1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 127 return NULL; 128 129 if (flags & FOLL_GET) 130 return try_get_folio(page, refs); 131 else if (flags & FOLL_PIN) { 132 struct folio *folio; 133 134 /* 135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 136 * right zone, so fail and let the caller fall back to the slow 137 * path. 138 */ 139 if (unlikely((flags & FOLL_LONGTERM) && 140 !is_longterm_pinnable_page(page))) 141 return NULL; 142 143 /* 144 * CAUTION: Don't use compound_head() on the page before this 145 * point, the result won't be stable. 146 */ 147 folio = try_get_folio(page, refs); 148 if (!folio) 149 return NULL; 150 151 /* 152 * When pinning a large folio, use an exact count to track it. 153 * 154 * However, be sure to *also* increment the normal folio 155 * refcount field at least once, so that the folio really 156 * is pinned. That's why the refcount from the earlier 157 * try_get_folio() is left intact. 158 */ 159 if (folio_test_large(folio)) 160 atomic_add(refs, folio_pincount_ptr(folio)); 161 else 162 folio_ref_add(folio, 163 refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 /* 165 * Adjust the pincount before re-checking the PTE for changes. 166 * This is essentially a smp_mb() and is paired with a memory 167 * barrier in page_try_share_anon_rmap(). 168 */ 169 smp_mb__after_atomic(); 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 173 return folio; 174 } 175 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 181 { 182 if (flags & FOLL_PIN) { 183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 184 if (folio_test_large(folio)) 185 atomic_sub(refs, folio_pincount_ptr(folio)); 186 else 187 refs *= GUP_PIN_COUNTING_BIAS; 188 } 189 190 if (!put_devmap_managed_page_refs(&folio->page, refs)) 191 folio_put_refs(folio, refs); 192 } 193 194 /** 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 196 * @page: pointer to page to be grabbed 197 * @flags: gup flags: these are the FOLL_* flag values. 198 * 199 * This might not do anything at all, depending on the flags argument. 200 * 201 * "grab" names in this file mean, "look at flags to decide whether to use 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 203 * 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 205 * time. Cases: please see the try_grab_folio() documentation, with 206 * "refs=1". 207 * 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 210 * 211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 212 * be grabbed. 213 */ 214 int __must_check try_grab_page(struct page *page, unsigned int flags) 215 { 216 struct folio *folio = page_folio(page); 217 218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 220 return -ENOMEM; 221 222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 223 return -EREMOTEIO; 224 225 if (flags & FOLL_GET) 226 folio_ref_inc(folio); 227 else if (flags & FOLL_PIN) { 228 /* 229 * Similar to try_grab_folio(): be sure to *also* 230 * increment the normal page refcount field at least once, 231 * so that the page really is pinned. 232 */ 233 if (folio_test_large(folio)) { 234 folio_ref_add(folio, 1); 235 atomic_add(1, folio_pincount_ptr(folio)); 236 } else { 237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 238 } 239 240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 241 } 242 243 return 0; 244 } 245 246 /** 247 * unpin_user_page() - release a dma-pinned page 248 * @page: pointer to page to be released 249 * 250 * Pages that were pinned via pin_user_pages*() must be released via either 251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 252 * that such pages can be separately tracked and uniquely handled. In 253 * particular, interactions with RDMA and filesystems need special handling. 254 */ 255 void unpin_user_page(struct page *page) 256 { 257 sanity_check_pinned_pages(&page, 1); 258 gup_put_folio(page_folio(page), 1, FOLL_PIN); 259 } 260 EXPORT_SYMBOL(unpin_user_page); 261 262 static inline struct folio *gup_folio_range_next(struct page *start, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct page *next = nth_page(start, i); 266 struct folio *folio = page_folio(next); 267 unsigned int nr = 1; 268 269 if (folio_test_large(folio)) 270 nr = min_t(unsigned int, npages - i, 271 folio_nr_pages(folio) - folio_page_idx(folio, next)); 272 273 *ntails = nr; 274 return folio; 275 } 276 277 static inline struct folio *gup_folio_next(struct page **list, 278 unsigned long npages, unsigned long i, unsigned int *ntails) 279 { 280 struct folio *folio = page_folio(list[i]); 281 unsigned int nr; 282 283 for (nr = i + 1; nr < npages; nr++) { 284 if (page_folio(list[nr]) != folio) 285 break; 286 } 287 288 *ntails = nr - i; 289 return folio; 290 } 291 292 /** 293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 294 * @pages: array of pages to be maybe marked dirty, and definitely released. 295 * @npages: number of pages in the @pages array. 296 * @make_dirty: whether to mark the pages dirty 297 * 298 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 299 * variants called on that page. 300 * 301 * For each page in the @pages array, make that page (or its head page, if a 302 * compound page) dirty, if @make_dirty is true, and if the page was previously 303 * listed as clean. In any case, releases all pages using unpin_user_page(), 304 * possibly via unpin_user_pages(), for the non-dirty case. 305 * 306 * Please see the unpin_user_page() documentation for details. 307 * 308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 309 * required, then the caller should a) verify that this is really correct, 310 * because _lock() is usually required, and b) hand code it: 311 * set_page_dirty_lock(), unpin_user_page(). 312 * 313 */ 314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 315 bool make_dirty) 316 { 317 unsigned long i; 318 struct folio *folio; 319 unsigned int nr; 320 321 if (!make_dirty) { 322 unpin_user_pages(pages, npages); 323 return; 324 } 325 326 sanity_check_pinned_pages(pages, npages); 327 for (i = 0; i < npages; i += nr) { 328 folio = gup_folio_next(pages, npages, i, &nr); 329 /* 330 * Checking PageDirty at this point may race with 331 * clear_page_dirty_for_io(), but that's OK. Two key 332 * cases: 333 * 334 * 1) This code sees the page as already dirty, so it 335 * skips the call to set_page_dirty(). That could happen 336 * because clear_page_dirty_for_io() called 337 * page_mkclean(), followed by set_page_dirty(). 338 * However, now the page is going to get written back, 339 * which meets the original intention of setting it 340 * dirty, so all is well: clear_page_dirty_for_io() goes 341 * on to call TestClearPageDirty(), and write the page 342 * back. 343 * 344 * 2) This code sees the page as clean, so it calls 345 * set_page_dirty(). The page stays dirty, despite being 346 * written back, so it gets written back again in the 347 * next writeback cycle. This is harmless. 348 */ 349 if (!folio_test_dirty(folio)) { 350 folio_lock(folio); 351 folio_mark_dirty(folio); 352 folio_unlock(folio); 353 } 354 gup_put_folio(folio, nr, FOLL_PIN); 355 } 356 } 357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 358 359 /** 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty 361 * gup-pinned page range 362 * 363 * @page: the starting page of a range maybe marked dirty, and definitely released. 364 * @npages: number of consecutive pages to release. 365 * @make_dirty: whether to mark the pages dirty 366 * 367 * "gup-pinned page range" refers to a range of pages that has had one of the 368 * pin_user_pages() variants called on that page. 369 * 370 * For the page ranges defined by [page .. page+npages], make that range (or 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 372 * page range was previously listed as clean. 373 * 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 375 * required, then the caller should a) verify that this is really correct, 376 * because _lock() is usually required, and b) hand code it: 377 * set_page_dirty_lock(), unpin_user_page(). 378 * 379 */ 380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 381 bool make_dirty) 382 { 383 unsigned long i; 384 struct folio *folio; 385 unsigned int nr; 386 387 for (i = 0; i < npages; i += nr) { 388 folio = gup_folio_range_next(page, npages, i, &nr); 389 if (make_dirty && !folio_test_dirty(folio)) { 390 folio_lock(folio); 391 folio_mark_dirty(folio); 392 folio_unlock(folio); 393 } 394 gup_put_folio(folio, nr, FOLL_PIN); 395 } 396 } 397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 398 399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 400 { 401 unsigned long i; 402 struct folio *folio; 403 unsigned int nr; 404 405 /* 406 * Don't perform any sanity checks because we might have raced with 407 * fork() and some anonymous pages might now actually be shared -- 408 * which is why we're unpinning after all. 409 */ 410 for (i = 0; i < npages; i += nr) { 411 folio = gup_folio_next(pages, npages, i, &nr); 412 gup_put_folio(folio, nr, FOLL_PIN); 413 } 414 } 415 416 /** 417 * unpin_user_pages() - release an array of gup-pinned pages. 418 * @pages: array of pages to be marked dirty and released. 419 * @npages: number of pages in the @pages array. 420 * 421 * For each page in the @pages array, release the page using unpin_user_page(). 422 * 423 * Please see the unpin_user_page() documentation for details. 424 */ 425 void unpin_user_pages(struct page **pages, unsigned long npages) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 /* 432 * If this WARN_ON() fires, then the system *might* be leaking pages (by 433 * leaving them pinned), but probably not. More likely, gup/pup returned 434 * a hard -ERRNO error to the caller, who erroneously passed it here. 435 */ 436 if (WARN_ON(IS_ERR_VALUE(npages))) 437 return; 438 439 sanity_check_pinned_pages(pages, npages); 440 for (i = 0; i < npages; i += nr) { 441 folio = gup_folio_next(pages, npages, i, &nr); 442 gup_put_folio(folio, nr, FOLL_PIN); 443 } 444 } 445 EXPORT_SYMBOL(unpin_user_pages); 446 447 /* 448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 450 * cache bouncing on large SMP machines for concurrent pinned gups. 451 */ 452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 453 { 454 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 455 set_bit(MMF_HAS_PINNED, mm_flags); 456 } 457 458 #ifdef CONFIG_MMU 459 static struct page *no_page_table(struct vm_area_struct *vma, 460 unsigned int flags) 461 { 462 /* 463 * When core dumping an enormous anonymous area that nobody 464 * has touched so far, we don't want to allocate unnecessary pages or 465 * page tables. Return error instead of NULL to skip handle_mm_fault, 466 * then get_dump_page() will return NULL to leave a hole in the dump. 467 * But we can only make this optimization where a hole would surely 468 * be zero-filled if handle_mm_fault() actually did handle it. 469 */ 470 if ((flags & FOLL_DUMP) && 471 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 472 return ERR_PTR(-EFAULT); 473 return NULL; 474 } 475 476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 477 pte_t *pte, unsigned int flags) 478 { 479 if (flags & FOLL_TOUCH) { 480 pte_t entry = *pte; 481 482 if (flags & FOLL_WRITE) 483 entry = pte_mkdirty(entry); 484 entry = pte_mkyoung(entry); 485 486 if (!pte_same(*pte, entry)) { 487 set_pte_at(vma->vm_mm, address, pte, entry); 488 update_mmu_cache(vma, address, pte); 489 } 490 } 491 492 /* Proper page table entry exists, but no corresponding struct page */ 493 return -EEXIST; 494 } 495 496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 497 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 498 struct vm_area_struct *vma, 499 unsigned int flags) 500 { 501 /* If the pte is writable, we can write to the page. */ 502 if (pte_write(pte)) 503 return true; 504 505 /* Maybe FOLL_FORCE is set to override it? */ 506 if (!(flags & FOLL_FORCE)) 507 return false; 508 509 /* But FOLL_FORCE has no effect on shared mappings */ 510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 511 return false; 512 513 /* ... or read-only private ones */ 514 if (!(vma->vm_flags & VM_MAYWRITE)) 515 return false; 516 517 /* ... or already writable ones that just need to take a write fault */ 518 if (vma->vm_flags & VM_WRITE) 519 return false; 520 521 /* 522 * See can_change_pte_writable(): we broke COW and could map the page 523 * writable if we have an exclusive anonymous page ... 524 */ 525 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 526 return false; 527 528 /* ... and a write-fault isn't required for other reasons. */ 529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 530 return false; 531 return !userfaultfd_pte_wp(vma, pte); 532 } 533 534 static struct page *follow_page_pte(struct vm_area_struct *vma, 535 unsigned long address, pmd_t *pmd, unsigned int flags, 536 struct dev_pagemap **pgmap) 537 { 538 struct mm_struct *mm = vma->vm_mm; 539 struct page *page; 540 spinlock_t *ptl; 541 pte_t *ptep, pte; 542 int ret; 543 544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 546 (FOLL_PIN | FOLL_GET))) 547 return ERR_PTR(-EINVAL); 548 if (unlikely(pmd_bad(*pmd))) 549 return no_page_table(vma, flags); 550 551 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 552 pte = *ptep; 553 if (!pte_present(pte)) 554 goto no_page; 555 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 556 goto no_page; 557 558 page = vm_normal_page(vma, address, pte); 559 560 /* 561 * We only care about anon pages in can_follow_write_pte() and don't 562 * have to worry about pte_devmap() because they are never anon. 563 */ 564 if ((flags & FOLL_WRITE) && 565 !can_follow_write_pte(pte, page, vma, flags)) { 566 page = NULL; 567 goto out; 568 } 569 570 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 571 /* 572 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 573 * case since they are only valid while holding the pgmap 574 * reference. 575 */ 576 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 577 if (*pgmap) 578 page = pte_page(pte); 579 else 580 goto no_page; 581 } else if (unlikely(!page)) { 582 if (flags & FOLL_DUMP) { 583 /* Avoid special (like zero) pages in core dumps */ 584 page = ERR_PTR(-EFAULT); 585 goto out; 586 } 587 588 if (is_zero_pfn(pte_pfn(pte))) { 589 page = pte_page(pte); 590 } else { 591 ret = follow_pfn_pte(vma, address, ptep, flags); 592 page = ERR_PTR(ret); 593 goto out; 594 } 595 } 596 597 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 598 page = ERR_PTR(-EMLINK); 599 goto out; 600 } 601 602 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 603 !PageAnonExclusive(page), page); 604 605 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 606 ret = try_grab_page(page, flags); 607 if (unlikely(ret)) { 608 page = ERR_PTR(ret); 609 goto out; 610 } 611 612 /* 613 * We need to make the page accessible if and only if we are going 614 * to access its content (the FOLL_PIN case). Please see 615 * Documentation/core-api/pin_user_pages.rst for details. 616 */ 617 if (flags & FOLL_PIN) { 618 ret = arch_make_page_accessible(page); 619 if (ret) { 620 unpin_user_page(page); 621 page = ERR_PTR(ret); 622 goto out; 623 } 624 } 625 if (flags & FOLL_TOUCH) { 626 if ((flags & FOLL_WRITE) && 627 !pte_dirty(pte) && !PageDirty(page)) 628 set_page_dirty(page); 629 /* 630 * pte_mkyoung() would be more correct here, but atomic care 631 * is needed to avoid losing the dirty bit: it is easier to use 632 * mark_page_accessed(). 633 */ 634 mark_page_accessed(page); 635 } 636 out: 637 pte_unmap_unlock(ptep, ptl); 638 return page; 639 no_page: 640 pte_unmap_unlock(ptep, ptl); 641 if (!pte_none(pte)) 642 return NULL; 643 return no_page_table(vma, flags); 644 } 645 646 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 647 unsigned long address, pud_t *pudp, 648 unsigned int flags, 649 struct follow_page_context *ctx) 650 { 651 pmd_t *pmd, pmdval; 652 spinlock_t *ptl; 653 struct page *page; 654 struct mm_struct *mm = vma->vm_mm; 655 656 pmd = pmd_offset(pudp, address); 657 /* 658 * The READ_ONCE() will stabilize the pmdval in a register or 659 * on the stack so that it will stop changing under the code. 660 */ 661 pmdval = READ_ONCE(*pmd); 662 if (pmd_none(pmdval)) 663 return no_page_table(vma, flags); 664 if (!pmd_present(pmdval)) 665 return no_page_table(vma, flags); 666 if (pmd_devmap(pmdval)) { 667 ptl = pmd_lock(mm, pmd); 668 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 669 spin_unlock(ptl); 670 if (page) 671 return page; 672 } 673 if (likely(!pmd_trans_huge(pmdval))) 674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 675 676 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 677 return no_page_table(vma, flags); 678 679 ptl = pmd_lock(mm, pmd); 680 if (unlikely(!pmd_present(*pmd))) { 681 spin_unlock(ptl); 682 return no_page_table(vma, flags); 683 } 684 if (unlikely(!pmd_trans_huge(*pmd))) { 685 spin_unlock(ptl); 686 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 687 } 688 if (flags & FOLL_SPLIT_PMD) { 689 int ret; 690 page = pmd_page(*pmd); 691 if (is_huge_zero_page(page)) { 692 spin_unlock(ptl); 693 ret = 0; 694 split_huge_pmd(vma, pmd, address); 695 if (pmd_trans_unstable(pmd)) 696 ret = -EBUSY; 697 } else { 698 spin_unlock(ptl); 699 split_huge_pmd(vma, pmd, address); 700 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 701 } 702 703 return ret ? ERR_PTR(ret) : 704 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 705 } 706 page = follow_trans_huge_pmd(vma, address, pmd, flags); 707 spin_unlock(ptl); 708 ctx->page_mask = HPAGE_PMD_NR - 1; 709 return page; 710 } 711 712 static struct page *follow_pud_mask(struct vm_area_struct *vma, 713 unsigned long address, p4d_t *p4dp, 714 unsigned int flags, 715 struct follow_page_context *ctx) 716 { 717 pud_t *pud; 718 spinlock_t *ptl; 719 struct page *page; 720 struct mm_struct *mm = vma->vm_mm; 721 722 pud = pud_offset(p4dp, address); 723 if (pud_none(*pud)) 724 return no_page_table(vma, flags); 725 if (pud_devmap(*pud)) { 726 ptl = pud_lock(mm, pud); 727 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 728 spin_unlock(ptl); 729 if (page) 730 return page; 731 } 732 if (unlikely(pud_bad(*pud))) 733 return no_page_table(vma, flags); 734 735 return follow_pmd_mask(vma, address, pud, flags, ctx); 736 } 737 738 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 739 unsigned long address, pgd_t *pgdp, 740 unsigned int flags, 741 struct follow_page_context *ctx) 742 { 743 p4d_t *p4d; 744 745 p4d = p4d_offset(pgdp, address); 746 if (p4d_none(*p4d)) 747 return no_page_table(vma, flags); 748 BUILD_BUG_ON(p4d_huge(*p4d)); 749 if (unlikely(p4d_bad(*p4d))) 750 return no_page_table(vma, flags); 751 752 return follow_pud_mask(vma, address, p4d, flags, ctx); 753 } 754 755 /** 756 * follow_page_mask - look up a page descriptor from a user-virtual address 757 * @vma: vm_area_struct mapping @address 758 * @address: virtual address to look up 759 * @flags: flags modifying lookup behaviour 760 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 761 * pointer to output page_mask 762 * 763 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 764 * 765 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 766 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 767 * 768 * When getting an anonymous page and the caller has to trigger unsharing 769 * of a shared anonymous page first, -EMLINK is returned. The caller should 770 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 771 * relevant with FOLL_PIN and !FOLL_WRITE. 772 * 773 * On output, the @ctx->page_mask is set according to the size of the page. 774 * 775 * Return: the mapped (struct page *), %NULL if no mapping exists, or 776 * an error pointer if there is a mapping to something not represented 777 * by a page descriptor (see also vm_normal_page()). 778 */ 779 static struct page *follow_page_mask(struct vm_area_struct *vma, 780 unsigned long address, unsigned int flags, 781 struct follow_page_context *ctx) 782 { 783 pgd_t *pgd; 784 struct page *page; 785 struct mm_struct *mm = vma->vm_mm; 786 787 ctx->page_mask = 0; 788 789 /* 790 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 791 * special hugetlb page table walking code. This eliminates the 792 * need to check for hugetlb entries in the general walking code. 793 * 794 * hugetlb_follow_page_mask is only for follow_page() handling here. 795 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 796 */ 797 if (is_vm_hugetlb_page(vma)) { 798 page = hugetlb_follow_page_mask(vma, address, flags); 799 if (!page) 800 page = no_page_table(vma, flags); 801 return page; 802 } 803 804 pgd = pgd_offset(mm, address); 805 806 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 807 return no_page_table(vma, flags); 808 809 return follow_p4d_mask(vma, address, pgd, flags, ctx); 810 } 811 812 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 813 unsigned int foll_flags) 814 { 815 struct follow_page_context ctx = { NULL }; 816 struct page *page; 817 818 if (vma_is_secretmem(vma)) 819 return NULL; 820 821 if (foll_flags & FOLL_PIN) 822 return NULL; 823 824 page = follow_page_mask(vma, address, foll_flags, &ctx); 825 if (ctx.pgmap) 826 put_dev_pagemap(ctx.pgmap); 827 return page; 828 } 829 830 static int get_gate_page(struct mm_struct *mm, unsigned long address, 831 unsigned int gup_flags, struct vm_area_struct **vma, 832 struct page **page) 833 { 834 pgd_t *pgd; 835 p4d_t *p4d; 836 pud_t *pud; 837 pmd_t *pmd; 838 pte_t *pte; 839 int ret = -EFAULT; 840 841 /* user gate pages are read-only */ 842 if (gup_flags & FOLL_WRITE) 843 return -EFAULT; 844 if (address > TASK_SIZE) 845 pgd = pgd_offset_k(address); 846 else 847 pgd = pgd_offset_gate(mm, address); 848 if (pgd_none(*pgd)) 849 return -EFAULT; 850 p4d = p4d_offset(pgd, address); 851 if (p4d_none(*p4d)) 852 return -EFAULT; 853 pud = pud_offset(p4d, address); 854 if (pud_none(*pud)) 855 return -EFAULT; 856 pmd = pmd_offset(pud, address); 857 if (!pmd_present(*pmd)) 858 return -EFAULT; 859 VM_BUG_ON(pmd_trans_huge(*pmd)); 860 pte = pte_offset_map(pmd, address); 861 if (pte_none(*pte)) 862 goto unmap; 863 *vma = get_gate_vma(mm); 864 if (!page) 865 goto out; 866 *page = vm_normal_page(*vma, address, *pte); 867 if (!*page) { 868 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 869 goto unmap; 870 *page = pte_page(*pte); 871 } 872 ret = try_grab_page(*page, gup_flags); 873 if (unlikely(ret)) 874 goto unmap; 875 out: 876 ret = 0; 877 unmap: 878 pte_unmap(pte); 879 return ret; 880 } 881 882 /* 883 * mmap_lock must be held on entry. If @locked != NULL and *@flags 884 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 885 * is, *@locked will be set to 0 and -EBUSY returned. 886 */ 887 static int faultin_page(struct vm_area_struct *vma, 888 unsigned long address, unsigned int *flags, bool unshare, 889 int *locked) 890 { 891 unsigned int fault_flags = 0; 892 vm_fault_t ret; 893 894 if (*flags & FOLL_NOFAULT) 895 return -EFAULT; 896 if (*flags & FOLL_WRITE) 897 fault_flags |= FAULT_FLAG_WRITE; 898 if (*flags & FOLL_REMOTE) 899 fault_flags |= FAULT_FLAG_REMOTE; 900 if (locked) 901 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 902 if (*flags & FOLL_NOWAIT) 903 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 904 if (*flags & FOLL_TRIED) { 905 /* 906 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 907 * can co-exist 908 */ 909 fault_flags |= FAULT_FLAG_TRIED; 910 } 911 if (unshare) { 912 fault_flags |= FAULT_FLAG_UNSHARE; 913 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 914 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 915 } 916 917 ret = handle_mm_fault(vma, address, fault_flags, NULL); 918 919 if (ret & VM_FAULT_COMPLETED) { 920 /* 921 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 922 * mmap lock in the page fault handler. Sanity check this. 923 */ 924 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 925 if (locked) 926 *locked = 0; 927 /* 928 * We should do the same as VM_FAULT_RETRY, but let's not 929 * return -EBUSY since that's not reflecting the reality of 930 * what has happened - we've just fully completed a page 931 * fault, with the mmap lock released. Use -EAGAIN to show 932 * that we want to take the mmap lock _again_. 933 */ 934 return -EAGAIN; 935 } 936 937 if (ret & VM_FAULT_ERROR) { 938 int err = vm_fault_to_errno(ret, *flags); 939 940 if (err) 941 return err; 942 BUG(); 943 } 944 945 if (ret & VM_FAULT_RETRY) { 946 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 947 *locked = 0; 948 return -EBUSY; 949 } 950 951 return 0; 952 } 953 954 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 955 { 956 vm_flags_t vm_flags = vma->vm_flags; 957 int write = (gup_flags & FOLL_WRITE); 958 int foreign = (gup_flags & FOLL_REMOTE); 959 960 if (vm_flags & (VM_IO | VM_PFNMAP)) 961 return -EFAULT; 962 963 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 964 return -EFAULT; 965 966 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 967 return -EOPNOTSUPP; 968 969 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA)) 970 return -EOPNOTSUPP; 971 972 if (vma_is_secretmem(vma)) 973 return -EFAULT; 974 975 if (write) { 976 if (!(vm_flags & VM_WRITE)) { 977 if (!(gup_flags & FOLL_FORCE)) 978 return -EFAULT; 979 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 980 if (is_vm_hugetlb_page(vma)) 981 return -EFAULT; 982 /* 983 * We used to let the write,force case do COW in a 984 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 985 * set a breakpoint in a read-only mapping of an 986 * executable, without corrupting the file (yet only 987 * when that file had been opened for writing!). 988 * Anon pages in shared mappings are surprising: now 989 * just reject it. 990 */ 991 if (!is_cow_mapping(vm_flags)) 992 return -EFAULT; 993 } 994 } else if (!(vm_flags & VM_READ)) { 995 if (!(gup_flags & FOLL_FORCE)) 996 return -EFAULT; 997 /* 998 * Is there actually any vma we can reach here which does not 999 * have VM_MAYREAD set? 1000 */ 1001 if (!(vm_flags & VM_MAYREAD)) 1002 return -EFAULT; 1003 } 1004 /* 1005 * gups are always data accesses, not instruction 1006 * fetches, so execute=false here 1007 */ 1008 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1009 return -EFAULT; 1010 return 0; 1011 } 1012 1013 /** 1014 * __get_user_pages() - pin user pages in memory 1015 * @mm: mm_struct of target mm 1016 * @start: starting user address 1017 * @nr_pages: number of pages from start to pin 1018 * @gup_flags: flags modifying pin behaviour 1019 * @pages: array that receives pointers to the pages pinned. 1020 * Should be at least nr_pages long. Or NULL, if caller 1021 * only intends to ensure the pages are faulted in. 1022 * @vmas: array of pointers to vmas corresponding to each page. 1023 * Or NULL if the caller does not require them. 1024 * @locked: whether we're still with the mmap_lock held 1025 * 1026 * Returns either number of pages pinned (which may be less than the 1027 * number requested), or an error. Details about the return value: 1028 * 1029 * -- If nr_pages is 0, returns 0. 1030 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1031 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1032 * pages pinned. Again, this may be less than nr_pages. 1033 * -- 0 return value is possible when the fault would need to be retried. 1034 * 1035 * The caller is responsible for releasing returned @pages, via put_page(). 1036 * 1037 * @vmas are valid only as long as mmap_lock is held. 1038 * 1039 * Must be called with mmap_lock held. It may be released. See below. 1040 * 1041 * __get_user_pages walks a process's page tables and takes a reference to 1042 * each struct page that each user address corresponds to at a given 1043 * instant. That is, it takes the page that would be accessed if a user 1044 * thread accesses the given user virtual address at that instant. 1045 * 1046 * This does not guarantee that the page exists in the user mappings when 1047 * __get_user_pages returns, and there may even be a completely different 1048 * page there in some cases (eg. if mmapped pagecache has been invalidated 1049 * and subsequently re faulted). However it does guarantee that the page 1050 * won't be freed completely. And mostly callers simply care that the page 1051 * contains data that was valid *at some point in time*. Typically, an IO 1052 * or similar operation cannot guarantee anything stronger anyway because 1053 * locks can't be held over the syscall boundary. 1054 * 1055 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1056 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1057 * appropriate) must be called after the page is finished with, and 1058 * before put_page is called. 1059 * 1060 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1061 * released by an up_read(). That can happen if @gup_flags does not 1062 * have FOLL_NOWAIT. 1063 * 1064 * A caller using such a combination of @locked and @gup_flags 1065 * must therefore hold the mmap_lock for reading only, and recognize 1066 * when it's been released. Otherwise, it must be held for either 1067 * reading or writing and will not be released. 1068 * 1069 * In most cases, get_user_pages or get_user_pages_fast should be used 1070 * instead of __get_user_pages. __get_user_pages should be used only if 1071 * you need some special @gup_flags. 1072 */ 1073 static long __get_user_pages(struct mm_struct *mm, 1074 unsigned long start, unsigned long nr_pages, 1075 unsigned int gup_flags, struct page **pages, 1076 struct vm_area_struct **vmas, int *locked) 1077 { 1078 long ret = 0, i = 0; 1079 struct vm_area_struct *vma = NULL; 1080 struct follow_page_context ctx = { NULL }; 1081 1082 if (!nr_pages) 1083 return 0; 1084 1085 start = untagged_addr(start); 1086 1087 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1088 1089 do { 1090 struct page *page; 1091 unsigned int foll_flags = gup_flags; 1092 unsigned int page_increm; 1093 1094 /* first iteration or cross vma bound */ 1095 if (!vma || start >= vma->vm_end) { 1096 vma = find_extend_vma(mm, start); 1097 if (!vma && in_gate_area(mm, start)) { 1098 ret = get_gate_page(mm, start & PAGE_MASK, 1099 gup_flags, &vma, 1100 pages ? &pages[i] : NULL); 1101 if (ret) 1102 goto out; 1103 ctx.page_mask = 0; 1104 goto next_page; 1105 } 1106 1107 if (!vma) { 1108 ret = -EFAULT; 1109 goto out; 1110 } 1111 ret = check_vma_flags(vma, gup_flags); 1112 if (ret) 1113 goto out; 1114 1115 if (is_vm_hugetlb_page(vma)) { 1116 i = follow_hugetlb_page(mm, vma, pages, vmas, 1117 &start, &nr_pages, i, 1118 gup_flags, locked); 1119 if (locked && *locked == 0) { 1120 /* 1121 * We've got a VM_FAULT_RETRY 1122 * and we've lost mmap_lock. 1123 * We must stop here. 1124 */ 1125 BUG_ON(gup_flags & FOLL_NOWAIT); 1126 goto out; 1127 } 1128 continue; 1129 } 1130 } 1131 retry: 1132 /* 1133 * If we have a pending SIGKILL, don't keep faulting pages and 1134 * potentially allocating memory. 1135 */ 1136 if (fatal_signal_pending(current)) { 1137 ret = -EINTR; 1138 goto out; 1139 } 1140 cond_resched(); 1141 1142 page = follow_page_mask(vma, start, foll_flags, &ctx); 1143 if (!page || PTR_ERR(page) == -EMLINK) { 1144 ret = faultin_page(vma, start, &foll_flags, 1145 PTR_ERR(page) == -EMLINK, locked); 1146 switch (ret) { 1147 case 0: 1148 goto retry; 1149 case -EBUSY: 1150 case -EAGAIN: 1151 ret = 0; 1152 fallthrough; 1153 case -EFAULT: 1154 case -ENOMEM: 1155 case -EHWPOISON: 1156 goto out; 1157 } 1158 BUG(); 1159 } else if (PTR_ERR(page) == -EEXIST) { 1160 /* 1161 * Proper page table entry exists, but no corresponding 1162 * struct page. If the caller expects **pages to be 1163 * filled in, bail out now, because that can't be done 1164 * for this page. 1165 */ 1166 if (pages) { 1167 ret = PTR_ERR(page); 1168 goto out; 1169 } 1170 1171 goto next_page; 1172 } else if (IS_ERR(page)) { 1173 ret = PTR_ERR(page); 1174 goto out; 1175 } 1176 if (pages) { 1177 pages[i] = page; 1178 flush_anon_page(vma, page, start); 1179 flush_dcache_page(page); 1180 ctx.page_mask = 0; 1181 } 1182 next_page: 1183 if (vmas) { 1184 vmas[i] = vma; 1185 ctx.page_mask = 0; 1186 } 1187 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1188 if (page_increm > nr_pages) 1189 page_increm = nr_pages; 1190 i += page_increm; 1191 start += page_increm * PAGE_SIZE; 1192 nr_pages -= page_increm; 1193 } while (nr_pages); 1194 out: 1195 if (ctx.pgmap) 1196 put_dev_pagemap(ctx.pgmap); 1197 return i ? i : ret; 1198 } 1199 1200 static bool vma_permits_fault(struct vm_area_struct *vma, 1201 unsigned int fault_flags) 1202 { 1203 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1204 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1205 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1206 1207 if (!(vm_flags & vma->vm_flags)) 1208 return false; 1209 1210 /* 1211 * The architecture might have a hardware protection 1212 * mechanism other than read/write that can deny access. 1213 * 1214 * gup always represents data access, not instruction 1215 * fetches, so execute=false here: 1216 */ 1217 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1218 return false; 1219 1220 return true; 1221 } 1222 1223 /** 1224 * fixup_user_fault() - manually resolve a user page fault 1225 * @mm: mm_struct of target mm 1226 * @address: user address 1227 * @fault_flags:flags to pass down to handle_mm_fault() 1228 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1229 * does not allow retry. If NULL, the caller must guarantee 1230 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1231 * 1232 * This is meant to be called in the specific scenario where for locking reasons 1233 * we try to access user memory in atomic context (within a pagefault_disable() 1234 * section), this returns -EFAULT, and we want to resolve the user fault before 1235 * trying again. 1236 * 1237 * Typically this is meant to be used by the futex code. 1238 * 1239 * The main difference with get_user_pages() is that this function will 1240 * unconditionally call handle_mm_fault() which will in turn perform all the 1241 * necessary SW fixup of the dirty and young bits in the PTE, while 1242 * get_user_pages() only guarantees to update these in the struct page. 1243 * 1244 * This is important for some architectures where those bits also gate the 1245 * access permission to the page because they are maintained in software. On 1246 * such architectures, gup() will not be enough to make a subsequent access 1247 * succeed. 1248 * 1249 * This function will not return with an unlocked mmap_lock. So it has not the 1250 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1251 */ 1252 int fixup_user_fault(struct mm_struct *mm, 1253 unsigned long address, unsigned int fault_flags, 1254 bool *unlocked) 1255 { 1256 struct vm_area_struct *vma; 1257 vm_fault_t ret; 1258 1259 address = untagged_addr(address); 1260 1261 if (unlocked) 1262 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1263 1264 retry: 1265 vma = find_extend_vma(mm, address); 1266 if (!vma || address < vma->vm_start) 1267 return -EFAULT; 1268 1269 if (!vma_permits_fault(vma, fault_flags)) 1270 return -EFAULT; 1271 1272 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1273 fatal_signal_pending(current)) 1274 return -EINTR; 1275 1276 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1277 1278 if (ret & VM_FAULT_COMPLETED) { 1279 /* 1280 * NOTE: it's a pity that we need to retake the lock here 1281 * to pair with the unlock() in the callers. Ideally we 1282 * could tell the callers so they do not need to unlock. 1283 */ 1284 mmap_read_lock(mm); 1285 *unlocked = true; 1286 return 0; 1287 } 1288 1289 if (ret & VM_FAULT_ERROR) { 1290 int err = vm_fault_to_errno(ret, 0); 1291 1292 if (err) 1293 return err; 1294 BUG(); 1295 } 1296 1297 if (ret & VM_FAULT_RETRY) { 1298 mmap_read_lock(mm); 1299 *unlocked = true; 1300 fault_flags |= FAULT_FLAG_TRIED; 1301 goto retry; 1302 } 1303 1304 return 0; 1305 } 1306 EXPORT_SYMBOL_GPL(fixup_user_fault); 1307 1308 /* 1309 * Please note that this function, unlike __get_user_pages will not 1310 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1311 */ 1312 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1313 unsigned long start, 1314 unsigned long nr_pages, 1315 struct page **pages, 1316 struct vm_area_struct **vmas, 1317 int *locked, 1318 unsigned int flags) 1319 { 1320 long ret, pages_done; 1321 bool lock_dropped; 1322 1323 if (locked) { 1324 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1325 BUG_ON(vmas); 1326 /* check caller initialized locked */ 1327 BUG_ON(*locked != 1); 1328 } 1329 1330 if (flags & FOLL_PIN) 1331 mm_set_has_pinned_flag(&mm->flags); 1332 1333 /* 1334 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1335 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1336 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1337 * for FOLL_GET, not for the newer FOLL_PIN. 1338 * 1339 * FOLL_PIN always expects pages to be non-null, but no need to assert 1340 * that here, as any failures will be obvious enough. 1341 */ 1342 if (pages && !(flags & FOLL_PIN)) 1343 flags |= FOLL_GET; 1344 1345 pages_done = 0; 1346 lock_dropped = false; 1347 for (;;) { 1348 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1349 vmas, locked); 1350 if (!locked) 1351 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1352 return ret; 1353 1354 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1355 if (!*locked) { 1356 BUG_ON(ret < 0); 1357 BUG_ON(ret >= nr_pages); 1358 } 1359 1360 if (ret > 0) { 1361 nr_pages -= ret; 1362 pages_done += ret; 1363 if (!nr_pages) 1364 break; 1365 } 1366 if (*locked) { 1367 /* 1368 * VM_FAULT_RETRY didn't trigger or it was a 1369 * FOLL_NOWAIT. 1370 */ 1371 if (!pages_done) 1372 pages_done = ret; 1373 break; 1374 } 1375 /* 1376 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1377 * For the prefault case (!pages) we only update counts. 1378 */ 1379 if (likely(pages)) 1380 pages += ret; 1381 start += ret << PAGE_SHIFT; 1382 lock_dropped = true; 1383 1384 retry: 1385 /* 1386 * Repeat on the address that fired VM_FAULT_RETRY 1387 * with both FAULT_FLAG_ALLOW_RETRY and 1388 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1389 * by fatal signals, so we need to check it before we 1390 * start trying again otherwise it can loop forever. 1391 */ 1392 1393 if (fatal_signal_pending(current)) { 1394 if (!pages_done) 1395 pages_done = -EINTR; 1396 break; 1397 } 1398 1399 ret = mmap_read_lock_killable(mm); 1400 if (ret) { 1401 BUG_ON(ret > 0); 1402 if (!pages_done) 1403 pages_done = ret; 1404 break; 1405 } 1406 1407 *locked = 1; 1408 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1409 pages, NULL, locked); 1410 if (!*locked) { 1411 /* Continue to retry until we succeeded */ 1412 BUG_ON(ret != 0); 1413 goto retry; 1414 } 1415 if (ret != 1) { 1416 BUG_ON(ret > 1); 1417 if (!pages_done) 1418 pages_done = ret; 1419 break; 1420 } 1421 nr_pages--; 1422 pages_done++; 1423 if (!nr_pages) 1424 break; 1425 if (likely(pages)) 1426 pages++; 1427 start += PAGE_SIZE; 1428 } 1429 if (lock_dropped && *locked) { 1430 /* 1431 * We must let the caller know we temporarily dropped the lock 1432 * and so the critical section protected by it was lost. 1433 */ 1434 mmap_read_unlock(mm); 1435 *locked = 0; 1436 } 1437 return pages_done; 1438 } 1439 1440 /** 1441 * populate_vma_page_range() - populate a range of pages in the vma. 1442 * @vma: target vma 1443 * @start: start address 1444 * @end: end address 1445 * @locked: whether the mmap_lock is still held 1446 * 1447 * This takes care of mlocking the pages too if VM_LOCKED is set. 1448 * 1449 * Return either number of pages pinned in the vma, or a negative error 1450 * code on error. 1451 * 1452 * vma->vm_mm->mmap_lock must be held. 1453 * 1454 * If @locked is NULL, it may be held for read or write and will 1455 * be unperturbed. 1456 * 1457 * If @locked is non-NULL, it must held for read only and may be 1458 * released. If it's released, *@locked will be set to 0. 1459 */ 1460 long populate_vma_page_range(struct vm_area_struct *vma, 1461 unsigned long start, unsigned long end, int *locked) 1462 { 1463 struct mm_struct *mm = vma->vm_mm; 1464 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1465 int gup_flags; 1466 long ret; 1467 1468 VM_BUG_ON(!PAGE_ALIGNED(start)); 1469 VM_BUG_ON(!PAGE_ALIGNED(end)); 1470 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1471 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1472 mmap_assert_locked(mm); 1473 1474 /* 1475 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1476 * faultin_page() to break COW, so it has no work to do here. 1477 */ 1478 if (vma->vm_flags & VM_LOCKONFAULT) 1479 return nr_pages; 1480 1481 gup_flags = FOLL_TOUCH; 1482 /* 1483 * We want to touch writable mappings with a write fault in order 1484 * to break COW, except for shared mappings because these don't COW 1485 * and we would not want to dirty them for nothing. 1486 */ 1487 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1488 gup_flags |= FOLL_WRITE; 1489 1490 /* 1491 * We want mlock to succeed for regions that have any permissions 1492 * other than PROT_NONE. 1493 */ 1494 if (vma_is_accessible(vma)) 1495 gup_flags |= FOLL_FORCE; 1496 1497 /* 1498 * We made sure addr is within a VMA, so the following will 1499 * not result in a stack expansion that recurses back here. 1500 */ 1501 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1502 NULL, NULL, locked); 1503 lru_add_drain(); 1504 return ret; 1505 } 1506 1507 /* 1508 * faultin_vma_page_range() - populate (prefault) page tables inside the 1509 * given VMA range readable/writable 1510 * 1511 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1512 * 1513 * @vma: target vma 1514 * @start: start address 1515 * @end: end address 1516 * @write: whether to prefault readable or writable 1517 * @locked: whether the mmap_lock is still held 1518 * 1519 * Returns either number of processed pages in the vma, or a negative error 1520 * code on error (see __get_user_pages()). 1521 * 1522 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1523 * covered by the VMA. 1524 * 1525 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1526 * 1527 * If @locked is non-NULL, it must held for read only and may be released. If 1528 * it's released, *@locked will be set to 0. 1529 */ 1530 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1531 unsigned long end, bool write, int *locked) 1532 { 1533 struct mm_struct *mm = vma->vm_mm; 1534 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1535 int gup_flags; 1536 long ret; 1537 1538 VM_BUG_ON(!PAGE_ALIGNED(start)); 1539 VM_BUG_ON(!PAGE_ALIGNED(end)); 1540 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1541 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1542 mmap_assert_locked(mm); 1543 1544 /* 1545 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1546 * the page dirty with FOLL_WRITE -- which doesn't make a 1547 * difference with !FOLL_FORCE, because the page is writable 1548 * in the page table. 1549 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1550 * a poisoned page. 1551 * !FOLL_FORCE: Require proper access permissions. 1552 */ 1553 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1554 if (write) 1555 gup_flags |= FOLL_WRITE; 1556 1557 /* 1558 * We want to report -EINVAL instead of -EFAULT for any permission 1559 * problems or incompatible mappings. 1560 */ 1561 if (check_vma_flags(vma, gup_flags)) 1562 return -EINVAL; 1563 1564 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1565 NULL, NULL, locked); 1566 lru_add_drain(); 1567 return ret; 1568 } 1569 1570 /* 1571 * __mm_populate - populate and/or mlock pages within a range of address space. 1572 * 1573 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1574 * flags. VMAs must be already marked with the desired vm_flags, and 1575 * mmap_lock must not be held. 1576 */ 1577 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1578 { 1579 struct mm_struct *mm = current->mm; 1580 unsigned long end, nstart, nend; 1581 struct vm_area_struct *vma = NULL; 1582 int locked = 0; 1583 long ret = 0; 1584 1585 end = start + len; 1586 1587 for (nstart = start; nstart < end; nstart = nend) { 1588 /* 1589 * We want to fault in pages for [nstart; end) address range. 1590 * Find first corresponding VMA. 1591 */ 1592 if (!locked) { 1593 locked = 1; 1594 mmap_read_lock(mm); 1595 vma = find_vma_intersection(mm, nstart, end); 1596 } else if (nstart >= vma->vm_end) 1597 vma = find_vma_intersection(mm, vma->vm_end, end); 1598 1599 if (!vma) 1600 break; 1601 /* 1602 * Set [nstart; nend) to intersection of desired address 1603 * range with the first VMA. Also, skip undesirable VMA types. 1604 */ 1605 nend = min(end, vma->vm_end); 1606 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1607 continue; 1608 if (nstart < vma->vm_start) 1609 nstart = vma->vm_start; 1610 /* 1611 * Now fault in a range of pages. populate_vma_page_range() 1612 * double checks the vma flags, so that it won't mlock pages 1613 * if the vma was already munlocked. 1614 */ 1615 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1616 if (ret < 0) { 1617 if (ignore_errors) { 1618 ret = 0; 1619 continue; /* continue at next VMA */ 1620 } 1621 break; 1622 } 1623 nend = nstart + ret * PAGE_SIZE; 1624 ret = 0; 1625 } 1626 if (locked) 1627 mmap_read_unlock(mm); 1628 return ret; /* 0 or negative error code */ 1629 } 1630 #else /* CONFIG_MMU */ 1631 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1632 unsigned long nr_pages, struct page **pages, 1633 struct vm_area_struct **vmas, int *locked, 1634 unsigned int foll_flags) 1635 { 1636 struct vm_area_struct *vma; 1637 unsigned long vm_flags; 1638 long i; 1639 1640 /* calculate required read or write permissions. 1641 * If FOLL_FORCE is set, we only require the "MAY" flags. 1642 */ 1643 vm_flags = (foll_flags & FOLL_WRITE) ? 1644 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1645 vm_flags &= (foll_flags & FOLL_FORCE) ? 1646 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1647 1648 for (i = 0; i < nr_pages; i++) { 1649 vma = find_vma(mm, start); 1650 if (!vma) 1651 goto finish_or_fault; 1652 1653 /* protect what we can, including chardevs */ 1654 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1655 !(vm_flags & vma->vm_flags)) 1656 goto finish_or_fault; 1657 1658 if (pages) { 1659 pages[i] = virt_to_page((void *)start); 1660 if (pages[i]) 1661 get_page(pages[i]); 1662 } 1663 if (vmas) 1664 vmas[i] = vma; 1665 start = (start + PAGE_SIZE) & PAGE_MASK; 1666 } 1667 1668 return i; 1669 1670 finish_or_fault: 1671 return i ? : -EFAULT; 1672 } 1673 #endif /* !CONFIG_MMU */ 1674 1675 /** 1676 * fault_in_writeable - fault in userspace address range for writing 1677 * @uaddr: start of address range 1678 * @size: size of address range 1679 * 1680 * Returns the number of bytes not faulted in (like copy_to_user() and 1681 * copy_from_user()). 1682 */ 1683 size_t fault_in_writeable(char __user *uaddr, size_t size) 1684 { 1685 char __user *start = uaddr, *end; 1686 1687 if (unlikely(size == 0)) 1688 return 0; 1689 if (!user_write_access_begin(uaddr, size)) 1690 return size; 1691 if (!PAGE_ALIGNED(uaddr)) { 1692 unsafe_put_user(0, uaddr, out); 1693 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1694 } 1695 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1696 if (unlikely(end < start)) 1697 end = NULL; 1698 while (uaddr != end) { 1699 unsafe_put_user(0, uaddr, out); 1700 uaddr += PAGE_SIZE; 1701 } 1702 1703 out: 1704 user_write_access_end(); 1705 if (size > uaddr - start) 1706 return size - (uaddr - start); 1707 return 0; 1708 } 1709 EXPORT_SYMBOL(fault_in_writeable); 1710 1711 /** 1712 * fault_in_subpage_writeable - fault in an address range for writing 1713 * @uaddr: start of address range 1714 * @size: size of address range 1715 * 1716 * Fault in a user address range for writing while checking for permissions at 1717 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1718 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1719 * 1720 * Returns the number of bytes not faulted in (like copy_to_user() and 1721 * copy_from_user()). 1722 */ 1723 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1724 { 1725 size_t faulted_in; 1726 1727 /* 1728 * Attempt faulting in at page granularity first for page table 1729 * permission checking. The arch-specific probe_subpage_writeable() 1730 * functions may not check for this. 1731 */ 1732 faulted_in = size - fault_in_writeable(uaddr, size); 1733 if (faulted_in) 1734 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1735 1736 return size - faulted_in; 1737 } 1738 EXPORT_SYMBOL(fault_in_subpage_writeable); 1739 1740 /* 1741 * fault_in_safe_writeable - fault in an address range for writing 1742 * @uaddr: start of address range 1743 * @size: length of address range 1744 * 1745 * Faults in an address range for writing. This is primarily useful when we 1746 * already know that some or all of the pages in the address range aren't in 1747 * memory. 1748 * 1749 * Unlike fault_in_writeable(), this function is non-destructive. 1750 * 1751 * Note that we don't pin or otherwise hold the pages referenced that we fault 1752 * in. There's no guarantee that they'll stay in memory for any duration of 1753 * time. 1754 * 1755 * Returns the number of bytes not faulted in, like copy_to_user() and 1756 * copy_from_user(). 1757 */ 1758 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1759 { 1760 unsigned long start = (unsigned long)uaddr, end; 1761 struct mm_struct *mm = current->mm; 1762 bool unlocked = false; 1763 1764 if (unlikely(size == 0)) 1765 return 0; 1766 end = PAGE_ALIGN(start + size); 1767 if (end < start) 1768 end = 0; 1769 1770 mmap_read_lock(mm); 1771 do { 1772 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1773 break; 1774 start = (start + PAGE_SIZE) & PAGE_MASK; 1775 } while (start != end); 1776 mmap_read_unlock(mm); 1777 1778 if (size > (unsigned long)uaddr - start) 1779 return size - ((unsigned long)uaddr - start); 1780 return 0; 1781 } 1782 EXPORT_SYMBOL(fault_in_safe_writeable); 1783 1784 /** 1785 * fault_in_readable - fault in userspace address range for reading 1786 * @uaddr: start of user address range 1787 * @size: size of user address range 1788 * 1789 * Returns the number of bytes not faulted in (like copy_to_user() and 1790 * copy_from_user()). 1791 */ 1792 size_t fault_in_readable(const char __user *uaddr, size_t size) 1793 { 1794 const char __user *start = uaddr, *end; 1795 volatile char c; 1796 1797 if (unlikely(size == 0)) 1798 return 0; 1799 if (!user_read_access_begin(uaddr, size)) 1800 return size; 1801 if (!PAGE_ALIGNED(uaddr)) { 1802 unsafe_get_user(c, uaddr, out); 1803 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1804 } 1805 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1806 if (unlikely(end < start)) 1807 end = NULL; 1808 while (uaddr != end) { 1809 unsafe_get_user(c, uaddr, out); 1810 uaddr += PAGE_SIZE; 1811 } 1812 1813 out: 1814 user_read_access_end(); 1815 (void)c; 1816 if (size > uaddr - start) 1817 return size - (uaddr - start); 1818 return 0; 1819 } 1820 EXPORT_SYMBOL(fault_in_readable); 1821 1822 /** 1823 * get_dump_page() - pin user page in memory while writing it to core dump 1824 * @addr: user address 1825 * 1826 * Returns struct page pointer of user page pinned for dump, 1827 * to be freed afterwards by put_page(). 1828 * 1829 * Returns NULL on any kind of failure - a hole must then be inserted into 1830 * the corefile, to preserve alignment with its headers; and also returns 1831 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1832 * allowing a hole to be left in the corefile to save disk space. 1833 * 1834 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1835 */ 1836 #ifdef CONFIG_ELF_CORE 1837 struct page *get_dump_page(unsigned long addr) 1838 { 1839 struct mm_struct *mm = current->mm; 1840 struct page *page; 1841 int locked = 1; 1842 int ret; 1843 1844 if (mmap_read_lock_killable(mm)) 1845 return NULL; 1846 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1847 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1848 if (locked) 1849 mmap_read_unlock(mm); 1850 return (ret == 1) ? page : NULL; 1851 } 1852 #endif /* CONFIG_ELF_CORE */ 1853 1854 #ifdef CONFIG_MIGRATION 1855 /* 1856 * Returns the number of collected pages. Return value is always >= 0. 1857 */ 1858 static unsigned long collect_longterm_unpinnable_pages( 1859 struct list_head *movable_page_list, 1860 unsigned long nr_pages, 1861 struct page **pages) 1862 { 1863 unsigned long i, collected = 0; 1864 struct folio *prev_folio = NULL; 1865 bool drain_allow = true; 1866 1867 for (i = 0; i < nr_pages; i++) { 1868 struct folio *folio = page_folio(pages[i]); 1869 1870 if (folio == prev_folio) 1871 continue; 1872 prev_folio = folio; 1873 1874 if (folio_is_longterm_pinnable(folio)) 1875 continue; 1876 1877 collected++; 1878 1879 if (folio_is_device_coherent(folio)) 1880 continue; 1881 1882 if (folio_test_hugetlb(folio)) { 1883 isolate_hugetlb(&folio->page, movable_page_list); 1884 continue; 1885 } 1886 1887 if (!folio_test_lru(folio) && drain_allow) { 1888 lru_add_drain_all(); 1889 drain_allow = false; 1890 } 1891 1892 if (!folio_isolate_lru(folio)) 1893 continue; 1894 1895 list_add_tail(&folio->lru, movable_page_list); 1896 node_stat_mod_folio(folio, 1897 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1898 folio_nr_pages(folio)); 1899 } 1900 1901 return collected; 1902 } 1903 1904 /* 1905 * Unpins all pages and migrates device coherent pages and movable_page_list. 1906 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1907 * (or partial success). 1908 */ 1909 static int migrate_longterm_unpinnable_pages( 1910 struct list_head *movable_page_list, 1911 unsigned long nr_pages, 1912 struct page **pages) 1913 { 1914 int ret; 1915 unsigned long i; 1916 1917 for (i = 0; i < nr_pages; i++) { 1918 struct folio *folio = page_folio(pages[i]); 1919 1920 if (folio_is_device_coherent(folio)) { 1921 /* 1922 * Migration will fail if the page is pinned, so convert 1923 * the pin on the source page to a normal reference. 1924 */ 1925 pages[i] = NULL; 1926 folio_get(folio); 1927 gup_put_folio(folio, 1, FOLL_PIN); 1928 1929 if (migrate_device_coherent_page(&folio->page)) { 1930 ret = -EBUSY; 1931 goto err; 1932 } 1933 1934 continue; 1935 } 1936 1937 /* 1938 * We can't migrate pages with unexpected references, so drop 1939 * the reference obtained by __get_user_pages_locked(). 1940 * Migrating pages have been added to movable_page_list after 1941 * calling folio_isolate_lru() which takes a reference so the 1942 * page won't be freed if it's migrating. 1943 */ 1944 unpin_user_page(pages[i]); 1945 pages[i] = NULL; 1946 } 1947 1948 if (!list_empty(movable_page_list)) { 1949 struct migration_target_control mtc = { 1950 .nid = NUMA_NO_NODE, 1951 .gfp_mask = GFP_USER | __GFP_NOWARN, 1952 }; 1953 1954 if (migrate_pages(movable_page_list, alloc_migration_target, 1955 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1956 MR_LONGTERM_PIN, NULL)) { 1957 ret = -ENOMEM; 1958 goto err; 1959 } 1960 } 1961 1962 putback_movable_pages(movable_page_list); 1963 1964 return -EAGAIN; 1965 1966 err: 1967 for (i = 0; i < nr_pages; i++) 1968 if (pages[i]) 1969 unpin_user_page(pages[i]); 1970 putback_movable_pages(movable_page_list); 1971 1972 return ret; 1973 } 1974 1975 /* 1976 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 1977 * pages in the range are required to be pinned via FOLL_PIN, before calling 1978 * this routine. 1979 * 1980 * If any pages in the range are not allowed to be pinned, then this routine 1981 * will migrate those pages away, unpin all the pages in the range and return 1982 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 1983 * call this routine again. 1984 * 1985 * If an error other than -EAGAIN occurs, this indicates a migration failure. 1986 * The caller should give up, and propagate the error back up the call stack. 1987 * 1988 * If everything is OK and all pages in the range are allowed to be pinned, then 1989 * this routine leaves all pages pinned and returns zero for success. 1990 */ 1991 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1992 struct page **pages) 1993 { 1994 unsigned long collected; 1995 LIST_HEAD(movable_page_list); 1996 1997 collected = collect_longterm_unpinnable_pages(&movable_page_list, 1998 nr_pages, pages); 1999 if (!collected) 2000 return 0; 2001 2002 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2003 pages); 2004 } 2005 #else 2006 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2007 struct page **pages) 2008 { 2009 return 0; 2010 } 2011 #endif /* CONFIG_MIGRATION */ 2012 2013 /* 2014 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2015 * allows us to process the FOLL_LONGTERM flag. 2016 */ 2017 static long __gup_longterm_locked(struct mm_struct *mm, 2018 unsigned long start, 2019 unsigned long nr_pages, 2020 struct page **pages, 2021 struct vm_area_struct **vmas, 2022 int *locked, 2023 unsigned int gup_flags) 2024 { 2025 bool must_unlock = false; 2026 unsigned int flags; 2027 long rc, nr_pinned_pages; 2028 2029 if (locked && WARN_ON_ONCE(!*locked)) 2030 return -EINVAL; 2031 2032 if (!(gup_flags & FOLL_LONGTERM)) 2033 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2034 locked, gup_flags); 2035 2036 /* 2037 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM 2038 * implies FOLL_PIN (although the reverse is not true). Therefore it is 2039 * correct to unconditionally call check_and_migrate_movable_pages() 2040 * which assumes pages have been pinned via FOLL_PIN. 2041 * 2042 * Enforce the above reasoning by asserting that FOLL_PIN is set. 2043 */ 2044 if (WARN_ON(!(gup_flags & FOLL_PIN))) 2045 return -EINVAL; 2046 flags = memalloc_pin_save(); 2047 do { 2048 if (locked && !*locked) { 2049 mmap_read_lock(mm); 2050 must_unlock = true; 2051 *locked = 1; 2052 } 2053 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2054 pages, vmas, locked, 2055 gup_flags); 2056 if (nr_pinned_pages <= 0) { 2057 rc = nr_pinned_pages; 2058 break; 2059 } 2060 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2061 } while (rc == -EAGAIN); 2062 memalloc_pin_restore(flags); 2063 2064 if (locked && *locked && must_unlock) { 2065 mmap_read_unlock(mm); 2066 *locked = 0; 2067 } 2068 return rc ? rc : nr_pinned_pages; 2069 } 2070 2071 static bool is_valid_gup_flags(unsigned int gup_flags) 2072 { 2073 /* 2074 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2075 * never directly by the caller, so enforce that with an assertion: 2076 */ 2077 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2078 return false; 2079 /* 2080 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2081 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2082 * FOLL_PIN. 2083 */ 2084 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2085 return false; 2086 2087 return true; 2088 } 2089 2090 #ifdef CONFIG_MMU 2091 /** 2092 * get_user_pages_remote() - pin user pages in memory 2093 * @mm: mm_struct of target mm 2094 * @start: starting user address 2095 * @nr_pages: number of pages from start to pin 2096 * @gup_flags: flags modifying lookup behaviour 2097 * @pages: array that receives pointers to the pages pinned. 2098 * Should be at least nr_pages long. Or NULL, if caller 2099 * only intends to ensure the pages are faulted in. 2100 * @vmas: array of pointers to vmas corresponding to each page. 2101 * Or NULL if the caller does not require them. 2102 * @locked: pointer to lock flag indicating whether lock is held and 2103 * subsequently whether VM_FAULT_RETRY functionality can be 2104 * utilised. Lock must initially be held. 2105 * 2106 * Returns either number of pages pinned (which may be less than the 2107 * number requested), or an error. Details about the return value: 2108 * 2109 * -- If nr_pages is 0, returns 0. 2110 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2111 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2112 * pages pinned. Again, this may be less than nr_pages. 2113 * 2114 * The caller is responsible for releasing returned @pages, via put_page(). 2115 * 2116 * @vmas are valid only as long as mmap_lock is held. 2117 * 2118 * Must be called with mmap_lock held for read or write. 2119 * 2120 * get_user_pages_remote walks a process's page tables and takes a reference 2121 * to each struct page that each user address corresponds to at a given 2122 * instant. That is, it takes the page that would be accessed if a user 2123 * thread accesses the given user virtual address at that instant. 2124 * 2125 * This does not guarantee that the page exists in the user mappings when 2126 * get_user_pages_remote returns, and there may even be a completely different 2127 * page there in some cases (eg. if mmapped pagecache has been invalidated 2128 * and subsequently re faulted). However it does guarantee that the page 2129 * won't be freed completely. And mostly callers simply care that the page 2130 * contains data that was valid *at some point in time*. Typically, an IO 2131 * or similar operation cannot guarantee anything stronger anyway because 2132 * locks can't be held over the syscall boundary. 2133 * 2134 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2135 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2136 * be called after the page is finished with, and before put_page is called. 2137 * 2138 * get_user_pages_remote is typically used for fewer-copy IO operations, 2139 * to get a handle on the memory by some means other than accesses 2140 * via the user virtual addresses. The pages may be submitted for 2141 * DMA to devices or accessed via their kernel linear mapping (via the 2142 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2143 * 2144 * See also get_user_pages_fast, for performance critical applications. 2145 * 2146 * get_user_pages_remote should be phased out in favor of 2147 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2148 * should use get_user_pages_remote because it cannot pass 2149 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2150 */ 2151 long get_user_pages_remote(struct mm_struct *mm, 2152 unsigned long start, unsigned long nr_pages, 2153 unsigned int gup_flags, struct page **pages, 2154 struct vm_area_struct **vmas, int *locked) 2155 { 2156 if (!is_valid_gup_flags(gup_flags)) 2157 return -EINVAL; 2158 2159 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 2160 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2161 } 2162 EXPORT_SYMBOL(get_user_pages_remote); 2163 2164 #else /* CONFIG_MMU */ 2165 long get_user_pages_remote(struct mm_struct *mm, 2166 unsigned long start, unsigned long nr_pages, 2167 unsigned int gup_flags, struct page **pages, 2168 struct vm_area_struct **vmas, int *locked) 2169 { 2170 return 0; 2171 } 2172 #endif /* !CONFIG_MMU */ 2173 2174 /** 2175 * get_user_pages() - pin user pages in memory 2176 * @start: starting user address 2177 * @nr_pages: number of pages from start to pin 2178 * @gup_flags: flags modifying lookup behaviour 2179 * @pages: array that receives pointers to the pages pinned. 2180 * Should be at least nr_pages long. Or NULL, if caller 2181 * only intends to ensure the pages are faulted in. 2182 * @vmas: array of pointers to vmas corresponding to each page. 2183 * Or NULL if the caller does not require them. 2184 * 2185 * This is the same as get_user_pages_remote(), just with a less-flexible 2186 * calling convention where we assume that the mm being operated on belongs to 2187 * the current task, and doesn't allow passing of a locked parameter. We also 2188 * obviously don't pass FOLL_REMOTE in here. 2189 */ 2190 long get_user_pages(unsigned long start, unsigned long nr_pages, 2191 unsigned int gup_flags, struct page **pages, 2192 struct vm_area_struct **vmas) 2193 { 2194 if (!is_valid_gup_flags(gup_flags)) 2195 return -EINVAL; 2196 2197 return __gup_longterm_locked(current->mm, start, nr_pages, 2198 pages, vmas, NULL, gup_flags | FOLL_TOUCH); 2199 } 2200 EXPORT_SYMBOL(get_user_pages); 2201 2202 /* 2203 * get_user_pages_unlocked() is suitable to replace the form: 2204 * 2205 * mmap_read_lock(mm); 2206 * get_user_pages(mm, ..., pages, NULL); 2207 * mmap_read_unlock(mm); 2208 * 2209 * with: 2210 * 2211 * get_user_pages_unlocked(mm, ..., pages); 2212 * 2213 * It is functionally equivalent to get_user_pages_fast so 2214 * get_user_pages_fast should be used instead if specific gup_flags 2215 * (e.g. FOLL_FORCE) are not required. 2216 */ 2217 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2218 struct page **pages, unsigned int gup_flags) 2219 { 2220 struct mm_struct *mm = current->mm; 2221 int locked = 1; 2222 long ret; 2223 2224 mmap_read_lock(mm); 2225 ret = __gup_longterm_locked(mm, start, nr_pages, pages, NULL, &locked, 2226 gup_flags | FOLL_TOUCH); 2227 if (locked) 2228 mmap_read_unlock(mm); 2229 return ret; 2230 } 2231 EXPORT_SYMBOL(get_user_pages_unlocked); 2232 2233 /* 2234 * Fast GUP 2235 * 2236 * get_user_pages_fast attempts to pin user pages by walking the page 2237 * tables directly and avoids taking locks. Thus the walker needs to be 2238 * protected from page table pages being freed from under it, and should 2239 * block any THP splits. 2240 * 2241 * One way to achieve this is to have the walker disable interrupts, and 2242 * rely on IPIs from the TLB flushing code blocking before the page table 2243 * pages are freed. This is unsuitable for architectures that do not need 2244 * to broadcast an IPI when invalidating TLBs. 2245 * 2246 * Another way to achieve this is to batch up page table containing pages 2247 * belonging to more than one mm_user, then rcu_sched a callback to free those 2248 * pages. Disabling interrupts will allow the fast_gup walker to both block 2249 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2250 * (which is a relatively rare event). The code below adopts this strategy. 2251 * 2252 * Before activating this code, please be aware that the following assumptions 2253 * are currently made: 2254 * 2255 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2256 * free pages containing page tables or TLB flushing requires IPI broadcast. 2257 * 2258 * *) ptes can be read atomically by the architecture. 2259 * 2260 * *) access_ok is sufficient to validate userspace address ranges. 2261 * 2262 * The last two assumptions can be relaxed by the addition of helper functions. 2263 * 2264 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2265 */ 2266 #ifdef CONFIG_HAVE_FAST_GUP 2267 2268 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2269 unsigned int flags, 2270 struct page **pages) 2271 { 2272 while ((*nr) - nr_start) { 2273 struct page *page = pages[--(*nr)]; 2274 2275 ClearPageReferenced(page); 2276 if (flags & FOLL_PIN) 2277 unpin_user_page(page); 2278 else 2279 put_page(page); 2280 } 2281 } 2282 2283 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2284 /* 2285 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2286 * operations. 2287 * 2288 * To pin the page, fast-gup needs to do below in order: 2289 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2290 * 2291 * For the rest of pgtable operations where pgtable updates can be racy 2292 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2293 * is pinned. 2294 * 2295 * Above will work for all pte-level operations, including THP split. 2296 * 2297 * For THP collapse, it's a bit more complicated because fast-gup may be 2298 * walking a pgtable page that is being freed (pte is still valid but pmd 2299 * can be cleared already). To avoid race in such condition, we need to 2300 * also check pmd here to make sure pmd doesn't change (corresponds to 2301 * pmdp_collapse_flush() in the THP collapse code path). 2302 */ 2303 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2304 unsigned long end, unsigned int flags, 2305 struct page **pages, int *nr) 2306 { 2307 struct dev_pagemap *pgmap = NULL; 2308 int nr_start = *nr, ret = 0; 2309 pte_t *ptep, *ptem; 2310 2311 ptem = ptep = pte_offset_map(&pmd, addr); 2312 do { 2313 pte_t pte = ptep_get_lockless(ptep); 2314 struct page *page; 2315 struct folio *folio; 2316 2317 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2318 goto pte_unmap; 2319 2320 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2321 goto pte_unmap; 2322 2323 if (pte_devmap(pte)) { 2324 if (unlikely(flags & FOLL_LONGTERM)) 2325 goto pte_unmap; 2326 2327 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2328 if (unlikely(!pgmap)) { 2329 undo_dev_pagemap(nr, nr_start, flags, pages); 2330 goto pte_unmap; 2331 } 2332 } else if (pte_special(pte)) 2333 goto pte_unmap; 2334 2335 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2336 page = pte_page(pte); 2337 2338 folio = try_grab_folio(page, 1, flags); 2339 if (!folio) 2340 goto pte_unmap; 2341 2342 if (unlikely(page_is_secretmem(page))) { 2343 gup_put_folio(folio, 1, flags); 2344 goto pte_unmap; 2345 } 2346 2347 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2348 unlikely(pte_val(pte) != pte_val(*ptep))) { 2349 gup_put_folio(folio, 1, flags); 2350 goto pte_unmap; 2351 } 2352 2353 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2354 gup_put_folio(folio, 1, flags); 2355 goto pte_unmap; 2356 } 2357 2358 /* 2359 * We need to make the page accessible if and only if we are 2360 * going to access its content (the FOLL_PIN case). Please 2361 * see Documentation/core-api/pin_user_pages.rst for 2362 * details. 2363 */ 2364 if (flags & FOLL_PIN) { 2365 ret = arch_make_page_accessible(page); 2366 if (ret) { 2367 gup_put_folio(folio, 1, flags); 2368 goto pte_unmap; 2369 } 2370 } 2371 folio_set_referenced(folio); 2372 pages[*nr] = page; 2373 (*nr)++; 2374 } while (ptep++, addr += PAGE_SIZE, addr != end); 2375 2376 ret = 1; 2377 2378 pte_unmap: 2379 if (pgmap) 2380 put_dev_pagemap(pgmap); 2381 pte_unmap(ptem); 2382 return ret; 2383 } 2384 #else 2385 2386 /* 2387 * If we can't determine whether or not a pte is special, then fail immediately 2388 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2389 * to be special. 2390 * 2391 * For a futex to be placed on a THP tail page, get_futex_key requires a 2392 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2393 * useful to have gup_huge_pmd even if we can't operate on ptes. 2394 */ 2395 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2396 unsigned long end, unsigned int flags, 2397 struct page **pages, int *nr) 2398 { 2399 return 0; 2400 } 2401 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2402 2403 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2404 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2405 unsigned long end, unsigned int flags, 2406 struct page **pages, int *nr) 2407 { 2408 int nr_start = *nr; 2409 struct dev_pagemap *pgmap = NULL; 2410 2411 do { 2412 struct page *page = pfn_to_page(pfn); 2413 2414 pgmap = get_dev_pagemap(pfn, pgmap); 2415 if (unlikely(!pgmap)) { 2416 undo_dev_pagemap(nr, nr_start, flags, pages); 2417 break; 2418 } 2419 2420 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2421 undo_dev_pagemap(nr, nr_start, flags, pages); 2422 break; 2423 } 2424 2425 SetPageReferenced(page); 2426 pages[*nr] = page; 2427 if (unlikely(try_grab_page(page, flags))) { 2428 undo_dev_pagemap(nr, nr_start, flags, pages); 2429 break; 2430 } 2431 (*nr)++; 2432 pfn++; 2433 } while (addr += PAGE_SIZE, addr != end); 2434 2435 put_dev_pagemap(pgmap); 2436 return addr == end; 2437 } 2438 2439 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2440 unsigned long end, unsigned int flags, 2441 struct page **pages, int *nr) 2442 { 2443 unsigned long fault_pfn; 2444 int nr_start = *nr; 2445 2446 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2447 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2448 return 0; 2449 2450 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2451 undo_dev_pagemap(nr, nr_start, flags, pages); 2452 return 0; 2453 } 2454 return 1; 2455 } 2456 2457 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2458 unsigned long end, unsigned int flags, 2459 struct page **pages, int *nr) 2460 { 2461 unsigned long fault_pfn; 2462 int nr_start = *nr; 2463 2464 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2465 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2466 return 0; 2467 2468 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2469 undo_dev_pagemap(nr, nr_start, flags, pages); 2470 return 0; 2471 } 2472 return 1; 2473 } 2474 #else 2475 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2476 unsigned long end, unsigned int flags, 2477 struct page **pages, int *nr) 2478 { 2479 BUILD_BUG(); 2480 return 0; 2481 } 2482 2483 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2484 unsigned long end, unsigned int flags, 2485 struct page **pages, int *nr) 2486 { 2487 BUILD_BUG(); 2488 return 0; 2489 } 2490 #endif 2491 2492 static int record_subpages(struct page *page, unsigned long addr, 2493 unsigned long end, struct page **pages) 2494 { 2495 int nr; 2496 2497 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2498 pages[nr] = nth_page(page, nr); 2499 2500 return nr; 2501 } 2502 2503 #ifdef CONFIG_ARCH_HAS_HUGEPD 2504 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2505 unsigned long sz) 2506 { 2507 unsigned long __boundary = (addr + sz) & ~(sz-1); 2508 return (__boundary - 1 < end - 1) ? __boundary : end; 2509 } 2510 2511 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2512 unsigned long end, unsigned int flags, 2513 struct page **pages, int *nr) 2514 { 2515 unsigned long pte_end; 2516 struct page *page; 2517 struct folio *folio; 2518 pte_t pte; 2519 int refs; 2520 2521 pte_end = (addr + sz) & ~(sz-1); 2522 if (pte_end < end) 2523 end = pte_end; 2524 2525 pte = huge_ptep_get(ptep); 2526 2527 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2528 return 0; 2529 2530 /* hugepages are never "special" */ 2531 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2532 2533 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2534 refs = record_subpages(page, addr, end, pages + *nr); 2535 2536 folio = try_grab_folio(page, refs, flags); 2537 if (!folio) 2538 return 0; 2539 2540 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2541 gup_put_folio(folio, refs, flags); 2542 return 0; 2543 } 2544 2545 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2546 gup_put_folio(folio, refs, flags); 2547 return 0; 2548 } 2549 2550 *nr += refs; 2551 folio_set_referenced(folio); 2552 return 1; 2553 } 2554 2555 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2556 unsigned int pdshift, unsigned long end, unsigned int flags, 2557 struct page **pages, int *nr) 2558 { 2559 pte_t *ptep; 2560 unsigned long sz = 1UL << hugepd_shift(hugepd); 2561 unsigned long next; 2562 2563 ptep = hugepte_offset(hugepd, addr, pdshift); 2564 do { 2565 next = hugepte_addr_end(addr, end, sz); 2566 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2567 return 0; 2568 } while (ptep++, addr = next, addr != end); 2569 2570 return 1; 2571 } 2572 #else 2573 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2574 unsigned int pdshift, unsigned long end, unsigned int flags, 2575 struct page **pages, int *nr) 2576 { 2577 return 0; 2578 } 2579 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2580 2581 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2582 unsigned long end, unsigned int flags, 2583 struct page **pages, int *nr) 2584 { 2585 struct page *page; 2586 struct folio *folio; 2587 int refs; 2588 2589 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2590 return 0; 2591 2592 if (pmd_devmap(orig)) { 2593 if (unlikely(flags & FOLL_LONGTERM)) 2594 return 0; 2595 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2596 pages, nr); 2597 } 2598 2599 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2600 refs = record_subpages(page, addr, end, pages + *nr); 2601 2602 folio = try_grab_folio(page, refs, flags); 2603 if (!folio) 2604 return 0; 2605 2606 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2607 gup_put_folio(folio, refs, flags); 2608 return 0; 2609 } 2610 2611 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2612 gup_put_folio(folio, refs, flags); 2613 return 0; 2614 } 2615 2616 *nr += refs; 2617 folio_set_referenced(folio); 2618 return 1; 2619 } 2620 2621 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2622 unsigned long end, unsigned int flags, 2623 struct page **pages, int *nr) 2624 { 2625 struct page *page; 2626 struct folio *folio; 2627 int refs; 2628 2629 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2630 return 0; 2631 2632 if (pud_devmap(orig)) { 2633 if (unlikely(flags & FOLL_LONGTERM)) 2634 return 0; 2635 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2636 pages, nr); 2637 } 2638 2639 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2640 refs = record_subpages(page, addr, end, pages + *nr); 2641 2642 folio = try_grab_folio(page, refs, flags); 2643 if (!folio) 2644 return 0; 2645 2646 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2647 gup_put_folio(folio, refs, flags); 2648 return 0; 2649 } 2650 2651 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2652 gup_put_folio(folio, refs, flags); 2653 return 0; 2654 } 2655 2656 *nr += refs; 2657 folio_set_referenced(folio); 2658 return 1; 2659 } 2660 2661 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2662 unsigned long end, unsigned int flags, 2663 struct page **pages, int *nr) 2664 { 2665 int refs; 2666 struct page *page; 2667 struct folio *folio; 2668 2669 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2670 return 0; 2671 2672 BUILD_BUG_ON(pgd_devmap(orig)); 2673 2674 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2675 refs = record_subpages(page, addr, end, pages + *nr); 2676 2677 folio = try_grab_folio(page, refs, flags); 2678 if (!folio) 2679 return 0; 2680 2681 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2682 gup_put_folio(folio, refs, flags); 2683 return 0; 2684 } 2685 2686 *nr += refs; 2687 folio_set_referenced(folio); 2688 return 1; 2689 } 2690 2691 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2692 unsigned int flags, struct page **pages, int *nr) 2693 { 2694 unsigned long next; 2695 pmd_t *pmdp; 2696 2697 pmdp = pmd_offset_lockless(pudp, pud, addr); 2698 do { 2699 pmd_t pmd = READ_ONCE(*pmdp); 2700 2701 next = pmd_addr_end(addr, end); 2702 if (!pmd_present(pmd)) 2703 return 0; 2704 2705 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2706 pmd_devmap(pmd))) { 2707 if (pmd_protnone(pmd) && 2708 !gup_can_follow_protnone(flags)) 2709 return 0; 2710 2711 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2712 pages, nr)) 2713 return 0; 2714 2715 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2716 /* 2717 * architecture have different format for hugetlbfs 2718 * pmd format and THP pmd format 2719 */ 2720 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2721 PMD_SHIFT, next, flags, pages, nr)) 2722 return 0; 2723 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2724 return 0; 2725 } while (pmdp++, addr = next, addr != end); 2726 2727 return 1; 2728 } 2729 2730 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2731 unsigned int flags, struct page **pages, int *nr) 2732 { 2733 unsigned long next; 2734 pud_t *pudp; 2735 2736 pudp = pud_offset_lockless(p4dp, p4d, addr); 2737 do { 2738 pud_t pud = READ_ONCE(*pudp); 2739 2740 next = pud_addr_end(addr, end); 2741 if (unlikely(!pud_present(pud))) 2742 return 0; 2743 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2744 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2745 pages, nr)) 2746 return 0; 2747 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2748 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2749 PUD_SHIFT, next, flags, pages, nr)) 2750 return 0; 2751 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2752 return 0; 2753 } while (pudp++, addr = next, addr != end); 2754 2755 return 1; 2756 } 2757 2758 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2759 unsigned int flags, struct page **pages, int *nr) 2760 { 2761 unsigned long next; 2762 p4d_t *p4dp; 2763 2764 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2765 do { 2766 p4d_t p4d = READ_ONCE(*p4dp); 2767 2768 next = p4d_addr_end(addr, end); 2769 if (p4d_none(p4d)) 2770 return 0; 2771 BUILD_BUG_ON(p4d_huge(p4d)); 2772 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2773 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2774 P4D_SHIFT, next, flags, pages, nr)) 2775 return 0; 2776 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2777 return 0; 2778 } while (p4dp++, addr = next, addr != end); 2779 2780 return 1; 2781 } 2782 2783 static void gup_pgd_range(unsigned long addr, unsigned long end, 2784 unsigned int flags, struct page **pages, int *nr) 2785 { 2786 unsigned long next; 2787 pgd_t *pgdp; 2788 2789 pgdp = pgd_offset(current->mm, addr); 2790 do { 2791 pgd_t pgd = READ_ONCE(*pgdp); 2792 2793 next = pgd_addr_end(addr, end); 2794 if (pgd_none(pgd)) 2795 return; 2796 if (unlikely(pgd_huge(pgd))) { 2797 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2798 pages, nr)) 2799 return; 2800 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2801 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2802 PGDIR_SHIFT, next, flags, pages, nr)) 2803 return; 2804 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2805 return; 2806 } while (pgdp++, addr = next, addr != end); 2807 } 2808 #else 2809 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2810 unsigned int flags, struct page **pages, int *nr) 2811 { 2812 } 2813 #endif /* CONFIG_HAVE_FAST_GUP */ 2814 2815 #ifndef gup_fast_permitted 2816 /* 2817 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2818 * we need to fall back to the slow version: 2819 */ 2820 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2821 { 2822 return true; 2823 } 2824 #endif 2825 2826 static unsigned long lockless_pages_from_mm(unsigned long start, 2827 unsigned long end, 2828 unsigned int gup_flags, 2829 struct page **pages) 2830 { 2831 unsigned long flags; 2832 int nr_pinned = 0; 2833 unsigned seq; 2834 2835 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2836 !gup_fast_permitted(start, end)) 2837 return 0; 2838 2839 if (gup_flags & FOLL_PIN) { 2840 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2841 if (seq & 1) 2842 return 0; 2843 } 2844 2845 /* 2846 * Disable interrupts. The nested form is used, in order to allow full, 2847 * general purpose use of this routine. 2848 * 2849 * With interrupts disabled, we block page table pages from being freed 2850 * from under us. See struct mmu_table_batch comments in 2851 * include/asm-generic/tlb.h for more details. 2852 * 2853 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2854 * that come from THPs splitting. 2855 */ 2856 local_irq_save(flags); 2857 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2858 local_irq_restore(flags); 2859 2860 /* 2861 * When pinning pages for DMA there could be a concurrent write protect 2862 * from fork() via copy_page_range(), in this case always fail fast GUP. 2863 */ 2864 if (gup_flags & FOLL_PIN) { 2865 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2866 unpin_user_pages_lockless(pages, nr_pinned); 2867 return 0; 2868 } else { 2869 sanity_check_pinned_pages(pages, nr_pinned); 2870 } 2871 } 2872 return nr_pinned; 2873 } 2874 2875 static int internal_get_user_pages_fast(unsigned long start, 2876 unsigned long nr_pages, 2877 unsigned int gup_flags, 2878 struct page **pages) 2879 { 2880 unsigned long len, end; 2881 unsigned long nr_pinned; 2882 int ret; 2883 2884 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2885 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2886 FOLL_FAST_ONLY | FOLL_NOFAULT | 2887 FOLL_PCI_P2PDMA))) 2888 return -EINVAL; 2889 2890 if (gup_flags & FOLL_PIN) 2891 mm_set_has_pinned_flag(¤t->mm->flags); 2892 2893 if (!(gup_flags & FOLL_FAST_ONLY)) 2894 might_lock_read(¤t->mm->mmap_lock); 2895 2896 start = untagged_addr(start) & PAGE_MASK; 2897 len = nr_pages << PAGE_SHIFT; 2898 if (check_add_overflow(start, len, &end)) 2899 return 0; 2900 if (unlikely(!access_ok((void __user *)start, len))) 2901 return -EFAULT; 2902 2903 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2904 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2905 return nr_pinned; 2906 2907 /* Slow path: try to get the remaining pages with get_user_pages */ 2908 start += nr_pinned << PAGE_SHIFT; 2909 pages += nr_pinned; 2910 ret = get_user_pages_unlocked(start, nr_pages - nr_pinned, pages, 2911 gup_flags); 2912 if (ret < 0) { 2913 /* 2914 * The caller has to unpin the pages we already pinned so 2915 * returning -errno is not an option 2916 */ 2917 if (nr_pinned) 2918 return nr_pinned; 2919 return ret; 2920 } 2921 return ret + nr_pinned; 2922 } 2923 2924 /** 2925 * get_user_pages_fast_only() - pin user pages in memory 2926 * @start: starting user address 2927 * @nr_pages: number of pages from start to pin 2928 * @gup_flags: flags modifying pin behaviour 2929 * @pages: array that receives pointers to the pages pinned. 2930 * Should be at least nr_pages long. 2931 * 2932 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2933 * the regular GUP. 2934 * Note a difference with get_user_pages_fast: this always returns the 2935 * number of pages pinned, 0 if no pages were pinned. 2936 * 2937 * If the architecture does not support this function, simply return with no 2938 * pages pinned. 2939 * 2940 * Careful, careful! COW breaking can go either way, so a non-write 2941 * access can get ambiguous page results. If you call this function without 2942 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2943 */ 2944 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2945 unsigned int gup_flags, struct page **pages) 2946 { 2947 int nr_pinned; 2948 /* 2949 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2950 * because gup fast is always a "pin with a +1 page refcount" request. 2951 * 2952 * FOLL_FAST_ONLY is required in order to match the API description of 2953 * this routine: no fall back to regular ("slow") GUP. 2954 */ 2955 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2956 2957 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2958 pages); 2959 2960 /* 2961 * As specified in the API description above, this routine is not 2962 * allowed to return negative values. However, the common core 2963 * routine internal_get_user_pages_fast() *can* return -errno. 2964 * Therefore, correct for that here: 2965 */ 2966 if (nr_pinned < 0) 2967 nr_pinned = 0; 2968 2969 return nr_pinned; 2970 } 2971 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2972 2973 /** 2974 * get_user_pages_fast() - pin user pages in memory 2975 * @start: starting user address 2976 * @nr_pages: number of pages from start to pin 2977 * @gup_flags: flags modifying pin behaviour 2978 * @pages: array that receives pointers to the pages pinned. 2979 * Should be at least nr_pages long. 2980 * 2981 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2982 * If not successful, it will fall back to taking the lock and 2983 * calling get_user_pages(). 2984 * 2985 * Returns number of pages pinned. This may be fewer than the number requested. 2986 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2987 * -errno. 2988 */ 2989 int get_user_pages_fast(unsigned long start, int nr_pages, 2990 unsigned int gup_flags, struct page **pages) 2991 { 2992 if (!is_valid_gup_flags(gup_flags)) 2993 return -EINVAL; 2994 2995 /* 2996 * The caller may or may not have explicitly set FOLL_GET; either way is 2997 * OK. However, internally (within mm/gup.c), gup fast variants must set 2998 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2999 * request. 3000 */ 3001 gup_flags |= FOLL_GET; 3002 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3003 } 3004 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3005 3006 /** 3007 * pin_user_pages_fast() - pin user pages in memory without taking locks 3008 * 3009 * @start: starting user address 3010 * @nr_pages: number of pages from start to pin 3011 * @gup_flags: flags modifying pin behaviour 3012 * @pages: array that receives pointers to the pages pinned. 3013 * Should be at least nr_pages long. 3014 * 3015 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3016 * get_user_pages_fast() for documentation on the function arguments, because 3017 * the arguments here are identical. 3018 * 3019 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3020 * see Documentation/core-api/pin_user_pages.rst for further details. 3021 */ 3022 int pin_user_pages_fast(unsigned long start, int nr_pages, 3023 unsigned int gup_flags, struct page **pages) 3024 { 3025 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3026 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3027 return -EINVAL; 3028 3029 if (WARN_ON_ONCE(!pages)) 3030 return -EINVAL; 3031 3032 gup_flags |= FOLL_PIN; 3033 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3034 } 3035 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3036 3037 /* 3038 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3039 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3040 * 3041 * The API rules are the same, too: no negative values may be returned. 3042 */ 3043 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3044 unsigned int gup_flags, struct page **pages) 3045 { 3046 int nr_pinned; 3047 3048 /* 3049 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3050 * rules require returning 0, rather than -errno: 3051 */ 3052 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3053 return 0; 3054 3055 if (WARN_ON_ONCE(!pages)) 3056 return 0; 3057 /* 3058 * FOLL_FAST_ONLY is required in order to match the API description of 3059 * this routine: no fall back to regular ("slow") GUP. 3060 */ 3061 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3062 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3063 pages); 3064 /* 3065 * This routine is not allowed to return negative values. However, 3066 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3067 * correct for that here: 3068 */ 3069 if (nr_pinned < 0) 3070 nr_pinned = 0; 3071 3072 return nr_pinned; 3073 } 3074 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3075 3076 /** 3077 * pin_user_pages_remote() - pin pages of a remote process 3078 * 3079 * @mm: mm_struct of target mm 3080 * @start: starting user address 3081 * @nr_pages: number of pages from start to pin 3082 * @gup_flags: flags modifying lookup behaviour 3083 * @pages: array that receives pointers to the pages pinned. 3084 * Should be at least nr_pages long. 3085 * @vmas: array of pointers to vmas corresponding to each page. 3086 * Or NULL if the caller does not require them. 3087 * @locked: pointer to lock flag indicating whether lock is held and 3088 * subsequently whether VM_FAULT_RETRY functionality can be 3089 * utilised. Lock must initially be held. 3090 * 3091 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3092 * get_user_pages_remote() for documentation on the function arguments, because 3093 * the arguments here are identical. 3094 * 3095 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3096 * see Documentation/core-api/pin_user_pages.rst for details. 3097 */ 3098 long pin_user_pages_remote(struct mm_struct *mm, 3099 unsigned long start, unsigned long nr_pages, 3100 unsigned int gup_flags, struct page **pages, 3101 struct vm_area_struct **vmas, int *locked) 3102 { 3103 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3104 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3105 return -EINVAL; 3106 3107 if (WARN_ON_ONCE(!pages)) 3108 return -EINVAL; 3109 3110 return __gup_longterm_locked(mm, start, nr_pages, pages, vmas, locked, 3111 gup_flags | FOLL_PIN | FOLL_TOUCH | 3112 FOLL_REMOTE); 3113 } 3114 EXPORT_SYMBOL(pin_user_pages_remote); 3115 3116 /** 3117 * pin_user_pages() - pin user pages in memory for use by other devices 3118 * 3119 * @start: starting user address 3120 * @nr_pages: number of pages from start to pin 3121 * @gup_flags: flags modifying lookup behaviour 3122 * @pages: array that receives pointers to the pages pinned. 3123 * Should be at least nr_pages long. 3124 * @vmas: array of pointers to vmas corresponding to each page. 3125 * Or NULL if the caller does not require them. 3126 * 3127 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3128 * FOLL_PIN is set. 3129 * 3130 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3131 * see Documentation/core-api/pin_user_pages.rst for details. 3132 */ 3133 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3134 unsigned int gup_flags, struct page **pages, 3135 struct vm_area_struct **vmas) 3136 { 3137 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3138 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3139 return -EINVAL; 3140 3141 if (WARN_ON_ONCE(!pages)) 3142 return -EINVAL; 3143 3144 gup_flags |= FOLL_PIN; 3145 return __gup_longterm_locked(current->mm, start, nr_pages, 3146 pages, vmas, NULL, gup_flags); 3147 } 3148 EXPORT_SYMBOL(pin_user_pages); 3149 3150 /* 3151 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3152 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3153 * FOLL_PIN and rejects FOLL_GET. 3154 */ 3155 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3156 struct page **pages, unsigned int gup_flags) 3157 { 3158 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3159 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3160 return -EINVAL; 3161 3162 if (WARN_ON_ONCE(!pages)) 3163 return -EINVAL; 3164 3165 gup_flags |= FOLL_PIN; 3166 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3167 } 3168 EXPORT_SYMBOL(pin_user_pages_unlocked); 3169