xref: /linux/mm/gup.c (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memfd.h>
9 #include <linux/memremap.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/secretmem.h>
15 
16 #include <linux/sched/signal.h>
17 #include <linux/rwsem.h>
18 #include <linux/hugetlb.h>
19 #include <linux/migrate.h>
20 #include <linux/mm_inline.h>
21 #include <linux/pagevec.h>
22 #include <linux/sched/mm.h>
23 #include <linux/shmem_fs.h>
24 
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 
28 #include "internal.h"
29 
30 struct follow_page_context {
31 	struct dev_pagemap *pgmap;
32 	unsigned int page_mask;
33 };
34 
35 static inline void sanity_check_pinned_pages(struct page **pages,
36 					     unsigned long npages)
37 {
38 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 		return;
40 
41 	/*
42 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
43 	 * can no longer turn them possibly shared and PageAnonExclusive() will
44 	 * stick around until the page is freed.
45 	 *
46 	 * We'd like to verify that our pinned anonymous pages are still mapped
47 	 * exclusively. The issue with anon THP is that we don't know how
48 	 * they are/were mapped when pinning them. However, for anon
49 	 * THP we can assume that either the given page (PTE-mapped THP) or
50 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
51 	 * neither is the case, there is certainly something wrong.
52 	 */
53 	for (; npages; npages--, pages++) {
54 		struct page *page = *pages;
55 		struct folio *folio = page_folio(page);
56 
57 		if (is_zero_page(page) ||
58 		    !folio_test_anon(folio))
59 			continue;
60 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
61 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
62 		else
63 			/* Either a PTE-mapped or a PMD-mapped THP. */
64 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
65 				       !PageAnonExclusive(page), page);
66 	}
67 }
68 
69 /*
70  * Return the folio with ref appropriately incremented,
71  * or NULL if that failed.
72  */
73 static inline struct folio *try_get_folio(struct page *page, int refs)
74 {
75 	struct folio *folio;
76 
77 retry:
78 	folio = page_folio(page);
79 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
80 		return NULL;
81 	if (unlikely(!folio_ref_try_add(folio, refs)))
82 		return NULL;
83 
84 	/*
85 	 * At this point we have a stable reference to the folio; but it
86 	 * could be that between calling page_folio() and the refcount
87 	 * increment, the folio was split, in which case we'd end up
88 	 * holding a reference on a folio that has nothing to do with the page
89 	 * we were given anymore.
90 	 * So now that the folio is stable, recheck that the page still
91 	 * belongs to this folio.
92 	 */
93 	if (unlikely(page_folio(page) != folio)) {
94 		if (!put_devmap_managed_folio_refs(folio, refs))
95 			folio_put_refs(folio, refs);
96 		goto retry;
97 	}
98 
99 	return folio;
100 }
101 
102 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
103 {
104 	if (flags & FOLL_PIN) {
105 		if (is_zero_folio(folio))
106 			return;
107 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
108 		if (folio_test_large(folio))
109 			atomic_sub(refs, &folio->_pincount);
110 		else
111 			refs *= GUP_PIN_COUNTING_BIAS;
112 	}
113 
114 	if (!put_devmap_managed_folio_refs(folio, refs))
115 		folio_put_refs(folio, refs);
116 }
117 
118 /**
119  * try_grab_folio() - add a folio's refcount by a flag-dependent amount
120  * @folio:    pointer to folio to be grabbed
121  * @refs:     the value to (effectively) add to the folio's refcount
122  * @flags:    gup flags: these are the FOLL_* flag values
123  *
124  * This might not do anything at all, depending on the flags argument.
125  *
126  * "grab" names in this file mean, "look at flags to decide whether to use
127  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
128  *
129  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
130  * time.
131  *
132  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
133  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
134  *
135  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the folio could not
136  *			be grabbed.
137  *
138  * It is called when we have a stable reference for the folio, typically in
139  * GUP slow path.
140  */
141 int __must_check try_grab_folio(struct folio *folio, int refs,
142 				unsigned int flags)
143 {
144 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
145 		return -ENOMEM;
146 
147 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(&folio->page)))
148 		return -EREMOTEIO;
149 
150 	if (flags & FOLL_GET)
151 		folio_ref_add(folio, refs);
152 	else if (flags & FOLL_PIN) {
153 		/*
154 		 * Don't take a pin on the zero page - it's not going anywhere
155 		 * and it is used in a *lot* of places.
156 		 */
157 		if (is_zero_folio(folio))
158 			return 0;
159 
160 		/*
161 		 * Increment the normal page refcount field at least once,
162 		 * so that the page really is pinned.
163 		 */
164 		if (folio_test_large(folio)) {
165 			folio_ref_add(folio, refs);
166 			atomic_add(refs, &folio->_pincount);
167 		} else {
168 			folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS);
169 		}
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 	}
173 
174 	return 0;
175 }
176 
177 /**
178  * unpin_user_page() - release a dma-pinned page
179  * @page:            pointer to page to be released
180  *
181  * Pages that were pinned via pin_user_pages*() must be released via either
182  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
183  * that such pages can be separately tracked and uniquely handled. In
184  * particular, interactions with RDMA and filesystems need special handling.
185  */
186 void unpin_user_page(struct page *page)
187 {
188 	sanity_check_pinned_pages(&page, 1);
189 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
190 }
191 EXPORT_SYMBOL(unpin_user_page);
192 
193 /**
194  * unpin_folio() - release a dma-pinned folio
195  * @folio:         pointer to folio to be released
196  *
197  * Folios that were pinned via memfd_pin_folios() or other similar routines
198  * must be released either using unpin_folio() or unpin_folios().
199  */
200 void unpin_folio(struct folio *folio)
201 {
202 	gup_put_folio(folio, 1, FOLL_PIN);
203 }
204 EXPORT_SYMBOL_GPL(unpin_folio);
205 
206 /**
207  * folio_add_pin - Try to get an additional pin on a pinned folio
208  * @folio: The folio to be pinned
209  *
210  * Get an additional pin on a folio we already have a pin on.  Makes no change
211  * if the folio is a zero_page.
212  */
213 void folio_add_pin(struct folio *folio)
214 {
215 	if (is_zero_folio(folio))
216 		return;
217 
218 	/*
219 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
220 	 * page refcount field at least once, so that the page really is
221 	 * pinned.
222 	 */
223 	if (folio_test_large(folio)) {
224 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
225 		folio_ref_inc(folio);
226 		atomic_inc(&folio->_pincount);
227 	} else {
228 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
229 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
230 	}
231 }
232 
233 static inline struct folio *gup_folio_range_next(struct page *start,
234 		unsigned long npages, unsigned long i, unsigned int *ntails)
235 {
236 	struct page *next = nth_page(start, i);
237 	struct folio *folio = page_folio(next);
238 	unsigned int nr = 1;
239 
240 	if (folio_test_large(folio))
241 		nr = min_t(unsigned int, npages - i,
242 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
243 
244 	*ntails = nr;
245 	return folio;
246 }
247 
248 static inline struct folio *gup_folio_next(struct page **list,
249 		unsigned long npages, unsigned long i, unsigned int *ntails)
250 {
251 	struct folio *folio = page_folio(list[i]);
252 	unsigned int nr;
253 
254 	for (nr = i + 1; nr < npages; nr++) {
255 		if (page_folio(list[nr]) != folio)
256 			break;
257 	}
258 
259 	*ntails = nr - i;
260 	return folio;
261 }
262 
263 /**
264  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
265  * @pages:  array of pages to be maybe marked dirty, and definitely released.
266  * @npages: number of pages in the @pages array.
267  * @make_dirty: whether to mark the pages dirty
268  *
269  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
270  * variants called on that page.
271  *
272  * For each page in the @pages array, make that page (or its head page, if a
273  * compound page) dirty, if @make_dirty is true, and if the page was previously
274  * listed as clean. In any case, releases all pages using unpin_user_page(),
275  * possibly via unpin_user_pages(), for the non-dirty case.
276  *
277  * Please see the unpin_user_page() documentation for details.
278  *
279  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
280  * required, then the caller should a) verify that this is really correct,
281  * because _lock() is usually required, and b) hand code it:
282  * set_page_dirty_lock(), unpin_user_page().
283  *
284  */
285 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
286 				 bool make_dirty)
287 {
288 	unsigned long i;
289 	struct folio *folio;
290 	unsigned int nr;
291 
292 	if (!make_dirty) {
293 		unpin_user_pages(pages, npages);
294 		return;
295 	}
296 
297 	sanity_check_pinned_pages(pages, npages);
298 	for (i = 0; i < npages; i += nr) {
299 		folio = gup_folio_next(pages, npages, i, &nr);
300 		/*
301 		 * Checking PageDirty at this point may race with
302 		 * clear_page_dirty_for_io(), but that's OK. Two key
303 		 * cases:
304 		 *
305 		 * 1) This code sees the page as already dirty, so it
306 		 * skips the call to set_page_dirty(). That could happen
307 		 * because clear_page_dirty_for_io() called
308 		 * folio_mkclean(), followed by set_page_dirty().
309 		 * However, now the page is going to get written back,
310 		 * which meets the original intention of setting it
311 		 * dirty, so all is well: clear_page_dirty_for_io() goes
312 		 * on to call TestClearPageDirty(), and write the page
313 		 * back.
314 		 *
315 		 * 2) This code sees the page as clean, so it calls
316 		 * set_page_dirty(). The page stays dirty, despite being
317 		 * written back, so it gets written back again in the
318 		 * next writeback cycle. This is harmless.
319 		 */
320 		if (!folio_test_dirty(folio)) {
321 			folio_lock(folio);
322 			folio_mark_dirty(folio);
323 			folio_unlock(folio);
324 		}
325 		gup_put_folio(folio, nr, FOLL_PIN);
326 	}
327 }
328 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
329 
330 /**
331  * unpin_user_page_range_dirty_lock() - release and optionally dirty
332  * gup-pinned page range
333  *
334  * @page:  the starting page of a range maybe marked dirty, and definitely released.
335  * @npages: number of consecutive pages to release.
336  * @make_dirty: whether to mark the pages dirty
337  *
338  * "gup-pinned page range" refers to a range of pages that has had one of the
339  * pin_user_pages() variants called on that page.
340  *
341  * For the page ranges defined by [page .. page+npages], make that range (or
342  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343  * page range was previously listed as clean.
344  *
345  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346  * required, then the caller should a) verify that this is really correct,
347  * because _lock() is usually required, and b) hand code it:
348  * set_page_dirty_lock(), unpin_user_page().
349  *
350  */
351 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 				      bool make_dirty)
353 {
354 	unsigned long i;
355 	struct folio *folio;
356 	unsigned int nr;
357 
358 	for (i = 0; i < npages; i += nr) {
359 		folio = gup_folio_range_next(page, npages, i, &nr);
360 		if (make_dirty && !folio_test_dirty(folio)) {
361 			folio_lock(folio);
362 			folio_mark_dirty(folio);
363 			folio_unlock(folio);
364 		}
365 		gup_put_folio(folio, nr, FOLL_PIN);
366 	}
367 }
368 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
369 
370 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages)
371 {
372 	unsigned long i;
373 	struct folio *folio;
374 	unsigned int nr;
375 
376 	/*
377 	 * Don't perform any sanity checks because we might have raced with
378 	 * fork() and some anonymous pages might now actually be shared --
379 	 * which is why we're unpinning after all.
380 	 */
381 	for (i = 0; i < npages; i += nr) {
382 		folio = gup_folio_next(pages, npages, i, &nr);
383 		gup_put_folio(folio, nr, FOLL_PIN);
384 	}
385 }
386 
387 /**
388  * unpin_user_pages() - release an array of gup-pinned pages.
389  * @pages:  array of pages to be marked dirty and released.
390  * @npages: number of pages in the @pages array.
391  *
392  * For each page in the @pages array, release the page using unpin_user_page().
393  *
394  * Please see the unpin_user_page() documentation for details.
395  */
396 void unpin_user_pages(struct page **pages, unsigned long npages)
397 {
398 	unsigned long i;
399 	struct folio *folio;
400 	unsigned int nr;
401 
402 	/*
403 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 	 * leaving them pinned), but probably not. More likely, gup/pup returned
405 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 	 */
407 	if (WARN_ON(IS_ERR_VALUE(npages)))
408 		return;
409 
410 	sanity_check_pinned_pages(pages, npages);
411 	for (i = 0; i < npages; i += nr) {
412 		folio = gup_folio_next(pages, npages, i, &nr);
413 		gup_put_folio(folio, nr, FOLL_PIN);
414 	}
415 }
416 EXPORT_SYMBOL(unpin_user_pages);
417 
418 /**
419  * unpin_folios() - release an array of gup-pinned folios.
420  * @folios:  array of folios to be marked dirty and released.
421  * @nfolios: number of folios in the @folios array.
422  *
423  * For each folio in the @folios array, release the folio using gup_put_folio.
424  *
425  * Please see the unpin_folio() documentation for details.
426  */
427 void unpin_folios(struct folio **folios, unsigned long nfolios)
428 {
429 	unsigned long i = 0, j;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking folios
433 	 * (by leaving them pinned), but probably not. More likely, gup/pup
434 	 * returned a hard -ERRNO error to the caller, who erroneously passed
435 	 * it here.
436 	 */
437 	if (WARN_ON(IS_ERR_VALUE(nfolios)))
438 		return;
439 
440 	while (i < nfolios) {
441 		for (j = i + 1; j < nfolios; j++)
442 			if (folios[i] != folios[j])
443 				break;
444 
445 		if (folios[i])
446 			gup_put_folio(folios[i], j - i, FOLL_PIN);
447 		i = j;
448 	}
449 }
450 EXPORT_SYMBOL_GPL(unpin_folios);
451 
452 /*
453  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
454  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
455  * cache bouncing on large SMP machines for concurrent pinned gups.
456  */
457 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
458 {
459 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
460 		set_bit(MMF_HAS_PINNED, mm_flags);
461 }
462 
463 #ifdef CONFIG_MMU
464 
465 #ifdef CONFIG_HAVE_GUP_FAST
466 static int record_subpages(struct page *page, unsigned long sz,
467 			   unsigned long addr, unsigned long end,
468 			   struct page **pages)
469 {
470 	struct page *start_page;
471 	int nr;
472 
473 	start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT);
474 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
475 		pages[nr] = nth_page(start_page, nr);
476 
477 	return nr;
478 }
479 
480 /**
481  * try_grab_folio_fast() - Attempt to get or pin a folio in fast path.
482  * @page:  pointer to page to be grabbed
483  * @refs:  the value to (effectively) add to the folio's refcount
484  * @flags: gup flags: these are the FOLL_* flag values.
485  *
486  * "grab" names in this file mean, "look at flags to decide whether to use
487  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
488  *
489  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
490  * same time. (That's true throughout the get_user_pages*() and
491  * pin_user_pages*() APIs.) Cases:
492  *
493  *    FOLL_GET: folio's refcount will be incremented by @refs.
494  *
495  *    FOLL_PIN on large folios: folio's refcount will be incremented by
496  *    @refs, and its pincount will be incremented by @refs.
497  *
498  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
499  *    @refs * GUP_PIN_COUNTING_BIAS.
500  *
501  * Return: The folio containing @page (with refcount appropriately
502  * incremented) for success, or NULL upon failure. If neither FOLL_GET
503  * nor FOLL_PIN was set, that's considered failure, and furthermore,
504  * a likely bug in the caller, so a warning is also emitted.
505  *
506  * It uses add ref unless zero to elevate the folio refcount and must be called
507  * in fast path only.
508  */
509 static struct folio *try_grab_folio_fast(struct page *page, int refs,
510 					 unsigned int flags)
511 {
512 	struct folio *folio;
513 
514 	/* Raise warn if it is not called in fast GUP */
515 	VM_WARN_ON_ONCE(!irqs_disabled());
516 
517 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
518 		return NULL;
519 
520 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
521 		return NULL;
522 
523 	if (flags & FOLL_GET)
524 		return try_get_folio(page, refs);
525 
526 	/* FOLL_PIN is set */
527 
528 	/*
529 	 * Don't take a pin on the zero page - it's not going anywhere
530 	 * and it is used in a *lot* of places.
531 	 */
532 	if (is_zero_page(page))
533 		return page_folio(page);
534 
535 	folio = try_get_folio(page, refs);
536 	if (!folio)
537 		return NULL;
538 
539 	/*
540 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
541 	 * right zone, so fail and let the caller fall back to the slow
542 	 * path.
543 	 */
544 	if (unlikely((flags & FOLL_LONGTERM) &&
545 		     !folio_is_longterm_pinnable(folio))) {
546 		if (!put_devmap_managed_folio_refs(folio, refs))
547 			folio_put_refs(folio, refs);
548 		return NULL;
549 	}
550 
551 	/*
552 	 * When pinning a large folio, use an exact count to track it.
553 	 *
554 	 * However, be sure to *also* increment the normal folio
555 	 * refcount field at least once, so that the folio really
556 	 * is pinned.  That's why the refcount from the earlier
557 	 * try_get_folio() is left intact.
558 	 */
559 	if (folio_test_large(folio))
560 		atomic_add(refs, &folio->_pincount);
561 	else
562 		folio_ref_add(folio,
563 				refs * (GUP_PIN_COUNTING_BIAS - 1));
564 	/*
565 	 * Adjust the pincount before re-checking the PTE for changes.
566 	 * This is essentially a smp_mb() and is paired with a memory
567 	 * barrier in folio_try_share_anon_rmap_*().
568 	 */
569 	smp_mb__after_atomic();
570 
571 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
572 
573 	return folio;
574 }
575 #endif	/* CONFIG_HAVE_GUP_FAST */
576 
577 static struct page *no_page_table(struct vm_area_struct *vma,
578 				  unsigned int flags, unsigned long address)
579 {
580 	if (!(flags & FOLL_DUMP))
581 		return NULL;
582 
583 	/*
584 	 * When core dumping, we don't want to allocate unnecessary pages or
585 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
586 	 * then get_dump_page() will return NULL to leave a hole in the dump.
587 	 * But we can only make this optimization where a hole would surely
588 	 * be zero-filled if handle_mm_fault() actually did handle it.
589 	 */
590 	if (is_vm_hugetlb_page(vma)) {
591 		struct hstate *h = hstate_vma(vma);
592 
593 		if (!hugetlbfs_pagecache_present(h, vma, address))
594 			return ERR_PTR(-EFAULT);
595 	} else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) {
596 		return ERR_PTR(-EFAULT);
597 	}
598 
599 	return NULL;
600 }
601 
602 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
603 static struct page *follow_huge_pud(struct vm_area_struct *vma,
604 				    unsigned long addr, pud_t *pudp,
605 				    int flags, struct follow_page_context *ctx)
606 {
607 	struct mm_struct *mm = vma->vm_mm;
608 	struct page *page;
609 	pud_t pud = *pudp;
610 	unsigned long pfn = pud_pfn(pud);
611 	int ret;
612 
613 	assert_spin_locked(pud_lockptr(mm, pudp));
614 
615 	if ((flags & FOLL_WRITE) && !pud_write(pud))
616 		return NULL;
617 
618 	if (!pud_present(pud))
619 		return NULL;
620 
621 	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
622 
623 	if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) &&
624 	    pud_devmap(pud)) {
625 		/*
626 		 * device mapped pages can only be returned if the caller
627 		 * will manage the page reference count.
628 		 *
629 		 * At least one of FOLL_GET | FOLL_PIN must be set, so
630 		 * assert that here:
631 		 */
632 		if (!(flags & (FOLL_GET | FOLL_PIN)))
633 			return ERR_PTR(-EEXIST);
634 
635 		if (flags & FOLL_TOUCH)
636 			touch_pud(vma, addr, pudp, flags & FOLL_WRITE);
637 
638 		ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap);
639 		if (!ctx->pgmap)
640 			return ERR_PTR(-EFAULT);
641 	}
642 
643 	page = pfn_to_page(pfn);
644 
645 	if (!pud_devmap(pud) && !pud_write(pud) &&
646 	    gup_must_unshare(vma, flags, page))
647 		return ERR_PTR(-EMLINK);
648 
649 	ret = try_grab_folio(page_folio(page), 1, flags);
650 	if (ret)
651 		page = ERR_PTR(ret);
652 	else
653 		ctx->page_mask = HPAGE_PUD_NR - 1;
654 
655 	return page;
656 }
657 
658 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
659 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
660 					struct vm_area_struct *vma,
661 					unsigned int flags)
662 {
663 	/* If the pmd is writable, we can write to the page. */
664 	if (pmd_write(pmd))
665 		return true;
666 
667 	/* Maybe FOLL_FORCE is set to override it? */
668 	if (!(flags & FOLL_FORCE))
669 		return false;
670 
671 	/* But FOLL_FORCE has no effect on shared mappings */
672 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
673 		return false;
674 
675 	/* ... or read-only private ones */
676 	if (!(vma->vm_flags & VM_MAYWRITE))
677 		return false;
678 
679 	/* ... or already writable ones that just need to take a write fault */
680 	if (vma->vm_flags & VM_WRITE)
681 		return false;
682 
683 	/*
684 	 * See can_change_pte_writable(): we broke COW and could map the page
685 	 * writable if we have an exclusive anonymous page ...
686 	 */
687 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
688 		return false;
689 
690 	/* ... and a write-fault isn't required for other reasons. */
691 	if (pmd_needs_soft_dirty_wp(vma, pmd))
692 		return false;
693 	return !userfaultfd_huge_pmd_wp(vma, pmd);
694 }
695 
696 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
697 				    unsigned long addr, pmd_t *pmd,
698 				    unsigned int flags,
699 				    struct follow_page_context *ctx)
700 {
701 	struct mm_struct *mm = vma->vm_mm;
702 	pmd_t pmdval = *pmd;
703 	struct page *page;
704 	int ret;
705 
706 	assert_spin_locked(pmd_lockptr(mm, pmd));
707 
708 	page = pmd_page(pmdval);
709 	if ((flags & FOLL_WRITE) &&
710 	    !can_follow_write_pmd(pmdval, page, vma, flags))
711 		return NULL;
712 
713 	/* Avoid dumping huge zero page */
714 	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval))
715 		return ERR_PTR(-EFAULT);
716 
717 	if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags))
718 		return NULL;
719 
720 	if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page))
721 		return ERR_PTR(-EMLINK);
722 
723 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
724 			!PageAnonExclusive(page), page);
725 
726 	ret = try_grab_folio(page_folio(page), 1, flags);
727 	if (ret)
728 		return ERR_PTR(ret);
729 
730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
731 	if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH))
732 		touch_pmd(vma, addr, pmd, flags & FOLL_WRITE);
733 #endif	/* CONFIG_TRANSPARENT_HUGEPAGE */
734 
735 	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
736 	ctx->page_mask = HPAGE_PMD_NR - 1;
737 
738 	return page;
739 }
740 
741 #else  /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
742 static struct page *follow_huge_pud(struct vm_area_struct *vma,
743 				    unsigned long addr, pud_t *pudp,
744 				    int flags, struct follow_page_context *ctx)
745 {
746 	return NULL;
747 }
748 
749 static struct page *follow_huge_pmd(struct vm_area_struct *vma,
750 				    unsigned long addr, pmd_t *pmd,
751 				    unsigned int flags,
752 				    struct follow_page_context *ctx)
753 {
754 	return NULL;
755 }
756 #endif	/* CONFIG_PGTABLE_HAS_HUGE_LEAVES */
757 
758 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
759 		pte_t *pte, unsigned int flags)
760 {
761 	if (flags & FOLL_TOUCH) {
762 		pte_t orig_entry = ptep_get(pte);
763 		pte_t entry = orig_entry;
764 
765 		if (flags & FOLL_WRITE)
766 			entry = pte_mkdirty(entry);
767 		entry = pte_mkyoung(entry);
768 
769 		if (!pte_same(orig_entry, entry)) {
770 			set_pte_at(vma->vm_mm, address, pte, entry);
771 			update_mmu_cache(vma, address, pte);
772 		}
773 	}
774 
775 	/* Proper page table entry exists, but no corresponding struct page */
776 	return -EEXIST;
777 }
778 
779 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
780 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
781 					struct vm_area_struct *vma,
782 					unsigned int flags)
783 {
784 	/* If the pte is writable, we can write to the page. */
785 	if (pte_write(pte))
786 		return true;
787 
788 	/* Maybe FOLL_FORCE is set to override it? */
789 	if (!(flags & FOLL_FORCE))
790 		return false;
791 
792 	/* But FOLL_FORCE has no effect on shared mappings */
793 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
794 		return false;
795 
796 	/* ... or read-only private ones */
797 	if (!(vma->vm_flags & VM_MAYWRITE))
798 		return false;
799 
800 	/* ... or already writable ones that just need to take a write fault */
801 	if (vma->vm_flags & VM_WRITE)
802 		return false;
803 
804 	/*
805 	 * See can_change_pte_writable(): we broke COW and could map the page
806 	 * writable if we have an exclusive anonymous page ...
807 	 */
808 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
809 		return false;
810 
811 	/* ... and a write-fault isn't required for other reasons. */
812 	if (pte_needs_soft_dirty_wp(vma, pte))
813 		return false;
814 	return !userfaultfd_pte_wp(vma, pte);
815 }
816 
817 static struct page *follow_page_pte(struct vm_area_struct *vma,
818 		unsigned long address, pmd_t *pmd, unsigned int flags,
819 		struct dev_pagemap **pgmap)
820 {
821 	struct mm_struct *mm = vma->vm_mm;
822 	struct folio *folio;
823 	struct page *page;
824 	spinlock_t *ptl;
825 	pte_t *ptep, pte;
826 	int ret;
827 
828 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
829 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
830 			 (FOLL_PIN | FOLL_GET)))
831 		return ERR_PTR(-EINVAL);
832 
833 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
834 	if (!ptep)
835 		return no_page_table(vma, flags, address);
836 	pte = ptep_get(ptep);
837 	if (!pte_present(pte))
838 		goto no_page;
839 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
840 		goto no_page;
841 
842 	page = vm_normal_page(vma, address, pte);
843 
844 	/*
845 	 * We only care about anon pages in can_follow_write_pte() and don't
846 	 * have to worry about pte_devmap() because they are never anon.
847 	 */
848 	if ((flags & FOLL_WRITE) &&
849 	    !can_follow_write_pte(pte, page, vma, flags)) {
850 		page = NULL;
851 		goto out;
852 	}
853 
854 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
855 		/*
856 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
857 		 * case since they are only valid while holding the pgmap
858 		 * reference.
859 		 */
860 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
861 		if (*pgmap)
862 			page = pte_page(pte);
863 		else
864 			goto no_page;
865 	} else if (unlikely(!page)) {
866 		if (flags & FOLL_DUMP) {
867 			/* Avoid special (like zero) pages in core dumps */
868 			page = ERR_PTR(-EFAULT);
869 			goto out;
870 		}
871 
872 		if (is_zero_pfn(pte_pfn(pte))) {
873 			page = pte_page(pte);
874 		} else {
875 			ret = follow_pfn_pte(vma, address, ptep, flags);
876 			page = ERR_PTR(ret);
877 			goto out;
878 		}
879 	}
880 	folio = page_folio(page);
881 
882 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
883 		page = ERR_PTR(-EMLINK);
884 		goto out;
885 	}
886 
887 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
888 		       !PageAnonExclusive(page), page);
889 
890 	/* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */
891 	ret = try_grab_folio(folio, 1, flags);
892 	if (unlikely(ret)) {
893 		page = ERR_PTR(ret);
894 		goto out;
895 	}
896 
897 	/*
898 	 * We need to make the page accessible if and only if we are going
899 	 * to access its content (the FOLL_PIN case).  Please see
900 	 * Documentation/core-api/pin_user_pages.rst for details.
901 	 */
902 	if (flags & FOLL_PIN) {
903 		ret = arch_make_folio_accessible(folio);
904 		if (ret) {
905 			unpin_user_page(page);
906 			page = ERR_PTR(ret);
907 			goto out;
908 		}
909 	}
910 	if (flags & FOLL_TOUCH) {
911 		if ((flags & FOLL_WRITE) &&
912 		    !pte_dirty(pte) && !PageDirty(page))
913 			set_page_dirty(page);
914 		/*
915 		 * pte_mkyoung() would be more correct here, but atomic care
916 		 * is needed to avoid losing the dirty bit: it is easier to use
917 		 * mark_page_accessed().
918 		 */
919 		mark_page_accessed(page);
920 	}
921 out:
922 	pte_unmap_unlock(ptep, ptl);
923 	return page;
924 no_page:
925 	pte_unmap_unlock(ptep, ptl);
926 	if (!pte_none(pte))
927 		return NULL;
928 	return no_page_table(vma, flags, address);
929 }
930 
931 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
932 				    unsigned long address, pud_t *pudp,
933 				    unsigned int flags,
934 				    struct follow_page_context *ctx)
935 {
936 	pmd_t *pmd, pmdval;
937 	spinlock_t *ptl;
938 	struct page *page;
939 	struct mm_struct *mm = vma->vm_mm;
940 
941 	pmd = pmd_offset(pudp, address);
942 	pmdval = pmdp_get_lockless(pmd);
943 	if (pmd_none(pmdval))
944 		return no_page_table(vma, flags, address);
945 	if (!pmd_present(pmdval))
946 		return no_page_table(vma, flags, address);
947 	if (pmd_devmap(pmdval)) {
948 		ptl = pmd_lock(mm, pmd);
949 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
950 		spin_unlock(ptl);
951 		if (page)
952 			return page;
953 		return no_page_table(vma, flags, address);
954 	}
955 	if (likely(!pmd_leaf(pmdval)))
956 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
957 
958 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
959 		return no_page_table(vma, flags, address);
960 
961 	ptl = pmd_lock(mm, pmd);
962 	pmdval = *pmd;
963 	if (unlikely(!pmd_present(pmdval))) {
964 		spin_unlock(ptl);
965 		return no_page_table(vma, flags, address);
966 	}
967 	if (unlikely(!pmd_leaf(pmdval))) {
968 		spin_unlock(ptl);
969 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
970 	}
971 	if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) {
972 		spin_unlock(ptl);
973 		split_huge_pmd(vma, pmd, address);
974 		/* If pmd was left empty, stuff a page table in there quickly */
975 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
976 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
977 	}
978 	page = follow_huge_pmd(vma, address, pmd, flags, ctx);
979 	spin_unlock(ptl);
980 	return page;
981 }
982 
983 static struct page *follow_pud_mask(struct vm_area_struct *vma,
984 				    unsigned long address, p4d_t *p4dp,
985 				    unsigned int flags,
986 				    struct follow_page_context *ctx)
987 {
988 	pud_t *pudp, pud;
989 	spinlock_t *ptl;
990 	struct page *page;
991 	struct mm_struct *mm = vma->vm_mm;
992 
993 	pudp = pud_offset(p4dp, address);
994 	pud = READ_ONCE(*pudp);
995 	if (!pud_present(pud))
996 		return no_page_table(vma, flags, address);
997 	if (pud_leaf(pud)) {
998 		ptl = pud_lock(mm, pudp);
999 		page = follow_huge_pud(vma, address, pudp, flags, ctx);
1000 		spin_unlock(ptl);
1001 		if (page)
1002 			return page;
1003 		return no_page_table(vma, flags, address);
1004 	}
1005 	if (unlikely(pud_bad(pud)))
1006 		return no_page_table(vma, flags, address);
1007 
1008 	return follow_pmd_mask(vma, address, pudp, flags, ctx);
1009 }
1010 
1011 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
1012 				    unsigned long address, pgd_t *pgdp,
1013 				    unsigned int flags,
1014 				    struct follow_page_context *ctx)
1015 {
1016 	p4d_t *p4dp, p4d;
1017 
1018 	p4dp = p4d_offset(pgdp, address);
1019 	p4d = READ_ONCE(*p4dp);
1020 	BUILD_BUG_ON(p4d_leaf(p4d));
1021 
1022 	if (!p4d_present(p4d) || p4d_bad(p4d))
1023 		return no_page_table(vma, flags, address);
1024 
1025 	return follow_pud_mask(vma, address, p4dp, flags, ctx);
1026 }
1027 
1028 /**
1029  * follow_page_mask - look up a page descriptor from a user-virtual address
1030  * @vma: vm_area_struct mapping @address
1031  * @address: virtual address to look up
1032  * @flags: flags modifying lookup behaviour
1033  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
1034  *       pointer to output page_mask
1035  *
1036  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1037  *
1038  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
1039  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
1040  *
1041  * When getting an anonymous page and the caller has to trigger unsharing
1042  * of a shared anonymous page first, -EMLINK is returned. The caller should
1043  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
1044  * relevant with FOLL_PIN and !FOLL_WRITE.
1045  *
1046  * On output, the @ctx->page_mask is set according to the size of the page.
1047  *
1048  * Return: the mapped (struct page *), %NULL if no mapping exists, or
1049  * an error pointer if there is a mapping to something not represented
1050  * by a page descriptor (see also vm_normal_page()).
1051  */
1052 static struct page *follow_page_mask(struct vm_area_struct *vma,
1053 			      unsigned long address, unsigned int flags,
1054 			      struct follow_page_context *ctx)
1055 {
1056 	pgd_t *pgd;
1057 	struct mm_struct *mm = vma->vm_mm;
1058 	struct page *page;
1059 
1060 	vma_pgtable_walk_begin(vma);
1061 
1062 	ctx->page_mask = 0;
1063 	pgd = pgd_offset(mm, address);
1064 
1065 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1066 		page = no_page_table(vma, flags, address);
1067 	else
1068 		page = follow_p4d_mask(vma, address, pgd, flags, ctx);
1069 
1070 	vma_pgtable_walk_end(vma);
1071 
1072 	return page;
1073 }
1074 
1075 static int get_gate_page(struct mm_struct *mm, unsigned long address,
1076 		unsigned int gup_flags, struct vm_area_struct **vma,
1077 		struct page **page)
1078 {
1079 	pgd_t *pgd;
1080 	p4d_t *p4d;
1081 	pud_t *pud;
1082 	pmd_t *pmd;
1083 	pte_t *pte;
1084 	pte_t entry;
1085 	int ret = -EFAULT;
1086 
1087 	/* user gate pages are read-only */
1088 	if (gup_flags & FOLL_WRITE)
1089 		return -EFAULT;
1090 	if (address > TASK_SIZE)
1091 		pgd = pgd_offset_k(address);
1092 	else
1093 		pgd = pgd_offset_gate(mm, address);
1094 	if (pgd_none(*pgd))
1095 		return -EFAULT;
1096 	p4d = p4d_offset(pgd, address);
1097 	if (p4d_none(*p4d))
1098 		return -EFAULT;
1099 	pud = pud_offset(p4d, address);
1100 	if (pud_none(*pud))
1101 		return -EFAULT;
1102 	pmd = pmd_offset(pud, address);
1103 	if (!pmd_present(*pmd))
1104 		return -EFAULT;
1105 	pte = pte_offset_map(pmd, address);
1106 	if (!pte)
1107 		return -EFAULT;
1108 	entry = ptep_get(pte);
1109 	if (pte_none(entry))
1110 		goto unmap;
1111 	*vma = get_gate_vma(mm);
1112 	if (!page)
1113 		goto out;
1114 	*page = vm_normal_page(*vma, address, entry);
1115 	if (!*page) {
1116 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
1117 			goto unmap;
1118 		*page = pte_page(entry);
1119 	}
1120 	ret = try_grab_folio(page_folio(*page), 1, gup_flags);
1121 	if (unlikely(ret))
1122 		goto unmap;
1123 out:
1124 	ret = 0;
1125 unmap:
1126 	pte_unmap(pte);
1127 	return ret;
1128 }
1129 
1130 /*
1131  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
1132  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
1133  * to 0 and -EBUSY returned.
1134  */
1135 static int faultin_page(struct vm_area_struct *vma,
1136 		unsigned long address, unsigned int flags, bool unshare,
1137 		int *locked)
1138 {
1139 	unsigned int fault_flags = 0;
1140 	vm_fault_t ret;
1141 
1142 	if (flags & FOLL_NOFAULT)
1143 		return -EFAULT;
1144 	if (flags & FOLL_WRITE)
1145 		fault_flags |= FAULT_FLAG_WRITE;
1146 	if (flags & FOLL_REMOTE)
1147 		fault_flags |= FAULT_FLAG_REMOTE;
1148 	if (flags & FOLL_UNLOCKABLE) {
1149 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1150 		/*
1151 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
1152 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
1153 		 * That's because some callers may not be prepared to
1154 		 * handle early exits caused by non-fatal signals.
1155 		 */
1156 		if (flags & FOLL_INTERRUPTIBLE)
1157 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
1158 	}
1159 	if (flags & FOLL_NOWAIT)
1160 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1161 	if (flags & FOLL_TRIED) {
1162 		/*
1163 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1164 		 * can co-exist
1165 		 */
1166 		fault_flags |= FAULT_FLAG_TRIED;
1167 	}
1168 	if (unshare) {
1169 		fault_flags |= FAULT_FLAG_UNSHARE;
1170 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1171 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1172 	}
1173 
1174 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1175 
1176 	if (ret & VM_FAULT_COMPLETED) {
1177 		/*
1178 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1179 		 * mmap lock in the page fault handler. Sanity check this.
1180 		 */
1181 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1182 		*locked = 0;
1183 
1184 		/*
1185 		 * We should do the same as VM_FAULT_RETRY, but let's not
1186 		 * return -EBUSY since that's not reflecting the reality of
1187 		 * what has happened - we've just fully completed a page
1188 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1189 		 * that we want to take the mmap lock _again_.
1190 		 */
1191 		return -EAGAIN;
1192 	}
1193 
1194 	if (ret & VM_FAULT_ERROR) {
1195 		int err = vm_fault_to_errno(ret, flags);
1196 
1197 		if (err)
1198 			return err;
1199 		BUG();
1200 	}
1201 
1202 	if (ret & VM_FAULT_RETRY) {
1203 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1204 			*locked = 0;
1205 		return -EBUSY;
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Writing to file-backed mappings which require folio dirty tracking using GUP
1213  * is a fundamentally broken operation, as kernel write access to GUP mappings
1214  * do not adhere to the semantics expected by a file system.
1215  *
1216  * Consider the following scenario:-
1217  *
1218  * 1. A folio is written to via GUP which write-faults the memory, notifying
1219  *    the file system and dirtying the folio.
1220  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1221  *    the PTE being marked read-only.
1222  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1223  *    direct mapping.
1224  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1225  *    (though it does not have to).
1226  *
1227  * This results in both data being written to a folio without writenotify, and
1228  * the folio being dirtied unexpectedly (if the caller decides to do so).
1229  */
1230 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1231 					  unsigned long gup_flags)
1232 {
1233 	/*
1234 	 * If we aren't pinning then no problematic write can occur. A long term
1235 	 * pin is the most egregious case so this is the case we disallow.
1236 	 */
1237 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1238 	    (FOLL_PIN | FOLL_LONGTERM))
1239 		return true;
1240 
1241 	/*
1242 	 * If the VMA does not require dirty tracking then no problematic write
1243 	 * can occur either.
1244 	 */
1245 	return !vma_needs_dirty_tracking(vma);
1246 }
1247 
1248 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1249 {
1250 	vm_flags_t vm_flags = vma->vm_flags;
1251 	int write = (gup_flags & FOLL_WRITE);
1252 	int foreign = (gup_flags & FOLL_REMOTE);
1253 	bool vma_anon = vma_is_anonymous(vma);
1254 
1255 	if (vm_flags & (VM_IO | VM_PFNMAP))
1256 		return -EFAULT;
1257 
1258 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1259 		return -EFAULT;
1260 
1261 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1262 		return -EOPNOTSUPP;
1263 
1264 	if (vma_is_secretmem(vma))
1265 		return -EFAULT;
1266 
1267 	if (write) {
1268 		if (!vma_anon &&
1269 		    !writable_file_mapping_allowed(vma, gup_flags))
1270 			return -EFAULT;
1271 
1272 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1273 			if (!(gup_flags & FOLL_FORCE))
1274 				return -EFAULT;
1275 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1276 			if (is_vm_hugetlb_page(vma))
1277 				return -EFAULT;
1278 			/*
1279 			 * We used to let the write,force case do COW in a
1280 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1281 			 * set a breakpoint in a read-only mapping of an
1282 			 * executable, without corrupting the file (yet only
1283 			 * when that file had been opened for writing!).
1284 			 * Anon pages in shared mappings are surprising: now
1285 			 * just reject it.
1286 			 */
1287 			if (!is_cow_mapping(vm_flags))
1288 				return -EFAULT;
1289 		}
1290 	} else if (!(vm_flags & VM_READ)) {
1291 		if (!(gup_flags & FOLL_FORCE))
1292 			return -EFAULT;
1293 		/*
1294 		 * Is there actually any vma we can reach here which does not
1295 		 * have VM_MAYREAD set?
1296 		 */
1297 		if (!(vm_flags & VM_MAYREAD))
1298 			return -EFAULT;
1299 	}
1300 	/*
1301 	 * gups are always data accesses, not instruction
1302 	 * fetches, so execute=false here
1303 	 */
1304 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1305 		return -EFAULT;
1306 	return 0;
1307 }
1308 
1309 /*
1310  * This is "vma_lookup()", but with a warning if we would have
1311  * historically expanded the stack in the GUP code.
1312  */
1313 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1314 	 unsigned long addr)
1315 {
1316 #ifdef CONFIG_STACK_GROWSUP
1317 	return vma_lookup(mm, addr);
1318 #else
1319 	static volatile unsigned long next_warn;
1320 	struct vm_area_struct *vma;
1321 	unsigned long now, next;
1322 
1323 	vma = find_vma(mm, addr);
1324 	if (!vma || (addr >= vma->vm_start))
1325 		return vma;
1326 
1327 	/* Only warn for half-way relevant accesses */
1328 	if (!(vma->vm_flags & VM_GROWSDOWN))
1329 		return NULL;
1330 	if (vma->vm_start - addr > 65536)
1331 		return NULL;
1332 
1333 	/* Let's not warn more than once an hour.. */
1334 	now = jiffies; next = next_warn;
1335 	if (next && time_before(now, next))
1336 		return NULL;
1337 	next_warn = now + 60*60*HZ;
1338 
1339 	/* Let people know things may have changed. */
1340 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1341 		current->comm, task_pid_nr(current),
1342 		vma->vm_start, vma->vm_end, addr);
1343 	dump_stack();
1344 	return NULL;
1345 #endif
1346 }
1347 
1348 /**
1349  * __get_user_pages() - pin user pages in memory
1350  * @mm:		mm_struct of target mm
1351  * @start:	starting user address
1352  * @nr_pages:	number of pages from start to pin
1353  * @gup_flags:	flags modifying pin behaviour
1354  * @pages:	array that receives pointers to the pages pinned.
1355  *		Should be at least nr_pages long. Or NULL, if caller
1356  *		only intends to ensure the pages are faulted in.
1357  * @locked:     whether we're still with the mmap_lock held
1358  *
1359  * Returns either number of pages pinned (which may be less than the
1360  * number requested), or an error. Details about the return value:
1361  *
1362  * -- If nr_pages is 0, returns 0.
1363  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1364  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1365  *    pages pinned. Again, this may be less than nr_pages.
1366  * -- 0 return value is possible when the fault would need to be retried.
1367  *
1368  * The caller is responsible for releasing returned @pages, via put_page().
1369  *
1370  * Must be called with mmap_lock held.  It may be released.  See below.
1371  *
1372  * __get_user_pages walks a process's page tables and takes a reference to
1373  * each struct page that each user address corresponds to at a given
1374  * instant. That is, it takes the page that would be accessed if a user
1375  * thread accesses the given user virtual address at that instant.
1376  *
1377  * This does not guarantee that the page exists in the user mappings when
1378  * __get_user_pages returns, and there may even be a completely different
1379  * page there in some cases (eg. if mmapped pagecache has been invalidated
1380  * and subsequently re-faulted). However it does guarantee that the page
1381  * won't be freed completely. And mostly callers simply care that the page
1382  * contains data that was valid *at some point in time*. Typically, an IO
1383  * or similar operation cannot guarantee anything stronger anyway because
1384  * locks can't be held over the syscall boundary.
1385  *
1386  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1387  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1388  * appropriate) must be called after the page is finished with, and
1389  * before put_page is called.
1390  *
1391  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1392  * be released. If this happens *@locked will be set to 0 on return.
1393  *
1394  * A caller using such a combination of @gup_flags must therefore hold the
1395  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1396  * it must be held for either reading or writing and will not be released.
1397  *
1398  * In most cases, get_user_pages or get_user_pages_fast should be used
1399  * instead of __get_user_pages. __get_user_pages should be used only if
1400  * you need some special @gup_flags.
1401  */
1402 static long __get_user_pages(struct mm_struct *mm,
1403 		unsigned long start, unsigned long nr_pages,
1404 		unsigned int gup_flags, struct page **pages,
1405 		int *locked)
1406 {
1407 	long ret = 0, i = 0;
1408 	struct vm_area_struct *vma = NULL;
1409 	struct follow_page_context ctx = { NULL };
1410 
1411 	if (!nr_pages)
1412 		return 0;
1413 
1414 	start = untagged_addr_remote(mm, start);
1415 
1416 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1417 
1418 	do {
1419 		struct page *page;
1420 		unsigned int page_increm;
1421 
1422 		/* first iteration or cross vma bound */
1423 		if (!vma || start >= vma->vm_end) {
1424 			/*
1425 			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1426 			 * lookups+error reporting differently.
1427 			 */
1428 			if (gup_flags & FOLL_MADV_POPULATE) {
1429 				vma = vma_lookup(mm, start);
1430 				if (!vma) {
1431 					ret = -ENOMEM;
1432 					goto out;
1433 				}
1434 				if (check_vma_flags(vma, gup_flags)) {
1435 					ret = -EINVAL;
1436 					goto out;
1437 				}
1438 				goto retry;
1439 			}
1440 			vma = gup_vma_lookup(mm, start);
1441 			if (!vma && in_gate_area(mm, start)) {
1442 				ret = get_gate_page(mm, start & PAGE_MASK,
1443 						gup_flags, &vma,
1444 						pages ? &page : NULL);
1445 				if (ret)
1446 					goto out;
1447 				ctx.page_mask = 0;
1448 				goto next_page;
1449 			}
1450 
1451 			if (!vma) {
1452 				ret = -EFAULT;
1453 				goto out;
1454 			}
1455 			ret = check_vma_flags(vma, gup_flags);
1456 			if (ret)
1457 				goto out;
1458 		}
1459 retry:
1460 		/*
1461 		 * If we have a pending SIGKILL, don't keep faulting pages and
1462 		 * potentially allocating memory.
1463 		 */
1464 		if (fatal_signal_pending(current)) {
1465 			ret = -EINTR;
1466 			goto out;
1467 		}
1468 		cond_resched();
1469 
1470 		page = follow_page_mask(vma, start, gup_flags, &ctx);
1471 		if (!page || PTR_ERR(page) == -EMLINK) {
1472 			ret = faultin_page(vma, start, gup_flags,
1473 					   PTR_ERR(page) == -EMLINK, locked);
1474 			switch (ret) {
1475 			case 0:
1476 				goto retry;
1477 			case -EBUSY:
1478 			case -EAGAIN:
1479 				ret = 0;
1480 				fallthrough;
1481 			case -EFAULT:
1482 			case -ENOMEM:
1483 			case -EHWPOISON:
1484 				goto out;
1485 			}
1486 			BUG();
1487 		} else if (PTR_ERR(page) == -EEXIST) {
1488 			/*
1489 			 * Proper page table entry exists, but no corresponding
1490 			 * struct page. If the caller expects **pages to be
1491 			 * filled in, bail out now, because that can't be done
1492 			 * for this page.
1493 			 */
1494 			if (pages) {
1495 				ret = PTR_ERR(page);
1496 				goto out;
1497 			}
1498 		} else if (IS_ERR(page)) {
1499 			ret = PTR_ERR(page);
1500 			goto out;
1501 		}
1502 next_page:
1503 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1504 		if (page_increm > nr_pages)
1505 			page_increm = nr_pages;
1506 
1507 		if (pages) {
1508 			struct page *subpage;
1509 			unsigned int j;
1510 
1511 			/*
1512 			 * This must be a large folio (and doesn't need to
1513 			 * be the whole folio; it can be part of it), do
1514 			 * the refcount work for all the subpages too.
1515 			 *
1516 			 * NOTE: here the page may not be the head page
1517 			 * e.g. when start addr is not thp-size aligned.
1518 			 * try_grab_folio() should have taken care of tail
1519 			 * pages.
1520 			 */
1521 			if (page_increm > 1) {
1522 				struct folio *folio = page_folio(page);
1523 
1524 				/*
1525 				 * Since we already hold refcount on the
1526 				 * large folio, this should never fail.
1527 				 */
1528 				if (try_grab_folio(folio, page_increm - 1,
1529 						   gup_flags)) {
1530 					/*
1531 					 * Release the 1st page ref if the
1532 					 * folio is problematic, fail hard.
1533 					 */
1534 					gup_put_folio(folio, 1, gup_flags);
1535 					ret = -EFAULT;
1536 					goto out;
1537 				}
1538 			}
1539 
1540 			for (j = 0; j < page_increm; j++) {
1541 				subpage = nth_page(page, j);
1542 				pages[i + j] = subpage;
1543 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1544 				flush_dcache_page(subpage);
1545 			}
1546 		}
1547 
1548 		i += page_increm;
1549 		start += page_increm * PAGE_SIZE;
1550 		nr_pages -= page_increm;
1551 	} while (nr_pages);
1552 out:
1553 	if (ctx.pgmap)
1554 		put_dev_pagemap(ctx.pgmap);
1555 	return i ? i : ret;
1556 }
1557 
1558 static bool vma_permits_fault(struct vm_area_struct *vma,
1559 			      unsigned int fault_flags)
1560 {
1561 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1562 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1563 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1564 
1565 	if (!(vm_flags & vma->vm_flags))
1566 		return false;
1567 
1568 	/*
1569 	 * The architecture might have a hardware protection
1570 	 * mechanism other than read/write that can deny access.
1571 	 *
1572 	 * gup always represents data access, not instruction
1573 	 * fetches, so execute=false here:
1574 	 */
1575 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1576 		return false;
1577 
1578 	return true;
1579 }
1580 
1581 /**
1582  * fixup_user_fault() - manually resolve a user page fault
1583  * @mm:		mm_struct of target mm
1584  * @address:	user address
1585  * @fault_flags:flags to pass down to handle_mm_fault()
1586  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1587  *		does not allow retry. If NULL, the caller must guarantee
1588  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1589  *
1590  * This is meant to be called in the specific scenario where for locking reasons
1591  * we try to access user memory in atomic context (within a pagefault_disable()
1592  * section), this returns -EFAULT, and we want to resolve the user fault before
1593  * trying again.
1594  *
1595  * Typically this is meant to be used by the futex code.
1596  *
1597  * The main difference with get_user_pages() is that this function will
1598  * unconditionally call handle_mm_fault() which will in turn perform all the
1599  * necessary SW fixup of the dirty and young bits in the PTE, while
1600  * get_user_pages() only guarantees to update these in the struct page.
1601  *
1602  * This is important for some architectures where those bits also gate the
1603  * access permission to the page because they are maintained in software.  On
1604  * such architectures, gup() will not be enough to make a subsequent access
1605  * succeed.
1606  *
1607  * This function will not return with an unlocked mmap_lock. So it has not the
1608  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1609  */
1610 int fixup_user_fault(struct mm_struct *mm,
1611 		     unsigned long address, unsigned int fault_flags,
1612 		     bool *unlocked)
1613 {
1614 	struct vm_area_struct *vma;
1615 	vm_fault_t ret;
1616 
1617 	address = untagged_addr_remote(mm, address);
1618 
1619 	if (unlocked)
1620 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1621 
1622 retry:
1623 	vma = gup_vma_lookup(mm, address);
1624 	if (!vma)
1625 		return -EFAULT;
1626 
1627 	if (!vma_permits_fault(vma, fault_flags))
1628 		return -EFAULT;
1629 
1630 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1631 	    fatal_signal_pending(current))
1632 		return -EINTR;
1633 
1634 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1635 
1636 	if (ret & VM_FAULT_COMPLETED) {
1637 		/*
1638 		 * NOTE: it's a pity that we need to retake the lock here
1639 		 * to pair with the unlock() in the callers. Ideally we
1640 		 * could tell the callers so they do not need to unlock.
1641 		 */
1642 		mmap_read_lock(mm);
1643 		*unlocked = true;
1644 		return 0;
1645 	}
1646 
1647 	if (ret & VM_FAULT_ERROR) {
1648 		int err = vm_fault_to_errno(ret, 0);
1649 
1650 		if (err)
1651 			return err;
1652 		BUG();
1653 	}
1654 
1655 	if (ret & VM_FAULT_RETRY) {
1656 		mmap_read_lock(mm);
1657 		*unlocked = true;
1658 		fault_flags |= FAULT_FLAG_TRIED;
1659 		goto retry;
1660 	}
1661 
1662 	return 0;
1663 }
1664 EXPORT_SYMBOL_GPL(fixup_user_fault);
1665 
1666 /*
1667  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1668  * specified, it'll also respond to generic signals.  The caller of GUP
1669  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1670  */
1671 static bool gup_signal_pending(unsigned int flags)
1672 {
1673 	if (fatal_signal_pending(current))
1674 		return true;
1675 
1676 	if (!(flags & FOLL_INTERRUPTIBLE))
1677 		return false;
1678 
1679 	return signal_pending(current);
1680 }
1681 
1682 /*
1683  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1684  * the caller. This function may drop the mmap_lock. If it does so, then it will
1685  * set (*locked = 0).
1686  *
1687  * (*locked == 0) means that the caller expects this function to acquire and
1688  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1689  * the function returns, even though it may have changed temporarily during
1690  * function execution.
1691  *
1692  * Please note that this function, unlike __get_user_pages(), will not return 0
1693  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1694  */
1695 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1696 						unsigned long start,
1697 						unsigned long nr_pages,
1698 						struct page **pages,
1699 						int *locked,
1700 						unsigned int flags)
1701 {
1702 	long ret, pages_done;
1703 	bool must_unlock = false;
1704 
1705 	if (!nr_pages)
1706 		return 0;
1707 
1708 	/*
1709 	 * The internal caller expects GUP to manage the lock internally and the
1710 	 * lock must be released when this returns.
1711 	 */
1712 	if (!*locked) {
1713 		if (mmap_read_lock_killable(mm))
1714 			return -EAGAIN;
1715 		must_unlock = true;
1716 		*locked = 1;
1717 	}
1718 	else
1719 		mmap_assert_locked(mm);
1720 
1721 	if (flags & FOLL_PIN)
1722 		mm_set_has_pinned_flag(&mm->flags);
1723 
1724 	/*
1725 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1726 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1727 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1728 	 * for FOLL_GET, not for the newer FOLL_PIN.
1729 	 *
1730 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1731 	 * that here, as any failures will be obvious enough.
1732 	 */
1733 	if (pages && !(flags & FOLL_PIN))
1734 		flags |= FOLL_GET;
1735 
1736 	pages_done = 0;
1737 	for (;;) {
1738 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1739 				       locked);
1740 		if (!(flags & FOLL_UNLOCKABLE)) {
1741 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1742 			pages_done = ret;
1743 			break;
1744 		}
1745 
1746 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1747 		if (!*locked) {
1748 			BUG_ON(ret < 0);
1749 			BUG_ON(ret >= nr_pages);
1750 		}
1751 
1752 		if (ret > 0) {
1753 			nr_pages -= ret;
1754 			pages_done += ret;
1755 			if (!nr_pages)
1756 				break;
1757 		}
1758 		if (*locked) {
1759 			/*
1760 			 * VM_FAULT_RETRY didn't trigger or it was a
1761 			 * FOLL_NOWAIT.
1762 			 */
1763 			if (!pages_done)
1764 				pages_done = ret;
1765 			break;
1766 		}
1767 		/*
1768 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1769 		 * For the prefault case (!pages) we only update counts.
1770 		 */
1771 		if (likely(pages))
1772 			pages += ret;
1773 		start += ret << PAGE_SHIFT;
1774 
1775 		/* The lock was temporarily dropped, so we must unlock later */
1776 		must_unlock = true;
1777 
1778 retry:
1779 		/*
1780 		 * Repeat on the address that fired VM_FAULT_RETRY
1781 		 * with both FAULT_FLAG_ALLOW_RETRY and
1782 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1783 		 * by fatal signals of even common signals, depending on
1784 		 * the caller's request. So we need to check it before we
1785 		 * start trying again otherwise it can loop forever.
1786 		 */
1787 		if (gup_signal_pending(flags)) {
1788 			if (!pages_done)
1789 				pages_done = -EINTR;
1790 			break;
1791 		}
1792 
1793 		ret = mmap_read_lock_killable(mm);
1794 		if (ret) {
1795 			BUG_ON(ret > 0);
1796 			if (!pages_done)
1797 				pages_done = ret;
1798 			break;
1799 		}
1800 
1801 		*locked = 1;
1802 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1803 				       pages, locked);
1804 		if (!*locked) {
1805 			/* Continue to retry until we succeeded */
1806 			BUG_ON(ret != 0);
1807 			goto retry;
1808 		}
1809 		if (ret != 1) {
1810 			BUG_ON(ret > 1);
1811 			if (!pages_done)
1812 				pages_done = ret;
1813 			break;
1814 		}
1815 		nr_pages--;
1816 		pages_done++;
1817 		if (!nr_pages)
1818 			break;
1819 		if (likely(pages))
1820 			pages++;
1821 		start += PAGE_SIZE;
1822 	}
1823 	if (must_unlock && *locked) {
1824 		/*
1825 		 * We either temporarily dropped the lock, or the caller
1826 		 * requested that we both acquire and drop the lock. Either way,
1827 		 * we must now unlock, and notify the caller of that state.
1828 		 */
1829 		mmap_read_unlock(mm);
1830 		*locked = 0;
1831 	}
1832 
1833 	/*
1834 	 * Failing to pin anything implies something has gone wrong (except when
1835 	 * FOLL_NOWAIT is specified).
1836 	 */
1837 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1838 		return -EFAULT;
1839 
1840 	return pages_done;
1841 }
1842 
1843 /**
1844  * populate_vma_page_range() -  populate a range of pages in the vma.
1845  * @vma:   target vma
1846  * @start: start address
1847  * @end:   end address
1848  * @locked: whether the mmap_lock is still held
1849  *
1850  * This takes care of mlocking the pages too if VM_LOCKED is set.
1851  *
1852  * Return either number of pages pinned in the vma, or a negative error
1853  * code on error.
1854  *
1855  * vma->vm_mm->mmap_lock must be held.
1856  *
1857  * If @locked is NULL, it may be held for read or write and will
1858  * be unperturbed.
1859  *
1860  * If @locked is non-NULL, it must held for read only and may be
1861  * released.  If it's released, *@locked will be set to 0.
1862  */
1863 long populate_vma_page_range(struct vm_area_struct *vma,
1864 		unsigned long start, unsigned long end, int *locked)
1865 {
1866 	struct mm_struct *mm = vma->vm_mm;
1867 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1868 	int local_locked = 1;
1869 	int gup_flags;
1870 	long ret;
1871 
1872 	VM_BUG_ON(!PAGE_ALIGNED(start));
1873 	VM_BUG_ON(!PAGE_ALIGNED(end));
1874 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1875 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1876 	mmap_assert_locked(mm);
1877 
1878 	/*
1879 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1880 	 * faultin_page() to break COW, so it has no work to do here.
1881 	 */
1882 	if (vma->vm_flags & VM_LOCKONFAULT)
1883 		return nr_pages;
1884 
1885 	/* ... similarly, we've never faulted in PROT_NONE pages */
1886 	if (!vma_is_accessible(vma))
1887 		return -EFAULT;
1888 
1889 	gup_flags = FOLL_TOUCH;
1890 	/*
1891 	 * We want to touch writable mappings with a write fault in order
1892 	 * to break COW, except for shared mappings because these don't COW
1893 	 * and we would not want to dirty them for nothing.
1894 	 *
1895 	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1896 	 * readable (ie write-only or executable).
1897 	 */
1898 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1899 		gup_flags |= FOLL_WRITE;
1900 	else
1901 		gup_flags |= FOLL_FORCE;
1902 
1903 	if (locked)
1904 		gup_flags |= FOLL_UNLOCKABLE;
1905 
1906 	/*
1907 	 * We made sure addr is within a VMA, so the following will
1908 	 * not result in a stack expansion that recurses back here.
1909 	 */
1910 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1911 			       NULL, locked ? locked : &local_locked);
1912 	lru_add_drain();
1913 	return ret;
1914 }
1915 
1916 /*
1917  * faultin_page_range() - populate (prefault) page tables inside the
1918  *			  given range readable/writable
1919  *
1920  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1921  *
1922  * @mm: the mm to populate page tables in
1923  * @start: start address
1924  * @end: end address
1925  * @write: whether to prefault readable or writable
1926  * @locked: whether the mmap_lock is still held
1927  *
1928  * Returns either number of processed pages in the MM, or a negative error
1929  * code on error (see __get_user_pages()). Note that this function reports
1930  * errors related to VMAs, such as incompatible mappings, as expected by
1931  * MADV_POPULATE_(READ|WRITE).
1932  *
1933  * The range must be page-aligned.
1934  *
1935  * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1936  */
1937 long faultin_page_range(struct mm_struct *mm, unsigned long start,
1938 			unsigned long end, bool write, int *locked)
1939 {
1940 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1941 	int gup_flags;
1942 	long ret;
1943 
1944 	VM_BUG_ON(!PAGE_ALIGNED(start));
1945 	VM_BUG_ON(!PAGE_ALIGNED(end));
1946 	mmap_assert_locked(mm);
1947 
1948 	/*
1949 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1950 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1951 	 *	       difference with !FOLL_FORCE, because the page is writable
1952 	 *	       in the page table.
1953 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1954 	 *		  a poisoned page.
1955 	 * !FOLL_FORCE: Require proper access permissions.
1956 	 */
1957 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1958 		    FOLL_MADV_POPULATE;
1959 	if (write)
1960 		gup_flags |= FOLL_WRITE;
1961 
1962 	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1963 				      gup_flags);
1964 	lru_add_drain();
1965 	return ret;
1966 }
1967 
1968 /*
1969  * __mm_populate - populate and/or mlock pages within a range of address space.
1970  *
1971  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1972  * flags. VMAs must be already marked with the desired vm_flags, and
1973  * mmap_lock must not be held.
1974  */
1975 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1976 {
1977 	struct mm_struct *mm = current->mm;
1978 	unsigned long end, nstart, nend;
1979 	struct vm_area_struct *vma = NULL;
1980 	int locked = 0;
1981 	long ret = 0;
1982 
1983 	end = start + len;
1984 
1985 	for (nstart = start; nstart < end; nstart = nend) {
1986 		/*
1987 		 * We want to fault in pages for [nstart; end) address range.
1988 		 * Find first corresponding VMA.
1989 		 */
1990 		if (!locked) {
1991 			locked = 1;
1992 			mmap_read_lock(mm);
1993 			vma = find_vma_intersection(mm, nstart, end);
1994 		} else if (nstart >= vma->vm_end)
1995 			vma = find_vma_intersection(mm, vma->vm_end, end);
1996 
1997 		if (!vma)
1998 			break;
1999 		/*
2000 		 * Set [nstart; nend) to intersection of desired address
2001 		 * range with the first VMA. Also, skip undesirable VMA types.
2002 		 */
2003 		nend = min(end, vma->vm_end);
2004 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
2005 			continue;
2006 		if (nstart < vma->vm_start)
2007 			nstart = vma->vm_start;
2008 		/*
2009 		 * Now fault in a range of pages. populate_vma_page_range()
2010 		 * double checks the vma flags, so that it won't mlock pages
2011 		 * if the vma was already munlocked.
2012 		 */
2013 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
2014 		if (ret < 0) {
2015 			if (ignore_errors) {
2016 				ret = 0;
2017 				continue;	/* continue at next VMA */
2018 			}
2019 			break;
2020 		}
2021 		nend = nstart + ret * PAGE_SIZE;
2022 		ret = 0;
2023 	}
2024 	if (locked)
2025 		mmap_read_unlock(mm);
2026 	return ret;	/* 0 or negative error code */
2027 }
2028 #else /* CONFIG_MMU */
2029 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
2030 		unsigned long nr_pages, struct page **pages,
2031 		int *locked, unsigned int foll_flags)
2032 {
2033 	struct vm_area_struct *vma;
2034 	bool must_unlock = false;
2035 	unsigned long vm_flags;
2036 	long i;
2037 
2038 	if (!nr_pages)
2039 		return 0;
2040 
2041 	/*
2042 	 * The internal caller expects GUP to manage the lock internally and the
2043 	 * lock must be released when this returns.
2044 	 */
2045 	if (!*locked) {
2046 		if (mmap_read_lock_killable(mm))
2047 			return -EAGAIN;
2048 		must_unlock = true;
2049 		*locked = 1;
2050 	}
2051 
2052 	/* calculate required read or write permissions.
2053 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
2054 	 */
2055 	vm_flags  = (foll_flags & FOLL_WRITE) ?
2056 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
2057 	vm_flags &= (foll_flags & FOLL_FORCE) ?
2058 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
2059 
2060 	for (i = 0; i < nr_pages; i++) {
2061 		vma = find_vma(mm, start);
2062 		if (!vma)
2063 			break;
2064 
2065 		/* protect what we can, including chardevs */
2066 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
2067 		    !(vm_flags & vma->vm_flags))
2068 			break;
2069 
2070 		if (pages) {
2071 			pages[i] = virt_to_page((void *)start);
2072 			if (pages[i])
2073 				get_page(pages[i]);
2074 		}
2075 
2076 		start = (start + PAGE_SIZE) & PAGE_MASK;
2077 	}
2078 
2079 	if (must_unlock && *locked) {
2080 		mmap_read_unlock(mm);
2081 		*locked = 0;
2082 	}
2083 
2084 	return i ? : -EFAULT;
2085 }
2086 #endif /* !CONFIG_MMU */
2087 
2088 /**
2089  * fault_in_writeable - fault in userspace address range for writing
2090  * @uaddr: start of address range
2091  * @size: size of address range
2092  *
2093  * Returns the number of bytes not faulted in (like copy_to_user() and
2094  * copy_from_user()).
2095  */
2096 size_t fault_in_writeable(char __user *uaddr, size_t size)
2097 {
2098 	char __user *start = uaddr, *end;
2099 
2100 	if (unlikely(size == 0))
2101 		return 0;
2102 	if (!user_write_access_begin(uaddr, size))
2103 		return size;
2104 	if (!PAGE_ALIGNED(uaddr)) {
2105 		unsafe_put_user(0, uaddr, out);
2106 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
2107 	}
2108 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
2109 	if (unlikely(end < start))
2110 		end = NULL;
2111 	while (uaddr != end) {
2112 		unsafe_put_user(0, uaddr, out);
2113 		uaddr += PAGE_SIZE;
2114 	}
2115 
2116 out:
2117 	user_write_access_end();
2118 	if (size > uaddr - start)
2119 		return size - (uaddr - start);
2120 	return 0;
2121 }
2122 EXPORT_SYMBOL(fault_in_writeable);
2123 
2124 /**
2125  * fault_in_subpage_writeable - fault in an address range for writing
2126  * @uaddr: start of address range
2127  * @size: size of address range
2128  *
2129  * Fault in a user address range for writing while checking for permissions at
2130  * sub-page granularity (e.g. arm64 MTE). This function should be used when
2131  * the caller cannot guarantee forward progress of a copy_to_user() loop.
2132  *
2133  * Returns the number of bytes not faulted in (like copy_to_user() and
2134  * copy_from_user()).
2135  */
2136 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
2137 {
2138 	size_t faulted_in;
2139 
2140 	/*
2141 	 * Attempt faulting in at page granularity first for page table
2142 	 * permission checking. The arch-specific probe_subpage_writeable()
2143 	 * functions may not check for this.
2144 	 */
2145 	faulted_in = size - fault_in_writeable(uaddr, size);
2146 	if (faulted_in)
2147 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
2148 
2149 	return size - faulted_in;
2150 }
2151 EXPORT_SYMBOL(fault_in_subpage_writeable);
2152 
2153 /*
2154  * fault_in_safe_writeable - fault in an address range for writing
2155  * @uaddr: start of address range
2156  * @size: length of address range
2157  *
2158  * Faults in an address range for writing.  This is primarily useful when we
2159  * already know that some or all of the pages in the address range aren't in
2160  * memory.
2161  *
2162  * Unlike fault_in_writeable(), this function is non-destructive.
2163  *
2164  * Note that we don't pin or otherwise hold the pages referenced that we fault
2165  * in.  There's no guarantee that they'll stay in memory for any duration of
2166  * time.
2167  *
2168  * Returns the number of bytes not faulted in, like copy_to_user() and
2169  * copy_from_user().
2170  */
2171 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
2172 {
2173 	unsigned long start = (unsigned long)uaddr, end;
2174 	struct mm_struct *mm = current->mm;
2175 	bool unlocked = false;
2176 
2177 	if (unlikely(size == 0))
2178 		return 0;
2179 	end = PAGE_ALIGN(start + size);
2180 	if (end < start)
2181 		end = 0;
2182 
2183 	mmap_read_lock(mm);
2184 	do {
2185 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
2186 			break;
2187 		start = (start + PAGE_SIZE) & PAGE_MASK;
2188 	} while (start != end);
2189 	mmap_read_unlock(mm);
2190 
2191 	if (size > (unsigned long)uaddr - start)
2192 		return size - ((unsigned long)uaddr - start);
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(fault_in_safe_writeable);
2196 
2197 /**
2198  * fault_in_readable - fault in userspace address range for reading
2199  * @uaddr: start of user address range
2200  * @size: size of user address range
2201  *
2202  * Returns the number of bytes not faulted in (like copy_to_user() and
2203  * copy_from_user()).
2204  */
2205 size_t fault_in_readable(const char __user *uaddr, size_t size)
2206 {
2207 	const char __user *start = uaddr, *end;
2208 	volatile char c;
2209 
2210 	if (unlikely(size == 0))
2211 		return 0;
2212 	if (!user_read_access_begin(uaddr, size))
2213 		return size;
2214 	if (!PAGE_ALIGNED(uaddr)) {
2215 		unsafe_get_user(c, uaddr, out);
2216 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2217 	}
2218 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2219 	if (unlikely(end < start))
2220 		end = NULL;
2221 	while (uaddr != end) {
2222 		unsafe_get_user(c, uaddr, out);
2223 		uaddr += PAGE_SIZE;
2224 	}
2225 
2226 out:
2227 	user_read_access_end();
2228 	(void)c;
2229 	if (size > uaddr - start)
2230 		return size - (uaddr - start);
2231 	return 0;
2232 }
2233 EXPORT_SYMBOL(fault_in_readable);
2234 
2235 /**
2236  * get_dump_page() - pin user page in memory while writing it to core dump
2237  * @addr: user address
2238  *
2239  * Returns struct page pointer of user page pinned for dump,
2240  * to be freed afterwards by put_page().
2241  *
2242  * Returns NULL on any kind of failure - a hole must then be inserted into
2243  * the corefile, to preserve alignment with its headers; and also returns
2244  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2245  * allowing a hole to be left in the corefile to save disk space.
2246  *
2247  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2248  */
2249 #ifdef CONFIG_ELF_CORE
2250 struct page *get_dump_page(unsigned long addr)
2251 {
2252 	struct page *page;
2253 	int locked = 0;
2254 	int ret;
2255 
2256 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2257 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2258 	return (ret == 1) ? page : NULL;
2259 }
2260 #endif /* CONFIG_ELF_CORE */
2261 
2262 #ifdef CONFIG_MIGRATION
2263 /*
2264  * Returns the number of collected folios. Return value is always >= 0.
2265  */
2266 static unsigned long collect_longterm_unpinnable_folios(
2267 					struct list_head *movable_folio_list,
2268 					unsigned long nr_folios,
2269 					struct folio **folios)
2270 {
2271 	unsigned long i, collected = 0;
2272 	struct folio *prev_folio = NULL;
2273 	bool drain_allow = true;
2274 
2275 	for (i = 0; i < nr_folios; i++) {
2276 		struct folio *folio = folios[i];
2277 
2278 		if (folio == prev_folio)
2279 			continue;
2280 		prev_folio = folio;
2281 
2282 		if (folio_is_longterm_pinnable(folio))
2283 			continue;
2284 
2285 		collected++;
2286 
2287 		if (folio_is_device_coherent(folio))
2288 			continue;
2289 
2290 		if (folio_test_hugetlb(folio)) {
2291 			isolate_hugetlb(folio, movable_folio_list);
2292 			continue;
2293 		}
2294 
2295 		if (!folio_test_lru(folio) && drain_allow) {
2296 			lru_add_drain_all();
2297 			drain_allow = false;
2298 		}
2299 
2300 		if (!folio_isolate_lru(folio))
2301 			continue;
2302 
2303 		list_add_tail(&folio->lru, movable_folio_list);
2304 		node_stat_mod_folio(folio,
2305 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2306 				    folio_nr_pages(folio));
2307 	}
2308 
2309 	return collected;
2310 }
2311 
2312 /*
2313  * Unpins all folios and migrates device coherent folios and movable_folio_list.
2314  * Returns -EAGAIN if all folios were successfully migrated or -errno for
2315  * failure (or partial success).
2316  */
2317 static int migrate_longterm_unpinnable_folios(
2318 					struct list_head *movable_folio_list,
2319 					unsigned long nr_folios,
2320 					struct folio **folios)
2321 {
2322 	int ret;
2323 	unsigned long i;
2324 
2325 	for (i = 0; i < nr_folios; i++) {
2326 		struct folio *folio = folios[i];
2327 
2328 		if (folio_is_device_coherent(folio)) {
2329 			/*
2330 			 * Migration will fail if the folio is pinned, so
2331 			 * convert the pin on the source folio to a normal
2332 			 * reference.
2333 			 */
2334 			folios[i] = NULL;
2335 			folio_get(folio);
2336 			gup_put_folio(folio, 1, FOLL_PIN);
2337 
2338 			if (migrate_device_coherent_folio(folio)) {
2339 				ret = -EBUSY;
2340 				goto err;
2341 			}
2342 
2343 			continue;
2344 		}
2345 
2346 		/*
2347 		 * We can't migrate folios with unexpected references, so drop
2348 		 * the reference obtained by __get_user_pages_locked().
2349 		 * Migrating folios have been added to movable_folio_list after
2350 		 * calling folio_isolate_lru() which takes a reference so the
2351 		 * folio won't be freed if it's migrating.
2352 		 */
2353 		unpin_folio(folios[i]);
2354 		folios[i] = NULL;
2355 	}
2356 
2357 	if (!list_empty(movable_folio_list)) {
2358 		struct migration_target_control mtc = {
2359 			.nid = NUMA_NO_NODE,
2360 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2361 			.reason = MR_LONGTERM_PIN,
2362 		};
2363 
2364 		if (migrate_pages(movable_folio_list, alloc_migration_target,
2365 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2366 				  MR_LONGTERM_PIN, NULL)) {
2367 			ret = -ENOMEM;
2368 			goto err;
2369 		}
2370 	}
2371 
2372 	putback_movable_pages(movable_folio_list);
2373 
2374 	return -EAGAIN;
2375 
2376 err:
2377 	unpin_folios(folios, nr_folios);
2378 	putback_movable_pages(movable_folio_list);
2379 
2380 	return ret;
2381 }
2382 
2383 /*
2384  * Check whether all folios are *allowed* to be pinned indefinitely (longterm).
2385  * Rather confusingly, all folios in the range are required to be pinned via
2386  * FOLL_PIN, before calling this routine.
2387  *
2388  * If any folios in the range are not allowed to be pinned, then this routine
2389  * will migrate those folios away, unpin all the folios in the range and return
2390  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2391  * call this routine again.
2392  *
2393  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2394  * The caller should give up, and propagate the error back up the call stack.
2395  *
2396  * If everything is OK and all folios in the range are allowed to be pinned,
2397  * then this routine leaves all folios pinned and returns zero for success.
2398  */
2399 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2400 					     struct folio **folios)
2401 {
2402 	unsigned long collected;
2403 	LIST_HEAD(movable_folio_list);
2404 
2405 	collected = collect_longterm_unpinnable_folios(&movable_folio_list,
2406 						       nr_folios, folios);
2407 	if (!collected)
2408 		return 0;
2409 
2410 	return migrate_longterm_unpinnable_folios(&movable_folio_list,
2411 						  nr_folios, folios);
2412 }
2413 
2414 /*
2415  * This routine just converts all the pages in the @pages array to folios and
2416  * calls check_and_migrate_movable_folios() to do the heavy lifting.
2417  *
2418  * Please see the check_and_migrate_movable_folios() documentation for details.
2419  */
2420 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2421 					    struct page **pages)
2422 {
2423 	struct folio **folios;
2424 	long i, ret;
2425 
2426 	folios = kmalloc_array(nr_pages, sizeof(*folios), GFP_KERNEL);
2427 	if (!folios)
2428 		return -ENOMEM;
2429 
2430 	for (i = 0; i < nr_pages; i++)
2431 		folios[i] = page_folio(pages[i]);
2432 
2433 	ret = check_and_migrate_movable_folios(nr_pages, folios);
2434 
2435 	kfree(folios);
2436 	return ret;
2437 }
2438 #else
2439 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2440 					    struct page **pages)
2441 {
2442 	return 0;
2443 }
2444 
2445 static long check_and_migrate_movable_folios(unsigned long nr_folios,
2446 					     struct folio **folios)
2447 {
2448 	return 0;
2449 }
2450 #endif /* CONFIG_MIGRATION */
2451 
2452 /*
2453  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2454  * allows us to process the FOLL_LONGTERM flag.
2455  */
2456 static long __gup_longterm_locked(struct mm_struct *mm,
2457 				  unsigned long start,
2458 				  unsigned long nr_pages,
2459 				  struct page **pages,
2460 				  int *locked,
2461 				  unsigned int gup_flags)
2462 {
2463 	unsigned int flags;
2464 	long rc, nr_pinned_pages;
2465 
2466 	if (!(gup_flags & FOLL_LONGTERM))
2467 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2468 					       locked, gup_flags);
2469 
2470 	flags = memalloc_pin_save();
2471 	do {
2472 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2473 							  pages, locked,
2474 							  gup_flags);
2475 		if (nr_pinned_pages <= 0) {
2476 			rc = nr_pinned_pages;
2477 			break;
2478 		}
2479 
2480 		/* FOLL_LONGTERM implies FOLL_PIN */
2481 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2482 	} while (rc == -EAGAIN);
2483 	memalloc_pin_restore(flags);
2484 	return rc ? rc : nr_pinned_pages;
2485 }
2486 
2487 /*
2488  * Check that the given flags are valid for the exported gup/pup interface, and
2489  * update them with the required flags that the caller must have set.
2490  */
2491 static bool is_valid_gup_args(struct page **pages, int *locked,
2492 			      unsigned int *gup_flags_p, unsigned int to_set)
2493 {
2494 	unsigned int gup_flags = *gup_flags_p;
2495 
2496 	/*
2497 	 * These flags not allowed to be specified externally to the gup
2498 	 * interfaces:
2499 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2500 	 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote()
2501 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2502 	 */
2503 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2504 		return false;
2505 
2506 	gup_flags |= to_set;
2507 	if (locked) {
2508 		/* At the external interface locked must be set */
2509 		if (WARN_ON_ONCE(*locked != 1))
2510 			return false;
2511 
2512 		gup_flags |= FOLL_UNLOCKABLE;
2513 	}
2514 
2515 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2516 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2517 			 (FOLL_PIN | FOLL_GET)))
2518 		return false;
2519 
2520 	/* LONGTERM can only be specified when pinning */
2521 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2522 		return false;
2523 
2524 	/* Pages input must be given if using GET/PIN */
2525 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2526 		return false;
2527 
2528 	/* We want to allow the pgmap to be hot-unplugged at all times */
2529 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2530 			 (gup_flags & FOLL_PCI_P2PDMA)))
2531 		return false;
2532 
2533 	*gup_flags_p = gup_flags;
2534 	return true;
2535 }
2536 
2537 #ifdef CONFIG_MMU
2538 /**
2539  * get_user_pages_remote() - pin user pages in memory
2540  * @mm:		mm_struct of target mm
2541  * @start:	starting user address
2542  * @nr_pages:	number of pages from start to pin
2543  * @gup_flags:	flags modifying lookup behaviour
2544  * @pages:	array that receives pointers to the pages pinned.
2545  *		Should be at least nr_pages long. Or NULL, if caller
2546  *		only intends to ensure the pages are faulted in.
2547  * @locked:	pointer to lock flag indicating whether lock is held and
2548  *		subsequently whether VM_FAULT_RETRY functionality can be
2549  *		utilised. Lock must initially be held.
2550  *
2551  * Returns either number of pages pinned (which may be less than the
2552  * number requested), or an error. Details about the return value:
2553  *
2554  * -- If nr_pages is 0, returns 0.
2555  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2556  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2557  *    pages pinned. Again, this may be less than nr_pages.
2558  *
2559  * The caller is responsible for releasing returned @pages, via put_page().
2560  *
2561  * Must be called with mmap_lock held for read or write.
2562  *
2563  * get_user_pages_remote walks a process's page tables and takes a reference
2564  * to each struct page that each user address corresponds to at a given
2565  * instant. That is, it takes the page that would be accessed if a user
2566  * thread accesses the given user virtual address at that instant.
2567  *
2568  * This does not guarantee that the page exists in the user mappings when
2569  * get_user_pages_remote returns, and there may even be a completely different
2570  * page there in some cases (eg. if mmapped pagecache has been invalidated
2571  * and subsequently re-faulted). However it does guarantee that the page
2572  * won't be freed completely. And mostly callers simply care that the page
2573  * contains data that was valid *at some point in time*. Typically, an IO
2574  * or similar operation cannot guarantee anything stronger anyway because
2575  * locks can't be held over the syscall boundary.
2576  *
2577  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2578  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2579  * be called after the page is finished with, and before put_page is called.
2580  *
2581  * get_user_pages_remote is typically used for fewer-copy IO operations,
2582  * to get a handle on the memory by some means other than accesses
2583  * via the user virtual addresses. The pages may be submitted for
2584  * DMA to devices or accessed via their kernel linear mapping (via the
2585  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2586  *
2587  * See also get_user_pages_fast, for performance critical applications.
2588  *
2589  * get_user_pages_remote should be phased out in favor of
2590  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2591  * should use get_user_pages_remote because it cannot pass
2592  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2593  */
2594 long get_user_pages_remote(struct mm_struct *mm,
2595 		unsigned long start, unsigned long nr_pages,
2596 		unsigned int gup_flags, struct page **pages,
2597 		int *locked)
2598 {
2599 	int local_locked = 1;
2600 
2601 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2602 			       FOLL_TOUCH | FOLL_REMOTE))
2603 		return -EINVAL;
2604 
2605 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2606 				       locked ? locked : &local_locked,
2607 				       gup_flags);
2608 }
2609 EXPORT_SYMBOL(get_user_pages_remote);
2610 
2611 #else /* CONFIG_MMU */
2612 long get_user_pages_remote(struct mm_struct *mm,
2613 			   unsigned long start, unsigned long nr_pages,
2614 			   unsigned int gup_flags, struct page **pages,
2615 			   int *locked)
2616 {
2617 	return 0;
2618 }
2619 #endif /* !CONFIG_MMU */
2620 
2621 /**
2622  * get_user_pages() - pin user pages in memory
2623  * @start:      starting user address
2624  * @nr_pages:   number of pages from start to pin
2625  * @gup_flags:  flags modifying lookup behaviour
2626  * @pages:      array that receives pointers to the pages pinned.
2627  *              Should be at least nr_pages long. Or NULL, if caller
2628  *              only intends to ensure the pages are faulted in.
2629  *
2630  * This is the same as get_user_pages_remote(), just with a less-flexible
2631  * calling convention where we assume that the mm being operated on belongs to
2632  * the current task, and doesn't allow passing of a locked parameter.  We also
2633  * obviously don't pass FOLL_REMOTE in here.
2634  */
2635 long get_user_pages(unsigned long start, unsigned long nr_pages,
2636 		    unsigned int gup_flags, struct page **pages)
2637 {
2638 	int locked = 1;
2639 
2640 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2641 		return -EINVAL;
2642 
2643 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2644 				       &locked, gup_flags);
2645 }
2646 EXPORT_SYMBOL(get_user_pages);
2647 
2648 /*
2649  * get_user_pages_unlocked() is suitable to replace the form:
2650  *
2651  *      mmap_read_lock(mm);
2652  *      get_user_pages(mm, ..., pages, NULL);
2653  *      mmap_read_unlock(mm);
2654  *
2655  *  with:
2656  *
2657  *      get_user_pages_unlocked(mm, ..., pages);
2658  *
2659  * It is functionally equivalent to get_user_pages_fast so
2660  * get_user_pages_fast should be used instead if specific gup_flags
2661  * (e.g. FOLL_FORCE) are not required.
2662  */
2663 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2664 			     struct page **pages, unsigned int gup_flags)
2665 {
2666 	int locked = 0;
2667 
2668 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2669 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2670 		return -EINVAL;
2671 
2672 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2673 				       &locked, gup_flags);
2674 }
2675 EXPORT_SYMBOL(get_user_pages_unlocked);
2676 
2677 /*
2678  * GUP-fast
2679  *
2680  * get_user_pages_fast attempts to pin user pages by walking the page
2681  * tables directly and avoids taking locks. Thus the walker needs to be
2682  * protected from page table pages being freed from under it, and should
2683  * block any THP splits.
2684  *
2685  * One way to achieve this is to have the walker disable interrupts, and
2686  * rely on IPIs from the TLB flushing code blocking before the page table
2687  * pages are freed. This is unsuitable for architectures that do not need
2688  * to broadcast an IPI when invalidating TLBs.
2689  *
2690  * Another way to achieve this is to batch up page table containing pages
2691  * belonging to more than one mm_user, then rcu_sched a callback to free those
2692  * pages. Disabling interrupts will allow the gup_fast() walker to both block
2693  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2694  * (which is a relatively rare event). The code below adopts this strategy.
2695  *
2696  * Before activating this code, please be aware that the following assumptions
2697  * are currently made:
2698  *
2699  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2700  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2701  *
2702  *  *) ptes can be read atomically by the architecture.
2703  *
2704  *  *) access_ok is sufficient to validate userspace address ranges.
2705  *
2706  * The last two assumptions can be relaxed by the addition of helper functions.
2707  *
2708  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2709  */
2710 #ifdef CONFIG_HAVE_GUP_FAST
2711 /*
2712  * Used in the GUP-fast path to determine whether GUP is permitted to work on
2713  * a specific folio.
2714  *
2715  * This call assumes the caller has pinned the folio, that the lowest page table
2716  * level still points to this folio, and that interrupts have been disabled.
2717  *
2718  * GUP-fast must reject all secretmem folios.
2719  *
2720  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2721  * (see comment describing the writable_file_mapping_allowed() function). We
2722  * therefore try to avoid the most egregious case of a long-term mapping doing
2723  * so.
2724  *
2725  * This function cannot be as thorough as that one as the VMA is not available
2726  * in the fast path, so instead we whitelist known good cases and if in doubt,
2727  * fall back to the slow path.
2728  */
2729 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags)
2730 {
2731 	bool reject_file_backed = false;
2732 	struct address_space *mapping;
2733 	bool check_secretmem = false;
2734 	unsigned long mapping_flags;
2735 
2736 	/*
2737 	 * If we aren't pinning then no problematic write can occur. A long term
2738 	 * pin is the most egregious case so this is the one we disallow.
2739 	 */
2740 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) ==
2741 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2742 		reject_file_backed = true;
2743 
2744 	/* We hold a folio reference, so we can safely access folio fields. */
2745 
2746 	/* secretmem folios are always order-0 folios. */
2747 	if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio))
2748 		check_secretmem = true;
2749 
2750 	if (!reject_file_backed && !check_secretmem)
2751 		return true;
2752 
2753 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2754 		return false;
2755 
2756 	/* hugetlb neither requires dirty-tracking nor can be secretmem. */
2757 	if (folio_test_hugetlb(folio))
2758 		return true;
2759 
2760 	/*
2761 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2762 	 * cannot proceed, which means no actions performed under RCU can
2763 	 * proceed either.
2764 	 *
2765 	 * inodes and thus their mappings are freed under RCU, which means the
2766 	 * mapping cannot be freed beneath us and thus we can safely dereference
2767 	 * it.
2768 	 */
2769 	lockdep_assert_irqs_disabled();
2770 
2771 	/*
2772 	 * However, there may be operations which _alter_ the mapping, so ensure
2773 	 * we read it once and only once.
2774 	 */
2775 	mapping = READ_ONCE(folio->mapping);
2776 
2777 	/*
2778 	 * The mapping may have been truncated, in any case we cannot determine
2779 	 * if this mapping is safe - fall back to slow path to determine how to
2780 	 * proceed.
2781 	 */
2782 	if (!mapping)
2783 		return false;
2784 
2785 	/* Anonymous folios pose no problem. */
2786 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2787 	if (mapping_flags)
2788 		return mapping_flags & PAGE_MAPPING_ANON;
2789 
2790 	/*
2791 	 * At this point, we know the mapping is non-null and points to an
2792 	 * address_space object.
2793 	 */
2794 	if (check_secretmem && secretmem_mapping(mapping))
2795 		return false;
2796 	/* The only remaining allowed file system is shmem. */
2797 	return !reject_file_backed || shmem_mapping(mapping);
2798 }
2799 
2800 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start,
2801 		unsigned int flags, struct page **pages)
2802 {
2803 	while ((*nr) - nr_start) {
2804 		struct folio *folio = page_folio(pages[--(*nr)]);
2805 
2806 		folio_clear_referenced(folio);
2807 		gup_put_folio(folio, 1, flags);
2808 	}
2809 }
2810 
2811 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2812 /*
2813  * GUP-fast relies on pte change detection to avoid concurrent pgtable
2814  * operations.
2815  *
2816  * To pin the page, GUP-fast needs to do below in order:
2817  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2818  *
2819  * For the rest of pgtable operations where pgtable updates can be racy
2820  * with GUP-fast, we need to do (1) clear pte, then (2) check whether page
2821  * is pinned.
2822  *
2823  * Above will work for all pte-level operations, including THP split.
2824  *
2825  * For THP collapse, it's a bit more complicated because GUP-fast may be
2826  * walking a pgtable page that is being freed (pte is still valid but pmd
2827  * can be cleared already).  To avoid race in such condition, we need to
2828  * also check pmd here to make sure pmd doesn't change (corresponds to
2829  * pmdp_collapse_flush() in the THP collapse code path).
2830  */
2831 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2832 		unsigned long end, unsigned int flags, struct page **pages,
2833 		int *nr)
2834 {
2835 	struct dev_pagemap *pgmap = NULL;
2836 	int nr_start = *nr, ret = 0;
2837 	pte_t *ptep, *ptem;
2838 
2839 	ptem = ptep = pte_offset_map(&pmd, addr);
2840 	if (!ptep)
2841 		return 0;
2842 	do {
2843 		pte_t pte = ptep_get_lockless(ptep);
2844 		struct page *page;
2845 		struct folio *folio;
2846 
2847 		/*
2848 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2849 		 * pte_access_permitted() better should reject these pages
2850 		 * either way: otherwise, GUP-fast might succeed in
2851 		 * cases where ordinary GUP would fail due to VMA access
2852 		 * permissions.
2853 		 */
2854 		if (pte_protnone(pte))
2855 			goto pte_unmap;
2856 
2857 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2858 			goto pte_unmap;
2859 
2860 		if (pte_devmap(pte)) {
2861 			if (unlikely(flags & FOLL_LONGTERM))
2862 				goto pte_unmap;
2863 
2864 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2865 			if (unlikely(!pgmap)) {
2866 				gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2867 				goto pte_unmap;
2868 			}
2869 		} else if (pte_special(pte))
2870 			goto pte_unmap;
2871 
2872 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2873 		page = pte_page(pte);
2874 
2875 		folio = try_grab_folio_fast(page, 1, flags);
2876 		if (!folio)
2877 			goto pte_unmap;
2878 
2879 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2880 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2881 			gup_put_folio(folio, 1, flags);
2882 			goto pte_unmap;
2883 		}
2884 
2885 		if (!gup_fast_folio_allowed(folio, flags)) {
2886 			gup_put_folio(folio, 1, flags);
2887 			goto pte_unmap;
2888 		}
2889 
2890 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2891 			gup_put_folio(folio, 1, flags);
2892 			goto pte_unmap;
2893 		}
2894 
2895 		/*
2896 		 * We need to make the page accessible if and only if we are
2897 		 * going to access its content (the FOLL_PIN case).  Please
2898 		 * see Documentation/core-api/pin_user_pages.rst for
2899 		 * details.
2900 		 */
2901 		if (flags & FOLL_PIN) {
2902 			ret = arch_make_folio_accessible(folio);
2903 			if (ret) {
2904 				gup_put_folio(folio, 1, flags);
2905 				goto pte_unmap;
2906 			}
2907 		}
2908 		folio_set_referenced(folio);
2909 		pages[*nr] = page;
2910 		(*nr)++;
2911 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2912 
2913 	ret = 1;
2914 
2915 pte_unmap:
2916 	if (pgmap)
2917 		put_dev_pagemap(pgmap);
2918 	pte_unmap(ptem);
2919 	return ret;
2920 }
2921 #else
2922 
2923 /*
2924  * If we can't determine whether or not a pte is special, then fail immediately
2925  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2926  * to be special.
2927  *
2928  * For a futex to be placed on a THP tail page, get_futex_key requires a
2929  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2930  * useful to have gup_fast_pmd_leaf even if we can't operate on ptes.
2931  */
2932 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2933 		unsigned long end, unsigned int flags, struct page **pages,
2934 		int *nr)
2935 {
2936 	return 0;
2937 }
2938 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2939 
2940 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2941 static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr,
2942 	unsigned long end, unsigned int flags, struct page **pages, int *nr)
2943 {
2944 	int nr_start = *nr;
2945 	struct dev_pagemap *pgmap = NULL;
2946 
2947 	do {
2948 		struct folio *folio;
2949 		struct page *page = pfn_to_page(pfn);
2950 
2951 		pgmap = get_dev_pagemap(pfn, pgmap);
2952 		if (unlikely(!pgmap)) {
2953 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2954 			break;
2955 		}
2956 
2957 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2958 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2959 			break;
2960 		}
2961 
2962 		folio = try_grab_folio_fast(page, 1, flags);
2963 		if (!folio) {
2964 			gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2965 			break;
2966 		}
2967 		folio_set_referenced(folio);
2968 		pages[*nr] = page;
2969 		(*nr)++;
2970 		pfn++;
2971 	} while (addr += PAGE_SIZE, addr != end);
2972 
2973 	put_dev_pagemap(pgmap);
2974 	return addr == end;
2975 }
2976 
2977 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2978 		unsigned long end, unsigned int flags, struct page **pages,
2979 		int *nr)
2980 {
2981 	unsigned long fault_pfn;
2982 	int nr_start = *nr;
2983 
2984 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2985 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
2986 		return 0;
2987 
2988 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2989 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
2990 		return 0;
2991 	}
2992 	return 1;
2993 }
2994 
2995 static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
2996 		unsigned long end, unsigned int flags, struct page **pages,
2997 		int *nr)
2998 {
2999 	unsigned long fault_pfn;
3000 	int nr_start = *nr;
3001 
3002 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
3003 	if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr))
3004 		return 0;
3005 
3006 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3007 		gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages);
3008 		return 0;
3009 	}
3010 	return 1;
3011 }
3012 #else
3013 static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3014 		unsigned long end, unsigned int flags, struct page **pages,
3015 		int *nr)
3016 {
3017 	BUILD_BUG();
3018 	return 0;
3019 }
3020 
3021 static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr,
3022 		unsigned long end, unsigned int flags, struct page **pages,
3023 		int *nr)
3024 {
3025 	BUILD_BUG();
3026 	return 0;
3027 }
3028 #endif
3029 
3030 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr,
3031 		unsigned long end, unsigned int flags, struct page **pages,
3032 		int *nr)
3033 {
3034 	struct page *page;
3035 	struct folio *folio;
3036 	int refs;
3037 
3038 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
3039 		return 0;
3040 
3041 	if (pmd_devmap(orig)) {
3042 		if (unlikely(flags & FOLL_LONGTERM))
3043 			return 0;
3044 		return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags,
3045 					        pages, nr);
3046 	}
3047 
3048 	page = pmd_page(orig);
3049 	refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr);
3050 
3051 	folio = try_grab_folio_fast(page, refs, flags);
3052 	if (!folio)
3053 		return 0;
3054 
3055 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3056 		gup_put_folio(folio, refs, flags);
3057 		return 0;
3058 	}
3059 
3060 	if (!gup_fast_folio_allowed(folio, flags)) {
3061 		gup_put_folio(folio, refs, flags);
3062 		return 0;
3063 	}
3064 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3065 		gup_put_folio(folio, refs, flags);
3066 		return 0;
3067 	}
3068 
3069 	*nr += refs;
3070 	folio_set_referenced(folio);
3071 	return 1;
3072 }
3073 
3074 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr,
3075 		unsigned long end, unsigned int flags, struct page **pages,
3076 		int *nr)
3077 {
3078 	struct page *page;
3079 	struct folio *folio;
3080 	int refs;
3081 
3082 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
3083 		return 0;
3084 
3085 	if (pud_devmap(orig)) {
3086 		if (unlikely(flags & FOLL_LONGTERM))
3087 			return 0;
3088 		return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags,
3089 					        pages, nr);
3090 	}
3091 
3092 	page = pud_page(orig);
3093 	refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr);
3094 
3095 	folio = try_grab_folio_fast(page, refs, flags);
3096 	if (!folio)
3097 		return 0;
3098 
3099 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3100 		gup_put_folio(folio, refs, flags);
3101 		return 0;
3102 	}
3103 
3104 	if (!gup_fast_folio_allowed(folio, flags)) {
3105 		gup_put_folio(folio, refs, flags);
3106 		return 0;
3107 	}
3108 
3109 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3110 		gup_put_folio(folio, refs, flags);
3111 		return 0;
3112 	}
3113 
3114 	*nr += refs;
3115 	folio_set_referenced(folio);
3116 	return 1;
3117 }
3118 
3119 static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr,
3120 		unsigned long end, unsigned int flags, struct page **pages,
3121 		int *nr)
3122 {
3123 	int refs;
3124 	struct page *page;
3125 	struct folio *folio;
3126 
3127 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
3128 		return 0;
3129 
3130 	BUILD_BUG_ON(pgd_devmap(orig));
3131 
3132 	page = pgd_page(orig);
3133 	refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr);
3134 
3135 	folio = try_grab_folio_fast(page, refs, flags);
3136 	if (!folio)
3137 		return 0;
3138 
3139 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3140 		gup_put_folio(folio, refs, flags);
3141 		return 0;
3142 	}
3143 
3144 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
3145 		gup_put_folio(folio, refs, flags);
3146 		return 0;
3147 	}
3148 
3149 	if (!gup_fast_folio_allowed(folio, flags)) {
3150 		gup_put_folio(folio, refs, flags);
3151 		return 0;
3152 	}
3153 
3154 	*nr += refs;
3155 	folio_set_referenced(folio);
3156 	return 1;
3157 }
3158 
3159 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
3160 		unsigned long end, unsigned int flags, struct page **pages,
3161 		int *nr)
3162 {
3163 	unsigned long next;
3164 	pmd_t *pmdp;
3165 
3166 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3167 	do {
3168 		pmd_t pmd = pmdp_get_lockless(pmdp);
3169 
3170 		next = pmd_addr_end(addr, end);
3171 		if (!pmd_present(pmd))
3172 			return 0;
3173 
3174 		if (unlikely(pmd_leaf(pmd))) {
3175 			/* See gup_fast_pte_range() */
3176 			if (pmd_protnone(pmd))
3177 				return 0;
3178 
3179 			if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags,
3180 				pages, nr))
3181 				return 0;
3182 
3183 		} else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags,
3184 					       pages, nr))
3185 			return 0;
3186 	} while (pmdp++, addr = next, addr != end);
3187 
3188 	return 1;
3189 }
3190 
3191 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr,
3192 		unsigned long end, unsigned int flags, struct page **pages,
3193 		int *nr)
3194 {
3195 	unsigned long next;
3196 	pud_t *pudp;
3197 
3198 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3199 	do {
3200 		pud_t pud = READ_ONCE(*pudp);
3201 
3202 		next = pud_addr_end(addr, end);
3203 		if (unlikely(!pud_present(pud)))
3204 			return 0;
3205 		if (unlikely(pud_leaf(pud))) {
3206 			if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags,
3207 					       pages, nr))
3208 				return 0;
3209 		} else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags,
3210 					       pages, nr))
3211 			return 0;
3212 	} while (pudp++, addr = next, addr != end);
3213 
3214 	return 1;
3215 }
3216 
3217 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr,
3218 		unsigned long end, unsigned int flags, struct page **pages,
3219 		int *nr)
3220 {
3221 	unsigned long next;
3222 	p4d_t *p4dp;
3223 
3224 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3225 	do {
3226 		p4d_t p4d = READ_ONCE(*p4dp);
3227 
3228 		next = p4d_addr_end(addr, end);
3229 		if (!p4d_present(p4d))
3230 			return 0;
3231 		BUILD_BUG_ON(p4d_leaf(p4d));
3232 		if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags,
3233 					pages, nr))
3234 			return 0;
3235 	} while (p4dp++, addr = next, addr != end);
3236 
3237 	return 1;
3238 }
3239 
3240 static void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3241 		unsigned int flags, struct page **pages, int *nr)
3242 {
3243 	unsigned long next;
3244 	pgd_t *pgdp;
3245 
3246 	pgdp = pgd_offset(current->mm, addr);
3247 	do {
3248 		pgd_t pgd = READ_ONCE(*pgdp);
3249 
3250 		next = pgd_addr_end(addr, end);
3251 		if (pgd_none(pgd))
3252 			return;
3253 		if (unlikely(pgd_leaf(pgd))) {
3254 			if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags,
3255 					       pages, nr))
3256 				return;
3257 		} else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags,
3258 					       pages, nr))
3259 			return;
3260 	} while (pgdp++, addr = next, addr != end);
3261 }
3262 #else
3263 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end,
3264 		unsigned int flags, struct page **pages, int *nr)
3265 {
3266 }
3267 #endif /* CONFIG_HAVE_GUP_FAST */
3268 
3269 #ifndef gup_fast_permitted
3270 /*
3271  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3272  * we need to fall back to the slow version:
3273  */
3274 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3275 {
3276 	return true;
3277 }
3278 #endif
3279 
3280 static unsigned long gup_fast(unsigned long start, unsigned long end,
3281 		unsigned int gup_flags, struct page **pages)
3282 {
3283 	unsigned long flags;
3284 	int nr_pinned = 0;
3285 	unsigned seq;
3286 
3287 	if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) ||
3288 	    !gup_fast_permitted(start, end))
3289 		return 0;
3290 
3291 	if (gup_flags & FOLL_PIN) {
3292 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3293 		if (seq & 1)
3294 			return 0;
3295 	}
3296 
3297 	/*
3298 	 * Disable interrupts. The nested form is used, in order to allow full,
3299 	 * general purpose use of this routine.
3300 	 *
3301 	 * With interrupts disabled, we block page table pages from being freed
3302 	 * from under us. See struct mmu_table_batch comments in
3303 	 * include/asm-generic/tlb.h for more details.
3304 	 *
3305 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3306 	 * that come from THPs splitting.
3307 	 */
3308 	local_irq_save(flags);
3309 	gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3310 	local_irq_restore(flags);
3311 
3312 	/*
3313 	 * When pinning pages for DMA there could be a concurrent write protect
3314 	 * from fork() via copy_page_range(), in this case always fail GUP-fast.
3315 	 */
3316 	if (gup_flags & FOLL_PIN) {
3317 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3318 			gup_fast_unpin_user_pages(pages, nr_pinned);
3319 			return 0;
3320 		} else {
3321 			sanity_check_pinned_pages(pages, nr_pinned);
3322 		}
3323 	}
3324 	return nr_pinned;
3325 }
3326 
3327 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages,
3328 		unsigned int gup_flags, struct page **pages)
3329 {
3330 	unsigned long len, end;
3331 	unsigned long nr_pinned;
3332 	int locked = 0;
3333 	int ret;
3334 
3335 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3336 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3337 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3338 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3339 		return -EINVAL;
3340 
3341 	if (gup_flags & FOLL_PIN)
3342 		mm_set_has_pinned_flag(&current->mm->flags);
3343 
3344 	if (!(gup_flags & FOLL_FAST_ONLY))
3345 		might_lock_read(&current->mm->mmap_lock);
3346 
3347 	start = untagged_addr(start) & PAGE_MASK;
3348 	len = nr_pages << PAGE_SHIFT;
3349 	if (check_add_overflow(start, len, &end))
3350 		return -EOVERFLOW;
3351 	if (end > TASK_SIZE_MAX)
3352 		return -EFAULT;
3353 	if (unlikely(!access_ok((void __user *)start, len)))
3354 		return -EFAULT;
3355 
3356 	nr_pinned = gup_fast(start, end, gup_flags, pages);
3357 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3358 		return nr_pinned;
3359 
3360 	/* Slow path: try to get the remaining pages with get_user_pages */
3361 	start += nr_pinned << PAGE_SHIFT;
3362 	pages += nr_pinned;
3363 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3364 				    pages, &locked,
3365 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3366 	if (ret < 0) {
3367 		/*
3368 		 * The caller has to unpin the pages we already pinned so
3369 		 * returning -errno is not an option
3370 		 */
3371 		if (nr_pinned)
3372 			return nr_pinned;
3373 		return ret;
3374 	}
3375 	return ret + nr_pinned;
3376 }
3377 
3378 /**
3379  * get_user_pages_fast_only() - pin user pages in memory
3380  * @start:      starting user address
3381  * @nr_pages:   number of pages from start to pin
3382  * @gup_flags:  flags modifying pin behaviour
3383  * @pages:      array that receives pointers to the pages pinned.
3384  *              Should be at least nr_pages long.
3385  *
3386  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3387  * the regular GUP.
3388  *
3389  * If the architecture does not support this function, simply return with no
3390  * pages pinned.
3391  *
3392  * Careful, careful! COW breaking can go either way, so a non-write
3393  * access can get ambiguous page results. If you call this function without
3394  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3395  */
3396 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3397 			     unsigned int gup_flags, struct page **pages)
3398 {
3399 	/*
3400 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3401 	 * because gup fast is always a "pin with a +1 page refcount" request.
3402 	 *
3403 	 * FOLL_FAST_ONLY is required in order to match the API description of
3404 	 * this routine: no fall back to regular ("slow") GUP.
3405 	 */
3406 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3407 			       FOLL_GET | FOLL_FAST_ONLY))
3408 		return -EINVAL;
3409 
3410 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3411 }
3412 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3413 
3414 /**
3415  * get_user_pages_fast() - pin user pages in memory
3416  * @start:      starting user address
3417  * @nr_pages:   number of pages from start to pin
3418  * @gup_flags:  flags modifying pin behaviour
3419  * @pages:      array that receives pointers to the pages pinned.
3420  *              Should be at least nr_pages long.
3421  *
3422  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3423  * If not successful, it will fall back to taking the lock and
3424  * calling get_user_pages().
3425  *
3426  * Returns number of pages pinned. This may be fewer than the number requested.
3427  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3428  * -errno.
3429  */
3430 int get_user_pages_fast(unsigned long start, int nr_pages,
3431 			unsigned int gup_flags, struct page **pages)
3432 {
3433 	/*
3434 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3435 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3436 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3437 	 * request.
3438 	 */
3439 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3440 		return -EINVAL;
3441 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3442 }
3443 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3444 
3445 /**
3446  * pin_user_pages_fast() - pin user pages in memory without taking locks
3447  *
3448  * @start:      starting user address
3449  * @nr_pages:   number of pages from start to pin
3450  * @gup_flags:  flags modifying pin behaviour
3451  * @pages:      array that receives pointers to the pages pinned.
3452  *              Should be at least nr_pages long.
3453  *
3454  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3455  * get_user_pages_fast() for documentation on the function arguments, because
3456  * the arguments here are identical.
3457  *
3458  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3459  * see Documentation/core-api/pin_user_pages.rst for further details.
3460  *
3461  * Note that if a zero_page is amongst the returned pages, it will not have
3462  * pins in it and unpin_user_page() will not remove pins from it.
3463  */
3464 int pin_user_pages_fast(unsigned long start, int nr_pages,
3465 			unsigned int gup_flags, struct page **pages)
3466 {
3467 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3468 		return -EINVAL;
3469 	return gup_fast_fallback(start, nr_pages, gup_flags, pages);
3470 }
3471 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3472 
3473 /**
3474  * pin_user_pages_remote() - pin pages of a remote process
3475  *
3476  * @mm:		mm_struct of target mm
3477  * @start:	starting user address
3478  * @nr_pages:	number of pages from start to pin
3479  * @gup_flags:	flags modifying lookup behaviour
3480  * @pages:	array that receives pointers to the pages pinned.
3481  *		Should be at least nr_pages long.
3482  * @locked:	pointer to lock flag indicating whether lock is held and
3483  *		subsequently whether VM_FAULT_RETRY functionality can be
3484  *		utilised. Lock must initially be held.
3485  *
3486  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3487  * get_user_pages_remote() for documentation on the function arguments, because
3488  * the arguments here are identical.
3489  *
3490  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3491  * see Documentation/core-api/pin_user_pages.rst for details.
3492  *
3493  * Note that if a zero_page is amongst the returned pages, it will not have
3494  * pins in it and unpin_user_page*() will not remove pins from it.
3495  */
3496 long pin_user_pages_remote(struct mm_struct *mm,
3497 			   unsigned long start, unsigned long nr_pages,
3498 			   unsigned int gup_flags, struct page **pages,
3499 			   int *locked)
3500 {
3501 	int local_locked = 1;
3502 
3503 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3504 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3505 		return 0;
3506 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3507 				     locked ? locked : &local_locked,
3508 				     gup_flags);
3509 }
3510 EXPORT_SYMBOL(pin_user_pages_remote);
3511 
3512 /**
3513  * pin_user_pages() - pin user pages in memory for use by other devices
3514  *
3515  * @start:	starting user address
3516  * @nr_pages:	number of pages from start to pin
3517  * @gup_flags:	flags modifying lookup behaviour
3518  * @pages:	array that receives pointers to the pages pinned.
3519  *		Should be at least nr_pages long.
3520  *
3521  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3522  * FOLL_PIN is set.
3523  *
3524  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3525  * see Documentation/core-api/pin_user_pages.rst for details.
3526  *
3527  * Note that if a zero_page is amongst the returned pages, it will not have
3528  * pins in it and unpin_user_page*() will not remove pins from it.
3529  */
3530 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3531 		    unsigned int gup_flags, struct page **pages)
3532 {
3533 	int locked = 1;
3534 
3535 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3536 		return 0;
3537 	return __gup_longterm_locked(current->mm, start, nr_pages,
3538 				     pages, &locked, gup_flags);
3539 }
3540 EXPORT_SYMBOL(pin_user_pages);
3541 
3542 /*
3543  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3544  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3545  * FOLL_PIN and rejects FOLL_GET.
3546  *
3547  * Note that if a zero_page is amongst the returned pages, it will not have
3548  * pins in it and unpin_user_page*() will not remove pins from it.
3549  */
3550 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3551 			     struct page **pages, unsigned int gup_flags)
3552 {
3553 	int locked = 0;
3554 
3555 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3556 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3557 		return 0;
3558 
3559 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3560 				     &locked, gup_flags);
3561 }
3562 EXPORT_SYMBOL(pin_user_pages_unlocked);
3563 
3564 /**
3565  * memfd_pin_folios() - pin folios associated with a memfd
3566  * @memfd:      the memfd whose folios are to be pinned
3567  * @start:      the first memfd offset
3568  * @end:        the last memfd offset (inclusive)
3569  * @folios:     array that receives pointers to the folios pinned
3570  * @max_folios: maximum number of entries in @folios
3571  * @offset:     the offset into the first folio
3572  *
3573  * Attempt to pin folios associated with a memfd in the contiguous range
3574  * [start, end]. Given that a memfd is either backed by shmem or hugetlb,
3575  * the folios can either be found in the page cache or need to be allocated
3576  * if necessary. Once the folios are located, they are all pinned via
3577  * FOLL_PIN and @offset is populatedwith the offset into the first folio.
3578  * And, eventually, these pinned folios must be released either using
3579  * unpin_folios() or unpin_folio().
3580  *
3581  * It must be noted that the folios may be pinned for an indefinite amount
3582  * of time. And, in most cases, the duration of time they may stay pinned
3583  * would be controlled by the userspace. This behavior is effectively the
3584  * same as using FOLL_LONGTERM with other GUP APIs.
3585  *
3586  * Returns number of folios pinned, which could be less than @max_folios
3587  * as it depends on the folio sizes that cover the range [start, end].
3588  * If no folios were pinned, it returns -errno.
3589  */
3590 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
3591 		      struct folio **folios, unsigned int max_folios,
3592 		      pgoff_t *offset)
3593 {
3594 	unsigned int flags, nr_folios, nr_found;
3595 	unsigned int i, pgshift = PAGE_SHIFT;
3596 	pgoff_t start_idx, end_idx, next_idx;
3597 	struct folio *folio = NULL;
3598 	struct folio_batch fbatch;
3599 	struct hstate *h;
3600 	long ret = -EINVAL;
3601 
3602 	if (start < 0 || start > end || !max_folios)
3603 		return -EINVAL;
3604 
3605 	if (!memfd)
3606 		return -EINVAL;
3607 
3608 	if (!shmem_file(memfd) && !is_file_hugepages(memfd))
3609 		return -EINVAL;
3610 
3611 	if (end >= i_size_read(file_inode(memfd)))
3612 		return -EINVAL;
3613 
3614 	if (is_file_hugepages(memfd)) {
3615 		h = hstate_file(memfd);
3616 		pgshift = huge_page_shift(h);
3617 	}
3618 
3619 	flags = memalloc_pin_save();
3620 	do {
3621 		nr_folios = 0;
3622 		start_idx = start >> pgshift;
3623 		end_idx = end >> pgshift;
3624 		if (is_file_hugepages(memfd)) {
3625 			start_idx <<= huge_page_order(h);
3626 			end_idx <<= huge_page_order(h);
3627 		}
3628 
3629 		folio_batch_init(&fbatch);
3630 		while (start_idx <= end_idx && nr_folios < max_folios) {
3631 			/*
3632 			 * In most cases, we should be able to find the folios
3633 			 * in the page cache. If we cannot find them for some
3634 			 * reason, we try to allocate them and add them to the
3635 			 * page cache.
3636 			 */
3637 			nr_found = filemap_get_folios_contig(memfd->f_mapping,
3638 							     &start_idx,
3639 							     end_idx,
3640 							     &fbatch);
3641 			if (folio) {
3642 				folio_put(folio);
3643 				folio = NULL;
3644 			}
3645 
3646 			next_idx = 0;
3647 			for (i = 0; i < nr_found; i++) {
3648 				/*
3649 				 * As there can be multiple entries for a
3650 				 * given folio in the batch returned by
3651 				 * filemap_get_folios_contig(), the below
3652 				 * check is to ensure that we pin and return a
3653 				 * unique set of folios between start and end.
3654 				 */
3655 				if (next_idx &&
3656 				    next_idx != folio_index(fbatch.folios[i]))
3657 					continue;
3658 
3659 				folio = page_folio(&fbatch.folios[i]->page);
3660 
3661 				if (try_grab_folio(folio, 1, FOLL_PIN)) {
3662 					folio_batch_release(&fbatch);
3663 					ret = -EINVAL;
3664 					goto err;
3665 				}
3666 
3667 				if (nr_folios == 0)
3668 					*offset = offset_in_folio(folio, start);
3669 
3670 				folios[nr_folios] = folio;
3671 				next_idx = folio_next_index(folio);
3672 				if (++nr_folios == max_folios)
3673 					break;
3674 			}
3675 
3676 			folio = NULL;
3677 			folio_batch_release(&fbatch);
3678 			if (!nr_found) {
3679 				folio = memfd_alloc_folio(memfd, start_idx);
3680 				if (IS_ERR(folio)) {
3681 					ret = PTR_ERR(folio);
3682 					if (ret != -EEXIST)
3683 						goto err;
3684 				}
3685 			}
3686 		}
3687 
3688 		ret = check_and_migrate_movable_folios(nr_folios, folios);
3689 	} while (ret == -EAGAIN);
3690 
3691 	memalloc_pin_restore(flags);
3692 	return ret ? ret : nr_folios;
3693 err:
3694 	memalloc_pin_restore(flags);
3695 	unpin_folios(folios, nr_folios);
3696 
3697 	return ret;
3698 }
3699 EXPORT_SYMBOL_GPL(memfd_pin_folios);
3700