xref: /linux/mm/gup.c (revision f358afc52c3066f4e8cd7b3a2d75b31e822519e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /* Equivalent to calling put_page() @refs times. */
49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 		return;
54 #endif
55 
56 	/*
57 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 	 * ref needs a put_page().
59 	 */
60 	if (refs > 1)
61 		page_ref_sub(page, refs - 1);
62 	put_page(page);
63 }
64 
65 /**
66  * try_get_compound_head() - return the compound head page with refcount
67  * appropriately incremented, or NULL if that failed.
68  *
69  * This handles potential refcount overflow correctly. It also works correctly
70  * for various lockless get_user_pages()-related callers, due to the use of
71  * page_cache_add_speculative().
72  *
73  * Even though the name includes "compound_head", this function is still
74  * appropriate for callers that have a non-compound @page to get.
75  *
76  * @page:  pointer to page to be gotten
77  * @refs:  the value to add to the page's refcount
78  *
79  * Return: head page (with refcount appropriately incremented) for success, or
80  * NULL upon failure.
81  */
82 struct page *try_get_compound_head(struct page *page, int refs)
83 {
84 	struct page *head = compound_head(page);
85 
86 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
87 		return NULL;
88 	if (unlikely(!page_cache_add_speculative(head, refs)))
89 		return NULL;
90 
91 	/*
92 	 * At this point we have a stable reference to the head page; but it
93 	 * could be that between the compound_head() lookup and the refcount
94 	 * increment, the compound page was split, in which case we'd end up
95 	 * holding a reference on a page that has nothing to do with the page
96 	 * we were given anymore.
97 	 * So now that the head page is stable, recheck that the pages still
98 	 * belong together.
99 	 */
100 	if (unlikely(compound_head(page) != head)) {
101 		put_page_refs(head, refs);
102 		return NULL;
103 	}
104 
105 	return head;
106 }
107 
108 /**
109  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
110  * flags-dependent amount.
111  *
112  * Even though the name includes "compound_head", this function is still
113  * appropriate for callers that have a non-compound @page to get.
114  *
115  * @page:  pointer to page to be grabbed
116  * @refs:  the value to (effectively) add to the page's refcount
117  * @flags: gup flags: these are the FOLL_* flag values.
118  *
119  * "grab" names in this file mean, "look at flags to decide whether to use
120  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
121  *
122  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
123  * same time. (That's true throughout the get_user_pages*() and
124  * pin_user_pages*() APIs.) Cases:
125  *
126  *    FOLL_GET: page's refcount will be incremented by @refs.
127  *
128  *    FOLL_PIN on compound pages that are > two pages long: page's refcount will
129  *    be incremented by @refs, and page[2].hpage_pinned_refcount will be
130  *    incremented by @refs * GUP_PIN_COUNTING_BIAS.
131  *
132  *    FOLL_PIN on normal pages, or compound pages that are two pages long:
133  *    page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
134  *
135  * Return: head page (with refcount appropriately incremented) for success, or
136  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
137  * considered failure, and furthermore, a likely bug in the caller, so a warning
138  * is also emitted.
139  */
140 struct page *try_grab_compound_head(struct page *page,
141 				    int refs, unsigned int flags)
142 {
143 	if (flags & FOLL_GET)
144 		return try_get_compound_head(page, refs);
145 	else if (flags & FOLL_PIN) {
146 		/*
147 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
148 		 * right zone, so fail and let the caller fall back to the slow
149 		 * path.
150 		 */
151 		if (unlikely((flags & FOLL_LONGTERM) &&
152 			     !is_pinnable_page(page)))
153 			return NULL;
154 
155 		/*
156 		 * CAUTION: Don't use compound_head() on the page before this
157 		 * point, the result won't be stable.
158 		 */
159 		page = try_get_compound_head(page, refs);
160 		if (!page)
161 			return NULL;
162 
163 		/*
164 		 * When pinning a compound page of order > 1 (which is what
165 		 * hpage_pincount_available() checks for), use an exact count to
166 		 * track it, via hpage_pincount_add/_sub().
167 		 *
168 		 * However, be sure to *also* increment the normal page refcount
169 		 * field at least once, so that the page really is pinned.
170 		 * That's why the refcount from the earlier
171 		 * try_get_compound_head() is left intact.
172 		 */
173 		if (hpage_pincount_available(page))
174 			hpage_pincount_add(page, refs);
175 		else
176 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
177 
178 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
179 				    refs);
180 
181 		return page;
182 	}
183 
184 	WARN_ON_ONCE(1);
185 	return NULL;
186 }
187 
188 static void put_compound_head(struct page *page, int refs, unsigned int flags)
189 {
190 	if (flags & FOLL_PIN) {
191 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
192 				    refs);
193 
194 		if (hpage_pincount_available(page))
195 			hpage_pincount_sub(page, refs);
196 		else
197 			refs *= GUP_PIN_COUNTING_BIAS;
198 	}
199 
200 	put_page_refs(page, refs);
201 }
202 
203 /**
204  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
205  *
206  * This might not do anything at all, depending on the flags argument.
207  *
208  * "grab" names in this file mean, "look at flags to decide whether to use
209  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
210  *
211  * @page:    pointer to page to be grabbed
212  * @flags:   gup flags: these are the FOLL_* flag values.
213  *
214  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
215  * time. Cases: please see the try_grab_compound_head() documentation, with
216  * "refs=1".
217  *
218  * Return: true for success, or if no action was required (if neither FOLL_PIN
219  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
220  * FOLL_PIN was set, but the page could not be grabbed.
221  */
222 bool __must_check try_grab_page(struct page *page, unsigned int flags)
223 {
224 	if (!(flags & (FOLL_GET | FOLL_PIN)))
225 		return true;
226 
227 	return try_grab_compound_head(page, 1, flags);
228 }
229 
230 /**
231  * unpin_user_page() - release a dma-pinned page
232  * @page:            pointer to page to be released
233  *
234  * Pages that were pinned via pin_user_pages*() must be released via either
235  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
236  * that such pages can be separately tracked and uniquely handled. In
237  * particular, interactions with RDMA and filesystems need special handling.
238  */
239 void unpin_user_page(struct page *page)
240 {
241 	put_compound_head(compound_head(page), 1, FOLL_PIN);
242 }
243 EXPORT_SYMBOL(unpin_user_page);
244 
245 static inline void compound_range_next(unsigned long i, unsigned long npages,
246 				       struct page **list, struct page **head,
247 				       unsigned int *ntails)
248 {
249 	struct page *next, *page;
250 	unsigned int nr = 1;
251 
252 	if (i >= npages)
253 		return;
254 
255 	next = *list + i;
256 	page = compound_head(next);
257 	if (PageCompound(page) && compound_order(page) >= 1)
258 		nr = min_t(unsigned int,
259 			   page + compound_nr(page) - next, npages - i);
260 
261 	*head = page;
262 	*ntails = nr;
263 }
264 
265 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
266 	for (__i = 0, \
267 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
268 	     __i < __npages; __i += __ntails, \
269 	     compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
270 
271 static inline void compound_next(unsigned long i, unsigned long npages,
272 				 struct page **list, struct page **head,
273 				 unsigned int *ntails)
274 {
275 	struct page *page;
276 	unsigned int nr;
277 
278 	if (i >= npages)
279 		return;
280 
281 	page = compound_head(list[i]);
282 	for (nr = i + 1; nr < npages; nr++) {
283 		if (compound_head(list[nr]) != page)
284 			break;
285 	}
286 
287 	*head = page;
288 	*ntails = nr - i;
289 }
290 
291 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
292 	for (__i = 0, \
293 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
294 	     __i < __npages; __i += __ntails, \
295 	     compound_next(__i, __npages, __list, &(__head), &(__ntails)))
296 
297 /**
298  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
299  * @pages:  array of pages to be maybe marked dirty, and definitely released.
300  * @npages: number of pages in the @pages array.
301  * @make_dirty: whether to mark the pages dirty
302  *
303  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
304  * variants called on that page.
305  *
306  * For each page in the @pages array, make that page (or its head page, if a
307  * compound page) dirty, if @make_dirty is true, and if the page was previously
308  * listed as clean. In any case, releases all pages using unpin_user_page(),
309  * possibly via unpin_user_pages(), for the non-dirty case.
310  *
311  * Please see the unpin_user_page() documentation for details.
312  *
313  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
314  * required, then the caller should a) verify that this is really correct,
315  * because _lock() is usually required, and b) hand code it:
316  * set_page_dirty_lock(), unpin_user_page().
317  *
318  */
319 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
320 				 bool make_dirty)
321 {
322 	unsigned long index;
323 	struct page *head;
324 	unsigned int ntails;
325 
326 	if (!make_dirty) {
327 		unpin_user_pages(pages, npages);
328 		return;
329 	}
330 
331 	for_each_compound_head(index, pages, npages, head, ntails) {
332 		/*
333 		 * Checking PageDirty at this point may race with
334 		 * clear_page_dirty_for_io(), but that's OK. Two key
335 		 * cases:
336 		 *
337 		 * 1) This code sees the page as already dirty, so it
338 		 * skips the call to set_page_dirty(). That could happen
339 		 * because clear_page_dirty_for_io() called
340 		 * page_mkclean(), followed by set_page_dirty().
341 		 * However, now the page is going to get written back,
342 		 * which meets the original intention of setting it
343 		 * dirty, so all is well: clear_page_dirty_for_io() goes
344 		 * on to call TestClearPageDirty(), and write the page
345 		 * back.
346 		 *
347 		 * 2) This code sees the page as clean, so it calls
348 		 * set_page_dirty(). The page stays dirty, despite being
349 		 * written back, so it gets written back again in the
350 		 * next writeback cycle. This is harmless.
351 		 */
352 		if (!PageDirty(head))
353 			set_page_dirty_lock(head);
354 		put_compound_head(head, ntails, FOLL_PIN);
355 	}
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358 
359 /**
360  * unpin_user_page_range_dirty_lock() - release and optionally dirty
361  * gup-pinned page range
362  *
363  * @page:  the starting page of a range maybe marked dirty, and definitely released.
364  * @npages: number of consecutive pages to release.
365  * @make_dirty: whether to mark the pages dirty
366  *
367  * "gup-pinned page range" refers to a range of pages that has had one of the
368  * pin_user_pages() variants called on that page.
369  *
370  * For the page ranges defined by [page .. page+npages], make that range (or
371  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372  * page range was previously listed as clean.
373  *
374  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375  * required, then the caller should a) verify that this is really correct,
376  * because _lock() is usually required, and b) hand code it:
377  * set_page_dirty_lock(), unpin_user_page().
378  *
379  */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 				      bool make_dirty)
382 {
383 	unsigned long index;
384 	struct page *head;
385 	unsigned int ntails;
386 
387 	for_each_compound_range(index, &page, npages, head, ntails) {
388 		if (make_dirty && !PageDirty(head))
389 			set_page_dirty_lock(head);
390 		put_compound_head(head, ntails, FOLL_PIN);
391 	}
392 }
393 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
394 
395 /**
396  * unpin_user_pages() - release an array of gup-pinned pages.
397  * @pages:  array of pages to be marked dirty and released.
398  * @npages: number of pages in the @pages array.
399  *
400  * For each page in the @pages array, release the page using unpin_user_page().
401  *
402  * Please see the unpin_user_page() documentation for details.
403  */
404 void unpin_user_pages(struct page **pages, unsigned long npages)
405 {
406 	unsigned long index;
407 	struct page *head;
408 	unsigned int ntails;
409 
410 	/*
411 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
412 	 * leaving them pinned), but probably not. More likely, gup/pup returned
413 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
414 	 */
415 	if (WARN_ON(IS_ERR_VALUE(npages)))
416 		return;
417 
418 	for_each_compound_head(index, pages, npages, head, ntails)
419 		put_compound_head(head, ntails, FOLL_PIN);
420 }
421 EXPORT_SYMBOL(unpin_user_pages);
422 
423 /*
424  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
425  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
426  * cache bouncing on large SMP machines for concurrent pinned gups.
427  */
428 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
429 {
430 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
431 		set_bit(MMF_HAS_PINNED, mm_flags);
432 }
433 
434 #ifdef CONFIG_MMU
435 static struct page *no_page_table(struct vm_area_struct *vma,
436 		unsigned int flags)
437 {
438 	/*
439 	 * When core dumping an enormous anonymous area that nobody
440 	 * has touched so far, we don't want to allocate unnecessary pages or
441 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
442 	 * then get_dump_page() will return NULL to leave a hole in the dump.
443 	 * But we can only make this optimization where a hole would surely
444 	 * be zero-filled if handle_mm_fault() actually did handle it.
445 	 */
446 	if ((flags & FOLL_DUMP) &&
447 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
448 		return ERR_PTR(-EFAULT);
449 	return NULL;
450 }
451 
452 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
453 		pte_t *pte, unsigned int flags)
454 {
455 	/* No page to get reference */
456 	if (flags & FOLL_GET)
457 		return -EFAULT;
458 
459 	if (flags & FOLL_TOUCH) {
460 		pte_t entry = *pte;
461 
462 		if (flags & FOLL_WRITE)
463 			entry = pte_mkdirty(entry);
464 		entry = pte_mkyoung(entry);
465 
466 		if (!pte_same(*pte, entry)) {
467 			set_pte_at(vma->vm_mm, address, pte, entry);
468 			update_mmu_cache(vma, address, pte);
469 		}
470 	}
471 
472 	/* Proper page table entry exists, but no corresponding struct page */
473 	return -EEXIST;
474 }
475 
476 /*
477  * FOLL_FORCE can write to even unwritable pte's, but only
478  * after we've gone through a COW cycle and they are dirty.
479  */
480 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
481 {
482 	return pte_write(pte) ||
483 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
484 }
485 
486 static struct page *follow_page_pte(struct vm_area_struct *vma,
487 		unsigned long address, pmd_t *pmd, unsigned int flags,
488 		struct dev_pagemap **pgmap)
489 {
490 	struct mm_struct *mm = vma->vm_mm;
491 	struct page *page;
492 	spinlock_t *ptl;
493 	pte_t *ptep, pte;
494 	int ret;
495 
496 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
497 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
498 			 (FOLL_PIN | FOLL_GET)))
499 		return ERR_PTR(-EINVAL);
500 retry:
501 	if (unlikely(pmd_bad(*pmd)))
502 		return no_page_table(vma, flags);
503 
504 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
505 	pte = *ptep;
506 	if (!pte_present(pte)) {
507 		swp_entry_t entry;
508 		/*
509 		 * KSM's break_ksm() relies upon recognizing a ksm page
510 		 * even while it is being migrated, so for that case we
511 		 * need migration_entry_wait().
512 		 */
513 		if (likely(!(flags & FOLL_MIGRATION)))
514 			goto no_page;
515 		if (pte_none(pte))
516 			goto no_page;
517 		entry = pte_to_swp_entry(pte);
518 		if (!is_migration_entry(entry))
519 			goto no_page;
520 		pte_unmap_unlock(ptep, ptl);
521 		migration_entry_wait(mm, pmd, address);
522 		goto retry;
523 	}
524 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
525 		goto no_page;
526 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
527 		pte_unmap_unlock(ptep, ptl);
528 		return NULL;
529 	}
530 
531 	page = vm_normal_page(vma, address, pte);
532 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
533 		/*
534 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
535 		 * case since they are only valid while holding the pgmap
536 		 * reference.
537 		 */
538 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
539 		if (*pgmap)
540 			page = pte_page(pte);
541 		else
542 			goto no_page;
543 	} else if (unlikely(!page)) {
544 		if (flags & FOLL_DUMP) {
545 			/* Avoid special (like zero) pages in core dumps */
546 			page = ERR_PTR(-EFAULT);
547 			goto out;
548 		}
549 
550 		if (is_zero_pfn(pte_pfn(pte))) {
551 			page = pte_page(pte);
552 		} else {
553 			ret = follow_pfn_pte(vma, address, ptep, flags);
554 			page = ERR_PTR(ret);
555 			goto out;
556 		}
557 	}
558 
559 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
560 	if (unlikely(!try_grab_page(page, flags))) {
561 		page = ERR_PTR(-ENOMEM);
562 		goto out;
563 	}
564 	/*
565 	 * We need to make the page accessible if and only if we are going
566 	 * to access its content (the FOLL_PIN case).  Please see
567 	 * Documentation/core-api/pin_user_pages.rst for details.
568 	 */
569 	if (flags & FOLL_PIN) {
570 		ret = arch_make_page_accessible(page);
571 		if (ret) {
572 			unpin_user_page(page);
573 			page = ERR_PTR(ret);
574 			goto out;
575 		}
576 	}
577 	if (flags & FOLL_TOUCH) {
578 		if ((flags & FOLL_WRITE) &&
579 		    !pte_dirty(pte) && !PageDirty(page))
580 			set_page_dirty(page);
581 		/*
582 		 * pte_mkyoung() would be more correct here, but atomic care
583 		 * is needed to avoid losing the dirty bit: it is easier to use
584 		 * mark_page_accessed().
585 		 */
586 		mark_page_accessed(page);
587 	}
588 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
589 		/* Do not mlock pte-mapped THP */
590 		if (PageTransCompound(page))
591 			goto out;
592 
593 		/*
594 		 * The preliminary mapping check is mainly to avoid the
595 		 * pointless overhead of lock_page on the ZERO_PAGE
596 		 * which might bounce very badly if there is contention.
597 		 *
598 		 * If the page is already locked, we don't need to
599 		 * handle it now - vmscan will handle it later if and
600 		 * when it attempts to reclaim the page.
601 		 */
602 		if (page->mapping && trylock_page(page)) {
603 			lru_add_drain();  /* push cached pages to LRU */
604 			/*
605 			 * Because we lock page here, and migration is
606 			 * blocked by the pte's page reference, and we
607 			 * know the page is still mapped, we don't even
608 			 * need to check for file-cache page truncation.
609 			 */
610 			mlock_vma_page(page);
611 			unlock_page(page);
612 		}
613 	}
614 out:
615 	pte_unmap_unlock(ptep, ptl);
616 	return page;
617 no_page:
618 	pte_unmap_unlock(ptep, ptl);
619 	if (!pte_none(pte))
620 		return NULL;
621 	return no_page_table(vma, flags);
622 }
623 
624 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
625 				    unsigned long address, pud_t *pudp,
626 				    unsigned int flags,
627 				    struct follow_page_context *ctx)
628 {
629 	pmd_t *pmd, pmdval;
630 	spinlock_t *ptl;
631 	struct page *page;
632 	struct mm_struct *mm = vma->vm_mm;
633 
634 	pmd = pmd_offset(pudp, address);
635 	/*
636 	 * The READ_ONCE() will stabilize the pmdval in a register or
637 	 * on the stack so that it will stop changing under the code.
638 	 */
639 	pmdval = READ_ONCE(*pmd);
640 	if (pmd_none(pmdval))
641 		return no_page_table(vma, flags);
642 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
643 		page = follow_huge_pmd(mm, address, pmd, flags);
644 		if (page)
645 			return page;
646 		return no_page_table(vma, flags);
647 	}
648 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
649 		page = follow_huge_pd(vma, address,
650 				      __hugepd(pmd_val(pmdval)), flags,
651 				      PMD_SHIFT);
652 		if (page)
653 			return page;
654 		return no_page_table(vma, flags);
655 	}
656 retry:
657 	if (!pmd_present(pmdval)) {
658 		if (likely(!(flags & FOLL_MIGRATION)))
659 			return no_page_table(vma, flags);
660 		VM_BUG_ON(thp_migration_supported() &&
661 				  !is_pmd_migration_entry(pmdval));
662 		if (is_pmd_migration_entry(pmdval))
663 			pmd_migration_entry_wait(mm, pmd);
664 		pmdval = READ_ONCE(*pmd);
665 		/*
666 		 * MADV_DONTNEED may convert the pmd to null because
667 		 * mmap_lock is held in read mode
668 		 */
669 		if (pmd_none(pmdval))
670 			return no_page_table(vma, flags);
671 		goto retry;
672 	}
673 	if (pmd_devmap(pmdval)) {
674 		ptl = pmd_lock(mm, pmd);
675 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
676 		spin_unlock(ptl);
677 		if (page)
678 			return page;
679 	}
680 	if (likely(!pmd_trans_huge(pmdval)))
681 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
682 
683 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
684 		return no_page_table(vma, flags);
685 
686 retry_locked:
687 	ptl = pmd_lock(mm, pmd);
688 	if (unlikely(pmd_none(*pmd))) {
689 		spin_unlock(ptl);
690 		return no_page_table(vma, flags);
691 	}
692 	if (unlikely(!pmd_present(*pmd))) {
693 		spin_unlock(ptl);
694 		if (likely(!(flags & FOLL_MIGRATION)))
695 			return no_page_table(vma, flags);
696 		pmd_migration_entry_wait(mm, pmd);
697 		goto retry_locked;
698 	}
699 	if (unlikely(!pmd_trans_huge(*pmd))) {
700 		spin_unlock(ptl);
701 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
702 	}
703 	if (flags & FOLL_SPLIT_PMD) {
704 		int ret;
705 		page = pmd_page(*pmd);
706 		if (is_huge_zero_page(page)) {
707 			spin_unlock(ptl);
708 			ret = 0;
709 			split_huge_pmd(vma, pmd, address);
710 			if (pmd_trans_unstable(pmd))
711 				ret = -EBUSY;
712 		} else {
713 			spin_unlock(ptl);
714 			split_huge_pmd(vma, pmd, address);
715 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
716 		}
717 
718 		return ret ? ERR_PTR(ret) :
719 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
720 	}
721 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
722 	spin_unlock(ptl);
723 	ctx->page_mask = HPAGE_PMD_NR - 1;
724 	return page;
725 }
726 
727 static struct page *follow_pud_mask(struct vm_area_struct *vma,
728 				    unsigned long address, p4d_t *p4dp,
729 				    unsigned int flags,
730 				    struct follow_page_context *ctx)
731 {
732 	pud_t *pud;
733 	spinlock_t *ptl;
734 	struct page *page;
735 	struct mm_struct *mm = vma->vm_mm;
736 
737 	pud = pud_offset(p4dp, address);
738 	if (pud_none(*pud))
739 		return no_page_table(vma, flags);
740 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
741 		page = follow_huge_pud(mm, address, pud, flags);
742 		if (page)
743 			return page;
744 		return no_page_table(vma, flags);
745 	}
746 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
747 		page = follow_huge_pd(vma, address,
748 				      __hugepd(pud_val(*pud)), flags,
749 				      PUD_SHIFT);
750 		if (page)
751 			return page;
752 		return no_page_table(vma, flags);
753 	}
754 	if (pud_devmap(*pud)) {
755 		ptl = pud_lock(mm, pud);
756 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
757 		spin_unlock(ptl);
758 		if (page)
759 			return page;
760 	}
761 	if (unlikely(pud_bad(*pud)))
762 		return no_page_table(vma, flags);
763 
764 	return follow_pmd_mask(vma, address, pud, flags, ctx);
765 }
766 
767 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
768 				    unsigned long address, pgd_t *pgdp,
769 				    unsigned int flags,
770 				    struct follow_page_context *ctx)
771 {
772 	p4d_t *p4d;
773 	struct page *page;
774 
775 	p4d = p4d_offset(pgdp, address);
776 	if (p4d_none(*p4d))
777 		return no_page_table(vma, flags);
778 	BUILD_BUG_ON(p4d_huge(*p4d));
779 	if (unlikely(p4d_bad(*p4d)))
780 		return no_page_table(vma, flags);
781 
782 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
783 		page = follow_huge_pd(vma, address,
784 				      __hugepd(p4d_val(*p4d)), flags,
785 				      P4D_SHIFT);
786 		if (page)
787 			return page;
788 		return no_page_table(vma, flags);
789 	}
790 	return follow_pud_mask(vma, address, p4d, flags, ctx);
791 }
792 
793 /**
794  * follow_page_mask - look up a page descriptor from a user-virtual address
795  * @vma: vm_area_struct mapping @address
796  * @address: virtual address to look up
797  * @flags: flags modifying lookup behaviour
798  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
799  *       pointer to output page_mask
800  *
801  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
802  *
803  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
804  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
805  *
806  * On output, the @ctx->page_mask is set according to the size of the page.
807  *
808  * Return: the mapped (struct page *), %NULL if no mapping exists, or
809  * an error pointer if there is a mapping to something not represented
810  * by a page descriptor (see also vm_normal_page()).
811  */
812 static struct page *follow_page_mask(struct vm_area_struct *vma,
813 			      unsigned long address, unsigned int flags,
814 			      struct follow_page_context *ctx)
815 {
816 	pgd_t *pgd;
817 	struct page *page;
818 	struct mm_struct *mm = vma->vm_mm;
819 
820 	ctx->page_mask = 0;
821 
822 	/* make this handle hugepd */
823 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
824 	if (!IS_ERR(page)) {
825 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
826 		return page;
827 	}
828 
829 	pgd = pgd_offset(mm, address);
830 
831 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
832 		return no_page_table(vma, flags);
833 
834 	if (pgd_huge(*pgd)) {
835 		page = follow_huge_pgd(mm, address, pgd, flags);
836 		if (page)
837 			return page;
838 		return no_page_table(vma, flags);
839 	}
840 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
841 		page = follow_huge_pd(vma, address,
842 				      __hugepd(pgd_val(*pgd)), flags,
843 				      PGDIR_SHIFT);
844 		if (page)
845 			return page;
846 		return no_page_table(vma, flags);
847 	}
848 
849 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
850 }
851 
852 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
853 			 unsigned int foll_flags)
854 {
855 	struct follow_page_context ctx = { NULL };
856 	struct page *page;
857 
858 	if (vma_is_secretmem(vma))
859 		return NULL;
860 
861 	page = follow_page_mask(vma, address, foll_flags, &ctx);
862 	if (ctx.pgmap)
863 		put_dev_pagemap(ctx.pgmap);
864 	return page;
865 }
866 
867 static int get_gate_page(struct mm_struct *mm, unsigned long address,
868 		unsigned int gup_flags, struct vm_area_struct **vma,
869 		struct page **page)
870 {
871 	pgd_t *pgd;
872 	p4d_t *p4d;
873 	pud_t *pud;
874 	pmd_t *pmd;
875 	pte_t *pte;
876 	int ret = -EFAULT;
877 
878 	/* user gate pages are read-only */
879 	if (gup_flags & FOLL_WRITE)
880 		return -EFAULT;
881 	if (address > TASK_SIZE)
882 		pgd = pgd_offset_k(address);
883 	else
884 		pgd = pgd_offset_gate(mm, address);
885 	if (pgd_none(*pgd))
886 		return -EFAULT;
887 	p4d = p4d_offset(pgd, address);
888 	if (p4d_none(*p4d))
889 		return -EFAULT;
890 	pud = pud_offset(p4d, address);
891 	if (pud_none(*pud))
892 		return -EFAULT;
893 	pmd = pmd_offset(pud, address);
894 	if (!pmd_present(*pmd))
895 		return -EFAULT;
896 	VM_BUG_ON(pmd_trans_huge(*pmd));
897 	pte = pte_offset_map(pmd, address);
898 	if (pte_none(*pte))
899 		goto unmap;
900 	*vma = get_gate_vma(mm);
901 	if (!page)
902 		goto out;
903 	*page = vm_normal_page(*vma, address, *pte);
904 	if (!*page) {
905 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
906 			goto unmap;
907 		*page = pte_page(*pte);
908 	}
909 	if (unlikely(!try_grab_page(*page, gup_flags))) {
910 		ret = -ENOMEM;
911 		goto unmap;
912 	}
913 out:
914 	ret = 0;
915 unmap:
916 	pte_unmap(pte);
917 	return ret;
918 }
919 
920 /*
921  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
922  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
923  * is, *@locked will be set to 0 and -EBUSY returned.
924  */
925 static int faultin_page(struct vm_area_struct *vma,
926 		unsigned long address, unsigned int *flags, int *locked)
927 {
928 	unsigned int fault_flags = 0;
929 	vm_fault_t ret;
930 
931 	/* mlock all present pages, but do not fault in new pages */
932 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
933 		return -ENOENT;
934 	if (*flags & FOLL_WRITE)
935 		fault_flags |= FAULT_FLAG_WRITE;
936 	if (*flags & FOLL_REMOTE)
937 		fault_flags |= FAULT_FLAG_REMOTE;
938 	if (locked)
939 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
940 	if (*flags & FOLL_NOWAIT)
941 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
942 	if (*flags & FOLL_TRIED) {
943 		/*
944 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 		 * can co-exist
946 		 */
947 		fault_flags |= FAULT_FLAG_TRIED;
948 	}
949 
950 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
951 	if (ret & VM_FAULT_ERROR) {
952 		int err = vm_fault_to_errno(ret, *flags);
953 
954 		if (err)
955 			return err;
956 		BUG();
957 	}
958 
959 	if (ret & VM_FAULT_RETRY) {
960 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
961 			*locked = 0;
962 		return -EBUSY;
963 	}
964 
965 	/*
966 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
967 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
968 	 * can thus safely do subsequent page lookups as if they were reads.
969 	 * But only do so when looping for pte_write is futile: in some cases
970 	 * userspace may also be wanting to write to the gotten user page,
971 	 * which a read fault here might prevent (a readonly page might get
972 	 * reCOWed by userspace write).
973 	 */
974 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
975 		*flags |= FOLL_COW;
976 	return 0;
977 }
978 
979 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
980 {
981 	vm_flags_t vm_flags = vma->vm_flags;
982 	int write = (gup_flags & FOLL_WRITE);
983 	int foreign = (gup_flags & FOLL_REMOTE);
984 
985 	if (vm_flags & (VM_IO | VM_PFNMAP))
986 		return -EFAULT;
987 
988 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
989 		return -EFAULT;
990 
991 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
992 		return -EOPNOTSUPP;
993 
994 	if (vma_is_secretmem(vma))
995 		return -EFAULT;
996 
997 	if (write) {
998 		if (!(vm_flags & VM_WRITE)) {
999 			if (!(gup_flags & FOLL_FORCE))
1000 				return -EFAULT;
1001 			/*
1002 			 * We used to let the write,force case do COW in a
1003 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1004 			 * set a breakpoint in a read-only mapping of an
1005 			 * executable, without corrupting the file (yet only
1006 			 * when that file had been opened for writing!).
1007 			 * Anon pages in shared mappings are surprising: now
1008 			 * just reject it.
1009 			 */
1010 			if (!is_cow_mapping(vm_flags))
1011 				return -EFAULT;
1012 		}
1013 	} else if (!(vm_flags & VM_READ)) {
1014 		if (!(gup_flags & FOLL_FORCE))
1015 			return -EFAULT;
1016 		/*
1017 		 * Is there actually any vma we can reach here which does not
1018 		 * have VM_MAYREAD set?
1019 		 */
1020 		if (!(vm_flags & VM_MAYREAD))
1021 			return -EFAULT;
1022 	}
1023 	/*
1024 	 * gups are always data accesses, not instruction
1025 	 * fetches, so execute=false here
1026 	 */
1027 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1028 		return -EFAULT;
1029 	return 0;
1030 }
1031 
1032 /**
1033  * __get_user_pages() - pin user pages in memory
1034  * @mm:		mm_struct of target mm
1035  * @start:	starting user address
1036  * @nr_pages:	number of pages from start to pin
1037  * @gup_flags:	flags modifying pin behaviour
1038  * @pages:	array that receives pointers to the pages pinned.
1039  *		Should be at least nr_pages long. Or NULL, if caller
1040  *		only intends to ensure the pages are faulted in.
1041  * @vmas:	array of pointers to vmas corresponding to each page.
1042  *		Or NULL if the caller does not require them.
1043  * @locked:     whether we're still with the mmap_lock held
1044  *
1045  * Returns either number of pages pinned (which may be less than the
1046  * number requested), or an error. Details about the return value:
1047  *
1048  * -- If nr_pages is 0, returns 0.
1049  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1050  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1051  *    pages pinned. Again, this may be less than nr_pages.
1052  * -- 0 return value is possible when the fault would need to be retried.
1053  *
1054  * The caller is responsible for releasing returned @pages, via put_page().
1055  *
1056  * @vmas are valid only as long as mmap_lock is held.
1057  *
1058  * Must be called with mmap_lock held.  It may be released.  See below.
1059  *
1060  * __get_user_pages walks a process's page tables and takes a reference to
1061  * each struct page that each user address corresponds to at a given
1062  * instant. That is, it takes the page that would be accessed if a user
1063  * thread accesses the given user virtual address at that instant.
1064  *
1065  * This does not guarantee that the page exists in the user mappings when
1066  * __get_user_pages returns, and there may even be a completely different
1067  * page there in some cases (eg. if mmapped pagecache has been invalidated
1068  * and subsequently re faulted). However it does guarantee that the page
1069  * won't be freed completely. And mostly callers simply care that the page
1070  * contains data that was valid *at some point in time*. Typically, an IO
1071  * or similar operation cannot guarantee anything stronger anyway because
1072  * locks can't be held over the syscall boundary.
1073  *
1074  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1075  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1076  * appropriate) must be called after the page is finished with, and
1077  * before put_page is called.
1078  *
1079  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1080  * released by an up_read().  That can happen if @gup_flags does not
1081  * have FOLL_NOWAIT.
1082  *
1083  * A caller using such a combination of @locked and @gup_flags
1084  * must therefore hold the mmap_lock for reading only, and recognize
1085  * when it's been released.  Otherwise, it must be held for either
1086  * reading or writing and will not be released.
1087  *
1088  * In most cases, get_user_pages or get_user_pages_fast should be used
1089  * instead of __get_user_pages. __get_user_pages should be used only if
1090  * you need some special @gup_flags.
1091  */
1092 static long __get_user_pages(struct mm_struct *mm,
1093 		unsigned long start, unsigned long nr_pages,
1094 		unsigned int gup_flags, struct page **pages,
1095 		struct vm_area_struct **vmas, int *locked)
1096 {
1097 	long ret = 0, i = 0;
1098 	struct vm_area_struct *vma = NULL;
1099 	struct follow_page_context ctx = { NULL };
1100 
1101 	if (!nr_pages)
1102 		return 0;
1103 
1104 	start = untagged_addr(start);
1105 
1106 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1107 
1108 	/*
1109 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1110 	 * fault information is unrelated to the reference behaviour of a task
1111 	 * using the address space
1112 	 */
1113 	if (!(gup_flags & FOLL_FORCE))
1114 		gup_flags |= FOLL_NUMA;
1115 
1116 	do {
1117 		struct page *page;
1118 		unsigned int foll_flags = gup_flags;
1119 		unsigned int page_increm;
1120 
1121 		/* first iteration or cross vma bound */
1122 		if (!vma || start >= vma->vm_end) {
1123 			vma = find_extend_vma(mm, start);
1124 			if (!vma && in_gate_area(mm, start)) {
1125 				ret = get_gate_page(mm, start & PAGE_MASK,
1126 						gup_flags, &vma,
1127 						pages ? &pages[i] : NULL);
1128 				if (ret)
1129 					goto out;
1130 				ctx.page_mask = 0;
1131 				goto next_page;
1132 			}
1133 
1134 			if (!vma) {
1135 				ret = -EFAULT;
1136 				goto out;
1137 			}
1138 			ret = check_vma_flags(vma, gup_flags);
1139 			if (ret)
1140 				goto out;
1141 
1142 			if (is_vm_hugetlb_page(vma)) {
1143 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1144 						&start, &nr_pages, i,
1145 						gup_flags, locked);
1146 				if (locked && *locked == 0) {
1147 					/*
1148 					 * We've got a VM_FAULT_RETRY
1149 					 * and we've lost mmap_lock.
1150 					 * We must stop here.
1151 					 */
1152 					BUG_ON(gup_flags & FOLL_NOWAIT);
1153 					goto out;
1154 				}
1155 				continue;
1156 			}
1157 		}
1158 retry:
1159 		/*
1160 		 * If we have a pending SIGKILL, don't keep faulting pages and
1161 		 * potentially allocating memory.
1162 		 */
1163 		if (fatal_signal_pending(current)) {
1164 			ret = -EINTR;
1165 			goto out;
1166 		}
1167 		cond_resched();
1168 
1169 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1170 		if (!page) {
1171 			ret = faultin_page(vma, start, &foll_flags, locked);
1172 			switch (ret) {
1173 			case 0:
1174 				goto retry;
1175 			case -EBUSY:
1176 				ret = 0;
1177 				fallthrough;
1178 			case -EFAULT:
1179 			case -ENOMEM:
1180 			case -EHWPOISON:
1181 				goto out;
1182 			case -ENOENT:
1183 				goto next_page;
1184 			}
1185 			BUG();
1186 		} else if (PTR_ERR(page) == -EEXIST) {
1187 			/*
1188 			 * Proper page table entry exists, but no corresponding
1189 			 * struct page.
1190 			 */
1191 			goto next_page;
1192 		} else if (IS_ERR(page)) {
1193 			ret = PTR_ERR(page);
1194 			goto out;
1195 		}
1196 		if (pages) {
1197 			pages[i] = page;
1198 			flush_anon_page(vma, page, start);
1199 			flush_dcache_page(page);
1200 			ctx.page_mask = 0;
1201 		}
1202 next_page:
1203 		if (vmas) {
1204 			vmas[i] = vma;
1205 			ctx.page_mask = 0;
1206 		}
1207 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1208 		if (page_increm > nr_pages)
1209 			page_increm = nr_pages;
1210 		i += page_increm;
1211 		start += page_increm * PAGE_SIZE;
1212 		nr_pages -= page_increm;
1213 	} while (nr_pages);
1214 out:
1215 	if (ctx.pgmap)
1216 		put_dev_pagemap(ctx.pgmap);
1217 	return i ? i : ret;
1218 }
1219 
1220 static bool vma_permits_fault(struct vm_area_struct *vma,
1221 			      unsigned int fault_flags)
1222 {
1223 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1224 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1225 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1226 
1227 	if (!(vm_flags & vma->vm_flags))
1228 		return false;
1229 
1230 	/*
1231 	 * The architecture might have a hardware protection
1232 	 * mechanism other than read/write that can deny access.
1233 	 *
1234 	 * gup always represents data access, not instruction
1235 	 * fetches, so execute=false here:
1236 	 */
1237 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1238 		return false;
1239 
1240 	return true;
1241 }
1242 
1243 /**
1244  * fixup_user_fault() - manually resolve a user page fault
1245  * @mm:		mm_struct of target mm
1246  * @address:	user address
1247  * @fault_flags:flags to pass down to handle_mm_fault()
1248  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1249  *		does not allow retry. If NULL, the caller must guarantee
1250  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1251  *
1252  * This is meant to be called in the specific scenario where for locking reasons
1253  * we try to access user memory in atomic context (within a pagefault_disable()
1254  * section), this returns -EFAULT, and we want to resolve the user fault before
1255  * trying again.
1256  *
1257  * Typically this is meant to be used by the futex code.
1258  *
1259  * The main difference with get_user_pages() is that this function will
1260  * unconditionally call handle_mm_fault() which will in turn perform all the
1261  * necessary SW fixup of the dirty and young bits in the PTE, while
1262  * get_user_pages() only guarantees to update these in the struct page.
1263  *
1264  * This is important for some architectures where those bits also gate the
1265  * access permission to the page because they are maintained in software.  On
1266  * such architectures, gup() will not be enough to make a subsequent access
1267  * succeed.
1268  *
1269  * This function will not return with an unlocked mmap_lock. So it has not the
1270  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1271  */
1272 int fixup_user_fault(struct mm_struct *mm,
1273 		     unsigned long address, unsigned int fault_flags,
1274 		     bool *unlocked)
1275 {
1276 	struct vm_area_struct *vma;
1277 	vm_fault_t ret;
1278 
1279 	address = untagged_addr(address);
1280 
1281 	if (unlocked)
1282 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1283 
1284 retry:
1285 	vma = find_extend_vma(mm, address);
1286 	if (!vma || address < vma->vm_start)
1287 		return -EFAULT;
1288 
1289 	if (!vma_permits_fault(vma, fault_flags))
1290 		return -EFAULT;
1291 
1292 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1293 	    fatal_signal_pending(current))
1294 		return -EINTR;
1295 
1296 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1297 	if (ret & VM_FAULT_ERROR) {
1298 		int err = vm_fault_to_errno(ret, 0);
1299 
1300 		if (err)
1301 			return err;
1302 		BUG();
1303 	}
1304 
1305 	if (ret & VM_FAULT_RETRY) {
1306 		mmap_read_lock(mm);
1307 		*unlocked = true;
1308 		fault_flags |= FAULT_FLAG_TRIED;
1309 		goto retry;
1310 	}
1311 
1312 	return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(fixup_user_fault);
1315 
1316 /*
1317  * Please note that this function, unlike __get_user_pages will not
1318  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1319  */
1320 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1321 						unsigned long start,
1322 						unsigned long nr_pages,
1323 						struct page **pages,
1324 						struct vm_area_struct **vmas,
1325 						int *locked,
1326 						unsigned int flags)
1327 {
1328 	long ret, pages_done;
1329 	bool lock_dropped;
1330 
1331 	if (locked) {
1332 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1333 		BUG_ON(vmas);
1334 		/* check caller initialized locked */
1335 		BUG_ON(*locked != 1);
1336 	}
1337 
1338 	if (flags & FOLL_PIN)
1339 		mm_set_has_pinned_flag(&mm->flags);
1340 
1341 	/*
1342 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1343 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1344 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1345 	 * for FOLL_GET, not for the newer FOLL_PIN.
1346 	 *
1347 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1348 	 * that here, as any failures will be obvious enough.
1349 	 */
1350 	if (pages && !(flags & FOLL_PIN))
1351 		flags |= FOLL_GET;
1352 
1353 	pages_done = 0;
1354 	lock_dropped = false;
1355 	for (;;) {
1356 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1357 				       vmas, locked);
1358 		if (!locked)
1359 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1360 			return ret;
1361 
1362 		/* VM_FAULT_RETRY cannot return errors */
1363 		if (!*locked) {
1364 			BUG_ON(ret < 0);
1365 			BUG_ON(ret >= nr_pages);
1366 		}
1367 
1368 		if (ret > 0) {
1369 			nr_pages -= ret;
1370 			pages_done += ret;
1371 			if (!nr_pages)
1372 				break;
1373 		}
1374 		if (*locked) {
1375 			/*
1376 			 * VM_FAULT_RETRY didn't trigger or it was a
1377 			 * FOLL_NOWAIT.
1378 			 */
1379 			if (!pages_done)
1380 				pages_done = ret;
1381 			break;
1382 		}
1383 		/*
1384 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1385 		 * For the prefault case (!pages) we only update counts.
1386 		 */
1387 		if (likely(pages))
1388 			pages += ret;
1389 		start += ret << PAGE_SHIFT;
1390 		lock_dropped = true;
1391 
1392 retry:
1393 		/*
1394 		 * Repeat on the address that fired VM_FAULT_RETRY
1395 		 * with both FAULT_FLAG_ALLOW_RETRY and
1396 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1397 		 * by fatal signals, so we need to check it before we
1398 		 * start trying again otherwise it can loop forever.
1399 		 */
1400 
1401 		if (fatal_signal_pending(current)) {
1402 			if (!pages_done)
1403 				pages_done = -EINTR;
1404 			break;
1405 		}
1406 
1407 		ret = mmap_read_lock_killable(mm);
1408 		if (ret) {
1409 			BUG_ON(ret > 0);
1410 			if (!pages_done)
1411 				pages_done = ret;
1412 			break;
1413 		}
1414 
1415 		*locked = 1;
1416 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1417 				       pages, NULL, locked);
1418 		if (!*locked) {
1419 			/* Continue to retry until we succeeded */
1420 			BUG_ON(ret != 0);
1421 			goto retry;
1422 		}
1423 		if (ret != 1) {
1424 			BUG_ON(ret > 1);
1425 			if (!pages_done)
1426 				pages_done = ret;
1427 			break;
1428 		}
1429 		nr_pages--;
1430 		pages_done++;
1431 		if (!nr_pages)
1432 			break;
1433 		if (likely(pages))
1434 			pages++;
1435 		start += PAGE_SIZE;
1436 	}
1437 	if (lock_dropped && *locked) {
1438 		/*
1439 		 * We must let the caller know we temporarily dropped the lock
1440 		 * and so the critical section protected by it was lost.
1441 		 */
1442 		mmap_read_unlock(mm);
1443 		*locked = 0;
1444 	}
1445 	return pages_done;
1446 }
1447 
1448 /**
1449  * populate_vma_page_range() -  populate a range of pages in the vma.
1450  * @vma:   target vma
1451  * @start: start address
1452  * @end:   end address
1453  * @locked: whether the mmap_lock is still held
1454  *
1455  * This takes care of mlocking the pages too if VM_LOCKED is set.
1456  *
1457  * Return either number of pages pinned in the vma, or a negative error
1458  * code on error.
1459  *
1460  * vma->vm_mm->mmap_lock must be held.
1461  *
1462  * If @locked is NULL, it may be held for read or write and will
1463  * be unperturbed.
1464  *
1465  * If @locked is non-NULL, it must held for read only and may be
1466  * released.  If it's released, *@locked will be set to 0.
1467  */
1468 long populate_vma_page_range(struct vm_area_struct *vma,
1469 		unsigned long start, unsigned long end, int *locked)
1470 {
1471 	struct mm_struct *mm = vma->vm_mm;
1472 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1473 	int gup_flags;
1474 
1475 	VM_BUG_ON(!PAGE_ALIGNED(start));
1476 	VM_BUG_ON(!PAGE_ALIGNED(end));
1477 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1478 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1479 	mmap_assert_locked(mm);
1480 
1481 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1482 	if (vma->vm_flags & VM_LOCKONFAULT)
1483 		gup_flags &= ~FOLL_POPULATE;
1484 	/*
1485 	 * We want to touch writable mappings with a write fault in order
1486 	 * to break COW, except for shared mappings because these don't COW
1487 	 * and we would not want to dirty them for nothing.
1488 	 */
1489 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1490 		gup_flags |= FOLL_WRITE;
1491 
1492 	/*
1493 	 * We want mlock to succeed for regions that have any permissions
1494 	 * other than PROT_NONE.
1495 	 */
1496 	if (vma_is_accessible(vma))
1497 		gup_flags |= FOLL_FORCE;
1498 
1499 	/*
1500 	 * We made sure addr is within a VMA, so the following will
1501 	 * not result in a stack expansion that recurses back here.
1502 	 */
1503 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1504 				NULL, NULL, locked);
1505 }
1506 
1507 /*
1508  * faultin_vma_page_range() - populate (prefault) page tables inside the
1509  *			      given VMA range readable/writable
1510  *
1511  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1512  *
1513  * @vma: target vma
1514  * @start: start address
1515  * @end: end address
1516  * @write: whether to prefault readable or writable
1517  * @locked: whether the mmap_lock is still held
1518  *
1519  * Returns either number of processed pages in the vma, or a negative error
1520  * code on error (see __get_user_pages()).
1521  *
1522  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1523  * covered by the VMA.
1524  *
1525  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1526  *
1527  * If @locked is non-NULL, it must held for read only and may be released.  If
1528  * it's released, *@locked will be set to 0.
1529  */
1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1531 			    unsigned long end, bool write, int *locked)
1532 {
1533 	struct mm_struct *mm = vma->vm_mm;
1534 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1535 	int gup_flags;
1536 
1537 	VM_BUG_ON(!PAGE_ALIGNED(start));
1538 	VM_BUG_ON(!PAGE_ALIGNED(end));
1539 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1540 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1541 	mmap_assert_locked(mm);
1542 
1543 	/*
1544 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1545 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1546 	 *	       difference with !FOLL_FORCE, because the page is writable
1547 	 *	       in the page table.
1548 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1549 	 *		  a poisoned page.
1550 	 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1551 	 * !FOLL_FORCE: Require proper access permissions.
1552 	 */
1553 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1554 	if (write)
1555 		gup_flags |= FOLL_WRITE;
1556 
1557 	/*
1558 	 * We want to report -EINVAL instead of -EFAULT for any permission
1559 	 * problems or incompatible mappings.
1560 	 */
1561 	if (check_vma_flags(vma, gup_flags))
1562 		return -EINVAL;
1563 
1564 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1565 				NULL, NULL, locked);
1566 }
1567 
1568 /*
1569  * __mm_populate - populate and/or mlock pages within a range of address space.
1570  *
1571  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1572  * flags. VMAs must be already marked with the desired vm_flags, and
1573  * mmap_lock must not be held.
1574  */
1575 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1576 {
1577 	struct mm_struct *mm = current->mm;
1578 	unsigned long end, nstart, nend;
1579 	struct vm_area_struct *vma = NULL;
1580 	int locked = 0;
1581 	long ret = 0;
1582 
1583 	end = start + len;
1584 
1585 	for (nstart = start; nstart < end; nstart = nend) {
1586 		/*
1587 		 * We want to fault in pages for [nstart; end) address range.
1588 		 * Find first corresponding VMA.
1589 		 */
1590 		if (!locked) {
1591 			locked = 1;
1592 			mmap_read_lock(mm);
1593 			vma = find_vma(mm, nstart);
1594 		} else if (nstart >= vma->vm_end)
1595 			vma = vma->vm_next;
1596 		if (!vma || vma->vm_start >= end)
1597 			break;
1598 		/*
1599 		 * Set [nstart; nend) to intersection of desired address
1600 		 * range with the first VMA. Also, skip undesirable VMA types.
1601 		 */
1602 		nend = min(end, vma->vm_end);
1603 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1604 			continue;
1605 		if (nstart < vma->vm_start)
1606 			nstart = vma->vm_start;
1607 		/*
1608 		 * Now fault in a range of pages. populate_vma_page_range()
1609 		 * double checks the vma flags, so that it won't mlock pages
1610 		 * if the vma was already munlocked.
1611 		 */
1612 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1613 		if (ret < 0) {
1614 			if (ignore_errors) {
1615 				ret = 0;
1616 				continue;	/* continue at next VMA */
1617 			}
1618 			break;
1619 		}
1620 		nend = nstart + ret * PAGE_SIZE;
1621 		ret = 0;
1622 	}
1623 	if (locked)
1624 		mmap_read_unlock(mm);
1625 	return ret;	/* 0 or negative error code */
1626 }
1627 #else /* CONFIG_MMU */
1628 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1629 		unsigned long nr_pages, struct page **pages,
1630 		struct vm_area_struct **vmas, int *locked,
1631 		unsigned int foll_flags)
1632 {
1633 	struct vm_area_struct *vma;
1634 	unsigned long vm_flags;
1635 	long i;
1636 
1637 	/* calculate required read or write permissions.
1638 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1639 	 */
1640 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1641 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1642 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1643 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1644 
1645 	for (i = 0; i < nr_pages; i++) {
1646 		vma = find_vma(mm, start);
1647 		if (!vma)
1648 			goto finish_or_fault;
1649 
1650 		/* protect what we can, including chardevs */
1651 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1652 		    !(vm_flags & vma->vm_flags))
1653 			goto finish_or_fault;
1654 
1655 		if (pages) {
1656 			pages[i] = virt_to_page(start);
1657 			if (pages[i])
1658 				get_page(pages[i]);
1659 		}
1660 		if (vmas)
1661 			vmas[i] = vma;
1662 		start = (start + PAGE_SIZE) & PAGE_MASK;
1663 	}
1664 
1665 	return i;
1666 
1667 finish_or_fault:
1668 	return i ? : -EFAULT;
1669 }
1670 #endif /* !CONFIG_MMU */
1671 
1672 /**
1673  * get_dump_page() - pin user page in memory while writing it to core dump
1674  * @addr: user address
1675  *
1676  * Returns struct page pointer of user page pinned for dump,
1677  * to be freed afterwards by put_page().
1678  *
1679  * Returns NULL on any kind of failure - a hole must then be inserted into
1680  * the corefile, to preserve alignment with its headers; and also returns
1681  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1682  * allowing a hole to be left in the corefile to save disk space.
1683  *
1684  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1685  */
1686 #ifdef CONFIG_ELF_CORE
1687 struct page *get_dump_page(unsigned long addr)
1688 {
1689 	struct mm_struct *mm = current->mm;
1690 	struct page *page;
1691 	int locked = 1;
1692 	int ret;
1693 
1694 	if (mmap_read_lock_killable(mm))
1695 		return NULL;
1696 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1697 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1698 	if (locked)
1699 		mmap_read_unlock(mm);
1700 	return (ret == 1) ? page : NULL;
1701 }
1702 #endif /* CONFIG_ELF_CORE */
1703 
1704 #ifdef CONFIG_MIGRATION
1705 /*
1706  * Check whether all pages are pinnable, if so return number of pages.  If some
1707  * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1708  * pages were migrated, or if some pages were not successfully isolated.
1709  * Return negative error if migration fails.
1710  */
1711 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1712 					    struct page **pages,
1713 					    unsigned int gup_flags)
1714 {
1715 	unsigned long i;
1716 	unsigned long isolation_error_count = 0;
1717 	bool drain_allow = true;
1718 	LIST_HEAD(movable_page_list);
1719 	long ret = 0;
1720 	struct page *prev_head = NULL;
1721 	struct page *head;
1722 	struct migration_target_control mtc = {
1723 		.nid = NUMA_NO_NODE,
1724 		.gfp_mask = GFP_USER | __GFP_NOWARN,
1725 	};
1726 
1727 	for (i = 0; i < nr_pages; i++) {
1728 		head = compound_head(pages[i]);
1729 		if (head == prev_head)
1730 			continue;
1731 		prev_head = head;
1732 		/*
1733 		 * If we get a movable page, since we are going to be pinning
1734 		 * these entries, try to move them out if possible.
1735 		 */
1736 		if (!is_pinnable_page(head)) {
1737 			if (PageHuge(head)) {
1738 				if (!isolate_huge_page(head, &movable_page_list))
1739 					isolation_error_count++;
1740 			} else {
1741 				if (!PageLRU(head) && drain_allow) {
1742 					lru_add_drain_all();
1743 					drain_allow = false;
1744 				}
1745 
1746 				if (isolate_lru_page(head)) {
1747 					isolation_error_count++;
1748 					continue;
1749 				}
1750 				list_add_tail(&head->lru, &movable_page_list);
1751 				mod_node_page_state(page_pgdat(head),
1752 						    NR_ISOLATED_ANON +
1753 						    page_is_file_lru(head),
1754 						    thp_nr_pages(head));
1755 			}
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * If list is empty, and no isolation errors, means that all pages are
1761 	 * in the correct zone.
1762 	 */
1763 	if (list_empty(&movable_page_list) && !isolation_error_count)
1764 		return nr_pages;
1765 
1766 	if (gup_flags & FOLL_PIN) {
1767 		unpin_user_pages(pages, nr_pages);
1768 	} else {
1769 		for (i = 0; i < nr_pages; i++)
1770 			put_page(pages[i]);
1771 	}
1772 	if (!list_empty(&movable_page_list)) {
1773 		ret = migrate_pages(&movable_page_list, alloc_migration_target,
1774 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1775 				    MR_LONGTERM_PIN);
1776 		if (ret && !list_empty(&movable_page_list))
1777 			putback_movable_pages(&movable_page_list);
1778 	}
1779 
1780 	return ret > 0 ? -ENOMEM : ret;
1781 }
1782 #else
1783 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1784 					    struct page **pages,
1785 					    unsigned int gup_flags)
1786 {
1787 	return nr_pages;
1788 }
1789 #endif /* CONFIG_MIGRATION */
1790 
1791 /*
1792  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1793  * allows us to process the FOLL_LONGTERM flag.
1794  */
1795 static long __gup_longterm_locked(struct mm_struct *mm,
1796 				  unsigned long start,
1797 				  unsigned long nr_pages,
1798 				  struct page **pages,
1799 				  struct vm_area_struct **vmas,
1800 				  unsigned int gup_flags)
1801 {
1802 	unsigned int flags;
1803 	long rc;
1804 
1805 	if (!(gup_flags & FOLL_LONGTERM))
1806 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1807 					       NULL, gup_flags);
1808 	flags = memalloc_pin_save();
1809 	do {
1810 		rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 					     NULL, gup_flags);
1812 		if (rc <= 0)
1813 			break;
1814 		rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1815 	} while (!rc);
1816 	memalloc_pin_restore(flags);
1817 
1818 	return rc;
1819 }
1820 
1821 static bool is_valid_gup_flags(unsigned int gup_flags)
1822 {
1823 	/*
1824 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1825 	 * never directly by the caller, so enforce that with an assertion:
1826 	 */
1827 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1828 		return false;
1829 	/*
1830 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1831 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1832 	 * FOLL_PIN.
1833 	 */
1834 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1835 		return false;
1836 
1837 	return true;
1838 }
1839 
1840 #ifdef CONFIG_MMU
1841 static long __get_user_pages_remote(struct mm_struct *mm,
1842 				    unsigned long start, unsigned long nr_pages,
1843 				    unsigned int gup_flags, struct page **pages,
1844 				    struct vm_area_struct **vmas, int *locked)
1845 {
1846 	/*
1847 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1848 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1849 	 * vmas. However, this only comes up if locked is set, and there are
1850 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1851 	 * allow what we can.
1852 	 */
1853 	if (gup_flags & FOLL_LONGTERM) {
1854 		if (WARN_ON_ONCE(locked))
1855 			return -EINVAL;
1856 		/*
1857 		 * This will check the vmas (even if our vmas arg is NULL)
1858 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1859 		 */
1860 		return __gup_longterm_locked(mm, start, nr_pages, pages,
1861 					     vmas, gup_flags | FOLL_TOUCH |
1862 					     FOLL_REMOTE);
1863 	}
1864 
1865 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1866 				       locked,
1867 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1868 }
1869 
1870 /**
1871  * get_user_pages_remote() - pin user pages in memory
1872  * @mm:		mm_struct of target mm
1873  * @start:	starting user address
1874  * @nr_pages:	number of pages from start to pin
1875  * @gup_flags:	flags modifying lookup behaviour
1876  * @pages:	array that receives pointers to the pages pinned.
1877  *		Should be at least nr_pages long. Or NULL, if caller
1878  *		only intends to ensure the pages are faulted in.
1879  * @vmas:	array of pointers to vmas corresponding to each page.
1880  *		Or NULL if the caller does not require them.
1881  * @locked:	pointer to lock flag indicating whether lock is held and
1882  *		subsequently whether VM_FAULT_RETRY functionality can be
1883  *		utilised. Lock must initially be held.
1884  *
1885  * Returns either number of pages pinned (which may be less than the
1886  * number requested), or an error. Details about the return value:
1887  *
1888  * -- If nr_pages is 0, returns 0.
1889  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1890  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1891  *    pages pinned. Again, this may be less than nr_pages.
1892  *
1893  * The caller is responsible for releasing returned @pages, via put_page().
1894  *
1895  * @vmas are valid only as long as mmap_lock is held.
1896  *
1897  * Must be called with mmap_lock held for read or write.
1898  *
1899  * get_user_pages_remote walks a process's page tables and takes a reference
1900  * to each struct page that each user address corresponds to at a given
1901  * instant. That is, it takes the page that would be accessed if a user
1902  * thread accesses the given user virtual address at that instant.
1903  *
1904  * This does not guarantee that the page exists in the user mappings when
1905  * get_user_pages_remote returns, and there may even be a completely different
1906  * page there in some cases (eg. if mmapped pagecache has been invalidated
1907  * and subsequently re faulted). However it does guarantee that the page
1908  * won't be freed completely. And mostly callers simply care that the page
1909  * contains data that was valid *at some point in time*. Typically, an IO
1910  * or similar operation cannot guarantee anything stronger anyway because
1911  * locks can't be held over the syscall boundary.
1912  *
1913  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1914  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1915  * be called after the page is finished with, and before put_page is called.
1916  *
1917  * get_user_pages_remote is typically used for fewer-copy IO operations,
1918  * to get a handle on the memory by some means other than accesses
1919  * via the user virtual addresses. The pages may be submitted for
1920  * DMA to devices or accessed via their kernel linear mapping (via the
1921  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1922  *
1923  * See also get_user_pages_fast, for performance critical applications.
1924  *
1925  * get_user_pages_remote should be phased out in favor of
1926  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1927  * should use get_user_pages_remote because it cannot pass
1928  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1929  */
1930 long get_user_pages_remote(struct mm_struct *mm,
1931 		unsigned long start, unsigned long nr_pages,
1932 		unsigned int gup_flags, struct page **pages,
1933 		struct vm_area_struct **vmas, int *locked)
1934 {
1935 	if (!is_valid_gup_flags(gup_flags))
1936 		return -EINVAL;
1937 
1938 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1939 				       pages, vmas, locked);
1940 }
1941 EXPORT_SYMBOL(get_user_pages_remote);
1942 
1943 #else /* CONFIG_MMU */
1944 long get_user_pages_remote(struct mm_struct *mm,
1945 			   unsigned long start, unsigned long nr_pages,
1946 			   unsigned int gup_flags, struct page **pages,
1947 			   struct vm_area_struct **vmas, int *locked)
1948 {
1949 	return 0;
1950 }
1951 
1952 static long __get_user_pages_remote(struct mm_struct *mm,
1953 				    unsigned long start, unsigned long nr_pages,
1954 				    unsigned int gup_flags, struct page **pages,
1955 				    struct vm_area_struct **vmas, int *locked)
1956 {
1957 	return 0;
1958 }
1959 #endif /* !CONFIG_MMU */
1960 
1961 /**
1962  * get_user_pages() - pin user pages in memory
1963  * @start:      starting user address
1964  * @nr_pages:   number of pages from start to pin
1965  * @gup_flags:  flags modifying lookup behaviour
1966  * @pages:      array that receives pointers to the pages pinned.
1967  *              Should be at least nr_pages long. Or NULL, if caller
1968  *              only intends to ensure the pages are faulted in.
1969  * @vmas:       array of pointers to vmas corresponding to each page.
1970  *              Or NULL if the caller does not require them.
1971  *
1972  * This is the same as get_user_pages_remote(), just with a less-flexible
1973  * calling convention where we assume that the mm being operated on belongs to
1974  * the current task, and doesn't allow passing of a locked parameter.  We also
1975  * obviously don't pass FOLL_REMOTE in here.
1976  */
1977 long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 		unsigned int gup_flags, struct page **pages,
1979 		struct vm_area_struct **vmas)
1980 {
1981 	if (!is_valid_gup_flags(gup_flags))
1982 		return -EINVAL;
1983 
1984 	return __gup_longterm_locked(current->mm, start, nr_pages,
1985 				     pages, vmas, gup_flags | FOLL_TOUCH);
1986 }
1987 EXPORT_SYMBOL(get_user_pages);
1988 
1989 /**
1990  * get_user_pages_locked() - variant of get_user_pages()
1991  *
1992  * @start:      starting user address
1993  * @nr_pages:   number of pages from start to pin
1994  * @gup_flags:  flags modifying lookup behaviour
1995  * @pages:      array that receives pointers to the pages pinned.
1996  *              Should be at least nr_pages long. Or NULL, if caller
1997  *              only intends to ensure the pages are faulted in.
1998  * @locked:     pointer to lock flag indicating whether lock is held and
1999  *              subsequently whether VM_FAULT_RETRY functionality can be
2000  *              utilised. Lock must initially be held.
2001  *
2002  * It is suitable to replace the form:
2003  *
2004  *      mmap_read_lock(mm);
2005  *      do_something()
2006  *      get_user_pages(mm, ..., pages, NULL);
2007  *      mmap_read_unlock(mm);
2008  *
2009  *  to:
2010  *
2011  *      int locked = 1;
2012  *      mmap_read_lock(mm);
2013  *      do_something()
2014  *      get_user_pages_locked(mm, ..., pages, &locked);
2015  *      if (locked)
2016  *          mmap_read_unlock(mm);
2017  *
2018  * We can leverage the VM_FAULT_RETRY functionality in the page fault
2019  * paths better by using either get_user_pages_locked() or
2020  * get_user_pages_unlocked().
2021  *
2022  */
2023 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2024 			   unsigned int gup_flags, struct page **pages,
2025 			   int *locked)
2026 {
2027 	/*
2028 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2029 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2030 	 * vmas.  As there are no users of this flag in this call we simply
2031 	 * disallow this option for now.
2032 	 */
2033 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2034 		return -EINVAL;
2035 	/*
2036 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2037 	 * never directly by the caller, so enforce that:
2038 	 */
2039 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2040 		return -EINVAL;
2041 
2042 	return __get_user_pages_locked(current->mm, start, nr_pages,
2043 				       pages, NULL, locked,
2044 				       gup_flags | FOLL_TOUCH);
2045 }
2046 EXPORT_SYMBOL(get_user_pages_locked);
2047 
2048 /*
2049  * get_user_pages_unlocked() is suitable to replace the form:
2050  *
2051  *      mmap_read_lock(mm);
2052  *      get_user_pages(mm, ..., pages, NULL);
2053  *      mmap_read_unlock(mm);
2054  *
2055  *  with:
2056  *
2057  *      get_user_pages_unlocked(mm, ..., pages);
2058  *
2059  * It is functionally equivalent to get_user_pages_fast so
2060  * get_user_pages_fast should be used instead if specific gup_flags
2061  * (e.g. FOLL_FORCE) are not required.
2062  */
2063 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2064 			     struct page **pages, unsigned int gup_flags)
2065 {
2066 	struct mm_struct *mm = current->mm;
2067 	int locked = 1;
2068 	long ret;
2069 
2070 	/*
2071 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2072 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2073 	 * vmas.  As there are no users of this flag in this call we simply
2074 	 * disallow this option for now.
2075 	 */
2076 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2077 		return -EINVAL;
2078 
2079 	mmap_read_lock(mm);
2080 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2081 				      &locked, gup_flags | FOLL_TOUCH);
2082 	if (locked)
2083 		mmap_read_unlock(mm);
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(get_user_pages_unlocked);
2087 
2088 /*
2089  * Fast GUP
2090  *
2091  * get_user_pages_fast attempts to pin user pages by walking the page
2092  * tables directly and avoids taking locks. Thus the walker needs to be
2093  * protected from page table pages being freed from under it, and should
2094  * block any THP splits.
2095  *
2096  * One way to achieve this is to have the walker disable interrupts, and
2097  * rely on IPIs from the TLB flushing code blocking before the page table
2098  * pages are freed. This is unsuitable for architectures that do not need
2099  * to broadcast an IPI when invalidating TLBs.
2100  *
2101  * Another way to achieve this is to batch up page table containing pages
2102  * belonging to more than one mm_user, then rcu_sched a callback to free those
2103  * pages. Disabling interrupts will allow the fast_gup walker to both block
2104  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2105  * (which is a relatively rare event). The code below adopts this strategy.
2106  *
2107  * Before activating this code, please be aware that the following assumptions
2108  * are currently made:
2109  *
2110  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2111  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2112  *
2113  *  *) ptes can be read atomically by the architecture.
2114  *
2115  *  *) access_ok is sufficient to validate userspace address ranges.
2116  *
2117  * The last two assumptions can be relaxed by the addition of helper functions.
2118  *
2119  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2120  */
2121 #ifdef CONFIG_HAVE_FAST_GUP
2122 
2123 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2124 					    unsigned int flags,
2125 					    struct page **pages)
2126 {
2127 	while ((*nr) - nr_start) {
2128 		struct page *page = pages[--(*nr)];
2129 
2130 		ClearPageReferenced(page);
2131 		if (flags & FOLL_PIN)
2132 			unpin_user_page(page);
2133 		else
2134 			put_page(page);
2135 	}
2136 }
2137 
2138 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2139 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2140 			 unsigned int flags, struct page **pages, int *nr)
2141 {
2142 	struct dev_pagemap *pgmap = NULL;
2143 	int nr_start = *nr, ret = 0;
2144 	pte_t *ptep, *ptem;
2145 
2146 	ptem = ptep = pte_offset_map(&pmd, addr);
2147 	do {
2148 		pte_t pte = ptep_get_lockless(ptep);
2149 		struct page *head, *page;
2150 
2151 		/*
2152 		 * Similar to the PMD case below, NUMA hinting must take slow
2153 		 * path using the pte_protnone check.
2154 		 */
2155 		if (pte_protnone(pte))
2156 			goto pte_unmap;
2157 
2158 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2159 			goto pte_unmap;
2160 
2161 		if (pte_devmap(pte)) {
2162 			if (unlikely(flags & FOLL_LONGTERM))
2163 				goto pte_unmap;
2164 
2165 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2166 			if (unlikely(!pgmap)) {
2167 				undo_dev_pagemap(nr, nr_start, flags, pages);
2168 				goto pte_unmap;
2169 			}
2170 		} else if (pte_special(pte))
2171 			goto pte_unmap;
2172 
2173 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2174 		page = pte_page(pte);
2175 
2176 		head = try_grab_compound_head(page, 1, flags);
2177 		if (!head)
2178 			goto pte_unmap;
2179 
2180 		if (unlikely(page_is_secretmem(page))) {
2181 			put_compound_head(head, 1, flags);
2182 			goto pte_unmap;
2183 		}
2184 
2185 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2186 			put_compound_head(head, 1, flags);
2187 			goto pte_unmap;
2188 		}
2189 
2190 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2191 
2192 		/*
2193 		 * We need to make the page accessible if and only if we are
2194 		 * going to access its content (the FOLL_PIN case).  Please
2195 		 * see Documentation/core-api/pin_user_pages.rst for
2196 		 * details.
2197 		 */
2198 		if (flags & FOLL_PIN) {
2199 			ret = arch_make_page_accessible(page);
2200 			if (ret) {
2201 				unpin_user_page(page);
2202 				goto pte_unmap;
2203 			}
2204 		}
2205 		SetPageReferenced(page);
2206 		pages[*nr] = page;
2207 		(*nr)++;
2208 
2209 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2210 
2211 	ret = 1;
2212 
2213 pte_unmap:
2214 	if (pgmap)
2215 		put_dev_pagemap(pgmap);
2216 	pte_unmap(ptem);
2217 	return ret;
2218 }
2219 #else
2220 
2221 /*
2222  * If we can't determine whether or not a pte is special, then fail immediately
2223  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2224  * to be special.
2225  *
2226  * For a futex to be placed on a THP tail page, get_futex_key requires a
2227  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2228  * useful to have gup_huge_pmd even if we can't operate on ptes.
2229  */
2230 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2231 			 unsigned int flags, struct page **pages, int *nr)
2232 {
2233 	return 0;
2234 }
2235 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2236 
2237 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2238 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2239 			     unsigned long end, unsigned int flags,
2240 			     struct page **pages, int *nr)
2241 {
2242 	int nr_start = *nr;
2243 	struct dev_pagemap *pgmap = NULL;
2244 	int ret = 1;
2245 
2246 	do {
2247 		struct page *page = pfn_to_page(pfn);
2248 
2249 		pgmap = get_dev_pagemap(pfn, pgmap);
2250 		if (unlikely(!pgmap)) {
2251 			undo_dev_pagemap(nr, nr_start, flags, pages);
2252 			ret = 0;
2253 			break;
2254 		}
2255 		SetPageReferenced(page);
2256 		pages[*nr] = page;
2257 		if (unlikely(!try_grab_page(page, flags))) {
2258 			undo_dev_pagemap(nr, nr_start, flags, pages);
2259 			ret = 0;
2260 			break;
2261 		}
2262 		(*nr)++;
2263 		pfn++;
2264 	} while (addr += PAGE_SIZE, addr != end);
2265 
2266 	put_dev_pagemap(pgmap);
2267 	return ret;
2268 }
2269 
2270 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2271 				 unsigned long end, unsigned int flags,
2272 				 struct page **pages, int *nr)
2273 {
2274 	unsigned long fault_pfn;
2275 	int nr_start = *nr;
2276 
2277 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2278 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2279 		return 0;
2280 
2281 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2282 		undo_dev_pagemap(nr, nr_start, flags, pages);
2283 		return 0;
2284 	}
2285 	return 1;
2286 }
2287 
2288 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2289 				 unsigned long end, unsigned int flags,
2290 				 struct page **pages, int *nr)
2291 {
2292 	unsigned long fault_pfn;
2293 	int nr_start = *nr;
2294 
2295 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2296 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2297 		return 0;
2298 
2299 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2300 		undo_dev_pagemap(nr, nr_start, flags, pages);
2301 		return 0;
2302 	}
2303 	return 1;
2304 }
2305 #else
2306 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2307 				 unsigned long end, unsigned int flags,
2308 				 struct page **pages, int *nr)
2309 {
2310 	BUILD_BUG();
2311 	return 0;
2312 }
2313 
2314 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2315 				 unsigned long end, unsigned int flags,
2316 				 struct page **pages, int *nr)
2317 {
2318 	BUILD_BUG();
2319 	return 0;
2320 }
2321 #endif
2322 
2323 static int record_subpages(struct page *page, unsigned long addr,
2324 			   unsigned long end, struct page **pages)
2325 {
2326 	int nr;
2327 
2328 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2329 		pages[nr++] = page++;
2330 
2331 	return nr;
2332 }
2333 
2334 #ifdef CONFIG_ARCH_HAS_HUGEPD
2335 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2336 				      unsigned long sz)
2337 {
2338 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2339 	return (__boundary - 1 < end - 1) ? __boundary : end;
2340 }
2341 
2342 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2343 		       unsigned long end, unsigned int flags,
2344 		       struct page **pages, int *nr)
2345 {
2346 	unsigned long pte_end;
2347 	struct page *head, *page;
2348 	pte_t pte;
2349 	int refs;
2350 
2351 	pte_end = (addr + sz) & ~(sz-1);
2352 	if (pte_end < end)
2353 		end = pte_end;
2354 
2355 	pte = huge_ptep_get(ptep);
2356 
2357 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2358 		return 0;
2359 
2360 	/* hugepages are never "special" */
2361 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2362 
2363 	head = pte_page(pte);
2364 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2365 	refs = record_subpages(page, addr, end, pages + *nr);
2366 
2367 	head = try_grab_compound_head(head, refs, flags);
2368 	if (!head)
2369 		return 0;
2370 
2371 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2372 		put_compound_head(head, refs, flags);
2373 		return 0;
2374 	}
2375 
2376 	*nr += refs;
2377 	SetPageReferenced(head);
2378 	return 1;
2379 }
2380 
2381 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2382 		unsigned int pdshift, unsigned long end, unsigned int flags,
2383 		struct page **pages, int *nr)
2384 {
2385 	pte_t *ptep;
2386 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2387 	unsigned long next;
2388 
2389 	ptep = hugepte_offset(hugepd, addr, pdshift);
2390 	do {
2391 		next = hugepte_addr_end(addr, end, sz);
2392 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2393 			return 0;
2394 	} while (ptep++, addr = next, addr != end);
2395 
2396 	return 1;
2397 }
2398 #else
2399 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2400 		unsigned int pdshift, unsigned long end, unsigned int flags,
2401 		struct page **pages, int *nr)
2402 {
2403 	return 0;
2404 }
2405 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2406 
2407 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2408 			unsigned long end, unsigned int flags,
2409 			struct page **pages, int *nr)
2410 {
2411 	struct page *head, *page;
2412 	int refs;
2413 
2414 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2415 		return 0;
2416 
2417 	if (pmd_devmap(orig)) {
2418 		if (unlikely(flags & FOLL_LONGTERM))
2419 			return 0;
2420 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2421 					     pages, nr);
2422 	}
2423 
2424 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2425 	refs = record_subpages(page, addr, end, pages + *nr);
2426 
2427 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2428 	if (!head)
2429 		return 0;
2430 
2431 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2432 		put_compound_head(head, refs, flags);
2433 		return 0;
2434 	}
2435 
2436 	*nr += refs;
2437 	SetPageReferenced(head);
2438 	return 1;
2439 }
2440 
2441 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2442 			unsigned long end, unsigned int flags,
2443 			struct page **pages, int *nr)
2444 {
2445 	struct page *head, *page;
2446 	int refs;
2447 
2448 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2449 		return 0;
2450 
2451 	if (pud_devmap(orig)) {
2452 		if (unlikely(flags & FOLL_LONGTERM))
2453 			return 0;
2454 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2455 					     pages, nr);
2456 	}
2457 
2458 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2459 	refs = record_subpages(page, addr, end, pages + *nr);
2460 
2461 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2462 	if (!head)
2463 		return 0;
2464 
2465 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2466 		put_compound_head(head, refs, flags);
2467 		return 0;
2468 	}
2469 
2470 	*nr += refs;
2471 	SetPageReferenced(head);
2472 	return 1;
2473 }
2474 
2475 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2476 			unsigned long end, unsigned int flags,
2477 			struct page **pages, int *nr)
2478 {
2479 	int refs;
2480 	struct page *head, *page;
2481 
2482 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2483 		return 0;
2484 
2485 	BUILD_BUG_ON(pgd_devmap(orig));
2486 
2487 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2488 	refs = record_subpages(page, addr, end, pages + *nr);
2489 
2490 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2491 	if (!head)
2492 		return 0;
2493 
2494 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2495 		put_compound_head(head, refs, flags);
2496 		return 0;
2497 	}
2498 
2499 	*nr += refs;
2500 	SetPageReferenced(head);
2501 	return 1;
2502 }
2503 
2504 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2505 		unsigned int flags, struct page **pages, int *nr)
2506 {
2507 	unsigned long next;
2508 	pmd_t *pmdp;
2509 
2510 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2511 	do {
2512 		pmd_t pmd = READ_ONCE(*pmdp);
2513 
2514 		next = pmd_addr_end(addr, end);
2515 		if (!pmd_present(pmd))
2516 			return 0;
2517 
2518 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2519 			     pmd_devmap(pmd))) {
2520 			/*
2521 			 * NUMA hinting faults need to be handled in the GUP
2522 			 * slowpath for accounting purposes and so that they
2523 			 * can be serialised against THP migration.
2524 			 */
2525 			if (pmd_protnone(pmd))
2526 				return 0;
2527 
2528 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2529 				pages, nr))
2530 				return 0;
2531 
2532 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2533 			/*
2534 			 * architecture have different format for hugetlbfs
2535 			 * pmd format and THP pmd format
2536 			 */
2537 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2538 					 PMD_SHIFT, next, flags, pages, nr))
2539 				return 0;
2540 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2541 			return 0;
2542 	} while (pmdp++, addr = next, addr != end);
2543 
2544 	return 1;
2545 }
2546 
2547 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2548 			 unsigned int flags, struct page **pages, int *nr)
2549 {
2550 	unsigned long next;
2551 	pud_t *pudp;
2552 
2553 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2554 	do {
2555 		pud_t pud = READ_ONCE(*pudp);
2556 
2557 		next = pud_addr_end(addr, end);
2558 		if (unlikely(!pud_present(pud)))
2559 			return 0;
2560 		if (unlikely(pud_huge(pud))) {
2561 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2562 					  pages, nr))
2563 				return 0;
2564 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2565 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2566 					 PUD_SHIFT, next, flags, pages, nr))
2567 				return 0;
2568 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2569 			return 0;
2570 	} while (pudp++, addr = next, addr != end);
2571 
2572 	return 1;
2573 }
2574 
2575 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2576 			 unsigned int flags, struct page **pages, int *nr)
2577 {
2578 	unsigned long next;
2579 	p4d_t *p4dp;
2580 
2581 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2582 	do {
2583 		p4d_t p4d = READ_ONCE(*p4dp);
2584 
2585 		next = p4d_addr_end(addr, end);
2586 		if (p4d_none(p4d))
2587 			return 0;
2588 		BUILD_BUG_ON(p4d_huge(p4d));
2589 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2590 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2591 					 P4D_SHIFT, next, flags, pages, nr))
2592 				return 0;
2593 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2594 			return 0;
2595 	} while (p4dp++, addr = next, addr != end);
2596 
2597 	return 1;
2598 }
2599 
2600 static void gup_pgd_range(unsigned long addr, unsigned long end,
2601 		unsigned int flags, struct page **pages, int *nr)
2602 {
2603 	unsigned long next;
2604 	pgd_t *pgdp;
2605 
2606 	pgdp = pgd_offset(current->mm, addr);
2607 	do {
2608 		pgd_t pgd = READ_ONCE(*pgdp);
2609 
2610 		next = pgd_addr_end(addr, end);
2611 		if (pgd_none(pgd))
2612 			return;
2613 		if (unlikely(pgd_huge(pgd))) {
2614 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2615 					  pages, nr))
2616 				return;
2617 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2618 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2619 					 PGDIR_SHIFT, next, flags, pages, nr))
2620 				return;
2621 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2622 			return;
2623 	} while (pgdp++, addr = next, addr != end);
2624 }
2625 #else
2626 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2627 		unsigned int flags, struct page **pages, int *nr)
2628 {
2629 }
2630 #endif /* CONFIG_HAVE_FAST_GUP */
2631 
2632 #ifndef gup_fast_permitted
2633 /*
2634  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2635  * we need to fall back to the slow version:
2636  */
2637 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2638 {
2639 	return true;
2640 }
2641 #endif
2642 
2643 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2644 				   unsigned int gup_flags, struct page **pages)
2645 {
2646 	int ret;
2647 
2648 	/*
2649 	 * FIXME: FOLL_LONGTERM does not work with
2650 	 * get_user_pages_unlocked() (see comments in that function)
2651 	 */
2652 	if (gup_flags & FOLL_LONGTERM) {
2653 		mmap_read_lock(current->mm);
2654 		ret = __gup_longterm_locked(current->mm,
2655 					    start, nr_pages,
2656 					    pages, NULL, gup_flags);
2657 		mmap_read_unlock(current->mm);
2658 	} else {
2659 		ret = get_user_pages_unlocked(start, nr_pages,
2660 					      pages, gup_flags);
2661 	}
2662 
2663 	return ret;
2664 }
2665 
2666 static unsigned long lockless_pages_from_mm(unsigned long start,
2667 					    unsigned long end,
2668 					    unsigned int gup_flags,
2669 					    struct page **pages)
2670 {
2671 	unsigned long flags;
2672 	int nr_pinned = 0;
2673 	unsigned seq;
2674 
2675 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2676 	    !gup_fast_permitted(start, end))
2677 		return 0;
2678 
2679 	if (gup_flags & FOLL_PIN) {
2680 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2681 		if (seq & 1)
2682 			return 0;
2683 	}
2684 
2685 	/*
2686 	 * Disable interrupts. The nested form is used, in order to allow full,
2687 	 * general purpose use of this routine.
2688 	 *
2689 	 * With interrupts disabled, we block page table pages from being freed
2690 	 * from under us. See struct mmu_table_batch comments in
2691 	 * include/asm-generic/tlb.h for more details.
2692 	 *
2693 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2694 	 * that come from THPs splitting.
2695 	 */
2696 	local_irq_save(flags);
2697 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2698 	local_irq_restore(flags);
2699 
2700 	/*
2701 	 * When pinning pages for DMA there could be a concurrent write protect
2702 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2703 	 */
2704 	if (gup_flags & FOLL_PIN) {
2705 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2706 			unpin_user_pages(pages, nr_pinned);
2707 			return 0;
2708 		}
2709 	}
2710 	return nr_pinned;
2711 }
2712 
2713 static int internal_get_user_pages_fast(unsigned long start,
2714 					unsigned long nr_pages,
2715 					unsigned int gup_flags,
2716 					struct page **pages)
2717 {
2718 	unsigned long len, end;
2719 	unsigned long nr_pinned;
2720 	int ret;
2721 
2722 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2723 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2724 				       FOLL_FAST_ONLY)))
2725 		return -EINVAL;
2726 
2727 	if (gup_flags & FOLL_PIN)
2728 		mm_set_has_pinned_flag(&current->mm->flags);
2729 
2730 	if (!(gup_flags & FOLL_FAST_ONLY))
2731 		might_lock_read(&current->mm->mmap_lock);
2732 
2733 	start = untagged_addr(start) & PAGE_MASK;
2734 	len = nr_pages << PAGE_SHIFT;
2735 	if (check_add_overflow(start, len, &end))
2736 		return 0;
2737 	if (unlikely(!access_ok((void __user *)start, len)))
2738 		return -EFAULT;
2739 
2740 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2741 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2742 		return nr_pinned;
2743 
2744 	/* Slow path: try to get the remaining pages with get_user_pages */
2745 	start += nr_pinned << PAGE_SHIFT;
2746 	pages += nr_pinned;
2747 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2748 				      pages);
2749 	if (ret < 0) {
2750 		/*
2751 		 * The caller has to unpin the pages we already pinned so
2752 		 * returning -errno is not an option
2753 		 */
2754 		if (nr_pinned)
2755 			return nr_pinned;
2756 		return ret;
2757 	}
2758 	return ret + nr_pinned;
2759 }
2760 
2761 /**
2762  * get_user_pages_fast_only() - pin user pages in memory
2763  * @start:      starting user address
2764  * @nr_pages:   number of pages from start to pin
2765  * @gup_flags:  flags modifying pin behaviour
2766  * @pages:      array that receives pointers to the pages pinned.
2767  *              Should be at least nr_pages long.
2768  *
2769  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2770  * the regular GUP.
2771  * Note a difference with get_user_pages_fast: this always returns the
2772  * number of pages pinned, 0 if no pages were pinned.
2773  *
2774  * If the architecture does not support this function, simply return with no
2775  * pages pinned.
2776  *
2777  * Careful, careful! COW breaking can go either way, so a non-write
2778  * access can get ambiguous page results. If you call this function without
2779  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2780  */
2781 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2782 			     unsigned int gup_flags, struct page **pages)
2783 {
2784 	int nr_pinned;
2785 	/*
2786 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2787 	 * because gup fast is always a "pin with a +1 page refcount" request.
2788 	 *
2789 	 * FOLL_FAST_ONLY is required in order to match the API description of
2790 	 * this routine: no fall back to regular ("slow") GUP.
2791 	 */
2792 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2793 
2794 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2795 						 pages);
2796 
2797 	/*
2798 	 * As specified in the API description above, this routine is not
2799 	 * allowed to return negative values. However, the common core
2800 	 * routine internal_get_user_pages_fast() *can* return -errno.
2801 	 * Therefore, correct for that here:
2802 	 */
2803 	if (nr_pinned < 0)
2804 		nr_pinned = 0;
2805 
2806 	return nr_pinned;
2807 }
2808 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2809 
2810 /**
2811  * get_user_pages_fast() - pin user pages in memory
2812  * @start:      starting user address
2813  * @nr_pages:   number of pages from start to pin
2814  * @gup_flags:  flags modifying pin behaviour
2815  * @pages:      array that receives pointers to the pages pinned.
2816  *              Should be at least nr_pages long.
2817  *
2818  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2819  * If not successful, it will fall back to taking the lock and
2820  * calling get_user_pages().
2821  *
2822  * Returns number of pages pinned. This may be fewer than the number requested.
2823  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2824  * -errno.
2825  */
2826 int get_user_pages_fast(unsigned long start, int nr_pages,
2827 			unsigned int gup_flags, struct page **pages)
2828 {
2829 	if (!is_valid_gup_flags(gup_flags))
2830 		return -EINVAL;
2831 
2832 	/*
2833 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2834 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2835 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2836 	 * request.
2837 	 */
2838 	gup_flags |= FOLL_GET;
2839 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2840 }
2841 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2842 
2843 /**
2844  * pin_user_pages_fast() - pin user pages in memory without taking locks
2845  *
2846  * @start:      starting user address
2847  * @nr_pages:   number of pages from start to pin
2848  * @gup_flags:  flags modifying pin behaviour
2849  * @pages:      array that receives pointers to the pages pinned.
2850  *              Should be at least nr_pages long.
2851  *
2852  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2853  * get_user_pages_fast() for documentation on the function arguments, because
2854  * the arguments here are identical.
2855  *
2856  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2857  * see Documentation/core-api/pin_user_pages.rst for further details.
2858  */
2859 int pin_user_pages_fast(unsigned long start, int nr_pages,
2860 			unsigned int gup_flags, struct page **pages)
2861 {
2862 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2863 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2864 		return -EINVAL;
2865 
2866 	gup_flags |= FOLL_PIN;
2867 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2868 }
2869 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2870 
2871 /*
2872  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2873  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2874  *
2875  * The API rules are the same, too: no negative values may be returned.
2876  */
2877 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2878 			     unsigned int gup_flags, struct page **pages)
2879 {
2880 	int nr_pinned;
2881 
2882 	/*
2883 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2884 	 * rules require returning 0, rather than -errno:
2885 	 */
2886 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2887 		return 0;
2888 	/*
2889 	 * FOLL_FAST_ONLY is required in order to match the API description of
2890 	 * this routine: no fall back to regular ("slow") GUP.
2891 	 */
2892 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2893 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2894 						 pages);
2895 	/*
2896 	 * This routine is not allowed to return negative values. However,
2897 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2898 	 * correct for that here:
2899 	 */
2900 	if (nr_pinned < 0)
2901 		nr_pinned = 0;
2902 
2903 	return nr_pinned;
2904 }
2905 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2906 
2907 /**
2908  * pin_user_pages_remote() - pin pages of a remote process
2909  *
2910  * @mm:		mm_struct of target mm
2911  * @start:	starting user address
2912  * @nr_pages:	number of pages from start to pin
2913  * @gup_flags:	flags modifying lookup behaviour
2914  * @pages:	array that receives pointers to the pages pinned.
2915  *		Should be at least nr_pages long. Or NULL, if caller
2916  *		only intends to ensure the pages are faulted in.
2917  * @vmas:	array of pointers to vmas corresponding to each page.
2918  *		Or NULL if the caller does not require them.
2919  * @locked:	pointer to lock flag indicating whether lock is held and
2920  *		subsequently whether VM_FAULT_RETRY functionality can be
2921  *		utilised. Lock must initially be held.
2922  *
2923  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2924  * get_user_pages_remote() for documentation on the function arguments, because
2925  * the arguments here are identical.
2926  *
2927  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2928  * see Documentation/core-api/pin_user_pages.rst for details.
2929  */
2930 long pin_user_pages_remote(struct mm_struct *mm,
2931 			   unsigned long start, unsigned long nr_pages,
2932 			   unsigned int gup_flags, struct page **pages,
2933 			   struct vm_area_struct **vmas, int *locked)
2934 {
2935 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2936 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2937 		return -EINVAL;
2938 
2939 	gup_flags |= FOLL_PIN;
2940 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2941 				       pages, vmas, locked);
2942 }
2943 EXPORT_SYMBOL(pin_user_pages_remote);
2944 
2945 /**
2946  * pin_user_pages() - pin user pages in memory for use by other devices
2947  *
2948  * @start:	starting user address
2949  * @nr_pages:	number of pages from start to pin
2950  * @gup_flags:	flags modifying lookup behaviour
2951  * @pages:	array that receives pointers to the pages pinned.
2952  *		Should be at least nr_pages long. Or NULL, if caller
2953  *		only intends to ensure the pages are faulted in.
2954  * @vmas:	array of pointers to vmas corresponding to each page.
2955  *		Or NULL if the caller does not require them.
2956  *
2957  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2958  * FOLL_PIN is set.
2959  *
2960  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2961  * see Documentation/core-api/pin_user_pages.rst for details.
2962  */
2963 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2964 		    unsigned int gup_flags, struct page **pages,
2965 		    struct vm_area_struct **vmas)
2966 {
2967 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2968 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2969 		return -EINVAL;
2970 
2971 	gup_flags |= FOLL_PIN;
2972 	return __gup_longterm_locked(current->mm, start, nr_pages,
2973 				     pages, vmas, gup_flags);
2974 }
2975 EXPORT_SYMBOL(pin_user_pages);
2976 
2977 /*
2978  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2979  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2980  * FOLL_PIN and rejects FOLL_GET.
2981  */
2982 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2983 			     struct page **pages, unsigned int gup_flags)
2984 {
2985 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2986 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2987 		return -EINVAL;
2988 
2989 	gup_flags |= FOLL_PIN;
2990 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2991 }
2992 EXPORT_SYMBOL(pin_user_pages_unlocked);
2993 
2994 /*
2995  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2996  * Behavior is the same, except that this one sets FOLL_PIN and rejects
2997  * FOLL_GET.
2998  */
2999 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3000 			   unsigned int gup_flags, struct page **pages,
3001 			   int *locked)
3002 {
3003 	/*
3004 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3005 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3006 	 * vmas.  As there are no users of this flag in this call we simply
3007 	 * disallow this option for now.
3008 	 */
3009 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3010 		return -EINVAL;
3011 
3012 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3013 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3014 		return -EINVAL;
3015 
3016 	gup_flags |= FOLL_PIN;
3017 	return __get_user_pages_locked(current->mm, start, nr_pages,
3018 				       pages, NULL, locked,
3019 				       gup_flags | FOLL_TOUCH);
3020 }
3021 EXPORT_SYMBOL(pin_user_pages_locked);
3022