1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 /** 212 * follow_page_mask - look up a page descriptor from a user-virtual address 213 * @vma: vm_area_struct mapping @address 214 * @address: virtual address to look up 215 * @flags: flags modifying lookup behaviour 216 * @page_mask: on output, *page_mask is set according to the size of the page 217 * 218 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 219 * 220 * Returns the mapped (struct page *), %NULL if no mapping exists, or 221 * an error pointer if there is a mapping to something not represented 222 * by a page descriptor (see also vm_normal_page()). 223 */ 224 struct page *follow_page_mask(struct vm_area_struct *vma, 225 unsigned long address, unsigned int flags, 226 unsigned int *page_mask) 227 { 228 pgd_t *pgd; 229 p4d_t *p4d; 230 pud_t *pud; 231 pmd_t *pmd; 232 spinlock_t *ptl; 233 struct page *page; 234 struct mm_struct *mm = vma->vm_mm; 235 236 *page_mask = 0; 237 238 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 239 if (!IS_ERR(page)) { 240 BUG_ON(flags & FOLL_GET); 241 return page; 242 } 243 244 pgd = pgd_offset(mm, address); 245 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 246 return no_page_table(vma, flags); 247 p4d = p4d_offset(pgd, address); 248 if (p4d_none(*p4d)) 249 return no_page_table(vma, flags); 250 BUILD_BUG_ON(p4d_huge(*p4d)); 251 if (unlikely(p4d_bad(*p4d))) 252 return no_page_table(vma, flags); 253 pud = pud_offset(p4d, address); 254 if (pud_none(*pud)) 255 return no_page_table(vma, flags); 256 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 257 page = follow_huge_pud(mm, address, pud, flags); 258 if (page) 259 return page; 260 return no_page_table(vma, flags); 261 } 262 if (pud_devmap(*pud)) { 263 ptl = pud_lock(mm, pud); 264 page = follow_devmap_pud(vma, address, pud, flags); 265 spin_unlock(ptl); 266 if (page) 267 return page; 268 } 269 if (unlikely(pud_bad(*pud))) 270 return no_page_table(vma, flags); 271 272 pmd = pmd_offset(pud, address); 273 if (pmd_none(*pmd)) 274 return no_page_table(vma, flags); 275 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 276 page = follow_huge_pmd(mm, address, pmd, flags); 277 if (page) 278 return page; 279 return no_page_table(vma, flags); 280 } 281 if (pmd_devmap(*pmd)) { 282 ptl = pmd_lock(mm, pmd); 283 page = follow_devmap_pmd(vma, address, pmd, flags); 284 spin_unlock(ptl); 285 if (page) 286 return page; 287 } 288 if (likely(!pmd_trans_huge(*pmd))) 289 return follow_page_pte(vma, address, pmd, flags); 290 291 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 292 return no_page_table(vma, flags); 293 294 ptl = pmd_lock(mm, pmd); 295 if (unlikely(!pmd_trans_huge(*pmd))) { 296 spin_unlock(ptl); 297 return follow_page_pte(vma, address, pmd, flags); 298 } 299 if (flags & FOLL_SPLIT) { 300 int ret; 301 page = pmd_page(*pmd); 302 if (is_huge_zero_page(page)) { 303 spin_unlock(ptl); 304 ret = 0; 305 split_huge_pmd(vma, pmd, address); 306 if (pmd_trans_unstable(pmd)) 307 ret = -EBUSY; 308 } else { 309 get_page(page); 310 spin_unlock(ptl); 311 lock_page(page); 312 ret = split_huge_page(page); 313 unlock_page(page); 314 put_page(page); 315 if (pmd_none(*pmd)) 316 return no_page_table(vma, flags); 317 } 318 319 return ret ? ERR_PTR(ret) : 320 follow_page_pte(vma, address, pmd, flags); 321 } 322 323 page = follow_trans_huge_pmd(vma, address, pmd, flags); 324 spin_unlock(ptl); 325 *page_mask = HPAGE_PMD_NR - 1; 326 return page; 327 } 328 329 static int get_gate_page(struct mm_struct *mm, unsigned long address, 330 unsigned int gup_flags, struct vm_area_struct **vma, 331 struct page **page) 332 { 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd; 337 pte_t *pte; 338 int ret = -EFAULT; 339 340 /* user gate pages are read-only */ 341 if (gup_flags & FOLL_WRITE) 342 return -EFAULT; 343 if (address > TASK_SIZE) 344 pgd = pgd_offset_k(address); 345 else 346 pgd = pgd_offset_gate(mm, address); 347 BUG_ON(pgd_none(*pgd)); 348 p4d = p4d_offset(pgd, address); 349 BUG_ON(p4d_none(*p4d)); 350 pud = pud_offset(p4d, address); 351 BUG_ON(pud_none(*pud)); 352 pmd = pmd_offset(pud, address); 353 if (pmd_none(*pmd)) 354 return -EFAULT; 355 VM_BUG_ON(pmd_trans_huge(*pmd)); 356 pte = pte_offset_map(pmd, address); 357 if (pte_none(*pte)) 358 goto unmap; 359 *vma = get_gate_vma(mm); 360 if (!page) 361 goto out; 362 *page = vm_normal_page(*vma, address, *pte); 363 if (!*page) { 364 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 365 goto unmap; 366 *page = pte_page(*pte); 367 } 368 get_page(*page); 369 out: 370 ret = 0; 371 unmap: 372 pte_unmap(pte); 373 return ret; 374 } 375 376 /* 377 * mmap_sem must be held on entry. If @nonblocking != NULL and 378 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 379 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 380 */ 381 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 382 unsigned long address, unsigned int *flags, int *nonblocking) 383 { 384 unsigned int fault_flags = 0; 385 int ret; 386 387 /* mlock all present pages, but do not fault in new pages */ 388 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 389 return -ENOENT; 390 /* For mm_populate(), just skip the stack guard page. */ 391 if ((*flags & FOLL_POPULATE) && 392 (stack_guard_page_start(vma, address) || 393 stack_guard_page_end(vma, address + PAGE_SIZE))) 394 return -ENOENT; 395 if (*flags & FOLL_WRITE) 396 fault_flags |= FAULT_FLAG_WRITE; 397 if (*flags & FOLL_REMOTE) 398 fault_flags |= FAULT_FLAG_REMOTE; 399 if (nonblocking) 400 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 401 if (*flags & FOLL_NOWAIT) 402 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 403 if (*flags & FOLL_TRIED) { 404 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 405 fault_flags |= FAULT_FLAG_TRIED; 406 } 407 408 ret = handle_mm_fault(vma, address, fault_flags); 409 if (ret & VM_FAULT_ERROR) { 410 if (ret & VM_FAULT_OOM) 411 return -ENOMEM; 412 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 413 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT; 414 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 415 return -EFAULT; 416 BUG(); 417 } 418 419 if (tsk) { 420 if (ret & VM_FAULT_MAJOR) 421 tsk->maj_flt++; 422 else 423 tsk->min_flt++; 424 } 425 426 if (ret & VM_FAULT_RETRY) { 427 if (nonblocking) 428 *nonblocking = 0; 429 return -EBUSY; 430 } 431 432 /* 433 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 434 * necessary, even if maybe_mkwrite decided not to set pte_write. We 435 * can thus safely do subsequent page lookups as if they were reads. 436 * But only do so when looping for pte_write is futile: in some cases 437 * userspace may also be wanting to write to the gotten user page, 438 * which a read fault here might prevent (a readonly page might get 439 * reCOWed by userspace write). 440 */ 441 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 442 *flags |= FOLL_COW; 443 return 0; 444 } 445 446 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 447 { 448 vm_flags_t vm_flags = vma->vm_flags; 449 int write = (gup_flags & FOLL_WRITE); 450 int foreign = (gup_flags & FOLL_REMOTE); 451 452 if (vm_flags & (VM_IO | VM_PFNMAP)) 453 return -EFAULT; 454 455 if (write) { 456 if (!(vm_flags & VM_WRITE)) { 457 if (!(gup_flags & FOLL_FORCE)) 458 return -EFAULT; 459 /* 460 * We used to let the write,force case do COW in a 461 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 462 * set a breakpoint in a read-only mapping of an 463 * executable, without corrupting the file (yet only 464 * when that file had been opened for writing!). 465 * Anon pages in shared mappings are surprising: now 466 * just reject it. 467 */ 468 if (!is_cow_mapping(vm_flags)) 469 return -EFAULT; 470 } 471 } else if (!(vm_flags & VM_READ)) { 472 if (!(gup_flags & FOLL_FORCE)) 473 return -EFAULT; 474 /* 475 * Is there actually any vma we can reach here which does not 476 * have VM_MAYREAD set? 477 */ 478 if (!(vm_flags & VM_MAYREAD)) 479 return -EFAULT; 480 } 481 /* 482 * gups are always data accesses, not instruction 483 * fetches, so execute=false here 484 */ 485 if (!arch_vma_access_permitted(vma, write, false, foreign)) 486 return -EFAULT; 487 return 0; 488 } 489 490 /** 491 * __get_user_pages() - pin user pages in memory 492 * @tsk: task_struct of target task 493 * @mm: mm_struct of target mm 494 * @start: starting user address 495 * @nr_pages: number of pages from start to pin 496 * @gup_flags: flags modifying pin behaviour 497 * @pages: array that receives pointers to the pages pinned. 498 * Should be at least nr_pages long. Or NULL, if caller 499 * only intends to ensure the pages are faulted in. 500 * @vmas: array of pointers to vmas corresponding to each page. 501 * Or NULL if the caller does not require them. 502 * @nonblocking: whether waiting for disk IO or mmap_sem contention 503 * 504 * Returns number of pages pinned. This may be fewer than the number 505 * requested. If nr_pages is 0 or negative, returns 0. If no pages 506 * were pinned, returns -errno. Each page returned must be released 507 * with a put_page() call when it is finished with. vmas will only 508 * remain valid while mmap_sem is held. 509 * 510 * Must be called with mmap_sem held. It may be released. See below. 511 * 512 * __get_user_pages walks a process's page tables and takes a reference to 513 * each struct page that each user address corresponds to at a given 514 * instant. That is, it takes the page that would be accessed if a user 515 * thread accesses the given user virtual address at that instant. 516 * 517 * This does not guarantee that the page exists in the user mappings when 518 * __get_user_pages returns, and there may even be a completely different 519 * page there in some cases (eg. if mmapped pagecache has been invalidated 520 * and subsequently re faulted). However it does guarantee that the page 521 * won't be freed completely. And mostly callers simply care that the page 522 * contains data that was valid *at some point in time*. Typically, an IO 523 * or similar operation cannot guarantee anything stronger anyway because 524 * locks can't be held over the syscall boundary. 525 * 526 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 527 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 528 * appropriate) must be called after the page is finished with, and 529 * before put_page is called. 530 * 531 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 532 * or mmap_sem contention, and if waiting is needed to pin all pages, 533 * *@nonblocking will be set to 0. Further, if @gup_flags does not 534 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 535 * this case. 536 * 537 * A caller using such a combination of @nonblocking and @gup_flags 538 * must therefore hold the mmap_sem for reading only, and recognize 539 * when it's been released. Otherwise, it must be held for either 540 * reading or writing and will not be released. 541 * 542 * In most cases, get_user_pages or get_user_pages_fast should be used 543 * instead of __get_user_pages. __get_user_pages should be used only if 544 * you need some special @gup_flags. 545 */ 546 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 547 unsigned long start, unsigned long nr_pages, 548 unsigned int gup_flags, struct page **pages, 549 struct vm_area_struct **vmas, int *nonblocking) 550 { 551 long i = 0; 552 unsigned int page_mask; 553 struct vm_area_struct *vma = NULL; 554 555 if (!nr_pages) 556 return 0; 557 558 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 559 560 /* 561 * If FOLL_FORCE is set then do not force a full fault as the hinting 562 * fault information is unrelated to the reference behaviour of a task 563 * using the address space 564 */ 565 if (!(gup_flags & FOLL_FORCE)) 566 gup_flags |= FOLL_NUMA; 567 568 do { 569 struct page *page; 570 unsigned int foll_flags = gup_flags; 571 unsigned int page_increm; 572 573 /* first iteration or cross vma bound */ 574 if (!vma || start >= vma->vm_end) { 575 vma = find_extend_vma(mm, start); 576 if (!vma && in_gate_area(mm, start)) { 577 int ret; 578 ret = get_gate_page(mm, start & PAGE_MASK, 579 gup_flags, &vma, 580 pages ? &pages[i] : NULL); 581 if (ret) 582 return i ? : ret; 583 page_mask = 0; 584 goto next_page; 585 } 586 587 if (!vma || check_vma_flags(vma, gup_flags)) 588 return i ? : -EFAULT; 589 if (is_vm_hugetlb_page(vma)) { 590 i = follow_hugetlb_page(mm, vma, pages, vmas, 591 &start, &nr_pages, i, 592 gup_flags, nonblocking); 593 continue; 594 } 595 } 596 retry: 597 /* 598 * If we have a pending SIGKILL, don't keep faulting pages and 599 * potentially allocating memory. 600 */ 601 if (unlikely(fatal_signal_pending(current))) 602 return i ? i : -ERESTARTSYS; 603 cond_resched(); 604 page = follow_page_mask(vma, start, foll_flags, &page_mask); 605 if (!page) { 606 int ret; 607 ret = faultin_page(tsk, vma, start, &foll_flags, 608 nonblocking); 609 switch (ret) { 610 case 0: 611 goto retry; 612 case -EFAULT: 613 case -ENOMEM: 614 case -EHWPOISON: 615 return i ? i : ret; 616 case -EBUSY: 617 return i; 618 case -ENOENT: 619 goto next_page; 620 } 621 BUG(); 622 } else if (PTR_ERR(page) == -EEXIST) { 623 /* 624 * Proper page table entry exists, but no corresponding 625 * struct page. 626 */ 627 goto next_page; 628 } else if (IS_ERR(page)) { 629 return i ? i : PTR_ERR(page); 630 } 631 if (pages) { 632 pages[i] = page; 633 flush_anon_page(vma, page, start); 634 flush_dcache_page(page); 635 page_mask = 0; 636 } 637 next_page: 638 if (vmas) { 639 vmas[i] = vma; 640 page_mask = 0; 641 } 642 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 643 if (page_increm > nr_pages) 644 page_increm = nr_pages; 645 i += page_increm; 646 start += page_increm * PAGE_SIZE; 647 nr_pages -= page_increm; 648 } while (nr_pages); 649 return i; 650 } 651 652 static bool vma_permits_fault(struct vm_area_struct *vma, 653 unsigned int fault_flags) 654 { 655 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 656 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 657 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 658 659 if (!(vm_flags & vma->vm_flags)) 660 return false; 661 662 /* 663 * The architecture might have a hardware protection 664 * mechanism other than read/write that can deny access. 665 * 666 * gup always represents data access, not instruction 667 * fetches, so execute=false here: 668 */ 669 if (!arch_vma_access_permitted(vma, write, false, foreign)) 670 return false; 671 672 return true; 673 } 674 675 /* 676 * fixup_user_fault() - manually resolve a user page fault 677 * @tsk: the task_struct to use for page fault accounting, or 678 * NULL if faults are not to be recorded. 679 * @mm: mm_struct of target mm 680 * @address: user address 681 * @fault_flags:flags to pass down to handle_mm_fault() 682 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 683 * does not allow retry 684 * 685 * This is meant to be called in the specific scenario where for locking reasons 686 * we try to access user memory in atomic context (within a pagefault_disable() 687 * section), this returns -EFAULT, and we want to resolve the user fault before 688 * trying again. 689 * 690 * Typically this is meant to be used by the futex code. 691 * 692 * The main difference with get_user_pages() is that this function will 693 * unconditionally call handle_mm_fault() which will in turn perform all the 694 * necessary SW fixup of the dirty and young bits in the PTE, while 695 * get_user_pages() only guarantees to update these in the struct page. 696 * 697 * This is important for some architectures where those bits also gate the 698 * access permission to the page because they are maintained in software. On 699 * such architectures, gup() will not be enough to make a subsequent access 700 * succeed. 701 * 702 * This function will not return with an unlocked mmap_sem. So it has not the 703 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 704 */ 705 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 706 unsigned long address, unsigned int fault_flags, 707 bool *unlocked) 708 { 709 struct vm_area_struct *vma; 710 int ret, major = 0; 711 712 if (unlocked) 713 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 714 715 retry: 716 vma = find_extend_vma(mm, address); 717 if (!vma || address < vma->vm_start) 718 return -EFAULT; 719 720 if (!vma_permits_fault(vma, fault_flags)) 721 return -EFAULT; 722 723 ret = handle_mm_fault(vma, address, fault_flags); 724 major |= ret & VM_FAULT_MAJOR; 725 if (ret & VM_FAULT_ERROR) { 726 if (ret & VM_FAULT_OOM) 727 return -ENOMEM; 728 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 729 return -EHWPOISON; 730 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 731 return -EFAULT; 732 BUG(); 733 } 734 735 if (ret & VM_FAULT_RETRY) { 736 down_read(&mm->mmap_sem); 737 if (!(fault_flags & FAULT_FLAG_TRIED)) { 738 *unlocked = true; 739 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 740 fault_flags |= FAULT_FLAG_TRIED; 741 goto retry; 742 } 743 } 744 745 if (tsk) { 746 if (major) 747 tsk->maj_flt++; 748 else 749 tsk->min_flt++; 750 } 751 return 0; 752 } 753 EXPORT_SYMBOL_GPL(fixup_user_fault); 754 755 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 756 struct mm_struct *mm, 757 unsigned long start, 758 unsigned long nr_pages, 759 struct page **pages, 760 struct vm_area_struct **vmas, 761 int *locked, bool notify_drop, 762 unsigned int flags) 763 { 764 long ret, pages_done; 765 bool lock_dropped; 766 767 if (locked) { 768 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 769 BUG_ON(vmas); 770 /* check caller initialized locked */ 771 BUG_ON(*locked != 1); 772 } 773 774 if (pages) 775 flags |= FOLL_GET; 776 777 pages_done = 0; 778 lock_dropped = false; 779 for (;;) { 780 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 781 vmas, locked); 782 if (!locked) 783 /* VM_FAULT_RETRY couldn't trigger, bypass */ 784 return ret; 785 786 /* VM_FAULT_RETRY cannot return errors */ 787 if (!*locked) { 788 BUG_ON(ret < 0); 789 BUG_ON(ret >= nr_pages); 790 } 791 792 if (!pages) 793 /* If it's a prefault don't insist harder */ 794 return ret; 795 796 if (ret > 0) { 797 nr_pages -= ret; 798 pages_done += ret; 799 if (!nr_pages) 800 break; 801 } 802 if (*locked) { 803 /* VM_FAULT_RETRY didn't trigger */ 804 if (!pages_done) 805 pages_done = ret; 806 break; 807 } 808 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 809 pages += ret; 810 start += ret << PAGE_SHIFT; 811 812 /* 813 * Repeat on the address that fired VM_FAULT_RETRY 814 * without FAULT_FLAG_ALLOW_RETRY but with 815 * FAULT_FLAG_TRIED. 816 */ 817 *locked = 1; 818 lock_dropped = true; 819 down_read(&mm->mmap_sem); 820 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 821 pages, NULL, NULL); 822 if (ret != 1) { 823 BUG_ON(ret > 1); 824 if (!pages_done) 825 pages_done = ret; 826 break; 827 } 828 nr_pages--; 829 pages_done++; 830 if (!nr_pages) 831 break; 832 pages++; 833 start += PAGE_SIZE; 834 } 835 if (notify_drop && lock_dropped && *locked) { 836 /* 837 * We must let the caller know we temporarily dropped the lock 838 * and so the critical section protected by it was lost. 839 */ 840 up_read(&mm->mmap_sem); 841 *locked = 0; 842 } 843 return pages_done; 844 } 845 846 /* 847 * We can leverage the VM_FAULT_RETRY functionality in the page fault 848 * paths better by using either get_user_pages_locked() or 849 * get_user_pages_unlocked(). 850 * 851 * get_user_pages_locked() is suitable to replace the form: 852 * 853 * down_read(&mm->mmap_sem); 854 * do_something() 855 * get_user_pages(tsk, mm, ..., pages, NULL); 856 * up_read(&mm->mmap_sem); 857 * 858 * to: 859 * 860 * int locked = 1; 861 * down_read(&mm->mmap_sem); 862 * do_something() 863 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 864 * if (locked) 865 * up_read(&mm->mmap_sem); 866 */ 867 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 868 unsigned int gup_flags, struct page **pages, 869 int *locked) 870 { 871 return __get_user_pages_locked(current, current->mm, start, nr_pages, 872 pages, NULL, locked, true, 873 gup_flags | FOLL_TOUCH); 874 } 875 EXPORT_SYMBOL(get_user_pages_locked); 876 877 /* 878 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for 879 * tsk, mm to be specified. 880 * 881 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 882 * caller if required (just like with __get_user_pages). "FOLL_GET" 883 * is set implicitly if "pages" is non-NULL. 884 */ 885 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, 886 struct mm_struct *mm, unsigned long start, 887 unsigned long nr_pages, struct page **pages, 888 unsigned int gup_flags) 889 { 890 long ret; 891 int locked = 1; 892 893 down_read(&mm->mmap_sem); 894 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL, 895 &locked, false, gup_flags); 896 if (locked) 897 up_read(&mm->mmap_sem); 898 return ret; 899 } 900 901 /* 902 * get_user_pages_unlocked() is suitable to replace the form: 903 * 904 * down_read(&mm->mmap_sem); 905 * get_user_pages(tsk, mm, ..., pages, NULL); 906 * up_read(&mm->mmap_sem); 907 * 908 * with: 909 * 910 * get_user_pages_unlocked(tsk, mm, ..., pages); 911 * 912 * It is functionally equivalent to get_user_pages_fast so 913 * get_user_pages_fast should be used instead if specific gup_flags 914 * (e.g. FOLL_FORCE) are not required. 915 */ 916 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 917 struct page **pages, unsigned int gup_flags) 918 { 919 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 920 pages, gup_flags | FOLL_TOUCH); 921 } 922 EXPORT_SYMBOL(get_user_pages_unlocked); 923 924 /* 925 * get_user_pages_remote() - pin user pages in memory 926 * @tsk: the task_struct to use for page fault accounting, or 927 * NULL if faults are not to be recorded. 928 * @mm: mm_struct of target mm 929 * @start: starting user address 930 * @nr_pages: number of pages from start to pin 931 * @gup_flags: flags modifying lookup behaviour 932 * @pages: array that receives pointers to the pages pinned. 933 * Should be at least nr_pages long. Or NULL, if caller 934 * only intends to ensure the pages are faulted in. 935 * @vmas: array of pointers to vmas corresponding to each page. 936 * Or NULL if the caller does not require them. 937 * @locked: pointer to lock flag indicating whether lock is held and 938 * subsequently whether VM_FAULT_RETRY functionality can be 939 * utilised. Lock must initially be held. 940 * 941 * Returns number of pages pinned. This may be fewer than the number 942 * requested. If nr_pages is 0 or negative, returns 0. If no pages 943 * were pinned, returns -errno. Each page returned must be released 944 * with a put_page() call when it is finished with. vmas will only 945 * remain valid while mmap_sem is held. 946 * 947 * Must be called with mmap_sem held for read or write. 948 * 949 * get_user_pages walks a process's page tables and takes a reference to 950 * each struct page that each user address corresponds to at a given 951 * instant. That is, it takes the page that would be accessed if a user 952 * thread accesses the given user virtual address at that instant. 953 * 954 * This does not guarantee that the page exists in the user mappings when 955 * get_user_pages returns, and there may even be a completely different 956 * page there in some cases (eg. if mmapped pagecache has been invalidated 957 * and subsequently re faulted). However it does guarantee that the page 958 * won't be freed completely. And mostly callers simply care that the page 959 * contains data that was valid *at some point in time*. Typically, an IO 960 * or similar operation cannot guarantee anything stronger anyway because 961 * locks can't be held over the syscall boundary. 962 * 963 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 964 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 965 * be called after the page is finished with, and before put_page is called. 966 * 967 * get_user_pages is typically used for fewer-copy IO operations, to get a 968 * handle on the memory by some means other than accesses via the user virtual 969 * addresses. The pages may be submitted for DMA to devices or accessed via 970 * their kernel linear mapping (via the kmap APIs). Care should be taken to 971 * use the correct cache flushing APIs. 972 * 973 * See also get_user_pages_fast, for performance critical applications. 974 * 975 * get_user_pages should be phased out in favor of 976 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 977 * should use get_user_pages because it cannot pass 978 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 979 */ 980 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 981 unsigned long start, unsigned long nr_pages, 982 unsigned int gup_flags, struct page **pages, 983 struct vm_area_struct **vmas, int *locked) 984 { 985 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 986 locked, true, 987 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 988 } 989 EXPORT_SYMBOL(get_user_pages_remote); 990 991 /* 992 * This is the same as get_user_pages_remote(), just with a 993 * less-flexible calling convention where we assume that the task 994 * and mm being operated on are the current task's and don't allow 995 * passing of a locked parameter. We also obviously don't pass 996 * FOLL_REMOTE in here. 997 */ 998 long get_user_pages(unsigned long start, unsigned long nr_pages, 999 unsigned int gup_flags, struct page **pages, 1000 struct vm_area_struct **vmas) 1001 { 1002 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1003 pages, vmas, NULL, false, 1004 gup_flags | FOLL_TOUCH); 1005 } 1006 EXPORT_SYMBOL(get_user_pages); 1007 1008 /** 1009 * populate_vma_page_range() - populate a range of pages in the vma. 1010 * @vma: target vma 1011 * @start: start address 1012 * @end: end address 1013 * @nonblocking: 1014 * 1015 * This takes care of mlocking the pages too if VM_LOCKED is set. 1016 * 1017 * return 0 on success, negative error code on error. 1018 * 1019 * vma->vm_mm->mmap_sem must be held. 1020 * 1021 * If @nonblocking is NULL, it may be held for read or write and will 1022 * be unperturbed. 1023 * 1024 * If @nonblocking is non-NULL, it must held for read only and may be 1025 * released. If it's released, *@nonblocking will be set to 0. 1026 */ 1027 long populate_vma_page_range(struct vm_area_struct *vma, 1028 unsigned long start, unsigned long end, int *nonblocking) 1029 { 1030 struct mm_struct *mm = vma->vm_mm; 1031 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1032 int gup_flags; 1033 1034 VM_BUG_ON(start & ~PAGE_MASK); 1035 VM_BUG_ON(end & ~PAGE_MASK); 1036 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1037 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1038 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1039 1040 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1041 if (vma->vm_flags & VM_LOCKONFAULT) 1042 gup_flags &= ~FOLL_POPULATE; 1043 /* 1044 * We want to touch writable mappings with a write fault in order 1045 * to break COW, except for shared mappings because these don't COW 1046 * and we would not want to dirty them for nothing. 1047 */ 1048 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1049 gup_flags |= FOLL_WRITE; 1050 1051 /* 1052 * We want mlock to succeed for regions that have any permissions 1053 * other than PROT_NONE. 1054 */ 1055 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1056 gup_flags |= FOLL_FORCE; 1057 1058 /* 1059 * We made sure addr is within a VMA, so the following will 1060 * not result in a stack expansion that recurses back here. 1061 */ 1062 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1063 NULL, NULL, nonblocking); 1064 } 1065 1066 /* 1067 * __mm_populate - populate and/or mlock pages within a range of address space. 1068 * 1069 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1070 * flags. VMAs must be already marked with the desired vm_flags, and 1071 * mmap_sem must not be held. 1072 */ 1073 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1074 { 1075 struct mm_struct *mm = current->mm; 1076 unsigned long end, nstart, nend; 1077 struct vm_area_struct *vma = NULL; 1078 int locked = 0; 1079 long ret = 0; 1080 1081 VM_BUG_ON(start & ~PAGE_MASK); 1082 VM_BUG_ON(len != PAGE_ALIGN(len)); 1083 end = start + len; 1084 1085 for (nstart = start; nstart < end; nstart = nend) { 1086 /* 1087 * We want to fault in pages for [nstart; end) address range. 1088 * Find first corresponding VMA. 1089 */ 1090 if (!locked) { 1091 locked = 1; 1092 down_read(&mm->mmap_sem); 1093 vma = find_vma(mm, nstart); 1094 } else if (nstart >= vma->vm_end) 1095 vma = vma->vm_next; 1096 if (!vma || vma->vm_start >= end) 1097 break; 1098 /* 1099 * Set [nstart; nend) to intersection of desired address 1100 * range with the first VMA. Also, skip undesirable VMA types. 1101 */ 1102 nend = min(end, vma->vm_end); 1103 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1104 continue; 1105 if (nstart < vma->vm_start) 1106 nstart = vma->vm_start; 1107 /* 1108 * Now fault in a range of pages. populate_vma_page_range() 1109 * double checks the vma flags, so that it won't mlock pages 1110 * if the vma was already munlocked. 1111 */ 1112 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1113 if (ret < 0) { 1114 if (ignore_errors) { 1115 ret = 0; 1116 continue; /* continue at next VMA */ 1117 } 1118 break; 1119 } 1120 nend = nstart + ret * PAGE_SIZE; 1121 ret = 0; 1122 } 1123 if (locked) 1124 up_read(&mm->mmap_sem); 1125 return ret; /* 0 or negative error code */ 1126 } 1127 1128 /** 1129 * get_dump_page() - pin user page in memory while writing it to core dump 1130 * @addr: user address 1131 * 1132 * Returns struct page pointer of user page pinned for dump, 1133 * to be freed afterwards by put_page(). 1134 * 1135 * Returns NULL on any kind of failure - a hole must then be inserted into 1136 * the corefile, to preserve alignment with its headers; and also returns 1137 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1138 * allowing a hole to be left in the corefile to save diskspace. 1139 * 1140 * Called without mmap_sem, but after all other threads have been killed. 1141 */ 1142 #ifdef CONFIG_ELF_CORE 1143 struct page *get_dump_page(unsigned long addr) 1144 { 1145 struct vm_area_struct *vma; 1146 struct page *page; 1147 1148 if (__get_user_pages(current, current->mm, addr, 1, 1149 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1150 NULL) < 1) 1151 return NULL; 1152 flush_cache_page(vma, addr, page_to_pfn(page)); 1153 return page; 1154 } 1155 #endif /* CONFIG_ELF_CORE */ 1156 1157 /* 1158 * Generic RCU Fast GUP 1159 * 1160 * get_user_pages_fast attempts to pin user pages by walking the page 1161 * tables directly and avoids taking locks. Thus the walker needs to be 1162 * protected from page table pages being freed from under it, and should 1163 * block any THP splits. 1164 * 1165 * One way to achieve this is to have the walker disable interrupts, and 1166 * rely on IPIs from the TLB flushing code blocking before the page table 1167 * pages are freed. This is unsuitable for architectures that do not need 1168 * to broadcast an IPI when invalidating TLBs. 1169 * 1170 * Another way to achieve this is to batch up page table containing pages 1171 * belonging to more than one mm_user, then rcu_sched a callback to free those 1172 * pages. Disabling interrupts will allow the fast_gup walker to both block 1173 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1174 * (which is a relatively rare event). The code below adopts this strategy. 1175 * 1176 * Before activating this code, please be aware that the following assumptions 1177 * are currently made: 1178 * 1179 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free 1180 * pages containing page tables. 1181 * 1182 * *) ptes can be read atomically by the architecture. 1183 * 1184 * *) access_ok is sufficient to validate userspace address ranges. 1185 * 1186 * The last two assumptions can be relaxed by the addition of helper functions. 1187 * 1188 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1189 */ 1190 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP 1191 1192 #ifdef __HAVE_ARCH_PTE_SPECIAL 1193 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1194 int write, struct page **pages, int *nr) 1195 { 1196 pte_t *ptep, *ptem; 1197 int ret = 0; 1198 1199 ptem = ptep = pte_offset_map(&pmd, addr); 1200 do { 1201 /* 1202 * In the line below we are assuming that the pte can be read 1203 * atomically. If this is not the case for your architecture, 1204 * please wrap this in a helper function! 1205 * 1206 * for an example see gup_get_pte in arch/x86/mm/gup.c 1207 */ 1208 pte_t pte = READ_ONCE(*ptep); 1209 struct page *head, *page; 1210 1211 /* 1212 * Similar to the PMD case below, NUMA hinting must take slow 1213 * path using the pte_protnone check. 1214 */ 1215 if (!pte_present(pte) || pte_special(pte) || 1216 pte_protnone(pte) || (write && !pte_write(pte))) 1217 goto pte_unmap; 1218 1219 if (!arch_pte_access_permitted(pte, write)) 1220 goto pte_unmap; 1221 1222 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1223 page = pte_page(pte); 1224 head = compound_head(page); 1225 1226 if (!page_cache_get_speculative(head)) 1227 goto pte_unmap; 1228 1229 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1230 put_page(head); 1231 goto pte_unmap; 1232 } 1233 1234 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1235 pages[*nr] = page; 1236 (*nr)++; 1237 1238 } while (ptep++, addr += PAGE_SIZE, addr != end); 1239 1240 ret = 1; 1241 1242 pte_unmap: 1243 pte_unmap(ptem); 1244 return ret; 1245 } 1246 #else 1247 1248 /* 1249 * If we can't determine whether or not a pte is special, then fail immediately 1250 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1251 * to be special. 1252 * 1253 * For a futex to be placed on a THP tail page, get_futex_key requires a 1254 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1255 * useful to have gup_huge_pmd even if we can't operate on ptes. 1256 */ 1257 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1258 int write, struct page **pages, int *nr) 1259 { 1260 return 0; 1261 } 1262 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1263 1264 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1265 unsigned long end, int write, struct page **pages, int *nr) 1266 { 1267 struct page *head, *page; 1268 int refs; 1269 1270 if (write && !pmd_write(orig)) 1271 return 0; 1272 1273 refs = 0; 1274 head = pmd_page(orig); 1275 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1276 do { 1277 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1278 pages[*nr] = page; 1279 (*nr)++; 1280 page++; 1281 refs++; 1282 } while (addr += PAGE_SIZE, addr != end); 1283 1284 if (!page_cache_add_speculative(head, refs)) { 1285 *nr -= refs; 1286 return 0; 1287 } 1288 1289 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1290 *nr -= refs; 1291 while (refs--) 1292 put_page(head); 1293 return 0; 1294 } 1295 1296 return 1; 1297 } 1298 1299 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1300 unsigned long end, int write, struct page **pages, int *nr) 1301 { 1302 struct page *head, *page; 1303 int refs; 1304 1305 if (write && !pud_write(orig)) 1306 return 0; 1307 1308 refs = 0; 1309 head = pud_page(orig); 1310 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1311 do { 1312 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1313 pages[*nr] = page; 1314 (*nr)++; 1315 page++; 1316 refs++; 1317 } while (addr += PAGE_SIZE, addr != end); 1318 1319 if (!page_cache_add_speculative(head, refs)) { 1320 *nr -= refs; 1321 return 0; 1322 } 1323 1324 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1325 *nr -= refs; 1326 while (refs--) 1327 put_page(head); 1328 return 0; 1329 } 1330 1331 return 1; 1332 } 1333 1334 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1335 unsigned long end, int write, 1336 struct page **pages, int *nr) 1337 { 1338 int refs; 1339 struct page *head, *page; 1340 1341 if (write && !pgd_write(orig)) 1342 return 0; 1343 1344 refs = 0; 1345 head = pgd_page(orig); 1346 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1347 do { 1348 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1349 pages[*nr] = page; 1350 (*nr)++; 1351 page++; 1352 refs++; 1353 } while (addr += PAGE_SIZE, addr != end); 1354 1355 if (!page_cache_add_speculative(head, refs)) { 1356 *nr -= refs; 1357 return 0; 1358 } 1359 1360 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1361 *nr -= refs; 1362 while (refs--) 1363 put_page(head); 1364 return 0; 1365 } 1366 1367 return 1; 1368 } 1369 1370 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1371 int write, struct page **pages, int *nr) 1372 { 1373 unsigned long next; 1374 pmd_t *pmdp; 1375 1376 pmdp = pmd_offset(&pud, addr); 1377 do { 1378 pmd_t pmd = READ_ONCE(*pmdp); 1379 1380 next = pmd_addr_end(addr, end); 1381 if (pmd_none(pmd)) 1382 return 0; 1383 1384 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1385 /* 1386 * NUMA hinting faults need to be handled in the GUP 1387 * slowpath for accounting purposes and so that they 1388 * can be serialised against THP migration. 1389 */ 1390 if (pmd_protnone(pmd)) 1391 return 0; 1392 1393 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1394 pages, nr)) 1395 return 0; 1396 1397 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1398 /* 1399 * architecture have different format for hugetlbfs 1400 * pmd format and THP pmd format 1401 */ 1402 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1403 PMD_SHIFT, next, write, pages, nr)) 1404 return 0; 1405 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1406 return 0; 1407 } while (pmdp++, addr = next, addr != end); 1408 1409 return 1; 1410 } 1411 1412 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1413 int write, struct page **pages, int *nr) 1414 { 1415 unsigned long next; 1416 pud_t *pudp; 1417 1418 pudp = pud_offset(&p4d, addr); 1419 do { 1420 pud_t pud = READ_ONCE(*pudp); 1421 1422 next = pud_addr_end(addr, end); 1423 if (pud_none(pud)) 1424 return 0; 1425 if (unlikely(pud_huge(pud))) { 1426 if (!gup_huge_pud(pud, pudp, addr, next, write, 1427 pages, nr)) 1428 return 0; 1429 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1430 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1431 PUD_SHIFT, next, write, pages, nr)) 1432 return 0; 1433 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1434 return 0; 1435 } while (pudp++, addr = next, addr != end); 1436 1437 return 1; 1438 } 1439 1440 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1441 int write, struct page **pages, int *nr) 1442 { 1443 unsigned long next; 1444 p4d_t *p4dp; 1445 1446 p4dp = p4d_offset(&pgd, addr); 1447 do { 1448 p4d_t p4d = READ_ONCE(*p4dp); 1449 1450 next = p4d_addr_end(addr, end); 1451 if (p4d_none(p4d)) 1452 return 0; 1453 BUILD_BUG_ON(p4d_huge(p4d)); 1454 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1455 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1456 P4D_SHIFT, next, write, pages, nr)) 1457 return 0; 1458 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1459 return 0; 1460 } while (p4dp++, addr = next, addr != end); 1461 1462 return 1; 1463 } 1464 1465 /* 1466 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1467 * the regular GUP. It will only return non-negative values. 1468 */ 1469 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1470 struct page **pages) 1471 { 1472 struct mm_struct *mm = current->mm; 1473 unsigned long addr, len, end; 1474 unsigned long next, flags; 1475 pgd_t *pgdp; 1476 int nr = 0; 1477 1478 start &= PAGE_MASK; 1479 addr = start; 1480 len = (unsigned long) nr_pages << PAGE_SHIFT; 1481 end = start + len; 1482 1483 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1484 start, len))) 1485 return 0; 1486 1487 /* 1488 * Disable interrupts. We use the nested form as we can already have 1489 * interrupts disabled by get_futex_key. 1490 * 1491 * With interrupts disabled, we block page table pages from being 1492 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1493 * for more details. 1494 * 1495 * We do not adopt an rcu_read_lock(.) here as we also want to 1496 * block IPIs that come from THPs splitting. 1497 */ 1498 1499 local_irq_save(flags); 1500 pgdp = pgd_offset(mm, addr); 1501 do { 1502 pgd_t pgd = READ_ONCE(*pgdp); 1503 1504 next = pgd_addr_end(addr, end); 1505 if (pgd_none(pgd)) 1506 break; 1507 if (unlikely(pgd_huge(pgd))) { 1508 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1509 pages, &nr)) 1510 break; 1511 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1512 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1513 PGDIR_SHIFT, next, write, pages, &nr)) 1514 break; 1515 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr)) 1516 break; 1517 } while (pgdp++, addr = next, addr != end); 1518 local_irq_restore(flags); 1519 1520 return nr; 1521 } 1522 1523 /** 1524 * get_user_pages_fast() - pin user pages in memory 1525 * @start: starting user address 1526 * @nr_pages: number of pages from start to pin 1527 * @write: whether pages will be written to 1528 * @pages: array that receives pointers to the pages pinned. 1529 * Should be at least nr_pages long. 1530 * 1531 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1532 * If not successful, it will fall back to taking the lock and 1533 * calling get_user_pages(). 1534 * 1535 * Returns number of pages pinned. This may be fewer than the number 1536 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1537 * were pinned, returns -errno. 1538 */ 1539 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1540 struct page **pages) 1541 { 1542 int nr, ret; 1543 1544 start &= PAGE_MASK; 1545 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1546 ret = nr; 1547 1548 if (nr < nr_pages) { 1549 /* Try to get the remaining pages with get_user_pages */ 1550 start += nr << PAGE_SHIFT; 1551 pages += nr; 1552 1553 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1554 write ? FOLL_WRITE : 0); 1555 1556 /* Have to be a bit careful with return values */ 1557 if (nr > 0) { 1558 if (ret < 0) 1559 ret = nr; 1560 else 1561 ret += nr; 1562 } 1563 } 1564 1565 return ret; 1566 } 1567 1568 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */ 1569