1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 30 struct follow_page_context { 31 struct dev_pagemap *pgmap; 32 unsigned int page_mask; 33 }; 34 35 static inline void sanity_check_pinned_pages(struct page **pages, 36 unsigned long npages) 37 { 38 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 39 return; 40 41 /* 42 * We only pin anonymous pages if they are exclusive. Once pinned, we 43 * can no longer turn them possibly shared and PageAnonExclusive() will 44 * stick around until the page is freed. 45 * 46 * We'd like to verify that our pinned anonymous pages are still mapped 47 * exclusively. The issue with anon THP is that we don't know how 48 * they are/were mapped when pinning them. However, for anon 49 * THP we can assume that either the given page (PTE-mapped THP) or 50 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 51 * neither is the case, there is certainly something wrong. 52 */ 53 for (; npages; npages--, pages++) { 54 struct page *page = *pages; 55 struct folio *folio = page_folio(page); 56 57 if (is_zero_page(page) || 58 !folio_test_anon(folio)) 59 continue; 60 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 61 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 62 else 63 /* Either a PTE-mapped or a PMD-mapped THP. */ 64 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 65 !PageAnonExclusive(page), page); 66 } 67 } 68 69 /* 70 * Return the folio with ref appropriately incremented, 71 * or NULL if that failed. 72 */ 73 static inline struct folio *try_get_folio(struct page *page, int refs) 74 { 75 struct folio *folio; 76 77 retry: 78 folio = page_folio(page); 79 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 80 return NULL; 81 if (unlikely(!folio_ref_try_add(folio, refs))) 82 return NULL; 83 84 /* 85 * At this point we have a stable reference to the folio; but it 86 * could be that between calling page_folio() and the refcount 87 * increment, the folio was split, in which case we'd end up 88 * holding a reference on a folio that has nothing to do with the page 89 * we were given anymore. 90 * So now that the folio is stable, recheck that the page still 91 * belongs to this folio. 92 */ 93 if (unlikely(page_folio(page) != folio)) { 94 if (!put_devmap_managed_folio_refs(folio, refs)) 95 folio_put_refs(folio, refs); 96 goto retry; 97 } 98 99 return folio; 100 } 101 102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 103 { 104 if (flags & FOLL_PIN) { 105 if (is_zero_folio(folio)) 106 return; 107 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 108 if (folio_test_large(folio)) 109 atomic_sub(refs, &folio->_pincount); 110 else 111 refs *= GUP_PIN_COUNTING_BIAS; 112 } 113 114 if (!put_devmap_managed_folio_refs(folio, refs)) 115 folio_put_refs(folio, refs); 116 } 117 118 /** 119 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 120 * @folio: pointer to folio to be grabbed 121 * @refs: the value to (effectively) add to the folio's refcount 122 * @flags: gup flags: these are the FOLL_* flag values 123 * 124 * This might not do anything at all, depending on the flags argument. 125 * 126 * "grab" names in this file mean, "look at flags to decide whether to use 127 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 128 * 129 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 130 * time. 131 * 132 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 133 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 134 * 135 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 136 * be grabbed. 137 * 138 * It is called when we have a stable reference for the folio, typically in 139 * GUP slow path. 140 */ 141 int __must_check try_grab_folio(struct folio *folio, int refs, 142 unsigned int flags) 143 { 144 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 145 return -ENOMEM; 146 147 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page))) 148 return -EREMOTEIO; 149 150 if (flags & FOLL_GET) 151 folio_ref_add(folio, refs); 152 else if (flags & FOLL_PIN) { 153 /* 154 * Don't take a pin on the zero page - it's not going anywhere 155 * and it is used in a *lot* of places. 156 */ 157 if (is_zero_folio(folio)) 158 return 0; 159 160 /* 161 * Increment the normal page refcount field at least once, 162 * so that the page really is pinned. 163 */ 164 if (folio_test_large(folio)) { 165 folio_ref_add(folio, refs); 166 atomic_add(refs, &folio->_pincount); 167 } else { 168 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 169 } 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 } 173 174 return 0; 175 } 176 177 /** 178 * unpin_user_page() - release a dma-pinned page 179 * @page: pointer to page to be released 180 * 181 * Pages that were pinned via pin_user_pages*() must be released via either 182 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 183 * that such pages can be separately tracked and uniquely handled. In 184 * particular, interactions with RDMA and filesystems need special handling. 185 */ 186 void unpin_user_page(struct page *page) 187 { 188 sanity_check_pinned_pages(&page, 1); 189 gup_put_folio(page_folio(page), 1, FOLL_PIN); 190 } 191 EXPORT_SYMBOL(unpin_user_page); 192 193 /** 194 * unpin_folio() - release a dma-pinned folio 195 * @folio: pointer to folio to be released 196 * 197 * Folios that were pinned via memfd_pin_folios() or other similar routines 198 * must be released either using unpin_folio() or unpin_folios(). 199 */ 200 void unpin_folio(struct folio *folio) 201 { 202 gup_put_folio(folio, 1, FOLL_PIN); 203 } 204 EXPORT_SYMBOL_GPL(unpin_folio); 205 206 /** 207 * folio_add_pin - Try to get an additional pin on a pinned folio 208 * @folio: The folio to be pinned 209 * 210 * Get an additional pin on a folio we already have a pin on. Makes no change 211 * if the folio is a zero_page. 212 */ 213 void folio_add_pin(struct folio *folio) 214 { 215 if (is_zero_folio(folio)) 216 return; 217 218 /* 219 * Similar to try_grab_folio(): be sure to *also* increment the normal 220 * page refcount field at least once, so that the page really is 221 * pinned. 222 */ 223 if (folio_test_large(folio)) { 224 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 225 folio_ref_inc(folio); 226 atomic_inc(&folio->_pincount); 227 } else { 228 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 230 } 231 } 232 233 static inline struct folio *gup_folio_range_next(struct page *start, 234 unsigned long npages, unsigned long i, unsigned int *ntails) 235 { 236 struct page *next = nth_page(start, i); 237 struct folio *folio = page_folio(next); 238 unsigned int nr = 1; 239 240 if (folio_test_large(folio)) 241 nr = min_t(unsigned int, npages - i, 242 folio_nr_pages(folio) - folio_page_idx(folio, next)); 243 244 *ntails = nr; 245 return folio; 246 } 247 248 static inline struct folio *gup_folio_next(struct page **list, 249 unsigned long npages, unsigned long i, unsigned int *ntails) 250 { 251 struct folio *folio = page_folio(list[i]); 252 unsigned int nr; 253 254 for (nr = i + 1; nr < npages; nr++) { 255 if (page_folio(list[nr]) != folio) 256 break; 257 } 258 259 *ntails = nr - i; 260 return folio; 261 } 262 263 /** 264 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 265 * @pages: array of pages to be maybe marked dirty, and definitely released. 266 * @npages: number of pages in the @pages array. 267 * @make_dirty: whether to mark the pages dirty 268 * 269 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 270 * variants called on that page. 271 * 272 * For each page in the @pages array, make that page (or its head page, if a 273 * compound page) dirty, if @make_dirty is true, and if the page was previously 274 * listed as clean. In any case, releases all pages using unpin_user_page(), 275 * possibly via unpin_user_pages(), for the non-dirty case. 276 * 277 * Please see the unpin_user_page() documentation for details. 278 * 279 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 280 * required, then the caller should a) verify that this is really correct, 281 * because _lock() is usually required, and b) hand code it: 282 * set_page_dirty_lock(), unpin_user_page(). 283 * 284 */ 285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 286 bool make_dirty) 287 { 288 unsigned long i; 289 struct folio *folio; 290 unsigned int nr; 291 292 if (!make_dirty) { 293 unpin_user_pages(pages, npages); 294 return; 295 } 296 297 sanity_check_pinned_pages(pages, npages); 298 for (i = 0; i < npages; i += nr) { 299 folio = gup_folio_next(pages, npages, i, &nr); 300 /* 301 * Checking PageDirty at this point may race with 302 * clear_page_dirty_for_io(), but that's OK. Two key 303 * cases: 304 * 305 * 1) This code sees the page as already dirty, so it 306 * skips the call to set_page_dirty(). That could happen 307 * because clear_page_dirty_for_io() called 308 * folio_mkclean(), followed by set_page_dirty(). 309 * However, now the page is going to get written back, 310 * which meets the original intention of setting it 311 * dirty, so all is well: clear_page_dirty_for_io() goes 312 * on to call TestClearPageDirty(), and write the page 313 * back. 314 * 315 * 2) This code sees the page as clean, so it calls 316 * set_page_dirty(). The page stays dirty, despite being 317 * written back, so it gets written back again in the 318 * next writeback cycle. This is harmless. 319 */ 320 if (!folio_test_dirty(folio)) { 321 folio_lock(folio); 322 folio_mark_dirty(folio); 323 folio_unlock(folio); 324 } 325 gup_put_folio(folio, nr, FOLL_PIN); 326 } 327 } 328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 329 330 /** 331 * unpin_user_page_range_dirty_lock() - release and optionally dirty 332 * gup-pinned page range 333 * 334 * @page: the starting page of a range maybe marked dirty, and definitely released. 335 * @npages: number of consecutive pages to release. 336 * @make_dirty: whether to mark the pages dirty 337 * 338 * "gup-pinned page range" refers to a range of pages that has had one of the 339 * pin_user_pages() variants called on that page. 340 * 341 * For the page ranges defined by [page .. page+npages], make that range (or 342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 343 * page range was previously listed as clean. 344 * 345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 346 * required, then the caller should a) verify that this is really correct, 347 * because _lock() is usually required, and b) hand code it: 348 * set_page_dirty_lock(), unpin_user_page(). 349 * 350 */ 351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 352 bool make_dirty) 353 { 354 unsigned long i; 355 struct folio *folio; 356 unsigned int nr; 357 358 for (i = 0; i < npages; i += nr) { 359 folio = gup_folio_range_next(page, npages, i, &nr); 360 if (make_dirty && !folio_test_dirty(folio)) { 361 folio_lock(folio); 362 folio_mark_dirty(folio); 363 folio_unlock(folio); 364 } 365 gup_put_folio(folio, nr, FOLL_PIN); 366 } 367 } 368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 369 370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 371 { 372 unsigned long i; 373 struct folio *folio; 374 unsigned int nr; 375 376 /* 377 * Don't perform any sanity checks because we might have raced with 378 * fork() and some anonymous pages might now actually be shared -- 379 * which is why we're unpinning after all. 380 */ 381 for (i = 0; i < npages; i += nr) { 382 folio = gup_folio_next(pages, npages, i, &nr); 383 gup_put_folio(folio, nr, FOLL_PIN); 384 } 385 } 386 387 /** 388 * unpin_user_pages() - release an array of gup-pinned pages. 389 * @pages: array of pages to be marked dirty and released. 390 * @npages: number of pages in the @pages array. 391 * 392 * For each page in the @pages array, release the page using unpin_user_page(). 393 * 394 * Please see the unpin_user_page() documentation for details. 395 */ 396 void unpin_user_pages(struct page **pages, unsigned long npages) 397 { 398 unsigned long i; 399 struct folio *folio; 400 unsigned int nr; 401 402 /* 403 * If this WARN_ON() fires, then the system *might* be leaking pages (by 404 * leaving them pinned), but probably not. More likely, gup/pup returned 405 * a hard -ERRNO error to the caller, who erroneously passed it here. 406 */ 407 if (WARN_ON(IS_ERR_VALUE(npages))) 408 return; 409 410 sanity_check_pinned_pages(pages, npages); 411 for (i = 0; i < npages; i += nr) { 412 folio = gup_folio_next(pages, npages, i, &nr); 413 gup_put_folio(folio, nr, FOLL_PIN); 414 } 415 } 416 EXPORT_SYMBOL(unpin_user_pages); 417 418 /** 419 * unpin_folios() - release an array of gup-pinned folios. 420 * @folios: array of folios to be marked dirty and released. 421 * @nfolios: number of folios in the @folios array. 422 * 423 * For each folio in the @folios array, release the folio using gup_put_folio. 424 * 425 * Please see the unpin_folio() documentation for details. 426 */ 427 void unpin_folios(struct folio **folios, unsigned long nfolios) 428 { 429 unsigned long i = 0, j; 430 431 /* 432 * If this WARN_ON() fires, then the system *might* be leaking folios 433 * (by leaving them pinned), but probably not. More likely, gup/pup 434 * returned a hard -ERRNO error to the caller, who erroneously passed 435 * it here. 436 */ 437 if (WARN_ON(IS_ERR_VALUE(nfolios))) 438 return; 439 440 while (i < nfolios) { 441 for (j = i + 1; j < nfolios; j++) 442 if (folios[i] != folios[j]) 443 break; 444 445 if (folios[i]) 446 gup_put_folio(folios[i], j - i, FOLL_PIN); 447 i = j; 448 } 449 } 450 EXPORT_SYMBOL_GPL(unpin_folios); 451 452 /* 453 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 454 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 455 * cache bouncing on large SMP machines for concurrent pinned gups. 456 */ 457 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 458 { 459 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 460 set_bit(MMF_HAS_PINNED, mm_flags); 461 } 462 463 #ifdef CONFIG_MMU 464 465 #ifdef CONFIG_HAVE_GUP_FAST 466 static int record_subpages(struct page *page, unsigned long sz, 467 unsigned long addr, unsigned long end, 468 struct page **pages) 469 { 470 struct page *start_page; 471 int nr; 472 473 start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); 474 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 475 pages[nr] = nth_page(start_page, nr); 476 477 return nr; 478 } 479 480 /** 481 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 482 * @page: pointer to page to be grabbed 483 * @refs: the value to (effectively) add to the folio's refcount 484 * @flags: gup flags: these are the FOLL_* flag values. 485 * 486 * "grab" names in this file mean, "look at flags to decide whether to use 487 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 488 * 489 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 490 * same time. (That's true throughout the get_user_pages*() and 491 * pin_user_pages*() APIs.) Cases: 492 * 493 * FOLL_GET: folio's refcount will be incremented by @refs. 494 * 495 * FOLL_PIN on large folios: folio's refcount will be incremented by 496 * @refs, and its pincount will be incremented by @refs. 497 * 498 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 499 * @refs * GUP_PIN_COUNTING_BIAS. 500 * 501 * Return: The folio containing @page (with refcount appropriately 502 * incremented) for success, or NULL upon failure. If neither FOLL_GET 503 * nor FOLL_PIN was set, that's considered failure, and furthermore, 504 * a likely bug in the caller, so a warning is also emitted. 505 * 506 * It uses add ref unless zero to elevate the folio refcount and must be called 507 * in fast path only. 508 */ 509 static struct folio *try_grab_folio_fast(struct page *page, int refs, 510 unsigned int flags) 511 { 512 struct folio *folio; 513 514 /* Raise warn if it is not called in fast GUP */ 515 VM_WARN_ON_ONCE(!irqs_disabled()); 516 517 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 518 return NULL; 519 520 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 521 return NULL; 522 523 if (flags & FOLL_GET) 524 return try_get_folio(page, refs); 525 526 /* FOLL_PIN is set */ 527 528 /* 529 * Don't take a pin on the zero page - it's not going anywhere 530 * and it is used in a *lot* of places. 531 */ 532 if (is_zero_page(page)) 533 return page_folio(page); 534 535 folio = try_get_folio(page, refs); 536 if (!folio) 537 return NULL; 538 539 /* 540 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 541 * right zone, so fail and let the caller fall back to the slow 542 * path. 543 */ 544 if (unlikely((flags & FOLL_LONGTERM) && 545 !folio_is_longterm_pinnable(folio))) { 546 if (!put_devmap_managed_folio_refs(folio, refs)) 547 folio_put_refs(folio, refs); 548 return NULL; 549 } 550 551 /* 552 * When pinning a large folio, use an exact count to track it. 553 * 554 * However, be sure to *also* increment the normal folio 555 * refcount field at least once, so that the folio really 556 * is pinned. That's why the refcount from the earlier 557 * try_get_folio() is left intact. 558 */ 559 if (folio_test_large(folio)) 560 atomic_add(refs, &folio->_pincount); 561 else 562 folio_ref_add(folio, 563 refs * (GUP_PIN_COUNTING_BIAS - 1)); 564 /* 565 * Adjust the pincount before re-checking the PTE for changes. 566 * This is essentially a smp_mb() and is paired with a memory 567 * barrier in folio_try_share_anon_rmap_*(). 568 */ 569 smp_mb__after_atomic(); 570 571 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 572 573 return folio; 574 } 575 #endif /* CONFIG_HAVE_GUP_FAST */ 576 577 static struct page *no_page_table(struct vm_area_struct *vma, 578 unsigned int flags, unsigned long address) 579 { 580 if (!(flags & FOLL_DUMP)) 581 return NULL; 582 583 /* 584 * When core dumping, we don't want to allocate unnecessary pages or 585 * page tables. Return error instead of NULL to skip handle_mm_fault, 586 * then get_dump_page() will return NULL to leave a hole in the dump. 587 * But we can only make this optimization where a hole would surely 588 * be zero-filled if handle_mm_fault() actually did handle it. 589 */ 590 if (is_vm_hugetlb_page(vma)) { 591 struct hstate *h = hstate_vma(vma); 592 593 if (!hugetlbfs_pagecache_present(h, vma, address)) 594 return ERR_PTR(-EFAULT); 595 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 596 return ERR_PTR(-EFAULT); 597 } 598 599 return NULL; 600 } 601 602 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 603 static struct page *follow_huge_pud(struct vm_area_struct *vma, 604 unsigned long addr, pud_t *pudp, 605 int flags, struct follow_page_context *ctx) 606 { 607 struct mm_struct *mm = vma->vm_mm; 608 struct page *page; 609 pud_t pud = *pudp; 610 unsigned long pfn = pud_pfn(pud); 611 int ret; 612 613 assert_spin_locked(pud_lockptr(mm, pudp)); 614 615 if ((flags & FOLL_WRITE) && !pud_write(pud)) 616 return NULL; 617 618 if (!pud_present(pud)) 619 return NULL; 620 621 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 622 623 if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && 624 pud_devmap(pud)) { 625 /* 626 * device mapped pages can only be returned if the caller 627 * will manage the page reference count. 628 * 629 * At least one of FOLL_GET | FOLL_PIN must be set, so 630 * assert that here: 631 */ 632 if (!(flags & (FOLL_GET | FOLL_PIN))) 633 return ERR_PTR(-EEXIST); 634 635 if (flags & FOLL_TOUCH) 636 touch_pud(vma, addr, pudp, flags & FOLL_WRITE); 637 638 ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); 639 if (!ctx->pgmap) 640 return ERR_PTR(-EFAULT); 641 } 642 643 page = pfn_to_page(pfn); 644 645 if (!pud_devmap(pud) && !pud_write(pud) && 646 gup_must_unshare(vma, flags, page)) 647 return ERR_PTR(-EMLINK); 648 649 ret = try_grab_folio(page_folio(page), 1, flags); 650 if (ret) 651 page = ERR_PTR(ret); 652 else 653 ctx->page_mask = HPAGE_PUD_NR - 1; 654 655 return page; 656 } 657 658 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 659 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 660 struct vm_area_struct *vma, 661 unsigned int flags) 662 { 663 /* If the pmd is writable, we can write to the page. */ 664 if (pmd_write(pmd)) 665 return true; 666 667 /* Maybe FOLL_FORCE is set to override it? */ 668 if (!(flags & FOLL_FORCE)) 669 return false; 670 671 /* But FOLL_FORCE has no effect on shared mappings */ 672 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 673 return false; 674 675 /* ... or read-only private ones */ 676 if (!(vma->vm_flags & VM_MAYWRITE)) 677 return false; 678 679 /* ... or already writable ones that just need to take a write fault */ 680 if (vma->vm_flags & VM_WRITE) 681 return false; 682 683 /* 684 * See can_change_pte_writable(): we broke COW and could map the page 685 * writable if we have an exclusive anonymous page ... 686 */ 687 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 688 return false; 689 690 /* ... and a write-fault isn't required for other reasons. */ 691 if (pmd_needs_soft_dirty_wp(vma, pmd)) 692 return false; 693 return !userfaultfd_huge_pmd_wp(vma, pmd); 694 } 695 696 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 697 unsigned long addr, pmd_t *pmd, 698 unsigned int flags, 699 struct follow_page_context *ctx) 700 { 701 struct mm_struct *mm = vma->vm_mm; 702 pmd_t pmdval = *pmd; 703 struct page *page; 704 int ret; 705 706 assert_spin_locked(pmd_lockptr(mm, pmd)); 707 708 page = pmd_page(pmdval); 709 if ((flags & FOLL_WRITE) && 710 !can_follow_write_pmd(pmdval, page, vma, flags)) 711 return NULL; 712 713 /* Avoid dumping huge zero page */ 714 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 715 return ERR_PTR(-EFAULT); 716 717 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 718 return NULL; 719 720 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 721 return ERR_PTR(-EMLINK); 722 723 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 724 !PageAnonExclusive(page), page); 725 726 ret = try_grab_folio(page_folio(page), 1, flags); 727 if (ret) 728 return ERR_PTR(ret); 729 730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 731 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 732 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 733 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 734 735 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 736 ctx->page_mask = HPAGE_PMD_NR - 1; 737 738 return page; 739 } 740 741 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 742 static struct page *follow_huge_pud(struct vm_area_struct *vma, 743 unsigned long addr, pud_t *pudp, 744 int flags, struct follow_page_context *ctx) 745 { 746 return NULL; 747 } 748 749 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 750 unsigned long addr, pmd_t *pmd, 751 unsigned int flags, 752 struct follow_page_context *ctx) 753 { 754 return NULL; 755 } 756 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 757 758 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 759 pte_t *pte, unsigned int flags) 760 { 761 if (flags & FOLL_TOUCH) { 762 pte_t orig_entry = ptep_get(pte); 763 pte_t entry = orig_entry; 764 765 if (flags & FOLL_WRITE) 766 entry = pte_mkdirty(entry); 767 entry = pte_mkyoung(entry); 768 769 if (!pte_same(orig_entry, entry)) { 770 set_pte_at(vma->vm_mm, address, pte, entry); 771 update_mmu_cache(vma, address, pte); 772 } 773 } 774 775 /* Proper page table entry exists, but no corresponding struct page */ 776 return -EEXIST; 777 } 778 779 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 780 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 781 struct vm_area_struct *vma, 782 unsigned int flags) 783 { 784 /* If the pte is writable, we can write to the page. */ 785 if (pte_write(pte)) 786 return true; 787 788 /* Maybe FOLL_FORCE is set to override it? */ 789 if (!(flags & FOLL_FORCE)) 790 return false; 791 792 /* But FOLL_FORCE has no effect on shared mappings */ 793 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 794 return false; 795 796 /* ... or read-only private ones */ 797 if (!(vma->vm_flags & VM_MAYWRITE)) 798 return false; 799 800 /* ... or already writable ones that just need to take a write fault */ 801 if (vma->vm_flags & VM_WRITE) 802 return false; 803 804 /* 805 * See can_change_pte_writable(): we broke COW and could map the page 806 * writable if we have an exclusive anonymous page ... 807 */ 808 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 809 return false; 810 811 /* ... and a write-fault isn't required for other reasons. */ 812 if (pte_needs_soft_dirty_wp(vma, pte)) 813 return false; 814 return !userfaultfd_pte_wp(vma, pte); 815 } 816 817 static struct page *follow_page_pte(struct vm_area_struct *vma, 818 unsigned long address, pmd_t *pmd, unsigned int flags, 819 struct dev_pagemap **pgmap) 820 { 821 struct mm_struct *mm = vma->vm_mm; 822 struct folio *folio; 823 struct page *page; 824 spinlock_t *ptl; 825 pte_t *ptep, pte; 826 int ret; 827 828 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 829 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 830 (FOLL_PIN | FOLL_GET))) 831 return ERR_PTR(-EINVAL); 832 833 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 834 if (!ptep) 835 return no_page_table(vma, flags, address); 836 pte = ptep_get(ptep); 837 if (!pte_present(pte)) 838 goto no_page; 839 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 840 goto no_page; 841 842 page = vm_normal_page(vma, address, pte); 843 844 /* 845 * We only care about anon pages in can_follow_write_pte() and don't 846 * have to worry about pte_devmap() because they are never anon. 847 */ 848 if ((flags & FOLL_WRITE) && 849 !can_follow_write_pte(pte, page, vma, flags)) { 850 page = NULL; 851 goto out; 852 } 853 854 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 855 /* 856 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 857 * case since they are only valid while holding the pgmap 858 * reference. 859 */ 860 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 861 if (*pgmap) 862 page = pte_page(pte); 863 else 864 goto no_page; 865 } else if (unlikely(!page)) { 866 if (flags & FOLL_DUMP) { 867 /* Avoid special (like zero) pages in core dumps */ 868 page = ERR_PTR(-EFAULT); 869 goto out; 870 } 871 872 if (is_zero_pfn(pte_pfn(pte))) { 873 page = pte_page(pte); 874 } else { 875 ret = follow_pfn_pte(vma, address, ptep, flags); 876 page = ERR_PTR(ret); 877 goto out; 878 } 879 } 880 folio = page_folio(page); 881 882 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 883 page = ERR_PTR(-EMLINK); 884 goto out; 885 } 886 887 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 888 !PageAnonExclusive(page), page); 889 890 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 891 ret = try_grab_folio(folio, 1, flags); 892 if (unlikely(ret)) { 893 page = ERR_PTR(ret); 894 goto out; 895 } 896 897 /* 898 * We need to make the page accessible if and only if we are going 899 * to access its content (the FOLL_PIN case). Please see 900 * Documentation/core-api/pin_user_pages.rst for details. 901 */ 902 if (flags & FOLL_PIN) { 903 ret = arch_make_folio_accessible(folio); 904 if (ret) { 905 unpin_user_page(page); 906 page = ERR_PTR(ret); 907 goto out; 908 } 909 } 910 if (flags & FOLL_TOUCH) { 911 if ((flags & FOLL_WRITE) && 912 !pte_dirty(pte) && !PageDirty(page)) 913 set_page_dirty(page); 914 /* 915 * pte_mkyoung() would be more correct here, but atomic care 916 * is needed to avoid losing the dirty bit: it is easier to use 917 * mark_page_accessed(). 918 */ 919 mark_page_accessed(page); 920 } 921 out: 922 pte_unmap_unlock(ptep, ptl); 923 return page; 924 no_page: 925 pte_unmap_unlock(ptep, ptl); 926 if (!pte_none(pte)) 927 return NULL; 928 return no_page_table(vma, flags, address); 929 } 930 931 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 932 unsigned long address, pud_t *pudp, 933 unsigned int flags, 934 struct follow_page_context *ctx) 935 { 936 pmd_t *pmd, pmdval; 937 spinlock_t *ptl; 938 struct page *page; 939 struct mm_struct *mm = vma->vm_mm; 940 941 pmd = pmd_offset(pudp, address); 942 pmdval = pmdp_get_lockless(pmd); 943 if (pmd_none(pmdval)) 944 return no_page_table(vma, flags, address); 945 if (!pmd_present(pmdval)) 946 return no_page_table(vma, flags, address); 947 if (pmd_devmap(pmdval)) { 948 ptl = pmd_lock(mm, pmd); 949 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 950 spin_unlock(ptl); 951 if (page) 952 return page; 953 return no_page_table(vma, flags, address); 954 } 955 if (likely(!pmd_leaf(pmdval))) 956 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 957 958 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 959 return no_page_table(vma, flags, address); 960 961 ptl = pmd_lock(mm, pmd); 962 pmdval = *pmd; 963 if (unlikely(!pmd_present(pmdval))) { 964 spin_unlock(ptl); 965 return no_page_table(vma, flags, address); 966 } 967 if (unlikely(!pmd_leaf(pmdval))) { 968 spin_unlock(ptl); 969 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 970 } 971 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 972 spin_unlock(ptl); 973 split_huge_pmd(vma, pmd, address); 974 /* If pmd was left empty, stuff a page table in there quickly */ 975 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 976 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 977 } 978 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 979 spin_unlock(ptl); 980 return page; 981 } 982 983 static struct page *follow_pud_mask(struct vm_area_struct *vma, 984 unsigned long address, p4d_t *p4dp, 985 unsigned int flags, 986 struct follow_page_context *ctx) 987 { 988 pud_t *pudp, pud; 989 spinlock_t *ptl; 990 struct page *page; 991 struct mm_struct *mm = vma->vm_mm; 992 993 pudp = pud_offset(p4dp, address); 994 pud = READ_ONCE(*pudp); 995 if (!pud_present(pud)) 996 return no_page_table(vma, flags, address); 997 if (pud_leaf(pud)) { 998 ptl = pud_lock(mm, pudp); 999 page = follow_huge_pud(vma, address, pudp, flags, ctx); 1000 spin_unlock(ptl); 1001 if (page) 1002 return page; 1003 return no_page_table(vma, flags, address); 1004 } 1005 if (unlikely(pud_bad(pud))) 1006 return no_page_table(vma, flags, address); 1007 1008 return follow_pmd_mask(vma, address, pudp, flags, ctx); 1009 } 1010 1011 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 1012 unsigned long address, pgd_t *pgdp, 1013 unsigned int flags, 1014 struct follow_page_context *ctx) 1015 { 1016 p4d_t *p4dp, p4d; 1017 1018 p4dp = p4d_offset(pgdp, address); 1019 p4d = READ_ONCE(*p4dp); 1020 BUILD_BUG_ON(p4d_leaf(p4d)); 1021 1022 if (!p4d_present(p4d) || p4d_bad(p4d)) 1023 return no_page_table(vma, flags, address); 1024 1025 return follow_pud_mask(vma, address, p4dp, flags, ctx); 1026 } 1027 1028 /** 1029 * follow_page_mask - look up a page descriptor from a user-virtual address 1030 * @vma: vm_area_struct mapping @address 1031 * @address: virtual address to look up 1032 * @flags: flags modifying lookup behaviour 1033 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 1034 * pointer to output page_mask 1035 * 1036 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1037 * 1038 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1039 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1040 * 1041 * When getting an anonymous page and the caller has to trigger unsharing 1042 * of a shared anonymous page first, -EMLINK is returned. The caller should 1043 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1044 * relevant with FOLL_PIN and !FOLL_WRITE. 1045 * 1046 * On output, the @ctx->page_mask is set according to the size of the page. 1047 * 1048 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1049 * an error pointer if there is a mapping to something not represented 1050 * by a page descriptor (see also vm_normal_page()). 1051 */ 1052 static struct page *follow_page_mask(struct vm_area_struct *vma, 1053 unsigned long address, unsigned int flags, 1054 struct follow_page_context *ctx) 1055 { 1056 pgd_t *pgd; 1057 struct mm_struct *mm = vma->vm_mm; 1058 struct page *page; 1059 1060 vma_pgtable_walk_begin(vma); 1061 1062 ctx->page_mask = 0; 1063 pgd = pgd_offset(mm, address); 1064 1065 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1066 page = no_page_table(vma, flags, address); 1067 else 1068 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1069 1070 vma_pgtable_walk_end(vma); 1071 1072 return page; 1073 } 1074 1075 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1076 unsigned int gup_flags, struct vm_area_struct **vma, 1077 struct page **page) 1078 { 1079 pgd_t *pgd; 1080 p4d_t *p4d; 1081 pud_t *pud; 1082 pmd_t *pmd; 1083 pte_t *pte; 1084 pte_t entry; 1085 int ret = -EFAULT; 1086 1087 /* user gate pages are read-only */ 1088 if (gup_flags & FOLL_WRITE) 1089 return -EFAULT; 1090 if (address > TASK_SIZE) 1091 pgd = pgd_offset_k(address); 1092 else 1093 pgd = pgd_offset_gate(mm, address); 1094 if (pgd_none(*pgd)) 1095 return -EFAULT; 1096 p4d = p4d_offset(pgd, address); 1097 if (p4d_none(*p4d)) 1098 return -EFAULT; 1099 pud = pud_offset(p4d, address); 1100 if (pud_none(*pud)) 1101 return -EFAULT; 1102 pmd = pmd_offset(pud, address); 1103 if (!pmd_present(*pmd)) 1104 return -EFAULT; 1105 pte = pte_offset_map(pmd, address); 1106 if (!pte) 1107 return -EFAULT; 1108 entry = ptep_get(pte); 1109 if (pte_none(entry)) 1110 goto unmap; 1111 *vma = get_gate_vma(mm); 1112 if (!page) 1113 goto out; 1114 *page = vm_normal_page(*vma, address, entry); 1115 if (!*page) { 1116 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1117 goto unmap; 1118 *page = pte_page(entry); 1119 } 1120 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1121 if (unlikely(ret)) 1122 goto unmap; 1123 out: 1124 ret = 0; 1125 unmap: 1126 pte_unmap(pte); 1127 return ret; 1128 } 1129 1130 /* 1131 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1132 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1133 * to 0 and -EBUSY returned. 1134 */ 1135 static int faultin_page(struct vm_area_struct *vma, 1136 unsigned long address, unsigned int flags, bool unshare, 1137 int *locked) 1138 { 1139 unsigned int fault_flags = 0; 1140 vm_fault_t ret; 1141 1142 if (flags & FOLL_NOFAULT) 1143 return -EFAULT; 1144 if (flags & FOLL_WRITE) 1145 fault_flags |= FAULT_FLAG_WRITE; 1146 if (flags & FOLL_REMOTE) 1147 fault_flags |= FAULT_FLAG_REMOTE; 1148 if (flags & FOLL_UNLOCKABLE) { 1149 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1150 /* 1151 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1152 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1153 * That's because some callers may not be prepared to 1154 * handle early exits caused by non-fatal signals. 1155 */ 1156 if (flags & FOLL_INTERRUPTIBLE) 1157 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1158 } 1159 if (flags & FOLL_NOWAIT) 1160 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1161 if (flags & FOLL_TRIED) { 1162 /* 1163 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1164 * can co-exist 1165 */ 1166 fault_flags |= FAULT_FLAG_TRIED; 1167 } 1168 if (unshare) { 1169 fault_flags |= FAULT_FLAG_UNSHARE; 1170 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1171 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1172 } 1173 1174 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1175 1176 if (ret & VM_FAULT_COMPLETED) { 1177 /* 1178 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1179 * mmap lock in the page fault handler. Sanity check this. 1180 */ 1181 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1182 *locked = 0; 1183 1184 /* 1185 * We should do the same as VM_FAULT_RETRY, but let's not 1186 * return -EBUSY since that's not reflecting the reality of 1187 * what has happened - we've just fully completed a page 1188 * fault, with the mmap lock released. Use -EAGAIN to show 1189 * that we want to take the mmap lock _again_. 1190 */ 1191 return -EAGAIN; 1192 } 1193 1194 if (ret & VM_FAULT_ERROR) { 1195 int err = vm_fault_to_errno(ret, flags); 1196 1197 if (err) 1198 return err; 1199 BUG(); 1200 } 1201 1202 if (ret & VM_FAULT_RETRY) { 1203 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1204 *locked = 0; 1205 return -EBUSY; 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * Writing to file-backed mappings which require folio dirty tracking using GUP 1213 * is a fundamentally broken operation, as kernel write access to GUP mappings 1214 * do not adhere to the semantics expected by a file system. 1215 * 1216 * Consider the following scenario:- 1217 * 1218 * 1. A folio is written to via GUP which write-faults the memory, notifying 1219 * the file system and dirtying the folio. 1220 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1221 * the PTE being marked read-only. 1222 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1223 * direct mapping. 1224 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1225 * (though it does not have to). 1226 * 1227 * This results in both data being written to a folio without writenotify, and 1228 * the folio being dirtied unexpectedly (if the caller decides to do so). 1229 */ 1230 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1231 unsigned long gup_flags) 1232 { 1233 /* 1234 * If we aren't pinning then no problematic write can occur. A long term 1235 * pin is the most egregious case so this is the case we disallow. 1236 */ 1237 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1238 (FOLL_PIN | FOLL_LONGTERM)) 1239 return true; 1240 1241 /* 1242 * If the VMA does not require dirty tracking then no problematic write 1243 * can occur either. 1244 */ 1245 return !vma_needs_dirty_tracking(vma); 1246 } 1247 1248 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1249 { 1250 vm_flags_t vm_flags = vma->vm_flags; 1251 int write = (gup_flags & FOLL_WRITE); 1252 int foreign = (gup_flags & FOLL_REMOTE); 1253 bool vma_anon = vma_is_anonymous(vma); 1254 1255 if (vm_flags & (VM_IO | VM_PFNMAP)) 1256 return -EFAULT; 1257 1258 if ((gup_flags & FOLL_ANON) && !vma_anon) 1259 return -EFAULT; 1260 1261 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1262 return -EOPNOTSUPP; 1263 1264 if (vma_is_secretmem(vma)) 1265 return -EFAULT; 1266 1267 if (write) { 1268 if (!vma_anon && 1269 !writable_file_mapping_allowed(vma, gup_flags)) 1270 return -EFAULT; 1271 1272 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1273 if (!(gup_flags & FOLL_FORCE)) 1274 return -EFAULT; 1275 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1276 if (is_vm_hugetlb_page(vma)) 1277 return -EFAULT; 1278 /* 1279 * We used to let the write,force case do COW in a 1280 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1281 * set a breakpoint in a read-only mapping of an 1282 * executable, without corrupting the file (yet only 1283 * when that file had been opened for writing!). 1284 * Anon pages in shared mappings are surprising: now 1285 * just reject it. 1286 */ 1287 if (!is_cow_mapping(vm_flags)) 1288 return -EFAULT; 1289 } 1290 } else if (!(vm_flags & VM_READ)) { 1291 if (!(gup_flags & FOLL_FORCE)) 1292 return -EFAULT; 1293 /* 1294 * Is there actually any vma we can reach here which does not 1295 * have VM_MAYREAD set? 1296 */ 1297 if (!(vm_flags & VM_MAYREAD)) 1298 return -EFAULT; 1299 } 1300 /* 1301 * gups are always data accesses, not instruction 1302 * fetches, so execute=false here 1303 */ 1304 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1305 return -EFAULT; 1306 return 0; 1307 } 1308 1309 /* 1310 * This is "vma_lookup()", but with a warning if we would have 1311 * historically expanded the stack in the GUP code. 1312 */ 1313 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1314 unsigned long addr) 1315 { 1316 #ifdef CONFIG_STACK_GROWSUP 1317 return vma_lookup(mm, addr); 1318 #else 1319 static volatile unsigned long next_warn; 1320 struct vm_area_struct *vma; 1321 unsigned long now, next; 1322 1323 vma = find_vma(mm, addr); 1324 if (!vma || (addr >= vma->vm_start)) 1325 return vma; 1326 1327 /* Only warn for half-way relevant accesses */ 1328 if (!(vma->vm_flags & VM_GROWSDOWN)) 1329 return NULL; 1330 if (vma->vm_start - addr > 65536) 1331 return NULL; 1332 1333 /* Let's not warn more than once an hour.. */ 1334 now = jiffies; next = next_warn; 1335 if (next && time_before(now, next)) 1336 return NULL; 1337 next_warn = now + 60*60*HZ; 1338 1339 /* Let people know things may have changed. */ 1340 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1341 current->comm, task_pid_nr(current), 1342 vma->vm_start, vma->vm_end, addr); 1343 dump_stack(); 1344 return NULL; 1345 #endif 1346 } 1347 1348 /** 1349 * __get_user_pages() - pin user pages in memory 1350 * @mm: mm_struct of target mm 1351 * @start: starting user address 1352 * @nr_pages: number of pages from start to pin 1353 * @gup_flags: flags modifying pin behaviour 1354 * @pages: array that receives pointers to the pages pinned. 1355 * Should be at least nr_pages long. Or NULL, if caller 1356 * only intends to ensure the pages are faulted in. 1357 * @locked: whether we're still with the mmap_lock held 1358 * 1359 * Returns either number of pages pinned (which may be less than the 1360 * number requested), or an error. Details about the return value: 1361 * 1362 * -- If nr_pages is 0, returns 0. 1363 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1364 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1365 * pages pinned. Again, this may be less than nr_pages. 1366 * -- 0 return value is possible when the fault would need to be retried. 1367 * 1368 * The caller is responsible for releasing returned @pages, via put_page(). 1369 * 1370 * Must be called with mmap_lock held. It may be released. See below. 1371 * 1372 * __get_user_pages walks a process's page tables and takes a reference to 1373 * each struct page that each user address corresponds to at a given 1374 * instant. That is, it takes the page that would be accessed if a user 1375 * thread accesses the given user virtual address at that instant. 1376 * 1377 * This does not guarantee that the page exists in the user mappings when 1378 * __get_user_pages returns, and there may even be a completely different 1379 * page there in some cases (eg. if mmapped pagecache has been invalidated 1380 * and subsequently re-faulted). However it does guarantee that the page 1381 * won't be freed completely. And mostly callers simply care that the page 1382 * contains data that was valid *at some point in time*. Typically, an IO 1383 * or similar operation cannot guarantee anything stronger anyway because 1384 * locks can't be held over the syscall boundary. 1385 * 1386 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1387 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1388 * appropriate) must be called after the page is finished with, and 1389 * before put_page is called. 1390 * 1391 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1392 * be released. If this happens *@locked will be set to 0 on return. 1393 * 1394 * A caller using such a combination of @gup_flags must therefore hold the 1395 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1396 * it must be held for either reading or writing and will not be released. 1397 * 1398 * In most cases, get_user_pages or get_user_pages_fast should be used 1399 * instead of __get_user_pages. __get_user_pages should be used only if 1400 * you need some special @gup_flags. 1401 */ 1402 static long __get_user_pages(struct mm_struct *mm, 1403 unsigned long start, unsigned long nr_pages, 1404 unsigned int gup_flags, struct page **pages, 1405 int *locked) 1406 { 1407 long ret = 0, i = 0; 1408 struct vm_area_struct *vma = NULL; 1409 struct follow_page_context ctx = { NULL }; 1410 1411 if (!nr_pages) 1412 return 0; 1413 1414 start = untagged_addr_remote(mm, start); 1415 1416 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1417 1418 do { 1419 struct page *page; 1420 unsigned int page_increm; 1421 1422 /* first iteration or cross vma bound */ 1423 if (!vma || start >= vma->vm_end) { 1424 /* 1425 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1426 * lookups+error reporting differently. 1427 */ 1428 if (gup_flags & FOLL_MADV_POPULATE) { 1429 vma = vma_lookup(mm, start); 1430 if (!vma) { 1431 ret = -ENOMEM; 1432 goto out; 1433 } 1434 if (check_vma_flags(vma, gup_flags)) { 1435 ret = -EINVAL; 1436 goto out; 1437 } 1438 goto retry; 1439 } 1440 vma = gup_vma_lookup(mm, start); 1441 if (!vma && in_gate_area(mm, start)) { 1442 ret = get_gate_page(mm, start & PAGE_MASK, 1443 gup_flags, &vma, 1444 pages ? &page : NULL); 1445 if (ret) 1446 goto out; 1447 ctx.page_mask = 0; 1448 goto next_page; 1449 } 1450 1451 if (!vma) { 1452 ret = -EFAULT; 1453 goto out; 1454 } 1455 ret = check_vma_flags(vma, gup_flags); 1456 if (ret) 1457 goto out; 1458 } 1459 retry: 1460 /* 1461 * If we have a pending SIGKILL, don't keep faulting pages and 1462 * potentially allocating memory. 1463 */ 1464 if (fatal_signal_pending(current)) { 1465 ret = -EINTR; 1466 goto out; 1467 } 1468 cond_resched(); 1469 1470 page = follow_page_mask(vma, start, gup_flags, &ctx); 1471 if (!page || PTR_ERR(page) == -EMLINK) { 1472 ret = faultin_page(vma, start, gup_flags, 1473 PTR_ERR(page) == -EMLINK, locked); 1474 switch (ret) { 1475 case 0: 1476 goto retry; 1477 case -EBUSY: 1478 case -EAGAIN: 1479 ret = 0; 1480 fallthrough; 1481 case -EFAULT: 1482 case -ENOMEM: 1483 case -EHWPOISON: 1484 goto out; 1485 } 1486 BUG(); 1487 } else if (PTR_ERR(page) == -EEXIST) { 1488 /* 1489 * Proper page table entry exists, but no corresponding 1490 * struct page. If the caller expects **pages to be 1491 * filled in, bail out now, because that can't be done 1492 * for this page. 1493 */ 1494 if (pages) { 1495 ret = PTR_ERR(page); 1496 goto out; 1497 } 1498 } else if (IS_ERR(page)) { 1499 ret = PTR_ERR(page); 1500 goto out; 1501 } 1502 next_page: 1503 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1504 if (page_increm > nr_pages) 1505 page_increm = nr_pages; 1506 1507 if (pages) { 1508 struct page *subpage; 1509 unsigned int j; 1510 1511 /* 1512 * This must be a large folio (and doesn't need to 1513 * be the whole folio; it can be part of it), do 1514 * the refcount work for all the subpages too. 1515 * 1516 * NOTE: here the page may not be the head page 1517 * e.g. when start addr is not thp-size aligned. 1518 * try_grab_folio() should have taken care of tail 1519 * pages. 1520 */ 1521 if (page_increm > 1) { 1522 struct folio *folio = page_folio(page); 1523 1524 /* 1525 * Since we already hold refcount on the 1526 * large folio, this should never fail. 1527 */ 1528 if (try_grab_folio(folio, page_increm - 1, 1529 gup_flags)) { 1530 /* 1531 * Release the 1st page ref if the 1532 * folio is problematic, fail hard. 1533 */ 1534 gup_put_folio(folio, 1, gup_flags); 1535 ret = -EFAULT; 1536 goto out; 1537 } 1538 } 1539 1540 for (j = 0; j < page_increm; j++) { 1541 subpage = nth_page(page, j); 1542 pages[i + j] = subpage; 1543 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1544 flush_dcache_page(subpage); 1545 } 1546 } 1547 1548 i += page_increm; 1549 start += page_increm * PAGE_SIZE; 1550 nr_pages -= page_increm; 1551 } while (nr_pages); 1552 out: 1553 if (ctx.pgmap) 1554 put_dev_pagemap(ctx.pgmap); 1555 return i ? i : ret; 1556 } 1557 1558 static bool vma_permits_fault(struct vm_area_struct *vma, 1559 unsigned int fault_flags) 1560 { 1561 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1562 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1563 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1564 1565 if (!(vm_flags & vma->vm_flags)) 1566 return false; 1567 1568 /* 1569 * The architecture might have a hardware protection 1570 * mechanism other than read/write that can deny access. 1571 * 1572 * gup always represents data access, not instruction 1573 * fetches, so execute=false here: 1574 */ 1575 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1576 return false; 1577 1578 return true; 1579 } 1580 1581 /** 1582 * fixup_user_fault() - manually resolve a user page fault 1583 * @mm: mm_struct of target mm 1584 * @address: user address 1585 * @fault_flags:flags to pass down to handle_mm_fault() 1586 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1587 * does not allow retry. If NULL, the caller must guarantee 1588 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1589 * 1590 * This is meant to be called in the specific scenario where for locking reasons 1591 * we try to access user memory in atomic context (within a pagefault_disable() 1592 * section), this returns -EFAULT, and we want to resolve the user fault before 1593 * trying again. 1594 * 1595 * Typically this is meant to be used by the futex code. 1596 * 1597 * The main difference with get_user_pages() is that this function will 1598 * unconditionally call handle_mm_fault() which will in turn perform all the 1599 * necessary SW fixup of the dirty and young bits in the PTE, while 1600 * get_user_pages() only guarantees to update these in the struct page. 1601 * 1602 * This is important for some architectures where those bits also gate the 1603 * access permission to the page because they are maintained in software. On 1604 * such architectures, gup() will not be enough to make a subsequent access 1605 * succeed. 1606 * 1607 * This function will not return with an unlocked mmap_lock. So it has not the 1608 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1609 */ 1610 int fixup_user_fault(struct mm_struct *mm, 1611 unsigned long address, unsigned int fault_flags, 1612 bool *unlocked) 1613 { 1614 struct vm_area_struct *vma; 1615 vm_fault_t ret; 1616 1617 address = untagged_addr_remote(mm, address); 1618 1619 if (unlocked) 1620 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1621 1622 retry: 1623 vma = gup_vma_lookup(mm, address); 1624 if (!vma) 1625 return -EFAULT; 1626 1627 if (!vma_permits_fault(vma, fault_flags)) 1628 return -EFAULT; 1629 1630 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1631 fatal_signal_pending(current)) 1632 return -EINTR; 1633 1634 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1635 1636 if (ret & VM_FAULT_COMPLETED) { 1637 /* 1638 * NOTE: it's a pity that we need to retake the lock here 1639 * to pair with the unlock() in the callers. Ideally we 1640 * could tell the callers so they do not need to unlock. 1641 */ 1642 mmap_read_lock(mm); 1643 *unlocked = true; 1644 return 0; 1645 } 1646 1647 if (ret & VM_FAULT_ERROR) { 1648 int err = vm_fault_to_errno(ret, 0); 1649 1650 if (err) 1651 return err; 1652 BUG(); 1653 } 1654 1655 if (ret & VM_FAULT_RETRY) { 1656 mmap_read_lock(mm); 1657 *unlocked = true; 1658 fault_flags |= FAULT_FLAG_TRIED; 1659 goto retry; 1660 } 1661 1662 return 0; 1663 } 1664 EXPORT_SYMBOL_GPL(fixup_user_fault); 1665 1666 /* 1667 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1668 * specified, it'll also respond to generic signals. The caller of GUP 1669 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1670 */ 1671 static bool gup_signal_pending(unsigned int flags) 1672 { 1673 if (fatal_signal_pending(current)) 1674 return true; 1675 1676 if (!(flags & FOLL_INTERRUPTIBLE)) 1677 return false; 1678 1679 return signal_pending(current); 1680 } 1681 1682 /* 1683 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1684 * the caller. This function may drop the mmap_lock. If it does so, then it will 1685 * set (*locked = 0). 1686 * 1687 * (*locked == 0) means that the caller expects this function to acquire and 1688 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1689 * the function returns, even though it may have changed temporarily during 1690 * function execution. 1691 * 1692 * Please note that this function, unlike __get_user_pages(), will not return 0 1693 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1694 */ 1695 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1696 unsigned long start, 1697 unsigned long nr_pages, 1698 struct page **pages, 1699 int *locked, 1700 unsigned int flags) 1701 { 1702 long ret, pages_done; 1703 bool must_unlock = false; 1704 1705 if (!nr_pages) 1706 return 0; 1707 1708 /* 1709 * The internal caller expects GUP to manage the lock internally and the 1710 * lock must be released when this returns. 1711 */ 1712 if (!*locked) { 1713 if (mmap_read_lock_killable(mm)) 1714 return -EAGAIN; 1715 must_unlock = true; 1716 *locked = 1; 1717 } 1718 else 1719 mmap_assert_locked(mm); 1720 1721 if (flags & FOLL_PIN) 1722 mm_set_has_pinned_flag(&mm->flags); 1723 1724 /* 1725 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1726 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1727 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1728 * for FOLL_GET, not for the newer FOLL_PIN. 1729 * 1730 * FOLL_PIN always expects pages to be non-null, but no need to assert 1731 * that here, as any failures will be obvious enough. 1732 */ 1733 if (pages && !(flags & FOLL_PIN)) 1734 flags |= FOLL_GET; 1735 1736 pages_done = 0; 1737 for (;;) { 1738 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1739 locked); 1740 if (!(flags & FOLL_UNLOCKABLE)) { 1741 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1742 pages_done = ret; 1743 break; 1744 } 1745 1746 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1747 if (!*locked) { 1748 BUG_ON(ret < 0); 1749 BUG_ON(ret >= nr_pages); 1750 } 1751 1752 if (ret > 0) { 1753 nr_pages -= ret; 1754 pages_done += ret; 1755 if (!nr_pages) 1756 break; 1757 } 1758 if (*locked) { 1759 /* 1760 * VM_FAULT_RETRY didn't trigger or it was a 1761 * FOLL_NOWAIT. 1762 */ 1763 if (!pages_done) 1764 pages_done = ret; 1765 break; 1766 } 1767 /* 1768 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1769 * For the prefault case (!pages) we only update counts. 1770 */ 1771 if (likely(pages)) 1772 pages += ret; 1773 start += ret << PAGE_SHIFT; 1774 1775 /* The lock was temporarily dropped, so we must unlock later */ 1776 must_unlock = true; 1777 1778 retry: 1779 /* 1780 * Repeat on the address that fired VM_FAULT_RETRY 1781 * with both FAULT_FLAG_ALLOW_RETRY and 1782 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1783 * by fatal signals of even common signals, depending on 1784 * the caller's request. So we need to check it before we 1785 * start trying again otherwise it can loop forever. 1786 */ 1787 if (gup_signal_pending(flags)) { 1788 if (!pages_done) 1789 pages_done = -EINTR; 1790 break; 1791 } 1792 1793 ret = mmap_read_lock_killable(mm); 1794 if (ret) { 1795 BUG_ON(ret > 0); 1796 if (!pages_done) 1797 pages_done = ret; 1798 break; 1799 } 1800 1801 *locked = 1; 1802 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1803 pages, locked); 1804 if (!*locked) { 1805 /* Continue to retry until we succeeded */ 1806 BUG_ON(ret != 0); 1807 goto retry; 1808 } 1809 if (ret != 1) { 1810 BUG_ON(ret > 1); 1811 if (!pages_done) 1812 pages_done = ret; 1813 break; 1814 } 1815 nr_pages--; 1816 pages_done++; 1817 if (!nr_pages) 1818 break; 1819 if (likely(pages)) 1820 pages++; 1821 start += PAGE_SIZE; 1822 } 1823 if (must_unlock && *locked) { 1824 /* 1825 * We either temporarily dropped the lock, or the caller 1826 * requested that we both acquire and drop the lock. Either way, 1827 * we must now unlock, and notify the caller of that state. 1828 */ 1829 mmap_read_unlock(mm); 1830 *locked = 0; 1831 } 1832 1833 /* 1834 * Failing to pin anything implies something has gone wrong (except when 1835 * FOLL_NOWAIT is specified). 1836 */ 1837 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1838 return -EFAULT; 1839 1840 return pages_done; 1841 } 1842 1843 /** 1844 * populate_vma_page_range() - populate a range of pages in the vma. 1845 * @vma: target vma 1846 * @start: start address 1847 * @end: end address 1848 * @locked: whether the mmap_lock is still held 1849 * 1850 * This takes care of mlocking the pages too if VM_LOCKED is set. 1851 * 1852 * Return either number of pages pinned in the vma, or a negative error 1853 * code on error. 1854 * 1855 * vma->vm_mm->mmap_lock must be held. 1856 * 1857 * If @locked is NULL, it may be held for read or write and will 1858 * be unperturbed. 1859 * 1860 * If @locked is non-NULL, it must held for read only and may be 1861 * released. If it's released, *@locked will be set to 0. 1862 */ 1863 long populate_vma_page_range(struct vm_area_struct *vma, 1864 unsigned long start, unsigned long end, int *locked) 1865 { 1866 struct mm_struct *mm = vma->vm_mm; 1867 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1868 int local_locked = 1; 1869 int gup_flags; 1870 long ret; 1871 1872 VM_BUG_ON(!PAGE_ALIGNED(start)); 1873 VM_BUG_ON(!PAGE_ALIGNED(end)); 1874 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1875 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1876 mmap_assert_locked(mm); 1877 1878 /* 1879 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1880 * faultin_page() to break COW, so it has no work to do here. 1881 */ 1882 if (vma->vm_flags & VM_LOCKONFAULT) 1883 return nr_pages; 1884 1885 /* ... similarly, we've never faulted in PROT_NONE pages */ 1886 if (!vma_is_accessible(vma)) 1887 return -EFAULT; 1888 1889 gup_flags = FOLL_TOUCH; 1890 /* 1891 * We want to touch writable mappings with a write fault in order 1892 * to break COW, except for shared mappings because these don't COW 1893 * and we would not want to dirty them for nothing. 1894 * 1895 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1896 * readable (ie write-only or executable). 1897 */ 1898 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1899 gup_flags |= FOLL_WRITE; 1900 else 1901 gup_flags |= FOLL_FORCE; 1902 1903 if (locked) 1904 gup_flags |= FOLL_UNLOCKABLE; 1905 1906 /* 1907 * We made sure addr is within a VMA, so the following will 1908 * not result in a stack expansion that recurses back here. 1909 */ 1910 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1911 NULL, locked ? locked : &local_locked); 1912 lru_add_drain(); 1913 return ret; 1914 } 1915 1916 /* 1917 * faultin_page_range() - populate (prefault) page tables inside the 1918 * given range readable/writable 1919 * 1920 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1921 * 1922 * @mm: the mm to populate page tables in 1923 * @start: start address 1924 * @end: end address 1925 * @write: whether to prefault readable or writable 1926 * @locked: whether the mmap_lock is still held 1927 * 1928 * Returns either number of processed pages in the MM, or a negative error 1929 * code on error (see __get_user_pages()). Note that this function reports 1930 * errors related to VMAs, such as incompatible mappings, as expected by 1931 * MADV_POPULATE_(READ|WRITE). 1932 * 1933 * The range must be page-aligned. 1934 * 1935 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1936 */ 1937 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1938 unsigned long end, bool write, int *locked) 1939 { 1940 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1941 int gup_flags; 1942 long ret; 1943 1944 VM_BUG_ON(!PAGE_ALIGNED(start)); 1945 VM_BUG_ON(!PAGE_ALIGNED(end)); 1946 mmap_assert_locked(mm); 1947 1948 /* 1949 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1950 * the page dirty with FOLL_WRITE -- which doesn't make a 1951 * difference with !FOLL_FORCE, because the page is writable 1952 * in the page table. 1953 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1954 * a poisoned page. 1955 * !FOLL_FORCE: Require proper access permissions. 1956 */ 1957 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1958 FOLL_MADV_POPULATE; 1959 if (write) 1960 gup_flags |= FOLL_WRITE; 1961 1962 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1963 gup_flags); 1964 lru_add_drain(); 1965 return ret; 1966 } 1967 1968 /* 1969 * __mm_populate - populate and/or mlock pages within a range of address space. 1970 * 1971 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1972 * flags. VMAs must be already marked with the desired vm_flags, and 1973 * mmap_lock must not be held. 1974 */ 1975 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1976 { 1977 struct mm_struct *mm = current->mm; 1978 unsigned long end, nstart, nend; 1979 struct vm_area_struct *vma = NULL; 1980 int locked = 0; 1981 long ret = 0; 1982 1983 end = start + len; 1984 1985 for (nstart = start; nstart < end; nstart = nend) { 1986 /* 1987 * We want to fault in pages for [nstart; end) address range. 1988 * Find first corresponding VMA. 1989 */ 1990 if (!locked) { 1991 locked = 1; 1992 mmap_read_lock(mm); 1993 vma = find_vma_intersection(mm, nstart, end); 1994 } else if (nstart >= vma->vm_end) 1995 vma = find_vma_intersection(mm, vma->vm_end, end); 1996 1997 if (!vma) 1998 break; 1999 /* 2000 * Set [nstart; nend) to intersection of desired address 2001 * range with the first VMA. Also, skip undesirable VMA types. 2002 */ 2003 nend = min(end, vma->vm_end); 2004 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 2005 continue; 2006 if (nstart < vma->vm_start) 2007 nstart = vma->vm_start; 2008 /* 2009 * Now fault in a range of pages. populate_vma_page_range() 2010 * double checks the vma flags, so that it won't mlock pages 2011 * if the vma was already munlocked. 2012 */ 2013 ret = populate_vma_page_range(vma, nstart, nend, &locked); 2014 if (ret < 0) { 2015 if (ignore_errors) { 2016 ret = 0; 2017 continue; /* continue at next VMA */ 2018 } 2019 break; 2020 } 2021 nend = nstart + ret * PAGE_SIZE; 2022 ret = 0; 2023 } 2024 if (locked) 2025 mmap_read_unlock(mm); 2026 return ret; /* 0 or negative error code */ 2027 } 2028 #else /* CONFIG_MMU */ 2029 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 2030 unsigned long nr_pages, struct page **pages, 2031 int *locked, unsigned int foll_flags) 2032 { 2033 struct vm_area_struct *vma; 2034 bool must_unlock = false; 2035 unsigned long vm_flags; 2036 long i; 2037 2038 if (!nr_pages) 2039 return 0; 2040 2041 /* 2042 * The internal caller expects GUP to manage the lock internally and the 2043 * lock must be released when this returns. 2044 */ 2045 if (!*locked) { 2046 if (mmap_read_lock_killable(mm)) 2047 return -EAGAIN; 2048 must_unlock = true; 2049 *locked = 1; 2050 } 2051 2052 /* calculate required read or write permissions. 2053 * If FOLL_FORCE is set, we only require the "MAY" flags. 2054 */ 2055 vm_flags = (foll_flags & FOLL_WRITE) ? 2056 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2057 vm_flags &= (foll_flags & FOLL_FORCE) ? 2058 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2059 2060 for (i = 0; i < nr_pages; i++) { 2061 vma = find_vma(mm, start); 2062 if (!vma) 2063 break; 2064 2065 /* protect what we can, including chardevs */ 2066 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2067 !(vm_flags & vma->vm_flags)) 2068 break; 2069 2070 if (pages) { 2071 pages[i] = virt_to_page((void *)start); 2072 if (pages[i]) 2073 get_page(pages[i]); 2074 } 2075 2076 start = (start + PAGE_SIZE) & PAGE_MASK; 2077 } 2078 2079 if (must_unlock && *locked) { 2080 mmap_read_unlock(mm); 2081 *locked = 0; 2082 } 2083 2084 return i ? : -EFAULT; 2085 } 2086 #endif /* !CONFIG_MMU */ 2087 2088 /** 2089 * fault_in_writeable - fault in userspace address range for writing 2090 * @uaddr: start of address range 2091 * @size: size of address range 2092 * 2093 * Returns the number of bytes not faulted in (like copy_to_user() and 2094 * copy_from_user()). 2095 */ 2096 size_t fault_in_writeable(char __user *uaddr, size_t size) 2097 { 2098 char __user *start = uaddr, *end; 2099 2100 if (unlikely(size == 0)) 2101 return 0; 2102 if (!user_write_access_begin(uaddr, size)) 2103 return size; 2104 if (!PAGE_ALIGNED(uaddr)) { 2105 unsafe_put_user(0, uaddr, out); 2106 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 2107 } 2108 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 2109 if (unlikely(end < start)) 2110 end = NULL; 2111 while (uaddr != end) { 2112 unsafe_put_user(0, uaddr, out); 2113 uaddr += PAGE_SIZE; 2114 } 2115 2116 out: 2117 user_write_access_end(); 2118 if (size > uaddr - start) 2119 return size - (uaddr - start); 2120 return 0; 2121 } 2122 EXPORT_SYMBOL(fault_in_writeable); 2123 2124 /** 2125 * fault_in_subpage_writeable - fault in an address range for writing 2126 * @uaddr: start of address range 2127 * @size: size of address range 2128 * 2129 * Fault in a user address range for writing while checking for permissions at 2130 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2131 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2132 * 2133 * Returns the number of bytes not faulted in (like copy_to_user() and 2134 * copy_from_user()). 2135 */ 2136 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2137 { 2138 size_t faulted_in; 2139 2140 /* 2141 * Attempt faulting in at page granularity first for page table 2142 * permission checking. The arch-specific probe_subpage_writeable() 2143 * functions may not check for this. 2144 */ 2145 faulted_in = size - fault_in_writeable(uaddr, size); 2146 if (faulted_in) 2147 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2148 2149 return size - faulted_in; 2150 } 2151 EXPORT_SYMBOL(fault_in_subpage_writeable); 2152 2153 /* 2154 * fault_in_safe_writeable - fault in an address range for writing 2155 * @uaddr: start of address range 2156 * @size: length of address range 2157 * 2158 * Faults in an address range for writing. This is primarily useful when we 2159 * already know that some or all of the pages in the address range aren't in 2160 * memory. 2161 * 2162 * Unlike fault_in_writeable(), this function is non-destructive. 2163 * 2164 * Note that we don't pin or otherwise hold the pages referenced that we fault 2165 * in. There's no guarantee that they'll stay in memory for any duration of 2166 * time. 2167 * 2168 * Returns the number of bytes not faulted in, like copy_to_user() and 2169 * copy_from_user(). 2170 */ 2171 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2172 { 2173 unsigned long start = (unsigned long)uaddr, end; 2174 struct mm_struct *mm = current->mm; 2175 bool unlocked = false; 2176 2177 if (unlikely(size == 0)) 2178 return 0; 2179 end = PAGE_ALIGN(start + size); 2180 if (end < start) 2181 end = 0; 2182 2183 mmap_read_lock(mm); 2184 do { 2185 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 2186 break; 2187 start = (start + PAGE_SIZE) & PAGE_MASK; 2188 } while (start != end); 2189 mmap_read_unlock(mm); 2190 2191 if (size > (unsigned long)uaddr - start) 2192 return size - ((unsigned long)uaddr - start); 2193 return 0; 2194 } 2195 EXPORT_SYMBOL(fault_in_safe_writeable); 2196 2197 /** 2198 * fault_in_readable - fault in userspace address range for reading 2199 * @uaddr: start of user address range 2200 * @size: size of user address range 2201 * 2202 * Returns the number of bytes not faulted in (like copy_to_user() and 2203 * copy_from_user()). 2204 */ 2205 size_t fault_in_readable(const char __user *uaddr, size_t size) 2206 { 2207 const char __user *start = uaddr, *end; 2208 volatile char c; 2209 2210 if (unlikely(size == 0)) 2211 return 0; 2212 if (!user_read_access_begin(uaddr, size)) 2213 return size; 2214 if (!PAGE_ALIGNED(uaddr)) { 2215 unsafe_get_user(c, uaddr, out); 2216 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2217 } 2218 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2219 if (unlikely(end < start)) 2220 end = NULL; 2221 while (uaddr != end) { 2222 unsafe_get_user(c, uaddr, out); 2223 uaddr += PAGE_SIZE; 2224 } 2225 2226 out: 2227 user_read_access_end(); 2228 (void)c; 2229 if (size > uaddr - start) 2230 return size - (uaddr - start); 2231 return 0; 2232 } 2233 EXPORT_SYMBOL(fault_in_readable); 2234 2235 /** 2236 * get_dump_page() - pin user page in memory while writing it to core dump 2237 * @addr: user address 2238 * 2239 * Returns struct page pointer of user page pinned for dump, 2240 * to be freed afterwards by put_page(). 2241 * 2242 * Returns NULL on any kind of failure - a hole must then be inserted into 2243 * the corefile, to preserve alignment with its headers; and also returns 2244 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2245 * allowing a hole to be left in the corefile to save disk space. 2246 * 2247 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2248 */ 2249 #ifdef CONFIG_ELF_CORE 2250 struct page *get_dump_page(unsigned long addr) 2251 { 2252 struct page *page; 2253 int locked = 0; 2254 int ret; 2255 2256 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2257 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2258 return (ret == 1) ? page : NULL; 2259 } 2260 #endif /* CONFIG_ELF_CORE */ 2261 2262 #ifdef CONFIG_MIGRATION 2263 /* 2264 * Returns the number of collected folios. Return value is always >= 0. 2265 */ 2266 static unsigned long collect_longterm_unpinnable_folios( 2267 struct list_head *movable_folio_list, 2268 unsigned long nr_folios, 2269 struct folio **folios) 2270 { 2271 unsigned long i, collected = 0; 2272 struct folio *prev_folio = NULL; 2273 bool drain_allow = true; 2274 2275 for (i = 0; i < nr_folios; i++) { 2276 struct folio *folio = folios[i]; 2277 2278 if (folio == prev_folio) 2279 continue; 2280 prev_folio = folio; 2281 2282 if (folio_is_longterm_pinnable(folio)) 2283 continue; 2284 2285 collected++; 2286 2287 if (folio_is_device_coherent(folio)) 2288 continue; 2289 2290 if (folio_test_hugetlb(folio)) { 2291 isolate_hugetlb(folio, movable_folio_list); 2292 continue; 2293 } 2294 2295 if (!folio_test_lru(folio) && drain_allow) { 2296 lru_add_drain_all(); 2297 drain_allow = false; 2298 } 2299 2300 if (!folio_isolate_lru(folio)) 2301 continue; 2302 2303 list_add_tail(&folio->lru, movable_folio_list); 2304 node_stat_mod_folio(folio, 2305 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2306 folio_nr_pages(folio)); 2307 } 2308 2309 return collected; 2310 } 2311 2312 /* 2313 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2314 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2315 * failure (or partial success). 2316 */ 2317 static int migrate_longterm_unpinnable_folios( 2318 struct list_head *movable_folio_list, 2319 unsigned long nr_folios, 2320 struct folio **folios) 2321 { 2322 int ret; 2323 unsigned long i; 2324 2325 for (i = 0; i < nr_folios; i++) { 2326 struct folio *folio = folios[i]; 2327 2328 if (folio_is_device_coherent(folio)) { 2329 /* 2330 * Migration will fail if the folio is pinned, so 2331 * convert the pin on the source folio to a normal 2332 * reference. 2333 */ 2334 folios[i] = NULL; 2335 folio_get(folio); 2336 gup_put_folio(folio, 1, FOLL_PIN); 2337 2338 if (migrate_device_coherent_folio(folio)) { 2339 ret = -EBUSY; 2340 goto err; 2341 } 2342 2343 continue; 2344 } 2345 2346 /* 2347 * We can't migrate folios with unexpected references, so drop 2348 * the reference obtained by __get_user_pages_locked(). 2349 * Migrating folios have been added to movable_folio_list after 2350 * calling folio_isolate_lru() which takes a reference so the 2351 * folio won't be freed if it's migrating. 2352 */ 2353 unpin_folio(folios[i]); 2354 folios[i] = NULL; 2355 } 2356 2357 if (!list_empty(movable_folio_list)) { 2358 struct migration_target_control mtc = { 2359 .nid = NUMA_NO_NODE, 2360 .gfp_mask = GFP_USER | __GFP_NOWARN, 2361 .reason = MR_LONGTERM_PIN, 2362 }; 2363 2364 if (migrate_pages(movable_folio_list, alloc_migration_target, 2365 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2366 MR_LONGTERM_PIN, NULL)) { 2367 ret = -ENOMEM; 2368 goto err; 2369 } 2370 } 2371 2372 putback_movable_pages(movable_folio_list); 2373 2374 return -EAGAIN; 2375 2376 err: 2377 unpin_folios(folios, nr_folios); 2378 putback_movable_pages(movable_folio_list); 2379 2380 return ret; 2381 } 2382 2383 /* 2384 * Check whether all folios are *allowed* to be pinned indefinitely (longterm). 2385 * Rather confusingly, all folios in the range are required to be pinned via 2386 * FOLL_PIN, before calling this routine. 2387 * 2388 * If any folios in the range are not allowed to be pinned, then this routine 2389 * will migrate those folios away, unpin all the folios in the range and return 2390 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2391 * call this routine again. 2392 * 2393 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2394 * The caller should give up, and propagate the error back up the call stack. 2395 * 2396 * If everything is OK and all folios in the range are allowed to be pinned, 2397 * then this routine leaves all folios pinned and returns zero for success. 2398 */ 2399 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2400 struct folio **folios) 2401 { 2402 unsigned long collected; 2403 LIST_HEAD(movable_folio_list); 2404 2405 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2406 nr_folios, folios); 2407 if (!collected) 2408 return 0; 2409 2410 return migrate_longterm_unpinnable_folios(&movable_folio_list, 2411 nr_folios, folios); 2412 } 2413 2414 /* 2415 * This routine just converts all the pages in the @pages array to folios and 2416 * calls check_and_migrate_movable_folios() to do the heavy lifting. 2417 * 2418 * Please see the check_and_migrate_movable_folios() documentation for details. 2419 */ 2420 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2421 struct page **pages) 2422 { 2423 struct folio **folios; 2424 long i, ret; 2425 2426 folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL); 2427 if (!folios) 2428 return -ENOMEM; 2429 2430 for (i = 0; i < nr_pages; i++) 2431 folios[i] = page_folio(pages[i]); 2432 2433 ret = check_and_migrate_movable_folios(nr_pages, folios); 2434 2435 kfree(folios); 2436 return ret; 2437 } 2438 #else 2439 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2440 struct page **pages) 2441 { 2442 return 0; 2443 } 2444 2445 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2446 struct folio **folios) 2447 { 2448 return 0; 2449 } 2450 #endif /* CONFIG_MIGRATION */ 2451 2452 /* 2453 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2454 * allows us to process the FOLL_LONGTERM flag. 2455 */ 2456 static long __gup_longterm_locked(struct mm_struct *mm, 2457 unsigned long start, 2458 unsigned long nr_pages, 2459 struct page **pages, 2460 int *locked, 2461 unsigned int gup_flags) 2462 { 2463 unsigned int flags; 2464 long rc, nr_pinned_pages; 2465 2466 if (!(gup_flags & FOLL_LONGTERM)) 2467 return __get_user_pages_locked(mm, start, nr_pages, pages, 2468 locked, gup_flags); 2469 2470 flags = memalloc_pin_save(); 2471 do { 2472 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2473 pages, locked, 2474 gup_flags); 2475 if (nr_pinned_pages <= 0) { 2476 rc = nr_pinned_pages; 2477 break; 2478 } 2479 2480 /* FOLL_LONGTERM implies FOLL_PIN */ 2481 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2482 } while (rc == -EAGAIN); 2483 memalloc_pin_restore(flags); 2484 return rc ? rc : nr_pinned_pages; 2485 } 2486 2487 /* 2488 * Check that the given flags are valid for the exported gup/pup interface, and 2489 * update them with the required flags that the caller must have set. 2490 */ 2491 static bool is_valid_gup_args(struct page **pages, int *locked, 2492 unsigned int *gup_flags_p, unsigned int to_set) 2493 { 2494 unsigned int gup_flags = *gup_flags_p; 2495 2496 /* 2497 * These flags not allowed to be specified externally to the gup 2498 * interfaces: 2499 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2500 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2501 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2502 */ 2503 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2504 return false; 2505 2506 gup_flags |= to_set; 2507 if (locked) { 2508 /* At the external interface locked must be set */ 2509 if (WARN_ON_ONCE(*locked != 1)) 2510 return false; 2511 2512 gup_flags |= FOLL_UNLOCKABLE; 2513 } 2514 2515 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2516 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2517 (FOLL_PIN | FOLL_GET))) 2518 return false; 2519 2520 /* LONGTERM can only be specified when pinning */ 2521 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2522 return false; 2523 2524 /* Pages input must be given if using GET/PIN */ 2525 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2526 return false; 2527 2528 /* We want to allow the pgmap to be hot-unplugged at all times */ 2529 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2530 (gup_flags & FOLL_PCI_P2PDMA))) 2531 return false; 2532 2533 *gup_flags_p = gup_flags; 2534 return true; 2535 } 2536 2537 #ifdef CONFIG_MMU 2538 /** 2539 * get_user_pages_remote() - pin user pages in memory 2540 * @mm: mm_struct of target mm 2541 * @start: starting user address 2542 * @nr_pages: number of pages from start to pin 2543 * @gup_flags: flags modifying lookup behaviour 2544 * @pages: array that receives pointers to the pages pinned. 2545 * Should be at least nr_pages long. Or NULL, if caller 2546 * only intends to ensure the pages are faulted in. 2547 * @locked: pointer to lock flag indicating whether lock is held and 2548 * subsequently whether VM_FAULT_RETRY functionality can be 2549 * utilised. Lock must initially be held. 2550 * 2551 * Returns either number of pages pinned (which may be less than the 2552 * number requested), or an error. Details about the return value: 2553 * 2554 * -- If nr_pages is 0, returns 0. 2555 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2556 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2557 * pages pinned. Again, this may be less than nr_pages. 2558 * 2559 * The caller is responsible for releasing returned @pages, via put_page(). 2560 * 2561 * Must be called with mmap_lock held for read or write. 2562 * 2563 * get_user_pages_remote walks a process's page tables and takes a reference 2564 * to each struct page that each user address corresponds to at a given 2565 * instant. That is, it takes the page that would be accessed if a user 2566 * thread accesses the given user virtual address at that instant. 2567 * 2568 * This does not guarantee that the page exists in the user mappings when 2569 * get_user_pages_remote returns, and there may even be a completely different 2570 * page there in some cases (eg. if mmapped pagecache has been invalidated 2571 * and subsequently re-faulted). However it does guarantee that the page 2572 * won't be freed completely. And mostly callers simply care that the page 2573 * contains data that was valid *at some point in time*. Typically, an IO 2574 * or similar operation cannot guarantee anything stronger anyway because 2575 * locks can't be held over the syscall boundary. 2576 * 2577 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2578 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2579 * be called after the page is finished with, and before put_page is called. 2580 * 2581 * get_user_pages_remote is typically used for fewer-copy IO operations, 2582 * to get a handle on the memory by some means other than accesses 2583 * via the user virtual addresses. The pages may be submitted for 2584 * DMA to devices or accessed via their kernel linear mapping (via the 2585 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2586 * 2587 * See also get_user_pages_fast, for performance critical applications. 2588 * 2589 * get_user_pages_remote should be phased out in favor of 2590 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2591 * should use get_user_pages_remote because it cannot pass 2592 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2593 */ 2594 long get_user_pages_remote(struct mm_struct *mm, 2595 unsigned long start, unsigned long nr_pages, 2596 unsigned int gup_flags, struct page **pages, 2597 int *locked) 2598 { 2599 int local_locked = 1; 2600 2601 if (!is_valid_gup_args(pages, locked, &gup_flags, 2602 FOLL_TOUCH | FOLL_REMOTE)) 2603 return -EINVAL; 2604 2605 return __get_user_pages_locked(mm, start, nr_pages, pages, 2606 locked ? locked : &local_locked, 2607 gup_flags); 2608 } 2609 EXPORT_SYMBOL(get_user_pages_remote); 2610 2611 #else /* CONFIG_MMU */ 2612 long get_user_pages_remote(struct mm_struct *mm, 2613 unsigned long start, unsigned long nr_pages, 2614 unsigned int gup_flags, struct page **pages, 2615 int *locked) 2616 { 2617 return 0; 2618 } 2619 #endif /* !CONFIG_MMU */ 2620 2621 /** 2622 * get_user_pages() - pin user pages in memory 2623 * @start: starting user address 2624 * @nr_pages: number of pages from start to pin 2625 * @gup_flags: flags modifying lookup behaviour 2626 * @pages: array that receives pointers to the pages pinned. 2627 * Should be at least nr_pages long. Or NULL, if caller 2628 * only intends to ensure the pages are faulted in. 2629 * 2630 * This is the same as get_user_pages_remote(), just with a less-flexible 2631 * calling convention where we assume that the mm being operated on belongs to 2632 * the current task, and doesn't allow passing of a locked parameter. We also 2633 * obviously don't pass FOLL_REMOTE in here. 2634 */ 2635 long get_user_pages(unsigned long start, unsigned long nr_pages, 2636 unsigned int gup_flags, struct page **pages) 2637 { 2638 int locked = 1; 2639 2640 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2641 return -EINVAL; 2642 2643 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2644 &locked, gup_flags); 2645 } 2646 EXPORT_SYMBOL(get_user_pages); 2647 2648 /* 2649 * get_user_pages_unlocked() is suitable to replace the form: 2650 * 2651 * mmap_read_lock(mm); 2652 * get_user_pages(mm, ..., pages, NULL); 2653 * mmap_read_unlock(mm); 2654 * 2655 * with: 2656 * 2657 * get_user_pages_unlocked(mm, ..., pages); 2658 * 2659 * It is functionally equivalent to get_user_pages_fast so 2660 * get_user_pages_fast should be used instead if specific gup_flags 2661 * (e.g. FOLL_FORCE) are not required. 2662 */ 2663 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2664 struct page **pages, unsigned int gup_flags) 2665 { 2666 int locked = 0; 2667 2668 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2669 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2670 return -EINVAL; 2671 2672 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2673 &locked, gup_flags); 2674 } 2675 EXPORT_SYMBOL(get_user_pages_unlocked); 2676 2677 /* 2678 * GUP-fast 2679 * 2680 * get_user_pages_fast attempts to pin user pages by walking the page 2681 * tables directly and avoids taking locks. Thus the walker needs to be 2682 * protected from page table pages being freed from under it, and should 2683 * block any THP splits. 2684 * 2685 * One way to achieve this is to have the walker disable interrupts, and 2686 * rely on IPIs from the TLB flushing code blocking before the page table 2687 * pages are freed. This is unsuitable for architectures that do not need 2688 * to broadcast an IPI when invalidating TLBs. 2689 * 2690 * Another way to achieve this is to batch up page table containing pages 2691 * belonging to more than one mm_user, then rcu_sched a callback to free those 2692 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2693 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2694 * (which is a relatively rare event). The code below adopts this strategy. 2695 * 2696 * Before activating this code, please be aware that the following assumptions 2697 * are currently made: 2698 * 2699 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2700 * free pages containing page tables or TLB flushing requires IPI broadcast. 2701 * 2702 * *) ptes can be read atomically by the architecture. 2703 * 2704 * *) access_ok is sufficient to validate userspace address ranges. 2705 * 2706 * The last two assumptions can be relaxed by the addition of helper functions. 2707 * 2708 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2709 */ 2710 #ifdef CONFIG_HAVE_GUP_FAST 2711 /* 2712 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2713 * a specific folio. 2714 * 2715 * This call assumes the caller has pinned the folio, that the lowest page table 2716 * level still points to this folio, and that interrupts have been disabled. 2717 * 2718 * GUP-fast must reject all secretmem folios. 2719 * 2720 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2721 * (see comment describing the writable_file_mapping_allowed() function). We 2722 * therefore try to avoid the most egregious case of a long-term mapping doing 2723 * so. 2724 * 2725 * This function cannot be as thorough as that one as the VMA is not available 2726 * in the fast path, so instead we whitelist known good cases and if in doubt, 2727 * fall back to the slow path. 2728 */ 2729 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2730 { 2731 bool reject_file_backed = false; 2732 struct address_space *mapping; 2733 bool check_secretmem = false; 2734 unsigned long mapping_flags; 2735 2736 /* 2737 * If we aren't pinning then no problematic write can occur. A long term 2738 * pin is the most egregious case so this is the one we disallow. 2739 */ 2740 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2741 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2742 reject_file_backed = true; 2743 2744 /* We hold a folio reference, so we can safely access folio fields. */ 2745 2746 /* secretmem folios are always order-0 folios. */ 2747 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2748 check_secretmem = true; 2749 2750 if (!reject_file_backed && !check_secretmem) 2751 return true; 2752 2753 if (WARN_ON_ONCE(folio_test_slab(folio))) 2754 return false; 2755 2756 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2757 if (folio_test_hugetlb(folio)) 2758 return true; 2759 2760 /* 2761 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2762 * cannot proceed, which means no actions performed under RCU can 2763 * proceed either. 2764 * 2765 * inodes and thus their mappings are freed under RCU, which means the 2766 * mapping cannot be freed beneath us and thus we can safely dereference 2767 * it. 2768 */ 2769 lockdep_assert_irqs_disabled(); 2770 2771 /* 2772 * However, there may be operations which _alter_ the mapping, so ensure 2773 * we read it once and only once. 2774 */ 2775 mapping = READ_ONCE(folio->mapping); 2776 2777 /* 2778 * The mapping may have been truncated, in any case we cannot determine 2779 * if this mapping is safe - fall back to slow path to determine how to 2780 * proceed. 2781 */ 2782 if (!mapping) 2783 return false; 2784 2785 /* Anonymous folios pose no problem. */ 2786 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2787 if (mapping_flags) 2788 return mapping_flags & PAGE_MAPPING_ANON; 2789 2790 /* 2791 * At this point, we know the mapping is non-null and points to an 2792 * address_space object. 2793 */ 2794 if (check_secretmem && secretmem_mapping(mapping)) 2795 return false; 2796 /* The only remaining allowed file system is shmem. */ 2797 return !reject_file_backed || shmem_mapping(mapping); 2798 } 2799 2800 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2801 unsigned int flags, struct page **pages) 2802 { 2803 while ((*nr) - nr_start) { 2804 struct folio *folio = page_folio(pages[--(*nr)]); 2805 2806 folio_clear_referenced(folio); 2807 gup_put_folio(folio, 1, flags); 2808 } 2809 } 2810 2811 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2812 /* 2813 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2814 * operations. 2815 * 2816 * To pin the page, GUP-fast needs to do below in order: 2817 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2818 * 2819 * For the rest of pgtable operations where pgtable updates can be racy 2820 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2821 * is pinned. 2822 * 2823 * Above will work for all pte-level operations, including THP split. 2824 * 2825 * For THP collapse, it's a bit more complicated because GUP-fast may be 2826 * walking a pgtable page that is being freed (pte is still valid but pmd 2827 * can be cleared already). To avoid race in such condition, we need to 2828 * also check pmd here to make sure pmd doesn't change (corresponds to 2829 * pmdp_collapse_flush() in the THP collapse code path). 2830 */ 2831 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2832 unsigned long end, unsigned int flags, struct page **pages, 2833 int *nr) 2834 { 2835 struct dev_pagemap *pgmap = NULL; 2836 int nr_start = *nr, ret = 0; 2837 pte_t *ptep, *ptem; 2838 2839 ptem = ptep = pte_offset_map(&pmd, addr); 2840 if (!ptep) 2841 return 0; 2842 do { 2843 pte_t pte = ptep_get_lockless(ptep); 2844 struct page *page; 2845 struct folio *folio; 2846 2847 /* 2848 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2849 * pte_access_permitted() better should reject these pages 2850 * either way: otherwise, GUP-fast might succeed in 2851 * cases where ordinary GUP would fail due to VMA access 2852 * permissions. 2853 */ 2854 if (pte_protnone(pte)) 2855 goto pte_unmap; 2856 2857 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2858 goto pte_unmap; 2859 2860 if (pte_devmap(pte)) { 2861 if (unlikely(flags & FOLL_LONGTERM)) 2862 goto pte_unmap; 2863 2864 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2865 if (unlikely(!pgmap)) { 2866 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2867 goto pte_unmap; 2868 } 2869 } else if (pte_special(pte)) 2870 goto pte_unmap; 2871 2872 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2873 page = pte_page(pte); 2874 2875 folio = try_grab_folio_fast(page, 1, flags); 2876 if (!folio) 2877 goto pte_unmap; 2878 2879 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2880 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2881 gup_put_folio(folio, 1, flags); 2882 goto pte_unmap; 2883 } 2884 2885 if (!gup_fast_folio_allowed(folio, flags)) { 2886 gup_put_folio(folio, 1, flags); 2887 goto pte_unmap; 2888 } 2889 2890 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2891 gup_put_folio(folio, 1, flags); 2892 goto pte_unmap; 2893 } 2894 2895 /* 2896 * We need to make the page accessible if and only if we are 2897 * going to access its content (the FOLL_PIN case). Please 2898 * see Documentation/core-api/pin_user_pages.rst for 2899 * details. 2900 */ 2901 if (flags & FOLL_PIN) { 2902 ret = arch_make_folio_accessible(folio); 2903 if (ret) { 2904 gup_put_folio(folio, 1, flags); 2905 goto pte_unmap; 2906 } 2907 } 2908 folio_set_referenced(folio); 2909 pages[*nr] = page; 2910 (*nr)++; 2911 } while (ptep++, addr += PAGE_SIZE, addr != end); 2912 2913 ret = 1; 2914 2915 pte_unmap: 2916 if (pgmap) 2917 put_dev_pagemap(pgmap); 2918 pte_unmap(ptem); 2919 return ret; 2920 } 2921 #else 2922 2923 /* 2924 * If we can't determine whether or not a pte is special, then fail immediately 2925 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2926 * to be special. 2927 * 2928 * For a futex to be placed on a THP tail page, get_futex_key requires a 2929 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2930 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2931 */ 2932 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2933 unsigned long end, unsigned int flags, struct page **pages, 2934 int *nr) 2935 { 2936 return 0; 2937 } 2938 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2939 2940 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2941 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, 2942 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2943 { 2944 int nr_start = *nr; 2945 struct dev_pagemap *pgmap = NULL; 2946 2947 do { 2948 struct folio *folio; 2949 struct page *page = pfn_to_page(pfn); 2950 2951 pgmap = get_dev_pagemap(pfn, pgmap); 2952 if (unlikely(!pgmap)) { 2953 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2954 break; 2955 } 2956 2957 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2958 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2959 break; 2960 } 2961 2962 folio = try_grab_folio_fast(page, 1, flags); 2963 if (!folio) { 2964 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2965 break; 2966 } 2967 folio_set_referenced(folio); 2968 pages[*nr] = page; 2969 (*nr)++; 2970 pfn++; 2971 } while (addr += PAGE_SIZE, addr != end); 2972 2973 put_dev_pagemap(pgmap); 2974 return addr == end; 2975 } 2976 2977 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2978 unsigned long end, unsigned int flags, struct page **pages, 2979 int *nr) 2980 { 2981 unsigned long fault_pfn; 2982 int nr_start = *nr; 2983 2984 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2985 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 2986 return 0; 2987 2988 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2989 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 2990 return 0; 2991 } 2992 return 1; 2993 } 2994 2995 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 2996 unsigned long end, unsigned int flags, struct page **pages, 2997 int *nr) 2998 { 2999 unsigned long fault_pfn; 3000 int nr_start = *nr; 3001 3002 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3003 if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) 3004 return 0; 3005 3006 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3007 gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); 3008 return 0; 3009 } 3010 return 1; 3011 } 3012 #else 3013 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3014 unsigned long end, unsigned int flags, struct page **pages, 3015 int *nr) 3016 { 3017 BUILD_BUG(); 3018 return 0; 3019 } 3020 3021 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, 3022 unsigned long end, unsigned int flags, struct page **pages, 3023 int *nr) 3024 { 3025 BUILD_BUG(); 3026 return 0; 3027 } 3028 #endif 3029 3030 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 3031 unsigned long end, unsigned int flags, struct page **pages, 3032 int *nr) 3033 { 3034 struct page *page; 3035 struct folio *folio; 3036 int refs; 3037 3038 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 3039 return 0; 3040 3041 if (pmd_devmap(orig)) { 3042 if (unlikely(flags & FOLL_LONGTERM)) 3043 return 0; 3044 return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, 3045 pages, nr); 3046 } 3047 3048 page = pmd_page(orig); 3049 refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); 3050 3051 folio = try_grab_folio_fast(page, refs, flags); 3052 if (!folio) 3053 return 0; 3054 3055 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 3056 gup_put_folio(folio, refs, flags); 3057 return 0; 3058 } 3059 3060 if (!gup_fast_folio_allowed(folio, flags)) { 3061 gup_put_folio(folio, refs, flags); 3062 return 0; 3063 } 3064 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3065 gup_put_folio(folio, refs, flags); 3066 return 0; 3067 } 3068 3069 *nr += refs; 3070 folio_set_referenced(folio); 3071 return 1; 3072 } 3073 3074 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 3075 unsigned long end, unsigned int flags, struct page **pages, 3076 int *nr) 3077 { 3078 struct page *page; 3079 struct folio *folio; 3080 int refs; 3081 3082 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3083 return 0; 3084 3085 if (pud_devmap(orig)) { 3086 if (unlikely(flags & FOLL_LONGTERM)) 3087 return 0; 3088 return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, 3089 pages, nr); 3090 } 3091 3092 page = pud_page(orig); 3093 refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); 3094 3095 folio = try_grab_folio_fast(page, refs, flags); 3096 if (!folio) 3097 return 0; 3098 3099 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3100 gup_put_folio(folio, refs, flags); 3101 return 0; 3102 } 3103 3104 if (!gup_fast_folio_allowed(folio, flags)) { 3105 gup_put_folio(folio, refs, flags); 3106 return 0; 3107 } 3108 3109 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3110 gup_put_folio(folio, refs, flags); 3111 return 0; 3112 } 3113 3114 *nr += refs; 3115 folio_set_referenced(folio); 3116 return 1; 3117 } 3118 3119 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, 3120 unsigned long end, unsigned int flags, struct page **pages, 3121 int *nr) 3122 { 3123 int refs; 3124 struct page *page; 3125 struct folio *folio; 3126 3127 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 3128 return 0; 3129 3130 BUILD_BUG_ON(pgd_devmap(orig)); 3131 3132 page = pgd_page(orig); 3133 refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); 3134 3135 folio = try_grab_folio_fast(page, refs, flags); 3136 if (!folio) 3137 return 0; 3138 3139 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 3140 gup_put_folio(folio, refs, flags); 3141 return 0; 3142 } 3143 3144 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3145 gup_put_folio(folio, refs, flags); 3146 return 0; 3147 } 3148 3149 if (!gup_fast_folio_allowed(folio, flags)) { 3150 gup_put_folio(folio, refs, flags); 3151 return 0; 3152 } 3153 3154 *nr += refs; 3155 folio_set_referenced(folio); 3156 return 1; 3157 } 3158 3159 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3160 unsigned long end, unsigned int flags, struct page **pages, 3161 int *nr) 3162 { 3163 unsigned long next; 3164 pmd_t *pmdp; 3165 3166 pmdp = pmd_offset_lockless(pudp, pud, addr); 3167 do { 3168 pmd_t pmd = pmdp_get_lockless(pmdp); 3169 3170 next = pmd_addr_end(addr, end); 3171 if (!pmd_present(pmd)) 3172 return 0; 3173 3174 if (unlikely(pmd_leaf(pmd))) { 3175 /* See gup_fast_pte_range() */ 3176 if (pmd_protnone(pmd)) 3177 return 0; 3178 3179 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3180 pages, nr)) 3181 return 0; 3182 3183 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3184 pages, nr)) 3185 return 0; 3186 } while (pmdp++, addr = next, addr != end); 3187 3188 return 1; 3189 } 3190 3191 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3192 unsigned long end, unsigned int flags, struct page **pages, 3193 int *nr) 3194 { 3195 unsigned long next; 3196 pud_t *pudp; 3197 3198 pudp = pud_offset_lockless(p4dp, p4d, addr); 3199 do { 3200 pud_t pud = READ_ONCE(*pudp); 3201 3202 next = pud_addr_end(addr, end); 3203 if (unlikely(!pud_present(pud))) 3204 return 0; 3205 if (unlikely(pud_leaf(pud))) { 3206 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3207 pages, nr)) 3208 return 0; 3209 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3210 pages, nr)) 3211 return 0; 3212 } while (pudp++, addr = next, addr != end); 3213 3214 return 1; 3215 } 3216 3217 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3218 unsigned long end, unsigned int flags, struct page **pages, 3219 int *nr) 3220 { 3221 unsigned long next; 3222 p4d_t *p4dp; 3223 3224 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3225 do { 3226 p4d_t p4d = READ_ONCE(*p4dp); 3227 3228 next = p4d_addr_end(addr, end); 3229 if (!p4d_present(p4d)) 3230 return 0; 3231 BUILD_BUG_ON(p4d_leaf(p4d)); 3232 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3233 pages, nr)) 3234 return 0; 3235 } while (p4dp++, addr = next, addr != end); 3236 3237 return 1; 3238 } 3239 3240 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3241 unsigned int flags, struct page **pages, int *nr) 3242 { 3243 unsigned long next; 3244 pgd_t *pgdp; 3245 3246 pgdp = pgd_offset(current->mm, addr); 3247 do { 3248 pgd_t pgd = READ_ONCE(*pgdp); 3249 3250 next = pgd_addr_end(addr, end); 3251 if (pgd_none(pgd)) 3252 return; 3253 if (unlikely(pgd_leaf(pgd))) { 3254 if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, 3255 pages, nr)) 3256 return; 3257 } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3258 pages, nr)) 3259 return; 3260 } while (pgdp++, addr = next, addr != end); 3261 } 3262 #else 3263 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3264 unsigned int flags, struct page **pages, int *nr) 3265 { 3266 } 3267 #endif /* CONFIG_HAVE_GUP_FAST */ 3268 3269 #ifndef gup_fast_permitted 3270 /* 3271 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3272 * we need to fall back to the slow version: 3273 */ 3274 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3275 { 3276 return true; 3277 } 3278 #endif 3279 3280 static unsigned long gup_fast(unsigned long start, unsigned long end, 3281 unsigned int gup_flags, struct page **pages) 3282 { 3283 unsigned long flags; 3284 int nr_pinned = 0; 3285 unsigned seq; 3286 3287 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3288 !gup_fast_permitted(start, end)) 3289 return 0; 3290 3291 if (gup_flags & FOLL_PIN) { 3292 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3293 if (seq & 1) 3294 return 0; 3295 } 3296 3297 /* 3298 * Disable interrupts. The nested form is used, in order to allow full, 3299 * general purpose use of this routine. 3300 * 3301 * With interrupts disabled, we block page table pages from being freed 3302 * from under us. See struct mmu_table_batch comments in 3303 * include/asm-generic/tlb.h for more details. 3304 * 3305 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3306 * that come from THPs splitting. 3307 */ 3308 local_irq_save(flags); 3309 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3310 local_irq_restore(flags); 3311 3312 /* 3313 * When pinning pages for DMA there could be a concurrent write protect 3314 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3315 */ 3316 if (gup_flags & FOLL_PIN) { 3317 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3318 gup_fast_unpin_user_pages(pages, nr_pinned); 3319 return 0; 3320 } else { 3321 sanity_check_pinned_pages(pages, nr_pinned); 3322 } 3323 } 3324 return nr_pinned; 3325 } 3326 3327 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3328 unsigned int gup_flags, struct page **pages) 3329 { 3330 unsigned long len, end; 3331 unsigned long nr_pinned; 3332 int locked = 0; 3333 int ret; 3334 3335 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3336 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3337 FOLL_FAST_ONLY | FOLL_NOFAULT | 3338 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3339 return -EINVAL; 3340 3341 if (gup_flags & FOLL_PIN) 3342 mm_set_has_pinned_flag(¤t->mm->flags); 3343 3344 if (!(gup_flags & FOLL_FAST_ONLY)) 3345 might_lock_read(¤t->mm->mmap_lock); 3346 3347 start = untagged_addr(start) & PAGE_MASK; 3348 len = nr_pages << PAGE_SHIFT; 3349 if (check_add_overflow(start, len, &end)) 3350 return -EOVERFLOW; 3351 if (end > TASK_SIZE_MAX) 3352 return -EFAULT; 3353 if (unlikely(!access_ok((void __user *)start, len))) 3354 return -EFAULT; 3355 3356 nr_pinned = gup_fast(start, end, gup_flags, pages); 3357 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3358 return nr_pinned; 3359 3360 /* Slow path: try to get the remaining pages with get_user_pages */ 3361 start += nr_pinned << PAGE_SHIFT; 3362 pages += nr_pinned; 3363 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3364 pages, &locked, 3365 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3366 if (ret < 0) { 3367 /* 3368 * The caller has to unpin the pages we already pinned so 3369 * returning -errno is not an option 3370 */ 3371 if (nr_pinned) 3372 return nr_pinned; 3373 return ret; 3374 } 3375 return ret + nr_pinned; 3376 } 3377 3378 /** 3379 * get_user_pages_fast_only() - pin user pages in memory 3380 * @start: starting user address 3381 * @nr_pages: number of pages from start to pin 3382 * @gup_flags: flags modifying pin behaviour 3383 * @pages: array that receives pointers to the pages pinned. 3384 * Should be at least nr_pages long. 3385 * 3386 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3387 * the regular GUP. 3388 * 3389 * If the architecture does not support this function, simply return with no 3390 * pages pinned. 3391 * 3392 * Careful, careful! COW breaking can go either way, so a non-write 3393 * access can get ambiguous page results. If you call this function without 3394 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3395 */ 3396 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3397 unsigned int gup_flags, struct page **pages) 3398 { 3399 /* 3400 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3401 * because gup fast is always a "pin with a +1 page refcount" request. 3402 * 3403 * FOLL_FAST_ONLY is required in order to match the API description of 3404 * this routine: no fall back to regular ("slow") GUP. 3405 */ 3406 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3407 FOLL_GET | FOLL_FAST_ONLY)) 3408 return -EINVAL; 3409 3410 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3411 } 3412 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3413 3414 /** 3415 * get_user_pages_fast() - pin user pages in memory 3416 * @start: starting user address 3417 * @nr_pages: number of pages from start to pin 3418 * @gup_flags: flags modifying pin behaviour 3419 * @pages: array that receives pointers to the pages pinned. 3420 * Should be at least nr_pages long. 3421 * 3422 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3423 * If not successful, it will fall back to taking the lock and 3424 * calling get_user_pages(). 3425 * 3426 * Returns number of pages pinned. This may be fewer than the number requested. 3427 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3428 * -errno. 3429 */ 3430 int get_user_pages_fast(unsigned long start, int nr_pages, 3431 unsigned int gup_flags, struct page **pages) 3432 { 3433 /* 3434 * The caller may or may not have explicitly set FOLL_GET; either way is 3435 * OK. However, internally (within mm/gup.c), gup fast variants must set 3436 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3437 * request. 3438 */ 3439 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3440 return -EINVAL; 3441 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3442 } 3443 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3444 3445 /** 3446 * pin_user_pages_fast() - pin user pages in memory without taking locks 3447 * 3448 * @start: starting user address 3449 * @nr_pages: number of pages from start to pin 3450 * @gup_flags: flags modifying pin behaviour 3451 * @pages: array that receives pointers to the pages pinned. 3452 * Should be at least nr_pages long. 3453 * 3454 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3455 * get_user_pages_fast() for documentation on the function arguments, because 3456 * the arguments here are identical. 3457 * 3458 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3459 * see Documentation/core-api/pin_user_pages.rst for further details. 3460 * 3461 * Note that if a zero_page is amongst the returned pages, it will not have 3462 * pins in it and unpin_user_page() will not remove pins from it. 3463 */ 3464 int pin_user_pages_fast(unsigned long start, int nr_pages, 3465 unsigned int gup_flags, struct page **pages) 3466 { 3467 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3468 return -EINVAL; 3469 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3470 } 3471 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3472 3473 /** 3474 * pin_user_pages_remote() - pin pages of a remote process 3475 * 3476 * @mm: mm_struct of target mm 3477 * @start: starting user address 3478 * @nr_pages: number of pages from start to pin 3479 * @gup_flags: flags modifying lookup behaviour 3480 * @pages: array that receives pointers to the pages pinned. 3481 * Should be at least nr_pages long. 3482 * @locked: pointer to lock flag indicating whether lock is held and 3483 * subsequently whether VM_FAULT_RETRY functionality can be 3484 * utilised. Lock must initially be held. 3485 * 3486 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3487 * get_user_pages_remote() for documentation on the function arguments, because 3488 * the arguments here are identical. 3489 * 3490 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3491 * see Documentation/core-api/pin_user_pages.rst for details. 3492 * 3493 * Note that if a zero_page is amongst the returned pages, it will not have 3494 * pins in it and unpin_user_page*() will not remove pins from it. 3495 */ 3496 long pin_user_pages_remote(struct mm_struct *mm, 3497 unsigned long start, unsigned long nr_pages, 3498 unsigned int gup_flags, struct page **pages, 3499 int *locked) 3500 { 3501 int local_locked = 1; 3502 3503 if (!is_valid_gup_args(pages, locked, &gup_flags, 3504 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3505 return 0; 3506 return __gup_longterm_locked(mm, start, nr_pages, pages, 3507 locked ? locked : &local_locked, 3508 gup_flags); 3509 } 3510 EXPORT_SYMBOL(pin_user_pages_remote); 3511 3512 /** 3513 * pin_user_pages() - pin user pages in memory for use by other devices 3514 * 3515 * @start: starting user address 3516 * @nr_pages: number of pages from start to pin 3517 * @gup_flags: flags modifying lookup behaviour 3518 * @pages: array that receives pointers to the pages pinned. 3519 * Should be at least nr_pages long. 3520 * 3521 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3522 * FOLL_PIN is set. 3523 * 3524 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3525 * see Documentation/core-api/pin_user_pages.rst for details. 3526 * 3527 * Note that if a zero_page is amongst the returned pages, it will not have 3528 * pins in it and unpin_user_page*() will not remove pins from it. 3529 */ 3530 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3531 unsigned int gup_flags, struct page **pages) 3532 { 3533 int locked = 1; 3534 3535 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3536 return 0; 3537 return __gup_longterm_locked(current->mm, start, nr_pages, 3538 pages, &locked, gup_flags); 3539 } 3540 EXPORT_SYMBOL(pin_user_pages); 3541 3542 /* 3543 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3544 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3545 * FOLL_PIN and rejects FOLL_GET. 3546 * 3547 * Note that if a zero_page is amongst the returned pages, it will not have 3548 * pins in it and unpin_user_page*() will not remove pins from it. 3549 */ 3550 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3551 struct page **pages, unsigned int gup_flags) 3552 { 3553 int locked = 0; 3554 3555 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3556 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3557 return 0; 3558 3559 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3560 &locked, gup_flags); 3561 } 3562 EXPORT_SYMBOL(pin_user_pages_unlocked); 3563 3564 /** 3565 * memfd_pin_folios() - pin folios associated with a memfd 3566 * @memfd: the memfd whose folios are to be pinned 3567 * @start: the first memfd offset 3568 * @end: the last memfd offset (inclusive) 3569 * @folios: array that receives pointers to the folios pinned 3570 * @max_folios: maximum number of entries in @folios 3571 * @offset: the offset into the first folio 3572 * 3573 * Attempt to pin folios associated with a memfd in the contiguous range 3574 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3575 * the folios can either be found in the page cache or need to be allocated 3576 * if necessary. Once the folios are located, they are all pinned via 3577 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3578 * And, eventually, these pinned folios must be released either using 3579 * unpin_folios() or unpin_folio(). 3580 * 3581 * It must be noted that the folios may be pinned for an indefinite amount 3582 * of time. And, in most cases, the duration of time they may stay pinned 3583 * would be controlled by the userspace. This behavior is effectively the 3584 * same as using FOLL_LONGTERM with other GUP APIs. 3585 * 3586 * Returns number of folios pinned, which could be less than @max_folios 3587 * as it depends on the folio sizes that cover the range [start, end]. 3588 * If no folios were pinned, it returns -errno. 3589 */ 3590 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3591 struct folio **folios, unsigned int max_folios, 3592 pgoff_t *offset) 3593 { 3594 unsigned int flags, nr_folios, nr_found; 3595 unsigned int i, pgshift = PAGE_SHIFT; 3596 pgoff_t start_idx, end_idx, next_idx; 3597 struct folio *folio = NULL; 3598 struct folio_batch fbatch; 3599 struct hstate *h; 3600 long ret = -EINVAL; 3601 3602 if (start < 0 || start > end || !max_folios) 3603 return -EINVAL; 3604 3605 if (!memfd) 3606 return -EINVAL; 3607 3608 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3609 return -EINVAL; 3610 3611 if (end >= i_size_read(file_inode(memfd))) 3612 return -EINVAL; 3613 3614 if (is_file_hugepages(memfd)) { 3615 h = hstate_file(memfd); 3616 pgshift = huge_page_shift(h); 3617 } 3618 3619 flags = memalloc_pin_save(); 3620 do { 3621 nr_folios = 0; 3622 start_idx = start >> pgshift; 3623 end_idx = end >> pgshift; 3624 if (is_file_hugepages(memfd)) { 3625 start_idx <<= huge_page_order(h); 3626 end_idx <<= huge_page_order(h); 3627 } 3628 3629 folio_batch_init(&fbatch); 3630 while (start_idx <= end_idx && nr_folios < max_folios) { 3631 /* 3632 * In most cases, we should be able to find the folios 3633 * in the page cache. If we cannot find them for some 3634 * reason, we try to allocate them and add them to the 3635 * page cache. 3636 */ 3637 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3638 &start_idx, 3639 end_idx, 3640 &fbatch); 3641 if (folio) { 3642 folio_put(folio); 3643 folio = NULL; 3644 } 3645 3646 next_idx = 0; 3647 for (i = 0; i < nr_found; i++) { 3648 /* 3649 * As there can be multiple entries for a 3650 * given folio in the batch returned by 3651 * filemap_get_folios_contig(), the below 3652 * check is to ensure that we pin and return a 3653 * unique set of folios between start and end. 3654 */ 3655 if (next_idx && 3656 next_idx != folio_index(fbatch.folios[i])) 3657 continue; 3658 3659 folio = page_folio(&fbatch.folios[i]->page); 3660 3661 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3662 folio_batch_release(&fbatch); 3663 ret = -EINVAL; 3664 goto err; 3665 } 3666 3667 if (nr_folios == 0) 3668 *offset = offset_in_folio(folio, start); 3669 3670 folios[nr_folios] = folio; 3671 next_idx = folio_next_index(folio); 3672 if (++nr_folios == max_folios) 3673 break; 3674 } 3675 3676 folio = NULL; 3677 folio_batch_release(&fbatch); 3678 if (!nr_found) { 3679 folio = memfd_alloc_folio(memfd, start_idx); 3680 if (IS_ERR(folio)) { 3681 ret = PTR_ERR(folio); 3682 if (ret != -EEXIST) 3683 goto err; 3684 } 3685 } 3686 } 3687 3688 ret = check_and_migrate_movable_folios(nr_folios, folios); 3689 } while (ret == -EAGAIN); 3690 3691 memalloc_pin_restore(flags); 3692 return ret ? ret : nr_folios; 3693 err: 3694 memalloc_pin_restore(flags); 3695 unpin_folios(folios, nr_folios); 3696 3697 return ret; 3698 } 3699 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3700