1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/mmu_context.h> 24 #include <asm/tlbflush.h> 25 26 #include "internal.h" 27 28 struct follow_page_context { 29 struct dev_pagemap *pgmap; 30 unsigned int page_mask; 31 }; 32 33 static inline void sanity_check_pinned_pages(struct page **pages, 34 unsigned long npages) 35 { 36 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 37 return; 38 39 /* 40 * We only pin anonymous pages if they are exclusive. Once pinned, we 41 * can no longer turn them possibly shared and PageAnonExclusive() will 42 * stick around until the page is freed. 43 * 44 * We'd like to verify that our pinned anonymous pages are still mapped 45 * exclusively. The issue with anon THP is that we don't know how 46 * they are/were mapped when pinning them. However, for anon 47 * THP we can assume that either the given page (PTE-mapped THP) or 48 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 49 * neither is the case, there is certainly something wrong. 50 */ 51 for (; npages; npages--, pages++) { 52 struct page *page = *pages; 53 struct folio *folio = page_folio(page); 54 55 if (is_zero_page(page) || 56 !folio_test_anon(folio)) 57 continue; 58 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 59 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 60 else 61 /* Either a PTE-mapped or a PMD-mapped THP. */ 62 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 63 !PageAnonExclusive(page), page); 64 } 65 } 66 67 /* 68 * Return the folio with ref appropriately incremented, 69 * or NULL if that failed. 70 */ 71 static inline struct folio *try_get_folio(struct page *page, int refs) 72 { 73 struct folio *folio; 74 75 retry: 76 folio = page_folio(page); 77 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 78 return NULL; 79 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 80 return NULL; 81 82 /* 83 * At this point we have a stable reference to the folio; but it 84 * could be that between calling page_folio() and the refcount 85 * increment, the folio was split, in which case we'd end up 86 * holding a reference on a folio that has nothing to do with the page 87 * we were given anymore. 88 * So now that the folio is stable, recheck that the page still 89 * belongs to this folio. 90 */ 91 if (unlikely(page_folio(page) != folio)) { 92 if (!put_devmap_managed_page_refs(&folio->page, refs)) 93 folio_put_refs(folio, refs); 94 goto retry; 95 } 96 97 return folio; 98 } 99 100 /** 101 * try_grab_folio() - Attempt to get or pin a folio. 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the folio's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: folio's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on large folios: folio's refcount will be incremented by 116 * @refs, and its pincount will be incremented by @refs. 117 * 118 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 119 * @refs * GUP_PIN_COUNTING_BIAS. 120 * 121 * Return: The folio containing @page (with refcount appropriately 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET 123 * nor FOLL_PIN was set, that's considered failure, and furthermore, 124 * a likely bug in the caller, so a warning is also emitted. 125 */ 126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 127 { 128 struct folio *folio; 129 130 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 131 return NULL; 132 133 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 134 return NULL; 135 136 if (flags & FOLL_GET) 137 return try_get_folio(page, refs); 138 139 /* FOLL_PIN is set */ 140 141 /* 142 * Don't take a pin on the zero page - it's not going anywhere 143 * and it is used in a *lot* of places. 144 */ 145 if (is_zero_page(page)) 146 return page_folio(page); 147 148 folio = try_get_folio(page, refs); 149 if (!folio) 150 return NULL; 151 152 /* 153 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 154 * right zone, so fail and let the caller fall back to the slow 155 * path. 156 */ 157 if (unlikely((flags & FOLL_LONGTERM) && 158 !folio_is_longterm_pinnable(folio))) { 159 if (!put_devmap_managed_page_refs(&folio->page, refs)) 160 folio_put_refs(folio, refs); 161 return NULL; 162 } 163 164 /* 165 * When pinning a large folio, use an exact count to track it. 166 * 167 * However, be sure to *also* increment the normal folio 168 * refcount field at least once, so that the folio really 169 * is pinned. That's why the refcount from the earlier 170 * try_get_folio() is left intact. 171 */ 172 if (folio_test_large(folio)) 173 atomic_add(refs, &folio->_pincount); 174 else 175 folio_ref_add(folio, 176 refs * (GUP_PIN_COUNTING_BIAS - 1)); 177 /* 178 * Adjust the pincount before re-checking the PTE for changes. 179 * This is essentially a smp_mb() and is paired with a memory 180 * barrier in folio_try_share_anon_rmap_*(). 181 */ 182 smp_mb__after_atomic(); 183 184 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 185 186 return folio; 187 } 188 189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 190 { 191 if (flags & FOLL_PIN) { 192 if (is_zero_folio(folio)) 193 return; 194 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 195 if (folio_test_large(folio)) 196 atomic_sub(refs, &folio->_pincount); 197 else 198 refs *= GUP_PIN_COUNTING_BIAS; 199 } 200 201 if (!put_devmap_managed_page_refs(&folio->page, refs)) 202 folio_put_refs(folio, refs); 203 } 204 205 /** 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 207 * @page: pointer to page to be grabbed 208 * @flags: gup flags: these are the FOLL_* flag values. 209 * 210 * This might not do anything at all, depending on the flags argument. 211 * 212 * "grab" names in this file mean, "look at flags to decide whether to use 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 214 * 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 216 * time. Cases: please see the try_grab_folio() documentation, with 217 * "refs=1". 218 * 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 221 * 222 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 223 * be grabbed. 224 */ 225 int __must_check try_grab_page(struct page *page, unsigned int flags) 226 { 227 struct folio *folio = page_folio(page); 228 229 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 230 return -ENOMEM; 231 232 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 233 return -EREMOTEIO; 234 235 if (flags & FOLL_GET) 236 folio_ref_inc(folio); 237 else if (flags & FOLL_PIN) { 238 /* 239 * Don't take a pin on the zero page - it's not going anywhere 240 * and it is used in a *lot* of places. 241 */ 242 if (is_zero_page(page)) 243 return 0; 244 245 /* 246 * Similar to try_grab_folio(): be sure to *also* 247 * increment the normal page refcount field at least once, 248 * so that the page really is pinned. 249 */ 250 if (folio_test_large(folio)) { 251 folio_ref_add(folio, 1); 252 atomic_add(1, &folio->_pincount); 253 } else { 254 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 255 } 256 257 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 258 } 259 260 return 0; 261 } 262 263 /** 264 * unpin_user_page() - release a dma-pinned page 265 * @page: pointer to page to be released 266 * 267 * Pages that were pinned via pin_user_pages*() must be released via either 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 269 * that such pages can be separately tracked and uniquely handled. In 270 * particular, interactions with RDMA and filesystems need special handling. 271 */ 272 void unpin_user_page(struct page *page) 273 { 274 sanity_check_pinned_pages(&page, 1); 275 gup_put_folio(page_folio(page), 1, FOLL_PIN); 276 } 277 EXPORT_SYMBOL(unpin_user_page); 278 279 /** 280 * folio_add_pin - Try to get an additional pin on a pinned folio 281 * @folio: The folio to be pinned 282 * 283 * Get an additional pin on a folio we already have a pin on. Makes no change 284 * if the folio is a zero_page. 285 */ 286 void folio_add_pin(struct folio *folio) 287 { 288 if (is_zero_folio(folio)) 289 return; 290 291 /* 292 * Similar to try_grab_folio(): be sure to *also* increment the normal 293 * page refcount field at least once, so that the page really is 294 * pinned. 295 */ 296 if (folio_test_large(folio)) { 297 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 298 folio_ref_inc(folio); 299 atomic_inc(&folio->_pincount); 300 } else { 301 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 302 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 303 } 304 } 305 306 static inline struct folio *gup_folio_range_next(struct page *start, 307 unsigned long npages, unsigned long i, unsigned int *ntails) 308 { 309 struct page *next = nth_page(start, i); 310 struct folio *folio = page_folio(next); 311 unsigned int nr = 1; 312 313 if (folio_test_large(folio)) 314 nr = min_t(unsigned int, npages - i, 315 folio_nr_pages(folio) - folio_page_idx(folio, next)); 316 317 *ntails = nr; 318 return folio; 319 } 320 321 static inline struct folio *gup_folio_next(struct page **list, 322 unsigned long npages, unsigned long i, unsigned int *ntails) 323 { 324 struct folio *folio = page_folio(list[i]); 325 unsigned int nr; 326 327 for (nr = i + 1; nr < npages; nr++) { 328 if (page_folio(list[nr]) != folio) 329 break; 330 } 331 332 *ntails = nr - i; 333 return folio; 334 } 335 336 /** 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 338 * @pages: array of pages to be maybe marked dirty, and definitely released. 339 * @npages: number of pages in the @pages array. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 343 * variants called on that page. 344 * 345 * For each page in the @pages array, make that page (or its head page, if a 346 * compound page) dirty, if @make_dirty is true, and if the page was previously 347 * listed as clean. In any case, releases all pages using unpin_user_page(), 348 * possibly via unpin_user_pages(), for the non-dirty case. 349 * 350 * Please see the unpin_user_page() documentation for details. 351 * 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 353 * required, then the caller should a) verify that this is really correct, 354 * because _lock() is usually required, and b) hand code it: 355 * set_page_dirty_lock(), unpin_user_page(). 356 * 357 */ 358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 359 bool make_dirty) 360 { 361 unsigned long i; 362 struct folio *folio; 363 unsigned int nr; 364 365 if (!make_dirty) { 366 unpin_user_pages(pages, npages); 367 return; 368 } 369 370 sanity_check_pinned_pages(pages, npages); 371 for (i = 0; i < npages; i += nr) { 372 folio = gup_folio_next(pages, npages, i, &nr); 373 /* 374 * Checking PageDirty at this point may race with 375 * clear_page_dirty_for_io(), but that's OK. Two key 376 * cases: 377 * 378 * 1) This code sees the page as already dirty, so it 379 * skips the call to set_page_dirty(). That could happen 380 * because clear_page_dirty_for_io() called 381 * page_mkclean(), followed by set_page_dirty(). 382 * However, now the page is going to get written back, 383 * which meets the original intention of setting it 384 * dirty, so all is well: clear_page_dirty_for_io() goes 385 * on to call TestClearPageDirty(), and write the page 386 * back. 387 * 388 * 2) This code sees the page as clean, so it calls 389 * set_page_dirty(). The page stays dirty, despite being 390 * written back, so it gets written back again in the 391 * next writeback cycle. This is harmless. 392 */ 393 if (!folio_test_dirty(folio)) { 394 folio_lock(folio); 395 folio_mark_dirty(folio); 396 folio_unlock(folio); 397 } 398 gup_put_folio(folio, nr, FOLL_PIN); 399 } 400 } 401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 402 403 /** 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty 405 * gup-pinned page range 406 * 407 * @page: the starting page of a range maybe marked dirty, and definitely released. 408 * @npages: number of consecutive pages to release. 409 * @make_dirty: whether to mark the pages dirty 410 * 411 * "gup-pinned page range" refers to a range of pages that has had one of the 412 * pin_user_pages() variants called on that page. 413 * 414 * For the page ranges defined by [page .. page+npages], make that range (or 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 416 * page range was previously listed as clean. 417 * 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 419 * required, then the caller should a) verify that this is really correct, 420 * because _lock() is usually required, and b) hand code it: 421 * set_page_dirty_lock(), unpin_user_page(). 422 * 423 */ 424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 425 bool make_dirty) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 for (i = 0; i < npages; i += nr) { 432 folio = gup_folio_range_next(page, npages, i, &nr); 433 if (make_dirty && !folio_test_dirty(folio)) { 434 folio_lock(folio); 435 folio_mark_dirty(folio); 436 folio_unlock(folio); 437 } 438 gup_put_folio(folio, nr, FOLL_PIN); 439 } 440 } 441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 442 443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 444 { 445 unsigned long i; 446 struct folio *folio; 447 unsigned int nr; 448 449 /* 450 * Don't perform any sanity checks because we might have raced with 451 * fork() and some anonymous pages might now actually be shared -- 452 * which is why we're unpinning after all. 453 */ 454 for (i = 0; i < npages; i += nr) { 455 folio = gup_folio_next(pages, npages, i, &nr); 456 gup_put_folio(folio, nr, FOLL_PIN); 457 } 458 } 459 460 /** 461 * unpin_user_pages() - release an array of gup-pinned pages. 462 * @pages: array of pages to be marked dirty and released. 463 * @npages: number of pages in the @pages array. 464 * 465 * For each page in the @pages array, release the page using unpin_user_page(). 466 * 467 * Please see the unpin_user_page() documentation for details. 468 */ 469 void unpin_user_pages(struct page **pages, unsigned long npages) 470 { 471 unsigned long i; 472 struct folio *folio; 473 unsigned int nr; 474 475 /* 476 * If this WARN_ON() fires, then the system *might* be leaking pages (by 477 * leaving them pinned), but probably not. More likely, gup/pup returned 478 * a hard -ERRNO error to the caller, who erroneously passed it here. 479 */ 480 if (WARN_ON(IS_ERR_VALUE(npages))) 481 return; 482 483 sanity_check_pinned_pages(pages, npages); 484 for (i = 0; i < npages; i += nr) { 485 folio = gup_folio_next(pages, npages, i, &nr); 486 gup_put_folio(folio, nr, FOLL_PIN); 487 } 488 } 489 EXPORT_SYMBOL(unpin_user_pages); 490 491 /* 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 493 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 494 * cache bouncing on large SMP machines for concurrent pinned gups. 495 */ 496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 497 { 498 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 499 set_bit(MMF_HAS_PINNED, mm_flags); 500 } 501 502 #ifdef CONFIG_MMU 503 static struct page *no_page_table(struct vm_area_struct *vma, 504 unsigned int flags) 505 { 506 /* 507 * When core dumping an enormous anonymous area that nobody 508 * has touched so far, we don't want to allocate unnecessary pages or 509 * page tables. Return error instead of NULL to skip handle_mm_fault, 510 * then get_dump_page() will return NULL to leave a hole in the dump. 511 * But we can only make this optimization where a hole would surely 512 * be zero-filled if handle_mm_fault() actually did handle it. 513 */ 514 if ((flags & FOLL_DUMP) && 515 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 516 return ERR_PTR(-EFAULT); 517 return NULL; 518 } 519 520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 521 pte_t *pte, unsigned int flags) 522 { 523 if (flags & FOLL_TOUCH) { 524 pte_t orig_entry = ptep_get(pte); 525 pte_t entry = orig_entry; 526 527 if (flags & FOLL_WRITE) 528 entry = pte_mkdirty(entry); 529 entry = pte_mkyoung(entry); 530 531 if (!pte_same(orig_entry, entry)) { 532 set_pte_at(vma->vm_mm, address, pte, entry); 533 update_mmu_cache(vma, address, pte); 534 } 535 } 536 537 /* Proper page table entry exists, but no corresponding struct page */ 538 return -EEXIST; 539 } 540 541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 542 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 543 struct vm_area_struct *vma, 544 unsigned int flags) 545 { 546 /* If the pte is writable, we can write to the page. */ 547 if (pte_write(pte)) 548 return true; 549 550 /* Maybe FOLL_FORCE is set to override it? */ 551 if (!(flags & FOLL_FORCE)) 552 return false; 553 554 /* But FOLL_FORCE has no effect on shared mappings */ 555 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 556 return false; 557 558 /* ... or read-only private ones */ 559 if (!(vma->vm_flags & VM_MAYWRITE)) 560 return false; 561 562 /* ... or already writable ones that just need to take a write fault */ 563 if (vma->vm_flags & VM_WRITE) 564 return false; 565 566 /* 567 * See can_change_pte_writable(): we broke COW and could map the page 568 * writable if we have an exclusive anonymous page ... 569 */ 570 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 571 return false; 572 573 /* ... and a write-fault isn't required for other reasons. */ 574 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 575 return false; 576 return !userfaultfd_pte_wp(vma, pte); 577 } 578 579 static struct page *follow_page_pte(struct vm_area_struct *vma, 580 unsigned long address, pmd_t *pmd, unsigned int flags, 581 struct dev_pagemap **pgmap) 582 { 583 struct mm_struct *mm = vma->vm_mm; 584 struct page *page; 585 spinlock_t *ptl; 586 pte_t *ptep, pte; 587 int ret; 588 589 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 590 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 591 (FOLL_PIN | FOLL_GET))) 592 return ERR_PTR(-EINVAL); 593 594 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 595 if (!ptep) 596 return no_page_table(vma, flags); 597 pte = ptep_get(ptep); 598 if (!pte_present(pte)) 599 goto no_page; 600 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 601 goto no_page; 602 603 page = vm_normal_page(vma, address, pte); 604 605 /* 606 * We only care about anon pages in can_follow_write_pte() and don't 607 * have to worry about pte_devmap() because they are never anon. 608 */ 609 if ((flags & FOLL_WRITE) && 610 !can_follow_write_pte(pte, page, vma, flags)) { 611 page = NULL; 612 goto out; 613 } 614 615 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 616 /* 617 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 618 * case since they are only valid while holding the pgmap 619 * reference. 620 */ 621 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 622 if (*pgmap) 623 page = pte_page(pte); 624 else 625 goto no_page; 626 } else if (unlikely(!page)) { 627 if (flags & FOLL_DUMP) { 628 /* Avoid special (like zero) pages in core dumps */ 629 page = ERR_PTR(-EFAULT); 630 goto out; 631 } 632 633 if (is_zero_pfn(pte_pfn(pte))) { 634 page = pte_page(pte); 635 } else { 636 ret = follow_pfn_pte(vma, address, ptep, flags); 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 } 641 642 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 643 page = ERR_PTR(-EMLINK); 644 goto out; 645 } 646 647 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 648 !PageAnonExclusive(page), page); 649 650 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 651 ret = try_grab_page(page, flags); 652 if (unlikely(ret)) { 653 page = ERR_PTR(ret); 654 goto out; 655 } 656 657 /* 658 * We need to make the page accessible if and only if we are going 659 * to access its content (the FOLL_PIN case). Please see 660 * Documentation/core-api/pin_user_pages.rst for details. 661 */ 662 if (flags & FOLL_PIN) { 663 ret = arch_make_page_accessible(page); 664 if (ret) { 665 unpin_user_page(page); 666 page = ERR_PTR(ret); 667 goto out; 668 } 669 } 670 if (flags & FOLL_TOUCH) { 671 if ((flags & FOLL_WRITE) && 672 !pte_dirty(pte) && !PageDirty(page)) 673 set_page_dirty(page); 674 /* 675 * pte_mkyoung() would be more correct here, but atomic care 676 * is needed to avoid losing the dirty bit: it is easier to use 677 * mark_page_accessed(). 678 */ 679 mark_page_accessed(page); 680 } 681 out: 682 pte_unmap_unlock(ptep, ptl); 683 return page; 684 no_page: 685 pte_unmap_unlock(ptep, ptl); 686 if (!pte_none(pte)) 687 return NULL; 688 return no_page_table(vma, flags); 689 } 690 691 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 692 unsigned long address, pud_t *pudp, 693 unsigned int flags, 694 struct follow_page_context *ctx) 695 { 696 pmd_t *pmd, pmdval; 697 spinlock_t *ptl; 698 struct page *page; 699 struct mm_struct *mm = vma->vm_mm; 700 701 pmd = pmd_offset(pudp, address); 702 pmdval = pmdp_get_lockless(pmd); 703 if (pmd_none(pmdval)) 704 return no_page_table(vma, flags); 705 if (!pmd_present(pmdval)) 706 return no_page_table(vma, flags); 707 if (pmd_devmap(pmdval)) { 708 ptl = pmd_lock(mm, pmd); 709 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 710 spin_unlock(ptl); 711 if (page) 712 return page; 713 return no_page_table(vma, flags); 714 } 715 if (likely(!pmd_trans_huge(pmdval))) 716 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 717 718 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 719 return no_page_table(vma, flags); 720 721 ptl = pmd_lock(mm, pmd); 722 if (unlikely(!pmd_present(*pmd))) { 723 spin_unlock(ptl); 724 return no_page_table(vma, flags); 725 } 726 if (unlikely(!pmd_trans_huge(*pmd))) { 727 spin_unlock(ptl); 728 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 729 } 730 if (flags & FOLL_SPLIT_PMD) { 731 spin_unlock(ptl); 732 split_huge_pmd(vma, pmd, address); 733 /* If pmd was left empty, stuff a page table in there quickly */ 734 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 735 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 736 } 737 page = follow_trans_huge_pmd(vma, address, pmd, flags); 738 spin_unlock(ptl); 739 ctx->page_mask = HPAGE_PMD_NR - 1; 740 return page; 741 } 742 743 static struct page *follow_pud_mask(struct vm_area_struct *vma, 744 unsigned long address, p4d_t *p4dp, 745 unsigned int flags, 746 struct follow_page_context *ctx) 747 { 748 pud_t *pud; 749 spinlock_t *ptl; 750 struct page *page; 751 struct mm_struct *mm = vma->vm_mm; 752 753 pud = pud_offset(p4dp, address); 754 if (pud_none(*pud)) 755 return no_page_table(vma, flags); 756 if (pud_devmap(*pud)) { 757 ptl = pud_lock(mm, pud); 758 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 759 spin_unlock(ptl); 760 if (page) 761 return page; 762 return no_page_table(vma, flags); 763 } 764 if (unlikely(pud_bad(*pud))) 765 return no_page_table(vma, flags); 766 767 return follow_pmd_mask(vma, address, pud, flags, ctx); 768 } 769 770 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 771 unsigned long address, pgd_t *pgdp, 772 unsigned int flags, 773 struct follow_page_context *ctx) 774 { 775 p4d_t *p4d; 776 777 p4d = p4d_offset(pgdp, address); 778 if (p4d_none(*p4d)) 779 return no_page_table(vma, flags); 780 BUILD_BUG_ON(p4d_huge(*p4d)); 781 if (unlikely(p4d_bad(*p4d))) 782 return no_page_table(vma, flags); 783 784 return follow_pud_mask(vma, address, p4d, flags, ctx); 785 } 786 787 /** 788 * follow_page_mask - look up a page descriptor from a user-virtual address 789 * @vma: vm_area_struct mapping @address 790 * @address: virtual address to look up 791 * @flags: flags modifying lookup behaviour 792 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 793 * pointer to output page_mask 794 * 795 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 796 * 797 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 798 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 799 * 800 * When getting an anonymous page and the caller has to trigger unsharing 801 * of a shared anonymous page first, -EMLINK is returned. The caller should 802 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 803 * relevant with FOLL_PIN and !FOLL_WRITE. 804 * 805 * On output, the @ctx->page_mask is set according to the size of the page. 806 * 807 * Return: the mapped (struct page *), %NULL if no mapping exists, or 808 * an error pointer if there is a mapping to something not represented 809 * by a page descriptor (see also vm_normal_page()). 810 */ 811 static struct page *follow_page_mask(struct vm_area_struct *vma, 812 unsigned long address, unsigned int flags, 813 struct follow_page_context *ctx) 814 { 815 pgd_t *pgd; 816 struct mm_struct *mm = vma->vm_mm; 817 818 ctx->page_mask = 0; 819 820 /* 821 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 822 * special hugetlb page table walking code. This eliminates the 823 * need to check for hugetlb entries in the general walking code. 824 */ 825 if (is_vm_hugetlb_page(vma)) 826 return hugetlb_follow_page_mask(vma, address, flags, 827 &ctx->page_mask); 828 829 pgd = pgd_offset(mm, address); 830 831 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 832 return no_page_table(vma, flags); 833 834 return follow_p4d_mask(vma, address, pgd, flags, ctx); 835 } 836 837 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 838 unsigned int foll_flags) 839 { 840 struct follow_page_context ctx = { NULL }; 841 struct page *page; 842 843 if (vma_is_secretmem(vma)) 844 return NULL; 845 846 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 847 return NULL; 848 849 /* 850 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect 851 * to fail on PROT_NONE-mapped pages. 852 */ 853 page = follow_page_mask(vma, address, foll_flags, &ctx); 854 if (ctx.pgmap) 855 put_dev_pagemap(ctx.pgmap); 856 return page; 857 } 858 859 static int get_gate_page(struct mm_struct *mm, unsigned long address, 860 unsigned int gup_flags, struct vm_area_struct **vma, 861 struct page **page) 862 { 863 pgd_t *pgd; 864 p4d_t *p4d; 865 pud_t *pud; 866 pmd_t *pmd; 867 pte_t *pte; 868 pte_t entry; 869 int ret = -EFAULT; 870 871 /* user gate pages are read-only */ 872 if (gup_flags & FOLL_WRITE) 873 return -EFAULT; 874 if (address > TASK_SIZE) 875 pgd = pgd_offset_k(address); 876 else 877 pgd = pgd_offset_gate(mm, address); 878 if (pgd_none(*pgd)) 879 return -EFAULT; 880 p4d = p4d_offset(pgd, address); 881 if (p4d_none(*p4d)) 882 return -EFAULT; 883 pud = pud_offset(p4d, address); 884 if (pud_none(*pud)) 885 return -EFAULT; 886 pmd = pmd_offset(pud, address); 887 if (!pmd_present(*pmd)) 888 return -EFAULT; 889 pte = pte_offset_map(pmd, address); 890 if (!pte) 891 return -EFAULT; 892 entry = ptep_get(pte); 893 if (pte_none(entry)) 894 goto unmap; 895 *vma = get_gate_vma(mm); 896 if (!page) 897 goto out; 898 *page = vm_normal_page(*vma, address, entry); 899 if (!*page) { 900 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 901 goto unmap; 902 *page = pte_page(entry); 903 } 904 ret = try_grab_page(*page, gup_flags); 905 if (unlikely(ret)) 906 goto unmap; 907 out: 908 ret = 0; 909 unmap: 910 pte_unmap(pte); 911 return ret; 912 } 913 914 /* 915 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 916 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 917 * to 0 and -EBUSY returned. 918 */ 919 static int faultin_page(struct vm_area_struct *vma, 920 unsigned long address, unsigned int *flags, bool unshare, 921 int *locked) 922 { 923 unsigned int fault_flags = 0; 924 vm_fault_t ret; 925 926 if (*flags & FOLL_NOFAULT) 927 return -EFAULT; 928 if (*flags & FOLL_WRITE) 929 fault_flags |= FAULT_FLAG_WRITE; 930 if (*flags & FOLL_REMOTE) 931 fault_flags |= FAULT_FLAG_REMOTE; 932 if (*flags & FOLL_UNLOCKABLE) { 933 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 934 /* 935 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 936 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 937 * That's because some callers may not be prepared to 938 * handle early exits caused by non-fatal signals. 939 */ 940 if (*flags & FOLL_INTERRUPTIBLE) 941 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 942 } 943 if (*flags & FOLL_NOWAIT) 944 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 945 if (*flags & FOLL_TRIED) { 946 /* 947 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 948 * can co-exist 949 */ 950 fault_flags |= FAULT_FLAG_TRIED; 951 } 952 if (unshare) { 953 fault_flags |= FAULT_FLAG_UNSHARE; 954 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 955 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 956 } 957 958 ret = handle_mm_fault(vma, address, fault_flags, NULL); 959 960 if (ret & VM_FAULT_COMPLETED) { 961 /* 962 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 963 * mmap lock in the page fault handler. Sanity check this. 964 */ 965 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 966 *locked = 0; 967 968 /* 969 * We should do the same as VM_FAULT_RETRY, but let's not 970 * return -EBUSY since that's not reflecting the reality of 971 * what has happened - we've just fully completed a page 972 * fault, with the mmap lock released. Use -EAGAIN to show 973 * that we want to take the mmap lock _again_. 974 */ 975 return -EAGAIN; 976 } 977 978 if (ret & VM_FAULT_ERROR) { 979 int err = vm_fault_to_errno(ret, *flags); 980 981 if (err) 982 return err; 983 BUG(); 984 } 985 986 if (ret & VM_FAULT_RETRY) { 987 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 988 *locked = 0; 989 return -EBUSY; 990 } 991 992 return 0; 993 } 994 995 /* 996 * Writing to file-backed mappings which require folio dirty tracking using GUP 997 * is a fundamentally broken operation, as kernel write access to GUP mappings 998 * do not adhere to the semantics expected by a file system. 999 * 1000 * Consider the following scenario:- 1001 * 1002 * 1. A folio is written to via GUP which write-faults the memory, notifying 1003 * the file system and dirtying the folio. 1004 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1005 * the PTE being marked read-only. 1006 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1007 * direct mapping. 1008 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1009 * (though it does not have to). 1010 * 1011 * This results in both data being written to a folio without writenotify, and 1012 * the folio being dirtied unexpectedly (if the caller decides to do so). 1013 */ 1014 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1015 unsigned long gup_flags) 1016 { 1017 /* 1018 * If we aren't pinning then no problematic write can occur. A long term 1019 * pin is the most egregious case so this is the case we disallow. 1020 */ 1021 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1022 (FOLL_PIN | FOLL_LONGTERM)) 1023 return true; 1024 1025 /* 1026 * If the VMA does not require dirty tracking then no problematic write 1027 * can occur either. 1028 */ 1029 return !vma_needs_dirty_tracking(vma); 1030 } 1031 1032 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1033 { 1034 vm_flags_t vm_flags = vma->vm_flags; 1035 int write = (gup_flags & FOLL_WRITE); 1036 int foreign = (gup_flags & FOLL_REMOTE); 1037 bool vma_anon = vma_is_anonymous(vma); 1038 1039 if (vm_flags & (VM_IO | VM_PFNMAP)) 1040 return -EFAULT; 1041 1042 if ((gup_flags & FOLL_ANON) && !vma_anon) 1043 return -EFAULT; 1044 1045 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1046 return -EOPNOTSUPP; 1047 1048 if (vma_is_secretmem(vma)) 1049 return -EFAULT; 1050 1051 if (write) { 1052 if (!vma_anon && 1053 !writable_file_mapping_allowed(vma, gup_flags)) 1054 return -EFAULT; 1055 1056 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1057 if (!(gup_flags & FOLL_FORCE)) 1058 return -EFAULT; 1059 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 1060 if (is_vm_hugetlb_page(vma)) 1061 return -EFAULT; 1062 /* 1063 * We used to let the write,force case do COW in a 1064 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1065 * set a breakpoint in a read-only mapping of an 1066 * executable, without corrupting the file (yet only 1067 * when that file had been opened for writing!). 1068 * Anon pages in shared mappings are surprising: now 1069 * just reject it. 1070 */ 1071 if (!is_cow_mapping(vm_flags)) 1072 return -EFAULT; 1073 } 1074 } else if (!(vm_flags & VM_READ)) { 1075 if (!(gup_flags & FOLL_FORCE)) 1076 return -EFAULT; 1077 /* 1078 * Is there actually any vma we can reach here which does not 1079 * have VM_MAYREAD set? 1080 */ 1081 if (!(vm_flags & VM_MAYREAD)) 1082 return -EFAULT; 1083 } 1084 /* 1085 * gups are always data accesses, not instruction 1086 * fetches, so execute=false here 1087 */ 1088 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1089 return -EFAULT; 1090 return 0; 1091 } 1092 1093 /* 1094 * This is "vma_lookup()", but with a warning if we would have 1095 * historically expanded the stack in the GUP code. 1096 */ 1097 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1098 unsigned long addr) 1099 { 1100 #ifdef CONFIG_STACK_GROWSUP 1101 return vma_lookup(mm, addr); 1102 #else 1103 static volatile unsigned long next_warn; 1104 struct vm_area_struct *vma; 1105 unsigned long now, next; 1106 1107 vma = find_vma(mm, addr); 1108 if (!vma || (addr >= vma->vm_start)) 1109 return vma; 1110 1111 /* Only warn for half-way relevant accesses */ 1112 if (!(vma->vm_flags & VM_GROWSDOWN)) 1113 return NULL; 1114 if (vma->vm_start - addr > 65536) 1115 return NULL; 1116 1117 /* Let's not warn more than once an hour.. */ 1118 now = jiffies; next = next_warn; 1119 if (next && time_before(now, next)) 1120 return NULL; 1121 next_warn = now + 60*60*HZ; 1122 1123 /* Let people know things may have changed. */ 1124 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1125 current->comm, task_pid_nr(current), 1126 vma->vm_start, vma->vm_end, addr); 1127 dump_stack(); 1128 return NULL; 1129 #endif 1130 } 1131 1132 /** 1133 * __get_user_pages() - pin user pages in memory 1134 * @mm: mm_struct of target mm 1135 * @start: starting user address 1136 * @nr_pages: number of pages from start to pin 1137 * @gup_flags: flags modifying pin behaviour 1138 * @pages: array that receives pointers to the pages pinned. 1139 * Should be at least nr_pages long. Or NULL, if caller 1140 * only intends to ensure the pages are faulted in. 1141 * @locked: whether we're still with the mmap_lock held 1142 * 1143 * Returns either number of pages pinned (which may be less than the 1144 * number requested), or an error. Details about the return value: 1145 * 1146 * -- If nr_pages is 0, returns 0. 1147 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1148 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1149 * pages pinned. Again, this may be less than nr_pages. 1150 * -- 0 return value is possible when the fault would need to be retried. 1151 * 1152 * The caller is responsible for releasing returned @pages, via put_page(). 1153 * 1154 * Must be called with mmap_lock held. It may be released. See below. 1155 * 1156 * __get_user_pages walks a process's page tables and takes a reference to 1157 * each struct page that each user address corresponds to at a given 1158 * instant. That is, it takes the page that would be accessed if a user 1159 * thread accesses the given user virtual address at that instant. 1160 * 1161 * This does not guarantee that the page exists in the user mappings when 1162 * __get_user_pages returns, and there may even be a completely different 1163 * page there in some cases (eg. if mmapped pagecache has been invalidated 1164 * and subsequently re-faulted). However it does guarantee that the page 1165 * won't be freed completely. And mostly callers simply care that the page 1166 * contains data that was valid *at some point in time*. Typically, an IO 1167 * or similar operation cannot guarantee anything stronger anyway because 1168 * locks can't be held over the syscall boundary. 1169 * 1170 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1171 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1172 * appropriate) must be called after the page is finished with, and 1173 * before put_page is called. 1174 * 1175 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1176 * be released. If this happens *@locked will be set to 0 on return. 1177 * 1178 * A caller using such a combination of @gup_flags must therefore hold the 1179 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1180 * it must be held for either reading or writing and will not be released. 1181 * 1182 * In most cases, get_user_pages or get_user_pages_fast should be used 1183 * instead of __get_user_pages. __get_user_pages should be used only if 1184 * you need some special @gup_flags. 1185 */ 1186 static long __get_user_pages(struct mm_struct *mm, 1187 unsigned long start, unsigned long nr_pages, 1188 unsigned int gup_flags, struct page **pages, 1189 int *locked) 1190 { 1191 long ret = 0, i = 0; 1192 struct vm_area_struct *vma = NULL; 1193 struct follow_page_context ctx = { NULL }; 1194 1195 if (!nr_pages) 1196 return 0; 1197 1198 start = untagged_addr_remote(mm, start); 1199 1200 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1201 1202 do { 1203 struct page *page; 1204 unsigned int foll_flags = gup_flags; 1205 unsigned int page_increm; 1206 1207 /* first iteration or cross vma bound */ 1208 if (!vma || start >= vma->vm_end) { 1209 /* 1210 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1211 * lookups+error reporting differently. 1212 */ 1213 if (gup_flags & FOLL_MADV_POPULATE) { 1214 vma = vma_lookup(mm, start); 1215 if (!vma) { 1216 ret = -ENOMEM; 1217 goto out; 1218 } 1219 if (check_vma_flags(vma, gup_flags)) { 1220 ret = -EINVAL; 1221 goto out; 1222 } 1223 goto retry; 1224 } 1225 vma = gup_vma_lookup(mm, start); 1226 if (!vma && in_gate_area(mm, start)) { 1227 ret = get_gate_page(mm, start & PAGE_MASK, 1228 gup_flags, &vma, 1229 pages ? &page : NULL); 1230 if (ret) 1231 goto out; 1232 ctx.page_mask = 0; 1233 goto next_page; 1234 } 1235 1236 if (!vma) { 1237 ret = -EFAULT; 1238 goto out; 1239 } 1240 ret = check_vma_flags(vma, gup_flags); 1241 if (ret) 1242 goto out; 1243 } 1244 retry: 1245 /* 1246 * If we have a pending SIGKILL, don't keep faulting pages and 1247 * potentially allocating memory. 1248 */ 1249 if (fatal_signal_pending(current)) { 1250 ret = -EINTR; 1251 goto out; 1252 } 1253 cond_resched(); 1254 1255 page = follow_page_mask(vma, start, foll_flags, &ctx); 1256 if (!page || PTR_ERR(page) == -EMLINK) { 1257 ret = faultin_page(vma, start, &foll_flags, 1258 PTR_ERR(page) == -EMLINK, locked); 1259 switch (ret) { 1260 case 0: 1261 goto retry; 1262 case -EBUSY: 1263 case -EAGAIN: 1264 ret = 0; 1265 fallthrough; 1266 case -EFAULT: 1267 case -ENOMEM: 1268 case -EHWPOISON: 1269 goto out; 1270 } 1271 BUG(); 1272 } else if (PTR_ERR(page) == -EEXIST) { 1273 /* 1274 * Proper page table entry exists, but no corresponding 1275 * struct page. If the caller expects **pages to be 1276 * filled in, bail out now, because that can't be done 1277 * for this page. 1278 */ 1279 if (pages) { 1280 ret = PTR_ERR(page); 1281 goto out; 1282 } 1283 } else if (IS_ERR(page)) { 1284 ret = PTR_ERR(page); 1285 goto out; 1286 } 1287 next_page: 1288 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1289 if (page_increm > nr_pages) 1290 page_increm = nr_pages; 1291 1292 if (pages) { 1293 struct page *subpage; 1294 unsigned int j; 1295 1296 /* 1297 * This must be a large folio (and doesn't need to 1298 * be the whole folio; it can be part of it), do 1299 * the refcount work for all the subpages too. 1300 * 1301 * NOTE: here the page may not be the head page 1302 * e.g. when start addr is not thp-size aligned. 1303 * try_grab_folio() should have taken care of tail 1304 * pages. 1305 */ 1306 if (page_increm > 1) { 1307 struct folio *folio; 1308 1309 /* 1310 * Since we already hold refcount on the 1311 * large folio, this should never fail. 1312 */ 1313 folio = try_grab_folio(page, page_increm - 1, 1314 foll_flags); 1315 if (WARN_ON_ONCE(!folio)) { 1316 /* 1317 * Release the 1st page ref if the 1318 * folio is problematic, fail hard. 1319 */ 1320 gup_put_folio(page_folio(page), 1, 1321 foll_flags); 1322 ret = -EFAULT; 1323 goto out; 1324 } 1325 } 1326 1327 for (j = 0; j < page_increm; j++) { 1328 subpage = nth_page(page, j); 1329 pages[i + j] = subpage; 1330 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1331 flush_dcache_page(subpage); 1332 } 1333 } 1334 1335 i += page_increm; 1336 start += page_increm * PAGE_SIZE; 1337 nr_pages -= page_increm; 1338 } while (nr_pages); 1339 out: 1340 if (ctx.pgmap) 1341 put_dev_pagemap(ctx.pgmap); 1342 return i ? i : ret; 1343 } 1344 1345 static bool vma_permits_fault(struct vm_area_struct *vma, 1346 unsigned int fault_flags) 1347 { 1348 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1349 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1350 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1351 1352 if (!(vm_flags & vma->vm_flags)) 1353 return false; 1354 1355 /* 1356 * The architecture might have a hardware protection 1357 * mechanism other than read/write that can deny access. 1358 * 1359 * gup always represents data access, not instruction 1360 * fetches, so execute=false here: 1361 */ 1362 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1363 return false; 1364 1365 return true; 1366 } 1367 1368 /** 1369 * fixup_user_fault() - manually resolve a user page fault 1370 * @mm: mm_struct of target mm 1371 * @address: user address 1372 * @fault_flags:flags to pass down to handle_mm_fault() 1373 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1374 * does not allow retry. If NULL, the caller must guarantee 1375 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1376 * 1377 * This is meant to be called in the specific scenario where for locking reasons 1378 * we try to access user memory in atomic context (within a pagefault_disable() 1379 * section), this returns -EFAULT, and we want to resolve the user fault before 1380 * trying again. 1381 * 1382 * Typically this is meant to be used by the futex code. 1383 * 1384 * The main difference with get_user_pages() is that this function will 1385 * unconditionally call handle_mm_fault() which will in turn perform all the 1386 * necessary SW fixup of the dirty and young bits in the PTE, while 1387 * get_user_pages() only guarantees to update these in the struct page. 1388 * 1389 * This is important for some architectures where those bits also gate the 1390 * access permission to the page because they are maintained in software. On 1391 * such architectures, gup() will not be enough to make a subsequent access 1392 * succeed. 1393 * 1394 * This function will not return with an unlocked mmap_lock. So it has not the 1395 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1396 */ 1397 int fixup_user_fault(struct mm_struct *mm, 1398 unsigned long address, unsigned int fault_flags, 1399 bool *unlocked) 1400 { 1401 struct vm_area_struct *vma; 1402 vm_fault_t ret; 1403 1404 address = untagged_addr_remote(mm, address); 1405 1406 if (unlocked) 1407 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1408 1409 retry: 1410 vma = gup_vma_lookup(mm, address); 1411 if (!vma) 1412 return -EFAULT; 1413 1414 if (!vma_permits_fault(vma, fault_flags)) 1415 return -EFAULT; 1416 1417 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1418 fatal_signal_pending(current)) 1419 return -EINTR; 1420 1421 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1422 1423 if (ret & VM_FAULT_COMPLETED) { 1424 /* 1425 * NOTE: it's a pity that we need to retake the lock here 1426 * to pair with the unlock() in the callers. Ideally we 1427 * could tell the callers so they do not need to unlock. 1428 */ 1429 mmap_read_lock(mm); 1430 *unlocked = true; 1431 return 0; 1432 } 1433 1434 if (ret & VM_FAULT_ERROR) { 1435 int err = vm_fault_to_errno(ret, 0); 1436 1437 if (err) 1438 return err; 1439 BUG(); 1440 } 1441 1442 if (ret & VM_FAULT_RETRY) { 1443 mmap_read_lock(mm); 1444 *unlocked = true; 1445 fault_flags |= FAULT_FLAG_TRIED; 1446 goto retry; 1447 } 1448 1449 return 0; 1450 } 1451 EXPORT_SYMBOL_GPL(fixup_user_fault); 1452 1453 /* 1454 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1455 * specified, it'll also respond to generic signals. The caller of GUP 1456 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1457 */ 1458 static bool gup_signal_pending(unsigned int flags) 1459 { 1460 if (fatal_signal_pending(current)) 1461 return true; 1462 1463 if (!(flags & FOLL_INTERRUPTIBLE)) 1464 return false; 1465 1466 return signal_pending(current); 1467 } 1468 1469 /* 1470 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1471 * the caller. This function may drop the mmap_lock. If it does so, then it will 1472 * set (*locked = 0). 1473 * 1474 * (*locked == 0) means that the caller expects this function to acquire and 1475 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1476 * the function returns, even though it may have changed temporarily during 1477 * function execution. 1478 * 1479 * Please note that this function, unlike __get_user_pages(), will not return 0 1480 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1481 */ 1482 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1483 unsigned long start, 1484 unsigned long nr_pages, 1485 struct page **pages, 1486 int *locked, 1487 unsigned int flags) 1488 { 1489 long ret, pages_done; 1490 bool must_unlock = false; 1491 1492 if (!nr_pages) 1493 return 0; 1494 1495 /* 1496 * The internal caller expects GUP to manage the lock internally and the 1497 * lock must be released when this returns. 1498 */ 1499 if (!*locked) { 1500 if (mmap_read_lock_killable(mm)) 1501 return -EAGAIN; 1502 must_unlock = true; 1503 *locked = 1; 1504 } 1505 else 1506 mmap_assert_locked(mm); 1507 1508 if (flags & FOLL_PIN) 1509 mm_set_has_pinned_flag(&mm->flags); 1510 1511 /* 1512 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1513 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1514 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1515 * for FOLL_GET, not for the newer FOLL_PIN. 1516 * 1517 * FOLL_PIN always expects pages to be non-null, but no need to assert 1518 * that here, as any failures will be obvious enough. 1519 */ 1520 if (pages && !(flags & FOLL_PIN)) 1521 flags |= FOLL_GET; 1522 1523 pages_done = 0; 1524 for (;;) { 1525 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1526 locked); 1527 if (!(flags & FOLL_UNLOCKABLE)) { 1528 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1529 pages_done = ret; 1530 break; 1531 } 1532 1533 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1534 if (!*locked) { 1535 BUG_ON(ret < 0); 1536 BUG_ON(ret >= nr_pages); 1537 } 1538 1539 if (ret > 0) { 1540 nr_pages -= ret; 1541 pages_done += ret; 1542 if (!nr_pages) 1543 break; 1544 } 1545 if (*locked) { 1546 /* 1547 * VM_FAULT_RETRY didn't trigger or it was a 1548 * FOLL_NOWAIT. 1549 */ 1550 if (!pages_done) 1551 pages_done = ret; 1552 break; 1553 } 1554 /* 1555 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1556 * For the prefault case (!pages) we only update counts. 1557 */ 1558 if (likely(pages)) 1559 pages += ret; 1560 start += ret << PAGE_SHIFT; 1561 1562 /* The lock was temporarily dropped, so we must unlock later */ 1563 must_unlock = true; 1564 1565 retry: 1566 /* 1567 * Repeat on the address that fired VM_FAULT_RETRY 1568 * with both FAULT_FLAG_ALLOW_RETRY and 1569 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1570 * by fatal signals of even common signals, depending on 1571 * the caller's request. So we need to check it before we 1572 * start trying again otherwise it can loop forever. 1573 */ 1574 if (gup_signal_pending(flags)) { 1575 if (!pages_done) 1576 pages_done = -EINTR; 1577 break; 1578 } 1579 1580 ret = mmap_read_lock_killable(mm); 1581 if (ret) { 1582 BUG_ON(ret > 0); 1583 if (!pages_done) 1584 pages_done = ret; 1585 break; 1586 } 1587 1588 *locked = 1; 1589 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1590 pages, locked); 1591 if (!*locked) { 1592 /* Continue to retry until we succeeded */ 1593 BUG_ON(ret != 0); 1594 goto retry; 1595 } 1596 if (ret != 1) { 1597 BUG_ON(ret > 1); 1598 if (!pages_done) 1599 pages_done = ret; 1600 break; 1601 } 1602 nr_pages--; 1603 pages_done++; 1604 if (!nr_pages) 1605 break; 1606 if (likely(pages)) 1607 pages++; 1608 start += PAGE_SIZE; 1609 } 1610 if (must_unlock && *locked) { 1611 /* 1612 * We either temporarily dropped the lock, or the caller 1613 * requested that we both acquire and drop the lock. Either way, 1614 * we must now unlock, and notify the caller of that state. 1615 */ 1616 mmap_read_unlock(mm); 1617 *locked = 0; 1618 } 1619 1620 /* 1621 * Failing to pin anything implies something has gone wrong (except when 1622 * FOLL_NOWAIT is specified). 1623 */ 1624 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1625 return -EFAULT; 1626 1627 return pages_done; 1628 } 1629 1630 /** 1631 * populate_vma_page_range() - populate a range of pages in the vma. 1632 * @vma: target vma 1633 * @start: start address 1634 * @end: end address 1635 * @locked: whether the mmap_lock is still held 1636 * 1637 * This takes care of mlocking the pages too if VM_LOCKED is set. 1638 * 1639 * Return either number of pages pinned in the vma, or a negative error 1640 * code on error. 1641 * 1642 * vma->vm_mm->mmap_lock must be held. 1643 * 1644 * If @locked is NULL, it may be held for read or write and will 1645 * be unperturbed. 1646 * 1647 * If @locked is non-NULL, it must held for read only and may be 1648 * released. If it's released, *@locked will be set to 0. 1649 */ 1650 long populate_vma_page_range(struct vm_area_struct *vma, 1651 unsigned long start, unsigned long end, int *locked) 1652 { 1653 struct mm_struct *mm = vma->vm_mm; 1654 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1655 int local_locked = 1; 1656 int gup_flags; 1657 long ret; 1658 1659 VM_BUG_ON(!PAGE_ALIGNED(start)); 1660 VM_BUG_ON(!PAGE_ALIGNED(end)); 1661 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1662 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1663 mmap_assert_locked(mm); 1664 1665 /* 1666 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1667 * faultin_page() to break COW, so it has no work to do here. 1668 */ 1669 if (vma->vm_flags & VM_LOCKONFAULT) 1670 return nr_pages; 1671 1672 /* ... similarly, we've never faulted in PROT_NONE pages */ 1673 if (!vma_is_accessible(vma)) 1674 return -EFAULT; 1675 1676 gup_flags = FOLL_TOUCH; 1677 /* 1678 * We want to touch writable mappings with a write fault in order 1679 * to break COW, except for shared mappings because these don't COW 1680 * and we would not want to dirty them for nothing. 1681 * 1682 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1683 * readable (ie write-only or executable). 1684 */ 1685 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1686 gup_flags |= FOLL_WRITE; 1687 else 1688 gup_flags |= FOLL_FORCE; 1689 1690 if (locked) 1691 gup_flags |= FOLL_UNLOCKABLE; 1692 1693 /* 1694 * We made sure addr is within a VMA, so the following will 1695 * not result in a stack expansion that recurses back here. 1696 */ 1697 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1698 NULL, locked ? locked : &local_locked); 1699 lru_add_drain(); 1700 return ret; 1701 } 1702 1703 /* 1704 * faultin_page_range() - populate (prefault) page tables inside the 1705 * given range readable/writable 1706 * 1707 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1708 * 1709 * @mm: the mm to populate page tables in 1710 * @start: start address 1711 * @end: end address 1712 * @write: whether to prefault readable or writable 1713 * @locked: whether the mmap_lock is still held 1714 * 1715 * Returns either number of processed pages in the MM, or a negative error 1716 * code on error (see __get_user_pages()). Note that this function reports 1717 * errors related to VMAs, such as incompatible mappings, as expected by 1718 * MADV_POPULATE_(READ|WRITE). 1719 * 1720 * The range must be page-aligned. 1721 * 1722 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1723 */ 1724 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1725 unsigned long end, bool write, int *locked) 1726 { 1727 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1728 int gup_flags; 1729 long ret; 1730 1731 VM_BUG_ON(!PAGE_ALIGNED(start)); 1732 VM_BUG_ON(!PAGE_ALIGNED(end)); 1733 mmap_assert_locked(mm); 1734 1735 /* 1736 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1737 * the page dirty with FOLL_WRITE -- which doesn't make a 1738 * difference with !FOLL_FORCE, because the page is writable 1739 * in the page table. 1740 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1741 * a poisoned page. 1742 * !FOLL_FORCE: Require proper access permissions. 1743 */ 1744 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1745 FOLL_MADV_POPULATE; 1746 if (write) 1747 gup_flags |= FOLL_WRITE; 1748 1749 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1750 gup_flags); 1751 lru_add_drain(); 1752 return ret; 1753 } 1754 1755 /* 1756 * __mm_populate - populate and/or mlock pages within a range of address space. 1757 * 1758 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1759 * flags. VMAs must be already marked with the desired vm_flags, and 1760 * mmap_lock must not be held. 1761 */ 1762 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1763 { 1764 struct mm_struct *mm = current->mm; 1765 unsigned long end, nstart, nend; 1766 struct vm_area_struct *vma = NULL; 1767 int locked = 0; 1768 long ret = 0; 1769 1770 end = start + len; 1771 1772 for (nstart = start; nstart < end; nstart = nend) { 1773 /* 1774 * We want to fault in pages for [nstart; end) address range. 1775 * Find first corresponding VMA. 1776 */ 1777 if (!locked) { 1778 locked = 1; 1779 mmap_read_lock(mm); 1780 vma = find_vma_intersection(mm, nstart, end); 1781 } else if (nstart >= vma->vm_end) 1782 vma = find_vma_intersection(mm, vma->vm_end, end); 1783 1784 if (!vma) 1785 break; 1786 /* 1787 * Set [nstart; nend) to intersection of desired address 1788 * range with the first VMA. Also, skip undesirable VMA types. 1789 */ 1790 nend = min(end, vma->vm_end); 1791 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1792 continue; 1793 if (nstart < vma->vm_start) 1794 nstart = vma->vm_start; 1795 /* 1796 * Now fault in a range of pages. populate_vma_page_range() 1797 * double checks the vma flags, so that it won't mlock pages 1798 * if the vma was already munlocked. 1799 */ 1800 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1801 if (ret < 0) { 1802 if (ignore_errors) { 1803 ret = 0; 1804 continue; /* continue at next VMA */ 1805 } 1806 break; 1807 } 1808 nend = nstart + ret * PAGE_SIZE; 1809 ret = 0; 1810 } 1811 if (locked) 1812 mmap_read_unlock(mm); 1813 return ret; /* 0 or negative error code */ 1814 } 1815 #else /* CONFIG_MMU */ 1816 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1817 unsigned long nr_pages, struct page **pages, 1818 int *locked, unsigned int foll_flags) 1819 { 1820 struct vm_area_struct *vma; 1821 bool must_unlock = false; 1822 unsigned long vm_flags; 1823 long i; 1824 1825 if (!nr_pages) 1826 return 0; 1827 1828 /* 1829 * The internal caller expects GUP to manage the lock internally and the 1830 * lock must be released when this returns. 1831 */ 1832 if (!*locked) { 1833 if (mmap_read_lock_killable(mm)) 1834 return -EAGAIN; 1835 must_unlock = true; 1836 *locked = 1; 1837 } 1838 1839 /* calculate required read or write permissions. 1840 * If FOLL_FORCE is set, we only require the "MAY" flags. 1841 */ 1842 vm_flags = (foll_flags & FOLL_WRITE) ? 1843 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1844 vm_flags &= (foll_flags & FOLL_FORCE) ? 1845 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1846 1847 for (i = 0; i < nr_pages; i++) { 1848 vma = find_vma(mm, start); 1849 if (!vma) 1850 break; 1851 1852 /* protect what we can, including chardevs */ 1853 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1854 !(vm_flags & vma->vm_flags)) 1855 break; 1856 1857 if (pages) { 1858 pages[i] = virt_to_page((void *)start); 1859 if (pages[i]) 1860 get_page(pages[i]); 1861 } 1862 1863 start = (start + PAGE_SIZE) & PAGE_MASK; 1864 } 1865 1866 if (must_unlock && *locked) { 1867 mmap_read_unlock(mm); 1868 *locked = 0; 1869 } 1870 1871 return i ? : -EFAULT; 1872 } 1873 #endif /* !CONFIG_MMU */ 1874 1875 /** 1876 * fault_in_writeable - fault in userspace address range for writing 1877 * @uaddr: start of address range 1878 * @size: size of address range 1879 * 1880 * Returns the number of bytes not faulted in (like copy_to_user() and 1881 * copy_from_user()). 1882 */ 1883 size_t fault_in_writeable(char __user *uaddr, size_t size) 1884 { 1885 char __user *start = uaddr, *end; 1886 1887 if (unlikely(size == 0)) 1888 return 0; 1889 if (!user_write_access_begin(uaddr, size)) 1890 return size; 1891 if (!PAGE_ALIGNED(uaddr)) { 1892 unsafe_put_user(0, uaddr, out); 1893 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1894 } 1895 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1896 if (unlikely(end < start)) 1897 end = NULL; 1898 while (uaddr != end) { 1899 unsafe_put_user(0, uaddr, out); 1900 uaddr += PAGE_SIZE; 1901 } 1902 1903 out: 1904 user_write_access_end(); 1905 if (size > uaddr - start) 1906 return size - (uaddr - start); 1907 return 0; 1908 } 1909 EXPORT_SYMBOL(fault_in_writeable); 1910 1911 /** 1912 * fault_in_subpage_writeable - fault in an address range for writing 1913 * @uaddr: start of address range 1914 * @size: size of address range 1915 * 1916 * Fault in a user address range for writing while checking for permissions at 1917 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1918 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1919 * 1920 * Returns the number of bytes not faulted in (like copy_to_user() and 1921 * copy_from_user()). 1922 */ 1923 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1924 { 1925 size_t faulted_in; 1926 1927 /* 1928 * Attempt faulting in at page granularity first for page table 1929 * permission checking. The arch-specific probe_subpage_writeable() 1930 * functions may not check for this. 1931 */ 1932 faulted_in = size - fault_in_writeable(uaddr, size); 1933 if (faulted_in) 1934 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1935 1936 return size - faulted_in; 1937 } 1938 EXPORT_SYMBOL(fault_in_subpage_writeable); 1939 1940 /* 1941 * fault_in_safe_writeable - fault in an address range for writing 1942 * @uaddr: start of address range 1943 * @size: length of address range 1944 * 1945 * Faults in an address range for writing. This is primarily useful when we 1946 * already know that some or all of the pages in the address range aren't in 1947 * memory. 1948 * 1949 * Unlike fault_in_writeable(), this function is non-destructive. 1950 * 1951 * Note that we don't pin or otherwise hold the pages referenced that we fault 1952 * in. There's no guarantee that they'll stay in memory for any duration of 1953 * time. 1954 * 1955 * Returns the number of bytes not faulted in, like copy_to_user() and 1956 * copy_from_user(). 1957 */ 1958 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1959 { 1960 unsigned long start = (unsigned long)uaddr, end; 1961 struct mm_struct *mm = current->mm; 1962 bool unlocked = false; 1963 1964 if (unlikely(size == 0)) 1965 return 0; 1966 end = PAGE_ALIGN(start + size); 1967 if (end < start) 1968 end = 0; 1969 1970 mmap_read_lock(mm); 1971 do { 1972 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1973 break; 1974 start = (start + PAGE_SIZE) & PAGE_MASK; 1975 } while (start != end); 1976 mmap_read_unlock(mm); 1977 1978 if (size > (unsigned long)uaddr - start) 1979 return size - ((unsigned long)uaddr - start); 1980 return 0; 1981 } 1982 EXPORT_SYMBOL(fault_in_safe_writeable); 1983 1984 /** 1985 * fault_in_readable - fault in userspace address range for reading 1986 * @uaddr: start of user address range 1987 * @size: size of user address range 1988 * 1989 * Returns the number of bytes not faulted in (like copy_to_user() and 1990 * copy_from_user()). 1991 */ 1992 size_t fault_in_readable(const char __user *uaddr, size_t size) 1993 { 1994 const char __user *start = uaddr, *end; 1995 volatile char c; 1996 1997 if (unlikely(size == 0)) 1998 return 0; 1999 if (!user_read_access_begin(uaddr, size)) 2000 return size; 2001 if (!PAGE_ALIGNED(uaddr)) { 2002 unsafe_get_user(c, uaddr, out); 2003 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 2004 } 2005 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 2006 if (unlikely(end < start)) 2007 end = NULL; 2008 while (uaddr != end) { 2009 unsafe_get_user(c, uaddr, out); 2010 uaddr += PAGE_SIZE; 2011 } 2012 2013 out: 2014 user_read_access_end(); 2015 (void)c; 2016 if (size > uaddr - start) 2017 return size - (uaddr - start); 2018 return 0; 2019 } 2020 EXPORT_SYMBOL(fault_in_readable); 2021 2022 /** 2023 * get_dump_page() - pin user page in memory while writing it to core dump 2024 * @addr: user address 2025 * 2026 * Returns struct page pointer of user page pinned for dump, 2027 * to be freed afterwards by put_page(). 2028 * 2029 * Returns NULL on any kind of failure - a hole must then be inserted into 2030 * the corefile, to preserve alignment with its headers; and also returns 2031 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2032 * allowing a hole to be left in the corefile to save disk space. 2033 * 2034 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2035 */ 2036 #ifdef CONFIG_ELF_CORE 2037 struct page *get_dump_page(unsigned long addr) 2038 { 2039 struct page *page; 2040 int locked = 0; 2041 int ret; 2042 2043 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 2044 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2045 return (ret == 1) ? page : NULL; 2046 } 2047 #endif /* CONFIG_ELF_CORE */ 2048 2049 #ifdef CONFIG_MIGRATION 2050 /* 2051 * Returns the number of collected pages. Return value is always >= 0. 2052 */ 2053 static unsigned long collect_longterm_unpinnable_pages( 2054 struct list_head *movable_page_list, 2055 unsigned long nr_pages, 2056 struct page **pages) 2057 { 2058 unsigned long i, collected = 0; 2059 struct folio *prev_folio = NULL; 2060 bool drain_allow = true; 2061 2062 for (i = 0; i < nr_pages; i++) { 2063 struct folio *folio = page_folio(pages[i]); 2064 2065 if (folio == prev_folio) 2066 continue; 2067 prev_folio = folio; 2068 2069 if (folio_is_longterm_pinnable(folio)) 2070 continue; 2071 2072 collected++; 2073 2074 if (folio_is_device_coherent(folio)) 2075 continue; 2076 2077 if (folio_test_hugetlb(folio)) { 2078 isolate_hugetlb(folio, movable_page_list); 2079 continue; 2080 } 2081 2082 if (!folio_test_lru(folio) && drain_allow) { 2083 lru_add_drain_all(); 2084 drain_allow = false; 2085 } 2086 2087 if (!folio_isolate_lru(folio)) 2088 continue; 2089 2090 list_add_tail(&folio->lru, movable_page_list); 2091 node_stat_mod_folio(folio, 2092 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2093 folio_nr_pages(folio)); 2094 } 2095 2096 return collected; 2097 } 2098 2099 /* 2100 * Unpins all pages and migrates device coherent pages and movable_page_list. 2101 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2102 * (or partial success). 2103 */ 2104 static int migrate_longterm_unpinnable_pages( 2105 struct list_head *movable_page_list, 2106 unsigned long nr_pages, 2107 struct page **pages) 2108 { 2109 int ret; 2110 unsigned long i; 2111 2112 for (i = 0; i < nr_pages; i++) { 2113 struct folio *folio = page_folio(pages[i]); 2114 2115 if (folio_is_device_coherent(folio)) { 2116 /* 2117 * Migration will fail if the page is pinned, so convert 2118 * the pin on the source page to a normal reference. 2119 */ 2120 pages[i] = NULL; 2121 folio_get(folio); 2122 gup_put_folio(folio, 1, FOLL_PIN); 2123 2124 if (migrate_device_coherent_page(&folio->page)) { 2125 ret = -EBUSY; 2126 goto err; 2127 } 2128 2129 continue; 2130 } 2131 2132 /* 2133 * We can't migrate pages with unexpected references, so drop 2134 * the reference obtained by __get_user_pages_locked(). 2135 * Migrating pages have been added to movable_page_list after 2136 * calling folio_isolate_lru() which takes a reference so the 2137 * page won't be freed if it's migrating. 2138 */ 2139 unpin_user_page(pages[i]); 2140 pages[i] = NULL; 2141 } 2142 2143 if (!list_empty(movable_page_list)) { 2144 struct migration_target_control mtc = { 2145 .nid = NUMA_NO_NODE, 2146 .gfp_mask = GFP_USER | __GFP_NOWARN, 2147 }; 2148 2149 if (migrate_pages(movable_page_list, alloc_migration_target, 2150 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2151 MR_LONGTERM_PIN, NULL)) { 2152 ret = -ENOMEM; 2153 goto err; 2154 } 2155 } 2156 2157 putback_movable_pages(movable_page_list); 2158 2159 return -EAGAIN; 2160 2161 err: 2162 for (i = 0; i < nr_pages; i++) 2163 if (pages[i]) 2164 unpin_user_page(pages[i]); 2165 putback_movable_pages(movable_page_list); 2166 2167 return ret; 2168 } 2169 2170 /* 2171 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2172 * pages in the range are required to be pinned via FOLL_PIN, before calling 2173 * this routine. 2174 * 2175 * If any pages in the range are not allowed to be pinned, then this routine 2176 * will migrate those pages away, unpin all the pages in the range and return 2177 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2178 * call this routine again. 2179 * 2180 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2181 * The caller should give up, and propagate the error back up the call stack. 2182 * 2183 * If everything is OK and all pages in the range are allowed to be pinned, then 2184 * this routine leaves all pages pinned and returns zero for success. 2185 */ 2186 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2187 struct page **pages) 2188 { 2189 unsigned long collected; 2190 LIST_HEAD(movable_page_list); 2191 2192 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2193 nr_pages, pages); 2194 if (!collected) 2195 return 0; 2196 2197 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2198 pages); 2199 } 2200 #else 2201 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2202 struct page **pages) 2203 { 2204 return 0; 2205 } 2206 #endif /* CONFIG_MIGRATION */ 2207 2208 /* 2209 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2210 * allows us to process the FOLL_LONGTERM flag. 2211 */ 2212 static long __gup_longterm_locked(struct mm_struct *mm, 2213 unsigned long start, 2214 unsigned long nr_pages, 2215 struct page **pages, 2216 int *locked, 2217 unsigned int gup_flags) 2218 { 2219 unsigned int flags; 2220 long rc, nr_pinned_pages; 2221 2222 if (!(gup_flags & FOLL_LONGTERM)) 2223 return __get_user_pages_locked(mm, start, nr_pages, pages, 2224 locked, gup_flags); 2225 2226 flags = memalloc_pin_save(); 2227 do { 2228 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2229 pages, locked, 2230 gup_flags); 2231 if (nr_pinned_pages <= 0) { 2232 rc = nr_pinned_pages; 2233 break; 2234 } 2235 2236 /* FOLL_LONGTERM implies FOLL_PIN */ 2237 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2238 } while (rc == -EAGAIN); 2239 memalloc_pin_restore(flags); 2240 return rc ? rc : nr_pinned_pages; 2241 } 2242 2243 /* 2244 * Check that the given flags are valid for the exported gup/pup interface, and 2245 * update them with the required flags that the caller must have set. 2246 */ 2247 static bool is_valid_gup_args(struct page **pages, int *locked, 2248 unsigned int *gup_flags_p, unsigned int to_set) 2249 { 2250 unsigned int gup_flags = *gup_flags_p; 2251 2252 /* 2253 * These flags not allowed to be specified externally to the gup 2254 * interfaces: 2255 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2256 * - FOLL_REMOTE is internal only and used on follow_page() 2257 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2258 */ 2259 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2260 return false; 2261 2262 gup_flags |= to_set; 2263 if (locked) { 2264 /* At the external interface locked must be set */ 2265 if (WARN_ON_ONCE(*locked != 1)) 2266 return false; 2267 2268 gup_flags |= FOLL_UNLOCKABLE; 2269 } 2270 2271 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2272 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2273 (FOLL_PIN | FOLL_GET))) 2274 return false; 2275 2276 /* LONGTERM can only be specified when pinning */ 2277 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2278 return false; 2279 2280 /* Pages input must be given if using GET/PIN */ 2281 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2282 return false; 2283 2284 /* We want to allow the pgmap to be hot-unplugged at all times */ 2285 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2286 (gup_flags & FOLL_PCI_P2PDMA))) 2287 return false; 2288 2289 *gup_flags_p = gup_flags; 2290 return true; 2291 } 2292 2293 #ifdef CONFIG_MMU 2294 /** 2295 * get_user_pages_remote() - pin user pages in memory 2296 * @mm: mm_struct of target mm 2297 * @start: starting user address 2298 * @nr_pages: number of pages from start to pin 2299 * @gup_flags: flags modifying lookup behaviour 2300 * @pages: array that receives pointers to the pages pinned. 2301 * Should be at least nr_pages long. Or NULL, if caller 2302 * only intends to ensure the pages are faulted in. 2303 * @locked: pointer to lock flag indicating whether lock is held and 2304 * subsequently whether VM_FAULT_RETRY functionality can be 2305 * utilised. Lock must initially be held. 2306 * 2307 * Returns either number of pages pinned (which may be less than the 2308 * number requested), or an error. Details about the return value: 2309 * 2310 * -- If nr_pages is 0, returns 0. 2311 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2312 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2313 * pages pinned. Again, this may be less than nr_pages. 2314 * 2315 * The caller is responsible for releasing returned @pages, via put_page(). 2316 * 2317 * Must be called with mmap_lock held for read or write. 2318 * 2319 * get_user_pages_remote walks a process's page tables and takes a reference 2320 * to each struct page that each user address corresponds to at a given 2321 * instant. That is, it takes the page that would be accessed if a user 2322 * thread accesses the given user virtual address at that instant. 2323 * 2324 * This does not guarantee that the page exists in the user mappings when 2325 * get_user_pages_remote returns, and there may even be a completely different 2326 * page there in some cases (eg. if mmapped pagecache has been invalidated 2327 * and subsequently re-faulted). However it does guarantee that the page 2328 * won't be freed completely. And mostly callers simply care that the page 2329 * contains data that was valid *at some point in time*. Typically, an IO 2330 * or similar operation cannot guarantee anything stronger anyway because 2331 * locks can't be held over the syscall boundary. 2332 * 2333 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2334 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2335 * be called after the page is finished with, and before put_page is called. 2336 * 2337 * get_user_pages_remote is typically used for fewer-copy IO operations, 2338 * to get a handle on the memory by some means other than accesses 2339 * via the user virtual addresses. The pages may be submitted for 2340 * DMA to devices or accessed via their kernel linear mapping (via the 2341 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2342 * 2343 * See also get_user_pages_fast, for performance critical applications. 2344 * 2345 * get_user_pages_remote should be phased out in favor of 2346 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2347 * should use get_user_pages_remote because it cannot pass 2348 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2349 */ 2350 long get_user_pages_remote(struct mm_struct *mm, 2351 unsigned long start, unsigned long nr_pages, 2352 unsigned int gup_flags, struct page **pages, 2353 int *locked) 2354 { 2355 int local_locked = 1; 2356 2357 if (!is_valid_gup_args(pages, locked, &gup_flags, 2358 FOLL_TOUCH | FOLL_REMOTE)) 2359 return -EINVAL; 2360 2361 return __get_user_pages_locked(mm, start, nr_pages, pages, 2362 locked ? locked : &local_locked, 2363 gup_flags); 2364 } 2365 EXPORT_SYMBOL(get_user_pages_remote); 2366 2367 #else /* CONFIG_MMU */ 2368 long get_user_pages_remote(struct mm_struct *mm, 2369 unsigned long start, unsigned long nr_pages, 2370 unsigned int gup_flags, struct page **pages, 2371 int *locked) 2372 { 2373 return 0; 2374 } 2375 #endif /* !CONFIG_MMU */ 2376 2377 /** 2378 * get_user_pages() - pin user pages in memory 2379 * @start: starting user address 2380 * @nr_pages: number of pages from start to pin 2381 * @gup_flags: flags modifying lookup behaviour 2382 * @pages: array that receives pointers to the pages pinned. 2383 * Should be at least nr_pages long. Or NULL, if caller 2384 * only intends to ensure the pages are faulted in. 2385 * 2386 * This is the same as get_user_pages_remote(), just with a less-flexible 2387 * calling convention where we assume that the mm being operated on belongs to 2388 * the current task, and doesn't allow passing of a locked parameter. We also 2389 * obviously don't pass FOLL_REMOTE in here. 2390 */ 2391 long get_user_pages(unsigned long start, unsigned long nr_pages, 2392 unsigned int gup_flags, struct page **pages) 2393 { 2394 int locked = 1; 2395 2396 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2397 return -EINVAL; 2398 2399 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2400 &locked, gup_flags); 2401 } 2402 EXPORT_SYMBOL(get_user_pages); 2403 2404 /* 2405 * get_user_pages_unlocked() is suitable to replace the form: 2406 * 2407 * mmap_read_lock(mm); 2408 * get_user_pages(mm, ..., pages, NULL); 2409 * mmap_read_unlock(mm); 2410 * 2411 * with: 2412 * 2413 * get_user_pages_unlocked(mm, ..., pages); 2414 * 2415 * It is functionally equivalent to get_user_pages_fast so 2416 * get_user_pages_fast should be used instead if specific gup_flags 2417 * (e.g. FOLL_FORCE) are not required. 2418 */ 2419 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2420 struct page **pages, unsigned int gup_flags) 2421 { 2422 int locked = 0; 2423 2424 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2425 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2426 return -EINVAL; 2427 2428 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2429 &locked, gup_flags); 2430 } 2431 EXPORT_SYMBOL(get_user_pages_unlocked); 2432 2433 /* 2434 * Fast GUP 2435 * 2436 * get_user_pages_fast attempts to pin user pages by walking the page 2437 * tables directly and avoids taking locks. Thus the walker needs to be 2438 * protected from page table pages being freed from under it, and should 2439 * block any THP splits. 2440 * 2441 * One way to achieve this is to have the walker disable interrupts, and 2442 * rely on IPIs from the TLB flushing code blocking before the page table 2443 * pages are freed. This is unsuitable for architectures that do not need 2444 * to broadcast an IPI when invalidating TLBs. 2445 * 2446 * Another way to achieve this is to batch up page table containing pages 2447 * belonging to more than one mm_user, then rcu_sched a callback to free those 2448 * pages. Disabling interrupts will allow the fast_gup walker to both block 2449 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2450 * (which is a relatively rare event). The code below adopts this strategy. 2451 * 2452 * Before activating this code, please be aware that the following assumptions 2453 * are currently made: 2454 * 2455 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2456 * free pages containing page tables or TLB flushing requires IPI broadcast. 2457 * 2458 * *) ptes can be read atomically by the architecture. 2459 * 2460 * *) access_ok is sufficient to validate userspace address ranges. 2461 * 2462 * The last two assumptions can be relaxed by the addition of helper functions. 2463 * 2464 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2465 */ 2466 #ifdef CONFIG_HAVE_FAST_GUP 2467 2468 /* 2469 * Used in the GUP-fast path to determine whether a pin is permitted for a 2470 * specific folio. 2471 * 2472 * This call assumes the caller has pinned the folio, that the lowest page table 2473 * level still points to this folio, and that interrupts have been disabled. 2474 * 2475 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2476 * (see comment describing the writable_file_mapping_allowed() function). We 2477 * therefore try to avoid the most egregious case of a long-term mapping doing 2478 * so. 2479 * 2480 * This function cannot be as thorough as that one as the VMA is not available 2481 * in the fast path, so instead we whitelist known good cases and if in doubt, 2482 * fall back to the slow path. 2483 */ 2484 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags) 2485 { 2486 struct address_space *mapping; 2487 unsigned long mapping_flags; 2488 2489 /* 2490 * If we aren't pinning then no problematic write can occur. A long term 2491 * pin is the most egregious case so this is the one we disallow. 2492 */ 2493 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) != 2494 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2495 return true; 2496 2497 /* The folio is pinned, so we can safely access folio fields. */ 2498 2499 if (WARN_ON_ONCE(folio_test_slab(folio))) 2500 return false; 2501 2502 /* hugetlb mappings do not require dirty-tracking. */ 2503 if (folio_test_hugetlb(folio)) 2504 return true; 2505 2506 /* 2507 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2508 * cannot proceed, which means no actions performed under RCU can 2509 * proceed either. 2510 * 2511 * inodes and thus their mappings are freed under RCU, which means the 2512 * mapping cannot be freed beneath us and thus we can safely dereference 2513 * it. 2514 */ 2515 lockdep_assert_irqs_disabled(); 2516 2517 /* 2518 * However, there may be operations which _alter_ the mapping, so ensure 2519 * we read it once and only once. 2520 */ 2521 mapping = READ_ONCE(folio->mapping); 2522 2523 /* 2524 * The mapping may have been truncated, in any case we cannot determine 2525 * if this mapping is safe - fall back to slow path to determine how to 2526 * proceed. 2527 */ 2528 if (!mapping) 2529 return false; 2530 2531 /* Anonymous folios pose no problem. */ 2532 mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; 2533 if (mapping_flags) 2534 return mapping_flags & PAGE_MAPPING_ANON; 2535 2536 /* 2537 * At this point, we know the mapping is non-null and points to an 2538 * address_space object. The only remaining whitelisted file system is 2539 * shmem. 2540 */ 2541 return shmem_mapping(mapping); 2542 } 2543 2544 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2545 unsigned int flags, 2546 struct page **pages) 2547 { 2548 while ((*nr) - nr_start) { 2549 struct page *page = pages[--(*nr)]; 2550 2551 ClearPageReferenced(page); 2552 if (flags & FOLL_PIN) 2553 unpin_user_page(page); 2554 else 2555 put_page(page); 2556 } 2557 } 2558 2559 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2560 /* 2561 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2562 * operations. 2563 * 2564 * To pin the page, fast-gup needs to do below in order: 2565 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2566 * 2567 * For the rest of pgtable operations where pgtable updates can be racy 2568 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2569 * is pinned. 2570 * 2571 * Above will work for all pte-level operations, including THP split. 2572 * 2573 * For THP collapse, it's a bit more complicated because fast-gup may be 2574 * walking a pgtable page that is being freed (pte is still valid but pmd 2575 * can be cleared already). To avoid race in such condition, we need to 2576 * also check pmd here to make sure pmd doesn't change (corresponds to 2577 * pmdp_collapse_flush() in the THP collapse code path). 2578 */ 2579 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2580 unsigned long end, unsigned int flags, 2581 struct page **pages, int *nr) 2582 { 2583 struct dev_pagemap *pgmap = NULL; 2584 int nr_start = *nr, ret = 0; 2585 pte_t *ptep, *ptem; 2586 2587 ptem = ptep = pte_offset_map(&pmd, addr); 2588 if (!ptep) 2589 return 0; 2590 do { 2591 pte_t pte = ptep_get_lockless(ptep); 2592 struct page *page; 2593 struct folio *folio; 2594 2595 /* 2596 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2597 * pte_access_permitted() better should reject these pages 2598 * either way: otherwise, GUP-fast might succeed in 2599 * cases where ordinary GUP would fail due to VMA access 2600 * permissions. 2601 */ 2602 if (pte_protnone(pte)) 2603 goto pte_unmap; 2604 2605 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2606 goto pte_unmap; 2607 2608 if (pte_devmap(pte)) { 2609 if (unlikely(flags & FOLL_LONGTERM)) 2610 goto pte_unmap; 2611 2612 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2613 if (unlikely(!pgmap)) { 2614 undo_dev_pagemap(nr, nr_start, flags, pages); 2615 goto pte_unmap; 2616 } 2617 } else if (pte_special(pte)) 2618 goto pte_unmap; 2619 2620 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2621 page = pte_page(pte); 2622 2623 folio = try_grab_folio(page, 1, flags); 2624 if (!folio) 2625 goto pte_unmap; 2626 2627 if (unlikely(folio_is_secretmem(folio))) { 2628 gup_put_folio(folio, 1, flags); 2629 goto pte_unmap; 2630 } 2631 2632 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2633 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2634 gup_put_folio(folio, 1, flags); 2635 goto pte_unmap; 2636 } 2637 2638 if (!folio_fast_pin_allowed(folio, flags)) { 2639 gup_put_folio(folio, 1, flags); 2640 goto pte_unmap; 2641 } 2642 2643 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2644 gup_put_folio(folio, 1, flags); 2645 goto pte_unmap; 2646 } 2647 2648 /* 2649 * We need to make the page accessible if and only if we are 2650 * going to access its content (the FOLL_PIN case). Please 2651 * see Documentation/core-api/pin_user_pages.rst for 2652 * details. 2653 */ 2654 if (flags & FOLL_PIN) { 2655 ret = arch_make_page_accessible(page); 2656 if (ret) { 2657 gup_put_folio(folio, 1, flags); 2658 goto pte_unmap; 2659 } 2660 } 2661 folio_set_referenced(folio); 2662 pages[*nr] = page; 2663 (*nr)++; 2664 } while (ptep++, addr += PAGE_SIZE, addr != end); 2665 2666 ret = 1; 2667 2668 pte_unmap: 2669 if (pgmap) 2670 put_dev_pagemap(pgmap); 2671 pte_unmap(ptem); 2672 return ret; 2673 } 2674 #else 2675 2676 /* 2677 * If we can't determine whether or not a pte is special, then fail immediately 2678 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2679 * to be special. 2680 * 2681 * For a futex to be placed on a THP tail page, get_futex_key requires a 2682 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2683 * useful to have gup_huge_pmd even if we can't operate on ptes. 2684 */ 2685 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2686 unsigned long end, unsigned int flags, 2687 struct page **pages, int *nr) 2688 { 2689 return 0; 2690 } 2691 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2692 2693 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2694 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2695 unsigned long end, unsigned int flags, 2696 struct page **pages, int *nr) 2697 { 2698 int nr_start = *nr; 2699 struct dev_pagemap *pgmap = NULL; 2700 2701 do { 2702 struct page *page = pfn_to_page(pfn); 2703 2704 pgmap = get_dev_pagemap(pfn, pgmap); 2705 if (unlikely(!pgmap)) { 2706 undo_dev_pagemap(nr, nr_start, flags, pages); 2707 break; 2708 } 2709 2710 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2711 undo_dev_pagemap(nr, nr_start, flags, pages); 2712 break; 2713 } 2714 2715 SetPageReferenced(page); 2716 pages[*nr] = page; 2717 if (unlikely(try_grab_page(page, flags))) { 2718 undo_dev_pagemap(nr, nr_start, flags, pages); 2719 break; 2720 } 2721 (*nr)++; 2722 pfn++; 2723 } while (addr += PAGE_SIZE, addr != end); 2724 2725 put_dev_pagemap(pgmap); 2726 return addr == end; 2727 } 2728 2729 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2730 unsigned long end, unsigned int flags, 2731 struct page **pages, int *nr) 2732 { 2733 unsigned long fault_pfn; 2734 int nr_start = *nr; 2735 2736 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2737 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2738 return 0; 2739 2740 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2741 undo_dev_pagemap(nr, nr_start, flags, pages); 2742 return 0; 2743 } 2744 return 1; 2745 } 2746 2747 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2748 unsigned long end, unsigned int flags, 2749 struct page **pages, int *nr) 2750 { 2751 unsigned long fault_pfn; 2752 int nr_start = *nr; 2753 2754 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2755 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2756 return 0; 2757 2758 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2759 undo_dev_pagemap(nr, nr_start, flags, pages); 2760 return 0; 2761 } 2762 return 1; 2763 } 2764 #else 2765 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2766 unsigned long end, unsigned int flags, 2767 struct page **pages, int *nr) 2768 { 2769 BUILD_BUG(); 2770 return 0; 2771 } 2772 2773 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2774 unsigned long end, unsigned int flags, 2775 struct page **pages, int *nr) 2776 { 2777 BUILD_BUG(); 2778 return 0; 2779 } 2780 #endif 2781 2782 static int record_subpages(struct page *page, unsigned long addr, 2783 unsigned long end, struct page **pages) 2784 { 2785 int nr; 2786 2787 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2788 pages[nr] = nth_page(page, nr); 2789 2790 return nr; 2791 } 2792 2793 #ifdef CONFIG_ARCH_HAS_HUGEPD 2794 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2795 unsigned long sz) 2796 { 2797 unsigned long __boundary = (addr + sz) & ~(sz-1); 2798 return (__boundary - 1 < end - 1) ? __boundary : end; 2799 } 2800 2801 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2802 unsigned long end, unsigned int flags, 2803 struct page **pages, int *nr) 2804 { 2805 unsigned long pte_end; 2806 struct page *page; 2807 struct folio *folio; 2808 pte_t pte; 2809 int refs; 2810 2811 pte_end = (addr + sz) & ~(sz-1); 2812 if (pte_end < end) 2813 end = pte_end; 2814 2815 pte = huge_ptep_get(ptep); 2816 2817 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2818 return 0; 2819 2820 /* hugepages are never "special" */ 2821 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2822 2823 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2824 refs = record_subpages(page, addr, end, pages + *nr); 2825 2826 folio = try_grab_folio(page, refs, flags); 2827 if (!folio) 2828 return 0; 2829 2830 if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2831 gup_put_folio(folio, refs, flags); 2832 return 0; 2833 } 2834 2835 if (!folio_fast_pin_allowed(folio, flags)) { 2836 gup_put_folio(folio, refs, flags); 2837 return 0; 2838 } 2839 2840 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2841 gup_put_folio(folio, refs, flags); 2842 return 0; 2843 } 2844 2845 *nr += refs; 2846 folio_set_referenced(folio); 2847 return 1; 2848 } 2849 2850 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2851 unsigned int pdshift, unsigned long end, unsigned int flags, 2852 struct page **pages, int *nr) 2853 { 2854 pte_t *ptep; 2855 unsigned long sz = 1UL << hugepd_shift(hugepd); 2856 unsigned long next; 2857 2858 ptep = hugepte_offset(hugepd, addr, pdshift); 2859 do { 2860 next = hugepte_addr_end(addr, end, sz); 2861 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2862 return 0; 2863 } while (ptep++, addr = next, addr != end); 2864 2865 return 1; 2866 } 2867 #else 2868 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2869 unsigned int pdshift, unsigned long end, unsigned int flags, 2870 struct page **pages, int *nr) 2871 { 2872 return 0; 2873 } 2874 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2875 2876 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2877 unsigned long end, unsigned int flags, 2878 struct page **pages, int *nr) 2879 { 2880 struct page *page; 2881 struct folio *folio; 2882 int refs; 2883 2884 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2885 return 0; 2886 2887 if (pmd_devmap(orig)) { 2888 if (unlikely(flags & FOLL_LONGTERM)) 2889 return 0; 2890 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2891 pages, nr); 2892 } 2893 2894 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2895 refs = record_subpages(page, addr, end, pages + *nr); 2896 2897 folio = try_grab_folio(page, refs, flags); 2898 if (!folio) 2899 return 0; 2900 2901 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2902 gup_put_folio(folio, refs, flags); 2903 return 0; 2904 } 2905 2906 if (!folio_fast_pin_allowed(folio, flags)) { 2907 gup_put_folio(folio, refs, flags); 2908 return 0; 2909 } 2910 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2911 gup_put_folio(folio, refs, flags); 2912 return 0; 2913 } 2914 2915 *nr += refs; 2916 folio_set_referenced(folio); 2917 return 1; 2918 } 2919 2920 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2921 unsigned long end, unsigned int flags, 2922 struct page **pages, int *nr) 2923 { 2924 struct page *page; 2925 struct folio *folio; 2926 int refs; 2927 2928 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2929 return 0; 2930 2931 if (pud_devmap(orig)) { 2932 if (unlikely(flags & FOLL_LONGTERM)) 2933 return 0; 2934 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2935 pages, nr); 2936 } 2937 2938 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2939 refs = record_subpages(page, addr, end, pages + *nr); 2940 2941 folio = try_grab_folio(page, refs, flags); 2942 if (!folio) 2943 return 0; 2944 2945 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2946 gup_put_folio(folio, refs, flags); 2947 return 0; 2948 } 2949 2950 if (!folio_fast_pin_allowed(folio, flags)) { 2951 gup_put_folio(folio, refs, flags); 2952 return 0; 2953 } 2954 2955 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2956 gup_put_folio(folio, refs, flags); 2957 return 0; 2958 } 2959 2960 *nr += refs; 2961 folio_set_referenced(folio); 2962 return 1; 2963 } 2964 2965 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2966 unsigned long end, unsigned int flags, 2967 struct page **pages, int *nr) 2968 { 2969 int refs; 2970 struct page *page; 2971 struct folio *folio; 2972 2973 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2974 return 0; 2975 2976 BUILD_BUG_ON(pgd_devmap(orig)); 2977 2978 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2979 refs = record_subpages(page, addr, end, pages + *nr); 2980 2981 folio = try_grab_folio(page, refs, flags); 2982 if (!folio) 2983 return 0; 2984 2985 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2986 gup_put_folio(folio, refs, flags); 2987 return 0; 2988 } 2989 2990 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2991 gup_put_folio(folio, refs, flags); 2992 return 0; 2993 } 2994 2995 if (!folio_fast_pin_allowed(folio, flags)) { 2996 gup_put_folio(folio, refs, flags); 2997 return 0; 2998 } 2999 3000 *nr += refs; 3001 folio_set_referenced(folio); 3002 return 1; 3003 } 3004 3005 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 3006 unsigned int flags, struct page **pages, int *nr) 3007 { 3008 unsigned long next; 3009 pmd_t *pmdp; 3010 3011 pmdp = pmd_offset_lockless(pudp, pud, addr); 3012 do { 3013 pmd_t pmd = pmdp_get_lockless(pmdp); 3014 3015 next = pmd_addr_end(addr, end); 3016 if (!pmd_present(pmd)) 3017 return 0; 3018 3019 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 3020 pmd_devmap(pmd))) { 3021 /* See gup_pte_range() */ 3022 if (pmd_protnone(pmd)) 3023 return 0; 3024 3025 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 3026 pages, nr)) 3027 return 0; 3028 3029 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 3030 /* 3031 * architecture have different format for hugetlbfs 3032 * pmd format and THP pmd format 3033 */ 3034 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 3035 PMD_SHIFT, next, flags, pages, nr)) 3036 return 0; 3037 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 3038 return 0; 3039 } while (pmdp++, addr = next, addr != end); 3040 3041 return 1; 3042 } 3043 3044 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 3045 unsigned int flags, struct page **pages, int *nr) 3046 { 3047 unsigned long next; 3048 pud_t *pudp; 3049 3050 pudp = pud_offset_lockless(p4dp, p4d, addr); 3051 do { 3052 pud_t pud = READ_ONCE(*pudp); 3053 3054 next = pud_addr_end(addr, end); 3055 if (unlikely(!pud_present(pud))) 3056 return 0; 3057 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 3058 if (!gup_huge_pud(pud, pudp, addr, next, flags, 3059 pages, nr)) 3060 return 0; 3061 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 3062 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 3063 PUD_SHIFT, next, flags, pages, nr)) 3064 return 0; 3065 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 3066 return 0; 3067 } while (pudp++, addr = next, addr != end); 3068 3069 return 1; 3070 } 3071 3072 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 3073 unsigned int flags, struct page **pages, int *nr) 3074 { 3075 unsigned long next; 3076 p4d_t *p4dp; 3077 3078 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3079 do { 3080 p4d_t p4d = READ_ONCE(*p4dp); 3081 3082 next = p4d_addr_end(addr, end); 3083 if (p4d_none(p4d)) 3084 return 0; 3085 BUILD_BUG_ON(p4d_huge(p4d)); 3086 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 3087 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 3088 P4D_SHIFT, next, flags, pages, nr)) 3089 return 0; 3090 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 3091 return 0; 3092 } while (p4dp++, addr = next, addr != end); 3093 3094 return 1; 3095 } 3096 3097 static void gup_pgd_range(unsigned long addr, unsigned long end, 3098 unsigned int flags, struct page **pages, int *nr) 3099 { 3100 unsigned long next; 3101 pgd_t *pgdp; 3102 3103 pgdp = pgd_offset(current->mm, addr); 3104 do { 3105 pgd_t pgd = READ_ONCE(*pgdp); 3106 3107 next = pgd_addr_end(addr, end); 3108 if (pgd_none(pgd)) 3109 return; 3110 if (unlikely(pgd_huge(pgd))) { 3111 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 3112 pages, nr)) 3113 return; 3114 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 3115 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 3116 PGDIR_SHIFT, next, flags, pages, nr)) 3117 return; 3118 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 3119 return; 3120 } while (pgdp++, addr = next, addr != end); 3121 } 3122 #else 3123 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 3124 unsigned int flags, struct page **pages, int *nr) 3125 { 3126 } 3127 #endif /* CONFIG_HAVE_FAST_GUP */ 3128 3129 #ifndef gup_fast_permitted 3130 /* 3131 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3132 * we need to fall back to the slow version: 3133 */ 3134 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3135 { 3136 return true; 3137 } 3138 #endif 3139 3140 static unsigned long lockless_pages_from_mm(unsigned long start, 3141 unsigned long end, 3142 unsigned int gup_flags, 3143 struct page **pages) 3144 { 3145 unsigned long flags; 3146 int nr_pinned = 0; 3147 unsigned seq; 3148 3149 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 3150 !gup_fast_permitted(start, end)) 3151 return 0; 3152 3153 if (gup_flags & FOLL_PIN) { 3154 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 3155 if (seq & 1) 3156 return 0; 3157 } 3158 3159 /* 3160 * Disable interrupts. The nested form is used, in order to allow full, 3161 * general purpose use of this routine. 3162 * 3163 * With interrupts disabled, we block page table pages from being freed 3164 * from under us. See struct mmu_table_batch comments in 3165 * include/asm-generic/tlb.h for more details. 3166 * 3167 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3168 * that come from THPs splitting. 3169 */ 3170 local_irq_save(flags); 3171 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3172 local_irq_restore(flags); 3173 3174 /* 3175 * When pinning pages for DMA there could be a concurrent write protect 3176 * from fork() via copy_page_range(), in this case always fail fast GUP. 3177 */ 3178 if (gup_flags & FOLL_PIN) { 3179 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3180 unpin_user_pages_lockless(pages, nr_pinned); 3181 return 0; 3182 } else { 3183 sanity_check_pinned_pages(pages, nr_pinned); 3184 } 3185 } 3186 return nr_pinned; 3187 } 3188 3189 static int internal_get_user_pages_fast(unsigned long start, 3190 unsigned long nr_pages, 3191 unsigned int gup_flags, 3192 struct page **pages) 3193 { 3194 unsigned long len, end; 3195 unsigned long nr_pinned; 3196 int locked = 0; 3197 int ret; 3198 3199 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3200 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3201 FOLL_FAST_ONLY | FOLL_NOFAULT | 3202 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3203 return -EINVAL; 3204 3205 if (gup_flags & FOLL_PIN) 3206 mm_set_has_pinned_flag(¤t->mm->flags); 3207 3208 if (!(gup_flags & FOLL_FAST_ONLY)) 3209 might_lock_read(¤t->mm->mmap_lock); 3210 3211 start = untagged_addr(start) & PAGE_MASK; 3212 len = nr_pages << PAGE_SHIFT; 3213 if (check_add_overflow(start, len, &end)) 3214 return -EOVERFLOW; 3215 if (end > TASK_SIZE_MAX) 3216 return -EFAULT; 3217 if (unlikely(!access_ok((void __user *)start, len))) 3218 return -EFAULT; 3219 3220 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3221 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3222 return nr_pinned; 3223 3224 /* Slow path: try to get the remaining pages with get_user_pages */ 3225 start += nr_pinned << PAGE_SHIFT; 3226 pages += nr_pinned; 3227 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3228 pages, &locked, 3229 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3230 if (ret < 0) { 3231 /* 3232 * The caller has to unpin the pages we already pinned so 3233 * returning -errno is not an option 3234 */ 3235 if (nr_pinned) 3236 return nr_pinned; 3237 return ret; 3238 } 3239 return ret + nr_pinned; 3240 } 3241 3242 /** 3243 * get_user_pages_fast_only() - pin user pages in memory 3244 * @start: starting user address 3245 * @nr_pages: number of pages from start to pin 3246 * @gup_flags: flags modifying pin behaviour 3247 * @pages: array that receives pointers to the pages pinned. 3248 * Should be at least nr_pages long. 3249 * 3250 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3251 * the regular GUP. 3252 * 3253 * If the architecture does not support this function, simply return with no 3254 * pages pinned. 3255 * 3256 * Careful, careful! COW breaking can go either way, so a non-write 3257 * access can get ambiguous page results. If you call this function without 3258 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3259 */ 3260 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3261 unsigned int gup_flags, struct page **pages) 3262 { 3263 /* 3264 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3265 * because gup fast is always a "pin with a +1 page refcount" request. 3266 * 3267 * FOLL_FAST_ONLY is required in order to match the API description of 3268 * this routine: no fall back to regular ("slow") GUP. 3269 */ 3270 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3271 FOLL_GET | FOLL_FAST_ONLY)) 3272 return -EINVAL; 3273 3274 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3275 } 3276 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3277 3278 /** 3279 * get_user_pages_fast() - pin user pages in memory 3280 * @start: starting user address 3281 * @nr_pages: number of pages from start to pin 3282 * @gup_flags: flags modifying pin behaviour 3283 * @pages: array that receives pointers to the pages pinned. 3284 * Should be at least nr_pages long. 3285 * 3286 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3287 * If not successful, it will fall back to taking the lock and 3288 * calling get_user_pages(). 3289 * 3290 * Returns number of pages pinned. This may be fewer than the number requested. 3291 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3292 * -errno. 3293 */ 3294 int get_user_pages_fast(unsigned long start, int nr_pages, 3295 unsigned int gup_flags, struct page **pages) 3296 { 3297 /* 3298 * The caller may or may not have explicitly set FOLL_GET; either way is 3299 * OK. However, internally (within mm/gup.c), gup fast variants must set 3300 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3301 * request. 3302 */ 3303 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3304 return -EINVAL; 3305 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3306 } 3307 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3308 3309 /** 3310 * pin_user_pages_fast() - pin user pages in memory without taking locks 3311 * 3312 * @start: starting user address 3313 * @nr_pages: number of pages from start to pin 3314 * @gup_flags: flags modifying pin behaviour 3315 * @pages: array that receives pointers to the pages pinned. 3316 * Should be at least nr_pages long. 3317 * 3318 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3319 * get_user_pages_fast() for documentation on the function arguments, because 3320 * the arguments here are identical. 3321 * 3322 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3323 * see Documentation/core-api/pin_user_pages.rst for further details. 3324 * 3325 * Note that if a zero_page is amongst the returned pages, it will not have 3326 * pins in it and unpin_user_page() will not remove pins from it. 3327 */ 3328 int pin_user_pages_fast(unsigned long start, int nr_pages, 3329 unsigned int gup_flags, struct page **pages) 3330 { 3331 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3332 return -EINVAL; 3333 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3334 } 3335 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3336 3337 /** 3338 * pin_user_pages_remote() - pin pages of a remote process 3339 * 3340 * @mm: mm_struct of target mm 3341 * @start: starting user address 3342 * @nr_pages: number of pages from start to pin 3343 * @gup_flags: flags modifying lookup behaviour 3344 * @pages: array that receives pointers to the pages pinned. 3345 * Should be at least nr_pages long. 3346 * @locked: pointer to lock flag indicating whether lock is held and 3347 * subsequently whether VM_FAULT_RETRY functionality can be 3348 * utilised. Lock must initially be held. 3349 * 3350 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3351 * get_user_pages_remote() for documentation on the function arguments, because 3352 * the arguments here are identical. 3353 * 3354 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3355 * see Documentation/core-api/pin_user_pages.rst for details. 3356 * 3357 * Note that if a zero_page is amongst the returned pages, it will not have 3358 * pins in it and unpin_user_page*() will not remove pins from it. 3359 */ 3360 long pin_user_pages_remote(struct mm_struct *mm, 3361 unsigned long start, unsigned long nr_pages, 3362 unsigned int gup_flags, struct page **pages, 3363 int *locked) 3364 { 3365 int local_locked = 1; 3366 3367 if (!is_valid_gup_args(pages, locked, &gup_flags, 3368 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3369 return 0; 3370 return __gup_longterm_locked(mm, start, nr_pages, pages, 3371 locked ? locked : &local_locked, 3372 gup_flags); 3373 } 3374 EXPORT_SYMBOL(pin_user_pages_remote); 3375 3376 /** 3377 * pin_user_pages() - pin user pages in memory for use by other devices 3378 * 3379 * @start: starting user address 3380 * @nr_pages: number of pages from start to pin 3381 * @gup_flags: flags modifying lookup behaviour 3382 * @pages: array that receives pointers to the pages pinned. 3383 * Should be at least nr_pages long. 3384 * 3385 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3386 * FOLL_PIN is set. 3387 * 3388 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3389 * see Documentation/core-api/pin_user_pages.rst for details. 3390 * 3391 * Note that if a zero_page is amongst the returned pages, it will not have 3392 * pins in it and unpin_user_page*() will not remove pins from it. 3393 */ 3394 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3395 unsigned int gup_flags, struct page **pages) 3396 { 3397 int locked = 1; 3398 3399 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3400 return 0; 3401 return __gup_longterm_locked(current->mm, start, nr_pages, 3402 pages, &locked, gup_flags); 3403 } 3404 EXPORT_SYMBOL(pin_user_pages); 3405 3406 /* 3407 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3408 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3409 * FOLL_PIN and rejects FOLL_GET. 3410 * 3411 * Note that if a zero_page is amongst the returned pages, it will not have 3412 * pins in it and unpin_user_page*() will not remove pins from it. 3413 */ 3414 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3415 struct page **pages, unsigned int gup_flags) 3416 { 3417 int locked = 0; 3418 3419 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3420 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3421 return 0; 3422 3423 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3424 &locked, gup_flags); 3425 } 3426 EXPORT_SYMBOL(pin_user_pages_unlocked); 3427