1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* Equivalent to calling put_page() @refs times. */ 49 static void put_page_refs(struct page *page, int refs) 50 { 51 #ifdef CONFIG_DEBUG_VM 52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page)) 53 return; 54 #endif 55 56 /* 57 * Calling put_page() for each ref is unnecessarily slow. Only the last 58 * ref needs a put_page(). 59 */ 60 if (refs > 1) 61 page_ref_sub(page, refs - 1); 62 put_page(page); 63 } 64 65 /* 66 * Return the compound head page with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct page *try_get_compound_head(struct page *page, int refs) 70 { 71 struct page *head = compound_head(page); 72 73 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 74 return NULL; 75 if (unlikely(!page_cache_add_speculative(head, refs))) 76 return NULL; 77 78 /* 79 * At this point we have a stable reference to the head page; but it 80 * could be that between the compound_head() lookup and the refcount 81 * increment, the compound page was split, in which case we'd end up 82 * holding a reference on a page that has nothing to do with the page 83 * we were given anymore. 84 * So now that the head page is stable, recheck that the pages still 85 * belong together. 86 */ 87 if (unlikely(compound_head(page) != head)) { 88 put_page_refs(head, refs); 89 return NULL; 90 } 91 92 return head; 93 } 94 95 /** 96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 97 * flags-dependent amount. 98 * 99 * Even though the name includes "compound_head", this function is still 100 * appropriate for callers that have a non-compound @page to get. 101 * 102 * @page: pointer to page to be grabbed 103 * @refs: the value to (effectively) add to the page's refcount 104 * @flags: gup flags: these are the FOLL_* flag values. 105 * 106 * "grab" names in this file mean, "look at flags to decide whether to use 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 108 * 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 110 * same time. (That's true throughout the get_user_pages*() and 111 * pin_user_pages*() APIs.) Cases: 112 * 113 * FOLL_GET: page's refcount will be incremented by @refs. 114 * 115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will 116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be 117 * incremented by @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * FOLL_PIN on normal pages, or compound pages that are two pages long: 120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS. 121 * 122 * Return: head page (with refcount appropriately incremented) for success, or 123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 124 * considered failure, and furthermore, a likely bug in the caller, so a warning 125 * is also emitted. 126 */ 127 __maybe_unused struct page *try_grab_compound_head(struct page *page, 128 int refs, unsigned int flags) 129 { 130 if (flags & FOLL_GET) 131 return try_get_compound_head(page, refs); 132 else if (flags & FOLL_PIN) { 133 /* 134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 135 * right zone, so fail and let the caller fall back to the slow 136 * path. 137 */ 138 if (unlikely((flags & FOLL_LONGTERM) && 139 !is_pinnable_page(page))) 140 return NULL; 141 142 /* 143 * CAUTION: Don't use compound_head() on the page before this 144 * point, the result won't be stable. 145 */ 146 page = try_get_compound_head(page, refs); 147 if (!page) 148 return NULL; 149 150 /* 151 * When pinning a compound page of order > 1 (which is what 152 * hpage_pincount_available() checks for), use an exact count to 153 * track it, via hpage_pincount_add/_sub(). 154 * 155 * However, be sure to *also* increment the normal page refcount 156 * field at least once, so that the page really is pinned. 157 * That's why the refcount from the earlier 158 * try_get_compound_head() is left intact. 159 */ 160 if (hpage_pincount_available(page)) 161 hpage_pincount_add(page, refs); 162 else 163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 166 refs); 167 168 return page; 169 } 170 171 WARN_ON_ONCE(1); 172 return NULL; 173 } 174 175 static void put_compound_head(struct page *page, int refs, unsigned int flags) 176 { 177 if (flags & FOLL_PIN) { 178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 179 refs); 180 181 if (hpage_pincount_available(page)) 182 hpage_pincount_sub(page, refs); 183 else 184 refs *= GUP_PIN_COUNTING_BIAS; 185 } 186 187 put_page_refs(page, refs); 188 } 189 190 /** 191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 192 * 193 * This might not do anything at all, depending on the flags argument. 194 * 195 * "grab" names in this file mean, "look at flags to decide whether to use 196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 197 * 198 * @page: pointer to page to be grabbed 199 * @flags: gup flags: these are the FOLL_* flag values. 200 * 201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 202 * time. Cases: please see the try_grab_compound_head() documentation, with 203 * "refs=1". 204 * 205 * Return: true for success, or if no action was required (if neither FOLL_PIN 206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 207 * FOLL_PIN was set, but the page could not be grabbed. 208 */ 209 bool __must_check try_grab_page(struct page *page, unsigned int flags) 210 { 211 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 212 213 if (flags & FOLL_GET) 214 return try_get_page(page); 215 else if (flags & FOLL_PIN) { 216 int refs = 1; 217 218 page = compound_head(page); 219 220 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 221 return false; 222 223 if (hpage_pincount_available(page)) 224 hpage_pincount_add(page, 1); 225 else 226 refs = GUP_PIN_COUNTING_BIAS; 227 228 /* 229 * Similar to try_grab_compound_head(): even if using the 230 * hpage_pincount_add/_sub() routines, be sure to 231 * *also* increment the normal page refcount field at least 232 * once, so that the page really is pinned. 233 */ 234 page_ref_add(page, refs); 235 236 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 237 } 238 239 return true; 240 } 241 242 /** 243 * unpin_user_page() - release a dma-pinned page 244 * @page: pointer to page to be released 245 * 246 * Pages that were pinned via pin_user_pages*() must be released via either 247 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 248 * that such pages can be separately tracked and uniquely handled. In 249 * particular, interactions with RDMA and filesystems need special handling. 250 */ 251 void unpin_user_page(struct page *page) 252 { 253 put_compound_head(compound_head(page), 1, FOLL_PIN); 254 } 255 EXPORT_SYMBOL(unpin_user_page); 256 257 static inline void compound_range_next(unsigned long i, unsigned long npages, 258 struct page **list, struct page **head, 259 unsigned int *ntails) 260 { 261 struct page *next, *page; 262 unsigned int nr = 1; 263 264 if (i >= npages) 265 return; 266 267 next = *list + i; 268 page = compound_head(next); 269 if (PageCompound(page) && compound_order(page) >= 1) 270 nr = min_t(unsigned int, 271 page + compound_nr(page) - next, npages - i); 272 273 *head = page; 274 *ntails = nr; 275 } 276 277 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \ 278 for (__i = 0, \ 279 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \ 280 __i < __npages; __i += __ntails, \ 281 compound_range_next(__i, __npages, __list, &(__head), &(__ntails))) 282 283 static inline void compound_next(unsigned long i, unsigned long npages, 284 struct page **list, struct page **head, 285 unsigned int *ntails) 286 { 287 struct page *page; 288 unsigned int nr; 289 290 if (i >= npages) 291 return; 292 293 page = compound_head(list[i]); 294 for (nr = i + 1; nr < npages; nr++) { 295 if (compound_head(list[nr]) != page) 296 break; 297 } 298 299 *head = page; 300 *ntails = nr - i; 301 } 302 303 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \ 304 for (__i = 0, \ 305 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \ 306 __i < __npages; __i += __ntails, \ 307 compound_next(__i, __npages, __list, &(__head), &(__ntails))) 308 309 /** 310 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 311 * @pages: array of pages to be maybe marked dirty, and definitely released. 312 * @npages: number of pages in the @pages array. 313 * @make_dirty: whether to mark the pages dirty 314 * 315 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 316 * variants called on that page. 317 * 318 * For each page in the @pages array, make that page (or its head page, if a 319 * compound page) dirty, if @make_dirty is true, and if the page was previously 320 * listed as clean. In any case, releases all pages using unpin_user_page(), 321 * possibly via unpin_user_pages(), for the non-dirty case. 322 * 323 * Please see the unpin_user_page() documentation for details. 324 * 325 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 326 * required, then the caller should a) verify that this is really correct, 327 * because _lock() is usually required, and b) hand code it: 328 * set_page_dirty_lock(), unpin_user_page(). 329 * 330 */ 331 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 332 bool make_dirty) 333 { 334 unsigned long index; 335 struct page *head; 336 unsigned int ntails; 337 338 if (!make_dirty) { 339 unpin_user_pages(pages, npages); 340 return; 341 } 342 343 for_each_compound_head(index, pages, npages, head, ntails) { 344 /* 345 * Checking PageDirty at this point may race with 346 * clear_page_dirty_for_io(), but that's OK. Two key 347 * cases: 348 * 349 * 1) This code sees the page as already dirty, so it 350 * skips the call to set_page_dirty(). That could happen 351 * because clear_page_dirty_for_io() called 352 * page_mkclean(), followed by set_page_dirty(). 353 * However, now the page is going to get written back, 354 * which meets the original intention of setting it 355 * dirty, so all is well: clear_page_dirty_for_io() goes 356 * on to call TestClearPageDirty(), and write the page 357 * back. 358 * 359 * 2) This code sees the page as clean, so it calls 360 * set_page_dirty(). The page stays dirty, despite being 361 * written back, so it gets written back again in the 362 * next writeback cycle. This is harmless. 363 */ 364 if (!PageDirty(head)) 365 set_page_dirty_lock(head); 366 put_compound_head(head, ntails, FOLL_PIN); 367 } 368 } 369 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 370 371 /** 372 * unpin_user_page_range_dirty_lock() - release and optionally dirty 373 * gup-pinned page range 374 * 375 * @page: the starting page of a range maybe marked dirty, and definitely released. 376 * @npages: number of consecutive pages to release. 377 * @make_dirty: whether to mark the pages dirty 378 * 379 * "gup-pinned page range" refers to a range of pages that has had one of the 380 * pin_user_pages() variants called on that page. 381 * 382 * For the page ranges defined by [page .. page+npages], make that range (or 383 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 384 * page range was previously listed as clean. 385 * 386 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 387 * required, then the caller should a) verify that this is really correct, 388 * because _lock() is usually required, and b) hand code it: 389 * set_page_dirty_lock(), unpin_user_page(). 390 * 391 */ 392 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 393 bool make_dirty) 394 { 395 unsigned long index; 396 struct page *head; 397 unsigned int ntails; 398 399 for_each_compound_range(index, &page, npages, head, ntails) { 400 if (make_dirty && !PageDirty(head)) 401 set_page_dirty_lock(head); 402 put_compound_head(head, ntails, FOLL_PIN); 403 } 404 } 405 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 406 407 /** 408 * unpin_user_pages() - release an array of gup-pinned pages. 409 * @pages: array of pages to be marked dirty and released. 410 * @npages: number of pages in the @pages array. 411 * 412 * For each page in the @pages array, release the page using unpin_user_page(). 413 * 414 * Please see the unpin_user_page() documentation for details. 415 */ 416 void unpin_user_pages(struct page **pages, unsigned long npages) 417 { 418 unsigned long index; 419 struct page *head; 420 unsigned int ntails; 421 422 /* 423 * If this WARN_ON() fires, then the system *might* be leaking pages (by 424 * leaving them pinned), but probably not. More likely, gup/pup returned 425 * a hard -ERRNO error to the caller, who erroneously passed it here. 426 */ 427 if (WARN_ON(IS_ERR_VALUE(npages))) 428 return; 429 430 for_each_compound_head(index, pages, npages, head, ntails) 431 put_compound_head(head, ntails, FOLL_PIN); 432 } 433 EXPORT_SYMBOL(unpin_user_pages); 434 435 /* 436 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 437 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 438 * cache bouncing on large SMP machines for concurrent pinned gups. 439 */ 440 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 441 { 442 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 443 set_bit(MMF_HAS_PINNED, mm_flags); 444 } 445 446 #ifdef CONFIG_MMU 447 static struct page *no_page_table(struct vm_area_struct *vma, 448 unsigned int flags) 449 { 450 /* 451 * When core dumping an enormous anonymous area that nobody 452 * has touched so far, we don't want to allocate unnecessary pages or 453 * page tables. Return error instead of NULL to skip handle_mm_fault, 454 * then get_dump_page() will return NULL to leave a hole in the dump. 455 * But we can only make this optimization where a hole would surely 456 * be zero-filled if handle_mm_fault() actually did handle it. 457 */ 458 if ((flags & FOLL_DUMP) && 459 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 460 return ERR_PTR(-EFAULT); 461 return NULL; 462 } 463 464 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 465 pte_t *pte, unsigned int flags) 466 { 467 /* No page to get reference */ 468 if (flags & FOLL_GET) 469 return -EFAULT; 470 471 if (flags & FOLL_TOUCH) { 472 pte_t entry = *pte; 473 474 if (flags & FOLL_WRITE) 475 entry = pte_mkdirty(entry); 476 entry = pte_mkyoung(entry); 477 478 if (!pte_same(*pte, entry)) { 479 set_pte_at(vma->vm_mm, address, pte, entry); 480 update_mmu_cache(vma, address, pte); 481 } 482 } 483 484 /* Proper page table entry exists, but no corresponding struct page */ 485 return -EEXIST; 486 } 487 488 /* 489 * FOLL_FORCE can write to even unwritable pte's, but only 490 * after we've gone through a COW cycle and they are dirty. 491 */ 492 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 493 { 494 return pte_write(pte) || 495 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 496 } 497 498 static struct page *follow_page_pte(struct vm_area_struct *vma, 499 unsigned long address, pmd_t *pmd, unsigned int flags, 500 struct dev_pagemap **pgmap) 501 { 502 struct mm_struct *mm = vma->vm_mm; 503 struct page *page; 504 spinlock_t *ptl; 505 pte_t *ptep, pte; 506 int ret; 507 508 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 509 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 510 (FOLL_PIN | FOLL_GET))) 511 return ERR_PTR(-EINVAL); 512 retry: 513 if (unlikely(pmd_bad(*pmd))) 514 return no_page_table(vma, flags); 515 516 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 517 pte = *ptep; 518 if (!pte_present(pte)) { 519 swp_entry_t entry; 520 /* 521 * KSM's break_ksm() relies upon recognizing a ksm page 522 * even while it is being migrated, so for that case we 523 * need migration_entry_wait(). 524 */ 525 if (likely(!(flags & FOLL_MIGRATION))) 526 goto no_page; 527 if (pte_none(pte)) 528 goto no_page; 529 entry = pte_to_swp_entry(pte); 530 if (!is_migration_entry(entry)) 531 goto no_page; 532 pte_unmap_unlock(ptep, ptl); 533 migration_entry_wait(mm, pmd, address); 534 goto retry; 535 } 536 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 537 goto no_page; 538 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 539 pte_unmap_unlock(ptep, ptl); 540 return NULL; 541 } 542 543 page = vm_normal_page(vma, address, pte); 544 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 545 /* 546 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 547 * case since they are only valid while holding the pgmap 548 * reference. 549 */ 550 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 551 if (*pgmap) 552 page = pte_page(pte); 553 else 554 goto no_page; 555 } else if (unlikely(!page)) { 556 if (flags & FOLL_DUMP) { 557 /* Avoid special (like zero) pages in core dumps */ 558 page = ERR_PTR(-EFAULT); 559 goto out; 560 } 561 562 if (is_zero_pfn(pte_pfn(pte))) { 563 page = pte_page(pte); 564 } else { 565 ret = follow_pfn_pte(vma, address, ptep, flags); 566 page = ERR_PTR(ret); 567 goto out; 568 } 569 } 570 571 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 572 if (unlikely(!try_grab_page(page, flags))) { 573 page = ERR_PTR(-ENOMEM); 574 goto out; 575 } 576 /* 577 * We need to make the page accessible if and only if we are going 578 * to access its content (the FOLL_PIN case). Please see 579 * Documentation/core-api/pin_user_pages.rst for details. 580 */ 581 if (flags & FOLL_PIN) { 582 ret = arch_make_page_accessible(page); 583 if (ret) { 584 unpin_user_page(page); 585 page = ERR_PTR(ret); 586 goto out; 587 } 588 } 589 if (flags & FOLL_TOUCH) { 590 if ((flags & FOLL_WRITE) && 591 !pte_dirty(pte) && !PageDirty(page)) 592 set_page_dirty(page); 593 /* 594 * pte_mkyoung() would be more correct here, but atomic care 595 * is needed to avoid losing the dirty bit: it is easier to use 596 * mark_page_accessed(). 597 */ 598 mark_page_accessed(page); 599 } 600 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 601 /* Do not mlock pte-mapped THP */ 602 if (PageTransCompound(page)) 603 goto out; 604 605 /* 606 * The preliminary mapping check is mainly to avoid the 607 * pointless overhead of lock_page on the ZERO_PAGE 608 * which might bounce very badly if there is contention. 609 * 610 * If the page is already locked, we don't need to 611 * handle it now - vmscan will handle it later if and 612 * when it attempts to reclaim the page. 613 */ 614 if (page->mapping && trylock_page(page)) { 615 lru_add_drain(); /* push cached pages to LRU */ 616 /* 617 * Because we lock page here, and migration is 618 * blocked by the pte's page reference, and we 619 * know the page is still mapped, we don't even 620 * need to check for file-cache page truncation. 621 */ 622 mlock_vma_page(page); 623 unlock_page(page); 624 } 625 } 626 out: 627 pte_unmap_unlock(ptep, ptl); 628 return page; 629 no_page: 630 pte_unmap_unlock(ptep, ptl); 631 if (!pte_none(pte)) 632 return NULL; 633 return no_page_table(vma, flags); 634 } 635 636 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 637 unsigned long address, pud_t *pudp, 638 unsigned int flags, 639 struct follow_page_context *ctx) 640 { 641 pmd_t *pmd, pmdval; 642 spinlock_t *ptl; 643 struct page *page; 644 struct mm_struct *mm = vma->vm_mm; 645 646 pmd = pmd_offset(pudp, address); 647 /* 648 * The READ_ONCE() will stabilize the pmdval in a register or 649 * on the stack so that it will stop changing under the code. 650 */ 651 pmdval = READ_ONCE(*pmd); 652 if (pmd_none(pmdval)) 653 return no_page_table(vma, flags); 654 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 655 page = follow_huge_pmd(mm, address, pmd, flags); 656 if (page) 657 return page; 658 return no_page_table(vma, flags); 659 } 660 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 661 page = follow_huge_pd(vma, address, 662 __hugepd(pmd_val(pmdval)), flags, 663 PMD_SHIFT); 664 if (page) 665 return page; 666 return no_page_table(vma, flags); 667 } 668 retry: 669 if (!pmd_present(pmdval)) { 670 /* 671 * Should never reach here, if thp migration is not supported; 672 * Otherwise, it must be a thp migration entry. 673 */ 674 VM_BUG_ON(!thp_migration_supported() || 675 !is_pmd_migration_entry(pmdval)); 676 677 if (likely(!(flags & FOLL_MIGRATION))) 678 return no_page_table(vma, flags); 679 680 pmd_migration_entry_wait(mm, pmd); 681 pmdval = READ_ONCE(*pmd); 682 /* 683 * MADV_DONTNEED may convert the pmd to null because 684 * mmap_lock is held in read mode 685 */ 686 if (pmd_none(pmdval)) 687 return no_page_table(vma, flags); 688 goto retry; 689 } 690 if (pmd_devmap(pmdval)) { 691 ptl = pmd_lock(mm, pmd); 692 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 693 spin_unlock(ptl); 694 if (page) 695 return page; 696 } 697 if (likely(!pmd_trans_huge(pmdval))) 698 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 699 700 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 701 return no_page_table(vma, flags); 702 703 retry_locked: 704 ptl = pmd_lock(mm, pmd); 705 if (unlikely(pmd_none(*pmd))) { 706 spin_unlock(ptl); 707 return no_page_table(vma, flags); 708 } 709 if (unlikely(!pmd_present(*pmd))) { 710 spin_unlock(ptl); 711 if (likely(!(flags & FOLL_MIGRATION))) 712 return no_page_table(vma, flags); 713 pmd_migration_entry_wait(mm, pmd); 714 goto retry_locked; 715 } 716 if (unlikely(!pmd_trans_huge(*pmd))) { 717 spin_unlock(ptl); 718 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 719 } 720 if (flags & FOLL_SPLIT_PMD) { 721 int ret; 722 page = pmd_page(*pmd); 723 if (is_huge_zero_page(page)) { 724 spin_unlock(ptl); 725 ret = 0; 726 split_huge_pmd(vma, pmd, address); 727 if (pmd_trans_unstable(pmd)) 728 ret = -EBUSY; 729 } else { 730 spin_unlock(ptl); 731 split_huge_pmd(vma, pmd, address); 732 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 733 } 734 735 return ret ? ERR_PTR(ret) : 736 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 737 } 738 page = follow_trans_huge_pmd(vma, address, pmd, flags); 739 spin_unlock(ptl); 740 ctx->page_mask = HPAGE_PMD_NR - 1; 741 return page; 742 } 743 744 static struct page *follow_pud_mask(struct vm_area_struct *vma, 745 unsigned long address, p4d_t *p4dp, 746 unsigned int flags, 747 struct follow_page_context *ctx) 748 { 749 pud_t *pud; 750 spinlock_t *ptl; 751 struct page *page; 752 struct mm_struct *mm = vma->vm_mm; 753 754 pud = pud_offset(p4dp, address); 755 if (pud_none(*pud)) 756 return no_page_table(vma, flags); 757 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 758 page = follow_huge_pud(mm, address, pud, flags); 759 if (page) 760 return page; 761 return no_page_table(vma, flags); 762 } 763 if (is_hugepd(__hugepd(pud_val(*pud)))) { 764 page = follow_huge_pd(vma, address, 765 __hugepd(pud_val(*pud)), flags, 766 PUD_SHIFT); 767 if (page) 768 return page; 769 return no_page_table(vma, flags); 770 } 771 if (pud_devmap(*pud)) { 772 ptl = pud_lock(mm, pud); 773 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 774 spin_unlock(ptl); 775 if (page) 776 return page; 777 } 778 if (unlikely(pud_bad(*pud))) 779 return no_page_table(vma, flags); 780 781 return follow_pmd_mask(vma, address, pud, flags, ctx); 782 } 783 784 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 785 unsigned long address, pgd_t *pgdp, 786 unsigned int flags, 787 struct follow_page_context *ctx) 788 { 789 p4d_t *p4d; 790 struct page *page; 791 792 p4d = p4d_offset(pgdp, address); 793 if (p4d_none(*p4d)) 794 return no_page_table(vma, flags); 795 BUILD_BUG_ON(p4d_huge(*p4d)); 796 if (unlikely(p4d_bad(*p4d))) 797 return no_page_table(vma, flags); 798 799 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 800 page = follow_huge_pd(vma, address, 801 __hugepd(p4d_val(*p4d)), flags, 802 P4D_SHIFT); 803 if (page) 804 return page; 805 return no_page_table(vma, flags); 806 } 807 return follow_pud_mask(vma, address, p4d, flags, ctx); 808 } 809 810 /** 811 * follow_page_mask - look up a page descriptor from a user-virtual address 812 * @vma: vm_area_struct mapping @address 813 * @address: virtual address to look up 814 * @flags: flags modifying lookup behaviour 815 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 816 * pointer to output page_mask 817 * 818 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 819 * 820 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 821 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 822 * 823 * On output, the @ctx->page_mask is set according to the size of the page. 824 * 825 * Return: the mapped (struct page *), %NULL if no mapping exists, or 826 * an error pointer if there is a mapping to something not represented 827 * by a page descriptor (see also vm_normal_page()). 828 */ 829 static struct page *follow_page_mask(struct vm_area_struct *vma, 830 unsigned long address, unsigned int flags, 831 struct follow_page_context *ctx) 832 { 833 pgd_t *pgd; 834 struct page *page; 835 struct mm_struct *mm = vma->vm_mm; 836 837 ctx->page_mask = 0; 838 839 /* make this handle hugepd */ 840 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 841 if (!IS_ERR(page)) { 842 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 843 return page; 844 } 845 846 pgd = pgd_offset(mm, address); 847 848 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 849 return no_page_table(vma, flags); 850 851 if (pgd_huge(*pgd)) { 852 page = follow_huge_pgd(mm, address, pgd, flags); 853 if (page) 854 return page; 855 return no_page_table(vma, flags); 856 } 857 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 858 page = follow_huge_pd(vma, address, 859 __hugepd(pgd_val(*pgd)), flags, 860 PGDIR_SHIFT); 861 if (page) 862 return page; 863 return no_page_table(vma, flags); 864 } 865 866 return follow_p4d_mask(vma, address, pgd, flags, ctx); 867 } 868 869 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 870 unsigned int foll_flags) 871 { 872 struct follow_page_context ctx = { NULL }; 873 struct page *page; 874 875 if (vma_is_secretmem(vma)) 876 return NULL; 877 878 page = follow_page_mask(vma, address, foll_flags, &ctx); 879 if (ctx.pgmap) 880 put_dev_pagemap(ctx.pgmap); 881 return page; 882 } 883 884 static int get_gate_page(struct mm_struct *mm, unsigned long address, 885 unsigned int gup_flags, struct vm_area_struct **vma, 886 struct page **page) 887 { 888 pgd_t *pgd; 889 p4d_t *p4d; 890 pud_t *pud; 891 pmd_t *pmd; 892 pte_t *pte; 893 int ret = -EFAULT; 894 895 /* user gate pages are read-only */ 896 if (gup_flags & FOLL_WRITE) 897 return -EFAULT; 898 if (address > TASK_SIZE) 899 pgd = pgd_offset_k(address); 900 else 901 pgd = pgd_offset_gate(mm, address); 902 if (pgd_none(*pgd)) 903 return -EFAULT; 904 p4d = p4d_offset(pgd, address); 905 if (p4d_none(*p4d)) 906 return -EFAULT; 907 pud = pud_offset(p4d, address); 908 if (pud_none(*pud)) 909 return -EFAULT; 910 pmd = pmd_offset(pud, address); 911 if (!pmd_present(*pmd)) 912 return -EFAULT; 913 VM_BUG_ON(pmd_trans_huge(*pmd)); 914 pte = pte_offset_map(pmd, address); 915 if (pte_none(*pte)) 916 goto unmap; 917 *vma = get_gate_vma(mm); 918 if (!page) 919 goto out; 920 *page = vm_normal_page(*vma, address, *pte); 921 if (!*page) { 922 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 923 goto unmap; 924 *page = pte_page(*pte); 925 } 926 if (unlikely(!try_grab_page(*page, gup_flags))) { 927 ret = -ENOMEM; 928 goto unmap; 929 } 930 out: 931 ret = 0; 932 unmap: 933 pte_unmap(pte); 934 return ret; 935 } 936 937 /* 938 * mmap_lock must be held on entry. If @locked != NULL and *@flags 939 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 940 * is, *@locked will be set to 0 and -EBUSY returned. 941 */ 942 static int faultin_page(struct vm_area_struct *vma, 943 unsigned long address, unsigned int *flags, int *locked) 944 { 945 unsigned int fault_flags = 0; 946 vm_fault_t ret; 947 948 /* mlock all present pages, but do not fault in new pages */ 949 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 950 return -ENOENT; 951 if (*flags & FOLL_NOFAULT) 952 return -EFAULT; 953 if (*flags & FOLL_WRITE) 954 fault_flags |= FAULT_FLAG_WRITE; 955 if (*flags & FOLL_REMOTE) 956 fault_flags |= FAULT_FLAG_REMOTE; 957 if (locked) 958 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 959 if (*flags & FOLL_NOWAIT) 960 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 961 if (*flags & FOLL_TRIED) { 962 /* 963 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 964 * can co-exist 965 */ 966 fault_flags |= FAULT_FLAG_TRIED; 967 } 968 969 ret = handle_mm_fault(vma, address, fault_flags, NULL); 970 if (ret & VM_FAULT_ERROR) { 971 int err = vm_fault_to_errno(ret, *flags); 972 973 if (err) 974 return err; 975 BUG(); 976 } 977 978 if (ret & VM_FAULT_RETRY) { 979 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 980 *locked = 0; 981 return -EBUSY; 982 } 983 984 /* 985 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 986 * necessary, even if maybe_mkwrite decided not to set pte_write. We 987 * can thus safely do subsequent page lookups as if they were reads. 988 * But only do so when looping for pte_write is futile: in some cases 989 * userspace may also be wanting to write to the gotten user page, 990 * which a read fault here might prevent (a readonly page might get 991 * reCOWed by userspace write). 992 */ 993 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 994 *flags |= FOLL_COW; 995 return 0; 996 } 997 998 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 999 { 1000 vm_flags_t vm_flags = vma->vm_flags; 1001 int write = (gup_flags & FOLL_WRITE); 1002 int foreign = (gup_flags & FOLL_REMOTE); 1003 1004 if (vm_flags & (VM_IO | VM_PFNMAP)) 1005 return -EFAULT; 1006 1007 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1008 return -EFAULT; 1009 1010 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1011 return -EOPNOTSUPP; 1012 1013 if (vma_is_secretmem(vma)) 1014 return -EFAULT; 1015 1016 if (write) { 1017 if (!(vm_flags & VM_WRITE)) { 1018 if (!(gup_flags & FOLL_FORCE)) 1019 return -EFAULT; 1020 /* 1021 * We used to let the write,force case do COW in a 1022 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1023 * set a breakpoint in a read-only mapping of an 1024 * executable, without corrupting the file (yet only 1025 * when that file had been opened for writing!). 1026 * Anon pages in shared mappings are surprising: now 1027 * just reject it. 1028 */ 1029 if (!is_cow_mapping(vm_flags)) 1030 return -EFAULT; 1031 } 1032 } else if (!(vm_flags & VM_READ)) { 1033 if (!(gup_flags & FOLL_FORCE)) 1034 return -EFAULT; 1035 /* 1036 * Is there actually any vma we can reach here which does not 1037 * have VM_MAYREAD set? 1038 */ 1039 if (!(vm_flags & VM_MAYREAD)) 1040 return -EFAULT; 1041 } 1042 /* 1043 * gups are always data accesses, not instruction 1044 * fetches, so execute=false here 1045 */ 1046 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1047 return -EFAULT; 1048 return 0; 1049 } 1050 1051 /** 1052 * __get_user_pages() - pin user pages in memory 1053 * @mm: mm_struct of target mm 1054 * @start: starting user address 1055 * @nr_pages: number of pages from start to pin 1056 * @gup_flags: flags modifying pin behaviour 1057 * @pages: array that receives pointers to the pages pinned. 1058 * Should be at least nr_pages long. Or NULL, if caller 1059 * only intends to ensure the pages are faulted in. 1060 * @vmas: array of pointers to vmas corresponding to each page. 1061 * Or NULL if the caller does not require them. 1062 * @locked: whether we're still with the mmap_lock held 1063 * 1064 * Returns either number of pages pinned (which may be less than the 1065 * number requested), or an error. Details about the return value: 1066 * 1067 * -- If nr_pages is 0, returns 0. 1068 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1069 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1070 * pages pinned. Again, this may be less than nr_pages. 1071 * -- 0 return value is possible when the fault would need to be retried. 1072 * 1073 * The caller is responsible for releasing returned @pages, via put_page(). 1074 * 1075 * @vmas are valid only as long as mmap_lock is held. 1076 * 1077 * Must be called with mmap_lock held. It may be released. See below. 1078 * 1079 * __get_user_pages walks a process's page tables and takes a reference to 1080 * each struct page that each user address corresponds to at a given 1081 * instant. That is, it takes the page that would be accessed if a user 1082 * thread accesses the given user virtual address at that instant. 1083 * 1084 * This does not guarantee that the page exists in the user mappings when 1085 * __get_user_pages returns, and there may even be a completely different 1086 * page there in some cases (eg. if mmapped pagecache has been invalidated 1087 * and subsequently re faulted). However it does guarantee that the page 1088 * won't be freed completely. And mostly callers simply care that the page 1089 * contains data that was valid *at some point in time*. Typically, an IO 1090 * or similar operation cannot guarantee anything stronger anyway because 1091 * locks can't be held over the syscall boundary. 1092 * 1093 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1094 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1095 * appropriate) must be called after the page is finished with, and 1096 * before put_page is called. 1097 * 1098 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1099 * released by an up_read(). That can happen if @gup_flags does not 1100 * have FOLL_NOWAIT. 1101 * 1102 * A caller using such a combination of @locked and @gup_flags 1103 * must therefore hold the mmap_lock for reading only, and recognize 1104 * when it's been released. Otherwise, it must be held for either 1105 * reading or writing and will not be released. 1106 * 1107 * In most cases, get_user_pages or get_user_pages_fast should be used 1108 * instead of __get_user_pages. __get_user_pages should be used only if 1109 * you need some special @gup_flags. 1110 */ 1111 static long __get_user_pages(struct mm_struct *mm, 1112 unsigned long start, unsigned long nr_pages, 1113 unsigned int gup_flags, struct page **pages, 1114 struct vm_area_struct **vmas, int *locked) 1115 { 1116 long ret = 0, i = 0; 1117 struct vm_area_struct *vma = NULL; 1118 struct follow_page_context ctx = { NULL }; 1119 1120 if (!nr_pages) 1121 return 0; 1122 1123 start = untagged_addr(start); 1124 1125 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1126 1127 /* 1128 * If FOLL_FORCE is set then do not force a full fault as the hinting 1129 * fault information is unrelated to the reference behaviour of a task 1130 * using the address space 1131 */ 1132 if (!(gup_flags & FOLL_FORCE)) 1133 gup_flags |= FOLL_NUMA; 1134 1135 do { 1136 struct page *page; 1137 unsigned int foll_flags = gup_flags; 1138 unsigned int page_increm; 1139 1140 /* first iteration or cross vma bound */ 1141 if (!vma || start >= vma->vm_end) { 1142 vma = find_extend_vma(mm, start); 1143 if (!vma && in_gate_area(mm, start)) { 1144 ret = get_gate_page(mm, start & PAGE_MASK, 1145 gup_flags, &vma, 1146 pages ? &pages[i] : NULL); 1147 if (ret) 1148 goto out; 1149 ctx.page_mask = 0; 1150 goto next_page; 1151 } 1152 1153 if (!vma) { 1154 ret = -EFAULT; 1155 goto out; 1156 } 1157 ret = check_vma_flags(vma, gup_flags); 1158 if (ret) 1159 goto out; 1160 1161 if (is_vm_hugetlb_page(vma)) { 1162 i = follow_hugetlb_page(mm, vma, pages, vmas, 1163 &start, &nr_pages, i, 1164 gup_flags, locked); 1165 if (locked && *locked == 0) { 1166 /* 1167 * We've got a VM_FAULT_RETRY 1168 * and we've lost mmap_lock. 1169 * We must stop here. 1170 */ 1171 BUG_ON(gup_flags & FOLL_NOWAIT); 1172 goto out; 1173 } 1174 continue; 1175 } 1176 } 1177 retry: 1178 /* 1179 * If we have a pending SIGKILL, don't keep faulting pages and 1180 * potentially allocating memory. 1181 */ 1182 if (fatal_signal_pending(current)) { 1183 ret = -EINTR; 1184 goto out; 1185 } 1186 cond_resched(); 1187 1188 page = follow_page_mask(vma, start, foll_flags, &ctx); 1189 if (!page) { 1190 ret = faultin_page(vma, start, &foll_flags, locked); 1191 switch (ret) { 1192 case 0: 1193 goto retry; 1194 case -EBUSY: 1195 ret = 0; 1196 fallthrough; 1197 case -EFAULT: 1198 case -ENOMEM: 1199 case -EHWPOISON: 1200 goto out; 1201 case -ENOENT: 1202 goto next_page; 1203 } 1204 BUG(); 1205 } else if (PTR_ERR(page) == -EEXIST) { 1206 /* 1207 * Proper page table entry exists, but no corresponding 1208 * struct page. 1209 */ 1210 goto next_page; 1211 } else if (IS_ERR(page)) { 1212 ret = PTR_ERR(page); 1213 goto out; 1214 } 1215 if (pages) { 1216 pages[i] = page; 1217 flush_anon_page(vma, page, start); 1218 flush_dcache_page(page); 1219 ctx.page_mask = 0; 1220 } 1221 next_page: 1222 if (vmas) { 1223 vmas[i] = vma; 1224 ctx.page_mask = 0; 1225 } 1226 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1227 if (page_increm > nr_pages) 1228 page_increm = nr_pages; 1229 i += page_increm; 1230 start += page_increm * PAGE_SIZE; 1231 nr_pages -= page_increm; 1232 } while (nr_pages); 1233 out: 1234 if (ctx.pgmap) 1235 put_dev_pagemap(ctx.pgmap); 1236 return i ? i : ret; 1237 } 1238 1239 static bool vma_permits_fault(struct vm_area_struct *vma, 1240 unsigned int fault_flags) 1241 { 1242 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1243 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1244 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1245 1246 if (!(vm_flags & vma->vm_flags)) 1247 return false; 1248 1249 /* 1250 * The architecture might have a hardware protection 1251 * mechanism other than read/write that can deny access. 1252 * 1253 * gup always represents data access, not instruction 1254 * fetches, so execute=false here: 1255 */ 1256 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1257 return false; 1258 1259 return true; 1260 } 1261 1262 /** 1263 * fixup_user_fault() - manually resolve a user page fault 1264 * @mm: mm_struct of target mm 1265 * @address: user address 1266 * @fault_flags:flags to pass down to handle_mm_fault() 1267 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1268 * does not allow retry. If NULL, the caller must guarantee 1269 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1270 * 1271 * This is meant to be called in the specific scenario where for locking reasons 1272 * we try to access user memory in atomic context (within a pagefault_disable() 1273 * section), this returns -EFAULT, and we want to resolve the user fault before 1274 * trying again. 1275 * 1276 * Typically this is meant to be used by the futex code. 1277 * 1278 * The main difference with get_user_pages() is that this function will 1279 * unconditionally call handle_mm_fault() which will in turn perform all the 1280 * necessary SW fixup of the dirty and young bits in the PTE, while 1281 * get_user_pages() only guarantees to update these in the struct page. 1282 * 1283 * This is important for some architectures where those bits also gate the 1284 * access permission to the page because they are maintained in software. On 1285 * such architectures, gup() will not be enough to make a subsequent access 1286 * succeed. 1287 * 1288 * This function will not return with an unlocked mmap_lock. So it has not the 1289 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1290 */ 1291 int fixup_user_fault(struct mm_struct *mm, 1292 unsigned long address, unsigned int fault_flags, 1293 bool *unlocked) 1294 { 1295 struct vm_area_struct *vma; 1296 vm_fault_t ret; 1297 1298 address = untagged_addr(address); 1299 1300 if (unlocked) 1301 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1302 1303 retry: 1304 vma = find_extend_vma(mm, address); 1305 if (!vma || address < vma->vm_start) 1306 return -EFAULT; 1307 1308 if (!vma_permits_fault(vma, fault_flags)) 1309 return -EFAULT; 1310 1311 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1312 fatal_signal_pending(current)) 1313 return -EINTR; 1314 1315 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1316 if (ret & VM_FAULT_ERROR) { 1317 int err = vm_fault_to_errno(ret, 0); 1318 1319 if (err) 1320 return err; 1321 BUG(); 1322 } 1323 1324 if (ret & VM_FAULT_RETRY) { 1325 mmap_read_lock(mm); 1326 *unlocked = true; 1327 fault_flags |= FAULT_FLAG_TRIED; 1328 goto retry; 1329 } 1330 1331 return 0; 1332 } 1333 EXPORT_SYMBOL_GPL(fixup_user_fault); 1334 1335 /* 1336 * Please note that this function, unlike __get_user_pages will not 1337 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1338 */ 1339 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1340 unsigned long start, 1341 unsigned long nr_pages, 1342 struct page **pages, 1343 struct vm_area_struct **vmas, 1344 int *locked, 1345 unsigned int flags) 1346 { 1347 long ret, pages_done; 1348 bool lock_dropped; 1349 1350 if (locked) { 1351 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1352 BUG_ON(vmas); 1353 /* check caller initialized locked */ 1354 BUG_ON(*locked != 1); 1355 } 1356 1357 if (flags & FOLL_PIN) 1358 mm_set_has_pinned_flag(&mm->flags); 1359 1360 /* 1361 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1362 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1363 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1364 * for FOLL_GET, not for the newer FOLL_PIN. 1365 * 1366 * FOLL_PIN always expects pages to be non-null, but no need to assert 1367 * that here, as any failures will be obvious enough. 1368 */ 1369 if (pages && !(flags & FOLL_PIN)) 1370 flags |= FOLL_GET; 1371 1372 pages_done = 0; 1373 lock_dropped = false; 1374 for (;;) { 1375 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1376 vmas, locked); 1377 if (!locked) 1378 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1379 return ret; 1380 1381 /* VM_FAULT_RETRY cannot return errors */ 1382 if (!*locked) { 1383 BUG_ON(ret < 0); 1384 BUG_ON(ret >= nr_pages); 1385 } 1386 1387 if (ret > 0) { 1388 nr_pages -= ret; 1389 pages_done += ret; 1390 if (!nr_pages) 1391 break; 1392 } 1393 if (*locked) { 1394 /* 1395 * VM_FAULT_RETRY didn't trigger or it was a 1396 * FOLL_NOWAIT. 1397 */ 1398 if (!pages_done) 1399 pages_done = ret; 1400 break; 1401 } 1402 /* 1403 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1404 * For the prefault case (!pages) we only update counts. 1405 */ 1406 if (likely(pages)) 1407 pages += ret; 1408 start += ret << PAGE_SHIFT; 1409 lock_dropped = true; 1410 1411 retry: 1412 /* 1413 * Repeat on the address that fired VM_FAULT_RETRY 1414 * with both FAULT_FLAG_ALLOW_RETRY and 1415 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1416 * by fatal signals, so we need to check it before we 1417 * start trying again otherwise it can loop forever. 1418 */ 1419 1420 if (fatal_signal_pending(current)) { 1421 if (!pages_done) 1422 pages_done = -EINTR; 1423 break; 1424 } 1425 1426 ret = mmap_read_lock_killable(mm); 1427 if (ret) { 1428 BUG_ON(ret > 0); 1429 if (!pages_done) 1430 pages_done = ret; 1431 break; 1432 } 1433 1434 *locked = 1; 1435 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1436 pages, NULL, locked); 1437 if (!*locked) { 1438 /* Continue to retry until we succeeded */ 1439 BUG_ON(ret != 0); 1440 goto retry; 1441 } 1442 if (ret != 1) { 1443 BUG_ON(ret > 1); 1444 if (!pages_done) 1445 pages_done = ret; 1446 break; 1447 } 1448 nr_pages--; 1449 pages_done++; 1450 if (!nr_pages) 1451 break; 1452 if (likely(pages)) 1453 pages++; 1454 start += PAGE_SIZE; 1455 } 1456 if (lock_dropped && *locked) { 1457 /* 1458 * We must let the caller know we temporarily dropped the lock 1459 * and so the critical section protected by it was lost. 1460 */ 1461 mmap_read_unlock(mm); 1462 *locked = 0; 1463 } 1464 return pages_done; 1465 } 1466 1467 /** 1468 * populate_vma_page_range() - populate a range of pages in the vma. 1469 * @vma: target vma 1470 * @start: start address 1471 * @end: end address 1472 * @locked: whether the mmap_lock is still held 1473 * 1474 * This takes care of mlocking the pages too if VM_LOCKED is set. 1475 * 1476 * Return either number of pages pinned in the vma, or a negative error 1477 * code on error. 1478 * 1479 * vma->vm_mm->mmap_lock must be held. 1480 * 1481 * If @locked is NULL, it may be held for read or write and will 1482 * be unperturbed. 1483 * 1484 * If @locked is non-NULL, it must held for read only and may be 1485 * released. If it's released, *@locked will be set to 0. 1486 */ 1487 long populate_vma_page_range(struct vm_area_struct *vma, 1488 unsigned long start, unsigned long end, int *locked) 1489 { 1490 struct mm_struct *mm = vma->vm_mm; 1491 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1492 int gup_flags; 1493 1494 VM_BUG_ON(!PAGE_ALIGNED(start)); 1495 VM_BUG_ON(!PAGE_ALIGNED(end)); 1496 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1497 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1498 mmap_assert_locked(mm); 1499 1500 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1501 if (vma->vm_flags & VM_LOCKONFAULT) 1502 gup_flags &= ~FOLL_POPULATE; 1503 /* 1504 * We want to touch writable mappings with a write fault in order 1505 * to break COW, except for shared mappings because these don't COW 1506 * and we would not want to dirty them for nothing. 1507 */ 1508 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1509 gup_flags |= FOLL_WRITE; 1510 1511 /* 1512 * We want mlock to succeed for regions that have any permissions 1513 * other than PROT_NONE. 1514 */ 1515 if (vma_is_accessible(vma)) 1516 gup_flags |= FOLL_FORCE; 1517 1518 /* 1519 * We made sure addr is within a VMA, so the following will 1520 * not result in a stack expansion that recurses back here. 1521 */ 1522 return __get_user_pages(mm, start, nr_pages, gup_flags, 1523 NULL, NULL, locked); 1524 } 1525 1526 /* 1527 * faultin_vma_page_range() - populate (prefault) page tables inside the 1528 * given VMA range readable/writable 1529 * 1530 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1531 * 1532 * @vma: target vma 1533 * @start: start address 1534 * @end: end address 1535 * @write: whether to prefault readable or writable 1536 * @locked: whether the mmap_lock is still held 1537 * 1538 * Returns either number of processed pages in the vma, or a negative error 1539 * code on error (see __get_user_pages()). 1540 * 1541 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1542 * covered by the VMA. 1543 * 1544 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1545 * 1546 * If @locked is non-NULL, it must held for read only and may be released. If 1547 * it's released, *@locked will be set to 0. 1548 */ 1549 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1550 unsigned long end, bool write, int *locked) 1551 { 1552 struct mm_struct *mm = vma->vm_mm; 1553 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1554 int gup_flags; 1555 1556 VM_BUG_ON(!PAGE_ALIGNED(start)); 1557 VM_BUG_ON(!PAGE_ALIGNED(end)); 1558 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1559 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1560 mmap_assert_locked(mm); 1561 1562 /* 1563 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1564 * the page dirty with FOLL_WRITE -- which doesn't make a 1565 * difference with !FOLL_FORCE, because the page is writable 1566 * in the page table. 1567 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1568 * a poisoned page. 1569 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT. 1570 * !FOLL_FORCE: Require proper access permissions. 1571 */ 1572 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON; 1573 if (write) 1574 gup_flags |= FOLL_WRITE; 1575 1576 /* 1577 * We want to report -EINVAL instead of -EFAULT for any permission 1578 * problems or incompatible mappings. 1579 */ 1580 if (check_vma_flags(vma, gup_flags)) 1581 return -EINVAL; 1582 1583 return __get_user_pages(mm, start, nr_pages, gup_flags, 1584 NULL, NULL, locked); 1585 } 1586 1587 /* 1588 * __mm_populate - populate and/or mlock pages within a range of address space. 1589 * 1590 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1591 * flags. VMAs must be already marked with the desired vm_flags, and 1592 * mmap_lock must not be held. 1593 */ 1594 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1595 { 1596 struct mm_struct *mm = current->mm; 1597 unsigned long end, nstart, nend; 1598 struct vm_area_struct *vma = NULL; 1599 int locked = 0; 1600 long ret = 0; 1601 1602 end = start + len; 1603 1604 for (nstart = start; nstart < end; nstart = nend) { 1605 /* 1606 * We want to fault in pages for [nstart; end) address range. 1607 * Find first corresponding VMA. 1608 */ 1609 if (!locked) { 1610 locked = 1; 1611 mmap_read_lock(mm); 1612 vma = find_vma(mm, nstart); 1613 } else if (nstart >= vma->vm_end) 1614 vma = vma->vm_next; 1615 if (!vma || vma->vm_start >= end) 1616 break; 1617 /* 1618 * Set [nstart; nend) to intersection of desired address 1619 * range with the first VMA. Also, skip undesirable VMA types. 1620 */ 1621 nend = min(end, vma->vm_end); 1622 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1623 continue; 1624 if (nstart < vma->vm_start) 1625 nstart = vma->vm_start; 1626 /* 1627 * Now fault in a range of pages. populate_vma_page_range() 1628 * double checks the vma flags, so that it won't mlock pages 1629 * if the vma was already munlocked. 1630 */ 1631 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1632 if (ret < 0) { 1633 if (ignore_errors) { 1634 ret = 0; 1635 continue; /* continue at next VMA */ 1636 } 1637 break; 1638 } 1639 nend = nstart + ret * PAGE_SIZE; 1640 ret = 0; 1641 } 1642 if (locked) 1643 mmap_read_unlock(mm); 1644 return ret; /* 0 or negative error code */ 1645 } 1646 #else /* CONFIG_MMU */ 1647 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1648 unsigned long nr_pages, struct page **pages, 1649 struct vm_area_struct **vmas, int *locked, 1650 unsigned int foll_flags) 1651 { 1652 struct vm_area_struct *vma; 1653 unsigned long vm_flags; 1654 long i; 1655 1656 /* calculate required read or write permissions. 1657 * If FOLL_FORCE is set, we only require the "MAY" flags. 1658 */ 1659 vm_flags = (foll_flags & FOLL_WRITE) ? 1660 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1661 vm_flags &= (foll_flags & FOLL_FORCE) ? 1662 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1663 1664 for (i = 0; i < nr_pages; i++) { 1665 vma = find_vma(mm, start); 1666 if (!vma) 1667 goto finish_or_fault; 1668 1669 /* protect what we can, including chardevs */ 1670 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1671 !(vm_flags & vma->vm_flags)) 1672 goto finish_or_fault; 1673 1674 if (pages) { 1675 pages[i] = virt_to_page(start); 1676 if (pages[i]) 1677 get_page(pages[i]); 1678 } 1679 if (vmas) 1680 vmas[i] = vma; 1681 start = (start + PAGE_SIZE) & PAGE_MASK; 1682 } 1683 1684 return i; 1685 1686 finish_or_fault: 1687 return i ? : -EFAULT; 1688 } 1689 #endif /* !CONFIG_MMU */ 1690 1691 /** 1692 * fault_in_writeable - fault in userspace address range for writing 1693 * @uaddr: start of address range 1694 * @size: size of address range 1695 * 1696 * Returns the number of bytes not faulted in (like copy_to_user() and 1697 * copy_from_user()). 1698 */ 1699 size_t fault_in_writeable(char __user *uaddr, size_t size) 1700 { 1701 char __user *start = uaddr, *end; 1702 1703 if (unlikely(size == 0)) 1704 return 0; 1705 if (!user_write_access_begin(uaddr, size)) 1706 return size; 1707 if (!PAGE_ALIGNED(uaddr)) { 1708 unsafe_put_user(0, uaddr, out); 1709 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1710 } 1711 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1712 if (unlikely(end < start)) 1713 end = NULL; 1714 while (uaddr != end) { 1715 unsafe_put_user(0, uaddr, out); 1716 uaddr += PAGE_SIZE; 1717 } 1718 1719 out: 1720 user_write_access_end(); 1721 if (size > uaddr - start) 1722 return size - (uaddr - start); 1723 return 0; 1724 } 1725 EXPORT_SYMBOL(fault_in_writeable); 1726 1727 /* 1728 * fault_in_safe_writeable - fault in an address range for writing 1729 * @uaddr: start of address range 1730 * @size: length of address range 1731 * 1732 * Faults in an address range using get_user_pages, i.e., without triggering 1733 * hardware page faults. This is primarily useful when we already know that 1734 * some or all of the pages in the address range aren't in memory. 1735 * 1736 * Other than fault_in_writeable(), this function is non-destructive. 1737 * 1738 * Note that we don't pin or otherwise hold the pages referenced that we fault 1739 * in. There's no guarantee that they'll stay in memory for any duration of 1740 * time. 1741 * 1742 * Returns the number of bytes not faulted in, like copy_to_user() and 1743 * copy_from_user(). 1744 */ 1745 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1746 { 1747 unsigned long start = (unsigned long)untagged_addr(uaddr); 1748 unsigned long end, nstart, nend; 1749 struct mm_struct *mm = current->mm; 1750 struct vm_area_struct *vma = NULL; 1751 int locked = 0; 1752 1753 nstart = start & PAGE_MASK; 1754 end = PAGE_ALIGN(start + size); 1755 if (end < nstart) 1756 end = 0; 1757 for (; nstart != end; nstart = nend) { 1758 unsigned long nr_pages; 1759 long ret; 1760 1761 if (!locked) { 1762 locked = 1; 1763 mmap_read_lock(mm); 1764 vma = find_vma(mm, nstart); 1765 } else if (nstart >= vma->vm_end) 1766 vma = vma->vm_next; 1767 if (!vma || vma->vm_start >= end) 1768 break; 1769 nend = end ? min(end, vma->vm_end) : vma->vm_end; 1770 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1771 continue; 1772 if (nstart < vma->vm_start) 1773 nstart = vma->vm_start; 1774 nr_pages = (nend - nstart) / PAGE_SIZE; 1775 ret = __get_user_pages_locked(mm, nstart, nr_pages, 1776 NULL, NULL, &locked, 1777 FOLL_TOUCH | FOLL_WRITE); 1778 if (ret <= 0) 1779 break; 1780 nend = nstart + ret * PAGE_SIZE; 1781 } 1782 if (locked) 1783 mmap_read_unlock(mm); 1784 if (nstart == end) 1785 return 0; 1786 return size - min_t(size_t, nstart - start, size); 1787 } 1788 EXPORT_SYMBOL(fault_in_safe_writeable); 1789 1790 /** 1791 * fault_in_readable - fault in userspace address range for reading 1792 * @uaddr: start of user address range 1793 * @size: size of user address range 1794 * 1795 * Returns the number of bytes not faulted in (like copy_to_user() and 1796 * copy_from_user()). 1797 */ 1798 size_t fault_in_readable(const char __user *uaddr, size_t size) 1799 { 1800 const char __user *start = uaddr, *end; 1801 volatile char c; 1802 1803 if (unlikely(size == 0)) 1804 return 0; 1805 if (!user_read_access_begin(uaddr, size)) 1806 return size; 1807 if (!PAGE_ALIGNED(uaddr)) { 1808 unsafe_get_user(c, uaddr, out); 1809 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1810 } 1811 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1812 if (unlikely(end < start)) 1813 end = NULL; 1814 while (uaddr != end) { 1815 unsafe_get_user(c, uaddr, out); 1816 uaddr += PAGE_SIZE; 1817 } 1818 1819 out: 1820 user_read_access_end(); 1821 (void)c; 1822 if (size > uaddr - start) 1823 return size - (uaddr - start); 1824 return 0; 1825 } 1826 EXPORT_SYMBOL(fault_in_readable); 1827 1828 /** 1829 * get_dump_page() - pin user page in memory while writing it to core dump 1830 * @addr: user address 1831 * 1832 * Returns struct page pointer of user page pinned for dump, 1833 * to be freed afterwards by put_page(). 1834 * 1835 * Returns NULL on any kind of failure - a hole must then be inserted into 1836 * the corefile, to preserve alignment with its headers; and also returns 1837 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1838 * allowing a hole to be left in the corefile to save disk space. 1839 * 1840 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1841 */ 1842 #ifdef CONFIG_ELF_CORE 1843 struct page *get_dump_page(unsigned long addr) 1844 { 1845 struct mm_struct *mm = current->mm; 1846 struct page *page; 1847 int locked = 1; 1848 int ret; 1849 1850 if (mmap_read_lock_killable(mm)) 1851 return NULL; 1852 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1853 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1854 if (locked) 1855 mmap_read_unlock(mm); 1856 return (ret == 1) ? page : NULL; 1857 } 1858 #endif /* CONFIG_ELF_CORE */ 1859 1860 #ifdef CONFIG_MIGRATION 1861 /* 1862 * Check whether all pages are pinnable, if so return number of pages. If some 1863 * pages are not pinnable, migrate them, and unpin all pages. Return zero if 1864 * pages were migrated, or if some pages were not successfully isolated. 1865 * Return negative error if migration fails. 1866 */ 1867 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1868 struct page **pages, 1869 unsigned int gup_flags) 1870 { 1871 unsigned long i; 1872 unsigned long isolation_error_count = 0; 1873 bool drain_allow = true; 1874 LIST_HEAD(movable_page_list); 1875 long ret = 0; 1876 struct page *prev_head = NULL; 1877 struct page *head; 1878 struct migration_target_control mtc = { 1879 .nid = NUMA_NO_NODE, 1880 .gfp_mask = GFP_USER | __GFP_NOWARN, 1881 }; 1882 1883 for (i = 0; i < nr_pages; i++) { 1884 head = compound_head(pages[i]); 1885 if (head == prev_head) 1886 continue; 1887 prev_head = head; 1888 /* 1889 * If we get a movable page, since we are going to be pinning 1890 * these entries, try to move them out if possible. 1891 */ 1892 if (!is_pinnable_page(head)) { 1893 if (PageHuge(head)) { 1894 if (!isolate_huge_page(head, &movable_page_list)) 1895 isolation_error_count++; 1896 } else { 1897 if (!PageLRU(head) && drain_allow) { 1898 lru_add_drain_all(); 1899 drain_allow = false; 1900 } 1901 1902 if (isolate_lru_page(head)) { 1903 isolation_error_count++; 1904 continue; 1905 } 1906 list_add_tail(&head->lru, &movable_page_list); 1907 mod_node_page_state(page_pgdat(head), 1908 NR_ISOLATED_ANON + 1909 page_is_file_lru(head), 1910 thp_nr_pages(head)); 1911 } 1912 } 1913 } 1914 1915 /* 1916 * If list is empty, and no isolation errors, means that all pages are 1917 * in the correct zone. 1918 */ 1919 if (list_empty(&movable_page_list) && !isolation_error_count) 1920 return nr_pages; 1921 1922 if (gup_flags & FOLL_PIN) { 1923 unpin_user_pages(pages, nr_pages); 1924 } else { 1925 for (i = 0; i < nr_pages; i++) 1926 put_page(pages[i]); 1927 } 1928 if (!list_empty(&movable_page_list)) { 1929 ret = migrate_pages(&movable_page_list, alloc_migration_target, 1930 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1931 MR_LONGTERM_PIN, NULL); 1932 if (ret && !list_empty(&movable_page_list)) 1933 putback_movable_pages(&movable_page_list); 1934 } 1935 1936 return ret > 0 ? -ENOMEM : ret; 1937 } 1938 #else 1939 static long check_and_migrate_movable_pages(unsigned long nr_pages, 1940 struct page **pages, 1941 unsigned int gup_flags) 1942 { 1943 return nr_pages; 1944 } 1945 #endif /* CONFIG_MIGRATION */ 1946 1947 /* 1948 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1949 * allows us to process the FOLL_LONGTERM flag. 1950 */ 1951 static long __gup_longterm_locked(struct mm_struct *mm, 1952 unsigned long start, 1953 unsigned long nr_pages, 1954 struct page **pages, 1955 struct vm_area_struct **vmas, 1956 unsigned int gup_flags) 1957 { 1958 unsigned int flags; 1959 long rc; 1960 1961 if (!(gup_flags & FOLL_LONGTERM)) 1962 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1963 NULL, gup_flags); 1964 flags = memalloc_pin_save(); 1965 do { 1966 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 1967 NULL, gup_flags); 1968 if (rc <= 0) 1969 break; 1970 rc = check_and_migrate_movable_pages(rc, pages, gup_flags); 1971 } while (!rc); 1972 memalloc_pin_restore(flags); 1973 1974 return rc; 1975 } 1976 1977 static bool is_valid_gup_flags(unsigned int gup_flags) 1978 { 1979 /* 1980 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1981 * never directly by the caller, so enforce that with an assertion: 1982 */ 1983 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1984 return false; 1985 /* 1986 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 1987 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 1988 * FOLL_PIN. 1989 */ 1990 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1991 return false; 1992 1993 return true; 1994 } 1995 1996 #ifdef CONFIG_MMU 1997 static long __get_user_pages_remote(struct mm_struct *mm, 1998 unsigned long start, unsigned long nr_pages, 1999 unsigned int gup_flags, struct page **pages, 2000 struct vm_area_struct **vmas, int *locked) 2001 { 2002 /* 2003 * Parts of FOLL_LONGTERM behavior are incompatible with 2004 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2005 * vmas. However, this only comes up if locked is set, and there are 2006 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2007 * allow what we can. 2008 */ 2009 if (gup_flags & FOLL_LONGTERM) { 2010 if (WARN_ON_ONCE(locked)) 2011 return -EINVAL; 2012 /* 2013 * This will check the vmas (even if our vmas arg is NULL) 2014 * and return -ENOTSUPP if DAX isn't allowed in this case: 2015 */ 2016 return __gup_longterm_locked(mm, start, nr_pages, pages, 2017 vmas, gup_flags | FOLL_TOUCH | 2018 FOLL_REMOTE); 2019 } 2020 2021 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2022 locked, 2023 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2024 } 2025 2026 /** 2027 * get_user_pages_remote() - pin user pages in memory 2028 * @mm: mm_struct of target mm 2029 * @start: starting user address 2030 * @nr_pages: number of pages from start to pin 2031 * @gup_flags: flags modifying lookup behaviour 2032 * @pages: array that receives pointers to the pages pinned. 2033 * Should be at least nr_pages long. Or NULL, if caller 2034 * only intends to ensure the pages are faulted in. 2035 * @vmas: array of pointers to vmas corresponding to each page. 2036 * Or NULL if the caller does not require them. 2037 * @locked: pointer to lock flag indicating whether lock is held and 2038 * subsequently whether VM_FAULT_RETRY functionality can be 2039 * utilised. Lock must initially be held. 2040 * 2041 * Returns either number of pages pinned (which may be less than the 2042 * number requested), or an error. Details about the return value: 2043 * 2044 * -- If nr_pages is 0, returns 0. 2045 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2046 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2047 * pages pinned. Again, this may be less than nr_pages. 2048 * 2049 * The caller is responsible for releasing returned @pages, via put_page(). 2050 * 2051 * @vmas are valid only as long as mmap_lock is held. 2052 * 2053 * Must be called with mmap_lock held for read or write. 2054 * 2055 * get_user_pages_remote walks a process's page tables and takes a reference 2056 * to each struct page that each user address corresponds to at a given 2057 * instant. That is, it takes the page that would be accessed if a user 2058 * thread accesses the given user virtual address at that instant. 2059 * 2060 * This does not guarantee that the page exists in the user mappings when 2061 * get_user_pages_remote returns, and there may even be a completely different 2062 * page there in some cases (eg. if mmapped pagecache has been invalidated 2063 * and subsequently re faulted). However it does guarantee that the page 2064 * won't be freed completely. And mostly callers simply care that the page 2065 * contains data that was valid *at some point in time*. Typically, an IO 2066 * or similar operation cannot guarantee anything stronger anyway because 2067 * locks can't be held over the syscall boundary. 2068 * 2069 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2070 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2071 * be called after the page is finished with, and before put_page is called. 2072 * 2073 * get_user_pages_remote is typically used for fewer-copy IO operations, 2074 * to get a handle on the memory by some means other than accesses 2075 * via the user virtual addresses. The pages may be submitted for 2076 * DMA to devices or accessed via their kernel linear mapping (via the 2077 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2078 * 2079 * See also get_user_pages_fast, for performance critical applications. 2080 * 2081 * get_user_pages_remote should be phased out in favor of 2082 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2083 * should use get_user_pages_remote because it cannot pass 2084 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2085 */ 2086 long get_user_pages_remote(struct mm_struct *mm, 2087 unsigned long start, unsigned long nr_pages, 2088 unsigned int gup_flags, struct page **pages, 2089 struct vm_area_struct **vmas, int *locked) 2090 { 2091 if (!is_valid_gup_flags(gup_flags)) 2092 return -EINVAL; 2093 2094 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2095 pages, vmas, locked); 2096 } 2097 EXPORT_SYMBOL(get_user_pages_remote); 2098 2099 #else /* CONFIG_MMU */ 2100 long get_user_pages_remote(struct mm_struct *mm, 2101 unsigned long start, unsigned long nr_pages, 2102 unsigned int gup_flags, struct page **pages, 2103 struct vm_area_struct **vmas, int *locked) 2104 { 2105 return 0; 2106 } 2107 2108 static long __get_user_pages_remote(struct mm_struct *mm, 2109 unsigned long start, unsigned long nr_pages, 2110 unsigned int gup_flags, struct page **pages, 2111 struct vm_area_struct **vmas, int *locked) 2112 { 2113 return 0; 2114 } 2115 #endif /* !CONFIG_MMU */ 2116 2117 /** 2118 * get_user_pages() - pin user pages in memory 2119 * @start: starting user address 2120 * @nr_pages: number of pages from start to pin 2121 * @gup_flags: flags modifying lookup behaviour 2122 * @pages: array that receives pointers to the pages pinned. 2123 * Should be at least nr_pages long. Or NULL, if caller 2124 * only intends to ensure the pages are faulted in. 2125 * @vmas: array of pointers to vmas corresponding to each page. 2126 * Or NULL if the caller does not require them. 2127 * 2128 * This is the same as get_user_pages_remote(), just with a less-flexible 2129 * calling convention where we assume that the mm being operated on belongs to 2130 * the current task, and doesn't allow passing of a locked parameter. We also 2131 * obviously don't pass FOLL_REMOTE in here. 2132 */ 2133 long get_user_pages(unsigned long start, unsigned long nr_pages, 2134 unsigned int gup_flags, struct page **pages, 2135 struct vm_area_struct **vmas) 2136 { 2137 if (!is_valid_gup_flags(gup_flags)) 2138 return -EINVAL; 2139 2140 return __gup_longterm_locked(current->mm, start, nr_pages, 2141 pages, vmas, gup_flags | FOLL_TOUCH); 2142 } 2143 EXPORT_SYMBOL(get_user_pages); 2144 2145 /** 2146 * get_user_pages_locked() - variant of get_user_pages() 2147 * 2148 * @start: starting user address 2149 * @nr_pages: number of pages from start to pin 2150 * @gup_flags: flags modifying lookup behaviour 2151 * @pages: array that receives pointers to the pages pinned. 2152 * Should be at least nr_pages long. Or NULL, if caller 2153 * only intends to ensure the pages are faulted in. 2154 * @locked: pointer to lock flag indicating whether lock is held and 2155 * subsequently whether VM_FAULT_RETRY functionality can be 2156 * utilised. Lock must initially be held. 2157 * 2158 * It is suitable to replace the form: 2159 * 2160 * mmap_read_lock(mm); 2161 * do_something() 2162 * get_user_pages(mm, ..., pages, NULL); 2163 * mmap_read_unlock(mm); 2164 * 2165 * to: 2166 * 2167 * int locked = 1; 2168 * mmap_read_lock(mm); 2169 * do_something() 2170 * get_user_pages_locked(mm, ..., pages, &locked); 2171 * if (locked) 2172 * mmap_read_unlock(mm); 2173 * 2174 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2175 * paths better by using either get_user_pages_locked() or 2176 * get_user_pages_unlocked(). 2177 * 2178 */ 2179 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2180 unsigned int gup_flags, struct page **pages, 2181 int *locked) 2182 { 2183 /* 2184 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2185 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2186 * vmas. As there are no users of this flag in this call we simply 2187 * disallow this option for now. 2188 */ 2189 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2190 return -EINVAL; 2191 /* 2192 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2193 * never directly by the caller, so enforce that: 2194 */ 2195 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2196 return -EINVAL; 2197 2198 return __get_user_pages_locked(current->mm, start, nr_pages, 2199 pages, NULL, locked, 2200 gup_flags | FOLL_TOUCH); 2201 } 2202 EXPORT_SYMBOL(get_user_pages_locked); 2203 2204 /* 2205 * get_user_pages_unlocked() is suitable to replace the form: 2206 * 2207 * mmap_read_lock(mm); 2208 * get_user_pages(mm, ..., pages, NULL); 2209 * mmap_read_unlock(mm); 2210 * 2211 * with: 2212 * 2213 * get_user_pages_unlocked(mm, ..., pages); 2214 * 2215 * It is functionally equivalent to get_user_pages_fast so 2216 * get_user_pages_fast should be used instead if specific gup_flags 2217 * (e.g. FOLL_FORCE) are not required. 2218 */ 2219 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2220 struct page **pages, unsigned int gup_flags) 2221 { 2222 struct mm_struct *mm = current->mm; 2223 int locked = 1; 2224 long ret; 2225 2226 /* 2227 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2228 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2229 * vmas. As there are no users of this flag in this call we simply 2230 * disallow this option for now. 2231 */ 2232 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2233 return -EINVAL; 2234 2235 mmap_read_lock(mm); 2236 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2237 &locked, gup_flags | FOLL_TOUCH); 2238 if (locked) 2239 mmap_read_unlock(mm); 2240 return ret; 2241 } 2242 EXPORT_SYMBOL(get_user_pages_unlocked); 2243 2244 /* 2245 * Fast GUP 2246 * 2247 * get_user_pages_fast attempts to pin user pages by walking the page 2248 * tables directly and avoids taking locks. Thus the walker needs to be 2249 * protected from page table pages being freed from under it, and should 2250 * block any THP splits. 2251 * 2252 * One way to achieve this is to have the walker disable interrupts, and 2253 * rely on IPIs from the TLB flushing code blocking before the page table 2254 * pages are freed. This is unsuitable for architectures that do not need 2255 * to broadcast an IPI when invalidating TLBs. 2256 * 2257 * Another way to achieve this is to batch up page table containing pages 2258 * belonging to more than one mm_user, then rcu_sched a callback to free those 2259 * pages. Disabling interrupts will allow the fast_gup walker to both block 2260 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2261 * (which is a relatively rare event). The code below adopts this strategy. 2262 * 2263 * Before activating this code, please be aware that the following assumptions 2264 * are currently made: 2265 * 2266 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2267 * free pages containing page tables or TLB flushing requires IPI broadcast. 2268 * 2269 * *) ptes can be read atomically by the architecture. 2270 * 2271 * *) access_ok is sufficient to validate userspace address ranges. 2272 * 2273 * The last two assumptions can be relaxed by the addition of helper functions. 2274 * 2275 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2276 */ 2277 #ifdef CONFIG_HAVE_FAST_GUP 2278 2279 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2280 unsigned int flags, 2281 struct page **pages) 2282 { 2283 while ((*nr) - nr_start) { 2284 struct page *page = pages[--(*nr)]; 2285 2286 ClearPageReferenced(page); 2287 if (flags & FOLL_PIN) 2288 unpin_user_page(page); 2289 else 2290 put_page(page); 2291 } 2292 } 2293 2294 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2295 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2296 unsigned int flags, struct page **pages, int *nr) 2297 { 2298 struct dev_pagemap *pgmap = NULL; 2299 int nr_start = *nr, ret = 0; 2300 pte_t *ptep, *ptem; 2301 2302 ptem = ptep = pte_offset_map(&pmd, addr); 2303 do { 2304 pte_t pte = ptep_get_lockless(ptep); 2305 struct page *head, *page; 2306 2307 /* 2308 * Similar to the PMD case below, NUMA hinting must take slow 2309 * path using the pte_protnone check. 2310 */ 2311 if (pte_protnone(pte)) 2312 goto pte_unmap; 2313 2314 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2315 goto pte_unmap; 2316 2317 if (pte_devmap(pte)) { 2318 if (unlikely(flags & FOLL_LONGTERM)) 2319 goto pte_unmap; 2320 2321 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2322 if (unlikely(!pgmap)) { 2323 undo_dev_pagemap(nr, nr_start, flags, pages); 2324 goto pte_unmap; 2325 } 2326 } else if (pte_special(pte)) 2327 goto pte_unmap; 2328 2329 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2330 page = pte_page(pte); 2331 2332 head = try_grab_compound_head(page, 1, flags); 2333 if (!head) 2334 goto pte_unmap; 2335 2336 if (unlikely(page_is_secretmem(page))) { 2337 put_compound_head(head, 1, flags); 2338 goto pte_unmap; 2339 } 2340 2341 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2342 put_compound_head(head, 1, flags); 2343 goto pte_unmap; 2344 } 2345 2346 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2347 2348 /* 2349 * We need to make the page accessible if and only if we are 2350 * going to access its content (the FOLL_PIN case). Please 2351 * see Documentation/core-api/pin_user_pages.rst for 2352 * details. 2353 */ 2354 if (flags & FOLL_PIN) { 2355 ret = arch_make_page_accessible(page); 2356 if (ret) { 2357 unpin_user_page(page); 2358 goto pte_unmap; 2359 } 2360 } 2361 SetPageReferenced(page); 2362 pages[*nr] = page; 2363 (*nr)++; 2364 2365 } while (ptep++, addr += PAGE_SIZE, addr != end); 2366 2367 ret = 1; 2368 2369 pte_unmap: 2370 if (pgmap) 2371 put_dev_pagemap(pgmap); 2372 pte_unmap(ptem); 2373 return ret; 2374 } 2375 #else 2376 2377 /* 2378 * If we can't determine whether or not a pte is special, then fail immediately 2379 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2380 * to be special. 2381 * 2382 * For a futex to be placed on a THP tail page, get_futex_key requires a 2383 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2384 * useful to have gup_huge_pmd even if we can't operate on ptes. 2385 */ 2386 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2387 unsigned int flags, struct page **pages, int *nr) 2388 { 2389 return 0; 2390 } 2391 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2392 2393 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2394 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2395 unsigned long end, unsigned int flags, 2396 struct page **pages, int *nr) 2397 { 2398 int nr_start = *nr; 2399 struct dev_pagemap *pgmap = NULL; 2400 2401 do { 2402 struct page *page = pfn_to_page(pfn); 2403 2404 pgmap = get_dev_pagemap(pfn, pgmap); 2405 if (unlikely(!pgmap)) { 2406 undo_dev_pagemap(nr, nr_start, flags, pages); 2407 break; 2408 } 2409 SetPageReferenced(page); 2410 pages[*nr] = page; 2411 if (unlikely(!try_grab_page(page, flags))) { 2412 undo_dev_pagemap(nr, nr_start, flags, pages); 2413 break; 2414 } 2415 (*nr)++; 2416 pfn++; 2417 } while (addr += PAGE_SIZE, addr != end); 2418 2419 put_dev_pagemap(pgmap); 2420 return addr == end; 2421 } 2422 2423 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2424 unsigned long end, unsigned int flags, 2425 struct page **pages, int *nr) 2426 { 2427 unsigned long fault_pfn; 2428 int nr_start = *nr; 2429 2430 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2431 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2432 return 0; 2433 2434 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2435 undo_dev_pagemap(nr, nr_start, flags, pages); 2436 return 0; 2437 } 2438 return 1; 2439 } 2440 2441 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2442 unsigned long end, unsigned int flags, 2443 struct page **pages, int *nr) 2444 { 2445 unsigned long fault_pfn; 2446 int nr_start = *nr; 2447 2448 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2449 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2450 return 0; 2451 2452 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2453 undo_dev_pagemap(nr, nr_start, flags, pages); 2454 return 0; 2455 } 2456 return 1; 2457 } 2458 #else 2459 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2460 unsigned long end, unsigned int flags, 2461 struct page **pages, int *nr) 2462 { 2463 BUILD_BUG(); 2464 return 0; 2465 } 2466 2467 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2468 unsigned long end, unsigned int flags, 2469 struct page **pages, int *nr) 2470 { 2471 BUILD_BUG(); 2472 return 0; 2473 } 2474 #endif 2475 2476 static int record_subpages(struct page *page, unsigned long addr, 2477 unsigned long end, struct page **pages) 2478 { 2479 int nr; 2480 2481 for (nr = 0; addr != end; addr += PAGE_SIZE) 2482 pages[nr++] = page++; 2483 2484 return nr; 2485 } 2486 2487 #ifdef CONFIG_ARCH_HAS_HUGEPD 2488 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2489 unsigned long sz) 2490 { 2491 unsigned long __boundary = (addr + sz) & ~(sz-1); 2492 return (__boundary - 1 < end - 1) ? __boundary : end; 2493 } 2494 2495 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2496 unsigned long end, unsigned int flags, 2497 struct page **pages, int *nr) 2498 { 2499 unsigned long pte_end; 2500 struct page *head, *page; 2501 pte_t pte; 2502 int refs; 2503 2504 pte_end = (addr + sz) & ~(sz-1); 2505 if (pte_end < end) 2506 end = pte_end; 2507 2508 pte = huge_ptep_get(ptep); 2509 2510 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2511 return 0; 2512 2513 /* hugepages are never "special" */ 2514 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2515 2516 head = pte_page(pte); 2517 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2518 refs = record_subpages(page, addr, end, pages + *nr); 2519 2520 head = try_grab_compound_head(head, refs, flags); 2521 if (!head) 2522 return 0; 2523 2524 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2525 put_compound_head(head, refs, flags); 2526 return 0; 2527 } 2528 2529 *nr += refs; 2530 SetPageReferenced(head); 2531 return 1; 2532 } 2533 2534 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2535 unsigned int pdshift, unsigned long end, unsigned int flags, 2536 struct page **pages, int *nr) 2537 { 2538 pte_t *ptep; 2539 unsigned long sz = 1UL << hugepd_shift(hugepd); 2540 unsigned long next; 2541 2542 ptep = hugepte_offset(hugepd, addr, pdshift); 2543 do { 2544 next = hugepte_addr_end(addr, end, sz); 2545 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2546 return 0; 2547 } while (ptep++, addr = next, addr != end); 2548 2549 return 1; 2550 } 2551 #else 2552 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2553 unsigned int pdshift, unsigned long end, unsigned int flags, 2554 struct page **pages, int *nr) 2555 { 2556 return 0; 2557 } 2558 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2559 2560 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2561 unsigned long end, unsigned int flags, 2562 struct page **pages, int *nr) 2563 { 2564 struct page *head, *page; 2565 int refs; 2566 2567 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2568 return 0; 2569 2570 if (pmd_devmap(orig)) { 2571 if (unlikely(flags & FOLL_LONGTERM)) 2572 return 0; 2573 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2574 pages, nr); 2575 } 2576 2577 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2578 refs = record_subpages(page, addr, end, pages + *nr); 2579 2580 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2581 if (!head) 2582 return 0; 2583 2584 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2585 put_compound_head(head, refs, flags); 2586 return 0; 2587 } 2588 2589 *nr += refs; 2590 SetPageReferenced(head); 2591 return 1; 2592 } 2593 2594 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2595 unsigned long end, unsigned int flags, 2596 struct page **pages, int *nr) 2597 { 2598 struct page *head, *page; 2599 int refs; 2600 2601 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2602 return 0; 2603 2604 if (pud_devmap(orig)) { 2605 if (unlikely(flags & FOLL_LONGTERM)) 2606 return 0; 2607 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2608 pages, nr); 2609 } 2610 2611 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2612 refs = record_subpages(page, addr, end, pages + *nr); 2613 2614 head = try_grab_compound_head(pud_page(orig), refs, flags); 2615 if (!head) 2616 return 0; 2617 2618 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2619 put_compound_head(head, refs, flags); 2620 return 0; 2621 } 2622 2623 *nr += refs; 2624 SetPageReferenced(head); 2625 return 1; 2626 } 2627 2628 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2629 unsigned long end, unsigned int flags, 2630 struct page **pages, int *nr) 2631 { 2632 int refs; 2633 struct page *head, *page; 2634 2635 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2636 return 0; 2637 2638 BUILD_BUG_ON(pgd_devmap(orig)); 2639 2640 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2641 refs = record_subpages(page, addr, end, pages + *nr); 2642 2643 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2644 if (!head) 2645 return 0; 2646 2647 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2648 put_compound_head(head, refs, flags); 2649 return 0; 2650 } 2651 2652 *nr += refs; 2653 SetPageReferenced(head); 2654 return 1; 2655 } 2656 2657 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2658 unsigned int flags, struct page **pages, int *nr) 2659 { 2660 unsigned long next; 2661 pmd_t *pmdp; 2662 2663 pmdp = pmd_offset_lockless(pudp, pud, addr); 2664 do { 2665 pmd_t pmd = READ_ONCE(*pmdp); 2666 2667 next = pmd_addr_end(addr, end); 2668 if (!pmd_present(pmd)) 2669 return 0; 2670 2671 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2672 pmd_devmap(pmd))) { 2673 /* 2674 * NUMA hinting faults need to be handled in the GUP 2675 * slowpath for accounting purposes and so that they 2676 * can be serialised against THP migration. 2677 */ 2678 if (pmd_protnone(pmd)) 2679 return 0; 2680 2681 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2682 pages, nr)) 2683 return 0; 2684 2685 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2686 /* 2687 * architecture have different format for hugetlbfs 2688 * pmd format and THP pmd format 2689 */ 2690 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2691 PMD_SHIFT, next, flags, pages, nr)) 2692 return 0; 2693 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2694 return 0; 2695 } while (pmdp++, addr = next, addr != end); 2696 2697 return 1; 2698 } 2699 2700 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2701 unsigned int flags, struct page **pages, int *nr) 2702 { 2703 unsigned long next; 2704 pud_t *pudp; 2705 2706 pudp = pud_offset_lockless(p4dp, p4d, addr); 2707 do { 2708 pud_t pud = READ_ONCE(*pudp); 2709 2710 next = pud_addr_end(addr, end); 2711 if (unlikely(!pud_present(pud))) 2712 return 0; 2713 if (unlikely(pud_huge(pud))) { 2714 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2715 pages, nr)) 2716 return 0; 2717 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2718 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2719 PUD_SHIFT, next, flags, pages, nr)) 2720 return 0; 2721 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2722 return 0; 2723 } while (pudp++, addr = next, addr != end); 2724 2725 return 1; 2726 } 2727 2728 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2729 unsigned int flags, struct page **pages, int *nr) 2730 { 2731 unsigned long next; 2732 p4d_t *p4dp; 2733 2734 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2735 do { 2736 p4d_t p4d = READ_ONCE(*p4dp); 2737 2738 next = p4d_addr_end(addr, end); 2739 if (p4d_none(p4d)) 2740 return 0; 2741 BUILD_BUG_ON(p4d_huge(p4d)); 2742 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2743 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2744 P4D_SHIFT, next, flags, pages, nr)) 2745 return 0; 2746 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2747 return 0; 2748 } while (p4dp++, addr = next, addr != end); 2749 2750 return 1; 2751 } 2752 2753 static void gup_pgd_range(unsigned long addr, unsigned long end, 2754 unsigned int flags, struct page **pages, int *nr) 2755 { 2756 unsigned long next; 2757 pgd_t *pgdp; 2758 2759 pgdp = pgd_offset(current->mm, addr); 2760 do { 2761 pgd_t pgd = READ_ONCE(*pgdp); 2762 2763 next = pgd_addr_end(addr, end); 2764 if (pgd_none(pgd)) 2765 return; 2766 if (unlikely(pgd_huge(pgd))) { 2767 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2768 pages, nr)) 2769 return; 2770 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2771 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2772 PGDIR_SHIFT, next, flags, pages, nr)) 2773 return; 2774 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2775 return; 2776 } while (pgdp++, addr = next, addr != end); 2777 } 2778 #else 2779 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2780 unsigned int flags, struct page **pages, int *nr) 2781 { 2782 } 2783 #endif /* CONFIG_HAVE_FAST_GUP */ 2784 2785 #ifndef gup_fast_permitted 2786 /* 2787 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2788 * we need to fall back to the slow version: 2789 */ 2790 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2791 { 2792 return true; 2793 } 2794 #endif 2795 2796 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2797 unsigned int gup_flags, struct page **pages) 2798 { 2799 int ret; 2800 2801 /* 2802 * FIXME: FOLL_LONGTERM does not work with 2803 * get_user_pages_unlocked() (see comments in that function) 2804 */ 2805 if (gup_flags & FOLL_LONGTERM) { 2806 mmap_read_lock(current->mm); 2807 ret = __gup_longterm_locked(current->mm, 2808 start, nr_pages, 2809 pages, NULL, gup_flags); 2810 mmap_read_unlock(current->mm); 2811 } else { 2812 ret = get_user_pages_unlocked(start, nr_pages, 2813 pages, gup_flags); 2814 } 2815 2816 return ret; 2817 } 2818 2819 static unsigned long lockless_pages_from_mm(unsigned long start, 2820 unsigned long end, 2821 unsigned int gup_flags, 2822 struct page **pages) 2823 { 2824 unsigned long flags; 2825 int nr_pinned = 0; 2826 unsigned seq; 2827 2828 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2829 !gup_fast_permitted(start, end)) 2830 return 0; 2831 2832 if (gup_flags & FOLL_PIN) { 2833 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2834 if (seq & 1) 2835 return 0; 2836 } 2837 2838 /* 2839 * Disable interrupts. The nested form is used, in order to allow full, 2840 * general purpose use of this routine. 2841 * 2842 * With interrupts disabled, we block page table pages from being freed 2843 * from under us. See struct mmu_table_batch comments in 2844 * include/asm-generic/tlb.h for more details. 2845 * 2846 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2847 * that come from THPs splitting. 2848 */ 2849 local_irq_save(flags); 2850 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2851 local_irq_restore(flags); 2852 2853 /* 2854 * When pinning pages for DMA there could be a concurrent write protect 2855 * from fork() via copy_page_range(), in this case always fail fast GUP. 2856 */ 2857 if (gup_flags & FOLL_PIN) { 2858 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2859 unpin_user_pages(pages, nr_pinned); 2860 return 0; 2861 } 2862 } 2863 return nr_pinned; 2864 } 2865 2866 static int internal_get_user_pages_fast(unsigned long start, 2867 unsigned long nr_pages, 2868 unsigned int gup_flags, 2869 struct page **pages) 2870 { 2871 unsigned long len, end; 2872 unsigned long nr_pinned; 2873 int ret; 2874 2875 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2876 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2877 FOLL_FAST_ONLY | FOLL_NOFAULT))) 2878 return -EINVAL; 2879 2880 if (gup_flags & FOLL_PIN) 2881 mm_set_has_pinned_flag(¤t->mm->flags); 2882 2883 if (!(gup_flags & FOLL_FAST_ONLY)) 2884 might_lock_read(¤t->mm->mmap_lock); 2885 2886 start = untagged_addr(start) & PAGE_MASK; 2887 len = nr_pages << PAGE_SHIFT; 2888 if (check_add_overflow(start, len, &end)) 2889 return 0; 2890 if (unlikely(!access_ok((void __user *)start, len))) 2891 return -EFAULT; 2892 2893 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2894 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2895 return nr_pinned; 2896 2897 /* Slow path: try to get the remaining pages with get_user_pages */ 2898 start += nr_pinned << PAGE_SHIFT; 2899 pages += nr_pinned; 2900 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 2901 pages); 2902 if (ret < 0) { 2903 /* 2904 * The caller has to unpin the pages we already pinned so 2905 * returning -errno is not an option 2906 */ 2907 if (nr_pinned) 2908 return nr_pinned; 2909 return ret; 2910 } 2911 return ret + nr_pinned; 2912 } 2913 2914 /** 2915 * get_user_pages_fast_only() - pin user pages in memory 2916 * @start: starting user address 2917 * @nr_pages: number of pages from start to pin 2918 * @gup_flags: flags modifying pin behaviour 2919 * @pages: array that receives pointers to the pages pinned. 2920 * Should be at least nr_pages long. 2921 * 2922 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2923 * the regular GUP. 2924 * Note a difference with get_user_pages_fast: this always returns the 2925 * number of pages pinned, 0 if no pages were pinned. 2926 * 2927 * If the architecture does not support this function, simply return with no 2928 * pages pinned. 2929 * 2930 * Careful, careful! COW breaking can go either way, so a non-write 2931 * access can get ambiguous page results. If you call this function without 2932 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2933 */ 2934 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2935 unsigned int gup_flags, struct page **pages) 2936 { 2937 int nr_pinned; 2938 /* 2939 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2940 * because gup fast is always a "pin with a +1 page refcount" request. 2941 * 2942 * FOLL_FAST_ONLY is required in order to match the API description of 2943 * this routine: no fall back to regular ("slow") GUP. 2944 */ 2945 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 2946 2947 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 2948 pages); 2949 2950 /* 2951 * As specified in the API description above, this routine is not 2952 * allowed to return negative values. However, the common core 2953 * routine internal_get_user_pages_fast() *can* return -errno. 2954 * Therefore, correct for that here: 2955 */ 2956 if (nr_pinned < 0) 2957 nr_pinned = 0; 2958 2959 return nr_pinned; 2960 } 2961 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 2962 2963 /** 2964 * get_user_pages_fast() - pin user pages in memory 2965 * @start: starting user address 2966 * @nr_pages: number of pages from start to pin 2967 * @gup_flags: flags modifying pin behaviour 2968 * @pages: array that receives pointers to the pages pinned. 2969 * Should be at least nr_pages long. 2970 * 2971 * Attempt to pin user pages in memory without taking mm->mmap_lock. 2972 * If not successful, it will fall back to taking the lock and 2973 * calling get_user_pages(). 2974 * 2975 * Returns number of pages pinned. This may be fewer than the number requested. 2976 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2977 * -errno. 2978 */ 2979 int get_user_pages_fast(unsigned long start, int nr_pages, 2980 unsigned int gup_flags, struct page **pages) 2981 { 2982 if (!is_valid_gup_flags(gup_flags)) 2983 return -EINVAL; 2984 2985 /* 2986 * The caller may or may not have explicitly set FOLL_GET; either way is 2987 * OK. However, internally (within mm/gup.c), gup fast variants must set 2988 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2989 * request. 2990 */ 2991 gup_flags |= FOLL_GET; 2992 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2993 } 2994 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2995 2996 /** 2997 * pin_user_pages_fast() - pin user pages in memory without taking locks 2998 * 2999 * @start: starting user address 3000 * @nr_pages: number of pages from start to pin 3001 * @gup_flags: flags modifying pin behaviour 3002 * @pages: array that receives pointers to the pages pinned. 3003 * Should be at least nr_pages long. 3004 * 3005 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3006 * get_user_pages_fast() for documentation on the function arguments, because 3007 * the arguments here are identical. 3008 * 3009 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3010 * see Documentation/core-api/pin_user_pages.rst for further details. 3011 */ 3012 int pin_user_pages_fast(unsigned long start, int nr_pages, 3013 unsigned int gup_flags, struct page **pages) 3014 { 3015 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3016 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3017 return -EINVAL; 3018 3019 gup_flags |= FOLL_PIN; 3020 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3021 } 3022 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3023 3024 /* 3025 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3026 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3027 * 3028 * The API rules are the same, too: no negative values may be returned. 3029 */ 3030 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3031 unsigned int gup_flags, struct page **pages) 3032 { 3033 int nr_pinned; 3034 3035 /* 3036 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3037 * rules require returning 0, rather than -errno: 3038 */ 3039 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3040 return 0; 3041 /* 3042 * FOLL_FAST_ONLY is required in order to match the API description of 3043 * this routine: no fall back to regular ("slow") GUP. 3044 */ 3045 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3046 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3047 pages); 3048 /* 3049 * This routine is not allowed to return negative values. However, 3050 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3051 * correct for that here: 3052 */ 3053 if (nr_pinned < 0) 3054 nr_pinned = 0; 3055 3056 return nr_pinned; 3057 } 3058 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3059 3060 /** 3061 * pin_user_pages_remote() - pin pages of a remote process 3062 * 3063 * @mm: mm_struct of target mm 3064 * @start: starting user address 3065 * @nr_pages: number of pages from start to pin 3066 * @gup_flags: flags modifying lookup behaviour 3067 * @pages: array that receives pointers to the pages pinned. 3068 * Should be at least nr_pages long. Or NULL, if caller 3069 * only intends to ensure the pages are faulted in. 3070 * @vmas: array of pointers to vmas corresponding to each page. 3071 * Or NULL if the caller does not require them. 3072 * @locked: pointer to lock flag indicating whether lock is held and 3073 * subsequently whether VM_FAULT_RETRY functionality can be 3074 * utilised. Lock must initially be held. 3075 * 3076 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3077 * get_user_pages_remote() for documentation on the function arguments, because 3078 * the arguments here are identical. 3079 * 3080 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3081 * see Documentation/core-api/pin_user_pages.rst for details. 3082 */ 3083 long pin_user_pages_remote(struct mm_struct *mm, 3084 unsigned long start, unsigned long nr_pages, 3085 unsigned int gup_flags, struct page **pages, 3086 struct vm_area_struct **vmas, int *locked) 3087 { 3088 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3089 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3090 return -EINVAL; 3091 3092 gup_flags |= FOLL_PIN; 3093 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3094 pages, vmas, locked); 3095 } 3096 EXPORT_SYMBOL(pin_user_pages_remote); 3097 3098 /** 3099 * pin_user_pages() - pin user pages in memory for use by other devices 3100 * 3101 * @start: starting user address 3102 * @nr_pages: number of pages from start to pin 3103 * @gup_flags: flags modifying lookup behaviour 3104 * @pages: array that receives pointers to the pages pinned. 3105 * Should be at least nr_pages long. Or NULL, if caller 3106 * only intends to ensure the pages are faulted in. 3107 * @vmas: array of pointers to vmas corresponding to each page. 3108 * Or NULL if the caller does not require them. 3109 * 3110 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3111 * FOLL_PIN is set. 3112 * 3113 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3114 * see Documentation/core-api/pin_user_pages.rst for details. 3115 */ 3116 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3117 unsigned int gup_flags, struct page **pages, 3118 struct vm_area_struct **vmas) 3119 { 3120 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3121 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3122 return -EINVAL; 3123 3124 gup_flags |= FOLL_PIN; 3125 return __gup_longterm_locked(current->mm, start, nr_pages, 3126 pages, vmas, gup_flags); 3127 } 3128 EXPORT_SYMBOL(pin_user_pages); 3129 3130 /* 3131 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3132 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3133 * FOLL_PIN and rejects FOLL_GET. 3134 */ 3135 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3136 struct page **pages, unsigned int gup_flags) 3137 { 3138 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3139 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3140 return -EINVAL; 3141 3142 gup_flags |= FOLL_PIN; 3143 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3144 } 3145 EXPORT_SYMBOL(pin_user_pages_unlocked); 3146 3147 /* 3148 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked(). 3149 * Behavior is the same, except that this one sets FOLL_PIN and rejects 3150 * FOLL_GET. 3151 */ 3152 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 3153 unsigned int gup_flags, struct page **pages, 3154 int *locked) 3155 { 3156 /* 3157 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 3158 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 3159 * vmas. As there are no users of this flag in this call we simply 3160 * disallow this option for now. 3161 */ 3162 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 3163 return -EINVAL; 3164 3165 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3166 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3167 return -EINVAL; 3168 3169 gup_flags |= FOLL_PIN; 3170 return __get_user_pages_locked(current->mm, start, nr_pages, 3171 pages, NULL, locked, 3172 gup_flags | FOLL_TOUCH); 3173 } 3174 EXPORT_SYMBOL(pin_user_pages_locked); 3175