xref: /linux/mm/gup.c (revision e0cbf2f0a756f27d7b468947123d6ac9d3fc059f)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  
14  #include <linux/sched/signal.h>
15  #include <linux/rwsem.h>
16  #include <linux/hugetlb.h>
17  #include <linux/migrate.h>
18  #include <linux/mm_inline.h>
19  #include <linux/sched/mm.h>
20  
21  #include <asm/mmu_context.h>
22  #include <asm/tlbflush.h>
23  
24  #include "internal.h"
25  
26  struct follow_page_context {
27  	struct dev_pagemap *pgmap;
28  	unsigned int page_mask;
29  };
30  
31  static void hpage_pincount_add(struct page *page, int refs)
32  {
33  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34  	VM_BUG_ON_PAGE(page != compound_head(page), page);
35  
36  	atomic_add(refs, compound_pincount_ptr(page));
37  }
38  
39  static void hpage_pincount_sub(struct page *page, int refs)
40  {
41  	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42  	VM_BUG_ON_PAGE(page != compound_head(page), page);
43  
44  	atomic_sub(refs, compound_pincount_ptr(page));
45  }
46  
47  /*
48   * Return the compound head page with ref appropriately incremented,
49   * or NULL if that failed.
50   */
51  static inline struct page *try_get_compound_head(struct page *page, int refs)
52  {
53  	struct page *head = compound_head(page);
54  
55  	if (WARN_ON_ONCE(page_ref_count(head) < 0))
56  		return NULL;
57  	if (unlikely(!page_cache_add_speculative(head, refs)))
58  		return NULL;
59  	return head;
60  }
61  
62  /*
63   * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64   * flags-dependent amount.
65   *
66   * "grab" names in this file mean, "look at flags to decide whether to use
67   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68   *
69   * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70   * same time. (That's true throughout the get_user_pages*() and
71   * pin_user_pages*() APIs.) Cases:
72   *
73   *    FOLL_GET: page's refcount will be incremented by 1.
74   *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75   *
76   * Return: head page (with refcount appropriately incremented) for success, or
77   * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78   * considered failure, and furthermore, a likely bug in the caller, so a warning
79   * is also emitted.
80   */
81  static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82  							  int refs,
83  							  unsigned int flags)
84  {
85  	if (flags & FOLL_GET)
86  		return try_get_compound_head(page, refs);
87  	else if (flags & FOLL_PIN) {
88  		int orig_refs = refs;
89  
90  		/*
91  		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92  		 * path, so fail and let the caller fall back to the slow path.
93  		 */
94  		if (unlikely(flags & FOLL_LONGTERM) &&
95  				is_migrate_cma_page(page))
96  			return NULL;
97  
98  		/*
99  		 * When pinning a compound page of order > 1 (which is what
100  		 * hpage_pincount_available() checks for), use an exact count to
101  		 * track it, via hpage_pincount_add/_sub().
102  		 *
103  		 * However, be sure to *also* increment the normal page refcount
104  		 * field at least once, so that the page really is pinned.
105  		 */
106  		if (!hpage_pincount_available(page))
107  			refs *= GUP_PIN_COUNTING_BIAS;
108  
109  		page = try_get_compound_head(page, refs);
110  		if (!page)
111  			return NULL;
112  
113  		if (hpage_pincount_available(page))
114  			hpage_pincount_add(page, refs);
115  
116  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117  				    orig_refs);
118  
119  		return page;
120  	}
121  
122  	WARN_ON_ONCE(1);
123  	return NULL;
124  }
125  
126  /**
127   * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128   *
129   * This might not do anything at all, depending on the flags argument.
130   *
131   * "grab" names in this file mean, "look at flags to decide whether to use
132   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133   *
134   * @page:    pointer to page to be grabbed
135   * @flags:   gup flags: these are the FOLL_* flag values.
136   *
137   * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138   * time. Cases:
139   *
140   *    FOLL_GET: page's refcount will be incremented by 1.
141   *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142   *
143   * Return: true for success, or if no action was required (if neither FOLL_PIN
144   * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145   * FOLL_PIN was set, but the page could not be grabbed.
146   */
147  bool __must_check try_grab_page(struct page *page, unsigned int flags)
148  {
149  	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150  
151  	if (flags & FOLL_GET)
152  		return try_get_page(page);
153  	else if (flags & FOLL_PIN) {
154  		int refs = 1;
155  
156  		page = compound_head(page);
157  
158  		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159  			return false;
160  
161  		if (hpage_pincount_available(page))
162  			hpage_pincount_add(page, 1);
163  		else
164  			refs = GUP_PIN_COUNTING_BIAS;
165  
166  		/*
167  		 * Similar to try_grab_compound_head(): even if using the
168  		 * hpage_pincount_add/_sub() routines, be sure to
169  		 * *also* increment the normal page refcount field at least
170  		 * once, so that the page really is pinned.
171  		 */
172  		page_ref_add(page, refs);
173  
174  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
175  	}
176  
177  	return true;
178  }
179  
180  #ifdef CONFIG_DEV_PAGEMAP_OPS
181  static bool __unpin_devmap_managed_user_page(struct page *page)
182  {
183  	int count, refs = 1;
184  
185  	if (!page_is_devmap_managed(page))
186  		return false;
187  
188  	if (hpage_pincount_available(page))
189  		hpage_pincount_sub(page, 1);
190  	else
191  		refs = GUP_PIN_COUNTING_BIAS;
192  
193  	count = page_ref_sub_return(page, refs);
194  
195  	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
196  	/*
197  	 * devmap page refcounts are 1-based, rather than 0-based: if
198  	 * refcount is 1, then the page is free and the refcount is
199  	 * stable because nobody holds a reference on the page.
200  	 */
201  	if (count == 1)
202  		free_devmap_managed_page(page);
203  	else if (!count)
204  		__put_page(page);
205  
206  	return true;
207  }
208  #else
209  static bool __unpin_devmap_managed_user_page(struct page *page)
210  {
211  	return false;
212  }
213  #endif /* CONFIG_DEV_PAGEMAP_OPS */
214  
215  /**
216   * unpin_user_page() - release a dma-pinned page
217   * @page:            pointer to page to be released
218   *
219   * Pages that were pinned via pin_user_pages*() must be released via either
220   * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221   * that such pages can be separately tracked and uniquely handled. In
222   * particular, interactions with RDMA and filesystems need special handling.
223   */
224  void unpin_user_page(struct page *page)
225  {
226  	int refs = 1;
227  
228  	page = compound_head(page);
229  
230  	/*
231  	 * For devmap managed pages we need to catch refcount transition from
232  	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233  	 * page is free and we need to inform the device driver through
234  	 * callback. See include/linux/memremap.h and HMM for details.
235  	 */
236  	if (__unpin_devmap_managed_user_page(page))
237  		return;
238  
239  	if (hpage_pincount_available(page))
240  		hpage_pincount_sub(page, 1);
241  	else
242  		refs = GUP_PIN_COUNTING_BIAS;
243  
244  	if (page_ref_sub_and_test(page, refs))
245  		__put_page(page);
246  
247  	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
248  }
249  EXPORT_SYMBOL(unpin_user_page);
250  
251  /**
252   * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
253   * @pages:  array of pages to be maybe marked dirty, and definitely released.
254   * @npages: number of pages in the @pages array.
255   * @make_dirty: whether to mark the pages dirty
256   *
257   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258   * variants called on that page.
259   *
260   * For each page in the @pages array, make that page (or its head page, if a
261   * compound page) dirty, if @make_dirty is true, and if the page was previously
262   * listed as clean. In any case, releases all pages using unpin_user_page(),
263   * possibly via unpin_user_pages(), for the non-dirty case.
264   *
265   * Please see the unpin_user_page() documentation for details.
266   *
267   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268   * required, then the caller should a) verify that this is really correct,
269   * because _lock() is usually required, and b) hand code it:
270   * set_page_dirty_lock(), unpin_user_page().
271   *
272   */
273  void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274  				 bool make_dirty)
275  {
276  	unsigned long index;
277  
278  	/*
279  	 * TODO: this can be optimized for huge pages: if a series of pages is
280  	 * physically contiguous and part of the same compound page, then a
281  	 * single operation to the head page should suffice.
282  	 */
283  
284  	if (!make_dirty) {
285  		unpin_user_pages(pages, npages);
286  		return;
287  	}
288  
289  	for (index = 0; index < npages; index++) {
290  		struct page *page = compound_head(pages[index]);
291  		/*
292  		 * Checking PageDirty at this point may race with
293  		 * clear_page_dirty_for_io(), but that's OK. Two key
294  		 * cases:
295  		 *
296  		 * 1) This code sees the page as already dirty, so it
297  		 * skips the call to set_page_dirty(). That could happen
298  		 * because clear_page_dirty_for_io() called
299  		 * page_mkclean(), followed by set_page_dirty().
300  		 * However, now the page is going to get written back,
301  		 * which meets the original intention of setting it
302  		 * dirty, so all is well: clear_page_dirty_for_io() goes
303  		 * on to call TestClearPageDirty(), and write the page
304  		 * back.
305  		 *
306  		 * 2) This code sees the page as clean, so it calls
307  		 * set_page_dirty(). The page stays dirty, despite being
308  		 * written back, so it gets written back again in the
309  		 * next writeback cycle. This is harmless.
310  		 */
311  		if (!PageDirty(page))
312  			set_page_dirty_lock(page);
313  		unpin_user_page(page);
314  	}
315  }
316  EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
317  
318  /**
319   * unpin_user_pages() - release an array of gup-pinned pages.
320   * @pages:  array of pages to be marked dirty and released.
321   * @npages: number of pages in the @pages array.
322   *
323   * For each page in the @pages array, release the page using unpin_user_page().
324   *
325   * Please see the unpin_user_page() documentation for details.
326   */
327  void unpin_user_pages(struct page **pages, unsigned long npages)
328  {
329  	unsigned long index;
330  
331  	/*
332  	 * TODO: this can be optimized for huge pages: if a series of pages is
333  	 * physically contiguous and part of the same compound page, then a
334  	 * single operation to the head page should suffice.
335  	 */
336  	for (index = 0; index < npages; index++)
337  		unpin_user_page(pages[index]);
338  }
339  EXPORT_SYMBOL(unpin_user_pages);
340  
341  #ifdef CONFIG_MMU
342  static struct page *no_page_table(struct vm_area_struct *vma,
343  		unsigned int flags)
344  {
345  	/*
346  	 * When core dumping an enormous anonymous area that nobody
347  	 * has touched so far, we don't want to allocate unnecessary pages or
348  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
349  	 * then get_dump_page() will return NULL to leave a hole in the dump.
350  	 * But we can only make this optimization where a hole would surely
351  	 * be zero-filled if handle_mm_fault() actually did handle it.
352  	 */
353  	if ((flags & FOLL_DUMP) &&
354  			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
355  		return ERR_PTR(-EFAULT);
356  	return NULL;
357  }
358  
359  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360  		pte_t *pte, unsigned int flags)
361  {
362  	/* No page to get reference */
363  	if (flags & FOLL_GET)
364  		return -EFAULT;
365  
366  	if (flags & FOLL_TOUCH) {
367  		pte_t entry = *pte;
368  
369  		if (flags & FOLL_WRITE)
370  			entry = pte_mkdirty(entry);
371  		entry = pte_mkyoung(entry);
372  
373  		if (!pte_same(*pte, entry)) {
374  			set_pte_at(vma->vm_mm, address, pte, entry);
375  			update_mmu_cache(vma, address, pte);
376  		}
377  	}
378  
379  	/* Proper page table entry exists, but no corresponding struct page */
380  	return -EEXIST;
381  }
382  
383  /*
384   * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385   * but only after we've gone through a COW cycle and they are dirty.
386   */
387  static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388  {
389  	return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
390  }
391  
392  /*
393   * A (separate) COW fault might break the page the other way and
394   * get_user_pages() would return the page from what is now the wrong
395   * VM. So we need to force a COW break at GUP time even for reads.
396   */
397  static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
398  {
399  	return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
400  }
401  
402  static struct page *follow_page_pte(struct vm_area_struct *vma,
403  		unsigned long address, pmd_t *pmd, unsigned int flags,
404  		struct dev_pagemap **pgmap)
405  {
406  	struct mm_struct *mm = vma->vm_mm;
407  	struct page *page;
408  	spinlock_t *ptl;
409  	pte_t *ptep, pte;
410  	int ret;
411  
412  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
413  	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414  			 (FOLL_PIN | FOLL_GET)))
415  		return ERR_PTR(-EINVAL);
416  retry:
417  	if (unlikely(pmd_bad(*pmd)))
418  		return no_page_table(vma, flags);
419  
420  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
421  	pte = *ptep;
422  	if (!pte_present(pte)) {
423  		swp_entry_t entry;
424  		/*
425  		 * KSM's break_ksm() relies upon recognizing a ksm page
426  		 * even while it is being migrated, so for that case we
427  		 * need migration_entry_wait().
428  		 */
429  		if (likely(!(flags & FOLL_MIGRATION)))
430  			goto no_page;
431  		if (pte_none(pte))
432  			goto no_page;
433  		entry = pte_to_swp_entry(pte);
434  		if (!is_migration_entry(entry))
435  			goto no_page;
436  		pte_unmap_unlock(ptep, ptl);
437  		migration_entry_wait(mm, pmd, address);
438  		goto retry;
439  	}
440  	if ((flags & FOLL_NUMA) && pte_protnone(pte))
441  		goto no_page;
442  	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
443  		pte_unmap_unlock(ptep, ptl);
444  		return NULL;
445  	}
446  
447  	page = vm_normal_page(vma, address, pte);
448  	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
449  		/*
450  		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451  		 * case since they are only valid while holding the pgmap
452  		 * reference.
453  		 */
454  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455  		if (*pgmap)
456  			page = pte_page(pte);
457  		else
458  			goto no_page;
459  	} else if (unlikely(!page)) {
460  		if (flags & FOLL_DUMP) {
461  			/* Avoid special (like zero) pages in core dumps */
462  			page = ERR_PTR(-EFAULT);
463  			goto out;
464  		}
465  
466  		if (is_zero_pfn(pte_pfn(pte))) {
467  			page = pte_page(pte);
468  		} else {
469  			ret = follow_pfn_pte(vma, address, ptep, flags);
470  			page = ERR_PTR(ret);
471  			goto out;
472  		}
473  	}
474  
475  	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
476  		get_page(page);
477  		pte_unmap_unlock(ptep, ptl);
478  		lock_page(page);
479  		ret = split_huge_page(page);
480  		unlock_page(page);
481  		put_page(page);
482  		if (ret)
483  			return ERR_PTR(ret);
484  		goto retry;
485  	}
486  
487  	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488  	if (unlikely(!try_grab_page(page, flags))) {
489  		page = ERR_PTR(-ENOMEM);
490  		goto out;
491  	}
492  	/*
493  	 * We need to make the page accessible if and only if we are going
494  	 * to access its content (the FOLL_PIN case).  Please see
495  	 * Documentation/core-api/pin_user_pages.rst for details.
496  	 */
497  	if (flags & FOLL_PIN) {
498  		ret = arch_make_page_accessible(page);
499  		if (ret) {
500  			unpin_user_page(page);
501  			page = ERR_PTR(ret);
502  			goto out;
503  		}
504  	}
505  	if (flags & FOLL_TOUCH) {
506  		if ((flags & FOLL_WRITE) &&
507  		    !pte_dirty(pte) && !PageDirty(page))
508  			set_page_dirty(page);
509  		/*
510  		 * pte_mkyoung() would be more correct here, but atomic care
511  		 * is needed to avoid losing the dirty bit: it is easier to use
512  		 * mark_page_accessed().
513  		 */
514  		mark_page_accessed(page);
515  	}
516  	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
517  		/* Do not mlock pte-mapped THP */
518  		if (PageTransCompound(page))
519  			goto out;
520  
521  		/*
522  		 * The preliminary mapping check is mainly to avoid the
523  		 * pointless overhead of lock_page on the ZERO_PAGE
524  		 * which might bounce very badly if there is contention.
525  		 *
526  		 * If the page is already locked, we don't need to
527  		 * handle it now - vmscan will handle it later if and
528  		 * when it attempts to reclaim the page.
529  		 */
530  		if (page->mapping && trylock_page(page)) {
531  			lru_add_drain();  /* push cached pages to LRU */
532  			/*
533  			 * Because we lock page here, and migration is
534  			 * blocked by the pte's page reference, and we
535  			 * know the page is still mapped, we don't even
536  			 * need to check for file-cache page truncation.
537  			 */
538  			mlock_vma_page(page);
539  			unlock_page(page);
540  		}
541  	}
542  out:
543  	pte_unmap_unlock(ptep, ptl);
544  	return page;
545  no_page:
546  	pte_unmap_unlock(ptep, ptl);
547  	if (!pte_none(pte))
548  		return NULL;
549  	return no_page_table(vma, flags);
550  }
551  
552  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553  				    unsigned long address, pud_t *pudp,
554  				    unsigned int flags,
555  				    struct follow_page_context *ctx)
556  {
557  	pmd_t *pmd, pmdval;
558  	spinlock_t *ptl;
559  	struct page *page;
560  	struct mm_struct *mm = vma->vm_mm;
561  
562  	pmd = pmd_offset(pudp, address);
563  	/*
564  	 * The READ_ONCE() will stabilize the pmdval in a register or
565  	 * on the stack so that it will stop changing under the code.
566  	 */
567  	pmdval = READ_ONCE(*pmd);
568  	if (pmd_none(pmdval))
569  		return no_page_table(vma, flags);
570  	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
571  		page = follow_huge_pmd(mm, address, pmd, flags);
572  		if (page)
573  			return page;
574  		return no_page_table(vma, flags);
575  	}
576  	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
577  		page = follow_huge_pd(vma, address,
578  				      __hugepd(pmd_val(pmdval)), flags,
579  				      PMD_SHIFT);
580  		if (page)
581  			return page;
582  		return no_page_table(vma, flags);
583  	}
584  retry:
585  	if (!pmd_present(pmdval)) {
586  		if (likely(!(flags & FOLL_MIGRATION)))
587  			return no_page_table(vma, flags);
588  		VM_BUG_ON(thp_migration_supported() &&
589  				  !is_pmd_migration_entry(pmdval));
590  		if (is_pmd_migration_entry(pmdval))
591  			pmd_migration_entry_wait(mm, pmd);
592  		pmdval = READ_ONCE(*pmd);
593  		/*
594  		 * MADV_DONTNEED may convert the pmd to null because
595  		 * mmap_lock is held in read mode
596  		 */
597  		if (pmd_none(pmdval))
598  			return no_page_table(vma, flags);
599  		goto retry;
600  	}
601  	if (pmd_devmap(pmdval)) {
602  		ptl = pmd_lock(mm, pmd);
603  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
604  		spin_unlock(ptl);
605  		if (page)
606  			return page;
607  	}
608  	if (likely(!pmd_trans_huge(pmdval)))
609  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
610  
611  	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
612  		return no_page_table(vma, flags);
613  
614  retry_locked:
615  	ptl = pmd_lock(mm, pmd);
616  	if (unlikely(pmd_none(*pmd))) {
617  		spin_unlock(ptl);
618  		return no_page_table(vma, flags);
619  	}
620  	if (unlikely(!pmd_present(*pmd))) {
621  		spin_unlock(ptl);
622  		if (likely(!(flags & FOLL_MIGRATION)))
623  			return no_page_table(vma, flags);
624  		pmd_migration_entry_wait(mm, pmd);
625  		goto retry_locked;
626  	}
627  	if (unlikely(!pmd_trans_huge(*pmd))) {
628  		spin_unlock(ptl);
629  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
630  	}
631  	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
632  		int ret;
633  		page = pmd_page(*pmd);
634  		if (is_huge_zero_page(page)) {
635  			spin_unlock(ptl);
636  			ret = 0;
637  			split_huge_pmd(vma, pmd, address);
638  			if (pmd_trans_unstable(pmd))
639  				ret = -EBUSY;
640  		} else if (flags & FOLL_SPLIT) {
641  			if (unlikely(!try_get_page(page))) {
642  				spin_unlock(ptl);
643  				return ERR_PTR(-ENOMEM);
644  			}
645  			spin_unlock(ptl);
646  			lock_page(page);
647  			ret = split_huge_page(page);
648  			unlock_page(page);
649  			put_page(page);
650  			if (pmd_none(*pmd))
651  				return no_page_table(vma, flags);
652  		} else {  /* flags & FOLL_SPLIT_PMD */
653  			spin_unlock(ptl);
654  			split_huge_pmd(vma, pmd, address);
655  			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
656  		}
657  
658  		return ret ? ERR_PTR(ret) :
659  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
660  	}
661  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
662  	spin_unlock(ptl);
663  	ctx->page_mask = HPAGE_PMD_NR - 1;
664  	return page;
665  }
666  
667  static struct page *follow_pud_mask(struct vm_area_struct *vma,
668  				    unsigned long address, p4d_t *p4dp,
669  				    unsigned int flags,
670  				    struct follow_page_context *ctx)
671  {
672  	pud_t *pud;
673  	spinlock_t *ptl;
674  	struct page *page;
675  	struct mm_struct *mm = vma->vm_mm;
676  
677  	pud = pud_offset(p4dp, address);
678  	if (pud_none(*pud))
679  		return no_page_table(vma, flags);
680  	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
681  		page = follow_huge_pud(mm, address, pud, flags);
682  		if (page)
683  			return page;
684  		return no_page_table(vma, flags);
685  	}
686  	if (is_hugepd(__hugepd(pud_val(*pud)))) {
687  		page = follow_huge_pd(vma, address,
688  				      __hugepd(pud_val(*pud)), flags,
689  				      PUD_SHIFT);
690  		if (page)
691  			return page;
692  		return no_page_table(vma, flags);
693  	}
694  	if (pud_devmap(*pud)) {
695  		ptl = pud_lock(mm, pud);
696  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
697  		spin_unlock(ptl);
698  		if (page)
699  			return page;
700  	}
701  	if (unlikely(pud_bad(*pud)))
702  		return no_page_table(vma, flags);
703  
704  	return follow_pmd_mask(vma, address, pud, flags, ctx);
705  }
706  
707  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708  				    unsigned long address, pgd_t *pgdp,
709  				    unsigned int flags,
710  				    struct follow_page_context *ctx)
711  {
712  	p4d_t *p4d;
713  	struct page *page;
714  
715  	p4d = p4d_offset(pgdp, address);
716  	if (p4d_none(*p4d))
717  		return no_page_table(vma, flags);
718  	BUILD_BUG_ON(p4d_huge(*p4d));
719  	if (unlikely(p4d_bad(*p4d)))
720  		return no_page_table(vma, flags);
721  
722  	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723  		page = follow_huge_pd(vma, address,
724  				      __hugepd(p4d_val(*p4d)), flags,
725  				      P4D_SHIFT);
726  		if (page)
727  			return page;
728  		return no_page_table(vma, flags);
729  	}
730  	return follow_pud_mask(vma, address, p4d, flags, ctx);
731  }
732  
733  /**
734   * follow_page_mask - look up a page descriptor from a user-virtual address
735   * @vma: vm_area_struct mapping @address
736   * @address: virtual address to look up
737   * @flags: flags modifying lookup behaviour
738   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739   *       pointer to output page_mask
740   *
741   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
742   *
743   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
745   *
746   * On output, the @ctx->page_mask is set according to the size of the page.
747   *
748   * Return: the mapped (struct page *), %NULL if no mapping exists, or
749   * an error pointer if there is a mapping to something not represented
750   * by a page descriptor (see also vm_normal_page()).
751   */
752  static struct page *follow_page_mask(struct vm_area_struct *vma,
753  			      unsigned long address, unsigned int flags,
754  			      struct follow_page_context *ctx)
755  {
756  	pgd_t *pgd;
757  	struct page *page;
758  	struct mm_struct *mm = vma->vm_mm;
759  
760  	ctx->page_mask = 0;
761  
762  	/* make this handle hugepd */
763  	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764  	if (!IS_ERR(page)) {
765  		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
766  		return page;
767  	}
768  
769  	pgd = pgd_offset(mm, address);
770  
771  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772  		return no_page_table(vma, flags);
773  
774  	if (pgd_huge(*pgd)) {
775  		page = follow_huge_pgd(mm, address, pgd, flags);
776  		if (page)
777  			return page;
778  		return no_page_table(vma, flags);
779  	}
780  	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781  		page = follow_huge_pd(vma, address,
782  				      __hugepd(pgd_val(*pgd)), flags,
783  				      PGDIR_SHIFT);
784  		if (page)
785  			return page;
786  		return no_page_table(vma, flags);
787  	}
788  
789  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
790  }
791  
792  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793  			 unsigned int foll_flags)
794  {
795  	struct follow_page_context ctx = { NULL };
796  	struct page *page;
797  
798  	page = follow_page_mask(vma, address, foll_flags, &ctx);
799  	if (ctx.pgmap)
800  		put_dev_pagemap(ctx.pgmap);
801  	return page;
802  }
803  
804  static int get_gate_page(struct mm_struct *mm, unsigned long address,
805  		unsigned int gup_flags, struct vm_area_struct **vma,
806  		struct page **page)
807  {
808  	pgd_t *pgd;
809  	p4d_t *p4d;
810  	pud_t *pud;
811  	pmd_t *pmd;
812  	pte_t *pte;
813  	int ret = -EFAULT;
814  
815  	/* user gate pages are read-only */
816  	if (gup_flags & FOLL_WRITE)
817  		return -EFAULT;
818  	if (address > TASK_SIZE)
819  		pgd = pgd_offset_k(address);
820  	else
821  		pgd = pgd_offset_gate(mm, address);
822  	if (pgd_none(*pgd))
823  		return -EFAULT;
824  	p4d = p4d_offset(pgd, address);
825  	if (p4d_none(*p4d))
826  		return -EFAULT;
827  	pud = pud_offset(p4d, address);
828  	if (pud_none(*pud))
829  		return -EFAULT;
830  	pmd = pmd_offset(pud, address);
831  	if (!pmd_present(*pmd))
832  		return -EFAULT;
833  	VM_BUG_ON(pmd_trans_huge(*pmd));
834  	pte = pte_offset_map(pmd, address);
835  	if (pte_none(*pte))
836  		goto unmap;
837  	*vma = get_gate_vma(mm);
838  	if (!page)
839  		goto out;
840  	*page = vm_normal_page(*vma, address, *pte);
841  	if (!*page) {
842  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843  			goto unmap;
844  		*page = pte_page(*pte);
845  	}
846  	if (unlikely(!try_get_page(*page))) {
847  		ret = -ENOMEM;
848  		goto unmap;
849  	}
850  out:
851  	ret = 0;
852  unmap:
853  	pte_unmap(pte);
854  	return ret;
855  }
856  
857  /*
858   * mmap_lock must be held on entry.  If @locked != NULL and *@flags
859   * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
860   * is, *@locked will be set to 0 and -EBUSY returned.
861   */
862  static int faultin_page(struct vm_area_struct *vma,
863  		unsigned long address, unsigned int *flags, int *locked)
864  {
865  	unsigned int fault_flags = 0;
866  	vm_fault_t ret;
867  
868  	/* mlock all present pages, but do not fault in new pages */
869  	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870  		return -ENOENT;
871  	if (*flags & FOLL_WRITE)
872  		fault_flags |= FAULT_FLAG_WRITE;
873  	if (*flags & FOLL_REMOTE)
874  		fault_flags |= FAULT_FLAG_REMOTE;
875  	if (locked)
876  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
877  	if (*flags & FOLL_NOWAIT)
878  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
879  	if (*flags & FOLL_TRIED) {
880  		/*
881  		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882  		 * can co-exist
883  		 */
884  		fault_flags |= FAULT_FLAG_TRIED;
885  	}
886  
887  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
888  	if (ret & VM_FAULT_ERROR) {
889  		int err = vm_fault_to_errno(ret, *flags);
890  
891  		if (err)
892  			return err;
893  		BUG();
894  	}
895  
896  	if (ret & VM_FAULT_RETRY) {
897  		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
898  			*locked = 0;
899  		return -EBUSY;
900  	}
901  
902  	/*
903  	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
904  	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
905  	 * can thus safely do subsequent page lookups as if they were reads.
906  	 * But only do so when looping for pte_write is futile: in some cases
907  	 * userspace may also be wanting to write to the gotten user page,
908  	 * which a read fault here might prevent (a readonly page might get
909  	 * reCOWed by userspace write).
910  	 */
911  	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
912  		*flags |= FOLL_COW;
913  	return 0;
914  }
915  
916  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
917  {
918  	vm_flags_t vm_flags = vma->vm_flags;
919  	int write = (gup_flags & FOLL_WRITE);
920  	int foreign = (gup_flags & FOLL_REMOTE);
921  
922  	if (vm_flags & (VM_IO | VM_PFNMAP))
923  		return -EFAULT;
924  
925  	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
926  		return -EFAULT;
927  
928  	if (write) {
929  		if (!(vm_flags & VM_WRITE)) {
930  			if (!(gup_flags & FOLL_FORCE))
931  				return -EFAULT;
932  			/*
933  			 * We used to let the write,force case do COW in a
934  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
935  			 * set a breakpoint in a read-only mapping of an
936  			 * executable, without corrupting the file (yet only
937  			 * when that file had been opened for writing!).
938  			 * Anon pages in shared mappings are surprising: now
939  			 * just reject it.
940  			 */
941  			if (!is_cow_mapping(vm_flags))
942  				return -EFAULT;
943  		}
944  	} else if (!(vm_flags & VM_READ)) {
945  		if (!(gup_flags & FOLL_FORCE))
946  			return -EFAULT;
947  		/*
948  		 * Is there actually any vma we can reach here which does not
949  		 * have VM_MAYREAD set?
950  		 */
951  		if (!(vm_flags & VM_MAYREAD))
952  			return -EFAULT;
953  	}
954  	/*
955  	 * gups are always data accesses, not instruction
956  	 * fetches, so execute=false here
957  	 */
958  	if (!arch_vma_access_permitted(vma, write, false, foreign))
959  		return -EFAULT;
960  	return 0;
961  }
962  
963  /**
964   * __get_user_pages() - pin user pages in memory
965   * @mm:		mm_struct of target mm
966   * @start:	starting user address
967   * @nr_pages:	number of pages from start to pin
968   * @gup_flags:	flags modifying pin behaviour
969   * @pages:	array that receives pointers to the pages pinned.
970   *		Should be at least nr_pages long. Or NULL, if caller
971   *		only intends to ensure the pages are faulted in.
972   * @vmas:	array of pointers to vmas corresponding to each page.
973   *		Or NULL if the caller does not require them.
974   * @locked:     whether we're still with the mmap_lock held
975   *
976   * Returns either number of pages pinned (which may be less than the
977   * number requested), or an error. Details about the return value:
978   *
979   * -- If nr_pages is 0, returns 0.
980   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
981   * -- If nr_pages is >0, and some pages were pinned, returns the number of
982   *    pages pinned. Again, this may be less than nr_pages.
983   * -- 0 return value is possible when the fault would need to be retried.
984   *
985   * The caller is responsible for releasing returned @pages, via put_page().
986   *
987   * @vmas are valid only as long as mmap_lock is held.
988   *
989   * Must be called with mmap_lock held.  It may be released.  See below.
990   *
991   * __get_user_pages walks a process's page tables and takes a reference to
992   * each struct page that each user address corresponds to at a given
993   * instant. That is, it takes the page that would be accessed if a user
994   * thread accesses the given user virtual address at that instant.
995   *
996   * This does not guarantee that the page exists in the user mappings when
997   * __get_user_pages returns, and there may even be a completely different
998   * page there in some cases (eg. if mmapped pagecache has been invalidated
999   * and subsequently re faulted). However it does guarantee that the page
1000   * won't be freed completely. And mostly callers simply care that the page
1001   * contains data that was valid *at some point in time*. Typically, an IO
1002   * or similar operation cannot guarantee anything stronger anyway because
1003   * locks can't be held over the syscall boundary.
1004   *
1005   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1006   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1007   * appropriate) must be called after the page is finished with, and
1008   * before put_page is called.
1009   *
1010   * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1011   * released by an up_read().  That can happen if @gup_flags does not
1012   * have FOLL_NOWAIT.
1013   *
1014   * A caller using such a combination of @locked and @gup_flags
1015   * must therefore hold the mmap_lock for reading only, and recognize
1016   * when it's been released.  Otherwise, it must be held for either
1017   * reading or writing and will not be released.
1018   *
1019   * In most cases, get_user_pages or get_user_pages_fast should be used
1020   * instead of __get_user_pages. __get_user_pages should be used only if
1021   * you need some special @gup_flags.
1022   */
1023  static long __get_user_pages(struct mm_struct *mm,
1024  		unsigned long start, unsigned long nr_pages,
1025  		unsigned int gup_flags, struct page **pages,
1026  		struct vm_area_struct **vmas, int *locked)
1027  {
1028  	long ret = 0, i = 0;
1029  	struct vm_area_struct *vma = NULL;
1030  	struct follow_page_context ctx = { NULL };
1031  
1032  	if (!nr_pages)
1033  		return 0;
1034  
1035  	start = untagged_addr(start);
1036  
1037  	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1038  
1039  	/*
1040  	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1041  	 * fault information is unrelated to the reference behaviour of a task
1042  	 * using the address space
1043  	 */
1044  	if (!(gup_flags & FOLL_FORCE))
1045  		gup_flags |= FOLL_NUMA;
1046  
1047  	do {
1048  		struct page *page;
1049  		unsigned int foll_flags = gup_flags;
1050  		unsigned int page_increm;
1051  
1052  		/* first iteration or cross vma bound */
1053  		if (!vma || start >= vma->vm_end) {
1054  			vma = find_extend_vma(mm, start);
1055  			if (!vma && in_gate_area(mm, start)) {
1056  				ret = get_gate_page(mm, start & PAGE_MASK,
1057  						gup_flags, &vma,
1058  						pages ? &pages[i] : NULL);
1059  				if (ret)
1060  					goto out;
1061  				ctx.page_mask = 0;
1062  				goto next_page;
1063  			}
1064  
1065  			if (!vma || check_vma_flags(vma, gup_flags)) {
1066  				ret = -EFAULT;
1067  				goto out;
1068  			}
1069  			if (is_vm_hugetlb_page(vma)) {
1070  				if (should_force_cow_break(vma, foll_flags))
1071  					foll_flags |= FOLL_WRITE;
1072  				i = follow_hugetlb_page(mm, vma, pages, vmas,
1073  						&start, &nr_pages, i,
1074  						foll_flags, locked);
1075  				if (locked && *locked == 0) {
1076  					/*
1077  					 * We've got a VM_FAULT_RETRY
1078  					 * and we've lost mmap_lock.
1079  					 * We must stop here.
1080  					 */
1081  					BUG_ON(gup_flags & FOLL_NOWAIT);
1082  					BUG_ON(ret != 0);
1083  					goto out;
1084  				}
1085  				continue;
1086  			}
1087  		}
1088  
1089  		if (should_force_cow_break(vma, foll_flags))
1090  			foll_flags |= FOLL_WRITE;
1091  
1092  retry:
1093  		/*
1094  		 * If we have a pending SIGKILL, don't keep faulting pages and
1095  		 * potentially allocating memory.
1096  		 */
1097  		if (fatal_signal_pending(current)) {
1098  			ret = -EINTR;
1099  			goto out;
1100  		}
1101  		cond_resched();
1102  
1103  		page = follow_page_mask(vma, start, foll_flags, &ctx);
1104  		if (!page) {
1105  			ret = faultin_page(vma, start, &foll_flags, locked);
1106  			switch (ret) {
1107  			case 0:
1108  				goto retry;
1109  			case -EBUSY:
1110  				ret = 0;
1111  				fallthrough;
1112  			case -EFAULT:
1113  			case -ENOMEM:
1114  			case -EHWPOISON:
1115  				goto out;
1116  			case -ENOENT:
1117  				goto next_page;
1118  			}
1119  			BUG();
1120  		} else if (PTR_ERR(page) == -EEXIST) {
1121  			/*
1122  			 * Proper page table entry exists, but no corresponding
1123  			 * struct page.
1124  			 */
1125  			goto next_page;
1126  		} else if (IS_ERR(page)) {
1127  			ret = PTR_ERR(page);
1128  			goto out;
1129  		}
1130  		if (pages) {
1131  			pages[i] = page;
1132  			flush_anon_page(vma, page, start);
1133  			flush_dcache_page(page);
1134  			ctx.page_mask = 0;
1135  		}
1136  next_page:
1137  		if (vmas) {
1138  			vmas[i] = vma;
1139  			ctx.page_mask = 0;
1140  		}
1141  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1142  		if (page_increm > nr_pages)
1143  			page_increm = nr_pages;
1144  		i += page_increm;
1145  		start += page_increm * PAGE_SIZE;
1146  		nr_pages -= page_increm;
1147  	} while (nr_pages);
1148  out:
1149  	if (ctx.pgmap)
1150  		put_dev_pagemap(ctx.pgmap);
1151  	return i ? i : ret;
1152  }
1153  
1154  static bool vma_permits_fault(struct vm_area_struct *vma,
1155  			      unsigned int fault_flags)
1156  {
1157  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1158  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1159  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1160  
1161  	if (!(vm_flags & vma->vm_flags))
1162  		return false;
1163  
1164  	/*
1165  	 * The architecture might have a hardware protection
1166  	 * mechanism other than read/write that can deny access.
1167  	 *
1168  	 * gup always represents data access, not instruction
1169  	 * fetches, so execute=false here:
1170  	 */
1171  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1172  		return false;
1173  
1174  	return true;
1175  }
1176  
1177  /**
1178   * fixup_user_fault() - manually resolve a user page fault
1179   * @mm:		mm_struct of target mm
1180   * @address:	user address
1181   * @fault_flags:flags to pass down to handle_mm_fault()
1182   * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1183   *		does not allow retry. If NULL, the caller must guarantee
1184   *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1185   *
1186   * This is meant to be called in the specific scenario where for locking reasons
1187   * we try to access user memory in atomic context (within a pagefault_disable()
1188   * section), this returns -EFAULT, and we want to resolve the user fault before
1189   * trying again.
1190   *
1191   * Typically this is meant to be used by the futex code.
1192   *
1193   * The main difference with get_user_pages() is that this function will
1194   * unconditionally call handle_mm_fault() which will in turn perform all the
1195   * necessary SW fixup of the dirty and young bits in the PTE, while
1196   * get_user_pages() only guarantees to update these in the struct page.
1197   *
1198   * This is important for some architectures where those bits also gate the
1199   * access permission to the page because they are maintained in software.  On
1200   * such architectures, gup() will not be enough to make a subsequent access
1201   * succeed.
1202   *
1203   * This function will not return with an unlocked mmap_lock. So it has not the
1204   * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1205   */
1206  int fixup_user_fault(struct mm_struct *mm,
1207  		     unsigned long address, unsigned int fault_flags,
1208  		     bool *unlocked)
1209  {
1210  	struct vm_area_struct *vma;
1211  	vm_fault_t ret, major = 0;
1212  
1213  	address = untagged_addr(address);
1214  
1215  	if (unlocked)
1216  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1217  
1218  retry:
1219  	vma = find_extend_vma(mm, address);
1220  	if (!vma || address < vma->vm_start)
1221  		return -EFAULT;
1222  
1223  	if (!vma_permits_fault(vma, fault_flags))
1224  		return -EFAULT;
1225  
1226  	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1227  	    fatal_signal_pending(current))
1228  		return -EINTR;
1229  
1230  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1231  	major |= ret & VM_FAULT_MAJOR;
1232  	if (ret & VM_FAULT_ERROR) {
1233  		int err = vm_fault_to_errno(ret, 0);
1234  
1235  		if (err)
1236  			return err;
1237  		BUG();
1238  	}
1239  
1240  	if (ret & VM_FAULT_RETRY) {
1241  		mmap_read_lock(mm);
1242  		*unlocked = true;
1243  		fault_flags |= FAULT_FLAG_TRIED;
1244  		goto retry;
1245  	}
1246  
1247  	return 0;
1248  }
1249  EXPORT_SYMBOL_GPL(fixup_user_fault);
1250  
1251  /*
1252   * Please note that this function, unlike __get_user_pages will not
1253   * return 0 for nr_pages > 0 without FOLL_NOWAIT
1254   */
1255  static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1256  						unsigned long start,
1257  						unsigned long nr_pages,
1258  						struct page **pages,
1259  						struct vm_area_struct **vmas,
1260  						int *locked,
1261  						unsigned int flags)
1262  {
1263  	long ret, pages_done;
1264  	bool lock_dropped;
1265  
1266  	if (locked) {
1267  		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1268  		BUG_ON(vmas);
1269  		/* check caller initialized locked */
1270  		BUG_ON(*locked != 1);
1271  	}
1272  
1273  	/*
1274  	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1275  	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1276  	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1277  	 * for FOLL_GET, not for the newer FOLL_PIN.
1278  	 *
1279  	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1280  	 * that here, as any failures will be obvious enough.
1281  	 */
1282  	if (pages && !(flags & FOLL_PIN))
1283  		flags |= FOLL_GET;
1284  
1285  	pages_done = 0;
1286  	lock_dropped = false;
1287  	for (;;) {
1288  		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1289  				       vmas, locked);
1290  		if (!locked)
1291  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1292  			return ret;
1293  
1294  		/* VM_FAULT_RETRY cannot return errors */
1295  		if (!*locked) {
1296  			BUG_ON(ret < 0);
1297  			BUG_ON(ret >= nr_pages);
1298  		}
1299  
1300  		if (ret > 0) {
1301  			nr_pages -= ret;
1302  			pages_done += ret;
1303  			if (!nr_pages)
1304  				break;
1305  		}
1306  		if (*locked) {
1307  			/*
1308  			 * VM_FAULT_RETRY didn't trigger or it was a
1309  			 * FOLL_NOWAIT.
1310  			 */
1311  			if (!pages_done)
1312  				pages_done = ret;
1313  			break;
1314  		}
1315  		/*
1316  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1317  		 * For the prefault case (!pages) we only update counts.
1318  		 */
1319  		if (likely(pages))
1320  			pages += ret;
1321  		start += ret << PAGE_SHIFT;
1322  		lock_dropped = true;
1323  
1324  retry:
1325  		/*
1326  		 * Repeat on the address that fired VM_FAULT_RETRY
1327  		 * with both FAULT_FLAG_ALLOW_RETRY and
1328  		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1329  		 * by fatal signals, so we need to check it before we
1330  		 * start trying again otherwise it can loop forever.
1331  		 */
1332  
1333  		if (fatal_signal_pending(current)) {
1334  			if (!pages_done)
1335  				pages_done = -EINTR;
1336  			break;
1337  		}
1338  
1339  		ret = mmap_read_lock_killable(mm);
1340  		if (ret) {
1341  			BUG_ON(ret > 0);
1342  			if (!pages_done)
1343  				pages_done = ret;
1344  			break;
1345  		}
1346  
1347  		*locked = 1;
1348  		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1349  				       pages, NULL, locked);
1350  		if (!*locked) {
1351  			/* Continue to retry until we succeeded */
1352  			BUG_ON(ret != 0);
1353  			goto retry;
1354  		}
1355  		if (ret != 1) {
1356  			BUG_ON(ret > 1);
1357  			if (!pages_done)
1358  				pages_done = ret;
1359  			break;
1360  		}
1361  		nr_pages--;
1362  		pages_done++;
1363  		if (!nr_pages)
1364  			break;
1365  		if (likely(pages))
1366  			pages++;
1367  		start += PAGE_SIZE;
1368  	}
1369  	if (lock_dropped && *locked) {
1370  		/*
1371  		 * We must let the caller know we temporarily dropped the lock
1372  		 * and so the critical section protected by it was lost.
1373  		 */
1374  		mmap_read_unlock(mm);
1375  		*locked = 0;
1376  	}
1377  	return pages_done;
1378  }
1379  
1380  /**
1381   * populate_vma_page_range() -  populate a range of pages in the vma.
1382   * @vma:   target vma
1383   * @start: start address
1384   * @end:   end address
1385   * @locked: whether the mmap_lock is still held
1386   *
1387   * This takes care of mlocking the pages too if VM_LOCKED is set.
1388   *
1389   * Return either number of pages pinned in the vma, or a negative error
1390   * code on error.
1391   *
1392   * vma->vm_mm->mmap_lock must be held.
1393   *
1394   * If @locked is NULL, it may be held for read or write and will
1395   * be unperturbed.
1396   *
1397   * If @locked is non-NULL, it must held for read only and may be
1398   * released.  If it's released, *@locked will be set to 0.
1399   */
1400  long populate_vma_page_range(struct vm_area_struct *vma,
1401  		unsigned long start, unsigned long end, int *locked)
1402  {
1403  	struct mm_struct *mm = vma->vm_mm;
1404  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1405  	int gup_flags;
1406  
1407  	VM_BUG_ON(start & ~PAGE_MASK);
1408  	VM_BUG_ON(end   & ~PAGE_MASK);
1409  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1410  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1411  	mmap_assert_locked(mm);
1412  
1413  	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1414  	if (vma->vm_flags & VM_LOCKONFAULT)
1415  		gup_flags &= ~FOLL_POPULATE;
1416  	/*
1417  	 * We want to touch writable mappings with a write fault in order
1418  	 * to break COW, except for shared mappings because these don't COW
1419  	 * and we would not want to dirty them for nothing.
1420  	 */
1421  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1422  		gup_flags |= FOLL_WRITE;
1423  
1424  	/*
1425  	 * We want mlock to succeed for regions that have any permissions
1426  	 * other than PROT_NONE.
1427  	 */
1428  	if (vma_is_accessible(vma))
1429  		gup_flags |= FOLL_FORCE;
1430  
1431  	/*
1432  	 * We made sure addr is within a VMA, so the following will
1433  	 * not result in a stack expansion that recurses back here.
1434  	 */
1435  	return __get_user_pages(mm, start, nr_pages, gup_flags,
1436  				NULL, NULL, locked);
1437  }
1438  
1439  /*
1440   * __mm_populate - populate and/or mlock pages within a range of address space.
1441   *
1442   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1443   * flags. VMAs must be already marked with the desired vm_flags, and
1444   * mmap_lock must not be held.
1445   */
1446  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1447  {
1448  	struct mm_struct *mm = current->mm;
1449  	unsigned long end, nstart, nend;
1450  	struct vm_area_struct *vma = NULL;
1451  	int locked = 0;
1452  	long ret = 0;
1453  
1454  	end = start + len;
1455  
1456  	for (nstart = start; nstart < end; nstart = nend) {
1457  		/*
1458  		 * We want to fault in pages for [nstart; end) address range.
1459  		 * Find first corresponding VMA.
1460  		 */
1461  		if (!locked) {
1462  			locked = 1;
1463  			mmap_read_lock(mm);
1464  			vma = find_vma(mm, nstart);
1465  		} else if (nstart >= vma->vm_end)
1466  			vma = vma->vm_next;
1467  		if (!vma || vma->vm_start >= end)
1468  			break;
1469  		/*
1470  		 * Set [nstart; nend) to intersection of desired address
1471  		 * range with the first VMA. Also, skip undesirable VMA types.
1472  		 */
1473  		nend = min(end, vma->vm_end);
1474  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1475  			continue;
1476  		if (nstart < vma->vm_start)
1477  			nstart = vma->vm_start;
1478  		/*
1479  		 * Now fault in a range of pages. populate_vma_page_range()
1480  		 * double checks the vma flags, so that it won't mlock pages
1481  		 * if the vma was already munlocked.
1482  		 */
1483  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1484  		if (ret < 0) {
1485  			if (ignore_errors) {
1486  				ret = 0;
1487  				continue;	/* continue at next VMA */
1488  			}
1489  			break;
1490  		}
1491  		nend = nstart + ret * PAGE_SIZE;
1492  		ret = 0;
1493  	}
1494  	if (locked)
1495  		mmap_read_unlock(mm);
1496  	return ret;	/* 0 or negative error code */
1497  }
1498  
1499  /**
1500   * get_dump_page() - pin user page in memory while writing it to core dump
1501   * @addr: user address
1502   *
1503   * Returns struct page pointer of user page pinned for dump,
1504   * to be freed afterwards by put_page().
1505   *
1506   * Returns NULL on any kind of failure - a hole must then be inserted into
1507   * the corefile, to preserve alignment with its headers; and also returns
1508   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1509   * allowing a hole to be left in the corefile to save diskspace.
1510   *
1511   * Called without mmap_lock, but after all other threads have been killed.
1512   */
1513  #ifdef CONFIG_ELF_CORE
1514  struct page *get_dump_page(unsigned long addr)
1515  {
1516  	struct vm_area_struct *vma;
1517  	struct page *page;
1518  
1519  	if (__get_user_pages(current->mm, addr, 1,
1520  			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1521  			     NULL) < 1)
1522  		return NULL;
1523  	flush_cache_page(vma, addr, page_to_pfn(page));
1524  	return page;
1525  }
1526  #endif /* CONFIG_ELF_CORE */
1527  #else /* CONFIG_MMU */
1528  static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1529  		unsigned long nr_pages, struct page **pages,
1530  		struct vm_area_struct **vmas, int *locked,
1531  		unsigned int foll_flags)
1532  {
1533  	struct vm_area_struct *vma;
1534  	unsigned long vm_flags;
1535  	int i;
1536  
1537  	/* calculate required read or write permissions.
1538  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1539  	 */
1540  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1541  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1542  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1543  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1544  
1545  	for (i = 0; i < nr_pages; i++) {
1546  		vma = find_vma(mm, start);
1547  		if (!vma)
1548  			goto finish_or_fault;
1549  
1550  		/* protect what we can, including chardevs */
1551  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1552  		    !(vm_flags & vma->vm_flags))
1553  			goto finish_or_fault;
1554  
1555  		if (pages) {
1556  			pages[i] = virt_to_page(start);
1557  			if (pages[i])
1558  				get_page(pages[i]);
1559  		}
1560  		if (vmas)
1561  			vmas[i] = vma;
1562  		start = (start + PAGE_SIZE) & PAGE_MASK;
1563  	}
1564  
1565  	return i;
1566  
1567  finish_or_fault:
1568  	return i ? : -EFAULT;
1569  }
1570  #endif /* !CONFIG_MMU */
1571  
1572  #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1573  static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1574  {
1575  	long i;
1576  	struct vm_area_struct *vma_prev = NULL;
1577  
1578  	for (i = 0; i < nr_pages; i++) {
1579  		struct vm_area_struct *vma = vmas[i];
1580  
1581  		if (vma == vma_prev)
1582  			continue;
1583  
1584  		vma_prev = vma;
1585  
1586  		if (vma_is_fsdax(vma))
1587  			return true;
1588  	}
1589  	return false;
1590  }
1591  
1592  #ifdef CONFIG_CMA
1593  static long check_and_migrate_cma_pages(struct mm_struct *mm,
1594  					unsigned long start,
1595  					unsigned long nr_pages,
1596  					struct page **pages,
1597  					struct vm_area_struct **vmas,
1598  					unsigned int gup_flags)
1599  {
1600  	unsigned long i;
1601  	unsigned long step;
1602  	bool drain_allow = true;
1603  	bool migrate_allow = true;
1604  	LIST_HEAD(cma_page_list);
1605  	long ret = nr_pages;
1606  	struct migration_target_control mtc = {
1607  		.nid = NUMA_NO_NODE,
1608  		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1609  	};
1610  
1611  check_again:
1612  	for (i = 0; i < nr_pages;) {
1613  
1614  		struct page *head = compound_head(pages[i]);
1615  
1616  		/*
1617  		 * gup may start from a tail page. Advance step by the left
1618  		 * part.
1619  		 */
1620  		step = compound_nr(head) - (pages[i] - head);
1621  		/*
1622  		 * If we get a page from the CMA zone, since we are going to
1623  		 * be pinning these entries, we might as well move them out
1624  		 * of the CMA zone if possible.
1625  		 */
1626  		if (is_migrate_cma_page(head)) {
1627  			if (PageHuge(head))
1628  				isolate_huge_page(head, &cma_page_list);
1629  			else {
1630  				if (!PageLRU(head) && drain_allow) {
1631  					lru_add_drain_all();
1632  					drain_allow = false;
1633  				}
1634  
1635  				if (!isolate_lru_page(head)) {
1636  					list_add_tail(&head->lru, &cma_page_list);
1637  					mod_node_page_state(page_pgdat(head),
1638  							    NR_ISOLATED_ANON +
1639  							    page_is_file_lru(head),
1640  							    thp_nr_pages(head));
1641  				}
1642  			}
1643  		}
1644  
1645  		i += step;
1646  	}
1647  
1648  	if (!list_empty(&cma_page_list)) {
1649  		/*
1650  		 * drop the above get_user_pages reference.
1651  		 */
1652  		for (i = 0; i < nr_pages; i++)
1653  			put_page(pages[i]);
1654  
1655  		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1656  			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1657  			/*
1658  			 * some of the pages failed migration. Do get_user_pages
1659  			 * without migration.
1660  			 */
1661  			migrate_allow = false;
1662  
1663  			if (!list_empty(&cma_page_list))
1664  				putback_movable_pages(&cma_page_list);
1665  		}
1666  		/*
1667  		 * We did migrate all the pages, Try to get the page references
1668  		 * again migrating any new CMA pages which we failed to isolate
1669  		 * earlier.
1670  		 */
1671  		ret = __get_user_pages_locked(mm, start, nr_pages,
1672  						   pages, vmas, NULL,
1673  						   gup_flags);
1674  
1675  		if ((ret > 0) && migrate_allow) {
1676  			nr_pages = ret;
1677  			drain_allow = true;
1678  			goto check_again;
1679  		}
1680  	}
1681  
1682  	return ret;
1683  }
1684  #else
1685  static long check_and_migrate_cma_pages(struct mm_struct *mm,
1686  					unsigned long start,
1687  					unsigned long nr_pages,
1688  					struct page **pages,
1689  					struct vm_area_struct **vmas,
1690  					unsigned int gup_flags)
1691  {
1692  	return nr_pages;
1693  }
1694  #endif /* CONFIG_CMA */
1695  
1696  /*
1697   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1698   * allows us to process the FOLL_LONGTERM flag.
1699   */
1700  static long __gup_longterm_locked(struct mm_struct *mm,
1701  				  unsigned long start,
1702  				  unsigned long nr_pages,
1703  				  struct page **pages,
1704  				  struct vm_area_struct **vmas,
1705  				  unsigned int gup_flags)
1706  {
1707  	struct vm_area_struct **vmas_tmp = vmas;
1708  	unsigned long flags = 0;
1709  	long rc, i;
1710  
1711  	if (gup_flags & FOLL_LONGTERM) {
1712  		if (!pages)
1713  			return -EINVAL;
1714  
1715  		if (!vmas_tmp) {
1716  			vmas_tmp = kcalloc(nr_pages,
1717  					   sizeof(struct vm_area_struct *),
1718  					   GFP_KERNEL);
1719  			if (!vmas_tmp)
1720  				return -ENOMEM;
1721  		}
1722  		flags = memalloc_nocma_save();
1723  	}
1724  
1725  	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1726  				     vmas_tmp, NULL, gup_flags);
1727  
1728  	if (gup_flags & FOLL_LONGTERM) {
1729  		if (rc < 0)
1730  			goto out;
1731  
1732  		if (check_dax_vmas(vmas_tmp, rc)) {
1733  			for (i = 0; i < rc; i++)
1734  				put_page(pages[i]);
1735  			rc = -EOPNOTSUPP;
1736  			goto out;
1737  		}
1738  
1739  		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1740  						 vmas_tmp, gup_flags);
1741  out:
1742  		memalloc_nocma_restore(flags);
1743  	}
1744  
1745  	if (vmas_tmp != vmas)
1746  		kfree(vmas_tmp);
1747  	return rc;
1748  }
1749  #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1750  static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1751  						  unsigned long start,
1752  						  unsigned long nr_pages,
1753  						  struct page **pages,
1754  						  struct vm_area_struct **vmas,
1755  						  unsigned int flags)
1756  {
1757  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1758  				       NULL, flags);
1759  }
1760  #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1761  
1762  #ifdef CONFIG_MMU
1763  static long __get_user_pages_remote(struct mm_struct *mm,
1764  				    unsigned long start, unsigned long nr_pages,
1765  				    unsigned int gup_flags, struct page **pages,
1766  				    struct vm_area_struct **vmas, int *locked)
1767  {
1768  	/*
1769  	 * Parts of FOLL_LONGTERM behavior are incompatible with
1770  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1771  	 * vmas. However, this only comes up if locked is set, and there are
1772  	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1773  	 * allow what we can.
1774  	 */
1775  	if (gup_flags & FOLL_LONGTERM) {
1776  		if (WARN_ON_ONCE(locked))
1777  			return -EINVAL;
1778  		/*
1779  		 * This will check the vmas (even if our vmas arg is NULL)
1780  		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1781  		 */
1782  		return __gup_longterm_locked(mm, start, nr_pages, pages,
1783  					     vmas, gup_flags | FOLL_TOUCH |
1784  					     FOLL_REMOTE);
1785  	}
1786  
1787  	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1788  				       locked,
1789  				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1790  }
1791  
1792  /**
1793   * get_user_pages_remote() - pin user pages in memory
1794   * @mm:		mm_struct of target mm
1795   * @start:	starting user address
1796   * @nr_pages:	number of pages from start to pin
1797   * @gup_flags:	flags modifying lookup behaviour
1798   * @pages:	array that receives pointers to the pages pinned.
1799   *		Should be at least nr_pages long. Or NULL, if caller
1800   *		only intends to ensure the pages are faulted in.
1801   * @vmas:	array of pointers to vmas corresponding to each page.
1802   *		Or NULL if the caller does not require them.
1803   * @locked:	pointer to lock flag indicating whether lock is held and
1804   *		subsequently whether VM_FAULT_RETRY functionality can be
1805   *		utilised. Lock must initially be held.
1806   *
1807   * Returns either number of pages pinned (which may be less than the
1808   * number requested), or an error. Details about the return value:
1809   *
1810   * -- If nr_pages is 0, returns 0.
1811   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1812   * -- If nr_pages is >0, and some pages were pinned, returns the number of
1813   *    pages pinned. Again, this may be less than nr_pages.
1814   *
1815   * The caller is responsible for releasing returned @pages, via put_page().
1816   *
1817   * @vmas are valid only as long as mmap_lock is held.
1818   *
1819   * Must be called with mmap_lock held for read or write.
1820   *
1821   * get_user_pages_remote walks a process's page tables and takes a reference
1822   * to each struct page that each user address corresponds to at a given
1823   * instant. That is, it takes the page that would be accessed if a user
1824   * thread accesses the given user virtual address at that instant.
1825   *
1826   * This does not guarantee that the page exists in the user mappings when
1827   * get_user_pages_remote returns, and there may even be a completely different
1828   * page there in some cases (eg. if mmapped pagecache has been invalidated
1829   * and subsequently re faulted). However it does guarantee that the page
1830   * won't be freed completely. And mostly callers simply care that the page
1831   * contains data that was valid *at some point in time*. Typically, an IO
1832   * or similar operation cannot guarantee anything stronger anyway because
1833   * locks can't be held over the syscall boundary.
1834   *
1835   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1836   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1837   * be called after the page is finished with, and before put_page is called.
1838   *
1839   * get_user_pages_remote is typically used for fewer-copy IO operations,
1840   * to get a handle on the memory by some means other than accesses
1841   * via the user virtual addresses. The pages may be submitted for
1842   * DMA to devices or accessed via their kernel linear mapping (via the
1843   * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1844   *
1845   * See also get_user_pages_fast, for performance critical applications.
1846   *
1847   * get_user_pages_remote should be phased out in favor of
1848   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1849   * should use get_user_pages_remote because it cannot pass
1850   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1851   */
1852  long get_user_pages_remote(struct mm_struct *mm,
1853  		unsigned long start, unsigned long nr_pages,
1854  		unsigned int gup_flags, struct page **pages,
1855  		struct vm_area_struct **vmas, int *locked)
1856  {
1857  	/*
1858  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1859  	 * never directly by the caller, so enforce that with an assertion:
1860  	 */
1861  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1862  		return -EINVAL;
1863  
1864  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1865  				       pages, vmas, locked);
1866  }
1867  EXPORT_SYMBOL(get_user_pages_remote);
1868  
1869  #else /* CONFIG_MMU */
1870  long get_user_pages_remote(struct mm_struct *mm,
1871  			   unsigned long start, unsigned long nr_pages,
1872  			   unsigned int gup_flags, struct page **pages,
1873  			   struct vm_area_struct **vmas, int *locked)
1874  {
1875  	return 0;
1876  }
1877  
1878  static long __get_user_pages_remote(struct mm_struct *mm,
1879  				    unsigned long start, unsigned long nr_pages,
1880  				    unsigned int gup_flags, struct page **pages,
1881  				    struct vm_area_struct **vmas, int *locked)
1882  {
1883  	return 0;
1884  }
1885  #endif /* !CONFIG_MMU */
1886  
1887  /**
1888   * get_user_pages() - pin user pages in memory
1889   * @start:      starting user address
1890   * @nr_pages:   number of pages from start to pin
1891   * @gup_flags:  flags modifying lookup behaviour
1892   * @pages:      array that receives pointers to the pages pinned.
1893   *              Should be at least nr_pages long. Or NULL, if caller
1894   *              only intends to ensure the pages are faulted in.
1895   * @vmas:       array of pointers to vmas corresponding to each page.
1896   *              Or NULL if the caller does not require them.
1897   *
1898   * This is the same as get_user_pages_remote(), just with a less-flexible
1899   * calling convention where we assume that the mm being operated on belongs to
1900   * the current task, and doesn't allow passing of a locked parameter.  We also
1901   * obviously don't pass FOLL_REMOTE in here.
1902   */
1903  long get_user_pages(unsigned long start, unsigned long nr_pages,
1904  		unsigned int gup_flags, struct page **pages,
1905  		struct vm_area_struct **vmas)
1906  {
1907  	/*
1908  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1909  	 * never directly by the caller, so enforce that with an assertion:
1910  	 */
1911  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1912  		return -EINVAL;
1913  
1914  	return __gup_longterm_locked(current->mm, start, nr_pages,
1915  				     pages, vmas, gup_flags | FOLL_TOUCH);
1916  }
1917  EXPORT_SYMBOL(get_user_pages);
1918  
1919  /**
1920   * get_user_pages_locked() is suitable to replace the form:
1921   *
1922   *      mmap_read_lock(mm);
1923   *      do_something()
1924   *      get_user_pages(mm, ..., pages, NULL);
1925   *      mmap_read_unlock(mm);
1926   *
1927   *  to:
1928   *
1929   *      int locked = 1;
1930   *      mmap_read_lock(mm);
1931   *      do_something()
1932   *      get_user_pages_locked(mm, ..., pages, &locked);
1933   *      if (locked)
1934   *          mmap_read_unlock(mm);
1935   *
1936   * @start:      starting user address
1937   * @nr_pages:   number of pages from start to pin
1938   * @gup_flags:  flags modifying lookup behaviour
1939   * @pages:      array that receives pointers to the pages pinned.
1940   *              Should be at least nr_pages long. Or NULL, if caller
1941   *              only intends to ensure the pages are faulted in.
1942   * @locked:     pointer to lock flag indicating whether lock is held and
1943   *              subsequently whether VM_FAULT_RETRY functionality can be
1944   *              utilised. Lock must initially be held.
1945   *
1946   * We can leverage the VM_FAULT_RETRY functionality in the page fault
1947   * paths better by using either get_user_pages_locked() or
1948   * get_user_pages_unlocked().
1949   *
1950   */
1951  long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1952  			   unsigned int gup_flags, struct page **pages,
1953  			   int *locked)
1954  {
1955  	/*
1956  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1957  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1958  	 * vmas.  As there are no users of this flag in this call we simply
1959  	 * disallow this option for now.
1960  	 */
1961  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1962  		return -EINVAL;
1963  	/*
1964  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1965  	 * never directly by the caller, so enforce that:
1966  	 */
1967  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1968  		return -EINVAL;
1969  
1970  	return __get_user_pages_locked(current->mm, start, nr_pages,
1971  				       pages, NULL, locked,
1972  				       gup_flags | FOLL_TOUCH);
1973  }
1974  EXPORT_SYMBOL(get_user_pages_locked);
1975  
1976  /*
1977   * get_user_pages_unlocked() is suitable to replace the form:
1978   *
1979   *      mmap_read_lock(mm);
1980   *      get_user_pages(mm, ..., pages, NULL);
1981   *      mmap_read_unlock(mm);
1982   *
1983   *  with:
1984   *
1985   *      get_user_pages_unlocked(mm, ..., pages);
1986   *
1987   * It is functionally equivalent to get_user_pages_fast so
1988   * get_user_pages_fast should be used instead if specific gup_flags
1989   * (e.g. FOLL_FORCE) are not required.
1990   */
1991  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1992  			     struct page **pages, unsigned int gup_flags)
1993  {
1994  	struct mm_struct *mm = current->mm;
1995  	int locked = 1;
1996  	long ret;
1997  
1998  	/*
1999  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2000  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2001  	 * vmas.  As there are no users of this flag in this call we simply
2002  	 * disallow this option for now.
2003  	 */
2004  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2005  		return -EINVAL;
2006  
2007  	mmap_read_lock(mm);
2008  	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2009  				      &locked, gup_flags | FOLL_TOUCH);
2010  	if (locked)
2011  		mmap_read_unlock(mm);
2012  	return ret;
2013  }
2014  EXPORT_SYMBOL(get_user_pages_unlocked);
2015  
2016  /*
2017   * Fast GUP
2018   *
2019   * get_user_pages_fast attempts to pin user pages by walking the page
2020   * tables directly and avoids taking locks. Thus the walker needs to be
2021   * protected from page table pages being freed from under it, and should
2022   * block any THP splits.
2023   *
2024   * One way to achieve this is to have the walker disable interrupts, and
2025   * rely on IPIs from the TLB flushing code blocking before the page table
2026   * pages are freed. This is unsuitable for architectures that do not need
2027   * to broadcast an IPI when invalidating TLBs.
2028   *
2029   * Another way to achieve this is to batch up page table containing pages
2030   * belonging to more than one mm_user, then rcu_sched a callback to free those
2031   * pages. Disabling interrupts will allow the fast_gup walker to both block
2032   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2033   * (which is a relatively rare event). The code below adopts this strategy.
2034   *
2035   * Before activating this code, please be aware that the following assumptions
2036   * are currently made:
2037   *
2038   *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2039   *  free pages containing page tables or TLB flushing requires IPI broadcast.
2040   *
2041   *  *) ptes can be read atomically by the architecture.
2042   *
2043   *  *) access_ok is sufficient to validate userspace address ranges.
2044   *
2045   * The last two assumptions can be relaxed by the addition of helper functions.
2046   *
2047   * This code is based heavily on the PowerPC implementation by Nick Piggin.
2048   */
2049  #ifdef CONFIG_HAVE_FAST_GUP
2050  
2051  static void put_compound_head(struct page *page, int refs, unsigned int flags)
2052  {
2053  	if (flags & FOLL_PIN) {
2054  		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2055  				    refs);
2056  
2057  		if (hpage_pincount_available(page))
2058  			hpage_pincount_sub(page, refs);
2059  		else
2060  			refs *= GUP_PIN_COUNTING_BIAS;
2061  	}
2062  
2063  	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2064  	/*
2065  	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2066  	 * ref needs a put_page().
2067  	 */
2068  	if (refs > 1)
2069  		page_ref_sub(page, refs - 1);
2070  	put_page(page);
2071  }
2072  
2073  #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2074  
2075  /*
2076   * WARNING: only to be used in the get_user_pages_fast() implementation.
2077   *
2078   * With get_user_pages_fast(), we walk down the pagetables without taking any
2079   * locks.  For this we would like to load the pointers atomically, but sometimes
2080   * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2081   * we do have is the guarantee that a PTE will only either go from not present
2082   * to present, or present to not present or both -- it will not switch to a
2083   * completely different present page without a TLB flush in between; something
2084   * that we are blocking by holding interrupts off.
2085   *
2086   * Setting ptes from not present to present goes:
2087   *
2088   *   ptep->pte_high = h;
2089   *   smp_wmb();
2090   *   ptep->pte_low = l;
2091   *
2092   * And present to not present goes:
2093   *
2094   *   ptep->pte_low = 0;
2095   *   smp_wmb();
2096   *   ptep->pte_high = 0;
2097   *
2098   * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2099   * We load pte_high *after* loading pte_low, which ensures we don't see an older
2100   * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2101   * picked up a changed pte high. We might have gotten rubbish values from
2102   * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2103   * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2104   * operates on present ptes we're safe.
2105   */
2106  static inline pte_t gup_get_pte(pte_t *ptep)
2107  {
2108  	pte_t pte;
2109  
2110  	do {
2111  		pte.pte_low = ptep->pte_low;
2112  		smp_rmb();
2113  		pte.pte_high = ptep->pte_high;
2114  		smp_rmb();
2115  	} while (unlikely(pte.pte_low != ptep->pte_low));
2116  
2117  	return pte;
2118  }
2119  #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2120  /*
2121   * We require that the PTE can be read atomically.
2122   */
2123  static inline pte_t gup_get_pte(pte_t *ptep)
2124  {
2125  	return ptep_get(ptep);
2126  }
2127  #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2128  
2129  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2130  					    unsigned int flags,
2131  					    struct page **pages)
2132  {
2133  	while ((*nr) - nr_start) {
2134  		struct page *page = pages[--(*nr)];
2135  
2136  		ClearPageReferenced(page);
2137  		if (flags & FOLL_PIN)
2138  			unpin_user_page(page);
2139  		else
2140  			put_page(page);
2141  	}
2142  }
2143  
2144  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2145  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2146  			 unsigned int flags, struct page **pages, int *nr)
2147  {
2148  	struct dev_pagemap *pgmap = NULL;
2149  	int nr_start = *nr, ret = 0;
2150  	pte_t *ptep, *ptem;
2151  
2152  	ptem = ptep = pte_offset_map(&pmd, addr);
2153  	do {
2154  		pte_t pte = gup_get_pte(ptep);
2155  		struct page *head, *page;
2156  
2157  		/*
2158  		 * Similar to the PMD case below, NUMA hinting must take slow
2159  		 * path using the pte_protnone check.
2160  		 */
2161  		if (pte_protnone(pte))
2162  			goto pte_unmap;
2163  
2164  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2165  			goto pte_unmap;
2166  
2167  		if (pte_devmap(pte)) {
2168  			if (unlikely(flags & FOLL_LONGTERM))
2169  				goto pte_unmap;
2170  
2171  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2172  			if (unlikely(!pgmap)) {
2173  				undo_dev_pagemap(nr, nr_start, flags, pages);
2174  				goto pte_unmap;
2175  			}
2176  		} else if (pte_special(pte))
2177  			goto pte_unmap;
2178  
2179  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2180  		page = pte_page(pte);
2181  
2182  		head = try_grab_compound_head(page, 1, flags);
2183  		if (!head)
2184  			goto pte_unmap;
2185  
2186  		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2187  			put_compound_head(head, 1, flags);
2188  			goto pte_unmap;
2189  		}
2190  
2191  		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2192  
2193  		/*
2194  		 * We need to make the page accessible if and only if we are
2195  		 * going to access its content (the FOLL_PIN case).  Please
2196  		 * see Documentation/core-api/pin_user_pages.rst for
2197  		 * details.
2198  		 */
2199  		if (flags & FOLL_PIN) {
2200  			ret = arch_make_page_accessible(page);
2201  			if (ret) {
2202  				unpin_user_page(page);
2203  				goto pte_unmap;
2204  			}
2205  		}
2206  		SetPageReferenced(page);
2207  		pages[*nr] = page;
2208  		(*nr)++;
2209  
2210  	} while (ptep++, addr += PAGE_SIZE, addr != end);
2211  
2212  	ret = 1;
2213  
2214  pte_unmap:
2215  	if (pgmap)
2216  		put_dev_pagemap(pgmap);
2217  	pte_unmap(ptem);
2218  	return ret;
2219  }
2220  #else
2221  
2222  /*
2223   * If we can't determine whether or not a pte is special, then fail immediately
2224   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2225   * to be special.
2226   *
2227   * For a futex to be placed on a THP tail page, get_futex_key requires a
2228   * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2229   * useful to have gup_huge_pmd even if we can't operate on ptes.
2230   */
2231  static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2232  			 unsigned int flags, struct page **pages, int *nr)
2233  {
2234  	return 0;
2235  }
2236  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2237  
2238  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2239  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2240  			     unsigned long end, unsigned int flags,
2241  			     struct page **pages, int *nr)
2242  {
2243  	int nr_start = *nr;
2244  	struct dev_pagemap *pgmap = NULL;
2245  
2246  	do {
2247  		struct page *page = pfn_to_page(pfn);
2248  
2249  		pgmap = get_dev_pagemap(pfn, pgmap);
2250  		if (unlikely(!pgmap)) {
2251  			undo_dev_pagemap(nr, nr_start, flags, pages);
2252  			return 0;
2253  		}
2254  		SetPageReferenced(page);
2255  		pages[*nr] = page;
2256  		if (unlikely(!try_grab_page(page, flags))) {
2257  			undo_dev_pagemap(nr, nr_start, flags, pages);
2258  			return 0;
2259  		}
2260  		(*nr)++;
2261  		pfn++;
2262  	} while (addr += PAGE_SIZE, addr != end);
2263  
2264  	if (pgmap)
2265  		put_dev_pagemap(pgmap);
2266  	return 1;
2267  }
2268  
2269  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2270  				 unsigned long end, unsigned int flags,
2271  				 struct page **pages, int *nr)
2272  {
2273  	unsigned long fault_pfn;
2274  	int nr_start = *nr;
2275  
2276  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2277  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2278  		return 0;
2279  
2280  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2281  		undo_dev_pagemap(nr, nr_start, flags, pages);
2282  		return 0;
2283  	}
2284  	return 1;
2285  }
2286  
2287  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2288  				 unsigned long end, unsigned int flags,
2289  				 struct page **pages, int *nr)
2290  {
2291  	unsigned long fault_pfn;
2292  	int nr_start = *nr;
2293  
2294  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2295  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2296  		return 0;
2297  
2298  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2299  		undo_dev_pagemap(nr, nr_start, flags, pages);
2300  		return 0;
2301  	}
2302  	return 1;
2303  }
2304  #else
2305  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2306  				 unsigned long end, unsigned int flags,
2307  				 struct page **pages, int *nr)
2308  {
2309  	BUILD_BUG();
2310  	return 0;
2311  }
2312  
2313  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2314  				 unsigned long end, unsigned int flags,
2315  				 struct page **pages, int *nr)
2316  {
2317  	BUILD_BUG();
2318  	return 0;
2319  }
2320  #endif
2321  
2322  static int record_subpages(struct page *page, unsigned long addr,
2323  			   unsigned long end, struct page **pages)
2324  {
2325  	int nr;
2326  
2327  	for (nr = 0; addr != end; addr += PAGE_SIZE)
2328  		pages[nr++] = page++;
2329  
2330  	return nr;
2331  }
2332  
2333  #ifdef CONFIG_ARCH_HAS_HUGEPD
2334  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2335  				      unsigned long sz)
2336  {
2337  	unsigned long __boundary = (addr + sz) & ~(sz-1);
2338  	return (__boundary - 1 < end - 1) ? __boundary : end;
2339  }
2340  
2341  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2342  		       unsigned long end, unsigned int flags,
2343  		       struct page **pages, int *nr)
2344  {
2345  	unsigned long pte_end;
2346  	struct page *head, *page;
2347  	pte_t pte;
2348  	int refs;
2349  
2350  	pte_end = (addr + sz) & ~(sz-1);
2351  	if (pte_end < end)
2352  		end = pte_end;
2353  
2354  	pte = huge_ptep_get(ptep);
2355  
2356  	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2357  		return 0;
2358  
2359  	/* hugepages are never "special" */
2360  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2361  
2362  	head = pte_page(pte);
2363  	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2364  	refs = record_subpages(page, addr, end, pages + *nr);
2365  
2366  	head = try_grab_compound_head(head, refs, flags);
2367  	if (!head)
2368  		return 0;
2369  
2370  	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2371  		put_compound_head(head, refs, flags);
2372  		return 0;
2373  	}
2374  
2375  	*nr += refs;
2376  	SetPageReferenced(head);
2377  	return 1;
2378  }
2379  
2380  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2381  		unsigned int pdshift, unsigned long end, unsigned int flags,
2382  		struct page **pages, int *nr)
2383  {
2384  	pte_t *ptep;
2385  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2386  	unsigned long next;
2387  
2388  	ptep = hugepte_offset(hugepd, addr, pdshift);
2389  	do {
2390  		next = hugepte_addr_end(addr, end, sz);
2391  		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2392  			return 0;
2393  	} while (ptep++, addr = next, addr != end);
2394  
2395  	return 1;
2396  }
2397  #else
2398  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2399  		unsigned int pdshift, unsigned long end, unsigned int flags,
2400  		struct page **pages, int *nr)
2401  {
2402  	return 0;
2403  }
2404  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2405  
2406  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2407  			unsigned long end, unsigned int flags,
2408  			struct page **pages, int *nr)
2409  {
2410  	struct page *head, *page;
2411  	int refs;
2412  
2413  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2414  		return 0;
2415  
2416  	if (pmd_devmap(orig)) {
2417  		if (unlikely(flags & FOLL_LONGTERM))
2418  			return 0;
2419  		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2420  					     pages, nr);
2421  	}
2422  
2423  	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2424  	refs = record_subpages(page, addr, end, pages + *nr);
2425  
2426  	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2427  	if (!head)
2428  		return 0;
2429  
2430  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2431  		put_compound_head(head, refs, flags);
2432  		return 0;
2433  	}
2434  
2435  	*nr += refs;
2436  	SetPageReferenced(head);
2437  	return 1;
2438  }
2439  
2440  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2441  			unsigned long end, unsigned int flags,
2442  			struct page **pages, int *nr)
2443  {
2444  	struct page *head, *page;
2445  	int refs;
2446  
2447  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2448  		return 0;
2449  
2450  	if (pud_devmap(orig)) {
2451  		if (unlikely(flags & FOLL_LONGTERM))
2452  			return 0;
2453  		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2454  					     pages, nr);
2455  	}
2456  
2457  	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2458  	refs = record_subpages(page, addr, end, pages + *nr);
2459  
2460  	head = try_grab_compound_head(pud_page(orig), refs, flags);
2461  	if (!head)
2462  		return 0;
2463  
2464  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2465  		put_compound_head(head, refs, flags);
2466  		return 0;
2467  	}
2468  
2469  	*nr += refs;
2470  	SetPageReferenced(head);
2471  	return 1;
2472  }
2473  
2474  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2475  			unsigned long end, unsigned int flags,
2476  			struct page **pages, int *nr)
2477  {
2478  	int refs;
2479  	struct page *head, *page;
2480  
2481  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2482  		return 0;
2483  
2484  	BUILD_BUG_ON(pgd_devmap(orig));
2485  
2486  	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2487  	refs = record_subpages(page, addr, end, pages + *nr);
2488  
2489  	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2490  	if (!head)
2491  		return 0;
2492  
2493  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2494  		put_compound_head(head, refs, flags);
2495  		return 0;
2496  	}
2497  
2498  	*nr += refs;
2499  	SetPageReferenced(head);
2500  	return 1;
2501  }
2502  
2503  static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2504  		unsigned int flags, struct page **pages, int *nr)
2505  {
2506  	unsigned long next;
2507  	pmd_t *pmdp;
2508  
2509  	pmdp = pmd_offset(&pud, addr);
2510  	do {
2511  		pmd_t pmd = READ_ONCE(*pmdp);
2512  
2513  		next = pmd_addr_end(addr, end);
2514  		if (!pmd_present(pmd))
2515  			return 0;
2516  
2517  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2518  			     pmd_devmap(pmd))) {
2519  			/*
2520  			 * NUMA hinting faults need to be handled in the GUP
2521  			 * slowpath for accounting purposes and so that they
2522  			 * can be serialised against THP migration.
2523  			 */
2524  			if (pmd_protnone(pmd))
2525  				return 0;
2526  
2527  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2528  				pages, nr))
2529  				return 0;
2530  
2531  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2532  			/*
2533  			 * architecture have different format for hugetlbfs
2534  			 * pmd format and THP pmd format
2535  			 */
2536  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2537  					 PMD_SHIFT, next, flags, pages, nr))
2538  				return 0;
2539  		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2540  			return 0;
2541  	} while (pmdp++, addr = next, addr != end);
2542  
2543  	return 1;
2544  }
2545  
2546  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2547  			 unsigned int flags, struct page **pages, int *nr)
2548  {
2549  	unsigned long next;
2550  	pud_t *pudp;
2551  
2552  	pudp = pud_offset(&p4d, addr);
2553  	do {
2554  		pud_t pud = READ_ONCE(*pudp);
2555  
2556  		next = pud_addr_end(addr, end);
2557  		if (unlikely(!pud_present(pud)))
2558  			return 0;
2559  		if (unlikely(pud_huge(pud))) {
2560  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2561  					  pages, nr))
2562  				return 0;
2563  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2564  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2565  					 PUD_SHIFT, next, flags, pages, nr))
2566  				return 0;
2567  		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2568  			return 0;
2569  	} while (pudp++, addr = next, addr != end);
2570  
2571  	return 1;
2572  }
2573  
2574  static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2575  			 unsigned int flags, struct page **pages, int *nr)
2576  {
2577  	unsigned long next;
2578  	p4d_t *p4dp;
2579  
2580  	p4dp = p4d_offset(&pgd, addr);
2581  	do {
2582  		p4d_t p4d = READ_ONCE(*p4dp);
2583  
2584  		next = p4d_addr_end(addr, end);
2585  		if (p4d_none(p4d))
2586  			return 0;
2587  		BUILD_BUG_ON(p4d_huge(p4d));
2588  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2589  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2590  					 P4D_SHIFT, next, flags, pages, nr))
2591  				return 0;
2592  		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2593  			return 0;
2594  	} while (p4dp++, addr = next, addr != end);
2595  
2596  	return 1;
2597  }
2598  
2599  static void gup_pgd_range(unsigned long addr, unsigned long end,
2600  		unsigned int flags, struct page **pages, int *nr)
2601  {
2602  	unsigned long next;
2603  	pgd_t *pgdp;
2604  
2605  	pgdp = pgd_offset(current->mm, addr);
2606  	do {
2607  		pgd_t pgd = READ_ONCE(*pgdp);
2608  
2609  		next = pgd_addr_end(addr, end);
2610  		if (pgd_none(pgd))
2611  			return;
2612  		if (unlikely(pgd_huge(pgd))) {
2613  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2614  					  pages, nr))
2615  				return;
2616  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2617  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2618  					 PGDIR_SHIFT, next, flags, pages, nr))
2619  				return;
2620  		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2621  			return;
2622  	} while (pgdp++, addr = next, addr != end);
2623  }
2624  #else
2625  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2626  		unsigned int flags, struct page **pages, int *nr)
2627  {
2628  }
2629  #endif /* CONFIG_HAVE_FAST_GUP */
2630  
2631  #ifndef gup_fast_permitted
2632  /*
2633   * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2634   * we need to fall back to the slow version:
2635   */
2636  static bool gup_fast_permitted(unsigned long start, unsigned long end)
2637  {
2638  	return true;
2639  }
2640  #endif
2641  
2642  static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2643  				   unsigned int gup_flags, struct page **pages)
2644  {
2645  	int ret;
2646  
2647  	/*
2648  	 * FIXME: FOLL_LONGTERM does not work with
2649  	 * get_user_pages_unlocked() (see comments in that function)
2650  	 */
2651  	if (gup_flags & FOLL_LONGTERM) {
2652  		mmap_read_lock(current->mm);
2653  		ret = __gup_longterm_locked(current->mm,
2654  					    start, nr_pages,
2655  					    pages, NULL, gup_flags);
2656  		mmap_read_unlock(current->mm);
2657  	} else {
2658  		ret = get_user_pages_unlocked(start, nr_pages,
2659  					      pages, gup_flags);
2660  	}
2661  
2662  	return ret;
2663  }
2664  
2665  static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2666  					unsigned int gup_flags,
2667  					struct page **pages)
2668  {
2669  	unsigned long addr, len, end;
2670  	unsigned long flags;
2671  	int nr_pinned = 0, ret = 0;
2672  
2673  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2674  				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2675  				       FOLL_FAST_ONLY)))
2676  		return -EINVAL;
2677  
2678  	if (!(gup_flags & FOLL_FAST_ONLY))
2679  		might_lock_read(&current->mm->mmap_lock);
2680  
2681  	start = untagged_addr(start) & PAGE_MASK;
2682  	addr = start;
2683  	len = (unsigned long) nr_pages << PAGE_SHIFT;
2684  	end = start + len;
2685  
2686  	if (end <= start)
2687  		return 0;
2688  	if (unlikely(!access_ok((void __user *)start, len)))
2689  		return -EFAULT;
2690  
2691  	/*
2692  	 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2693  	 * because get_user_pages() may need to cause an early COW in
2694  	 * order to avoid confusing the normal COW routines. So only
2695  	 * targets that are already writable are safe to do by just
2696  	 * looking at the page tables.
2697  	 *
2698  	 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2699  	 * because there is no slow path to fall back on. But you'd
2700  	 * better be careful about possible COW pages - you'll get _a_
2701  	 * COW page, but not necessarily the one you intended to get
2702  	 * depending on what COW event happens after this. COW may break
2703  	 * the page copy in a random direction.
2704  	 *
2705  	 * Disable interrupts. The nested form is used, in order to allow
2706  	 * full, general purpose use of this routine.
2707  	 *
2708  	 * With interrupts disabled, we block page table pages from being
2709  	 * freed from under us. See struct mmu_table_batch comments in
2710  	 * include/asm-generic/tlb.h for more details.
2711  	 *
2712  	 * We do not adopt an rcu_read_lock(.) here as we also want to
2713  	 * block IPIs that come from THPs splitting.
2714  	 */
2715  	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2716  		unsigned long fast_flags = gup_flags;
2717  		if (!(gup_flags & FOLL_FAST_ONLY))
2718  			fast_flags |= FOLL_WRITE;
2719  
2720  		local_irq_save(flags);
2721  		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2722  		local_irq_restore(flags);
2723  		ret = nr_pinned;
2724  	}
2725  
2726  	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2727  		/* Try to get the remaining pages with get_user_pages */
2728  		start += nr_pinned << PAGE_SHIFT;
2729  		pages += nr_pinned;
2730  
2731  		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2732  					      gup_flags, pages);
2733  
2734  		/* Have to be a bit careful with return values */
2735  		if (nr_pinned > 0) {
2736  			if (ret < 0)
2737  				ret = nr_pinned;
2738  			else
2739  				ret += nr_pinned;
2740  		}
2741  	}
2742  
2743  	return ret;
2744  }
2745  /**
2746   * get_user_pages_fast_only() - pin user pages in memory
2747   * @start:      starting user address
2748   * @nr_pages:   number of pages from start to pin
2749   * @gup_flags:  flags modifying pin behaviour
2750   * @pages:      array that receives pointers to the pages pinned.
2751   *              Should be at least nr_pages long.
2752   *
2753   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2754   * the regular GUP.
2755   * Note a difference with get_user_pages_fast: this always returns the
2756   * number of pages pinned, 0 if no pages were pinned.
2757   *
2758   * If the architecture does not support this function, simply return with no
2759   * pages pinned.
2760   *
2761   * Careful, careful! COW breaking can go either way, so a non-write
2762   * access can get ambiguous page results. If you call this function without
2763   * 'write' set, you'd better be sure that you're ok with that ambiguity.
2764   */
2765  int get_user_pages_fast_only(unsigned long start, int nr_pages,
2766  			     unsigned int gup_flags, struct page **pages)
2767  {
2768  	int nr_pinned;
2769  	/*
2770  	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2771  	 * because gup fast is always a "pin with a +1 page refcount" request.
2772  	 *
2773  	 * FOLL_FAST_ONLY is required in order to match the API description of
2774  	 * this routine: no fall back to regular ("slow") GUP.
2775  	 */
2776  	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2777  
2778  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2779  						 pages);
2780  
2781  	/*
2782  	 * As specified in the API description above, this routine is not
2783  	 * allowed to return negative values. However, the common core
2784  	 * routine internal_get_user_pages_fast() *can* return -errno.
2785  	 * Therefore, correct for that here:
2786  	 */
2787  	if (nr_pinned < 0)
2788  		nr_pinned = 0;
2789  
2790  	return nr_pinned;
2791  }
2792  EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2793  
2794  /**
2795   * get_user_pages_fast() - pin user pages in memory
2796   * @start:      starting user address
2797   * @nr_pages:   number of pages from start to pin
2798   * @gup_flags:  flags modifying pin behaviour
2799   * @pages:      array that receives pointers to the pages pinned.
2800   *              Should be at least nr_pages long.
2801   *
2802   * Attempt to pin user pages in memory without taking mm->mmap_lock.
2803   * If not successful, it will fall back to taking the lock and
2804   * calling get_user_pages().
2805   *
2806   * Returns number of pages pinned. This may be fewer than the number requested.
2807   * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2808   * -errno.
2809   */
2810  int get_user_pages_fast(unsigned long start, int nr_pages,
2811  			unsigned int gup_flags, struct page **pages)
2812  {
2813  	/*
2814  	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2815  	 * never directly by the caller, so enforce that:
2816  	 */
2817  	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2818  		return -EINVAL;
2819  
2820  	/*
2821  	 * The caller may or may not have explicitly set FOLL_GET; either way is
2822  	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2823  	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2824  	 * request.
2825  	 */
2826  	gup_flags |= FOLL_GET;
2827  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2828  }
2829  EXPORT_SYMBOL_GPL(get_user_pages_fast);
2830  
2831  /**
2832   * pin_user_pages_fast() - pin user pages in memory without taking locks
2833   *
2834   * @start:      starting user address
2835   * @nr_pages:   number of pages from start to pin
2836   * @gup_flags:  flags modifying pin behaviour
2837   * @pages:      array that receives pointers to the pages pinned.
2838   *              Should be at least nr_pages long.
2839   *
2840   * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2841   * get_user_pages_fast() for documentation on the function arguments, because
2842   * the arguments here are identical.
2843   *
2844   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2845   * see Documentation/core-api/pin_user_pages.rst for further details.
2846   */
2847  int pin_user_pages_fast(unsigned long start, int nr_pages,
2848  			unsigned int gup_flags, struct page **pages)
2849  {
2850  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2851  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2852  		return -EINVAL;
2853  
2854  	gup_flags |= FOLL_PIN;
2855  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2856  }
2857  EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2858  
2859  /*
2860   * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2861   * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2862   *
2863   * The API rules are the same, too: no negative values may be returned.
2864   */
2865  int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2866  			     unsigned int gup_flags, struct page **pages)
2867  {
2868  	int nr_pinned;
2869  
2870  	/*
2871  	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2872  	 * rules require returning 0, rather than -errno:
2873  	 */
2874  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2875  		return 0;
2876  	/*
2877  	 * FOLL_FAST_ONLY is required in order to match the API description of
2878  	 * this routine: no fall back to regular ("slow") GUP.
2879  	 */
2880  	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2881  	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2882  						 pages);
2883  	/*
2884  	 * This routine is not allowed to return negative values. However,
2885  	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2886  	 * correct for that here:
2887  	 */
2888  	if (nr_pinned < 0)
2889  		nr_pinned = 0;
2890  
2891  	return nr_pinned;
2892  }
2893  EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2894  
2895  /**
2896   * pin_user_pages_remote() - pin pages of a remote process
2897   *
2898   * @mm:		mm_struct of target mm
2899   * @start:	starting user address
2900   * @nr_pages:	number of pages from start to pin
2901   * @gup_flags:	flags modifying lookup behaviour
2902   * @pages:	array that receives pointers to the pages pinned.
2903   *		Should be at least nr_pages long. Or NULL, if caller
2904   *		only intends to ensure the pages are faulted in.
2905   * @vmas:	array of pointers to vmas corresponding to each page.
2906   *		Or NULL if the caller does not require them.
2907   * @locked:	pointer to lock flag indicating whether lock is held and
2908   *		subsequently whether VM_FAULT_RETRY functionality can be
2909   *		utilised. Lock must initially be held.
2910   *
2911   * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2912   * get_user_pages_remote() for documentation on the function arguments, because
2913   * the arguments here are identical.
2914   *
2915   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2916   * see Documentation/core-api/pin_user_pages.rst for details.
2917   */
2918  long pin_user_pages_remote(struct mm_struct *mm,
2919  			   unsigned long start, unsigned long nr_pages,
2920  			   unsigned int gup_flags, struct page **pages,
2921  			   struct vm_area_struct **vmas, int *locked)
2922  {
2923  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2924  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2925  		return -EINVAL;
2926  
2927  	gup_flags |= FOLL_PIN;
2928  	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2929  				       pages, vmas, locked);
2930  }
2931  EXPORT_SYMBOL(pin_user_pages_remote);
2932  
2933  /**
2934   * pin_user_pages() - pin user pages in memory for use by other devices
2935   *
2936   * @start:	starting user address
2937   * @nr_pages:	number of pages from start to pin
2938   * @gup_flags:	flags modifying lookup behaviour
2939   * @pages:	array that receives pointers to the pages pinned.
2940   *		Should be at least nr_pages long. Or NULL, if caller
2941   *		only intends to ensure the pages are faulted in.
2942   * @vmas:	array of pointers to vmas corresponding to each page.
2943   *		Or NULL if the caller does not require them.
2944   *
2945   * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2946   * FOLL_PIN is set.
2947   *
2948   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2949   * see Documentation/core-api/pin_user_pages.rst for details.
2950   */
2951  long pin_user_pages(unsigned long start, unsigned long nr_pages,
2952  		    unsigned int gup_flags, struct page **pages,
2953  		    struct vm_area_struct **vmas)
2954  {
2955  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2956  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2957  		return -EINVAL;
2958  
2959  	gup_flags |= FOLL_PIN;
2960  	return __gup_longterm_locked(current->mm, start, nr_pages,
2961  				     pages, vmas, gup_flags);
2962  }
2963  EXPORT_SYMBOL(pin_user_pages);
2964  
2965  /*
2966   * pin_user_pages_unlocked() is the FOLL_PIN variant of
2967   * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2968   * FOLL_PIN and rejects FOLL_GET.
2969   */
2970  long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2971  			     struct page **pages, unsigned int gup_flags)
2972  {
2973  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2974  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2975  		return -EINVAL;
2976  
2977  	gup_flags |= FOLL_PIN;
2978  	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2979  }
2980  EXPORT_SYMBOL(pin_user_pages_unlocked);
2981  
2982  /*
2983   * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2984   * Behavior is the same, except that this one sets FOLL_PIN and rejects
2985   * FOLL_GET.
2986   */
2987  long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2988  			   unsigned int gup_flags, struct page **pages,
2989  			   int *locked)
2990  {
2991  	/*
2992  	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2993  	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2994  	 * vmas.  As there are no users of this flag in this call we simply
2995  	 * disallow this option for now.
2996  	 */
2997  	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2998  		return -EINVAL;
2999  
3000  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3001  	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002  		return -EINVAL;
3003  
3004  	gup_flags |= FOLL_PIN;
3005  	return __get_user_pages_locked(current->mm, start, nr_pages,
3006  				       pages, NULL, locked,
3007  				       gup_flags | FOLL_TOUCH);
3008  }
3009  EXPORT_SYMBOL(pin_user_pages_locked);
3010