 3198 return 0; 3199 } 3200 3201 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3202 gup_put_folio(folio, refs, flags); 3203 return 0; 3204 } 3205 3206 if (!gup_fast_folio_allowed(folio, flags)) { 3207 gup_put_folio(folio, refs, flags); 3208 return 0; 3209 } 3210 3211 *nr += refs; 3212 folio_set_referenced(folio); 3213 return 1; 3214 } 3215 3216 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3217 unsigned long end, unsigned int flags, struct page **pages, 3218 int *nr) 3219 { 3220 unsigned long next; 3221 pmd_t *pmdp; 3222 3223 pmdp = pmd_offset_lockless(pudp, pud, addr); 3224 do { 3225 pmd_t pmd = pmdp_get_lockless(pmdp); 3226 3227 next = pmd_addr_end(addr, end); 3228 if (!pmd_present(pmd)) 3229 return 0; 3230 3231 if (unlikely(pmd_leaf(pmd))) { 3232 /* See gup_fast_pte_range() */ 3233 if (pmd_protnone(pmd)) 3234 return 0; 3235 3236 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3237 pages, nr)) 3238 return 0; 3239 3240 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3241 pages, nr)) 3242 return 0; 3243 } while (pmdp++, addr = next, addr != end); 3244 3245 return 1; 3246 } 3247 3248 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3249 unsigned long end, unsigned int flags, struct page **pages, 3250 int *nr) 3251 { 3252 unsigned long next; 3253 pud_t *pudp; 3254 3255 pudp = pud_offset_lockless(p4dp, p4d, addr); 3256 do { 3257 pud_t pud = READ_ONCE(*pudp); 3258 3259 next = pud_addr_end(addr, end); 3260 if (unlikely(!pud_present(pud))) 3261 return 0; 3262 if (unlikely(pud_leaf(pud))) { 3263 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3264 pages, nr)) 3265 return 0; 3266 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3267 pages, nr)) 3268 return 0; 3269 } while (pudp++, addr = next, addr != end); 3270 3271 return 1; 3272 } 3273 3274 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3275 unsigned long end, unsigned int flags, struct page **pages, 3276 int *nr) 3277 { 3278 unsigned long next; 3279 p4d_t *p4dp; 3280 3281 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3282 do { 3283 p4d_t p4d = READ_ONCE(*p4dp); 3284 3285 next = p4d_addr_end(addr, end); 3286 if (!p4d_present(p4d)) 3287 return 0; 3288 BUILD_BUG_ON(p4d_leaf(p4d)); 3289 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3290 pages, nr)) 3291 return 0; 3292 } while (p4dp++, addr = next, addr != end); 3293 3294 return 1; 3295 } 3296 3297 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3298 unsigned int flags, struct page **pages, int *nr) 3299 { 3300 unsigned long next; 3301 pgd_t *pgdp; 3302 3303 pgdp = pgd_offset(current->mm, addr); 3304 do { 3305 pgd_t pgd = READ_ONCE(*pgdp); 3306 3307 next = pgd_addr_end(addr, end); 3308 if (pgd_none(pgd)) 3309 return; 3310 if (unlikely(pgd_leaf(pgd))) { 3311 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3312 pages, nr)) 3313 return; 3314 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3315 pages, nr)) 3316 return; 3317 } while (pgdp++, addr = next, addr != end); 3318 } 3319 #else 3320 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3321 unsigned int flags, struct page **pages, int *nr) 3322 { 3323 } 3324 #endif /* CONFIG_HAVE_GUP_FAST */ 3325 3326 #ifndef gup_fast_permitted 3327 /* 3328 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3329 * we need to fall back to the slow version: 3330 */ 3331 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3332 { 3333 return true; 3334 } 3335 #endif 3336 3337 static unsigned long gup_fast(unsigned long start, unsigned long end, 3338 unsigned int gup_flags, struct page **pages) 3339 { 3340 unsigned long flags; 3341 int nr_pinned = 0; 3342 unsigned seq; 3343 3344 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3345 !gup_fast_permitted(start, end)) 3346 return 0; 3347 3348 if (gup_flags & FOLL_PIN) { 3349 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq)) 3350 return 0; 3351 } 3352 3353 /* 3354 * Disable interrupts. The nested form is used, in order to allow full, 3355 * general purpose use of this routine. 3356 * 3357 * With interrupts disabled, we block page table pages from being freed 3358 * from under us. See struct mmu_table_batch comments in 3359 * include/asm-generic/tlb.h for more details. 3360 * 3361 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3362 * that come from THPs splitting. 3363 */ 3364 local_irq_save(flags); 3365 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3366 local_irq_restore(flags); 3367 3368 /* 3369 * When pinning pages for DMA there could be a concurrent write protect 3370 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3371 */ 3372 if (gup_flags & FOLL_PIN) { 3373 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3374 gup_fast_unpin_user_pages(pages, nr_pinned); 3375 return 0; 3376 } else { 3377 sanity_check_pinned_pages(pages, nr_pinned); 3378 } 3379 } 3380 return nr_pinned; 3381 } 3382 3383 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3384 unsigned int gup_flags, struct page **pages) 3385 { 3386 unsigned long len, end; 3387 unsigned long nr_pinned; 3388 int locked = 0; 3389 int ret; 3390 3391 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3392 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3393 FOLL_FAST_ONLY | FOLL_NOFAULT | 3394 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3395 return -EINVAL; 3396 3397 if (gup_flags & FOLL_PIN) 3398 mm_set_has_pinned_flag(¤t->mm->flags); 3399 3400 if (!(gup_flags & FOLL_FAST_ONLY)) 3401 might_lock_read(¤t->mm->mmap_lock); 3402 3403 start = untagged_addr(start) & PAGE_MASK; 3404 len = nr_pages << PAGE_SHIFT; 3405 if (check_add_overflow(start, len, &end)) 3406 return -EOVERFLOW; 3407 if (end > TASK_SIZE_MAX) 3408 return -EFAULT; 3409 3410 nr_pinned = gup_fast(start, end, gup_flags, pages); 3411 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3412 return nr_pinned; 3413 3414 /* Slow path: try to get the remaining pages with get_user_pages */ 3415 start += nr_pinned << PAGE_SHIFT; 3416 pages += nr_pinned; 3417 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3418 pages, &locked, 3419 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3420 if (ret < 0) { 3421 /* 3422 * The caller has to unpin the pages we already pinned so 3423 * returning -errno is not an option 3424 */ 3425 if (nr_pinned) 3426 return nr_pinned; 3427 return ret; 3428 } 3429 return ret + nr_pinned; 3430 } 3431 3432 /** 3433 * get_user_pages_fast_only() - pin user pages in memory 3434 * @start: starting user address 3435 * @nr_pages: number of pages from start to pin 3436 * @gup_flags: flags modifying pin behaviour 3437 * @pages: array that receives pointers to the pages pinned. 3438 * Should be at least nr_pages long. 3439 * 3440 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3441 * the regular GUP. 3442 * 3443 * If the architecture does not support this function, simply return with no 3444 * pages pinned. 3445 * 3446 * Careful, careful! COW breaking can go either way, so a non-write 3447 * access can get ambiguous page results. If you call this function without 3448 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3449 */ 3450 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3451 unsigned int gup_flags, struct page **pages) 3452 { 3453 /* 3454 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3455 * because gup fast is always a "pin with a +1 page refcount" request. 3456 * 3457 * FOLL_FAST_ONLY is required in order to match the API description of 3458 * this routine: no fall back to regular ("slow") GUP. 3459 */ 3460 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3461 FOLL_GET | FOLL_FAST_ONLY)) 3462 return -EINVAL; 3463 3464 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3465 } 3466 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3467 3468 /** 3469 * get_user_pages_fast() - pin user pages in memory 3470 * @start: starting user address 3471 * @nr_pages: number of pages from start to pin 3472 * @gup_flags: flags modifying pin behaviour 3473 * @pages: array that receives pointers to the pages pinned. 3474 * Should be at least nr_pages long. 3475 * 3476 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3477 * If not successful, it will fall back to taking the lock and 3478 * calling get_user_pages(). 3479 * 3480 * Returns number of pages pinned. This may be fewer than the number requested. 3481 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3482 * -errno. 3483 */ 3484 int get_user_pages_fast(unsigned long start, int nr_pages, 3485 unsigned int gup_flags, struct page **pages) 3486 { 3487 /* 3488 * The caller may or may not have explicitly set FOLL_GET; either way is 3489 * OK. However, internally (within mm/gup.c), gup fast variants must set 3490 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3491 * request. 3492 */ 3493 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3494 return -EINVAL; 3495 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3496 } 3497 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3498 3499 /** 3500 * pin_user_pages_fast() - pin user pages in memory without taking locks 3501 * 3502 * @start: starting user address 3503 * @nr_pages: number of pages from start to pin 3504 * @gup_flags: flags modifying pin behaviour 3505 * @pages: array that receives pointers to the pages pinned. 3506 * Should be at least nr_pages long. 3507 * 3508 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3509 * get_user_pages_fast() for documentation on the function arguments, because 3510 * the arguments here are identical. 3511 * 3512 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3513 * see Documentation/core-api/pin_user_pages.rst for further details. 3514 * 3515 * Note that if a zero_page is amongst the returned pages, it will not have 3516 * pins in it and unpin_user_page() will not remove pins from it. 3517 */ 3518 int pin_user_pages_fast(unsigned long start, int nr_pages, 3519 unsigned int gup_flags, struct page **pages) 3520 { 3521 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3522 return -EINVAL; 3523 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3524 } 3525 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3526 3527 /** 3528 * pin_user_pages_remote() - pin pages of a remote process 3529 * 3530 * @mm: mm_struct of target mm 3531 * @start: starting user address 3532 * @nr_pages: number of pages from start to pin 3533 * @gup_flags: flags modifying lookup behaviour 3534 * @pages: array that receives pointers to the pages pinned. 3535 * Should be at least nr_pages long. 3536 * @locked: pointer to lock flag indicating whether lock is held and 3537 * subsequently whether VM_FAULT_RETRY functionality can be 3538 * utilised. Lock must initially be held. 3539 * 3540 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3541 * get_user_pages_remote() for documentation on the function arguments, because 3542 * the arguments here are identical. 3543 * 3544 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3545 * see Documentation/core-api/pin_user_pages.rst for details. 3546 * 3547 * Note that if a zero_page is amongst the returned pages, it will not have 3548 * pins in it and unpin_user_page*() will not remove pins from it. 3549 */ 3550 long pin_user_pages_remote(struct mm_struct *mm, 3551 unsigned long start, unsigned long nr_pages, 3552 unsigned int gup_flags, struct page **pages, 3553 int *locked) 3554 { 3555 int local_locked = 1; 3556 3557 if (!is_valid_gup_args(pages, locked, &gup_flags, 3558 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3559 return 0; 3560 return __gup_longterm_locked(mm, start, nr_pages, pages, 3561 locked ? locked : &local_locked, 3562 gup_flags); 3563 } 3564 EXPORT_SYMBOL(pin_user_pages_remote); 3565 3566 /** 3567 * pin_user_pages() - pin user pages in memory for use by other devices 3568 * 3569 * @start: starting user address 3570 * @nr_pages: number of pages from start to pin 3571 * @gup_flags: flags modifying lookup behaviour 3572 * @pages: array that receives pointers to the pages pinned. 3573 * Should be at least nr_pages long. 3574 * 3575 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3576 * FOLL_PIN is set. 3577 * 3578 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3579 * see Documentation/core-api/pin_user_pages.rst for details. 3580 * 3581 * Note that if a zero_page is amongst the returned pages, it will not have 3582 * pins in it and unpin_user_page*() will not remove pins from it. 3583 */ 3584 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3585 unsigned int gup_flags, struct page **pages) 3586 { 3587 int locked = 1; 3588 3589 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3590 return 0; 3591 return __gup_longterm_locked(current->mm, start, nr_pages, 3592 pages, &locked, gup_flags); 3593 } 3594 EXPORT_SYMBOL(pin_user_pages); 3595 3596 /* 3597 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3598 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3599 * FOLL_PIN and rejects FOLL_GET. 3600 * 3601 * Note that if a zero_page is amongst the returned pages, it will not have 3602 * pins in it and unpin_user_page*() will not remove pins from it. 3603 */ 3604 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3605 struct page **pages, unsigned int gup_flags) 3606 { 3607 int locked = 0; 3608 3609 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3610 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3611 return 0; 3612 3613 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3614 &locked, gup_flags); 3615 } 3616 EXPORT_SYMBOL(pin_user_pages_unlocked); 3617 3618 /** 3619 * memfd_pin_folios() - pin folios associated with a memfd 3620 * @memfd: the memfd whose folios are to be pinned 3621 * @start: the first memfd offset 3622 * @end: the last memfd offset (inclusive) 3623 * @folios: array that receives pointers to the folios pinned 3624 * @max_folios: maximum number of entries in @folios 3625 * @offset: the offset into the first folio 3626 * 3627 * Attempt to pin folios associated with a memfd in the contiguous range 3628 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3629 * the folios can either be found in the page cache or need to be allocated 3630 * if necessary. Once the folios are located, they are all pinned via 3631 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3632 * And, eventually, these pinned folios must be released either using 3633 * unpin_folios() or unpin_folio(). 3634 * 3635 * It must be noted that the folios may be pinned for an indefinite amount 3636 * of time. And, in most cases, the duration of time they may stay pinned 3637 * would be controlled by the userspace. This behavior is effectively the 3638 * same as using FOLL_LONGTERM with other GUP APIs. 3639 * 3640 * Returns number of folios pinned, which could be less than @max_folios 3641 * as it depends on the folio sizes that cover the range [start, end]. 3642 * If no folios were pinned, it returns -errno. 3643 */ 3644 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3645 struct folio **folios, unsigned int max_folios, 3646 pgoff_t *offset) 3647 { 3648 unsigned int flags, nr_folios, nr_found; 3649 unsigned int i, pgshift = PAGE_SHIFT; 3650 pgoff_t start_idx, end_idx, next_idx; 3651 struct folio *folio = NULL; 3652 struct folio_batch fbatch; 3653 struct hstate *h; 3654 long ret = -EINVAL; 3655 3656 if (start < 0 || start > end || !max_folios) 3657 return -EINVAL; 3658 3659 if (!memfd) 3660 return -EINVAL; 3661 3662 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3663 return -EINVAL; 3664 3665 if (end >= i_size_read(file_inode(memfd))) 3666 return -EINVAL; 3667 3668 if (is_file_hugepages(memfd)) { 3669 h = hstate_file(memfd); 3670 pgshift = huge_page_shift(h); 3671 } 3672 3673 flags = memalloc_pin_save(); 3674 do { 3675 nr_folios = 0; 3676 start_idx = start >> pgshift; 3677 end_idx = end >> pgshift; 3678 if (is_file_hugepages(memfd)) { 3679 start_idx <<= huge_page_order(h); 3680 end_idx <<= huge_page_order(h); 3681 } 3682 3683 folio_batch_init(&fbatch); 3684 while (start_idx <= end_idx && nr_folios < max_folios) { 3685 /* 3686 * In most cases, we should be able to find the folios 3687 * in the page cache. If we cannot find them for some 3688 * reason, we try to allocate them and add them to the 3689 * page cache. 3690 */ 3691 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3692 &start_idx, 3693 end_idx, 3694 &fbatch); 3695 if (folio) { 3696 folio_put(folio); 3697 folio = NULL; 3698 } 3699 3700 next_idx = 0; 3701 for (i = 0; i < nr_found; i++) { 3702 /* 3703 * As there can be multiple entries for a 3704 * given folio in the batch returned by 3705 * filemap_get_folios_contig(), the below 3706 * check is to ensure that we pin and return a 3707 * unique set of folios between start and end. 3708 */ 3709 if (next_idx && 3710 next_idx != folio_index(fbatch.folios[i])) 3711 continue; 3712 3713 folio = page_folio(&fbatch.folios[i]->page); 3714 3715 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3716 folio_batch_release(&fbatch); 3717 ret = -EINVAL; 3718 goto err; 3719 } 3720 3721 if (nr_folios == 0) 3722 *offset = offset_in_folio(folio, start); 3723 3724 folios[nr_folios] = folio; 3725 next_idx = folio_next_index(folio); 3726 if (++nr_folios == max_folios) 3727 break; 3728 } 3729 3730 folio = NULL; 3731 folio_batch_release(&fbatch); 3732 if (!nr_found) { 3733 folio = memfd_alloc_folio(memfd, start_idx); 3734 if (IS_ERR(folio)) { 3735 ret = PTR_ERR(folio); 3736 if (ret != -EEXIST) 3737 goto err; 3738 folio = NULL; 3739 } 3740 } 3741 } 3742 3743 ret = check_and_migrate_movable_folios(nr_folios, folios); 3744 } while (ret == -EAGAIN); 3745 3746 memalloc_pin_restore(flags); 3747 return ret ? ret : nr_folios; 3748 err: 3749 memalloc_pin_restore(flags); 3750 unpin_folios(folios, nr_folios); 3751 3752 return ret; 3753 } 3754 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3755 3756 /** 3757 * folio_add_pins() - add pins to an already-pinned folio 3758 * @folio: the folio to add more pins to 3759 * @pins: number of pins to add 3760 * 3761 * Try to add more pins to an already-pinned folio. The semantics 3762 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot 3763 * be changed. 3764 * 3765 * This function is helpful when having obtained a pin on a large folio 3766 * using memfd_pin_folios(), but wanting to logically unpin parts 3767 * (e.g., individual pages) of the folio later, for example, using 3768 * unpin_user_page_range_dirty_lock(). 3769 * 3770 * This is not the right interface to initially pin a folio. 3771 */ 3772 int folio_add_pins(struct folio *folio, unsigned int pins) 3773 { 3774 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); 3775 3776 return try_grab_folio(folio, pins, FOLL_PIN); 3777 } 3778 EXPORT_SYMBOL_GPL(folio_add_pins); 3779