1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* Equivalent to calling put_page() @refs times. */ 49 static void put_page_refs(struct page *page, int refs) 50 { 51 #ifdef CONFIG_DEBUG_VM 52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 53 return; 54 #endif 55 56 /* 57 * Calling put_page() for each ref is unnecessarily slow. Only the last 58 * ref needs a put_page(). 59 */ 60 if (refs > 1) 61 page_ref_sub(page, refs - 1); 62 put_page(page); 63 } 64 65 /** 66 * try_get_compound_head() - return the compound head page with refcount 67 * appropriately incremented, or NULL if that failed. 68 * 69 * This handles potential refcount overflow correctly. It also works correctly 70 * for various lockless get_user_pages()-related callers, due to the use of 71 * page_cache_add_speculative(). 72 * 73 * Even though the name includes "compound_head", this function is still 74 * appropriate for callers that have a non-compound @page to get. 75 * 76 * @page: pointer to page to be gotten 77 * @refs: the value to add to the page's refcount 78 * 79 * Return: head page (with refcount appropriately incremented) for success, or 80 * NULL upon failure. 81 */ 82 struct page *try_get_compound_head(struct page *page, int refs) 83 { 84 struct page *head = compound_head(page); 85 86 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 87 return NULL; 88 if (unlikely(!page_cache_add_speculative(head, refs))) 89 return NULL; 90 91 /* 92 * At this point we have a stable reference to the head page; but it 93 * could be that between the compound_head() lookup and the refcount 94 * increment, the compound page was split, in which case we'd end up 95 * holding a reference on a page that has nothing to do with the page 96 * we were given anymore. 97 * So now that the head page is stable, recheck that the pages still 98 * belong together. 99 */ 100 if (unlikely(compound_head(page) != head)) { 101 put_page_refs(head, refs); 102 return NULL; 103 } 104 105 return head; 106 } 107 108 /** 109 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 110 * flags-dependent amount. 111 * 112 * Even though the name includes "compound_head", this function is still 113 * appropriate for callers that have a non-compound @page to get. 114 * 115 * @page: pointer to page to be grabbed 116 * @refs: the value to (effectively) add to the page's refcount 117 * @flags: gup flags: these are the FOLL_* flag values. 118 * 119 * "grab" names in this file mean, "look at flags to decide whether to use 120 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 121 * 122 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 123 * same time. (That's true throughout the get_user_pages*() and 124 * pin_user_pages*() APIs.) Cases: 125 * 126 * FOLL_GET: page's refcount will be incremented by @refs. 127 * 128 * FOLL_PIN on compound pages that are > two pages long: page's refcount will 129 * be incremented by @refs, and page[2].hpage_pinned_refcount will be 130 * incremented by @refs * GUP_PIN_COUNTING_BIAS. 131 * 132 * FOLL_PIN on normal pages, or compound pages that are two pages long: 133 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS. 134 * 135 * Return: head page (with refcount appropriately incremented) for success, or 136 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 137 * considered failure, and furthermore, a likely bug in the caller, so a warning 138 * is also emitted. 139 */ 140 struct page *try_grab_compound_head(struct page *page, 141 int refs, unsigned int flags) 142 { 143 if (flags & FOLL_GET) 144 return try_get_compound_head(page, refs); 145 else if (flags & FOLL_PIN) { 146 /* 147 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 148 * right zone, so fail and let the caller fall back to the slow 149 * path. 150 */ 151 if (unlikely((flags & FOLL_LONGTERM) && 152 !is_pinnable_page(page))) 153 return NULL; 154 155 /* 156 * CAUTION: Don't use compound_head() on the page before this 157 * point, the result won't be stable. 158 */ 159 page = try_get_compound_head(page, refs); 160 if (!page) 161 return NULL; 162 163 /* 164 * When pinning a compound page of order > 1 (which is what 165 * hpage_pincount_available() checks for), use an exact count to 166 * track it, via hpage_pincount_add/_sub(). 167 * 168 * However, be sure to *also* increment the normal page refcount 169 * field at least once, so that the page really is pinned. 170 * That's why the refcount from the earlier 171 * try_get_compound_head() is left intact. 172 */ 173 if (hpage_pincount_available(page)) 174 hpage_pincount_add(page, refs); 175 else 176 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 179 refs); 180 181 return page; 182 } 183 184 WARN_ON_ONCE(1); 185 return NULL; 186 } 187 188 static void put_compound_head(struct page *page, int refs, unsigned int flags) 189 { 190 if (flags & FOLL_PIN) { 191 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 192 refs); 193 194 if (hpage_pincount_available(page)) 195 hpage_pincount_sub(page, refs); 196 else 197 refs *= GUP_PIN_COUNTING_BIAS; 198 } 199 200 put_page_refs(page, refs); 201 } 202 203 /** 204 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 205 * 206 * This might not do anything at all, depending on the flags argument. 207 * 208 * "grab" names in this file mean, "look at flags to decide whether to use 209 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 210 * 211 * @page: pointer to page to be grabbed 212 * @flags: gup flags: these are the FOLL_* flag values. 213 * 214 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 215 * time. Cases: please see the try_grab_compound_head() documentation, with 216 * "refs=1". 217 * 218 * Return: true for success, or if no action was required (if neither FOLL_PIN 219 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 220 * FOLL_PIN was set, but the page could not be grabbed. 221 */ 222 bool __must_check try_grab_page(struct page *page, unsigned int flags) 223 { 224 if (!(flags & (FOLL_GET | FOLL_PIN))) 225 return true; 226 227 return try_grab_compound_head(page, 1, flags); 228 } 229 230 /** 231 * unpin_user_page() - release a dma-pinned page 232 * @page: pointer to page to be released 233 * 234 * Pages that were pinned via pin_user_pages*() must be released via either 235 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 236 * that such pages can be separately tracked and uniquely handled. In 237 * particular, interactions with RDMA and filesystems need special handling. 238 */ 239 void unpin_user_page(struct page *page) 240 { 241 put_compound_head(compound_head(page), 1, FOLL_PIN); 242 } 243 EXPORT_SYMBOL(unpin_user_page); 244 245 static inline void compound_range_next(unsigned long i, unsigned long npages, 246 struct page **list, struct page **head, 247 unsigned int *ntails) 248 { 249 struct page *next, *page; 250 unsigned int nr = 1; 251 252 if (i >= npages) 253 return; 254 255 next = *list + i; 256 page = compound_head(next); 257 if (PageCompound(page) && compound_order(page) >= 1) 258 nr = min_t(unsigned int, 259 page + compound_nr(page) - next, npages - i); 260 261 *head = page; 262 *ntails = nr; 263 } 264 265 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 266 for (__i = 0, \ 267 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 268 __i < __npages; __i += __ntails, \ 269 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 270 271 static inline void compound_next(unsigned long i, unsigned long npages, 272 struct page **list, struct page **head, 273 unsigned int *ntails) 274 { 275 struct page *page; 276 unsigned int nr; 277 278 if (i >= npages) 279 return; 280 281 page = compound_head(list[i]); 282 for (nr = i + 1; nr < npages; nr++) { 283 if (compound_head(list[nr]) != page) 284 break; 285 } 286 287 *head = page; 288 *ntails = nr - i; 289 } 290 291 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 292 for (__i = 0, \ 293 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 294 __i < __npages; __i += __ntails, \ 295 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 296 297 /** 298 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 299 * @pages: array of pages to be maybe marked dirty, and definitely released. 300 * @npages: number of pages in the @pages array. 301 * @make_dirty: whether to mark the pages dirty 302 * 303 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 304 * variants called on that page. 305 * 306 * For each page in the @pages array, make that page (or its head page, if a 307 * compound page) dirty, if @make_dirty is true, and if the page was previously 308 * listed as clean. In any case, releases all pages using unpin_user_page(), 309 * possibly via unpin_user_pages(), for the non-dirty case. 310 * 311 * Please see the unpin_user_page() documentation for details. 312 * 313 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 314 * required, then the caller should a) verify that this is really correct, 315 * because _lock() is usually required, and b) hand code it: 316 * set_page_dirty_lock(), unpin_user_page(). 317 * 318 */ 319 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 320 bool make_dirty) 321 { 322 unsigned long index; 323 struct page *head; 324 unsigned int ntails; 325 326 if (!make_dirty) { 327 unpin_user_pages(pages, npages); 328 return; 329 } 330 331 for_each_compound_head(index, pages, npages, head, ntails) { 332 /* 333 * Checking PageDirty at this point may race with 334 * clear_page_dirty_for_io(), but that's OK. Two key 335 * cases: 336 * 337 * 1) This code sees the page as already dirty, so it 338 * skips the call to set_page_dirty(). That could happen 339 * because clear_page_dirty_for_io() called 340 * page_mkclean(), followed by set_page_dirty(). 341 * However, now the page is going to get written back, 342 * which meets the original intention of setting it 343 * dirty, so all is well: clear_page_dirty_for_io() goes 344 * on to call TestClearPageDirty(), and write the page 345 * back. 346 * 347 * 2) This code sees the page as clean, so it calls 348 * set_page_dirty(). The page stays dirty, despite being 349 * written back, so it gets written back again in the 350 * next writeback cycle. This is harmless. 351 */ 352 if (!PageDirty(head)) 353 set_page_dirty_lock(head); 354 put_compound_head(head, ntails, FOLL_PIN); 355 } 356 } 357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 358 359 /** 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty 361 * gup-pinned page range 362 * 363 * @page: the starting page of a range maybe marked dirty, and definitely released. 364 * @npages: number of consecutive pages to release. 365 * @make_dirty: whether to mark the pages dirty 366 * 367 * "gup-pinned page range" refers to a range of pages that has had one of the 368 * pin_user_pages() variants called on that page. 369 * 370 * For the page ranges defined by [page .. page+npages], make that range (or 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 372 * page range was previously listed as clean. 373 * 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 375 * required, then the caller should a) verify that this is really correct, 376 * because _lock() is usually required, and b) hand code it: 377 * set_page_dirty_lock(), unpin_user_page(). 378 * 379 */ 380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 381 bool make_dirty) 382 { 383 unsigned long index; 384 struct page *head; 385 unsigned int ntails; 386 387 for_each_compound_range(index, &page, npages, head, ntails) { 388 if (make_dirty && !PageDirty(head)) 389 set_page_dirty_lock(head); 390 put_compound_head(head, ntails, FOLL_PIN); 391 } 392 } 393 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 394 395 /** 396 * unpin_user_pages() - release an array of gup-pinned pages. 397 * @pages: array of pages to be marked dirty and released. 398 * @npages: number of pages in the @pages array. 399 * 400 * For each page in the @pages array, release the page using unpin_user_page(). 401 * 402 * Please see the unpin_user_page() documentation for details. 403 */ 404 void unpin_user_pages(struct page **pages, unsigned long npages) 405 { 406 unsigned long index; 407 struct page *head; 408 unsigned int ntails; 409 410 /* 411 * If this WARN_ON() fires, then the system *might* be leaking pages (by 412 * leaving them pinned), but probably not. More likely, gup/pup returned 413 * a hard -ERRNO error to the caller, who erroneously passed it here. 414 */ 415 if (WARN_ON(IS_ERR_VALUE(npages))) 416 return; 417 418 for_each_compound_head(index, pages, npages, head, ntails) 419 put_compound_head(head, ntails, FOLL_PIN); 420 } 421 EXPORT_SYMBOL(unpin_user_pages); 422 423 /* 424 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 425 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 426 * cache bouncing on large SMP machines for concurrent pinned gups. 427 */ 428 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 429 { 430 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 431 set_bit(MMF_HAS_PINNED, mm_flags); 432 } 433 434 #ifdef CONFIG_MMU 435 static struct page *no_page_table(struct vm_area_struct *vma, 436 unsigned int flags) 437 { 438 /* 439 * When core dumping an enormous anonymous area that nobody 440 * has touched so far, we don't want to allocate unnecessary pages or 441 * page tables. Return error instead of NULL to skip handle_mm_fault, 442 * then get_dump_page() will return NULL to leave a hole in the dump. 443 * But we can only make this optimization where a hole would surely 444 * be zero-filled if handle_mm_fault() actually did handle it. 445 */ 446 if ((flags & FOLL_DUMP) && 447 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 448 return ERR_PTR(-EFAULT); 449 return NULL; 450 } 451 452 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 453 pte_t *pte, unsigned int flags) 454 { 455 /* No page to get reference */ 456 if (flags & FOLL_GET) 457 return -EFAULT; 458 459 if (flags & FOLL_TOUCH) { 460 pte_t entry = *pte; 461 462 if (flags & FOLL_WRITE) 463 entry = pte_mkdirty(entry); 464 entry = pte_mkyoung(entry); 465 466 if (!pte_same(*pte, entry)) { 467 set_pte_at(vma->vm_mm, address, pte, entry); 468 update_mmu_cache(vma, address, pte); 469 } 470 } 471 472 /* Proper page table entry exists, but no corresponding struct page */ 473 return -EEXIST; 474 } 475 476 /* 477 * FOLL_FORCE can write to even unwritable pte's, but only 478 * after we've gone through a COW cycle and they are dirty. 479 */ 480 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 481 { 482 return pte_write(pte) || 483 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 484 } 485 486 static struct page *follow_page_pte(struct vm_area_struct *vma, 487 unsigned long address, pmd_t *pmd, unsigned int flags, 488 struct dev_pagemap **pgmap) 489 { 490 struct mm_struct *mm = vma->vm_mm; 491 struct page *page; 492 spinlock_t *ptl; 493 pte_t *ptep, pte; 494 int ret; 495 496 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 497 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 498 (FOLL_PIN | FOLL_GET))) 499 return ERR_PTR(-EINVAL); 500 retry: 501 if (unlikely(pmd_bad(*pmd))) 502 return no_page_table(vma, flags); 503 504 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 505 pte = *ptep; 506 if (!pte_present(pte)) { 507 swp_entry_t entry; 508 /* 509 * KSM's break_ksm() relies upon recognizing a ksm page 510 * even while it is being migrated, so for that case we 511 * need migration_entry_wait(). 512 */ 513 if (likely(!(flags & FOLL_MIGRATION))) 514 goto no_page; 515 if (pte_none(pte)) 516 goto no_page; 517 entry = pte_to_swp_entry(pte); 518 if (!is_migration_entry(entry)) 519 goto no_page; 520 pte_unmap_unlock(ptep, ptl); 521 migration_entry_wait(mm, pmd, address); 522 goto retry; 523 } 524 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 525 goto no_page; 526 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 527 pte_unmap_unlock(ptep, ptl); 528 return NULL; 529 } 530 531 page = vm_normal_page(vma, address, pte); 532 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 533 /* 534 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 535 * case since they are only valid while holding the pgmap 536 * reference. 537 */ 538 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 539 if (*pgmap) 540 page = pte_page(pte); 541 else 542 goto no_page; 543 } else if (unlikely(!page)) { 544 if (flags & FOLL_DUMP) { 545 /* Avoid special (like zero) pages in core dumps */ 546 page = ERR_PTR(-EFAULT); 547 goto out; 548 } 549 550 if (is_zero_pfn(pte_pfn(pte))) { 551 page = pte_page(pte); 552 } else { 553 ret = follow_pfn_pte(vma, address, ptep, flags); 554 page = ERR_PTR(ret); 555 goto out; 556 } 557 } 558 559 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 560 if (unlikely(!try_grab_page(page, flags))) { 561 page = ERR_PTR(-ENOMEM); 562 goto out; 563 } 564 /* 565 * We need to make the page accessible if and only if we are going 566 * to access its content (the FOLL_PIN case). Please see 567 * Documentation/core-api/pin_user_pages.rst for details. 568 */ 569 if (flags & FOLL_PIN) { 570 ret = arch_make_page_accessible(page); 571 if (ret) { 572 unpin_user_page(page); 573 page = ERR_PTR(ret); 574 goto out; 575 } 576 } 577 if (flags & FOLL_TOUCH) { 578 if ((flags & FOLL_WRITE) && 579 !pte_dirty(pte) && !PageDirty(page)) 580 set_page_dirty(page); 581 /* 582 * pte_mkyoung() would be more correct here, but atomic care 583 * is needed to avoid losing the dirty bit: it is easier to use 584 * mark_page_accessed(). 585 */ 586 mark_page_accessed(page); 587 } 588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 589 /* Do not mlock pte-mapped THP */ 590 if (PageTransCompound(page)) 591 goto out; 592 593 /* 594 * The preliminary mapping check is mainly to avoid the 595 * pointless overhead of lock_page on the ZERO_PAGE 596 * which might bounce very badly if there is contention. 597 * 598 * If the page is already locked, we don't need to 599 * handle it now - vmscan will handle it later if and 600 * when it attempts to reclaim the page. 601 */ 602 if (page->mapping && trylock_page(page)) { 603 lru_add_drain(); /* push cached pages to LRU */ 604 /* 605 * Because we lock page here, and migration is 606 * blocked by the pte's page reference, and we 607 * know the page is still mapped, we don't even 608 * need to check for file-cache page truncation. 609 */ 610 mlock_vma_page(page); 611 unlock_page(page); 612 } 613 } 614 out: 615 pte_unmap_unlock(ptep, ptl); 616 return page; 617 no_page: 618 pte_unmap_unlock(ptep, ptl); 619 if (!pte_none(pte)) 620 return NULL; 621 return no_page_table(vma, flags); 622 } 623 624 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 625 unsigned long address, pud_t *pudp, 626 unsigned int flags, 627 struct follow_page_context *ctx) 628 { 629 pmd_t *pmd, pmdval; 630 spinlock_t *ptl; 631 struct page *page; 632 struct mm_struct *mm = vma->vm_mm; 633 634 pmd = pmd_offset(pudp, address); 635 /* 636 * The READ_ONCE() will stabilize the pmdval in a register or 637 * on the stack so that it will stop changing under the code. 638 */ 639 pmdval = READ_ONCE(*pmd); 640 if (pmd_none(pmdval)) 641 return no_page_table(vma, flags); 642 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 643 page = follow_huge_pmd(mm, address, pmd, flags); 644 if (page) 645 return page; 646 return no_page_table(vma, flags); 647 } 648 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 649 page = follow_huge_pd(vma, address, 650 __hugepd(pmd_val(pmdval)), flags, 651 PMD_SHIFT); 652 if (page) 653 return page; 654 return no_page_table(vma, flags); 655 } 656 retry: 657 if (!pmd_present(pmdval)) { 658 if (likely(!(flags & FOLL_MIGRATION))) 659 return no_page_table(vma, flags); 660 VM_BUG_ON(thp_migration_supported() && 661 !is_pmd_migration_entry(pmdval)); 662 if (is_pmd_migration_entry(pmdval)) 663 pmd_migration_entry_wait(mm, pmd); 664 pmdval = READ_ONCE(*pmd); 665 /* 666 * MADV_DONTNEED may convert the pmd to null because 667 * mmap_lock is held in read mode 668 */ 669 if (pmd_none(pmdval)) 670 return no_page_table(vma, flags); 671 goto retry; 672 } 673 if (pmd_devmap(pmdval)) { 674 ptl = pmd_lock(mm, pmd); 675 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 676 spin_unlock(ptl); 677 if (page) 678 return page; 679 } 680 if (likely(!pmd_trans_huge(pmdval))) 681 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 682 683 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 684 return no_page_table(vma, flags); 685 686 retry_locked: 687 ptl = pmd_lock(mm, pmd); 688 if (unlikely(pmd_none(*pmd))) { 689 spin_unlock(ptl); 690 return no_page_table(vma, flags); 691 } 692 if (unlikely(!pmd_present(*pmd))) { 693 spin_unlock(ptl); 694 if (likely(!(flags & FOLL_MIGRATION))) 695 return no_page_table(vma, flags); 696 pmd_migration_entry_wait(mm, pmd); 697 goto retry_locked; 698 } 699 if (unlikely(!pmd_trans_huge(*pmd))) { 700 spin_unlock(ptl); 701 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 702 } 703 if (flags & FOLL_SPLIT_PMD) { 704 int ret; 705 page = pmd_page(*pmd); 706 if (is_huge_zero_page(page)) { 707 spin_unlock(ptl); 708 ret = 0; 709 split_huge_pmd(vma, pmd, address); 710 if (pmd_trans_unstable(pmd)) 711 ret = -EBUSY; 712 } else { 713 spin_unlock(ptl); 714 split_huge_pmd(vma, pmd, address); 715 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 716 } 717 718 return ret ? ERR_PTR(ret) : 719 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 720 } 721 page = follow_trans_huge_pmd(vma, address, pmd, flags); 722 spin_unlock(ptl); 723 ctx->page_mask = HPAGE_PMD_NR - 1; 724 return page; 725 } 726 727 static struct page *follow_pud_mask(struct vm_area_struct *vma, 728 unsigned long address, p4d_t *p4dp, 729 unsigned int flags, 730 struct follow_page_context *ctx) 731 { 732 pud_t *pud; 733 spinlock_t *ptl; 734 struct page *page; 735 struct mm_struct *mm = vma->vm_mm; 736 737 pud = pud_offset(p4dp, address); 738 if (pud_none(*pud)) 739 return no_page_table(vma, flags); 740 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 741 page = follow_huge_pud(mm, address, pud, flags); 742 if (page) 743 return page; 744 return no_page_table(vma, flags); 745 } 746 if (is_hugepd(__hugepd(pud_val(*pud)))) { 747 page = follow_huge_pd(vma, address, 748 __hugepd(pud_val(*pud)), flags, 749 PUD_SHIFT); 750 if (page) 751 return page; 752 return no_page_table(vma, flags); 753 } 754 if (pud_devmap(*pud)) { 755 ptl = pud_lock(mm, pud); 756 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 757 spin_unlock(ptl); 758 if (page) 759 return page; 760 } 761 if (unlikely(pud_bad(*pud))) 762 return no_page_table(vma, flags); 763 764 return follow_pmd_mask(vma, address, pud, flags, ctx); 765 } 766 767 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 768 unsigned long address, pgd_t *pgdp, 769 unsigned int flags, 770 struct follow_page_context *ctx) 771 { 772 p4d_t *p4d; 773 struct page *page; 774 775 p4d = p4d_offset(pgdp, address); 776 if (p4d_none(*p4d)) 777 return no_page_table(vma, flags); 778 BUILD_BUG_ON(p4d_huge(*p4d)); 779 if (unlikely(p4d_bad(*p4d))) 780 return no_page_table(vma, flags); 781 782 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 783 page = follow_huge_pd(vma, address, 784 __hugepd(p4d_val(*p4d)), flags, 785 P4D_SHIFT); 786 if (page) 787 return page; 788 return no_page_table(vma, flags); 789 } 790 return follow_pud_mask(vma, address, p4d, flags, ctx); 791 } 792 793 /** 794 * follow_page_mask - look up a page descriptor from a user-virtual address 795 * @vma: vm_area_struct mapping @address 796 * @address: virtual address to look up 797 * @flags: flags modifying lookup behaviour 798 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 799 * pointer to output page_mask 800 * 801 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 802 * 803 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 804 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 805 * 806 * On output, the @ctx->page_mask is set according to the size of the page. 807 * 808 * Return: the mapped (struct page *), %NULL if no mapping exists, or 809 * an error pointer if there is a mapping to something not represented 810 * by a page descriptor (see also vm_normal_page()). 811 */ 812 static struct page *follow_page_mask(struct vm_area_struct *vma, 813 unsigned long address, unsigned int flags, 814 struct follow_page_context *ctx) 815 { 816 pgd_t *pgd; 817 struct page *page; 818 struct mm_struct *mm = vma->vm_mm; 819 820 ctx->page_mask = 0; 821 822 /* make this handle hugepd */ 823 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 824 if (!IS_ERR(page)) { 825 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 826 return page; 827 } 828 829 pgd = pgd_offset(mm, address); 830 831 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 832 return no_page_table(vma, flags); 833 834 if (pgd_huge(*pgd)) { 835 page = follow_huge_pgd(mm, address, pgd, flags); 836 if (page) 837 return page; 838 return no_page_table(vma, flags); 839 } 840 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 841 page = follow_huge_pd(vma, address, 842 __hugepd(pgd_val(*pgd)), flags, 843 PGDIR_SHIFT); 844 if (page) 845 return page; 846 return no_page_table(vma, flags); 847 } 848 849 return follow_p4d_mask(vma, address, pgd, flags, ctx); 850 } 851 852 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 853 unsigned int foll_flags) 854 { 855 struct follow_page_context ctx = { NULL }; 856 struct page *page; 857 858 if (vma_is_secretmem(vma)) 859 return NULL; 860 861 page = follow_page_mask(vma, address, foll_flags, &ctx); 862 if (ctx.pgmap) 863 put_dev_pagemap(ctx.pgmap); 864 return page; 865 } 866 867 static int get_gate_page(struct mm_struct *mm, unsigned long address, 868 unsigned int gup_flags, struct vm_area_struct **vma, 869 struct page **page) 870 { 871 pgd_t *pgd; 872 p4d_t *p4d; 873 pud_t *pud; 874 pmd_t *pmd; 875 pte_t *pte; 876 int ret = -EFAULT; 877 878 /* user gate pages are read-only */ 879 if (gup_flags & FOLL_WRITE) 880 return -EFAULT; 881 if (address > TASK_SIZE) 882 pgd = pgd_offset_k(address); 883 else 884 pgd = pgd_offset_gate(mm, address); 885 if (pgd_none(*pgd)) 886 return -EFAULT; 887 p4d = p4d_offset(pgd, address); 888 if (p4d_none(*p4d)) 889 return -EFAULT; 890 pud = pud_offset(p4d, address); 891 if (pud_none(*pud)) 892 return -EFAULT; 893 pmd = pmd_offset(pud, address); 894 if (!pmd_present(*pmd)) 895 return -EFAULT; 896 VM_BUG_ON(pmd_trans_huge(*pmd)); 897 pte = pte_offset_map(pmd, address); 898 if (pte_none(*pte)) 899 goto unmap; 900 *vma = get_gate_vma(mm); 901 if (!page) 902 goto out; 903 *page = vm_normal_page(*vma, address, *pte); 904 if (!*page) { 905 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 906 goto unmap; 907 *page = pte_page(*pte); 908 } 909 if (unlikely(!try_grab_page(*page, gup_flags))) { 910 ret = -ENOMEM; 911 goto unmap; 912 } 913 out: 914 ret = 0; 915 unmap: 916 pte_unmap(pte); 917 return ret; 918 } 919 920 /* 921 * mmap_lock must be held on entry. If @locked != NULL and *@flags 922 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 923 * is, *@locked will be set to 0 and -EBUSY returned. 924 */ 925 static int faultin_page(struct vm_area_struct *vma, 926 unsigned long address, unsigned int *flags, int *locked) 927 { 928 unsigned int fault_flags = 0; 929 vm_fault_t ret; 930 931 /* mlock all present pages, but do not fault in new pages */ 932 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 933 return -ENOENT; 934 if (*flags & FOLL_WRITE) 935 fault_flags |= FAULT_FLAG_WRITE; 936 if (*flags & FOLL_REMOTE) 937 fault_flags |= FAULT_FLAG_REMOTE; 938 if (locked) 939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 940 if (*flags & FOLL_NOWAIT) 941 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 942 if (*flags & FOLL_TRIED) { 943 /* 944 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 945 * can co-exist 946 */ 947 fault_flags |= FAULT_FLAG_TRIED; 948 } 949 950 ret = handle_mm_fault(vma, address, fault_flags, NULL); 951 if (ret & VM_FAULT_ERROR) { 952 int err = vm_fault_to_errno(ret, *flags); 953 954 if (err) 955 return err; 956 BUG(); 957 } 958 959 if (ret & VM_FAULT_RETRY) { 960 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 961 *locked = 0; 962 return -EBUSY; 963 } 964 965 /* 966 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 967 * necessary, even if maybe_mkwrite decided not to set pte_write. We 968 * can thus safely do subsequent page lookups as if they were reads. 969 * But only do so when looping for pte_write is futile: in some cases 970 * userspace may also be wanting to write to the gotten user page, 971 * which a read fault here might prevent (a readonly page might get 972 * reCOWed by userspace write). 973 */ 974 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 975 *flags |= FOLL_COW; 976 return 0; 977 } 978 979 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 980 { 981 vm_flags_t vm_flags = vma->vm_flags; 982 int write = (gup_flags & FOLL_WRITE); 983 int foreign = (gup_flags & FOLL_REMOTE); 984 985 if (vm_flags & (VM_IO | VM_PFNMAP)) 986 return -EFAULT; 987 988 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 989 return -EFAULT; 990 991 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 992 return -EOPNOTSUPP; 993 994 if (vma_is_secretmem(vma)) 995 return -EFAULT; 996 997 if (write) { 998 if (!(vm_flags & VM_WRITE)) { 999 if (!(gup_flags & FOLL_FORCE)) 1000 return -EFAULT; 1001 /* 1002 * We used to let the write,force case do COW in a 1003 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1004 * set a breakpoint in a read-only mapping of an 1005 * executable, without corrupting the file (yet only 1006 * when that file had been opened for writing!). 1007 * Anon pages in shared mappings are surprising: now 1008 * just reject it. 1009 */ 1010 if (!is_cow_mapping(vm_flags)) 1011 return -EFAULT; 1012 } 1013 } else if (!(vm_flags & VM_READ)) { 1014 if (!(gup_flags & FOLL_FORCE)) 1015 return -EFAULT; 1016 /* 1017 * Is there actually any vma we can reach here which does not 1018 * have VM_MAYREAD set? 1019 */ 1020 if (!(vm_flags & VM_MAYREAD)) 1021 return -EFAULT; 1022 } 1023 /* 1024 * gups are always data accesses, not instruction 1025 * fetches, so execute=false here 1026 */ 1027 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1028 return -EFAULT; 1029 return 0; 1030 } 1031 1032 /** 1033 * __get_user_pages() - pin user pages in memory 1034 * @mm: mm_struct of target mm 1035 * @start: starting user address 1036 * @nr_pages: number of pages from start to pin 1037 * @gup_flags: flags modifying pin behaviour 1038 * @pages: array that receives pointers to the pages pinned. 1039 * Should be at least nr_pages long. Or NULL, if caller 1040 * only intends to ensure the pages are faulted in. 1041 * @vmas: array of pointers to vmas corresponding to each page. 1042 * Or NULL if the caller does not require them. 1043 * @locked: whether we're still with the mmap_lock held 1044 * 1045 * Returns either number of pages pinned (which may be less than the 1046 * number requested), or an error. Details about the return value: 1047 * 1048 * -- If nr_pages is 0, returns 0. 1049 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1050 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1051 * pages pinned. Again, this may be less than nr_pages. 1052 * -- 0 return value is possible when the fault would need to be retried. 1053 * 1054 * The caller is responsible for releasing returned @pages, via put_page(). 1055 * 1056 * @vmas are valid only as long as mmap_lock is held. 1057 * 1058 * Must be called with mmap_lock held. It may be released. See below. 1059 * 1060 * __get_user_pages walks a process's page tables and takes a reference to 1061 * each struct page that each user address corresponds to at a given 1062 * instant. That is, it takes the page that would be accessed if a user 1063 * thread accesses the given user virtual address at that instant. 1064 * 1065 * This does not guarantee that the page exists in the user mappings when 1066 * __get_user_pages returns, and there may even be a completely different 1067 * page there in some cases (eg. if mmapped pagecache has been invalidated 1068 * and subsequently re faulted). However it does guarantee that the page 1069 * won't be freed completely. And mostly callers simply care that the page 1070 * contains data that was valid *at some point in time*. Typically, an IO 1071 * or similar operation cannot guarantee anything stronger anyway because 1072 * locks can't be held over the syscall boundary. 1073 * 1074 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1075 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1076 * appropriate) must be called after the page is finished with, and 1077 * before put_page is called. 1078 * 1079 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1080 * released by an up_read(). That can happen if @gup_flags does not 1081 * have FOLL_NOWAIT. 1082 * 1083 * A caller using such a combination of @locked and @gup_flags 1084 * must therefore hold the mmap_lock for reading only, and recognize 1085 * when it's been released. Otherwise, it must be held for either 1086 * reading or writing and will not be released. 1087 * 1088 * In most cases, get_user_pages or get_user_pages_fast should be used 1089 * instead of __get_user_pages. __get_user_pages should be used only if 1090 * you need some special @gup_flags. 1091 */ 1092 static long __get_user_pages(struct mm_struct *mm, 1093 unsigned long start, unsigned long nr_pages, 1094 unsigned int gup_flags, struct page **pages, 1095 struct vm_area_struct **vmas, int *locked) 1096 { 1097 long ret = 0, i = 0; 1098 struct vm_area_struct *vma = NULL; 1099 struct follow_page_context ctx = { NULL }; 1100 1101 if (!nr_pages) 1102 return 0; 1103 1104 start = untagged_addr(start); 1105 1106 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1107 1108 /* 1109 * If FOLL_FORCE is set then do not force a full fault as the hinting 1110 * fault information is unrelated to the reference behaviour of a task 1111 * using the address space 1112 */ 1113 if (!(gup_flags & FOLL_FORCE)) 1114 gup_flags |= FOLL_NUMA; 1115 1116 do { 1117 struct page *page; 1118 unsigned int foll_flags = gup_flags; 1119 unsigned int page_increm; 1120 1121 /* first iteration or cross vma bound */ 1122 if (!vma || start >= vma->vm_end) { 1123 vma = find_extend_vma(mm, start); 1124 if (!vma && in_gate_area(mm, start)) { 1125 ret = get_gate_page(mm, start & PAGE_MASK, 1126 gup_flags, &vma, 1127 pages ? &pages[i] : NULL); 1128 if (ret) 1129 goto out; 1130 ctx.page_mask = 0; 1131 goto next_page; 1132 } 1133 1134 if (!vma) { 1135 ret = -EFAULT; 1136 goto out; 1137 } 1138 ret = check_vma_flags(vma, gup_flags); 1139 if (ret) 1140 goto out; 1141 1142 if (is_vm_hugetlb_page(vma)) { 1143 i = follow_hugetlb_page(mm, vma, pages, vmas, 1144 &start, &nr_pages, i, 1145 gup_flags, locked); 1146 if (locked && *locked == 0) { 1147 /* 1148 * We've got a VM_FAULT_RETRY 1149 * and we've lost mmap_lock. 1150 * We must stop here. 1151 */ 1152 BUG_ON(gup_flags & FOLL_NOWAIT); 1153 goto out; 1154 } 1155 continue; 1156 } 1157 } 1158 retry: 1159 /* 1160 * If we have a pending SIGKILL, don't keep faulting pages and 1161 * potentially allocating memory. 1162 */ 1163 if (fatal_signal_pending(current)) { 1164 ret = -EINTR; 1165 goto out; 1166 } 1167 cond_resched(); 1168 1169 page = follow_page_mask(vma, start, foll_flags, &ctx); 1170 if (!page) { 1171 ret = faultin_page(vma, start, &foll_flags, locked); 1172 switch (ret) { 1173 case 0: 1174 goto retry; 1175 case -EBUSY: 1176 ret = 0; 1177 fallthrough; 1178 case -EFAULT: 1179 case -ENOMEM: 1180 case -EHWPOISON: 1181 goto out; 1182 case -ENOENT: 1183 goto next_page; 1184 } 1185 BUG(); 1186 } else if (PTR_ERR(page) == -EEXIST) { 1187 /* 1188 * Proper page table entry exists, but no corresponding 1189 * struct page. 1190 */ 1191 goto next_page; 1192 } else if (IS_ERR(page)) { 1193 ret = PTR_ERR(page); 1194 goto out; 1195 } 1196 if (pages) { 1197 pages[i] = page; 1198 flush_anon_page(vma, page, start); 1199 flush_dcache_page(page); 1200 ctx.page_mask = 0; 1201 } 1202 next_page: 1203 if (vmas) { 1204 vmas[i] = vma; 1205 ctx.page_mask = 0; 1206 } 1207 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1208 if (page_increm > nr_pages) 1209 page_increm = nr_pages; 1210 i += page_increm; 1211 start += page_increm * PAGE_SIZE; 1212 nr_pages -= page_increm; 1213 } while (nr_pages); 1214 out: 1215 if (ctx.pgmap) 1216 put_dev_pagemap(ctx.pgmap); 1217 return i ? i : ret; 1218 } 1219 1220 static bool vma_permits_fault(struct vm_area_struct *vma, 1221 unsigned int fault_flags) 1222 { 1223 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1224 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1225 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1226 1227 if (!(vm_flags & vma->vm_flags)) 1228 return false; 1229 1230 /* 1231 * The architecture might have a hardware protection 1232 * mechanism other than read/write that can deny access. 1233 * 1234 * gup always represents data access, not instruction 1235 * fetches, so execute=false here: 1236 */ 1237 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1238 return false; 1239 1240 return true; 1241 } 1242 1243 /** 1244 * fixup_user_fault() - manually resolve a user page fault 1245 * @mm: mm_struct of target mm 1246 * @address: user address 1247 * @fault_flags:flags to pass down to handle_mm_fault() 1248 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1249 * does not allow retry. If NULL, the caller must guarantee 1250 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1251 * 1252 * This is meant to be called in the specific scenario where for locking reasons 1253 * we try to access user memory in atomic context (within a pagefault_disable() 1254 * section), this returns -EFAULT, and we want to resolve the user fault before 1255 * trying again. 1256 * 1257 * Typically this is meant to be used by the futex code. 1258 * 1259 * The main difference with get_user_pages() is that this function will 1260 * unconditionally call handle_mm_fault() which will in turn perform all the 1261 * necessary SW fixup of the dirty and young bits in the PTE, while 1262 * get_user_pages() only guarantees to update these in the struct page. 1263 * 1264 * This is important for some architectures where those bits also gate the 1265 * access permission to the page because they are maintained in software. On 1266 * such architectures, gup() will not be enough to make a subsequent access 1267 * succeed. 1268 * 1269 * This function will not return with an unlocked mmap_lock. So it has not the 1270 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1271 */ 1272 int fixup_user_fault(struct mm_struct *mm, 1273 unsigned long address, unsigned int fault_flags, 1274 bool *unlocked) 1275 { 1276 struct vm_area_struct *vma; 1277 vm_fault_t ret; 1278 1279 address = untagged_addr(address); 1280 1281 if (unlocked) 1282 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1283 1284 retry: 1285 vma = find_extend_vma(mm, address); 1286 if (!vma || address < vma->vm_start) 1287 return -EFAULT; 1288 1289 if (!vma_permits_fault(vma, fault_flags)) 1290 return -EFAULT; 1291 1292 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1293 fatal_signal_pending(current)) 1294 return -EINTR; 1295 1296 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1297 if (ret & VM_FAULT_ERROR) { 1298 int err = vm_fault_to_errno(ret, 0); 1299 1300 if (err) 1301 return err; 1302 BUG(); 1303 } 1304 1305 if (ret & VM_FAULT_RETRY) { 1306 mmap_read_lock(mm); 1307 *unlocked = true; 1308 fault_flags |= FAULT_FLAG_TRIED; 1309 goto retry; 1310 } 1311 1312 return 0; 1313 } 1314 EXPORT_SYMBOL_GPL(fixup_user_fault); 1315 1316 /* 1317 * Please note that this function, unlike __get_user_pages will not 1318 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1319 */ 1320 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1321 unsigned long start, 1322 unsigned long nr_pages, 1323 struct page **pages, 1324 struct vm_area_struct **vmas, 1325 int *locked, 1326 unsigned int flags) 1327 { 1328 long ret, pages_done; 1329 bool lock_dropped; 1330 1331 if (locked) { 1332 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1333 BUG_ON(vmas); 1334 /* check caller initialized locked */ 1335 BUG_ON(*locked != 1); 1336 } 1337 1338 if (flags & FOLL_PIN) 1339 mm_set_has_pinned_flag(&mm->flags); 1340 1341 /* 1342 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1343 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1344 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1345 * for FOLL_GET, not for the newer FOLL_PIN. 1346 * 1347 * FOLL_PIN always expects pages to be non-null, but no need to assert 1348 * that here, as any failures will be obvious enough. 1349 */ 1350 if (pages && !(flags & FOLL_PIN)) 1351 flags |= FOLL_GET; 1352 1353 pages_done = 0; 1354 lock_dropped = false; 1355 for (;;) { 1356 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1357 vmas, locked); 1358 if (!locked) 1359 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1360 return ret; 1361 1362 /* VM_FAULT_RETRY cannot return errors */ 1363 if (!*locked) { 1364 BUG_ON(ret < 0); 1365 BUG_ON(ret >= nr_pages); 1366 } 1367 1368 if (ret > 0) { 1369 nr_pages -= ret; 1370 pages_done += ret; 1371 if (!nr_pages) 1372 break; 1373 } 1374 if (*locked) { 1375 /* 1376 * VM_FAULT_RETRY didn't trigger or it was a 1377 * FOLL_NOWAIT. 1378 */ 1379 if (!pages_done) 1380 pages_done = ret; 1381 break; 1382 } 1383 /* 1384 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1385 * For the prefault case (!pages) we only update counts. 1386 */ 1387 if (likely(pages)) 1388 pages += ret; 1389 start += ret << PAGE_SHIFT; 1390 lock_dropped = true; 1391 1392 retry: 1393 /* 1394 * Repeat on the address that fired VM_FAULT_RETRY 1395 * with both FAULT_FLAG_ALLOW_RETRY and 1396 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1397 * by fatal signals, so we need to check it before we 1398 * start trying again otherwise it can loop forever. 1399 */ 1400 1401 if (fatal_signal_pending(current)) { 1402 if (!pages_done) 1403 pages_done = -EINTR; 1404 break; 1405 } 1406 1407 ret = mmap_read_lock_killable(mm); 1408 if (ret) { 1409 BUG_ON(ret > 0); 1410 if (!pages_done) 1411 pages_done = ret; 1412 break; 1413 } 1414 1415 *locked = 1; 1416 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1417 pages, NULL, locked); 1418 if (!*locked) { 1419 /* Continue to retry until we succeeded */ 1420 BUG_ON(ret != 0); 1421 goto retry; 1422 } 1423 if (ret != 1) { 1424 BUG_ON(ret > 1); 1425 if (!pages_done) 1426 pages_done = ret; 1427 break; 1428 } 1429 nr_pages--; 1430 pages_done++; 1431 if (!nr_pages) 1432 break; 1433 if (likely(pages)) 1434 pages++; 1435 start += PAGE_SIZE; 1436 } 1437 if (lock_dropped && *locked) { 1438 /* 1439 * We must let the caller know we temporarily dropped the lock 1440 * and so the critical section protected by it was lost. 1441 */ 1442 mmap_read_unlock(mm); 1443 *locked = 0; 1444 } 1445 return pages_done; 1446 } 1447 1448 /** 1449 * populate_vma_page_range() - populate a range of pages in the vma. 1450 * @vma: target vma 1451 * @start: start address 1452 * @end: end address 1453 * @locked: whether the mmap_lock is still held 1454 * 1455 * This takes care of mlocking the pages too if VM_LOCKED is set. 1456 * 1457 * Return either number of pages pinned in the vma, or a negative error 1458 * code on error. 1459 * 1460 * vma->vm_mm->mmap_lock must be held. 1461 * 1462 * If @locked is NULL, it may be held for read or write and will 1463 * be unperturbed. 1464 * 1465 * If @locked is non-NULL, it must held for read only and may be 1466 * released. If it's released, *@locked will be set to 0. 1467 */ 1468 long populate_vma_page_range(struct vm_area_struct *vma, 1469 unsigned long start, unsigned long end, int *locked) 1470 { 1471 struct mm_struct *mm = vma->vm_mm; 1472 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1473 int gup_flags; 1474 1475 VM_BUG_ON(!PAGE_ALIGNED(start)); 1476 VM_BUG_ON(!PAGE_ALIGNED(end)); 1477 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1478 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1479 mmap_assert_locked(mm); 1480 1481 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1482 if (vma->vm_flags & VM_LOCKONFAULT) 1483 gup_flags &= ~FOLL_POPULATE; 1484 /* 1485 * We want to touch writable mappings with a write fault in order 1486 * to break COW, except for shared mappings because these don't COW 1487 * and we would not want to dirty them for nothing. 1488 */ 1489 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1490 gup_flags |= FOLL_WRITE; 1491 1492 /* 1493 * We want mlock to succeed for regions that have any permissions 1494 * other than PROT_NONE. 1495 */ 1496 if (vma_is_accessible(vma)) 1497 gup_flags |= FOLL_FORCE; 1498 1499 /* 1500 * We made sure addr is within a VMA, so the following will 1501 * not result in a stack expansion that recurses back here. 1502 */ 1503 return __get_user_pages(mm, start, nr_pages, gup_flags, 1504 NULL, NULL, locked); 1505 } 1506 1507 /* 1508 * faultin_vma_page_range() - populate (prefault) page tables inside the 1509 * given VMA range readable/writable 1510 * 1511 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1512 * 1513 * @vma: target vma 1514 * @start: start address 1515 * @end: end address 1516 * @write: whether to prefault readable or writable 1517 * @locked: whether the mmap_lock is still held 1518 * 1519 * Returns either number of processed pages in the vma, or a negative error 1520 * code on error (see __get_user_pages()). 1521 * 1522 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1523 * covered by the VMA. 1524 * 1525 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1526 * 1527 * If @locked is non-NULL, it must held for read only and may be released. If 1528 * it's released, *@locked will be set to 0. 1529 */ 1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1531 unsigned long end, bool write, int *locked) 1532 { 1533 struct mm_struct *mm = vma->vm_mm; 1534 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1535 int gup_flags; 1536 1537 VM_BUG_ON(!PAGE_ALIGNED(start)); 1538 VM_BUG_ON(!PAGE_ALIGNED(end)); 1539 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1540 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1541 mmap_assert_locked(mm); 1542 1543 /* 1544 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1545 * the page dirty with FOLL_WRITE -- which doesn't make a 1546 * difference with !FOLL_FORCE, because the page is writable 1547 * in the page table. 1548 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1549 * a poisoned page. 1550 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1551 * !FOLL_FORCE: Require proper access permissions. 1552 */ 1553 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1554 if (write) 1555 gup_flags |= FOLL_WRITE; 1556 1557 /* 1558 * We want to report -EINVAL instead of -EFAULT for any permission 1559 * problems or incompatible mappings. 1560 */ 1561 if (check_vma_flags(vma, gup_flags)) 1562 return -EINVAL; 1563 1564 return __get_user_pages(mm, start, nr_pages, gup_flags, 1565 NULL, NULL, locked); 1566 } 1567 1568 /* 1569 * __mm_populate - populate and/or mlock pages within a range of address space. 1570 * 1571 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1572 * flags. VMAs must be already marked with the desired vm_flags, and 1573 * mmap_lock must not be held. 1574 */ 1575 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1576 { 1577 struct mm_struct *mm = current->mm; 1578 unsigned long end, nstart, nend; 1579 struct vm_area_struct *vma = NULL; 1580 int locked = 0; 1581 long ret = 0; 1582 1583 end = start + len; 1584 1585 for (nstart = start; nstart < end; nstart = nend) { 1586 /* 1587 * We want to fault in pages for [nstart; end) address range. 1588 * Find first corresponding VMA. 1589 */ 1590 if (!locked) { 1591 locked = 1; 1592 mmap_read_lock(mm); 1593 vma = find_vma(mm, nstart); 1594 } else if (nstart >= vma->vm_end) 1595 vma = vma->vm_next; 1596 if (!vma || vma->vm_start >= end) 1597 break; 1598 /* 1599 * Set [nstart; nend) to intersection of desired address 1600 * range with the first VMA. Also, skip undesirable VMA types. 1601 */ 1602 nend = min(end, vma->vm_end); 1603 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1604 continue; 1605 if (nstart < vma->vm_start) 1606 nstart = vma->vm_start; 1607 /* 1608 * Now fault in a range of pages. populate_vma_page_range() 1609 * double checks the vma flags, so that it won't mlock pages 1610 * if the vma was already munlocked. 1611 */ 1612 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1613 if (ret < 0) { 1614 if (ignore_errors) { 1615 ret = 0; 1616 continue; /* continue at next VMA */ 1617 } 1618 break; 1619 } 1620 nend = nstart + ret * PAGE_SIZE; 1621 ret = 0; 1622 } 1623 if (locked) 1624 mmap_read_unlock(mm); 1625 return ret; /* 0 or negative error code */ 1626 } 1627 #else /* CONFIG_MMU */ 1628 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1629 unsigned long nr_pages, struct page **pages, 1630 struct vm_area_struct **vmas, int *locked, 1631 unsigned int foll_flags) 1632 { 1633 struct vm_area_struct *vma; 1634 unsigned long vm_flags; 1635 long i; 1636 1637 /* calculate required read or write permissions. 1638 * If FOLL_FORCE is set, we only require the "MAY" flags. 1639 */ 1640 vm_flags = (foll_flags & FOLL_WRITE) ? 1641 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1642 vm_flags &= (foll_flags & FOLL_FORCE) ? 1643 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1644 1645 for (i = 0; i < nr_pages; i++) { 1646 vma = find_vma(mm, start); 1647 if (!vma) 1648 goto finish_or_fault; 1649 1650 /* protect what we can, including chardevs */ 1651 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1652 !(vm_flags & vma->vm_flags)) 1653 goto finish_or_fault; 1654 1655 if (pages) { 1656 pages[i] = virt_to_page(start); 1657 if (pages[i]) 1658 get_page(pages[i]); 1659 } 1660 if (vmas) 1661 vmas[i] = vma; 1662 start = (start + PAGE_SIZE) & PAGE_MASK; 1663 } 1664 1665 return i; 1666 1667 finish_or_fault: 1668 return i ? : -EFAULT; 1669 } 1670 #endif /* !CONFIG_MMU */ 1671 1672 /** 1673 * get_dump_page() - pin user page in memory while writing it to core dump 1674 * @addr: user address 1675 * 1676 * Returns struct page pointer of user page pinned for dump, 1677 * to be freed afterwards by put_page(). 1678 * 1679 * Returns NULL on any kind of failure - a hole must then be inserted into 1680 * the corefile, to preserve alignment with its headers; and also returns 1681 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1682 * allowing a hole to be left in the corefile to save disk space. 1683 * 1684 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1685 */ 1686 #ifdef CONFIG_ELF_CORE 1687 struct page *get_dump_page(unsigned long addr) 1688 { 1689 struct mm_struct *mm = current->mm; 1690 struct page *page; 1691 int locked = 1; 1692 int ret; 1693 1694 if (mmap_read_lock_killable(mm)) 1695 return NULL; 1696 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1697 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1698 if (locked) 1699 mmap_read_unlock(mm); 1700 return (ret == 1) ? page : NULL; 1701 } 1702 #endif /* CONFIG_ELF_CORE */ 1703 1704 #ifdef CONFIG_MIGRATION 1705 /* 1706 * Check whether all pages are pinnable, if so return number of pages. If some 1707 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1708 * pages were migrated, or if some pages were not successfully isolated. 1709 * Return negative error if migration fails. 1710 */ 1711 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1712 struct page **pages, 1713 unsigned int gup_flags) 1714 { 1715 unsigned long i; 1716 unsigned long isolation_error_count = 0; 1717 bool drain_allow = true; 1718 LIST_HEAD(movable_page_list); 1719 long ret = 0; 1720 struct page *prev_head = NULL; 1721 struct page *head; 1722 struct migration_target_control mtc = { 1723 .nid = NUMA_NO_NODE, 1724 .gfp_mask = GFP_USER | __GFP_NOWARN, 1725 }; 1726 1727 for (i = 0; i < nr_pages; i++) { 1728 head = compound_head(pages[i]); 1729 if (head == prev_head) 1730 continue; 1731 prev_head = head; 1732 /* 1733 * If we get a movable page, since we are going to be pinning 1734 * these entries, try to move them out if possible. 1735 */ 1736 if (!is_pinnable_page(head)) { 1737 if (PageHuge(head)) { 1738 if (!isolate_huge_page(head, &movable_page_list)) 1739 isolation_error_count++; 1740 } else { 1741 if (!PageLRU(head) && drain_allow) { 1742 lru_add_drain_all(); 1743 drain_allow = false; 1744 } 1745 1746 if (isolate_lru_page(head)) { 1747 isolation_error_count++; 1748 continue; 1749 } 1750 list_add_tail(&head->lru, &movable_page_list); 1751 mod_node_page_state(page_pgdat(head), 1752 NR_ISOLATED_ANON + 1753 page_is_file_lru(head), 1754 thp_nr_pages(head)); 1755 } 1756 } 1757 } 1758 1759 /* 1760 * If list is empty, and no isolation errors, means that all pages are 1761 * in the correct zone. 1762 */ 1763 if (list_empty(&movable_page_list) && !isolation_error_count) 1764 return nr_pages; 1765 1766 if (gup_flags & FOLL_PIN) { 1767 unpin_user_pages(pages, nr_pages); 1768 } else { 1769 for (i = 0; i < nr_pages; i++) 1770 put_page(pages[i]); 1771 } 1772 if (!list_empty(&movable_page_list)) { 1773 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1774 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1775 MR_LONGTERM_PIN); 1776 if (ret && !list_empty(&movable_page_list)) 1777 putback_movable_pages(&movable_page_list); 1778 } 1779 1780 return ret > 0 ? -ENOMEM : ret; 1781 } 1782 #else 1783 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1784 struct page **pages, 1785 unsigned int gup_flags) 1786 { 1787 return nr_pages; 1788 } 1789 #endif /* CONFIG_MIGRATION */ 1790 1791 /* 1792 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1793 * allows us to process the FOLL_LONGTERM flag. 1794 */ 1795 static long __gup_longterm_locked(struct mm_struct *mm, 1796 unsigned long start, 1797 unsigned long nr_pages, 1798 struct page **pages, 1799 struct vm_area_struct **vmas, 1800 unsigned int gup_flags) 1801 { 1802 unsigned int flags; 1803 long rc; 1804 1805 if (!(gup_flags & FOLL_LONGTERM)) 1806 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1807 NULL, gup_flags); 1808 flags = memalloc_pin_save(); 1809 do { 1810 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1811 NULL, gup_flags); 1812 if (rc <= 0) 1813 break; 1814 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1815 } while (!rc); 1816 memalloc_pin_restore(flags); 1817 1818 return rc; 1819 } 1820 1821 static bool is_valid_gup_flags(unsigned int gup_flags) 1822 { 1823 /* 1824 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1825 * never directly by the caller, so enforce that with an assertion: 1826 */ 1827 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1828 return false; 1829 /* 1830 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1831 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1832 * FOLL_PIN. 1833 */ 1834 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1835 return false; 1836 1837 return true; 1838 } 1839 1840 #ifdef CONFIG_MMU 1841 static long __get_user_pages_remote(struct mm_struct *mm, 1842 unsigned long start, unsigned long nr_pages, 1843 unsigned int gup_flags, struct page **pages, 1844 struct vm_area_struct **vmas, int *locked) 1845 { 1846 /* 1847 * Parts of FOLL_LONGTERM behavior are incompatible with 1848 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1849 * vmas. However, this only comes up if locked is set, and there are 1850 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1851 * allow what we can. 1852 */ 1853 if (gup_flags & FOLL_LONGTERM) { 1854 if (WARN_ON_ONCE(locked)) 1855 return -EINVAL; 1856 /* 1857 * This will check the vmas (even if our vmas arg is NULL) 1858 * and return -ENOTSUPP if DAX isn't allowed in this case: 1859 */ 1860 return __gup_longterm_locked(mm, start, nr_pages, pages, 1861 vmas, gup_flags | FOLL_TOUCH | 1862 FOLL_REMOTE); 1863 } 1864 1865 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1866 locked, 1867 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1868 } 1869 1870 /** 1871 * get_user_pages_remote() - pin user pages in memory 1872 * @mm: mm_struct of target mm 1873 * @start: starting user address 1874 * @nr_pages: number of pages from start to pin 1875 * @gup_flags: flags modifying lookup behaviour 1876 * @pages: array that receives pointers to the pages pinned. 1877 * Should be at least nr_pages long. Or NULL, if caller 1878 * only intends to ensure the pages are faulted in. 1879 * @vmas: array of pointers to vmas corresponding to each page. 1880 * Or NULL if the caller does not require them. 1881 * @locked: pointer to lock flag indicating whether lock is held and 1882 * subsequently whether VM_FAULT_RETRY functionality can be 1883 * utilised. Lock must initially be held. 1884 * 1885 * Returns either number of pages pinned (which may be less than the 1886 * number requested), or an error. Details about the return value: 1887 * 1888 * -- If nr_pages is 0, returns 0. 1889 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1890 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1891 * pages pinned. Again, this may be less than nr_pages. 1892 * 1893 * The caller is responsible for releasing returned @pages, via put_page(). 1894 * 1895 * @vmas are valid only as long as mmap_lock is held. 1896 * 1897 * Must be called with mmap_lock held for read or write. 1898 * 1899 * get_user_pages_remote walks a process's page tables and takes a reference 1900 * to each struct page that each user address corresponds to at a given 1901 * instant. That is, it takes the page that would be accessed if a user 1902 * thread accesses the given user virtual address at that instant. 1903 * 1904 * This does not guarantee that the page exists in the user mappings when 1905 * get_user_pages_remote returns, and there may even be a completely different 1906 * page there in some cases (eg. if mmapped pagecache has been invalidated 1907 * and subsequently re faulted). However it does guarantee that the page 1908 * won't be freed completely. And mostly callers simply care that the page 1909 * contains data that was valid *at some point in time*. Typically, an IO 1910 * or similar operation cannot guarantee anything stronger anyway because 1911 * locks can't be held over the syscall boundary. 1912 * 1913 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1914 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1915 * be called after the page is finished with, and before put_page is called. 1916 * 1917 * get_user_pages_remote is typically used for fewer-copy IO operations, 1918 * to get a handle on the memory by some means other than accesses 1919 * via the user virtual addresses. The pages may be submitted for 1920 * DMA to devices or accessed via their kernel linear mapping (via the 1921 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1922 * 1923 * See also get_user_pages_fast, for performance critical applications. 1924 * 1925 * get_user_pages_remote should be phased out in favor of 1926 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1927 * should use get_user_pages_remote because it cannot pass 1928 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1929 */ 1930 long get_user_pages_remote(struct mm_struct *mm, 1931 unsigned long start, unsigned long nr_pages, 1932 unsigned int gup_flags, struct page **pages, 1933 struct vm_area_struct **vmas, int *locked) 1934 { 1935 if (!is_valid_gup_flags(gup_flags)) 1936 return -EINVAL; 1937 1938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 1939 pages, vmas, locked); 1940 } 1941 EXPORT_SYMBOL(get_user_pages_remote); 1942 1943 #else /* CONFIG_MMU */ 1944 long get_user_pages_remote(struct mm_struct *mm, 1945 unsigned long start, unsigned long nr_pages, 1946 unsigned int gup_flags, struct page **pages, 1947 struct vm_area_struct **vmas, int *locked) 1948 { 1949 return 0; 1950 } 1951 1952 static long __get_user_pages_remote(struct mm_struct *mm, 1953 unsigned long start, unsigned long nr_pages, 1954 unsigned int gup_flags, struct page **pages, 1955 struct vm_area_struct **vmas, int *locked) 1956 { 1957 return 0; 1958 } 1959 #endif /* !CONFIG_MMU */ 1960 1961 /** 1962 * get_user_pages() - pin user pages in memory 1963 * @start: starting user address 1964 * @nr_pages: number of pages from start to pin 1965 * @gup_flags: flags modifying lookup behaviour 1966 * @pages: array that receives pointers to the pages pinned. 1967 * Should be at least nr_pages long. Or NULL, if caller 1968 * only intends to ensure the pages are faulted in. 1969 * @vmas: array of pointers to vmas corresponding to each page. 1970 * Or NULL if the caller does not require them. 1971 * 1972 * This is the same as get_user_pages_remote(), just with a less-flexible 1973 * calling convention where we assume that the mm being operated on belongs to 1974 * the current task, and doesn't allow passing of a locked parameter. We also 1975 * obviously don't pass FOLL_REMOTE in here. 1976 */ 1977 long get_user_pages(unsigned long start, unsigned long nr_pages, 1978 unsigned int gup_flags, struct page **pages, 1979 struct vm_area_struct **vmas) 1980 { 1981 if (!is_valid_gup_flags(gup_flags)) 1982 return -EINVAL; 1983 1984 return __gup_longterm_locked(current->mm, start, nr_pages, 1985 pages, vmas, gup_flags | FOLL_TOUCH); 1986 } 1987 EXPORT_SYMBOL(get_user_pages); 1988 1989 /** 1990 * get_user_pages_locked() - variant of get_user_pages() 1991 * 1992 * @start: starting user address 1993 * @nr_pages: number of pages from start to pin 1994 * @gup_flags: flags modifying lookup behaviour 1995 * @pages: array that receives pointers to the pages pinned. 1996 * Should be at least nr_pages long. Or NULL, if caller 1997 * only intends to ensure the pages are faulted in. 1998 * @locked: pointer to lock flag indicating whether lock is held and 1999 * subsequently whether VM_FAULT_RETRY functionality can be 2000 * utilised. Lock must initially be held. 2001 * 2002 * It is suitable to replace the form: 2003 * 2004 * mmap_read_lock(mm); 2005 * do_something() 2006 * get_user_pages(mm, ..., pages, NULL); 2007 * mmap_read_unlock(mm); 2008 * 2009 * to: 2010 * 2011 * int locked = 1; 2012 * mmap_read_lock(mm); 2013 * do_something() 2014 * get_user_pages_locked(mm, ..., pages, &locked); 2015 * if (locked) 2016 * mmap_read_unlock(mm); 2017 * 2018 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2019 * paths better by using either get_user_pages_locked() or 2020 * get_user_pages_unlocked(). 2021 * 2022 */ 2023 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2024 unsigned int gup_flags, struct page **pages, 2025 int *locked) 2026 { 2027 /* 2028 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2029 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2030 * vmas. As there are no users of this flag in this call we simply 2031 * disallow this option for now. 2032 */ 2033 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2034 return -EINVAL; 2035 /* 2036 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2037 * never directly by the caller, so enforce that: 2038 */ 2039 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2040 return -EINVAL; 2041 2042 return __get_user_pages_locked(current->mm, start, nr_pages, 2043 pages, NULL, locked, 2044 gup_flags | FOLL_TOUCH); 2045 } 2046 EXPORT_SYMBOL(get_user_pages_locked); 2047 2048 /* 2049 * get_user_pages_unlocked() is suitable to replace the form: 2050 * 2051 * mmap_read_lock(mm); 2052 * get_user_pages(mm, ..., pages, NULL); 2053 * mmap_read_unlock(mm); 2054 * 2055 * with: 2056 * 2057 * get_user_pages_unlocked(mm, ..., pages); 2058 * 2059 * It is functionally equivalent to get_user_pages_fast so 2060 * get_user_pages_fast should be used instead if specific gup_flags 2061 * (e.g. FOLL_FORCE) are not required. 2062 */ 2063 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2064 struct page **pages, unsigned int gup_flags) 2065 { 2066 struct mm_struct *mm = current->mm; 2067 int locked = 1; 2068 long ret; 2069 2070 /* 2071 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2072 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2073 * vmas. As there are no users of this flag in this call we simply 2074 * disallow this option for now. 2075 */ 2076 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2077 return -EINVAL; 2078 2079 mmap_read_lock(mm); 2080 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2081 &locked, gup_flags | FOLL_TOUCH); 2082 if (locked) 2083 mmap_read_unlock(mm); 2084 return ret; 2085 } 2086 EXPORT_SYMBOL(get_user_pages_unlocked); 2087 2088 /* 2089 * Fast GUP 2090 * 2091 * get_user_pages_fast attempts to pin user pages by walking the page 2092 * tables directly and avoids taking locks. Thus the walker needs to be 2093 * protected from page table pages being freed from under it, and should 2094 * block any THP splits. 2095 * 2096 * One way to achieve this is to have the walker disable interrupts, and 2097 * rely on IPIs from the TLB flushing code blocking before the page table 2098 * pages are freed. This is unsuitable for architectures that do not need 2099 * to broadcast an IPI when invalidating TLBs. 2100 * 2101 * Another way to achieve this is to batch up page table containing pages 2102 * belonging to more than one mm_user, then rcu_sched a callback to free those 2103 * pages. Disabling interrupts will allow the fast_gup walker to both block 2104 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2105 * (which is a relatively rare event). The code below adopts this strategy. 2106 * 2107 * Before activating this code, please be aware that the following assumptions 2108 * are currently made: 2109 * 2110 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2111 * free pages containing page tables or TLB flushing requires IPI broadcast. 2112 * 2113 * *) ptes can be read atomically by the architecture. 2114 * 2115 * *) access_ok is sufficient to validate userspace address ranges. 2116 * 2117 * The last two assumptions can be relaxed by the addition of helper functions. 2118 * 2119 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2120 */ 2121 #ifdef CONFIG_HAVE_FAST_GUP 2122 2123 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2124 unsigned int flags, 2125 struct page **pages) 2126 { 2127 while ((*nr) - nr_start) { 2128 struct page *page = pages[--(*nr)]; 2129 2130 ClearPageReferenced(page); 2131 if (flags & FOLL_PIN) 2132 unpin_user_page(page); 2133 else 2134 put_page(page); 2135 } 2136 } 2137 2138 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2139 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2140 unsigned int flags, struct page **pages, int *nr) 2141 { 2142 struct dev_pagemap *pgmap = NULL; 2143 int nr_start = *nr, ret = 0; 2144 pte_t *ptep, *ptem; 2145 2146 ptem = ptep = pte_offset_map(&pmd, addr); 2147 do { 2148 pte_t pte = ptep_get_lockless(ptep); 2149 struct page *head, *page; 2150 2151 /* 2152 * Similar to the PMD case below, NUMA hinting must take slow 2153 * path using the pte_protnone check. 2154 */ 2155 if (pte_protnone(pte)) 2156 goto pte_unmap; 2157 2158 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2159 goto pte_unmap; 2160 2161 if (pte_devmap(pte)) { 2162 if (unlikely(flags & FOLL_LONGTERM)) 2163 goto pte_unmap; 2164 2165 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2166 if (unlikely(!pgmap)) { 2167 undo_dev_pagemap(nr, nr_start, flags, pages); 2168 goto pte_unmap; 2169 } 2170 } else if (pte_special(pte)) 2171 goto pte_unmap; 2172 2173 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2174 page = pte_page(pte); 2175 2176 head = try_grab_compound_head(page, 1, flags); 2177 if (!head) 2178 goto pte_unmap; 2179 2180 if (unlikely(page_is_secretmem(page))) { 2181 put_compound_head(head, 1, flags); 2182 goto pte_unmap; 2183 } 2184 2185 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2186 put_compound_head(head, 1, flags); 2187 goto pte_unmap; 2188 } 2189 2190 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2191 2192 /* 2193 * We need to make the page accessible if and only if we are 2194 * going to access its content (the FOLL_PIN case). Please 2195 * see Documentation/core-api/pin_user_pages.rst for 2196 * details. 2197 */ 2198 if (flags & FOLL_PIN) { 2199 ret = arch_make_page_accessible(page); 2200 if (ret) { 2201 unpin_user_page(page); 2202 goto pte_unmap; 2203 } 2204 } 2205 SetPageReferenced(page); 2206 pages[*nr] = page; 2207 (*nr)++; 2208 2209 } while (ptep++, addr += PAGE_SIZE, addr != end); 2210 2211 ret = 1; 2212 2213 pte_unmap: 2214 if (pgmap) 2215 put_dev_pagemap(pgmap); 2216 pte_unmap(ptem); 2217 return ret; 2218 } 2219 #else 2220 2221 /* 2222 * If we can't determine whether or not a pte is special, then fail immediately 2223 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2224 * to be special. 2225 * 2226 * For a futex to be placed on a THP tail page, get_futex_key requires a 2227 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2228 * useful to have gup_huge_pmd even if we can't operate on ptes. 2229 */ 2230 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2231 unsigned int flags, struct page **pages, int *nr) 2232 { 2233 return 0; 2234 } 2235 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2236 2237 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2238 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2239 unsigned long end, unsigned int flags, 2240 struct page **pages, int *nr) 2241 { 2242 int nr_start = *nr; 2243 struct dev_pagemap *pgmap = NULL; 2244 int ret = 1; 2245 2246 do { 2247 struct page *page = pfn_to_page(pfn); 2248 2249 pgmap = get_dev_pagemap(pfn, pgmap); 2250 if (unlikely(!pgmap)) { 2251 undo_dev_pagemap(nr, nr_start, flags, pages); 2252 ret = 0; 2253 break; 2254 } 2255 SetPageReferenced(page); 2256 pages[*nr] = page; 2257 if (unlikely(!try_grab_page(page, flags))) { 2258 undo_dev_pagemap(nr, nr_start, flags, pages); 2259 ret = 0; 2260 break; 2261 } 2262 (*nr)++; 2263 pfn++; 2264 } while (addr += PAGE_SIZE, addr != end); 2265 2266 put_dev_pagemap(pgmap); 2267 return ret; 2268 } 2269 2270 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2271 unsigned long end, unsigned int flags, 2272 struct page **pages, int *nr) 2273 { 2274 unsigned long fault_pfn; 2275 int nr_start = *nr; 2276 2277 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2278 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2279 return 0; 2280 2281 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2282 undo_dev_pagemap(nr, nr_start, flags, pages); 2283 return 0; 2284 } 2285 return 1; 2286 } 2287 2288 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2289 unsigned long end, unsigned int flags, 2290 struct page **pages, int *nr) 2291 { 2292 unsigned long fault_pfn; 2293 int nr_start = *nr; 2294 2295 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2296 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2297 return 0; 2298 2299 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2300 undo_dev_pagemap(nr, nr_start, flags, pages); 2301 return 0; 2302 } 2303 return 1; 2304 } 2305 #else 2306 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2307 unsigned long end, unsigned int flags, 2308 struct page **pages, int *nr) 2309 { 2310 BUILD_BUG(); 2311 return 0; 2312 } 2313 2314 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2315 unsigned long end, unsigned int flags, 2316 struct page **pages, int *nr) 2317 { 2318 BUILD_BUG(); 2319 return 0; 2320 } 2321 #endif 2322 2323 static int record_subpages(struct page *page, unsigned long addr, 2324 unsigned long end, struct page **pages) 2325 { 2326 int nr; 2327 2328 for (nr = 0; addr != end; addr += PAGE_SIZE) 2329 pages[nr++] = page++; 2330 2331 return nr; 2332 } 2333 2334 #ifdef CONFIG_ARCH_HAS_HUGEPD 2335 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2336 unsigned long sz) 2337 { 2338 unsigned long __boundary = (addr + sz) & ~(sz-1); 2339 return (__boundary - 1 < end - 1) ? __boundary : end; 2340 } 2341 2342 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2343 unsigned long end, unsigned int flags, 2344 struct page **pages, int *nr) 2345 { 2346 unsigned long pte_end; 2347 struct page *head, *page; 2348 pte_t pte; 2349 int refs; 2350 2351 pte_end = (addr + sz) & ~(sz-1); 2352 if (pte_end < end) 2353 end = pte_end; 2354 2355 pte = huge_ptep_get(ptep); 2356 2357 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2358 return 0; 2359 2360 /* hugepages are never "special" */ 2361 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2362 2363 head = pte_page(pte); 2364 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2365 refs = record_subpages(page, addr, end, pages + *nr); 2366 2367 head = try_grab_compound_head(head, refs, flags); 2368 if (!head) 2369 return 0; 2370 2371 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2372 put_compound_head(head, refs, flags); 2373 return 0; 2374 } 2375 2376 *nr += refs; 2377 SetPageReferenced(head); 2378 return 1; 2379 } 2380 2381 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2382 unsigned int pdshift, unsigned long end, unsigned int flags, 2383 struct page **pages, int *nr) 2384 { 2385 pte_t *ptep; 2386 unsigned long sz = 1UL << hugepd_shift(hugepd); 2387 unsigned long next; 2388 2389 ptep = hugepte_offset(hugepd, addr, pdshift); 2390 do { 2391 next = hugepte_addr_end(addr, end, sz); 2392 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2393 return 0; 2394 } while (ptep++, addr = next, addr != end); 2395 2396 return 1; 2397 } 2398 #else 2399 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2400 unsigned int pdshift, unsigned long end, unsigned int flags, 2401 struct page **pages, int *nr) 2402 { 2403 return 0; 2404 } 2405 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2406 2407 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2408 unsigned long end, unsigned int flags, 2409 struct page **pages, int *nr) 2410 { 2411 struct page *head, *page; 2412 int refs; 2413 2414 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2415 return 0; 2416 2417 if (pmd_devmap(orig)) { 2418 if (unlikely(flags & FOLL_LONGTERM)) 2419 return 0; 2420 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2421 pages, nr); 2422 } 2423 2424 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2425 refs = record_subpages(page, addr, end, pages + *nr); 2426 2427 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2428 if (!head) 2429 return 0; 2430 2431 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2432 put_compound_head(head, refs, flags); 2433 return 0; 2434 } 2435 2436 *nr += refs; 2437 SetPageReferenced(head); 2438 return 1; 2439 } 2440 2441 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2442 unsigned long end, unsigned int flags, 2443 struct page **pages, int *nr) 2444 { 2445 struct page *head, *page; 2446 int refs; 2447 2448 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2449 return 0; 2450 2451 if (pud_devmap(orig)) { 2452 if (unlikely(flags & FOLL_LONGTERM)) 2453 return 0; 2454 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2455 pages, nr); 2456 } 2457 2458 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2459 refs = record_subpages(page, addr, end, pages + *nr); 2460 2461 head = try_grab_compound_head(pud_page(orig), refs, flags); 2462 if (!head) 2463 return 0; 2464 2465 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2466 put_compound_head(head, refs, flags); 2467 return 0; 2468 } 2469 2470 *nr += refs; 2471 SetPageReferenced(head); 2472 return 1; 2473 } 2474 2475 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2476 unsigned long end, unsigned int flags, 2477 struct page **pages, int *nr) 2478 { 2479 int refs; 2480 struct page *head, *page; 2481 2482 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2483 return 0; 2484 2485 BUILD_BUG_ON(pgd_devmap(orig)); 2486 2487 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2488 refs = record_subpages(page, addr, end, pages + *nr); 2489 2490 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2491 if (!head) 2492 return 0; 2493 2494 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2495 put_compound_head(head, refs, flags); 2496 return 0; 2497 } 2498 2499 *nr += refs; 2500 SetPageReferenced(head); 2501 return 1; 2502 } 2503 2504 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2505 unsigned int flags, struct page **pages, int *nr) 2506 { 2507 unsigned long next; 2508 pmd_t *pmdp; 2509 2510 pmdp = pmd_offset_lockless(pudp, pud, addr); 2511 do { 2512 pmd_t pmd = READ_ONCE(*pmdp); 2513 2514 next = pmd_addr_end(addr, end); 2515 if (!pmd_present(pmd)) 2516 return 0; 2517 2518 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2519 pmd_devmap(pmd))) { 2520 /* 2521 * NUMA hinting faults need to be handled in the GUP 2522 * slowpath for accounting purposes and so that they 2523 * can be serialised against THP migration. 2524 */ 2525 if (pmd_protnone(pmd)) 2526 return 0; 2527 2528 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2529 pages, nr)) 2530 return 0; 2531 2532 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2533 /* 2534 * architecture have different format for hugetlbfs 2535 * pmd format and THP pmd format 2536 */ 2537 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2538 PMD_SHIFT, next, flags, pages, nr)) 2539 return 0; 2540 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2541 return 0; 2542 } while (pmdp++, addr = next, addr != end); 2543 2544 return 1; 2545 } 2546 2547 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2548 unsigned int flags, struct page **pages, int *nr) 2549 { 2550 unsigned long next; 2551 pud_t *pudp; 2552 2553 pudp = pud_offset_lockless(p4dp, p4d, addr); 2554 do { 2555 pud_t pud = READ_ONCE(*pudp); 2556 2557 next = pud_addr_end(addr, end); 2558 if (unlikely(!pud_present(pud))) 2559 return 0; 2560 if (unlikely(pud_huge(pud))) { 2561 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2562 pages, nr)) 2563 return 0; 2564 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2565 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2566 PUD_SHIFT, next, flags, pages, nr)) 2567 return 0; 2568 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2569 return 0; 2570 } while (pudp++, addr = next, addr != end); 2571 2572 return 1; 2573 } 2574 2575 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2576 unsigned int flags, struct page **pages, int *nr) 2577 { 2578 unsigned long next; 2579 p4d_t *p4dp; 2580 2581 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2582 do { 2583 p4d_t p4d = READ_ONCE(*p4dp); 2584 2585 next = p4d_addr_end(addr, end); 2586 if (p4d_none(p4d)) 2587 return 0; 2588 BUILD_BUG_ON(p4d_huge(p4d)); 2589 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2590 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2591 P4D_SHIFT, next, flags, pages, nr)) 2592 return 0; 2593 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2594 return 0; 2595 } while (p4dp++, addr = next, addr != end); 2596 2597 return 1; 2598 } 2599 2600 static void gup_pgd_range(unsigned long addr, unsigned long end, 2601 unsigned int flags, struct page **pages, int *nr) 2602 { 2603 unsigned long next; 2604 pgd_t *pgdp; 2605 2606 pgdp = pgd_offset(current->mm, addr); 2607 do { 2608 pgd_t pgd = READ_ONCE(*pgdp); 2609 2610 next = pgd_addr_end(addr, end); 2611 if (pgd_none(pgd)) 2612 return; 2613 if (unlikely(pgd_huge(pgd))) { 2614 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2615 pages, nr)) 2616 return; 2617 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2618 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2619 PGDIR_SHIFT, next, flags, pages, nr)) 2620 return; 2621 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2622 return; 2623 } while (pgdp++, addr = next, addr != end); 2624 } 2625 #else 2626 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2627 unsigned int flags, struct page **pages, int *nr) 2628 { 2629 } 2630 #endif /* CONFIG_HAVE_FAST_GUP */ 2631 2632 #ifndef gup_fast_permitted 2633 /* 2634 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2635 * we need to fall back to the slow version: 2636 */ 2637 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2638 { 2639 return true; 2640 } 2641 #endif 2642 2643 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2644 unsigned int gup_flags, struct page **pages) 2645 { 2646 int ret; 2647 2648 /* 2649 * FIXME: FOLL_LONGTERM does not work with 2650 * get_user_pages_unlocked() (see comments in that function) 2651 */ 2652 if (gup_flags & FOLL_LONGTERM) { 2653 mmap_read_lock(current->mm); 2654 ret = __gup_longterm_locked(current->mm, 2655 start, nr_pages, 2656 pages, NULL, gup_flags); 2657 mmap_read_unlock(current->mm); 2658 } else { 2659 ret = get_user_pages_unlocked(start, nr_pages, 2660 pages, gup_flags); 2661 } 2662 2663 return ret; 2664 } 2665 2666 static unsigned long lockless_pages_from_mm(unsigned long start, 2667 unsigned long end, 2668 unsigned int gup_flags, 2669 struct page **pages) 2670 { 2671 unsigned long flags; 2672 int nr_pinned = 0; 2673 unsigned seq; 2674 2675 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2676 !gup_fast_permitted(start, end)) 2677 return 0; 2678 2679 if (gup_flags & FOLL_PIN) { 2680 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2681 if (seq & 1) 2682 return 0; 2683 } 2684 2685 /* 2686 * Disable interrupts. The nested form is used, in order to allow full, 2687 * general purpose use of this routine. 2688 * 2689 * With interrupts disabled, we block page table pages from being freed 2690 * from under us. See struct mmu_table_batch comments in 2691 * include/asm-generic/tlb.h for more details. 2692 * 2693 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2694 * that come from THPs splitting. 2695 */ 2696 local_irq_save(flags); 2697 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2698 local_irq_restore(flags); 2699 2700 /* 2701 * When pinning pages for DMA there could be a concurrent write protect 2702 * from fork() via copy_page_range(), in this case always fail fast GUP. 2703 */ 2704 if (gup_flags & FOLL_PIN) { 2705 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2706 unpin_user_pages(pages, nr_pinned); 2707 return 0; 2708 } 2709 } 2710 return nr_pinned; 2711 } 2712 2713 static int internal_get_user_pages_fast(unsigned long start, 2714 unsigned long nr_pages, 2715 unsigned int gup_flags, 2716 struct page **pages) 2717 { 2718 unsigned long len, end; 2719 unsigned long nr_pinned; 2720 int ret; 2721 2722 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2723 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2724 FOLL_FAST_ONLY))) 2725 return -EINVAL; 2726 2727 if (gup_flags & FOLL_PIN) 2728 mm_set_has_pinned_flag(¤t->mm->flags); 2729 2730 if (!(gup_flags & FOLL_FAST_ONLY)) 2731 might_lock_read(¤t->mm->mmap_lock); 2732 2733 start = untagged_addr(start) & PAGE_MASK; 2734 len = nr_pages << PAGE_SHIFT; 2735 if (check_add_overflow(start, len, &end)) 2736 return 0; 2737 if (unlikely(!access_ok((void __user *)start, len))) 2738 return -EFAULT; 2739 2740 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2741 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2742 return nr_pinned; 2743 2744 /* Slow path: try to get the remaining pages with get_user_pages */ 2745 start += nr_pinned << PAGE_SHIFT; 2746 pages += nr_pinned; 2747 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2748 pages); 2749 if (ret < 0) { 2750 /* 2751 * The caller has to unpin the pages we already pinned so 2752 * returning -errno is not an option 2753 */ 2754 if (nr_pinned) 2755 return nr_pinned; 2756 return ret; 2757 } 2758 return ret + nr_pinned; 2759 } 2760 2761 /** 2762 * get_user_pages_fast_only() - pin user pages in memory 2763 * @start: starting user address 2764 * @nr_pages: number of pages from start to pin 2765 * @gup_flags: flags modifying pin behaviour 2766 * @pages: array that receives pointers to the pages pinned. 2767 * Should be at least nr_pages long. 2768 * 2769 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2770 * the regular GUP. 2771 * Note a difference with get_user_pages_fast: this always returns the 2772 * number of pages pinned, 0 if no pages were pinned. 2773 * 2774 * If the architecture does not support this function, simply return with no 2775 * pages pinned. 2776 * 2777 * Careful, careful! COW breaking can go either way, so a non-write 2778 * access can get ambiguous page results. If you call this function without 2779 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2780 */ 2781 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2782 unsigned int gup_flags, struct page **pages) 2783 { 2784 int nr_pinned; 2785 /* 2786 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2787 * because gup fast is always a "pin with a +1 page refcount" request. 2788 * 2789 * FOLL_FAST_ONLY is required in order to match the API description of 2790 * this routine: no fall back to regular ("slow") GUP. 2791 */ 2792 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2793 2794 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2795 pages); 2796 2797 /* 2798 * As specified in the API description above, this routine is not 2799 * allowed to return negative values. However, the common core 2800 * routine internal_get_user_pages_fast() *can* return -errno. 2801 * Therefore, correct for that here: 2802 */ 2803 if (nr_pinned < 0) 2804 nr_pinned = 0; 2805 2806 return nr_pinned; 2807 } 2808 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2809 2810 /** 2811 * get_user_pages_fast() - pin user pages in memory 2812 * @start: starting user address 2813 * @nr_pages: number of pages from start to pin 2814 * @gup_flags: flags modifying pin behaviour 2815 * @pages: array that receives pointers to the pages pinned. 2816 * Should be at least nr_pages long. 2817 * 2818 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2819 * If not successful, it will fall back to taking the lock and 2820 * calling get_user_pages(). 2821 * 2822 * Returns number of pages pinned. This may be fewer than the number requested. 2823 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2824 * -errno. 2825 */ 2826 int get_user_pages_fast(unsigned long start, int nr_pages, 2827 unsigned int gup_flags, struct page **pages) 2828 { 2829 if (!is_valid_gup_flags(gup_flags)) 2830 return -EINVAL; 2831 2832 /* 2833 * The caller may or may not have explicitly set FOLL_GET; either way is 2834 * OK. However, internally (within mm/gup.c), gup fast variants must set 2835 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2836 * request. 2837 */ 2838 gup_flags |= FOLL_GET; 2839 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2840 } 2841 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2842 2843 /** 2844 * pin_user_pages_fast() - pin user pages in memory without taking locks 2845 * 2846 * @start: starting user address 2847 * @nr_pages: number of pages from start to pin 2848 * @gup_flags: flags modifying pin behaviour 2849 * @pages: array that receives pointers to the pages pinned. 2850 * Should be at least nr_pages long. 2851 * 2852 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2853 * get_user_pages_fast() for documentation on the function arguments, because 2854 * the arguments here are identical. 2855 * 2856 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2857 * see Documentation/core-api/pin_user_pages.rst for further details. 2858 */ 2859 int pin_user_pages_fast(unsigned long start, int nr_pages, 2860 unsigned int gup_flags, struct page **pages) 2861 { 2862 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2863 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2864 return -EINVAL; 2865 2866 gup_flags |= FOLL_PIN; 2867 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2868 } 2869 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2870 2871 /* 2872 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 2873 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 2874 * 2875 * The API rules are the same, too: no negative values may be returned. 2876 */ 2877 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2878 unsigned int gup_flags, struct page **pages) 2879 { 2880 int nr_pinned; 2881 2882 /* 2883 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 2884 * rules require returning 0, rather than -errno: 2885 */ 2886 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2887 return 0; 2888 /* 2889 * FOLL_FAST_ONLY is required in order to match the API description of 2890 * this routine: no fall back to regular ("slow") GUP. 2891 */ 2892 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 2893 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2894 pages); 2895 /* 2896 * This routine is not allowed to return negative values. However, 2897 * internal_get_user_pages_fast() *can* return -errno. Therefore, 2898 * correct for that here: 2899 */ 2900 if (nr_pinned < 0) 2901 nr_pinned = 0; 2902 2903 return nr_pinned; 2904 } 2905 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 2906 2907 /** 2908 * pin_user_pages_remote() - pin pages of a remote process 2909 * 2910 * @mm: mm_struct of target mm 2911 * @start: starting user address 2912 * @nr_pages: number of pages from start to pin 2913 * @gup_flags: flags modifying lookup behaviour 2914 * @pages: array that receives pointers to the pages pinned. 2915 * Should be at least nr_pages long. Or NULL, if caller 2916 * only intends to ensure the pages are faulted in. 2917 * @vmas: array of pointers to vmas corresponding to each page. 2918 * Or NULL if the caller does not require them. 2919 * @locked: pointer to lock flag indicating whether lock is held and 2920 * subsequently whether VM_FAULT_RETRY functionality can be 2921 * utilised. Lock must initially be held. 2922 * 2923 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2924 * get_user_pages_remote() for documentation on the function arguments, because 2925 * the arguments here are identical. 2926 * 2927 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2928 * see Documentation/core-api/pin_user_pages.rst for details. 2929 */ 2930 long pin_user_pages_remote(struct mm_struct *mm, 2931 unsigned long start, unsigned long nr_pages, 2932 unsigned int gup_flags, struct page **pages, 2933 struct vm_area_struct **vmas, int *locked) 2934 { 2935 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2936 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2937 return -EINVAL; 2938 2939 gup_flags |= FOLL_PIN; 2940 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2941 pages, vmas, locked); 2942 } 2943 EXPORT_SYMBOL(pin_user_pages_remote); 2944 2945 /** 2946 * pin_user_pages() - pin user pages in memory for use by other devices 2947 * 2948 * @start: starting user address 2949 * @nr_pages: number of pages from start to pin 2950 * @gup_flags: flags modifying lookup behaviour 2951 * @pages: array that receives pointers to the pages pinned. 2952 * Should be at least nr_pages long. Or NULL, if caller 2953 * only intends to ensure the pages are faulted in. 2954 * @vmas: array of pointers to vmas corresponding to each page. 2955 * Or NULL if the caller does not require them. 2956 * 2957 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2958 * FOLL_PIN is set. 2959 * 2960 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2961 * see Documentation/core-api/pin_user_pages.rst for details. 2962 */ 2963 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2964 unsigned int gup_flags, struct page **pages, 2965 struct vm_area_struct **vmas) 2966 { 2967 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2968 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2969 return -EINVAL; 2970 2971 gup_flags |= FOLL_PIN; 2972 return __gup_longterm_locked(current->mm, start, nr_pages, 2973 pages, vmas, gup_flags); 2974 } 2975 EXPORT_SYMBOL(pin_user_pages); 2976 2977 /* 2978 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2979 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 2980 * FOLL_PIN and rejects FOLL_GET. 2981 */ 2982 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2983 struct page **pages, unsigned int gup_flags) 2984 { 2985 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2986 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2987 return -EINVAL; 2988 2989 gup_flags |= FOLL_PIN; 2990 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 2991 } 2992 EXPORT_SYMBOL(pin_user_pages_unlocked); 2993 2994 /* 2995 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 2996 * Behavior is the same, except that this one sets FOLL_PIN and rejects 2997 * FOLL_GET. 2998 */ 2999 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 3000 unsigned int gup_flags, struct page **pages, 3001 int *locked) 3002 { 3003 /* 3004 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 3005 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 3006 * vmas. As there are no users of this flag in this call we simply 3007 * disallow this option for now. 3008 */ 3009 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 3010 return -EINVAL; 3011 3012 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3013 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3014 return -EINVAL; 3015 3016 gup_flags |= FOLL_PIN; 3017 return __get_user_pages_locked(current->mm, start, nr_pages, 3018 pages, NULL, locked, 3019 gup_flags | FOLL_TOUCH); 3020 } 3021 EXPORT_SYMBOL(pin_user_pages_locked); 3022