xref: /linux/mm/gup.c (revision eb67d239f3aa1711afb0a42eab50459d9f3d672e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 		return NULL;
128 
129 	if (flags & FOLL_GET)
130 		return try_get_folio(page, refs);
131 	else if (flags & FOLL_PIN) {
132 		struct folio *folio;
133 
134 		/*
135 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 		 * right zone, so fail and let the caller fall back to the slow
137 		 * path.
138 		 */
139 		if (unlikely((flags & FOLL_LONGTERM) &&
140 			     !is_longterm_pinnable_page(page)))
141 			return NULL;
142 
143 		/*
144 		 * CAUTION: Don't use compound_head() on the page before this
145 		 * point, the result won't be stable.
146 		 */
147 		folio = try_get_folio(page, refs);
148 		if (!folio)
149 			return NULL;
150 
151 		/*
152 		 * When pinning a large folio, use an exact count to track it.
153 		 *
154 		 * However, be sure to *also* increment the normal folio
155 		 * refcount field at least once, so that the folio really
156 		 * is pinned.  That's why the refcount from the earlier
157 		 * try_get_folio() is left intact.
158 		 */
159 		if (folio_test_large(folio))
160 			atomic_add(refs, folio_pincount_ptr(folio));
161 		else
162 			folio_ref_add(folio,
163 					refs * (GUP_PIN_COUNTING_BIAS - 1));
164 		/*
165 		 * Adjust the pincount before re-checking the PTE for changes.
166 		 * This is essentially a smp_mb() and is paired with a memory
167 		 * barrier in page_try_share_anon_rmap().
168 		 */
169 		smp_mb__after_atomic();
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 
173 		return folio;
174 	}
175 
176 	WARN_ON_ONCE(1);
177 	return NULL;
178 }
179 
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181 {
182 	if (flags & FOLL_PIN) {
183 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 		if (folio_test_large(folio))
185 			atomic_sub(refs, folio_pincount_ptr(folio));
186 		else
187 			refs *= GUP_PIN_COUNTING_BIAS;
188 	}
189 
190 	if (!put_devmap_managed_page_refs(&folio->page, refs))
191 		folio_put_refs(folio, refs);
192 }
193 
194 /**
195  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196  * @page:    pointer to page to be grabbed
197  * @flags:   gup flags: these are the FOLL_* flag values.
198  *
199  * This might not do anything at all, depending on the flags argument.
200  *
201  * "grab" names in this file mean, "look at flags to decide whether to use
202  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203  *
204  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205  * time. Cases: please see the try_grab_folio() documentation, with
206  * "refs=1".
207  *
208  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210  *
211  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
212  *			be grabbed.
213  */
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
215 {
216 	struct folio *folio = page_folio(page);
217 
218 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
220 		return -ENOMEM;
221 
222 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
223 		return -EREMOTEIO;
224 
225 	if (flags & FOLL_GET)
226 		folio_ref_inc(folio);
227 	else if (flags & FOLL_PIN) {
228 		/*
229 		 * Similar to try_grab_folio(): be sure to *also*
230 		 * increment the normal page refcount field at least once,
231 		 * so that the page really is pinned.
232 		 */
233 		if (folio_test_large(folio)) {
234 			folio_ref_add(folio, 1);
235 			atomic_add(1, folio_pincount_ptr(folio));
236 		} else {
237 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
238 		}
239 
240 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * unpin_user_page() - release a dma-pinned page
248  * @page:            pointer to page to be released
249  *
250  * Pages that were pinned via pin_user_pages*() must be released via either
251  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252  * that such pages can be separately tracked and uniquely handled. In
253  * particular, interactions with RDMA and filesystems need special handling.
254  */
255 void unpin_user_page(struct page *page)
256 {
257 	sanity_check_pinned_pages(&page, 1);
258 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
259 }
260 EXPORT_SYMBOL(unpin_user_page);
261 
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct page *next = nth_page(start, i);
266 	struct folio *folio = page_folio(next);
267 	unsigned int nr = 1;
268 
269 	if (folio_test_large(folio))
270 		nr = min_t(unsigned int, npages - i,
271 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
272 
273 	*ntails = nr;
274 	return folio;
275 }
276 
277 static inline struct folio *gup_folio_next(struct page **list,
278 		unsigned long npages, unsigned long i, unsigned int *ntails)
279 {
280 	struct folio *folio = page_folio(list[i]);
281 	unsigned int nr;
282 
283 	for (nr = i + 1; nr < npages; nr++) {
284 		if (page_folio(list[nr]) != folio)
285 			break;
286 	}
287 
288 	*ntails = nr - i;
289 	return folio;
290 }
291 
292 /**
293  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294  * @pages:  array of pages to be maybe marked dirty, and definitely released.
295  * @npages: number of pages in the @pages array.
296  * @make_dirty: whether to mark the pages dirty
297  *
298  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299  * variants called on that page.
300  *
301  * For each page in the @pages array, make that page (or its head page, if a
302  * compound page) dirty, if @make_dirty is true, and if the page was previously
303  * listed as clean. In any case, releases all pages using unpin_user_page(),
304  * possibly via unpin_user_pages(), for the non-dirty case.
305  *
306  * Please see the unpin_user_page() documentation for details.
307  *
308  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309  * required, then the caller should a) verify that this is really correct,
310  * because _lock() is usually required, and b) hand code it:
311  * set_page_dirty_lock(), unpin_user_page().
312  *
313  */
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
315 				 bool make_dirty)
316 {
317 	unsigned long i;
318 	struct folio *folio;
319 	unsigned int nr;
320 
321 	if (!make_dirty) {
322 		unpin_user_pages(pages, npages);
323 		return;
324 	}
325 
326 	sanity_check_pinned_pages(pages, npages);
327 	for (i = 0; i < npages; i += nr) {
328 		folio = gup_folio_next(pages, npages, i, &nr);
329 		/*
330 		 * Checking PageDirty at this point may race with
331 		 * clear_page_dirty_for_io(), but that's OK. Two key
332 		 * cases:
333 		 *
334 		 * 1) This code sees the page as already dirty, so it
335 		 * skips the call to set_page_dirty(). That could happen
336 		 * because clear_page_dirty_for_io() called
337 		 * page_mkclean(), followed by set_page_dirty().
338 		 * However, now the page is going to get written back,
339 		 * which meets the original intention of setting it
340 		 * dirty, so all is well: clear_page_dirty_for_io() goes
341 		 * on to call TestClearPageDirty(), and write the page
342 		 * back.
343 		 *
344 		 * 2) This code sees the page as clean, so it calls
345 		 * set_page_dirty(). The page stays dirty, despite being
346 		 * written back, so it gets written back again in the
347 		 * next writeback cycle. This is harmless.
348 		 */
349 		if (!folio_test_dirty(folio)) {
350 			folio_lock(folio);
351 			folio_mark_dirty(folio);
352 			folio_unlock(folio);
353 		}
354 		gup_put_folio(folio, nr, FOLL_PIN);
355 	}
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358 
359 /**
360  * unpin_user_page_range_dirty_lock() - release and optionally dirty
361  * gup-pinned page range
362  *
363  * @page:  the starting page of a range maybe marked dirty, and definitely released.
364  * @npages: number of consecutive pages to release.
365  * @make_dirty: whether to mark the pages dirty
366  *
367  * "gup-pinned page range" refers to a range of pages that has had one of the
368  * pin_user_pages() variants called on that page.
369  *
370  * For the page ranges defined by [page .. page+npages], make that range (or
371  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372  * page range was previously listed as clean.
373  *
374  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375  * required, then the caller should a) verify that this is really correct,
376  * because _lock() is usually required, and b) hand code it:
377  * set_page_dirty_lock(), unpin_user_page().
378  *
379  */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 				      bool make_dirty)
382 {
383 	unsigned long i;
384 	struct folio *folio;
385 	unsigned int nr;
386 
387 	for (i = 0; i < npages; i += nr) {
388 		folio = gup_folio_range_next(page, npages, i, &nr);
389 		if (make_dirty && !folio_test_dirty(folio)) {
390 			folio_lock(folio);
391 			folio_mark_dirty(folio);
392 			folio_unlock(folio);
393 		}
394 		gup_put_folio(folio, nr, FOLL_PIN);
395 	}
396 }
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
398 
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
400 {
401 	unsigned long i;
402 	struct folio *folio;
403 	unsigned int nr;
404 
405 	/*
406 	 * Don't perform any sanity checks because we might have raced with
407 	 * fork() and some anonymous pages might now actually be shared --
408 	 * which is why we're unpinning after all.
409 	 */
410 	for (i = 0; i < npages; i += nr) {
411 		folio = gup_folio_next(pages, npages, i, &nr);
412 		gup_put_folio(folio, nr, FOLL_PIN);
413 	}
414 }
415 
416 /**
417  * unpin_user_pages() - release an array of gup-pinned pages.
418  * @pages:  array of pages to be marked dirty and released.
419  * @npages: number of pages in the @pages array.
420  *
421  * For each page in the @pages array, release the page using unpin_user_page().
422  *
423  * Please see the unpin_user_page() documentation for details.
424  */
425 void unpin_user_pages(struct page **pages, unsigned long npages)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 	 * leaving them pinned), but probably not. More likely, gup/pup returned
434 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
435 	 */
436 	if (WARN_ON(IS_ERR_VALUE(npages)))
437 		return;
438 
439 	sanity_check_pinned_pages(pages, npages);
440 	for (i = 0; i < npages; i += nr) {
441 		folio = gup_folio_next(pages, npages, i, &nr);
442 		gup_put_folio(folio, nr, FOLL_PIN);
443 	}
444 }
445 EXPORT_SYMBOL(unpin_user_pages);
446 
447 /*
448  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
450  * cache bouncing on large SMP machines for concurrent pinned gups.
451  */
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
453 {
454 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 		set_bit(MMF_HAS_PINNED, mm_flags);
456 }
457 
458 #ifdef CONFIG_MMU
459 static struct page *no_page_table(struct vm_area_struct *vma,
460 		unsigned int flags)
461 {
462 	/*
463 	 * When core dumping an enormous anonymous area that nobody
464 	 * has touched so far, we don't want to allocate unnecessary pages or
465 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
466 	 * then get_dump_page() will return NULL to leave a hole in the dump.
467 	 * But we can only make this optimization where a hole would surely
468 	 * be zero-filled if handle_mm_fault() actually did handle it.
469 	 */
470 	if ((flags & FOLL_DUMP) &&
471 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 		return ERR_PTR(-EFAULT);
473 	return NULL;
474 }
475 
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 		pte_t *pte, unsigned int flags)
478 {
479 	if (flags & FOLL_TOUCH) {
480 		pte_t entry = *pte;
481 
482 		if (flags & FOLL_WRITE)
483 			entry = pte_mkdirty(entry);
484 		entry = pte_mkyoung(entry);
485 
486 		if (!pte_same(*pte, entry)) {
487 			set_pte_at(vma->vm_mm, address, pte, entry);
488 			update_mmu_cache(vma, address, pte);
489 		}
490 	}
491 
492 	/* Proper page table entry exists, but no corresponding struct page */
493 	return -EEXIST;
494 }
495 
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 					struct vm_area_struct *vma,
499 					unsigned int flags)
500 {
501 	/* If the pte is writable, we can write to the page. */
502 	if (pte_write(pte))
503 		return true;
504 
505 	/* Maybe FOLL_FORCE is set to override it? */
506 	if (!(flags & FOLL_FORCE))
507 		return false;
508 
509 	/* But FOLL_FORCE has no effect on shared mappings */
510 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
511 		return false;
512 
513 	/* ... or read-only private ones */
514 	if (!(vma->vm_flags & VM_MAYWRITE))
515 		return false;
516 
517 	/* ... or already writable ones that just need to take a write fault */
518 	if (vma->vm_flags & VM_WRITE)
519 		return false;
520 
521 	/*
522 	 * See can_change_pte_writable(): we broke COW and could map the page
523 	 * writable if we have an exclusive anonymous page ...
524 	 */
525 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
526 		return false;
527 
528 	/* ... and a write-fault isn't required for other reasons. */
529 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
530 		return false;
531 	return !userfaultfd_pte_wp(vma, pte);
532 }
533 
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 		unsigned long address, pmd_t *pmd, unsigned int flags,
536 		struct dev_pagemap **pgmap)
537 {
538 	struct mm_struct *mm = vma->vm_mm;
539 	struct page *page;
540 	spinlock_t *ptl;
541 	pte_t *ptep, pte;
542 	int ret;
543 
544 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 			 (FOLL_PIN | FOLL_GET)))
547 		return ERR_PTR(-EINVAL);
548 	if (unlikely(pmd_bad(*pmd)))
549 		return no_page_table(vma, flags);
550 
551 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
552 	pte = *ptep;
553 	if (!pte_present(pte))
554 		goto no_page;
555 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
556 		goto no_page;
557 
558 	page = vm_normal_page(vma, address, pte);
559 
560 	/*
561 	 * We only care about anon pages in can_follow_write_pte() and don't
562 	 * have to worry about pte_devmap() because they are never anon.
563 	 */
564 	if ((flags & FOLL_WRITE) &&
565 	    !can_follow_write_pte(pte, page, vma, flags)) {
566 		page = NULL;
567 		goto out;
568 	}
569 
570 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
571 		/*
572 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
573 		 * case since they are only valid while holding the pgmap
574 		 * reference.
575 		 */
576 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
577 		if (*pgmap)
578 			page = pte_page(pte);
579 		else
580 			goto no_page;
581 	} else if (unlikely(!page)) {
582 		if (flags & FOLL_DUMP) {
583 			/* Avoid special (like zero) pages in core dumps */
584 			page = ERR_PTR(-EFAULT);
585 			goto out;
586 		}
587 
588 		if (is_zero_pfn(pte_pfn(pte))) {
589 			page = pte_page(pte);
590 		} else {
591 			ret = follow_pfn_pte(vma, address, ptep, flags);
592 			page = ERR_PTR(ret);
593 			goto out;
594 		}
595 	}
596 
597 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
598 		page = ERR_PTR(-EMLINK);
599 		goto out;
600 	}
601 
602 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
603 		       !PageAnonExclusive(page), page);
604 
605 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
606 	ret = try_grab_page(page, flags);
607 	if (unlikely(ret)) {
608 		page = ERR_PTR(ret);
609 		goto out;
610 	}
611 
612 	/*
613 	 * We need to make the page accessible if and only if we are going
614 	 * to access its content (the FOLL_PIN case).  Please see
615 	 * Documentation/core-api/pin_user_pages.rst for details.
616 	 */
617 	if (flags & FOLL_PIN) {
618 		ret = arch_make_page_accessible(page);
619 		if (ret) {
620 			unpin_user_page(page);
621 			page = ERR_PTR(ret);
622 			goto out;
623 		}
624 	}
625 	if (flags & FOLL_TOUCH) {
626 		if ((flags & FOLL_WRITE) &&
627 		    !pte_dirty(pte) && !PageDirty(page))
628 			set_page_dirty(page);
629 		/*
630 		 * pte_mkyoung() would be more correct here, but atomic care
631 		 * is needed to avoid losing the dirty bit: it is easier to use
632 		 * mark_page_accessed().
633 		 */
634 		mark_page_accessed(page);
635 	}
636 out:
637 	pte_unmap_unlock(ptep, ptl);
638 	return page;
639 no_page:
640 	pte_unmap_unlock(ptep, ptl);
641 	if (!pte_none(pte))
642 		return NULL;
643 	return no_page_table(vma, flags);
644 }
645 
646 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
647 				    unsigned long address, pud_t *pudp,
648 				    unsigned int flags,
649 				    struct follow_page_context *ctx)
650 {
651 	pmd_t *pmd, pmdval;
652 	spinlock_t *ptl;
653 	struct page *page;
654 	struct mm_struct *mm = vma->vm_mm;
655 
656 	pmd = pmd_offset(pudp, address);
657 	/*
658 	 * The READ_ONCE() will stabilize the pmdval in a register or
659 	 * on the stack so that it will stop changing under the code.
660 	 */
661 	pmdval = READ_ONCE(*pmd);
662 	if (pmd_none(pmdval))
663 		return no_page_table(vma, flags);
664 	if (!pmd_present(pmdval))
665 		return no_page_table(vma, flags);
666 	if (pmd_devmap(pmdval)) {
667 		ptl = pmd_lock(mm, pmd);
668 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
669 		spin_unlock(ptl);
670 		if (page)
671 			return page;
672 	}
673 	if (likely(!pmd_trans_huge(pmdval)))
674 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
675 
676 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
677 		return no_page_table(vma, flags);
678 
679 	ptl = pmd_lock(mm, pmd);
680 	if (unlikely(!pmd_present(*pmd))) {
681 		spin_unlock(ptl);
682 		return no_page_table(vma, flags);
683 	}
684 	if (unlikely(!pmd_trans_huge(*pmd))) {
685 		spin_unlock(ptl);
686 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
687 	}
688 	if (flags & FOLL_SPLIT_PMD) {
689 		int ret;
690 		page = pmd_page(*pmd);
691 		if (is_huge_zero_page(page)) {
692 			spin_unlock(ptl);
693 			ret = 0;
694 			split_huge_pmd(vma, pmd, address);
695 			if (pmd_trans_unstable(pmd))
696 				ret = -EBUSY;
697 		} else {
698 			spin_unlock(ptl);
699 			split_huge_pmd(vma, pmd, address);
700 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
701 		}
702 
703 		return ret ? ERR_PTR(ret) :
704 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
705 	}
706 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
707 	spin_unlock(ptl);
708 	ctx->page_mask = HPAGE_PMD_NR - 1;
709 	return page;
710 }
711 
712 static struct page *follow_pud_mask(struct vm_area_struct *vma,
713 				    unsigned long address, p4d_t *p4dp,
714 				    unsigned int flags,
715 				    struct follow_page_context *ctx)
716 {
717 	pud_t *pud;
718 	spinlock_t *ptl;
719 	struct page *page;
720 	struct mm_struct *mm = vma->vm_mm;
721 
722 	pud = pud_offset(p4dp, address);
723 	if (pud_none(*pud))
724 		return no_page_table(vma, flags);
725 	if (pud_devmap(*pud)) {
726 		ptl = pud_lock(mm, pud);
727 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
728 		spin_unlock(ptl);
729 		if (page)
730 			return page;
731 	}
732 	if (unlikely(pud_bad(*pud)))
733 		return no_page_table(vma, flags);
734 
735 	return follow_pmd_mask(vma, address, pud, flags, ctx);
736 }
737 
738 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
739 				    unsigned long address, pgd_t *pgdp,
740 				    unsigned int flags,
741 				    struct follow_page_context *ctx)
742 {
743 	p4d_t *p4d;
744 
745 	p4d = p4d_offset(pgdp, address);
746 	if (p4d_none(*p4d))
747 		return no_page_table(vma, flags);
748 	BUILD_BUG_ON(p4d_huge(*p4d));
749 	if (unlikely(p4d_bad(*p4d)))
750 		return no_page_table(vma, flags);
751 
752 	return follow_pud_mask(vma, address, p4d, flags, ctx);
753 }
754 
755 /**
756  * follow_page_mask - look up a page descriptor from a user-virtual address
757  * @vma: vm_area_struct mapping @address
758  * @address: virtual address to look up
759  * @flags: flags modifying lookup behaviour
760  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
761  *       pointer to output page_mask
762  *
763  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
764  *
765  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
766  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
767  *
768  * When getting an anonymous page and the caller has to trigger unsharing
769  * of a shared anonymous page first, -EMLINK is returned. The caller should
770  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
771  * relevant with FOLL_PIN and !FOLL_WRITE.
772  *
773  * On output, the @ctx->page_mask is set according to the size of the page.
774  *
775  * Return: the mapped (struct page *), %NULL if no mapping exists, or
776  * an error pointer if there is a mapping to something not represented
777  * by a page descriptor (see also vm_normal_page()).
778  */
779 static struct page *follow_page_mask(struct vm_area_struct *vma,
780 			      unsigned long address, unsigned int flags,
781 			      struct follow_page_context *ctx)
782 {
783 	pgd_t *pgd;
784 	struct page *page;
785 	struct mm_struct *mm = vma->vm_mm;
786 
787 	ctx->page_mask = 0;
788 
789 	/*
790 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
791 	 * special hugetlb page table walking code.  This eliminates the
792 	 * need to check for hugetlb entries in the general walking code.
793 	 *
794 	 * hugetlb_follow_page_mask is only for follow_page() handling here.
795 	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
796 	 */
797 	if (is_vm_hugetlb_page(vma)) {
798 		page = hugetlb_follow_page_mask(vma, address, flags);
799 		if (!page)
800 			page = no_page_table(vma, flags);
801 		return page;
802 	}
803 
804 	pgd = pgd_offset(mm, address);
805 
806 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 		return no_page_table(vma, flags);
808 
809 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
810 }
811 
812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 			 unsigned int foll_flags)
814 {
815 	struct follow_page_context ctx = { NULL };
816 	struct page *page;
817 
818 	if (vma_is_secretmem(vma))
819 		return NULL;
820 
821 	if (foll_flags & FOLL_PIN)
822 		return NULL;
823 
824 	page = follow_page_mask(vma, address, foll_flags, &ctx);
825 	if (ctx.pgmap)
826 		put_dev_pagemap(ctx.pgmap);
827 	return page;
828 }
829 
830 static int get_gate_page(struct mm_struct *mm, unsigned long address,
831 		unsigned int gup_flags, struct vm_area_struct **vma,
832 		struct page **page)
833 {
834 	pgd_t *pgd;
835 	p4d_t *p4d;
836 	pud_t *pud;
837 	pmd_t *pmd;
838 	pte_t *pte;
839 	int ret = -EFAULT;
840 
841 	/* user gate pages are read-only */
842 	if (gup_flags & FOLL_WRITE)
843 		return -EFAULT;
844 	if (address > TASK_SIZE)
845 		pgd = pgd_offset_k(address);
846 	else
847 		pgd = pgd_offset_gate(mm, address);
848 	if (pgd_none(*pgd))
849 		return -EFAULT;
850 	p4d = p4d_offset(pgd, address);
851 	if (p4d_none(*p4d))
852 		return -EFAULT;
853 	pud = pud_offset(p4d, address);
854 	if (pud_none(*pud))
855 		return -EFAULT;
856 	pmd = pmd_offset(pud, address);
857 	if (!pmd_present(*pmd))
858 		return -EFAULT;
859 	VM_BUG_ON(pmd_trans_huge(*pmd));
860 	pte = pte_offset_map(pmd, address);
861 	if (pte_none(*pte))
862 		goto unmap;
863 	*vma = get_gate_vma(mm);
864 	if (!page)
865 		goto out;
866 	*page = vm_normal_page(*vma, address, *pte);
867 	if (!*page) {
868 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
869 			goto unmap;
870 		*page = pte_page(*pte);
871 	}
872 	ret = try_grab_page(*page, gup_flags);
873 	if (unlikely(ret))
874 		goto unmap;
875 out:
876 	ret = 0;
877 unmap:
878 	pte_unmap(pte);
879 	return ret;
880 }
881 
882 /*
883  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
884  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
885  * is, *@locked will be set to 0 and -EBUSY returned.
886  */
887 static int faultin_page(struct vm_area_struct *vma,
888 		unsigned long address, unsigned int *flags, bool unshare,
889 		int *locked)
890 {
891 	unsigned int fault_flags = 0;
892 	vm_fault_t ret;
893 
894 	if (*flags & FOLL_NOFAULT)
895 		return -EFAULT;
896 	if (*flags & FOLL_WRITE)
897 		fault_flags |= FAULT_FLAG_WRITE;
898 	if (*flags & FOLL_REMOTE)
899 		fault_flags |= FAULT_FLAG_REMOTE;
900 	if (locked)
901 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
902 	if (*flags & FOLL_NOWAIT)
903 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
904 	if (*flags & FOLL_TRIED) {
905 		/*
906 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
907 		 * can co-exist
908 		 */
909 		fault_flags |= FAULT_FLAG_TRIED;
910 	}
911 	if (unshare) {
912 		fault_flags |= FAULT_FLAG_UNSHARE;
913 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
914 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
915 	}
916 
917 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
918 
919 	if (ret & VM_FAULT_COMPLETED) {
920 		/*
921 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
922 		 * mmap lock in the page fault handler. Sanity check this.
923 		 */
924 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
925 		if (locked)
926 			*locked = 0;
927 		/*
928 		 * We should do the same as VM_FAULT_RETRY, but let's not
929 		 * return -EBUSY since that's not reflecting the reality of
930 		 * what has happened - we've just fully completed a page
931 		 * fault, with the mmap lock released.  Use -EAGAIN to show
932 		 * that we want to take the mmap lock _again_.
933 		 */
934 		return -EAGAIN;
935 	}
936 
937 	if (ret & VM_FAULT_ERROR) {
938 		int err = vm_fault_to_errno(ret, *flags);
939 
940 		if (err)
941 			return err;
942 		BUG();
943 	}
944 
945 	if (ret & VM_FAULT_RETRY) {
946 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
947 			*locked = 0;
948 		return -EBUSY;
949 	}
950 
951 	return 0;
952 }
953 
954 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
955 {
956 	vm_flags_t vm_flags = vma->vm_flags;
957 	int write = (gup_flags & FOLL_WRITE);
958 	int foreign = (gup_flags & FOLL_REMOTE);
959 
960 	if (vm_flags & (VM_IO | VM_PFNMAP))
961 		return -EFAULT;
962 
963 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
964 		return -EFAULT;
965 
966 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
967 		return -EOPNOTSUPP;
968 
969 	if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
970 		return -EOPNOTSUPP;
971 
972 	if (vma_is_secretmem(vma))
973 		return -EFAULT;
974 
975 	if (write) {
976 		if (!(vm_flags & VM_WRITE)) {
977 			if (!(gup_flags & FOLL_FORCE))
978 				return -EFAULT;
979 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
980 			if (is_vm_hugetlb_page(vma))
981 				return -EFAULT;
982 			/*
983 			 * We used to let the write,force case do COW in a
984 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
985 			 * set a breakpoint in a read-only mapping of an
986 			 * executable, without corrupting the file (yet only
987 			 * when that file had been opened for writing!).
988 			 * Anon pages in shared mappings are surprising: now
989 			 * just reject it.
990 			 */
991 			if (!is_cow_mapping(vm_flags))
992 				return -EFAULT;
993 		}
994 	} else if (!(vm_flags & VM_READ)) {
995 		if (!(gup_flags & FOLL_FORCE))
996 			return -EFAULT;
997 		/*
998 		 * Is there actually any vma we can reach here which does not
999 		 * have VM_MAYREAD set?
1000 		 */
1001 		if (!(vm_flags & VM_MAYREAD))
1002 			return -EFAULT;
1003 	}
1004 	/*
1005 	 * gups are always data accesses, not instruction
1006 	 * fetches, so execute=false here
1007 	 */
1008 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1009 		return -EFAULT;
1010 	return 0;
1011 }
1012 
1013 /**
1014  * __get_user_pages() - pin user pages in memory
1015  * @mm:		mm_struct of target mm
1016  * @start:	starting user address
1017  * @nr_pages:	number of pages from start to pin
1018  * @gup_flags:	flags modifying pin behaviour
1019  * @pages:	array that receives pointers to the pages pinned.
1020  *		Should be at least nr_pages long. Or NULL, if caller
1021  *		only intends to ensure the pages are faulted in.
1022  * @vmas:	array of pointers to vmas corresponding to each page.
1023  *		Or NULL if the caller does not require them.
1024  * @locked:     whether we're still with the mmap_lock held
1025  *
1026  * Returns either number of pages pinned (which may be less than the
1027  * number requested), or an error. Details about the return value:
1028  *
1029  * -- If nr_pages is 0, returns 0.
1030  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1031  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1032  *    pages pinned. Again, this may be less than nr_pages.
1033  * -- 0 return value is possible when the fault would need to be retried.
1034  *
1035  * The caller is responsible for releasing returned @pages, via put_page().
1036  *
1037  * @vmas are valid only as long as mmap_lock is held.
1038  *
1039  * Must be called with mmap_lock held.  It may be released.  See below.
1040  *
1041  * __get_user_pages walks a process's page tables and takes a reference to
1042  * each struct page that each user address corresponds to at a given
1043  * instant. That is, it takes the page that would be accessed if a user
1044  * thread accesses the given user virtual address at that instant.
1045  *
1046  * This does not guarantee that the page exists in the user mappings when
1047  * __get_user_pages returns, and there may even be a completely different
1048  * page there in some cases (eg. if mmapped pagecache has been invalidated
1049  * and subsequently re faulted). However it does guarantee that the page
1050  * won't be freed completely. And mostly callers simply care that the page
1051  * contains data that was valid *at some point in time*. Typically, an IO
1052  * or similar operation cannot guarantee anything stronger anyway because
1053  * locks can't be held over the syscall boundary.
1054  *
1055  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1056  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1057  * appropriate) must be called after the page is finished with, and
1058  * before put_page is called.
1059  *
1060  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1061  * released by an up_read().  That can happen if @gup_flags does not
1062  * have FOLL_NOWAIT.
1063  *
1064  * A caller using such a combination of @locked and @gup_flags
1065  * must therefore hold the mmap_lock for reading only, and recognize
1066  * when it's been released.  Otherwise, it must be held for either
1067  * reading or writing and will not be released.
1068  *
1069  * In most cases, get_user_pages or get_user_pages_fast should be used
1070  * instead of __get_user_pages. __get_user_pages should be used only if
1071  * you need some special @gup_flags.
1072  */
1073 static long __get_user_pages(struct mm_struct *mm,
1074 		unsigned long start, unsigned long nr_pages,
1075 		unsigned int gup_flags, struct page **pages,
1076 		struct vm_area_struct **vmas, int *locked)
1077 {
1078 	long ret = 0, i = 0;
1079 	struct vm_area_struct *vma = NULL;
1080 	struct follow_page_context ctx = { NULL };
1081 
1082 	if (!nr_pages)
1083 		return 0;
1084 
1085 	start = untagged_addr(start);
1086 
1087 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1088 
1089 	do {
1090 		struct page *page;
1091 		unsigned int foll_flags = gup_flags;
1092 		unsigned int page_increm;
1093 
1094 		/* first iteration or cross vma bound */
1095 		if (!vma || start >= vma->vm_end) {
1096 			vma = find_extend_vma(mm, start);
1097 			if (!vma && in_gate_area(mm, start)) {
1098 				ret = get_gate_page(mm, start & PAGE_MASK,
1099 						gup_flags, &vma,
1100 						pages ? &pages[i] : NULL);
1101 				if (ret)
1102 					goto out;
1103 				ctx.page_mask = 0;
1104 				goto next_page;
1105 			}
1106 
1107 			if (!vma) {
1108 				ret = -EFAULT;
1109 				goto out;
1110 			}
1111 			ret = check_vma_flags(vma, gup_flags);
1112 			if (ret)
1113 				goto out;
1114 
1115 			if (is_vm_hugetlb_page(vma)) {
1116 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1117 						&start, &nr_pages, i,
1118 						gup_flags, locked);
1119 				if (locked && *locked == 0) {
1120 					/*
1121 					 * We've got a VM_FAULT_RETRY
1122 					 * and we've lost mmap_lock.
1123 					 * We must stop here.
1124 					 */
1125 					BUG_ON(gup_flags & FOLL_NOWAIT);
1126 					goto out;
1127 				}
1128 				continue;
1129 			}
1130 		}
1131 retry:
1132 		/*
1133 		 * If we have a pending SIGKILL, don't keep faulting pages and
1134 		 * potentially allocating memory.
1135 		 */
1136 		if (fatal_signal_pending(current)) {
1137 			ret = -EINTR;
1138 			goto out;
1139 		}
1140 		cond_resched();
1141 
1142 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1143 		if (!page || PTR_ERR(page) == -EMLINK) {
1144 			ret = faultin_page(vma, start, &foll_flags,
1145 					   PTR_ERR(page) == -EMLINK, locked);
1146 			switch (ret) {
1147 			case 0:
1148 				goto retry;
1149 			case -EBUSY:
1150 			case -EAGAIN:
1151 				ret = 0;
1152 				fallthrough;
1153 			case -EFAULT:
1154 			case -ENOMEM:
1155 			case -EHWPOISON:
1156 				goto out;
1157 			}
1158 			BUG();
1159 		} else if (PTR_ERR(page) == -EEXIST) {
1160 			/*
1161 			 * Proper page table entry exists, but no corresponding
1162 			 * struct page. If the caller expects **pages to be
1163 			 * filled in, bail out now, because that can't be done
1164 			 * for this page.
1165 			 */
1166 			if (pages) {
1167 				ret = PTR_ERR(page);
1168 				goto out;
1169 			}
1170 
1171 			goto next_page;
1172 		} else if (IS_ERR(page)) {
1173 			ret = PTR_ERR(page);
1174 			goto out;
1175 		}
1176 		if (pages) {
1177 			pages[i] = page;
1178 			flush_anon_page(vma, page, start);
1179 			flush_dcache_page(page);
1180 			ctx.page_mask = 0;
1181 		}
1182 next_page:
1183 		if (vmas) {
1184 			vmas[i] = vma;
1185 			ctx.page_mask = 0;
1186 		}
1187 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1188 		if (page_increm > nr_pages)
1189 			page_increm = nr_pages;
1190 		i += page_increm;
1191 		start += page_increm * PAGE_SIZE;
1192 		nr_pages -= page_increm;
1193 	} while (nr_pages);
1194 out:
1195 	if (ctx.pgmap)
1196 		put_dev_pagemap(ctx.pgmap);
1197 	return i ? i : ret;
1198 }
1199 
1200 static bool vma_permits_fault(struct vm_area_struct *vma,
1201 			      unsigned int fault_flags)
1202 {
1203 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1204 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1205 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1206 
1207 	if (!(vm_flags & vma->vm_flags))
1208 		return false;
1209 
1210 	/*
1211 	 * The architecture might have a hardware protection
1212 	 * mechanism other than read/write that can deny access.
1213 	 *
1214 	 * gup always represents data access, not instruction
1215 	 * fetches, so execute=false here:
1216 	 */
1217 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1218 		return false;
1219 
1220 	return true;
1221 }
1222 
1223 /**
1224  * fixup_user_fault() - manually resolve a user page fault
1225  * @mm:		mm_struct of target mm
1226  * @address:	user address
1227  * @fault_flags:flags to pass down to handle_mm_fault()
1228  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1229  *		does not allow retry. If NULL, the caller must guarantee
1230  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1231  *
1232  * This is meant to be called in the specific scenario where for locking reasons
1233  * we try to access user memory in atomic context (within a pagefault_disable()
1234  * section), this returns -EFAULT, and we want to resolve the user fault before
1235  * trying again.
1236  *
1237  * Typically this is meant to be used by the futex code.
1238  *
1239  * The main difference with get_user_pages() is that this function will
1240  * unconditionally call handle_mm_fault() which will in turn perform all the
1241  * necessary SW fixup of the dirty and young bits in the PTE, while
1242  * get_user_pages() only guarantees to update these in the struct page.
1243  *
1244  * This is important for some architectures where those bits also gate the
1245  * access permission to the page because they are maintained in software.  On
1246  * such architectures, gup() will not be enough to make a subsequent access
1247  * succeed.
1248  *
1249  * This function will not return with an unlocked mmap_lock. So it has not the
1250  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1251  */
1252 int fixup_user_fault(struct mm_struct *mm,
1253 		     unsigned long address, unsigned int fault_flags,
1254 		     bool *unlocked)
1255 {
1256 	struct vm_area_struct *vma;
1257 	vm_fault_t ret;
1258 
1259 	address = untagged_addr(address);
1260 
1261 	if (unlocked)
1262 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1263 
1264 retry:
1265 	vma = find_extend_vma(mm, address);
1266 	if (!vma || address < vma->vm_start)
1267 		return -EFAULT;
1268 
1269 	if (!vma_permits_fault(vma, fault_flags))
1270 		return -EFAULT;
1271 
1272 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1273 	    fatal_signal_pending(current))
1274 		return -EINTR;
1275 
1276 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1277 
1278 	if (ret & VM_FAULT_COMPLETED) {
1279 		/*
1280 		 * NOTE: it's a pity that we need to retake the lock here
1281 		 * to pair with the unlock() in the callers. Ideally we
1282 		 * could tell the callers so they do not need to unlock.
1283 		 */
1284 		mmap_read_lock(mm);
1285 		*unlocked = true;
1286 		return 0;
1287 	}
1288 
1289 	if (ret & VM_FAULT_ERROR) {
1290 		int err = vm_fault_to_errno(ret, 0);
1291 
1292 		if (err)
1293 			return err;
1294 		BUG();
1295 	}
1296 
1297 	if (ret & VM_FAULT_RETRY) {
1298 		mmap_read_lock(mm);
1299 		*unlocked = true;
1300 		fault_flags |= FAULT_FLAG_TRIED;
1301 		goto retry;
1302 	}
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL_GPL(fixup_user_fault);
1307 
1308 /*
1309  * Please note that this function, unlike __get_user_pages will not
1310  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1311  */
1312 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1313 						unsigned long start,
1314 						unsigned long nr_pages,
1315 						struct page **pages,
1316 						struct vm_area_struct **vmas,
1317 						int *locked,
1318 						unsigned int flags)
1319 {
1320 	long ret, pages_done;
1321 	bool lock_dropped;
1322 
1323 	if (locked) {
1324 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1325 		BUG_ON(vmas);
1326 		/* check caller initialized locked */
1327 		BUG_ON(*locked != 1);
1328 	}
1329 
1330 	if (flags & FOLL_PIN)
1331 		mm_set_has_pinned_flag(&mm->flags);
1332 
1333 	/*
1334 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1335 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1336 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1337 	 * for FOLL_GET, not for the newer FOLL_PIN.
1338 	 *
1339 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1340 	 * that here, as any failures will be obvious enough.
1341 	 */
1342 	if (pages && !(flags & FOLL_PIN))
1343 		flags |= FOLL_GET;
1344 
1345 	pages_done = 0;
1346 	lock_dropped = false;
1347 	for (;;) {
1348 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1349 				       vmas, locked);
1350 		if (!locked)
1351 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1352 			return ret;
1353 
1354 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1355 		if (!*locked) {
1356 			BUG_ON(ret < 0);
1357 			BUG_ON(ret >= nr_pages);
1358 		}
1359 
1360 		if (ret > 0) {
1361 			nr_pages -= ret;
1362 			pages_done += ret;
1363 			if (!nr_pages)
1364 				break;
1365 		}
1366 		if (*locked) {
1367 			/*
1368 			 * VM_FAULT_RETRY didn't trigger or it was a
1369 			 * FOLL_NOWAIT.
1370 			 */
1371 			if (!pages_done)
1372 				pages_done = ret;
1373 			break;
1374 		}
1375 		/*
1376 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1377 		 * For the prefault case (!pages) we only update counts.
1378 		 */
1379 		if (likely(pages))
1380 			pages += ret;
1381 		start += ret << PAGE_SHIFT;
1382 		lock_dropped = true;
1383 
1384 retry:
1385 		/*
1386 		 * Repeat on the address that fired VM_FAULT_RETRY
1387 		 * with both FAULT_FLAG_ALLOW_RETRY and
1388 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1389 		 * by fatal signals, so we need to check it before we
1390 		 * start trying again otherwise it can loop forever.
1391 		 */
1392 
1393 		if (fatal_signal_pending(current)) {
1394 			if (!pages_done)
1395 				pages_done = -EINTR;
1396 			break;
1397 		}
1398 
1399 		ret = mmap_read_lock_killable(mm);
1400 		if (ret) {
1401 			BUG_ON(ret > 0);
1402 			if (!pages_done)
1403 				pages_done = ret;
1404 			break;
1405 		}
1406 
1407 		*locked = 1;
1408 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1409 				       pages, NULL, locked);
1410 		if (!*locked) {
1411 			/* Continue to retry until we succeeded */
1412 			BUG_ON(ret != 0);
1413 			goto retry;
1414 		}
1415 		if (ret != 1) {
1416 			BUG_ON(ret > 1);
1417 			if (!pages_done)
1418 				pages_done = ret;
1419 			break;
1420 		}
1421 		nr_pages--;
1422 		pages_done++;
1423 		if (!nr_pages)
1424 			break;
1425 		if (likely(pages))
1426 			pages++;
1427 		start += PAGE_SIZE;
1428 	}
1429 	if (lock_dropped && *locked) {
1430 		/*
1431 		 * We must let the caller know we temporarily dropped the lock
1432 		 * and so the critical section protected by it was lost.
1433 		 */
1434 		mmap_read_unlock(mm);
1435 		*locked = 0;
1436 	}
1437 	return pages_done;
1438 }
1439 
1440 /**
1441  * populate_vma_page_range() -  populate a range of pages in the vma.
1442  * @vma:   target vma
1443  * @start: start address
1444  * @end:   end address
1445  * @locked: whether the mmap_lock is still held
1446  *
1447  * This takes care of mlocking the pages too if VM_LOCKED is set.
1448  *
1449  * Return either number of pages pinned in the vma, or a negative error
1450  * code on error.
1451  *
1452  * vma->vm_mm->mmap_lock must be held.
1453  *
1454  * If @locked is NULL, it may be held for read or write and will
1455  * be unperturbed.
1456  *
1457  * If @locked is non-NULL, it must held for read only and may be
1458  * released.  If it's released, *@locked will be set to 0.
1459  */
1460 long populate_vma_page_range(struct vm_area_struct *vma,
1461 		unsigned long start, unsigned long end, int *locked)
1462 {
1463 	struct mm_struct *mm = vma->vm_mm;
1464 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1465 	int gup_flags;
1466 	long ret;
1467 
1468 	VM_BUG_ON(!PAGE_ALIGNED(start));
1469 	VM_BUG_ON(!PAGE_ALIGNED(end));
1470 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1471 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1472 	mmap_assert_locked(mm);
1473 
1474 	/*
1475 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1476 	 * faultin_page() to break COW, so it has no work to do here.
1477 	 */
1478 	if (vma->vm_flags & VM_LOCKONFAULT)
1479 		return nr_pages;
1480 
1481 	gup_flags = FOLL_TOUCH;
1482 	/*
1483 	 * We want to touch writable mappings with a write fault in order
1484 	 * to break COW, except for shared mappings because these don't COW
1485 	 * and we would not want to dirty them for nothing.
1486 	 */
1487 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1488 		gup_flags |= FOLL_WRITE;
1489 
1490 	/*
1491 	 * We want mlock to succeed for regions that have any permissions
1492 	 * other than PROT_NONE.
1493 	 */
1494 	if (vma_is_accessible(vma))
1495 		gup_flags |= FOLL_FORCE;
1496 
1497 	/*
1498 	 * We made sure addr is within a VMA, so the following will
1499 	 * not result in a stack expansion that recurses back here.
1500 	 */
1501 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1502 				NULL, NULL, locked);
1503 	lru_add_drain();
1504 	return ret;
1505 }
1506 
1507 /*
1508  * faultin_vma_page_range() - populate (prefault) page tables inside the
1509  *			      given VMA range readable/writable
1510  *
1511  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1512  *
1513  * @vma: target vma
1514  * @start: start address
1515  * @end: end address
1516  * @write: whether to prefault readable or writable
1517  * @locked: whether the mmap_lock is still held
1518  *
1519  * Returns either number of processed pages in the vma, or a negative error
1520  * code on error (see __get_user_pages()).
1521  *
1522  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1523  * covered by the VMA.
1524  *
1525  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1526  *
1527  * If @locked is non-NULL, it must held for read only and may be released.  If
1528  * it's released, *@locked will be set to 0.
1529  */
1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1531 			    unsigned long end, bool write, int *locked)
1532 {
1533 	struct mm_struct *mm = vma->vm_mm;
1534 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1535 	int gup_flags;
1536 	long ret;
1537 
1538 	VM_BUG_ON(!PAGE_ALIGNED(start));
1539 	VM_BUG_ON(!PAGE_ALIGNED(end));
1540 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1541 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1542 	mmap_assert_locked(mm);
1543 
1544 	/*
1545 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1546 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1547 	 *	       difference with !FOLL_FORCE, because the page is writable
1548 	 *	       in the page table.
1549 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1550 	 *		  a poisoned page.
1551 	 * !FOLL_FORCE: Require proper access permissions.
1552 	 */
1553 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1554 	if (write)
1555 		gup_flags |= FOLL_WRITE;
1556 
1557 	/*
1558 	 * We want to report -EINVAL instead of -EFAULT for any permission
1559 	 * problems or incompatible mappings.
1560 	 */
1561 	if (check_vma_flags(vma, gup_flags))
1562 		return -EINVAL;
1563 
1564 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1565 				NULL, NULL, locked);
1566 	lru_add_drain();
1567 	return ret;
1568 }
1569 
1570 /*
1571  * __mm_populate - populate and/or mlock pages within a range of address space.
1572  *
1573  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1574  * flags. VMAs must be already marked with the desired vm_flags, and
1575  * mmap_lock must not be held.
1576  */
1577 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1578 {
1579 	struct mm_struct *mm = current->mm;
1580 	unsigned long end, nstart, nend;
1581 	struct vm_area_struct *vma = NULL;
1582 	int locked = 0;
1583 	long ret = 0;
1584 
1585 	end = start + len;
1586 
1587 	for (nstart = start; nstart < end; nstart = nend) {
1588 		/*
1589 		 * We want to fault in pages for [nstart; end) address range.
1590 		 * Find first corresponding VMA.
1591 		 */
1592 		if (!locked) {
1593 			locked = 1;
1594 			mmap_read_lock(mm);
1595 			vma = find_vma_intersection(mm, nstart, end);
1596 		} else if (nstart >= vma->vm_end)
1597 			vma = find_vma_intersection(mm, vma->vm_end, end);
1598 
1599 		if (!vma)
1600 			break;
1601 		/*
1602 		 * Set [nstart; nend) to intersection of desired address
1603 		 * range with the first VMA. Also, skip undesirable VMA types.
1604 		 */
1605 		nend = min(end, vma->vm_end);
1606 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1607 			continue;
1608 		if (nstart < vma->vm_start)
1609 			nstart = vma->vm_start;
1610 		/*
1611 		 * Now fault in a range of pages. populate_vma_page_range()
1612 		 * double checks the vma flags, so that it won't mlock pages
1613 		 * if the vma was already munlocked.
1614 		 */
1615 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1616 		if (ret < 0) {
1617 			if (ignore_errors) {
1618 				ret = 0;
1619 				continue;	/* continue at next VMA */
1620 			}
1621 			break;
1622 		}
1623 		nend = nstart + ret * PAGE_SIZE;
1624 		ret = 0;
1625 	}
1626 	if (locked)
1627 		mmap_read_unlock(mm);
1628 	return ret;	/* 0 or negative error code */
1629 }
1630 #else /* CONFIG_MMU */
1631 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1632 		unsigned long nr_pages, struct page **pages,
1633 		struct vm_area_struct **vmas, int *locked,
1634 		unsigned int foll_flags)
1635 {
1636 	struct vm_area_struct *vma;
1637 	unsigned long vm_flags;
1638 	long i;
1639 
1640 	/* calculate required read or write permissions.
1641 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1642 	 */
1643 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1644 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1645 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1646 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1647 
1648 	for (i = 0; i < nr_pages; i++) {
1649 		vma = find_vma(mm, start);
1650 		if (!vma)
1651 			goto finish_or_fault;
1652 
1653 		/* protect what we can, including chardevs */
1654 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1655 		    !(vm_flags & vma->vm_flags))
1656 			goto finish_or_fault;
1657 
1658 		if (pages) {
1659 			pages[i] = virt_to_page((void *)start);
1660 			if (pages[i])
1661 				get_page(pages[i]);
1662 		}
1663 		if (vmas)
1664 			vmas[i] = vma;
1665 		start = (start + PAGE_SIZE) & PAGE_MASK;
1666 	}
1667 
1668 	return i;
1669 
1670 finish_or_fault:
1671 	return i ? : -EFAULT;
1672 }
1673 #endif /* !CONFIG_MMU */
1674 
1675 /**
1676  * fault_in_writeable - fault in userspace address range for writing
1677  * @uaddr: start of address range
1678  * @size: size of address range
1679  *
1680  * Returns the number of bytes not faulted in (like copy_to_user() and
1681  * copy_from_user()).
1682  */
1683 size_t fault_in_writeable(char __user *uaddr, size_t size)
1684 {
1685 	char __user *start = uaddr, *end;
1686 
1687 	if (unlikely(size == 0))
1688 		return 0;
1689 	if (!user_write_access_begin(uaddr, size))
1690 		return size;
1691 	if (!PAGE_ALIGNED(uaddr)) {
1692 		unsafe_put_user(0, uaddr, out);
1693 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1694 	}
1695 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1696 	if (unlikely(end < start))
1697 		end = NULL;
1698 	while (uaddr != end) {
1699 		unsafe_put_user(0, uaddr, out);
1700 		uaddr += PAGE_SIZE;
1701 	}
1702 
1703 out:
1704 	user_write_access_end();
1705 	if (size > uaddr - start)
1706 		return size - (uaddr - start);
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL(fault_in_writeable);
1710 
1711 /**
1712  * fault_in_subpage_writeable - fault in an address range for writing
1713  * @uaddr: start of address range
1714  * @size: size of address range
1715  *
1716  * Fault in a user address range for writing while checking for permissions at
1717  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1718  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1719  *
1720  * Returns the number of bytes not faulted in (like copy_to_user() and
1721  * copy_from_user()).
1722  */
1723 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1724 {
1725 	size_t faulted_in;
1726 
1727 	/*
1728 	 * Attempt faulting in at page granularity first for page table
1729 	 * permission checking. The arch-specific probe_subpage_writeable()
1730 	 * functions may not check for this.
1731 	 */
1732 	faulted_in = size - fault_in_writeable(uaddr, size);
1733 	if (faulted_in)
1734 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1735 
1736 	return size - faulted_in;
1737 }
1738 EXPORT_SYMBOL(fault_in_subpage_writeable);
1739 
1740 /*
1741  * fault_in_safe_writeable - fault in an address range for writing
1742  * @uaddr: start of address range
1743  * @size: length of address range
1744  *
1745  * Faults in an address range for writing.  This is primarily useful when we
1746  * already know that some or all of the pages in the address range aren't in
1747  * memory.
1748  *
1749  * Unlike fault_in_writeable(), this function is non-destructive.
1750  *
1751  * Note that we don't pin or otherwise hold the pages referenced that we fault
1752  * in.  There's no guarantee that they'll stay in memory for any duration of
1753  * time.
1754  *
1755  * Returns the number of bytes not faulted in, like copy_to_user() and
1756  * copy_from_user().
1757  */
1758 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1759 {
1760 	unsigned long start = (unsigned long)uaddr, end;
1761 	struct mm_struct *mm = current->mm;
1762 	bool unlocked = false;
1763 
1764 	if (unlikely(size == 0))
1765 		return 0;
1766 	end = PAGE_ALIGN(start + size);
1767 	if (end < start)
1768 		end = 0;
1769 
1770 	mmap_read_lock(mm);
1771 	do {
1772 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1773 			break;
1774 		start = (start + PAGE_SIZE) & PAGE_MASK;
1775 	} while (start != end);
1776 	mmap_read_unlock(mm);
1777 
1778 	if (size > (unsigned long)uaddr - start)
1779 		return size - ((unsigned long)uaddr - start);
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(fault_in_safe_writeable);
1783 
1784 /**
1785  * fault_in_readable - fault in userspace address range for reading
1786  * @uaddr: start of user address range
1787  * @size: size of user address range
1788  *
1789  * Returns the number of bytes not faulted in (like copy_to_user() and
1790  * copy_from_user()).
1791  */
1792 size_t fault_in_readable(const char __user *uaddr, size_t size)
1793 {
1794 	const char __user *start = uaddr, *end;
1795 	volatile char c;
1796 
1797 	if (unlikely(size == 0))
1798 		return 0;
1799 	if (!user_read_access_begin(uaddr, size))
1800 		return size;
1801 	if (!PAGE_ALIGNED(uaddr)) {
1802 		unsafe_get_user(c, uaddr, out);
1803 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1804 	}
1805 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1806 	if (unlikely(end < start))
1807 		end = NULL;
1808 	while (uaddr != end) {
1809 		unsafe_get_user(c, uaddr, out);
1810 		uaddr += PAGE_SIZE;
1811 	}
1812 
1813 out:
1814 	user_read_access_end();
1815 	(void)c;
1816 	if (size > uaddr - start)
1817 		return size - (uaddr - start);
1818 	return 0;
1819 }
1820 EXPORT_SYMBOL(fault_in_readable);
1821 
1822 /**
1823  * get_dump_page() - pin user page in memory while writing it to core dump
1824  * @addr: user address
1825  *
1826  * Returns struct page pointer of user page pinned for dump,
1827  * to be freed afterwards by put_page().
1828  *
1829  * Returns NULL on any kind of failure - a hole must then be inserted into
1830  * the corefile, to preserve alignment with its headers; and also returns
1831  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1832  * allowing a hole to be left in the corefile to save disk space.
1833  *
1834  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1835  */
1836 #ifdef CONFIG_ELF_CORE
1837 struct page *get_dump_page(unsigned long addr)
1838 {
1839 	struct mm_struct *mm = current->mm;
1840 	struct page *page;
1841 	int locked = 1;
1842 	int ret;
1843 
1844 	if (mmap_read_lock_killable(mm))
1845 		return NULL;
1846 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1847 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1848 	if (locked)
1849 		mmap_read_unlock(mm);
1850 	return (ret == 1) ? page : NULL;
1851 }
1852 #endif /* CONFIG_ELF_CORE */
1853 
1854 #ifdef CONFIG_MIGRATION
1855 /*
1856  * Returns the number of collected pages. Return value is always >= 0.
1857  */
1858 static unsigned long collect_longterm_unpinnable_pages(
1859 					struct list_head *movable_page_list,
1860 					unsigned long nr_pages,
1861 					struct page **pages)
1862 {
1863 	unsigned long i, collected = 0;
1864 	struct folio *prev_folio = NULL;
1865 	bool drain_allow = true;
1866 
1867 	for (i = 0; i < nr_pages; i++) {
1868 		struct folio *folio = page_folio(pages[i]);
1869 
1870 		if (folio == prev_folio)
1871 			continue;
1872 		prev_folio = folio;
1873 
1874 		if (folio_is_longterm_pinnable(folio))
1875 			continue;
1876 
1877 		collected++;
1878 
1879 		if (folio_is_device_coherent(folio))
1880 			continue;
1881 
1882 		if (folio_test_hugetlb(folio)) {
1883 			isolate_hugetlb(&folio->page, movable_page_list);
1884 			continue;
1885 		}
1886 
1887 		if (!folio_test_lru(folio) && drain_allow) {
1888 			lru_add_drain_all();
1889 			drain_allow = false;
1890 		}
1891 
1892 		if (!folio_isolate_lru(folio))
1893 			continue;
1894 
1895 		list_add_tail(&folio->lru, movable_page_list);
1896 		node_stat_mod_folio(folio,
1897 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1898 				    folio_nr_pages(folio));
1899 	}
1900 
1901 	return collected;
1902 }
1903 
1904 /*
1905  * Unpins all pages and migrates device coherent pages and movable_page_list.
1906  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1907  * (or partial success).
1908  */
1909 static int migrate_longterm_unpinnable_pages(
1910 					struct list_head *movable_page_list,
1911 					unsigned long nr_pages,
1912 					struct page **pages)
1913 {
1914 	int ret;
1915 	unsigned long i;
1916 
1917 	for (i = 0; i < nr_pages; i++) {
1918 		struct folio *folio = page_folio(pages[i]);
1919 
1920 		if (folio_is_device_coherent(folio)) {
1921 			/*
1922 			 * Migration will fail if the page is pinned, so convert
1923 			 * the pin on the source page to a normal reference.
1924 			 */
1925 			pages[i] = NULL;
1926 			folio_get(folio);
1927 			gup_put_folio(folio, 1, FOLL_PIN);
1928 
1929 			if (migrate_device_coherent_page(&folio->page)) {
1930 				ret = -EBUSY;
1931 				goto err;
1932 			}
1933 
1934 			continue;
1935 		}
1936 
1937 		/*
1938 		 * We can't migrate pages with unexpected references, so drop
1939 		 * the reference obtained by __get_user_pages_locked().
1940 		 * Migrating pages have been added to movable_page_list after
1941 		 * calling folio_isolate_lru() which takes a reference so the
1942 		 * page won't be freed if it's migrating.
1943 		 */
1944 		unpin_user_page(pages[i]);
1945 		pages[i] = NULL;
1946 	}
1947 
1948 	if (!list_empty(movable_page_list)) {
1949 		struct migration_target_control mtc = {
1950 			.nid = NUMA_NO_NODE,
1951 			.gfp_mask = GFP_USER | __GFP_NOWARN,
1952 		};
1953 
1954 		if (migrate_pages(movable_page_list, alloc_migration_target,
1955 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1956 				  MR_LONGTERM_PIN, NULL)) {
1957 			ret = -ENOMEM;
1958 			goto err;
1959 		}
1960 	}
1961 
1962 	putback_movable_pages(movable_page_list);
1963 
1964 	return -EAGAIN;
1965 
1966 err:
1967 	for (i = 0; i < nr_pages; i++)
1968 		if (pages[i])
1969 			unpin_user_page(pages[i]);
1970 	putback_movable_pages(movable_page_list);
1971 
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
1977  * pages in the range are required to be pinned via FOLL_PIN, before calling
1978  * this routine.
1979  *
1980  * If any pages in the range are not allowed to be pinned, then this routine
1981  * will migrate those pages away, unpin all the pages in the range and return
1982  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
1983  * call this routine again.
1984  *
1985  * If an error other than -EAGAIN occurs, this indicates a migration failure.
1986  * The caller should give up, and propagate the error back up the call stack.
1987  *
1988  * If everything is OK and all pages in the range are allowed to be pinned, then
1989  * this routine leaves all pages pinned and returns zero for success.
1990  */
1991 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1992 					    struct page **pages)
1993 {
1994 	unsigned long collected;
1995 	LIST_HEAD(movable_page_list);
1996 
1997 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
1998 						nr_pages, pages);
1999 	if (!collected)
2000 		return 0;
2001 
2002 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2003 						pages);
2004 }
2005 #else
2006 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2007 					    struct page **pages)
2008 {
2009 	return 0;
2010 }
2011 #endif /* CONFIG_MIGRATION */
2012 
2013 /*
2014  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2015  * allows us to process the FOLL_LONGTERM flag.
2016  */
2017 static long __gup_longterm_locked(struct mm_struct *mm,
2018 				  unsigned long start,
2019 				  unsigned long nr_pages,
2020 				  struct page **pages,
2021 				  struct vm_area_struct **vmas,
2022 				  int *locked,
2023 				  unsigned int gup_flags)
2024 {
2025 	bool must_unlock = false;
2026 	unsigned int flags;
2027 	long rc, nr_pinned_pages;
2028 
2029 	if (locked && WARN_ON_ONCE(!*locked))
2030 		return -EINVAL;
2031 
2032 	if (!(gup_flags & FOLL_LONGTERM))
2033 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2034 					       locked, gup_flags);
2035 
2036 	/*
2037 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2038 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2039 	 * correct to unconditionally call check_and_migrate_movable_pages()
2040 	 * which assumes pages have been pinned via FOLL_PIN.
2041 	 *
2042 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2043 	 */
2044 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2045 		return -EINVAL;
2046 	flags = memalloc_pin_save();
2047 	do {
2048 		if (locked && !*locked) {
2049 			mmap_read_lock(mm);
2050 			must_unlock = true;
2051 			*locked = 1;
2052 		}
2053 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2054 							  pages, vmas, locked,
2055 							  gup_flags);
2056 		if (nr_pinned_pages <= 0) {
2057 			rc = nr_pinned_pages;
2058 			break;
2059 		}
2060 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2061 	} while (rc == -EAGAIN);
2062 	memalloc_pin_restore(flags);
2063 
2064 	if (locked && *locked && must_unlock) {
2065 		mmap_read_unlock(mm);
2066 		*locked = 0;
2067 	}
2068 	return rc ? rc : nr_pinned_pages;
2069 }
2070 
2071 static bool is_valid_gup_flags(unsigned int gup_flags)
2072 {
2073 	/*
2074 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2075 	 * never directly by the caller, so enforce that with an assertion:
2076 	 */
2077 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2078 		return false;
2079 	/*
2080 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2081 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2082 	 * FOLL_PIN.
2083 	 */
2084 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2085 		return false;
2086 
2087 	return true;
2088 }
2089 
2090 #ifdef CONFIG_MMU
2091 /**
2092  * get_user_pages_remote() - pin user pages in memory
2093  * @mm:		mm_struct of target mm
2094  * @start:	starting user address
2095  * @nr_pages:	number of pages from start to pin
2096  * @gup_flags:	flags modifying lookup behaviour
2097  * @pages:	array that receives pointers to the pages pinned.
2098  *		Should be at least nr_pages long. Or NULL, if caller
2099  *		only intends to ensure the pages are faulted in.
2100  * @vmas:	array of pointers to vmas corresponding to each page.
2101  *		Or NULL if the caller does not require them.
2102  * @locked:	pointer to lock flag indicating whether lock is held and
2103  *		subsequently whether VM_FAULT_RETRY functionality can be
2104  *		utilised. Lock must initially be held.
2105  *
2106  * Returns either number of pages pinned (which may be less than the
2107  * number requested), or an error. Details about the return value:
2108  *
2109  * -- If nr_pages is 0, returns 0.
2110  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2111  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2112  *    pages pinned. Again, this may be less than nr_pages.
2113  *
2114  * The caller is responsible for releasing returned @pages, via put_page().
2115  *
2116  * @vmas are valid only as long as mmap_lock is held.
2117  *
2118  * Must be called with mmap_lock held for read or write.
2119  *
2120  * get_user_pages_remote walks a process's page tables and takes a reference
2121  * to each struct page that each user address corresponds to at a given
2122  * instant. That is, it takes the page that would be accessed if a user
2123  * thread accesses the given user virtual address at that instant.
2124  *
2125  * This does not guarantee that the page exists in the user mappings when
2126  * get_user_pages_remote returns, and there may even be a completely different
2127  * page there in some cases (eg. if mmapped pagecache has been invalidated
2128  * and subsequently re faulted). However it does guarantee that the page
2129  * won't be freed completely. And mostly callers simply care that the page
2130  * contains data that was valid *at some point in time*. Typically, an IO
2131  * or similar operation cannot guarantee anything stronger anyway because
2132  * locks can't be held over the syscall boundary.
2133  *
2134  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2135  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2136  * be called after the page is finished with, and before put_page is called.
2137  *
2138  * get_user_pages_remote is typically used for fewer-copy IO operations,
2139  * to get a handle on the memory by some means other than accesses
2140  * via the user virtual addresses. The pages may be submitted for
2141  * DMA to devices or accessed via their kernel linear mapping (via the
2142  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2143  *
2144  * See also get_user_pages_fast, for performance critical applications.
2145  *
2146  * get_user_pages_remote should be phased out in favor of
2147  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2148  * should use get_user_pages_remote because it cannot pass
2149  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2150  */
2151 long get_user_pages_remote(struct mm_struct *mm,
2152 		unsigned long start, unsigned long nr_pages,
2153 		unsigned int gup_flags, struct page **pages,
2154 		struct vm_area_struct **vmas, int *locked)
2155 {
2156 	if (!is_valid_gup_flags(gup_flags))
2157 		return -EINVAL;
2158 
2159 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
2160 				     gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2161 }
2162 EXPORT_SYMBOL(get_user_pages_remote);
2163 
2164 #else /* CONFIG_MMU */
2165 long get_user_pages_remote(struct mm_struct *mm,
2166 			   unsigned long start, unsigned long nr_pages,
2167 			   unsigned int gup_flags, struct page **pages,
2168 			   struct vm_area_struct **vmas, int *locked)
2169 {
2170 	return 0;
2171 }
2172 #endif /* !CONFIG_MMU */
2173 
2174 /**
2175  * get_user_pages() - pin user pages in memory
2176  * @start:      starting user address
2177  * @nr_pages:   number of pages from start to pin
2178  * @gup_flags:  flags modifying lookup behaviour
2179  * @pages:      array that receives pointers to the pages pinned.
2180  *              Should be at least nr_pages long. Or NULL, if caller
2181  *              only intends to ensure the pages are faulted in.
2182  * @vmas:       array of pointers to vmas corresponding to each page.
2183  *              Or NULL if the caller does not require them.
2184  *
2185  * This is the same as get_user_pages_remote(), just with a less-flexible
2186  * calling convention where we assume that the mm being operated on belongs to
2187  * the current task, and doesn't allow passing of a locked parameter.  We also
2188  * obviously don't pass FOLL_REMOTE in here.
2189  */
2190 long get_user_pages(unsigned long start, unsigned long nr_pages,
2191 		unsigned int gup_flags, struct page **pages,
2192 		struct vm_area_struct **vmas)
2193 {
2194 	if (!is_valid_gup_flags(gup_flags))
2195 		return -EINVAL;
2196 
2197 	return __gup_longterm_locked(current->mm, start, nr_pages,
2198 				     pages, vmas, NULL, gup_flags | FOLL_TOUCH);
2199 }
2200 EXPORT_SYMBOL(get_user_pages);
2201 
2202 /*
2203  * get_user_pages_unlocked() is suitable to replace the form:
2204  *
2205  *      mmap_read_lock(mm);
2206  *      get_user_pages(mm, ..., pages, NULL);
2207  *      mmap_read_unlock(mm);
2208  *
2209  *  with:
2210  *
2211  *      get_user_pages_unlocked(mm, ..., pages);
2212  *
2213  * It is functionally equivalent to get_user_pages_fast so
2214  * get_user_pages_fast should be used instead if specific gup_flags
2215  * (e.g. FOLL_FORCE) are not required.
2216  */
2217 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2218 			     struct page **pages, unsigned int gup_flags)
2219 {
2220 	struct mm_struct *mm = current->mm;
2221 	int locked = 1;
2222 	long ret;
2223 
2224 	mmap_read_lock(mm);
2225 	ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked,
2226 				    gup_flags | FOLL_TOUCH);
2227 	if (locked)
2228 		mmap_read_unlock(mm);
2229 	return ret;
2230 }
2231 EXPORT_SYMBOL(get_user_pages_unlocked);
2232 
2233 /*
2234  * Fast GUP
2235  *
2236  * get_user_pages_fast attempts to pin user pages by walking the page
2237  * tables directly and avoids taking locks. Thus the walker needs to be
2238  * protected from page table pages being freed from under it, and should
2239  * block any THP splits.
2240  *
2241  * One way to achieve this is to have the walker disable interrupts, and
2242  * rely on IPIs from the TLB flushing code blocking before the page table
2243  * pages are freed. This is unsuitable for architectures that do not need
2244  * to broadcast an IPI when invalidating TLBs.
2245  *
2246  * Another way to achieve this is to batch up page table containing pages
2247  * belonging to more than one mm_user, then rcu_sched a callback to free those
2248  * pages. Disabling interrupts will allow the fast_gup walker to both block
2249  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2250  * (which is a relatively rare event). The code below adopts this strategy.
2251  *
2252  * Before activating this code, please be aware that the following assumptions
2253  * are currently made:
2254  *
2255  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2256  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2257  *
2258  *  *) ptes can be read atomically by the architecture.
2259  *
2260  *  *) access_ok is sufficient to validate userspace address ranges.
2261  *
2262  * The last two assumptions can be relaxed by the addition of helper functions.
2263  *
2264  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2265  */
2266 #ifdef CONFIG_HAVE_FAST_GUP
2267 
2268 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2269 					    unsigned int flags,
2270 					    struct page **pages)
2271 {
2272 	while ((*nr) - nr_start) {
2273 		struct page *page = pages[--(*nr)];
2274 
2275 		ClearPageReferenced(page);
2276 		if (flags & FOLL_PIN)
2277 			unpin_user_page(page);
2278 		else
2279 			put_page(page);
2280 	}
2281 }
2282 
2283 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2284 /*
2285  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2286  * operations.
2287  *
2288  * To pin the page, fast-gup needs to do below in order:
2289  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2290  *
2291  * For the rest of pgtable operations where pgtable updates can be racy
2292  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2293  * is pinned.
2294  *
2295  * Above will work for all pte-level operations, including THP split.
2296  *
2297  * For THP collapse, it's a bit more complicated because fast-gup may be
2298  * walking a pgtable page that is being freed (pte is still valid but pmd
2299  * can be cleared already).  To avoid race in such condition, we need to
2300  * also check pmd here to make sure pmd doesn't change (corresponds to
2301  * pmdp_collapse_flush() in the THP collapse code path).
2302  */
2303 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2304 			 unsigned long end, unsigned int flags,
2305 			 struct page **pages, int *nr)
2306 {
2307 	struct dev_pagemap *pgmap = NULL;
2308 	int nr_start = *nr, ret = 0;
2309 	pte_t *ptep, *ptem;
2310 
2311 	ptem = ptep = pte_offset_map(&pmd, addr);
2312 	do {
2313 		pte_t pte = ptep_get_lockless(ptep);
2314 		struct page *page;
2315 		struct folio *folio;
2316 
2317 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2318 			goto pte_unmap;
2319 
2320 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2321 			goto pte_unmap;
2322 
2323 		if (pte_devmap(pte)) {
2324 			if (unlikely(flags & FOLL_LONGTERM))
2325 				goto pte_unmap;
2326 
2327 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2328 			if (unlikely(!pgmap)) {
2329 				undo_dev_pagemap(nr, nr_start, flags, pages);
2330 				goto pte_unmap;
2331 			}
2332 		} else if (pte_special(pte))
2333 			goto pte_unmap;
2334 
2335 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2336 		page = pte_page(pte);
2337 
2338 		folio = try_grab_folio(page, 1, flags);
2339 		if (!folio)
2340 			goto pte_unmap;
2341 
2342 		if (unlikely(page_is_secretmem(page))) {
2343 			gup_put_folio(folio, 1, flags);
2344 			goto pte_unmap;
2345 		}
2346 
2347 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2348 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2349 			gup_put_folio(folio, 1, flags);
2350 			goto pte_unmap;
2351 		}
2352 
2353 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2354 			gup_put_folio(folio, 1, flags);
2355 			goto pte_unmap;
2356 		}
2357 
2358 		/*
2359 		 * We need to make the page accessible if and only if we are
2360 		 * going to access its content (the FOLL_PIN case).  Please
2361 		 * see Documentation/core-api/pin_user_pages.rst for
2362 		 * details.
2363 		 */
2364 		if (flags & FOLL_PIN) {
2365 			ret = arch_make_page_accessible(page);
2366 			if (ret) {
2367 				gup_put_folio(folio, 1, flags);
2368 				goto pte_unmap;
2369 			}
2370 		}
2371 		folio_set_referenced(folio);
2372 		pages[*nr] = page;
2373 		(*nr)++;
2374 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2375 
2376 	ret = 1;
2377 
2378 pte_unmap:
2379 	if (pgmap)
2380 		put_dev_pagemap(pgmap);
2381 	pte_unmap(ptem);
2382 	return ret;
2383 }
2384 #else
2385 
2386 /*
2387  * If we can't determine whether or not a pte is special, then fail immediately
2388  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2389  * to be special.
2390  *
2391  * For a futex to be placed on a THP tail page, get_futex_key requires a
2392  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2393  * useful to have gup_huge_pmd even if we can't operate on ptes.
2394  */
2395 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2396 			 unsigned long end, unsigned int flags,
2397 			 struct page **pages, int *nr)
2398 {
2399 	return 0;
2400 }
2401 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2402 
2403 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2404 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2405 			     unsigned long end, unsigned int flags,
2406 			     struct page **pages, int *nr)
2407 {
2408 	int nr_start = *nr;
2409 	struct dev_pagemap *pgmap = NULL;
2410 
2411 	do {
2412 		struct page *page = pfn_to_page(pfn);
2413 
2414 		pgmap = get_dev_pagemap(pfn, pgmap);
2415 		if (unlikely(!pgmap)) {
2416 			undo_dev_pagemap(nr, nr_start, flags, pages);
2417 			break;
2418 		}
2419 
2420 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2421 			undo_dev_pagemap(nr, nr_start, flags, pages);
2422 			break;
2423 		}
2424 
2425 		SetPageReferenced(page);
2426 		pages[*nr] = page;
2427 		if (unlikely(try_grab_page(page, flags))) {
2428 			undo_dev_pagemap(nr, nr_start, flags, pages);
2429 			break;
2430 		}
2431 		(*nr)++;
2432 		pfn++;
2433 	} while (addr += PAGE_SIZE, addr != end);
2434 
2435 	put_dev_pagemap(pgmap);
2436 	return addr == end;
2437 }
2438 
2439 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2440 				 unsigned long end, unsigned int flags,
2441 				 struct page **pages, int *nr)
2442 {
2443 	unsigned long fault_pfn;
2444 	int nr_start = *nr;
2445 
2446 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2447 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2448 		return 0;
2449 
2450 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2451 		undo_dev_pagemap(nr, nr_start, flags, pages);
2452 		return 0;
2453 	}
2454 	return 1;
2455 }
2456 
2457 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2458 				 unsigned long end, unsigned int flags,
2459 				 struct page **pages, int *nr)
2460 {
2461 	unsigned long fault_pfn;
2462 	int nr_start = *nr;
2463 
2464 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2465 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2466 		return 0;
2467 
2468 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2469 		undo_dev_pagemap(nr, nr_start, flags, pages);
2470 		return 0;
2471 	}
2472 	return 1;
2473 }
2474 #else
2475 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2476 				 unsigned long end, unsigned int flags,
2477 				 struct page **pages, int *nr)
2478 {
2479 	BUILD_BUG();
2480 	return 0;
2481 }
2482 
2483 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2484 				 unsigned long end, unsigned int flags,
2485 				 struct page **pages, int *nr)
2486 {
2487 	BUILD_BUG();
2488 	return 0;
2489 }
2490 #endif
2491 
2492 static int record_subpages(struct page *page, unsigned long addr,
2493 			   unsigned long end, struct page **pages)
2494 {
2495 	int nr;
2496 
2497 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2498 		pages[nr] = nth_page(page, nr);
2499 
2500 	return nr;
2501 }
2502 
2503 #ifdef CONFIG_ARCH_HAS_HUGEPD
2504 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2505 				      unsigned long sz)
2506 {
2507 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2508 	return (__boundary - 1 < end - 1) ? __boundary : end;
2509 }
2510 
2511 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2512 		       unsigned long end, unsigned int flags,
2513 		       struct page **pages, int *nr)
2514 {
2515 	unsigned long pte_end;
2516 	struct page *page;
2517 	struct folio *folio;
2518 	pte_t pte;
2519 	int refs;
2520 
2521 	pte_end = (addr + sz) & ~(sz-1);
2522 	if (pte_end < end)
2523 		end = pte_end;
2524 
2525 	pte = huge_ptep_get(ptep);
2526 
2527 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2528 		return 0;
2529 
2530 	/* hugepages are never "special" */
2531 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2532 
2533 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2534 	refs = record_subpages(page, addr, end, pages + *nr);
2535 
2536 	folio = try_grab_folio(page, refs, flags);
2537 	if (!folio)
2538 		return 0;
2539 
2540 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2541 		gup_put_folio(folio, refs, flags);
2542 		return 0;
2543 	}
2544 
2545 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2546 		gup_put_folio(folio, refs, flags);
2547 		return 0;
2548 	}
2549 
2550 	*nr += refs;
2551 	folio_set_referenced(folio);
2552 	return 1;
2553 }
2554 
2555 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2556 		unsigned int pdshift, unsigned long end, unsigned int flags,
2557 		struct page **pages, int *nr)
2558 {
2559 	pte_t *ptep;
2560 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2561 	unsigned long next;
2562 
2563 	ptep = hugepte_offset(hugepd, addr, pdshift);
2564 	do {
2565 		next = hugepte_addr_end(addr, end, sz);
2566 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2567 			return 0;
2568 	} while (ptep++, addr = next, addr != end);
2569 
2570 	return 1;
2571 }
2572 #else
2573 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2574 		unsigned int pdshift, unsigned long end, unsigned int flags,
2575 		struct page **pages, int *nr)
2576 {
2577 	return 0;
2578 }
2579 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2580 
2581 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2582 			unsigned long end, unsigned int flags,
2583 			struct page **pages, int *nr)
2584 {
2585 	struct page *page;
2586 	struct folio *folio;
2587 	int refs;
2588 
2589 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2590 		return 0;
2591 
2592 	if (pmd_devmap(orig)) {
2593 		if (unlikely(flags & FOLL_LONGTERM))
2594 			return 0;
2595 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2596 					     pages, nr);
2597 	}
2598 
2599 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2600 	refs = record_subpages(page, addr, end, pages + *nr);
2601 
2602 	folio = try_grab_folio(page, refs, flags);
2603 	if (!folio)
2604 		return 0;
2605 
2606 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2607 		gup_put_folio(folio, refs, flags);
2608 		return 0;
2609 	}
2610 
2611 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2612 		gup_put_folio(folio, refs, flags);
2613 		return 0;
2614 	}
2615 
2616 	*nr += refs;
2617 	folio_set_referenced(folio);
2618 	return 1;
2619 }
2620 
2621 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2622 			unsigned long end, unsigned int flags,
2623 			struct page **pages, int *nr)
2624 {
2625 	struct page *page;
2626 	struct folio *folio;
2627 	int refs;
2628 
2629 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2630 		return 0;
2631 
2632 	if (pud_devmap(orig)) {
2633 		if (unlikely(flags & FOLL_LONGTERM))
2634 			return 0;
2635 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2636 					     pages, nr);
2637 	}
2638 
2639 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2640 	refs = record_subpages(page, addr, end, pages + *nr);
2641 
2642 	folio = try_grab_folio(page, refs, flags);
2643 	if (!folio)
2644 		return 0;
2645 
2646 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2647 		gup_put_folio(folio, refs, flags);
2648 		return 0;
2649 	}
2650 
2651 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2652 		gup_put_folio(folio, refs, flags);
2653 		return 0;
2654 	}
2655 
2656 	*nr += refs;
2657 	folio_set_referenced(folio);
2658 	return 1;
2659 }
2660 
2661 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2662 			unsigned long end, unsigned int flags,
2663 			struct page **pages, int *nr)
2664 {
2665 	int refs;
2666 	struct page *page;
2667 	struct folio *folio;
2668 
2669 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2670 		return 0;
2671 
2672 	BUILD_BUG_ON(pgd_devmap(orig));
2673 
2674 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2675 	refs = record_subpages(page, addr, end, pages + *nr);
2676 
2677 	folio = try_grab_folio(page, refs, flags);
2678 	if (!folio)
2679 		return 0;
2680 
2681 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2682 		gup_put_folio(folio, refs, flags);
2683 		return 0;
2684 	}
2685 
2686 	*nr += refs;
2687 	folio_set_referenced(folio);
2688 	return 1;
2689 }
2690 
2691 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2692 		unsigned int flags, struct page **pages, int *nr)
2693 {
2694 	unsigned long next;
2695 	pmd_t *pmdp;
2696 
2697 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2698 	do {
2699 		pmd_t pmd = READ_ONCE(*pmdp);
2700 
2701 		next = pmd_addr_end(addr, end);
2702 		if (!pmd_present(pmd))
2703 			return 0;
2704 
2705 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2706 			     pmd_devmap(pmd))) {
2707 			if (pmd_protnone(pmd) &&
2708 			    !gup_can_follow_protnone(flags))
2709 				return 0;
2710 
2711 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2712 				pages, nr))
2713 				return 0;
2714 
2715 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2716 			/*
2717 			 * architecture have different format for hugetlbfs
2718 			 * pmd format and THP pmd format
2719 			 */
2720 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2721 					 PMD_SHIFT, next, flags, pages, nr))
2722 				return 0;
2723 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2724 			return 0;
2725 	} while (pmdp++, addr = next, addr != end);
2726 
2727 	return 1;
2728 }
2729 
2730 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2731 			 unsigned int flags, struct page **pages, int *nr)
2732 {
2733 	unsigned long next;
2734 	pud_t *pudp;
2735 
2736 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2737 	do {
2738 		pud_t pud = READ_ONCE(*pudp);
2739 
2740 		next = pud_addr_end(addr, end);
2741 		if (unlikely(!pud_present(pud)))
2742 			return 0;
2743 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2744 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2745 					  pages, nr))
2746 				return 0;
2747 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2748 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2749 					 PUD_SHIFT, next, flags, pages, nr))
2750 				return 0;
2751 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2752 			return 0;
2753 	} while (pudp++, addr = next, addr != end);
2754 
2755 	return 1;
2756 }
2757 
2758 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2759 			 unsigned int flags, struct page **pages, int *nr)
2760 {
2761 	unsigned long next;
2762 	p4d_t *p4dp;
2763 
2764 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2765 	do {
2766 		p4d_t p4d = READ_ONCE(*p4dp);
2767 
2768 		next = p4d_addr_end(addr, end);
2769 		if (p4d_none(p4d))
2770 			return 0;
2771 		BUILD_BUG_ON(p4d_huge(p4d));
2772 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2773 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2774 					 P4D_SHIFT, next, flags, pages, nr))
2775 				return 0;
2776 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2777 			return 0;
2778 	} while (p4dp++, addr = next, addr != end);
2779 
2780 	return 1;
2781 }
2782 
2783 static void gup_pgd_range(unsigned long addr, unsigned long end,
2784 		unsigned int flags, struct page **pages, int *nr)
2785 {
2786 	unsigned long next;
2787 	pgd_t *pgdp;
2788 
2789 	pgdp = pgd_offset(current->mm, addr);
2790 	do {
2791 		pgd_t pgd = READ_ONCE(*pgdp);
2792 
2793 		next = pgd_addr_end(addr, end);
2794 		if (pgd_none(pgd))
2795 			return;
2796 		if (unlikely(pgd_huge(pgd))) {
2797 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2798 					  pages, nr))
2799 				return;
2800 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2801 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2802 					 PGDIR_SHIFT, next, flags, pages, nr))
2803 				return;
2804 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2805 			return;
2806 	} while (pgdp++, addr = next, addr != end);
2807 }
2808 #else
2809 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2810 		unsigned int flags, struct page **pages, int *nr)
2811 {
2812 }
2813 #endif /* CONFIG_HAVE_FAST_GUP */
2814 
2815 #ifndef gup_fast_permitted
2816 /*
2817  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2818  * we need to fall back to the slow version:
2819  */
2820 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2821 {
2822 	return true;
2823 }
2824 #endif
2825 
2826 static unsigned long lockless_pages_from_mm(unsigned long start,
2827 					    unsigned long end,
2828 					    unsigned int gup_flags,
2829 					    struct page **pages)
2830 {
2831 	unsigned long flags;
2832 	int nr_pinned = 0;
2833 	unsigned seq;
2834 
2835 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2836 	    !gup_fast_permitted(start, end))
2837 		return 0;
2838 
2839 	if (gup_flags & FOLL_PIN) {
2840 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2841 		if (seq & 1)
2842 			return 0;
2843 	}
2844 
2845 	/*
2846 	 * Disable interrupts. The nested form is used, in order to allow full,
2847 	 * general purpose use of this routine.
2848 	 *
2849 	 * With interrupts disabled, we block page table pages from being freed
2850 	 * from under us. See struct mmu_table_batch comments in
2851 	 * include/asm-generic/tlb.h for more details.
2852 	 *
2853 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2854 	 * that come from THPs splitting.
2855 	 */
2856 	local_irq_save(flags);
2857 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2858 	local_irq_restore(flags);
2859 
2860 	/*
2861 	 * When pinning pages for DMA there could be a concurrent write protect
2862 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2863 	 */
2864 	if (gup_flags & FOLL_PIN) {
2865 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2866 			unpin_user_pages_lockless(pages, nr_pinned);
2867 			return 0;
2868 		} else {
2869 			sanity_check_pinned_pages(pages, nr_pinned);
2870 		}
2871 	}
2872 	return nr_pinned;
2873 }
2874 
2875 static int internal_get_user_pages_fast(unsigned long start,
2876 					unsigned long nr_pages,
2877 					unsigned int gup_flags,
2878 					struct page **pages)
2879 {
2880 	unsigned long len, end;
2881 	unsigned long nr_pinned;
2882 	int ret;
2883 
2884 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2885 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2886 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
2887 				       FOLL_PCI_P2PDMA)))
2888 		return -EINVAL;
2889 
2890 	if (gup_flags & FOLL_PIN)
2891 		mm_set_has_pinned_flag(&current->mm->flags);
2892 
2893 	if (!(gup_flags & FOLL_FAST_ONLY))
2894 		might_lock_read(&current->mm->mmap_lock);
2895 
2896 	start = untagged_addr(start) & PAGE_MASK;
2897 	len = nr_pages << PAGE_SHIFT;
2898 	if (check_add_overflow(start, len, &end))
2899 		return 0;
2900 	if (unlikely(!access_ok((void __user *)start, len)))
2901 		return -EFAULT;
2902 
2903 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2904 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2905 		return nr_pinned;
2906 
2907 	/* Slow path: try to get the remaining pages with get_user_pages */
2908 	start += nr_pinned << PAGE_SHIFT;
2909 	pages += nr_pinned;
2910 	ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages,
2911 				      gup_flags);
2912 	if (ret < 0) {
2913 		/*
2914 		 * The caller has to unpin the pages we already pinned so
2915 		 * returning -errno is not an option
2916 		 */
2917 		if (nr_pinned)
2918 			return nr_pinned;
2919 		return ret;
2920 	}
2921 	return ret + nr_pinned;
2922 }
2923 
2924 /**
2925  * get_user_pages_fast_only() - pin user pages in memory
2926  * @start:      starting user address
2927  * @nr_pages:   number of pages from start to pin
2928  * @gup_flags:  flags modifying pin behaviour
2929  * @pages:      array that receives pointers to the pages pinned.
2930  *              Should be at least nr_pages long.
2931  *
2932  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2933  * the regular GUP.
2934  * Note a difference with get_user_pages_fast: this always returns the
2935  * number of pages pinned, 0 if no pages were pinned.
2936  *
2937  * If the architecture does not support this function, simply return with no
2938  * pages pinned.
2939  *
2940  * Careful, careful! COW breaking can go either way, so a non-write
2941  * access can get ambiguous page results. If you call this function without
2942  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2943  */
2944 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2945 			     unsigned int gup_flags, struct page **pages)
2946 {
2947 	int nr_pinned;
2948 	/*
2949 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2950 	 * because gup fast is always a "pin with a +1 page refcount" request.
2951 	 *
2952 	 * FOLL_FAST_ONLY is required in order to match the API description of
2953 	 * this routine: no fall back to regular ("slow") GUP.
2954 	 */
2955 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2956 
2957 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2958 						 pages);
2959 
2960 	/*
2961 	 * As specified in the API description above, this routine is not
2962 	 * allowed to return negative values. However, the common core
2963 	 * routine internal_get_user_pages_fast() *can* return -errno.
2964 	 * Therefore, correct for that here:
2965 	 */
2966 	if (nr_pinned < 0)
2967 		nr_pinned = 0;
2968 
2969 	return nr_pinned;
2970 }
2971 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2972 
2973 /**
2974  * get_user_pages_fast() - pin user pages in memory
2975  * @start:      starting user address
2976  * @nr_pages:   number of pages from start to pin
2977  * @gup_flags:  flags modifying pin behaviour
2978  * @pages:      array that receives pointers to the pages pinned.
2979  *              Should be at least nr_pages long.
2980  *
2981  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2982  * If not successful, it will fall back to taking the lock and
2983  * calling get_user_pages().
2984  *
2985  * Returns number of pages pinned. This may be fewer than the number requested.
2986  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2987  * -errno.
2988  */
2989 int get_user_pages_fast(unsigned long start, int nr_pages,
2990 			unsigned int gup_flags, struct page **pages)
2991 {
2992 	if (!is_valid_gup_flags(gup_flags))
2993 		return -EINVAL;
2994 
2995 	/*
2996 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2997 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2998 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2999 	 * request.
3000 	 */
3001 	gup_flags |= FOLL_GET;
3002 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3003 }
3004 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3005 
3006 /**
3007  * pin_user_pages_fast() - pin user pages in memory without taking locks
3008  *
3009  * @start:      starting user address
3010  * @nr_pages:   number of pages from start to pin
3011  * @gup_flags:  flags modifying pin behaviour
3012  * @pages:      array that receives pointers to the pages pinned.
3013  *              Should be at least nr_pages long.
3014  *
3015  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3016  * get_user_pages_fast() for documentation on the function arguments, because
3017  * the arguments here are identical.
3018  *
3019  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3020  * see Documentation/core-api/pin_user_pages.rst for further details.
3021  */
3022 int pin_user_pages_fast(unsigned long start, int nr_pages,
3023 			unsigned int gup_flags, struct page **pages)
3024 {
3025 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3026 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3027 		return -EINVAL;
3028 
3029 	if (WARN_ON_ONCE(!pages))
3030 		return -EINVAL;
3031 
3032 	gup_flags |= FOLL_PIN;
3033 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3034 }
3035 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3036 
3037 /*
3038  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3039  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3040  *
3041  * The API rules are the same, too: no negative values may be returned.
3042  */
3043 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3044 			     unsigned int gup_flags, struct page **pages)
3045 {
3046 	int nr_pinned;
3047 
3048 	/*
3049 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3050 	 * rules require returning 0, rather than -errno:
3051 	 */
3052 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3053 		return 0;
3054 
3055 	if (WARN_ON_ONCE(!pages))
3056 		return 0;
3057 	/*
3058 	 * FOLL_FAST_ONLY is required in order to match the API description of
3059 	 * this routine: no fall back to regular ("slow") GUP.
3060 	 */
3061 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3062 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3063 						 pages);
3064 	/*
3065 	 * This routine is not allowed to return negative values. However,
3066 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3067 	 * correct for that here:
3068 	 */
3069 	if (nr_pinned < 0)
3070 		nr_pinned = 0;
3071 
3072 	return nr_pinned;
3073 }
3074 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3075 
3076 /**
3077  * pin_user_pages_remote() - pin pages of a remote process
3078  *
3079  * @mm:		mm_struct of target mm
3080  * @start:	starting user address
3081  * @nr_pages:	number of pages from start to pin
3082  * @gup_flags:	flags modifying lookup behaviour
3083  * @pages:	array that receives pointers to the pages pinned.
3084  *		Should be at least nr_pages long.
3085  * @vmas:	array of pointers to vmas corresponding to each page.
3086  *		Or NULL if the caller does not require them.
3087  * @locked:	pointer to lock flag indicating whether lock is held and
3088  *		subsequently whether VM_FAULT_RETRY functionality can be
3089  *		utilised. Lock must initially be held.
3090  *
3091  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3092  * get_user_pages_remote() for documentation on the function arguments, because
3093  * the arguments here are identical.
3094  *
3095  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3096  * see Documentation/core-api/pin_user_pages.rst for details.
3097  */
3098 long pin_user_pages_remote(struct mm_struct *mm,
3099 			   unsigned long start, unsigned long nr_pages,
3100 			   unsigned int gup_flags, struct page **pages,
3101 			   struct vm_area_struct **vmas, int *locked)
3102 {
3103 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3104 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3105 		return -EINVAL;
3106 
3107 	if (WARN_ON_ONCE(!pages))
3108 		return -EINVAL;
3109 
3110 	return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked,
3111 				     gup_flags | FOLL_PIN | FOLL_TOUCH |
3112 					     FOLL_REMOTE);
3113 }
3114 EXPORT_SYMBOL(pin_user_pages_remote);
3115 
3116 /**
3117  * pin_user_pages() - pin user pages in memory for use by other devices
3118  *
3119  * @start:	starting user address
3120  * @nr_pages:	number of pages from start to pin
3121  * @gup_flags:	flags modifying lookup behaviour
3122  * @pages:	array that receives pointers to the pages pinned.
3123  *		Should be at least nr_pages long.
3124  * @vmas:	array of pointers to vmas corresponding to each page.
3125  *		Or NULL if the caller does not require them.
3126  *
3127  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3128  * FOLL_PIN is set.
3129  *
3130  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3131  * see Documentation/core-api/pin_user_pages.rst for details.
3132  */
3133 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3134 		    unsigned int gup_flags, struct page **pages,
3135 		    struct vm_area_struct **vmas)
3136 {
3137 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3138 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3139 		return -EINVAL;
3140 
3141 	if (WARN_ON_ONCE(!pages))
3142 		return -EINVAL;
3143 
3144 	gup_flags |= FOLL_PIN;
3145 	return __gup_longterm_locked(current->mm, start, nr_pages,
3146 				     pages, vmas, NULL, gup_flags);
3147 }
3148 EXPORT_SYMBOL(pin_user_pages);
3149 
3150 /*
3151  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3152  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3153  * FOLL_PIN and rejects FOLL_GET.
3154  */
3155 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3156 			     struct page **pages, unsigned int gup_flags)
3157 {
3158 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3159 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3160 		return -EINVAL;
3161 
3162 	if (WARN_ON_ONCE(!pages))
3163 		return -EINVAL;
3164 
3165 	gup_flags |= FOLL_PIN;
3166 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3167 }
3168 EXPORT_SYMBOL(pin_user_pages_unlocked);
3169