1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 127 return NULL; 128 129 if (flags & FOLL_GET) 130 return try_get_folio(page, refs); 131 else if (flags & FOLL_PIN) { 132 struct folio *folio; 133 134 /* 135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 136 * right zone, so fail and let the caller fall back to the slow 137 * path. 138 */ 139 if (unlikely((flags & FOLL_LONGTERM) && 140 !is_longterm_pinnable_page(page))) 141 return NULL; 142 143 /* 144 * CAUTION: Don't use compound_head() on the page before this 145 * point, the result won't be stable. 146 */ 147 folio = try_get_folio(page, refs); 148 if (!folio) 149 return NULL; 150 151 /* 152 * When pinning a large folio, use an exact count to track it. 153 * 154 * However, be sure to *also* increment the normal folio 155 * refcount field at least once, so that the folio really 156 * is pinned. That's why the refcount from the earlier 157 * try_get_folio() is left intact. 158 */ 159 if (folio_test_large(folio)) 160 atomic_add(refs, &folio->_pincount); 161 else 162 folio_ref_add(folio, 163 refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 /* 165 * Adjust the pincount before re-checking the PTE for changes. 166 * This is essentially a smp_mb() and is paired with a memory 167 * barrier in page_try_share_anon_rmap(). 168 */ 169 smp_mb__after_atomic(); 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 173 return folio; 174 } 175 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 181 { 182 if (flags & FOLL_PIN) { 183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 184 if (folio_test_large(folio)) 185 atomic_sub(refs, &folio->_pincount); 186 else 187 refs *= GUP_PIN_COUNTING_BIAS; 188 } 189 190 if (!put_devmap_managed_page_refs(&folio->page, refs)) 191 folio_put_refs(folio, refs); 192 } 193 194 /** 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 196 * @page: pointer to page to be grabbed 197 * @flags: gup flags: these are the FOLL_* flag values. 198 * 199 * This might not do anything at all, depending on the flags argument. 200 * 201 * "grab" names in this file mean, "look at flags to decide whether to use 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 203 * 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 205 * time. Cases: please see the try_grab_folio() documentation, with 206 * "refs=1". 207 * 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 210 * 211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 212 * be grabbed. 213 */ 214 int __must_check try_grab_page(struct page *page, unsigned int flags) 215 { 216 struct folio *folio = page_folio(page); 217 218 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 219 return -ENOMEM; 220 221 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 222 return -EREMOTEIO; 223 224 if (flags & FOLL_GET) 225 folio_ref_inc(folio); 226 else if (flags & FOLL_PIN) { 227 /* 228 * Similar to try_grab_folio(): be sure to *also* 229 * increment the normal page refcount field at least once, 230 * so that the page really is pinned. 231 */ 232 if (folio_test_large(folio)) { 233 folio_ref_add(folio, 1); 234 atomic_add(1, &folio->_pincount); 235 } else { 236 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 237 } 238 239 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 240 } 241 242 return 0; 243 } 244 245 /** 246 * unpin_user_page() - release a dma-pinned page 247 * @page: pointer to page to be released 248 * 249 * Pages that were pinned via pin_user_pages*() must be released via either 250 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 251 * that such pages can be separately tracked and uniquely handled. In 252 * particular, interactions with RDMA and filesystems need special handling. 253 */ 254 void unpin_user_page(struct page *page) 255 { 256 sanity_check_pinned_pages(&page, 1); 257 gup_put_folio(page_folio(page), 1, FOLL_PIN); 258 } 259 EXPORT_SYMBOL(unpin_user_page); 260 261 static inline struct folio *gup_folio_range_next(struct page *start, 262 unsigned long npages, unsigned long i, unsigned int *ntails) 263 { 264 struct page *next = nth_page(start, i); 265 struct folio *folio = page_folio(next); 266 unsigned int nr = 1; 267 268 if (folio_test_large(folio)) 269 nr = min_t(unsigned int, npages - i, 270 folio_nr_pages(folio) - folio_page_idx(folio, next)); 271 272 *ntails = nr; 273 return folio; 274 } 275 276 static inline struct folio *gup_folio_next(struct page **list, 277 unsigned long npages, unsigned long i, unsigned int *ntails) 278 { 279 struct folio *folio = page_folio(list[i]); 280 unsigned int nr; 281 282 for (nr = i + 1; nr < npages; nr++) { 283 if (page_folio(list[nr]) != folio) 284 break; 285 } 286 287 *ntails = nr - i; 288 return folio; 289 } 290 291 /** 292 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 293 * @pages: array of pages to be maybe marked dirty, and definitely released. 294 * @npages: number of pages in the @pages array. 295 * @make_dirty: whether to mark the pages dirty 296 * 297 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 298 * variants called on that page. 299 * 300 * For each page in the @pages array, make that page (or its head page, if a 301 * compound page) dirty, if @make_dirty is true, and if the page was previously 302 * listed as clean. In any case, releases all pages using unpin_user_page(), 303 * possibly via unpin_user_pages(), for the non-dirty case. 304 * 305 * Please see the unpin_user_page() documentation for details. 306 * 307 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 308 * required, then the caller should a) verify that this is really correct, 309 * because _lock() is usually required, and b) hand code it: 310 * set_page_dirty_lock(), unpin_user_page(). 311 * 312 */ 313 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 314 bool make_dirty) 315 { 316 unsigned long i; 317 struct folio *folio; 318 unsigned int nr; 319 320 if (!make_dirty) { 321 unpin_user_pages(pages, npages); 322 return; 323 } 324 325 sanity_check_pinned_pages(pages, npages); 326 for (i = 0; i < npages; i += nr) { 327 folio = gup_folio_next(pages, npages, i, &nr); 328 /* 329 * Checking PageDirty at this point may race with 330 * clear_page_dirty_for_io(), but that's OK. Two key 331 * cases: 332 * 333 * 1) This code sees the page as already dirty, so it 334 * skips the call to set_page_dirty(). That could happen 335 * because clear_page_dirty_for_io() called 336 * page_mkclean(), followed by set_page_dirty(). 337 * However, now the page is going to get written back, 338 * which meets the original intention of setting it 339 * dirty, so all is well: clear_page_dirty_for_io() goes 340 * on to call TestClearPageDirty(), and write the page 341 * back. 342 * 343 * 2) This code sees the page as clean, so it calls 344 * set_page_dirty(). The page stays dirty, despite being 345 * written back, so it gets written back again in the 346 * next writeback cycle. This is harmless. 347 */ 348 if (!folio_test_dirty(folio)) { 349 folio_lock(folio); 350 folio_mark_dirty(folio); 351 folio_unlock(folio); 352 } 353 gup_put_folio(folio, nr, FOLL_PIN); 354 } 355 } 356 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 357 358 /** 359 * unpin_user_page_range_dirty_lock() - release and optionally dirty 360 * gup-pinned page range 361 * 362 * @page: the starting page of a range maybe marked dirty, and definitely released. 363 * @npages: number of consecutive pages to release. 364 * @make_dirty: whether to mark the pages dirty 365 * 366 * "gup-pinned page range" refers to a range of pages that has had one of the 367 * pin_user_pages() variants called on that page. 368 * 369 * For the page ranges defined by [page .. page+npages], make that range (or 370 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 371 * page range was previously listed as clean. 372 * 373 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 374 * required, then the caller should a) verify that this is really correct, 375 * because _lock() is usually required, and b) hand code it: 376 * set_page_dirty_lock(), unpin_user_page(). 377 * 378 */ 379 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 380 bool make_dirty) 381 { 382 unsigned long i; 383 struct folio *folio; 384 unsigned int nr; 385 386 for (i = 0; i < npages; i += nr) { 387 folio = gup_folio_range_next(page, npages, i, &nr); 388 if (make_dirty && !folio_test_dirty(folio)) { 389 folio_lock(folio); 390 folio_mark_dirty(folio); 391 folio_unlock(folio); 392 } 393 gup_put_folio(folio, nr, FOLL_PIN); 394 } 395 } 396 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 397 398 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 399 { 400 unsigned long i; 401 struct folio *folio; 402 unsigned int nr; 403 404 /* 405 * Don't perform any sanity checks because we might have raced with 406 * fork() and some anonymous pages might now actually be shared -- 407 * which is why we're unpinning after all. 408 */ 409 for (i = 0; i < npages; i += nr) { 410 folio = gup_folio_next(pages, npages, i, &nr); 411 gup_put_folio(folio, nr, FOLL_PIN); 412 } 413 } 414 415 /** 416 * unpin_user_pages() - release an array of gup-pinned pages. 417 * @pages: array of pages to be marked dirty and released. 418 * @npages: number of pages in the @pages array. 419 * 420 * For each page in the @pages array, release the page using unpin_user_page(). 421 * 422 * Please see the unpin_user_page() documentation for details. 423 */ 424 void unpin_user_pages(struct page **pages, unsigned long npages) 425 { 426 unsigned long i; 427 struct folio *folio; 428 unsigned int nr; 429 430 /* 431 * If this WARN_ON() fires, then the system *might* be leaking pages (by 432 * leaving them pinned), but probably not. More likely, gup/pup returned 433 * a hard -ERRNO error to the caller, who erroneously passed it here. 434 */ 435 if (WARN_ON(IS_ERR_VALUE(npages))) 436 return; 437 438 sanity_check_pinned_pages(pages, npages); 439 for (i = 0; i < npages; i += nr) { 440 folio = gup_folio_next(pages, npages, i, &nr); 441 gup_put_folio(folio, nr, FOLL_PIN); 442 } 443 } 444 EXPORT_SYMBOL(unpin_user_pages); 445 446 /* 447 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 448 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 449 * cache bouncing on large SMP machines for concurrent pinned gups. 450 */ 451 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 452 { 453 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 454 set_bit(MMF_HAS_PINNED, mm_flags); 455 } 456 457 #ifdef CONFIG_MMU 458 static struct page *no_page_table(struct vm_area_struct *vma, 459 unsigned int flags) 460 { 461 /* 462 * When core dumping an enormous anonymous area that nobody 463 * has touched so far, we don't want to allocate unnecessary pages or 464 * page tables. Return error instead of NULL to skip handle_mm_fault, 465 * then get_dump_page() will return NULL to leave a hole in the dump. 466 * But we can only make this optimization where a hole would surely 467 * be zero-filled if handle_mm_fault() actually did handle it. 468 */ 469 if ((flags & FOLL_DUMP) && 470 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 471 return ERR_PTR(-EFAULT); 472 return NULL; 473 } 474 475 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 476 pte_t *pte, unsigned int flags) 477 { 478 if (flags & FOLL_TOUCH) { 479 pte_t entry = *pte; 480 481 if (flags & FOLL_WRITE) 482 entry = pte_mkdirty(entry); 483 entry = pte_mkyoung(entry); 484 485 if (!pte_same(*pte, entry)) { 486 set_pte_at(vma->vm_mm, address, pte, entry); 487 update_mmu_cache(vma, address, pte); 488 } 489 } 490 491 /* Proper page table entry exists, but no corresponding struct page */ 492 return -EEXIST; 493 } 494 495 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 496 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 497 struct vm_area_struct *vma, 498 unsigned int flags) 499 { 500 /* If the pte is writable, we can write to the page. */ 501 if (pte_write(pte)) 502 return true; 503 504 /* Maybe FOLL_FORCE is set to override it? */ 505 if (!(flags & FOLL_FORCE)) 506 return false; 507 508 /* But FOLL_FORCE has no effect on shared mappings */ 509 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 510 return false; 511 512 /* ... or read-only private ones */ 513 if (!(vma->vm_flags & VM_MAYWRITE)) 514 return false; 515 516 /* ... or already writable ones that just need to take a write fault */ 517 if (vma->vm_flags & VM_WRITE) 518 return false; 519 520 /* 521 * See can_change_pte_writable(): we broke COW and could map the page 522 * writable if we have an exclusive anonymous page ... 523 */ 524 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 525 return false; 526 527 /* ... and a write-fault isn't required for other reasons. */ 528 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 529 return false; 530 return !userfaultfd_pte_wp(vma, pte); 531 } 532 533 static struct page *follow_page_pte(struct vm_area_struct *vma, 534 unsigned long address, pmd_t *pmd, unsigned int flags, 535 struct dev_pagemap **pgmap) 536 { 537 struct mm_struct *mm = vma->vm_mm; 538 struct page *page; 539 spinlock_t *ptl; 540 pte_t *ptep, pte; 541 int ret; 542 543 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 544 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 545 (FOLL_PIN | FOLL_GET))) 546 return ERR_PTR(-EINVAL); 547 if (unlikely(pmd_bad(*pmd))) 548 return no_page_table(vma, flags); 549 550 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 551 pte = *ptep; 552 if (!pte_present(pte)) 553 goto no_page; 554 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 555 goto no_page; 556 557 page = vm_normal_page(vma, address, pte); 558 559 /* 560 * We only care about anon pages in can_follow_write_pte() and don't 561 * have to worry about pte_devmap() because they are never anon. 562 */ 563 if ((flags & FOLL_WRITE) && 564 !can_follow_write_pte(pte, page, vma, flags)) { 565 page = NULL; 566 goto out; 567 } 568 569 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 570 /* 571 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 572 * case since they are only valid while holding the pgmap 573 * reference. 574 */ 575 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 576 if (*pgmap) 577 page = pte_page(pte); 578 else 579 goto no_page; 580 } else if (unlikely(!page)) { 581 if (flags & FOLL_DUMP) { 582 /* Avoid special (like zero) pages in core dumps */ 583 page = ERR_PTR(-EFAULT); 584 goto out; 585 } 586 587 if (is_zero_pfn(pte_pfn(pte))) { 588 page = pte_page(pte); 589 } else { 590 ret = follow_pfn_pte(vma, address, ptep, flags); 591 page = ERR_PTR(ret); 592 goto out; 593 } 594 } 595 596 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 597 page = ERR_PTR(-EMLINK); 598 goto out; 599 } 600 601 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 602 !PageAnonExclusive(page), page); 603 604 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 605 ret = try_grab_page(page, flags); 606 if (unlikely(ret)) { 607 page = ERR_PTR(ret); 608 goto out; 609 } 610 611 /* 612 * We need to make the page accessible if and only if we are going 613 * to access its content (the FOLL_PIN case). Please see 614 * Documentation/core-api/pin_user_pages.rst for details. 615 */ 616 if (flags & FOLL_PIN) { 617 ret = arch_make_page_accessible(page); 618 if (ret) { 619 unpin_user_page(page); 620 page = ERR_PTR(ret); 621 goto out; 622 } 623 } 624 if (flags & FOLL_TOUCH) { 625 if ((flags & FOLL_WRITE) && 626 !pte_dirty(pte) && !PageDirty(page)) 627 set_page_dirty(page); 628 /* 629 * pte_mkyoung() would be more correct here, but atomic care 630 * is needed to avoid losing the dirty bit: it is easier to use 631 * mark_page_accessed(). 632 */ 633 mark_page_accessed(page); 634 } 635 out: 636 pte_unmap_unlock(ptep, ptl); 637 return page; 638 no_page: 639 pte_unmap_unlock(ptep, ptl); 640 if (!pte_none(pte)) 641 return NULL; 642 return no_page_table(vma, flags); 643 } 644 645 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 646 unsigned long address, pud_t *pudp, 647 unsigned int flags, 648 struct follow_page_context *ctx) 649 { 650 pmd_t *pmd, pmdval; 651 spinlock_t *ptl; 652 struct page *page; 653 struct mm_struct *mm = vma->vm_mm; 654 655 pmd = pmd_offset(pudp, address); 656 /* 657 * The READ_ONCE() will stabilize the pmdval in a register or 658 * on the stack so that it will stop changing under the code. 659 */ 660 pmdval = READ_ONCE(*pmd); 661 if (pmd_none(pmdval)) 662 return no_page_table(vma, flags); 663 if (!pmd_present(pmdval)) 664 return no_page_table(vma, flags); 665 if (pmd_devmap(pmdval)) { 666 ptl = pmd_lock(mm, pmd); 667 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 668 spin_unlock(ptl); 669 if (page) 670 return page; 671 } 672 if (likely(!pmd_trans_huge(pmdval))) 673 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 674 675 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 676 return no_page_table(vma, flags); 677 678 ptl = pmd_lock(mm, pmd); 679 if (unlikely(!pmd_present(*pmd))) { 680 spin_unlock(ptl); 681 return no_page_table(vma, flags); 682 } 683 if (unlikely(!pmd_trans_huge(*pmd))) { 684 spin_unlock(ptl); 685 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 686 } 687 if (flags & FOLL_SPLIT_PMD) { 688 int ret; 689 page = pmd_page(*pmd); 690 if (is_huge_zero_page(page)) { 691 spin_unlock(ptl); 692 ret = 0; 693 split_huge_pmd(vma, pmd, address); 694 if (pmd_trans_unstable(pmd)) 695 ret = -EBUSY; 696 } else { 697 spin_unlock(ptl); 698 split_huge_pmd(vma, pmd, address); 699 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 700 } 701 702 return ret ? ERR_PTR(ret) : 703 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 704 } 705 page = follow_trans_huge_pmd(vma, address, pmd, flags); 706 spin_unlock(ptl); 707 ctx->page_mask = HPAGE_PMD_NR - 1; 708 return page; 709 } 710 711 static struct page *follow_pud_mask(struct vm_area_struct *vma, 712 unsigned long address, p4d_t *p4dp, 713 unsigned int flags, 714 struct follow_page_context *ctx) 715 { 716 pud_t *pud; 717 spinlock_t *ptl; 718 struct page *page; 719 struct mm_struct *mm = vma->vm_mm; 720 721 pud = pud_offset(p4dp, address); 722 if (pud_none(*pud)) 723 return no_page_table(vma, flags); 724 if (pud_devmap(*pud)) { 725 ptl = pud_lock(mm, pud); 726 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 727 spin_unlock(ptl); 728 if (page) 729 return page; 730 } 731 if (unlikely(pud_bad(*pud))) 732 return no_page_table(vma, flags); 733 734 return follow_pmd_mask(vma, address, pud, flags, ctx); 735 } 736 737 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 738 unsigned long address, pgd_t *pgdp, 739 unsigned int flags, 740 struct follow_page_context *ctx) 741 { 742 p4d_t *p4d; 743 744 p4d = p4d_offset(pgdp, address); 745 if (p4d_none(*p4d)) 746 return no_page_table(vma, flags); 747 BUILD_BUG_ON(p4d_huge(*p4d)); 748 if (unlikely(p4d_bad(*p4d))) 749 return no_page_table(vma, flags); 750 751 return follow_pud_mask(vma, address, p4d, flags, ctx); 752 } 753 754 /** 755 * follow_page_mask - look up a page descriptor from a user-virtual address 756 * @vma: vm_area_struct mapping @address 757 * @address: virtual address to look up 758 * @flags: flags modifying lookup behaviour 759 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 760 * pointer to output page_mask 761 * 762 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 763 * 764 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 765 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 766 * 767 * When getting an anonymous page and the caller has to trigger unsharing 768 * of a shared anonymous page first, -EMLINK is returned. The caller should 769 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 770 * relevant with FOLL_PIN and !FOLL_WRITE. 771 * 772 * On output, the @ctx->page_mask is set according to the size of the page. 773 * 774 * Return: the mapped (struct page *), %NULL if no mapping exists, or 775 * an error pointer if there is a mapping to something not represented 776 * by a page descriptor (see also vm_normal_page()). 777 */ 778 static struct page *follow_page_mask(struct vm_area_struct *vma, 779 unsigned long address, unsigned int flags, 780 struct follow_page_context *ctx) 781 { 782 pgd_t *pgd; 783 struct page *page; 784 struct mm_struct *mm = vma->vm_mm; 785 786 ctx->page_mask = 0; 787 788 /* 789 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use 790 * special hugetlb page table walking code. This eliminates the 791 * need to check for hugetlb entries in the general walking code. 792 * 793 * hugetlb_follow_page_mask is only for follow_page() handling here. 794 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing. 795 */ 796 if (is_vm_hugetlb_page(vma)) { 797 page = hugetlb_follow_page_mask(vma, address, flags); 798 if (!page) 799 page = no_page_table(vma, flags); 800 return page; 801 } 802 803 pgd = pgd_offset(mm, address); 804 805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 806 return no_page_table(vma, flags); 807 808 return follow_p4d_mask(vma, address, pgd, flags, ctx); 809 } 810 811 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 812 unsigned int foll_flags) 813 { 814 struct follow_page_context ctx = { NULL }; 815 struct page *page; 816 817 if (vma_is_secretmem(vma)) 818 return NULL; 819 820 if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) 821 return NULL; 822 823 page = follow_page_mask(vma, address, foll_flags, &ctx); 824 if (ctx.pgmap) 825 put_dev_pagemap(ctx.pgmap); 826 return page; 827 } 828 829 static int get_gate_page(struct mm_struct *mm, unsigned long address, 830 unsigned int gup_flags, struct vm_area_struct **vma, 831 struct page **page) 832 { 833 pgd_t *pgd; 834 p4d_t *p4d; 835 pud_t *pud; 836 pmd_t *pmd; 837 pte_t *pte; 838 int ret = -EFAULT; 839 840 /* user gate pages are read-only */ 841 if (gup_flags & FOLL_WRITE) 842 return -EFAULT; 843 if (address > TASK_SIZE) 844 pgd = pgd_offset_k(address); 845 else 846 pgd = pgd_offset_gate(mm, address); 847 if (pgd_none(*pgd)) 848 return -EFAULT; 849 p4d = p4d_offset(pgd, address); 850 if (p4d_none(*p4d)) 851 return -EFAULT; 852 pud = pud_offset(p4d, address); 853 if (pud_none(*pud)) 854 return -EFAULT; 855 pmd = pmd_offset(pud, address); 856 if (!pmd_present(*pmd)) 857 return -EFAULT; 858 VM_BUG_ON(pmd_trans_huge(*pmd)); 859 pte = pte_offset_map(pmd, address); 860 if (pte_none(*pte)) 861 goto unmap; 862 *vma = get_gate_vma(mm); 863 if (!page) 864 goto out; 865 *page = vm_normal_page(*vma, address, *pte); 866 if (!*page) { 867 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 868 goto unmap; 869 *page = pte_page(*pte); 870 } 871 ret = try_grab_page(*page, gup_flags); 872 if (unlikely(ret)) 873 goto unmap; 874 out: 875 ret = 0; 876 unmap: 877 pte_unmap(pte); 878 return ret; 879 } 880 881 /* 882 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 883 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 884 * to 0 and -EBUSY returned. 885 */ 886 static int faultin_page(struct vm_area_struct *vma, 887 unsigned long address, unsigned int *flags, bool unshare, 888 int *locked) 889 { 890 unsigned int fault_flags = 0; 891 vm_fault_t ret; 892 893 if (*flags & FOLL_NOFAULT) 894 return -EFAULT; 895 if (*flags & FOLL_WRITE) 896 fault_flags |= FAULT_FLAG_WRITE; 897 if (*flags & FOLL_REMOTE) 898 fault_flags |= FAULT_FLAG_REMOTE; 899 if (*flags & FOLL_UNLOCKABLE) { 900 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 901 /* 902 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 903 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 904 * That's because some callers may not be prepared to 905 * handle early exits caused by non-fatal signals. 906 */ 907 if (*flags & FOLL_INTERRUPTIBLE) 908 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 909 } 910 if (*flags & FOLL_NOWAIT) 911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 912 if (*flags & FOLL_TRIED) { 913 /* 914 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 915 * can co-exist 916 */ 917 fault_flags |= FAULT_FLAG_TRIED; 918 } 919 if (unshare) { 920 fault_flags |= FAULT_FLAG_UNSHARE; 921 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 922 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 923 } 924 925 ret = handle_mm_fault(vma, address, fault_flags, NULL); 926 927 if (ret & VM_FAULT_COMPLETED) { 928 /* 929 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 930 * mmap lock in the page fault handler. Sanity check this. 931 */ 932 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 933 *locked = 0; 934 935 /* 936 * We should do the same as VM_FAULT_RETRY, but let's not 937 * return -EBUSY since that's not reflecting the reality of 938 * what has happened - we've just fully completed a page 939 * fault, with the mmap lock released. Use -EAGAIN to show 940 * that we want to take the mmap lock _again_. 941 */ 942 return -EAGAIN; 943 } 944 945 if (ret & VM_FAULT_ERROR) { 946 int err = vm_fault_to_errno(ret, *flags); 947 948 if (err) 949 return err; 950 BUG(); 951 } 952 953 if (ret & VM_FAULT_RETRY) { 954 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 955 *locked = 0; 956 return -EBUSY; 957 } 958 959 return 0; 960 } 961 962 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 963 { 964 vm_flags_t vm_flags = vma->vm_flags; 965 int write = (gup_flags & FOLL_WRITE); 966 int foreign = (gup_flags & FOLL_REMOTE); 967 968 if (vm_flags & (VM_IO | VM_PFNMAP)) 969 return -EFAULT; 970 971 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 972 return -EFAULT; 973 974 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 975 return -EOPNOTSUPP; 976 977 if (vma_is_secretmem(vma)) 978 return -EFAULT; 979 980 if (write) { 981 if (!(vm_flags & VM_WRITE)) { 982 if (!(gup_flags & FOLL_FORCE)) 983 return -EFAULT; 984 /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ 985 if (is_vm_hugetlb_page(vma)) 986 return -EFAULT; 987 /* 988 * We used to let the write,force case do COW in a 989 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 990 * set a breakpoint in a read-only mapping of an 991 * executable, without corrupting the file (yet only 992 * when that file had been opened for writing!). 993 * Anon pages in shared mappings are surprising: now 994 * just reject it. 995 */ 996 if (!is_cow_mapping(vm_flags)) 997 return -EFAULT; 998 } 999 } else if (!(vm_flags & VM_READ)) { 1000 if (!(gup_flags & FOLL_FORCE)) 1001 return -EFAULT; 1002 /* 1003 * Is there actually any vma we can reach here which does not 1004 * have VM_MAYREAD set? 1005 */ 1006 if (!(vm_flags & VM_MAYREAD)) 1007 return -EFAULT; 1008 } 1009 /* 1010 * gups are always data accesses, not instruction 1011 * fetches, so execute=false here 1012 */ 1013 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1014 return -EFAULT; 1015 return 0; 1016 } 1017 1018 /** 1019 * __get_user_pages() - pin user pages in memory 1020 * @mm: mm_struct of target mm 1021 * @start: starting user address 1022 * @nr_pages: number of pages from start to pin 1023 * @gup_flags: flags modifying pin behaviour 1024 * @pages: array that receives pointers to the pages pinned. 1025 * Should be at least nr_pages long. Or NULL, if caller 1026 * only intends to ensure the pages are faulted in. 1027 * @locked: whether we're still with the mmap_lock held 1028 * 1029 * Returns either number of pages pinned (which may be less than the 1030 * number requested), or an error. Details about the return value: 1031 * 1032 * -- If nr_pages is 0, returns 0. 1033 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1034 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1035 * pages pinned. Again, this may be less than nr_pages. 1036 * -- 0 return value is possible when the fault would need to be retried. 1037 * 1038 * The caller is responsible for releasing returned @pages, via put_page(). 1039 * 1040 * Must be called with mmap_lock held. It may be released. See below. 1041 * 1042 * __get_user_pages walks a process's page tables and takes a reference to 1043 * each struct page that each user address corresponds to at a given 1044 * instant. That is, it takes the page that would be accessed if a user 1045 * thread accesses the given user virtual address at that instant. 1046 * 1047 * This does not guarantee that the page exists in the user mappings when 1048 * __get_user_pages returns, and there may even be a completely different 1049 * page there in some cases (eg. if mmapped pagecache has been invalidated 1050 * and subsequently re-faulted). However it does guarantee that the page 1051 * won't be freed completely. And mostly callers simply care that the page 1052 * contains data that was valid *at some point in time*. Typically, an IO 1053 * or similar operation cannot guarantee anything stronger anyway because 1054 * locks can't be held over the syscall boundary. 1055 * 1056 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1057 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1058 * appropriate) must be called after the page is finished with, and 1059 * before put_page is called. 1060 * 1061 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1062 * be released. If this happens *@locked will be set to 0 on return. 1063 * 1064 * A caller using such a combination of @gup_flags must therefore hold the 1065 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1066 * it must be held for either reading or writing and will not be released. 1067 * 1068 * In most cases, get_user_pages or get_user_pages_fast should be used 1069 * instead of __get_user_pages. __get_user_pages should be used only if 1070 * you need some special @gup_flags. 1071 */ 1072 static long __get_user_pages(struct mm_struct *mm, 1073 unsigned long start, unsigned long nr_pages, 1074 unsigned int gup_flags, struct page **pages, 1075 int *locked) 1076 { 1077 long ret = 0, i = 0; 1078 struct vm_area_struct *vma = NULL; 1079 struct follow_page_context ctx = { NULL }; 1080 1081 if (!nr_pages) 1082 return 0; 1083 1084 start = untagged_addr_remote(mm, start); 1085 1086 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1087 1088 do { 1089 struct page *page; 1090 unsigned int foll_flags = gup_flags; 1091 unsigned int page_increm; 1092 1093 /* first iteration or cross vma bound */ 1094 if (!vma || start >= vma->vm_end) { 1095 vma = find_extend_vma(mm, start); 1096 if (!vma && in_gate_area(mm, start)) { 1097 ret = get_gate_page(mm, start & PAGE_MASK, 1098 gup_flags, &vma, 1099 pages ? &pages[i] : NULL); 1100 if (ret) 1101 goto out; 1102 ctx.page_mask = 0; 1103 goto next_page; 1104 } 1105 1106 if (!vma) { 1107 ret = -EFAULT; 1108 goto out; 1109 } 1110 ret = check_vma_flags(vma, gup_flags); 1111 if (ret) 1112 goto out; 1113 1114 if (is_vm_hugetlb_page(vma)) { 1115 i = follow_hugetlb_page(mm, vma, pages, 1116 &start, &nr_pages, i, 1117 gup_flags, locked); 1118 if (!*locked) { 1119 /* 1120 * We've got a VM_FAULT_RETRY 1121 * and we've lost mmap_lock. 1122 * We must stop here. 1123 */ 1124 BUG_ON(gup_flags & FOLL_NOWAIT); 1125 goto out; 1126 } 1127 continue; 1128 } 1129 } 1130 retry: 1131 /* 1132 * If we have a pending SIGKILL, don't keep faulting pages and 1133 * potentially allocating memory. 1134 */ 1135 if (fatal_signal_pending(current)) { 1136 ret = -EINTR; 1137 goto out; 1138 } 1139 cond_resched(); 1140 1141 page = follow_page_mask(vma, start, foll_flags, &ctx); 1142 if (!page || PTR_ERR(page) == -EMLINK) { 1143 ret = faultin_page(vma, start, &foll_flags, 1144 PTR_ERR(page) == -EMLINK, locked); 1145 switch (ret) { 1146 case 0: 1147 goto retry; 1148 case -EBUSY: 1149 case -EAGAIN: 1150 ret = 0; 1151 fallthrough; 1152 case -EFAULT: 1153 case -ENOMEM: 1154 case -EHWPOISON: 1155 goto out; 1156 } 1157 BUG(); 1158 } else if (PTR_ERR(page) == -EEXIST) { 1159 /* 1160 * Proper page table entry exists, but no corresponding 1161 * struct page. If the caller expects **pages to be 1162 * filled in, bail out now, because that can't be done 1163 * for this page. 1164 */ 1165 if (pages) { 1166 ret = PTR_ERR(page); 1167 goto out; 1168 } 1169 1170 goto next_page; 1171 } else if (IS_ERR(page)) { 1172 ret = PTR_ERR(page); 1173 goto out; 1174 } 1175 if (pages) { 1176 pages[i] = page; 1177 flush_anon_page(vma, page, start); 1178 flush_dcache_page(page); 1179 ctx.page_mask = 0; 1180 } 1181 next_page: 1182 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1183 if (page_increm > nr_pages) 1184 page_increm = nr_pages; 1185 i += page_increm; 1186 start += page_increm * PAGE_SIZE; 1187 nr_pages -= page_increm; 1188 } while (nr_pages); 1189 out: 1190 if (ctx.pgmap) 1191 put_dev_pagemap(ctx.pgmap); 1192 return i ? i : ret; 1193 } 1194 1195 static bool vma_permits_fault(struct vm_area_struct *vma, 1196 unsigned int fault_flags) 1197 { 1198 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1199 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1200 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1201 1202 if (!(vm_flags & vma->vm_flags)) 1203 return false; 1204 1205 /* 1206 * The architecture might have a hardware protection 1207 * mechanism other than read/write that can deny access. 1208 * 1209 * gup always represents data access, not instruction 1210 * fetches, so execute=false here: 1211 */ 1212 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1213 return false; 1214 1215 return true; 1216 } 1217 1218 /** 1219 * fixup_user_fault() - manually resolve a user page fault 1220 * @mm: mm_struct of target mm 1221 * @address: user address 1222 * @fault_flags:flags to pass down to handle_mm_fault() 1223 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1224 * does not allow retry. If NULL, the caller must guarantee 1225 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1226 * 1227 * This is meant to be called in the specific scenario where for locking reasons 1228 * we try to access user memory in atomic context (within a pagefault_disable() 1229 * section), this returns -EFAULT, and we want to resolve the user fault before 1230 * trying again. 1231 * 1232 * Typically this is meant to be used by the futex code. 1233 * 1234 * The main difference with get_user_pages() is that this function will 1235 * unconditionally call handle_mm_fault() which will in turn perform all the 1236 * necessary SW fixup of the dirty and young bits in the PTE, while 1237 * get_user_pages() only guarantees to update these in the struct page. 1238 * 1239 * This is important for some architectures where those bits also gate the 1240 * access permission to the page because they are maintained in software. On 1241 * such architectures, gup() will not be enough to make a subsequent access 1242 * succeed. 1243 * 1244 * This function will not return with an unlocked mmap_lock. So it has not the 1245 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1246 */ 1247 int fixup_user_fault(struct mm_struct *mm, 1248 unsigned long address, unsigned int fault_flags, 1249 bool *unlocked) 1250 { 1251 struct vm_area_struct *vma; 1252 vm_fault_t ret; 1253 1254 address = untagged_addr_remote(mm, address); 1255 1256 if (unlocked) 1257 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1258 1259 retry: 1260 vma = find_extend_vma(mm, address); 1261 if (!vma || address < vma->vm_start) 1262 return -EFAULT; 1263 1264 if (!vma_permits_fault(vma, fault_flags)) 1265 return -EFAULT; 1266 1267 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1268 fatal_signal_pending(current)) 1269 return -EINTR; 1270 1271 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1272 1273 if (ret & VM_FAULT_COMPLETED) { 1274 /* 1275 * NOTE: it's a pity that we need to retake the lock here 1276 * to pair with the unlock() in the callers. Ideally we 1277 * could tell the callers so they do not need to unlock. 1278 */ 1279 mmap_read_lock(mm); 1280 *unlocked = true; 1281 return 0; 1282 } 1283 1284 if (ret & VM_FAULT_ERROR) { 1285 int err = vm_fault_to_errno(ret, 0); 1286 1287 if (err) 1288 return err; 1289 BUG(); 1290 } 1291 1292 if (ret & VM_FAULT_RETRY) { 1293 mmap_read_lock(mm); 1294 *unlocked = true; 1295 fault_flags |= FAULT_FLAG_TRIED; 1296 goto retry; 1297 } 1298 1299 return 0; 1300 } 1301 EXPORT_SYMBOL_GPL(fixup_user_fault); 1302 1303 /* 1304 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1305 * specified, it'll also respond to generic signals. The caller of GUP 1306 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1307 */ 1308 static bool gup_signal_pending(unsigned int flags) 1309 { 1310 if (fatal_signal_pending(current)) 1311 return true; 1312 1313 if (!(flags & FOLL_INTERRUPTIBLE)) 1314 return false; 1315 1316 return signal_pending(current); 1317 } 1318 1319 /* 1320 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1321 * the caller. This function may drop the mmap_lock. If it does so, then it will 1322 * set (*locked = 0). 1323 * 1324 * (*locked == 0) means that the caller expects this function to acquire and 1325 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1326 * the function returns, even though it may have changed temporarily during 1327 * function execution. 1328 * 1329 * Please note that this function, unlike __get_user_pages(), will not return 0 1330 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1331 */ 1332 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1333 unsigned long start, 1334 unsigned long nr_pages, 1335 struct page **pages, 1336 int *locked, 1337 unsigned int flags) 1338 { 1339 long ret, pages_done; 1340 bool must_unlock = false; 1341 1342 /* 1343 * The internal caller expects GUP to manage the lock internally and the 1344 * lock must be released when this returns. 1345 */ 1346 if (!*locked) { 1347 if (mmap_read_lock_killable(mm)) 1348 return -EAGAIN; 1349 must_unlock = true; 1350 *locked = 1; 1351 } 1352 else 1353 mmap_assert_locked(mm); 1354 1355 if (flags & FOLL_PIN) 1356 mm_set_has_pinned_flag(&mm->flags); 1357 1358 /* 1359 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1360 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1361 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1362 * for FOLL_GET, not for the newer FOLL_PIN. 1363 * 1364 * FOLL_PIN always expects pages to be non-null, but no need to assert 1365 * that here, as any failures will be obvious enough. 1366 */ 1367 if (pages && !(flags & FOLL_PIN)) 1368 flags |= FOLL_GET; 1369 1370 pages_done = 0; 1371 for (;;) { 1372 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1373 locked); 1374 if (!(flags & FOLL_UNLOCKABLE)) { 1375 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1376 pages_done = ret; 1377 break; 1378 } 1379 1380 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1381 if (!*locked) { 1382 BUG_ON(ret < 0); 1383 BUG_ON(ret >= nr_pages); 1384 } 1385 1386 if (ret > 0) { 1387 nr_pages -= ret; 1388 pages_done += ret; 1389 if (!nr_pages) 1390 break; 1391 } 1392 if (*locked) { 1393 /* 1394 * VM_FAULT_RETRY didn't trigger or it was a 1395 * FOLL_NOWAIT. 1396 */ 1397 if (!pages_done) 1398 pages_done = ret; 1399 break; 1400 } 1401 /* 1402 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1403 * For the prefault case (!pages) we only update counts. 1404 */ 1405 if (likely(pages)) 1406 pages += ret; 1407 start += ret << PAGE_SHIFT; 1408 1409 /* The lock was temporarily dropped, so we must unlock later */ 1410 must_unlock = true; 1411 1412 retry: 1413 /* 1414 * Repeat on the address that fired VM_FAULT_RETRY 1415 * with both FAULT_FLAG_ALLOW_RETRY and 1416 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1417 * by fatal signals of even common signals, depending on 1418 * the caller's request. So we need to check it before we 1419 * start trying again otherwise it can loop forever. 1420 */ 1421 if (gup_signal_pending(flags)) { 1422 if (!pages_done) 1423 pages_done = -EINTR; 1424 break; 1425 } 1426 1427 ret = mmap_read_lock_killable(mm); 1428 if (ret) { 1429 BUG_ON(ret > 0); 1430 if (!pages_done) 1431 pages_done = ret; 1432 break; 1433 } 1434 1435 *locked = 1; 1436 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1437 pages, locked); 1438 if (!*locked) { 1439 /* Continue to retry until we succeeded */ 1440 BUG_ON(ret != 0); 1441 goto retry; 1442 } 1443 if (ret != 1) { 1444 BUG_ON(ret > 1); 1445 if (!pages_done) 1446 pages_done = ret; 1447 break; 1448 } 1449 nr_pages--; 1450 pages_done++; 1451 if (!nr_pages) 1452 break; 1453 if (likely(pages)) 1454 pages++; 1455 start += PAGE_SIZE; 1456 } 1457 if (must_unlock && *locked) { 1458 /* 1459 * We either temporarily dropped the lock, or the caller 1460 * requested that we both acquire and drop the lock. Either way, 1461 * we must now unlock, and notify the caller of that state. 1462 */ 1463 mmap_read_unlock(mm); 1464 *locked = 0; 1465 } 1466 return pages_done; 1467 } 1468 1469 /** 1470 * populate_vma_page_range() - populate a range of pages in the vma. 1471 * @vma: target vma 1472 * @start: start address 1473 * @end: end address 1474 * @locked: whether the mmap_lock is still held 1475 * 1476 * This takes care of mlocking the pages too if VM_LOCKED is set. 1477 * 1478 * Return either number of pages pinned in the vma, or a negative error 1479 * code on error. 1480 * 1481 * vma->vm_mm->mmap_lock must be held. 1482 * 1483 * If @locked is NULL, it may be held for read or write and will 1484 * be unperturbed. 1485 * 1486 * If @locked is non-NULL, it must held for read only and may be 1487 * released. If it's released, *@locked will be set to 0. 1488 */ 1489 long populate_vma_page_range(struct vm_area_struct *vma, 1490 unsigned long start, unsigned long end, int *locked) 1491 { 1492 struct mm_struct *mm = vma->vm_mm; 1493 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1494 int local_locked = 1; 1495 int gup_flags; 1496 long ret; 1497 1498 VM_BUG_ON(!PAGE_ALIGNED(start)); 1499 VM_BUG_ON(!PAGE_ALIGNED(end)); 1500 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1501 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1502 mmap_assert_locked(mm); 1503 1504 /* 1505 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1506 * faultin_page() to break COW, so it has no work to do here. 1507 */ 1508 if (vma->vm_flags & VM_LOCKONFAULT) 1509 return nr_pages; 1510 1511 gup_flags = FOLL_TOUCH; 1512 /* 1513 * We want to touch writable mappings with a write fault in order 1514 * to break COW, except for shared mappings because these don't COW 1515 * and we would not want to dirty them for nothing. 1516 */ 1517 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1518 gup_flags |= FOLL_WRITE; 1519 1520 /* 1521 * We want mlock to succeed for regions that have any permissions 1522 * other than PROT_NONE. 1523 */ 1524 if (vma_is_accessible(vma)) 1525 gup_flags |= FOLL_FORCE; 1526 1527 if (locked) 1528 gup_flags |= FOLL_UNLOCKABLE; 1529 1530 /* 1531 * We made sure addr is within a VMA, so the following will 1532 * not result in a stack expansion that recurses back here. 1533 */ 1534 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1535 NULL, locked ? locked : &local_locked); 1536 lru_add_drain(); 1537 return ret; 1538 } 1539 1540 /* 1541 * faultin_vma_page_range() - populate (prefault) page tables inside the 1542 * given VMA range readable/writable 1543 * 1544 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1545 * 1546 * @vma: target vma 1547 * @start: start address 1548 * @end: end address 1549 * @write: whether to prefault readable or writable 1550 * @locked: whether the mmap_lock is still held 1551 * 1552 * Returns either number of processed pages in the vma, or a negative error 1553 * code on error (see __get_user_pages()). 1554 * 1555 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1556 * covered by the VMA. If it's released, *@locked will be set to 0. 1557 */ 1558 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1559 unsigned long end, bool write, int *locked) 1560 { 1561 struct mm_struct *mm = vma->vm_mm; 1562 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1563 int gup_flags; 1564 long ret; 1565 1566 VM_BUG_ON(!PAGE_ALIGNED(start)); 1567 VM_BUG_ON(!PAGE_ALIGNED(end)); 1568 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1569 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1570 mmap_assert_locked(mm); 1571 1572 /* 1573 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1574 * the page dirty with FOLL_WRITE -- which doesn't make a 1575 * difference with !FOLL_FORCE, because the page is writable 1576 * in the page table. 1577 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1578 * a poisoned page. 1579 * !FOLL_FORCE: Require proper access permissions. 1580 */ 1581 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE; 1582 if (write) 1583 gup_flags |= FOLL_WRITE; 1584 1585 /* 1586 * We want to report -EINVAL instead of -EFAULT for any permission 1587 * problems or incompatible mappings. 1588 */ 1589 if (check_vma_flags(vma, gup_flags)) 1590 return -EINVAL; 1591 1592 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1593 NULL, locked); 1594 lru_add_drain(); 1595 return ret; 1596 } 1597 1598 /* 1599 * __mm_populate - populate and/or mlock pages within a range of address space. 1600 * 1601 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1602 * flags. VMAs must be already marked with the desired vm_flags, and 1603 * mmap_lock must not be held. 1604 */ 1605 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1606 { 1607 struct mm_struct *mm = current->mm; 1608 unsigned long end, nstart, nend; 1609 struct vm_area_struct *vma = NULL; 1610 int locked = 0; 1611 long ret = 0; 1612 1613 end = start + len; 1614 1615 for (nstart = start; nstart < end; nstart = nend) { 1616 /* 1617 * We want to fault in pages for [nstart; end) address range. 1618 * Find first corresponding VMA. 1619 */ 1620 if (!locked) { 1621 locked = 1; 1622 mmap_read_lock(mm); 1623 vma = find_vma_intersection(mm, nstart, end); 1624 } else if (nstart >= vma->vm_end) 1625 vma = find_vma_intersection(mm, vma->vm_end, end); 1626 1627 if (!vma) 1628 break; 1629 /* 1630 * Set [nstart; nend) to intersection of desired address 1631 * range with the first VMA. Also, skip undesirable VMA types. 1632 */ 1633 nend = min(end, vma->vm_end); 1634 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1635 continue; 1636 if (nstart < vma->vm_start) 1637 nstart = vma->vm_start; 1638 /* 1639 * Now fault in a range of pages. populate_vma_page_range() 1640 * double checks the vma flags, so that it won't mlock pages 1641 * if the vma was already munlocked. 1642 */ 1643 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1644 if (ret < 0) { 1645 if (ignore_errors) { 1646 ret = 0; 1647 continue; /* continue at next VMA */ 1648 } 1649 break; 1650 } 1651 nend = nstart + ret * PAGE_SIZE; 1652 ret = 0; 1653 } 1654 if (locked) 1655 mmap_read_unlock(mm); 1656 return ret; /* 0 or negative error code */ 1657 } 1658 #else /* CONFIG_MMU */ 1659 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1660 unsigned long nr_pages, struct page **pages, 1661 int *locked, unsigned int foll_flags) 1662 { 1663 struct vm_area_struct *vma; 1664 bool must_unlock = false; 1665 unsigned long vm_flags; 1666 long i; 1667 1668 if (!nr_pages) 1669 return 0; 1670 1671 /* 1672 * The internal caller expects GUP to manage the lock internally and the 1673 * lock must be released when this returns. 1674 */ 1675 if (!*locked) { 1676 if (mmap_read_lock_killable(mm)) 1677 return -EAGAIN; 1678 must_unlock = true; 1679 *locked = 1; 1680 } 1681 1682 /* calculate required read or write permissions. 1683 * If FOLL_FORCE is set, we only require the "MAY" flags. 1684 */ 1685 vm_flags = (foll_flags & FOLL_WRITE) ? 1686 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1687 vm_flags &= (foll_flags & FOLL_FORCE) ? 1688 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1689 1690 for (i = 0; i < nr_pages; i++) { 1691 vma = find_vma(mm, start); 1692 if (!vma) 1693 break; 1694 1695 /* protect what we can, including chardevs */ 1696 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1697 !(vm_flags & vma->vm_flags)) 1698 break; 1699 1700 if (pages) { 1701 pages[i] = virt_to_page((void *)start); 1702 if (pages[i]) 1703 get_page(pages[i]); 1704 } 1705 1706 start = (start + PAGE_SIZE) & PAGE_MASK; 1707 } 1708 1709 if (must_unlock && *locked) { 1710 mmap_read_unlock(mm); 1711 *locked = 0; 1712 } 1713 1714 return i ? : -EFAULT; 1715 } 1716 #endif /* !CONFIG_MMU */ 1717 1718 /** 1719 * fault_in_writeable - fault in userspace address range for writing 1720 * @uaddr: start of address range 1721 * @size: size of address range 1722 * 1723 * Returns the number of bytes not faulted in (like copy_to_user() and 1724 * copy_from_user()). 1725 */ 1726 size_t fault_in_writeable(char __user *uaddr, size_t size) 1727 { 1728 char __user *start = uaddr, *end; 1729 1730 if (unlikely(size == 0)) 1731 return 0; 1732 if (!user_write_access_begin(uaddr, size)) 1733 return size; 1734 if (!PAGE_ALIGNED(uaddr)) { 1735 unsafe_put_user(0, uaddr, out); 1736 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1737 } 1738 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1739 if (unlikely(end < start)) 1740 end = NULL; 1741 while (uaddr != end) { 1742 unsafe_put_user(0, uaddr, out); 1743 uaddr += PAGE_SIZE; 1744 } 1745 1746 out: 1747 user_write_access_end(); 1748 if (size > uaddr - start) 1749 return size - (uaddr - start); 1750 return 0; 1751 } 1752 EXPORT_SYMBOL(fault_in_writeable); 1753 1754 /** 1755 * fault_in_subpage_writeable - fault in an address range for writing 1756 * @uaddr: start of address range 1757 * @size: size of address range 1758 * 1759 * Fault in a user address range for writing while checking for permissions at 1760 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1761 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1762 * 1763 * Returns the number of bytes not faulted in (like copy_to_user() and 1764 * copy_from_user()). 1765 */ 1766 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1767 { 1768 size_t faulted_in; 1769 1770 /* 1771 * Attempt faulting in at page granularity first for page table 1772 * permission checking. The arch-specific probe_subpage_writeable() 1773 * functions may not check for this. 1774 */ 1775 faulted_in = size - fault_in_writeable(uaddr, size); 1776 if (faulted_in) 1777 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1778 1779 return size - faulted_in; 1780 } 1781 EXPORT_SYMBOL(fault_in_subpage_writeable); 1782 1783 /* 1784 * fault_in_safe_writeable - fault in an address range for writing 1785 * @uaddr: start of address range 1786 * @size: length of address range 1787 * 1788 * Faults in an address range for writing. This is primarily useful when we 1789 * already know that some or all of the pages in the address range aren't in 1790 * memory. 1791 * 1792 * Unlike fault_in_writeable(), this function is non-destructive. 1793 * 1794 * Note that we don't pin or otherwise hold the pages referenced that we fault 1795 * in. There's no guarantee that they'll stay in memory for any duration of 1796 * time. 1797 * 1798 * Returns the number of bytes not faulted in, like copy_to_user() and 1799 * copy_from_user(). 1800 */ 1801 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1802 { 1803 unsigned long start = (unsigned long)uaddr, end; 1804 struct mm_struct *mm = current->mm; 1805 bool unlocked = false; 1806 1807 if (unlikely(size == 0)) 1808 return 0; 1809 end = PAGE_ALIGN(start + size); 1810 if (end < start) 1811 end = 0; 1812 1813 mmap_read_lock(mm); 1814 do { 1815 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1816 break; 1817 start = (start + PAGE_SIZE) & PAGE_MASK; 1818 } while (start != end); 1819 mmap_read_unlock(mm); 1820 1821 if (size > (unsigned long)uaddr - start) 1822 return size - ((unsigned long)uaddr - start); 1823 return 0; 1824 } 1825 EXPORT_SYMBOL(fault_in_safe_writeable); 1826 1827 /** 1828 * fault_in_readable - fault in userspace address range for reading 1829 * @uaddr: start of user address range 1830 * @size: size of user address range 1831 * 1832 * Returns the number of bytes not faulted in (like copy_to_user() and 1833 * copy_from_user()). 1834 */ 1835 size_t fault_in_readable(const char __user *uaddr, size_t size) 1836 { 1837 const char __user *start = uaddr, *end; 1838 volatile char c; 1839 1840 if (unlikely(size == 0)) 1841 return 0; 1842 if (!user_read_access_begin(uaddr, size)) 1843 return size; 1844 if (!PAGE_ALIGNED(uaddr)) { 1845 unsafe_get_user(c, uaddr, out); 1846 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1847 } 1848 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1849 if (unlikely(end < start)) 1850 end = NULL; 1851 while (uaddr != end) { 1852 unsafe_get_user(c, uaddr, out); 1853 uaddr += PAGE_SIZE; 1854 } 1855 1856 out: 1857 user_read_access_end(); 1858 (void)c; 1859 if (size > uaddr - start) 1860 return size - (uaddr - start); 1861 return 0; 1862 } 1863 EXPORT_SYMBOL(fault_in_readable); 1864 1865 /** 1866 * get_dump_page() - pin user page in memory while writing it to core dump 1867 * @addr: user address 1868 * 1869 * Returns struct page pointer of user page pinned for dump, 1870 * to be freed afterwards by put_page(). 1871 * 1872 * Returns NULL on any kind of failure - a hole must then be inserted into 1873 * the corefile, to preserve alignment with its headers; and also returns 1874 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1875 * allowing a hole to be left in the corefile to save disk space. 1876 * 1877 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1878 */ 1879 #ifdef CONFIG_ELF_CORE 1880 struct page *get_dump_page(unsigned long addr) 1881 { 1882 struct page *page; 1883 int locked = 0; 1884 int ret; 1885 1886 ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, 1887 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1888 return (ret == 1) ? page : NULL; 1889 } 1890 #endif /* CONFIG_ELF_CORE */ 1891 1892 #ifdef CONFIG_MIGRATION 1893 /* 1894 * Returns the number of collected pages. Return value is always >= 0. 1895 */ 1896 static unsigned long collect_longterm_unpinnable_pages( 1897 struct list_head *movable_page_list, 1898 unsigned long nr_pages, 1899 struct page **pages) 1900 { 1901 unsigned long i, collected = 0; 1902 struct folio *prev_folio = NULL; 1903 bool drain_allow = true; 1904 1905 for (i = 0; i < nr_pages; i++) { 1906 struct folio *folio = page_folio(pages[i]); 1907 1908 if (folio == prev_folio) 1909 continue; 1910 prev_folio = folio; 1911 1912 if (folio_is_longterm_pinnable(folio)) 1913 continue; 1914 1915 collected++; 1916 1917 if (folio_is_device_coherent(folio)) 1918 continue; 1919 1920 if (folio_test_hugetlb(folio)) { 1921 isolate_hugetlb(folio, movable_page_list); 1922 continue; 1923 } 1924 1925 if (!folio_test_lru(folio) && drain_allow) { 1926 lru_add_drain_all(); 1927 drain_allow = false; 1928 } 1929 1930 if (!folio_isolate_lru(folio)) 1931 continue; 1932 1933 list_add_tail(&folio->lru, movable_page_list); 1934 node_stat_mod_folio(folio, 1935 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1936 folio_nr_pages(folio)); 1937 } 1938 1939 return collected; 1940 } 1941 1942 /* 1943 * Unpins all pages and migrates device coherent pages and movable_page_list. 1944 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 1945 * (or partial success). 1946 */ 1947 static int migrate_longterm_unpinnable_pages( 1948 struct list_head *movable_page_list, 1949 unsigned long nr_pages, 1950 struct page **pages) 1951 { 1952 int ret; 1953 unsigned long i; 1954 1955 for (i = 0; i < nr_pages; i++) { 1956 struct folio *folio = page_folio(pages[i]); 1957 1958 if (folio_is_device_coherent(folio)) { 1959 /* 1960 * Migration will fail if the page is pinned, so convert 1961 * the pin on the source page to a normal reference. 1962 */ 1963 pages[i] = NULL; 1964 folio_get(folio); 1965 gup_put_folio(folio, 1, FOLL_PIN); 1966 1967 if (migrate_device_coherent_page(&folio->page)) { 1968 ret = -EBUSY; 1969 goto err; 1970 } 1971 1972 continue; 1973 } 1974 1975 /* 1976 * We can't migrate pages with unexpected references, so drop 1977 * the reference obtained by __get_user_pages_locked(). 1978 * Migrating pages have been added to movable_page_list after 1979 * calling folio_isolate_lru() which takes a reference so the 1980 * page won't be freed if it's migrating. 1981 */ 1982 unpin_user_page(pages[i]); 1983 pages[i] = NULL; 1984 } 1985 1986 if (!list_empty(movable_page_list)) { 1987 struct migration_target_control mtc = { 1988 .nid = NUMA_NO_NODE, 1989 .gfp_mask = GFP_USER | __GFP_NOWARN, 1990 }; 1991 1992 if (migrate_pages(movable_page_list, alloc_migration_target, 1993 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 1994 MR_LONGTERM_PIN, NULL)) { 1995 ret = -ENOMEM; 1996 goto err; 1997 } 1998 } 1999 2000 putback_movable_pages(movable_page_list); 2001 2002 return -EAGAIN; 2003 2004 err: 2005 for (i = 0; i < nr_pages; i++) 2006 if (pages[i]) 2007 unpin_user_page(pages[i]); 2008 putback_movable_pages(movable_page_list); 2009 2010 return ret; 2011 } 2012 2013 /* 2014 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2015 * pages in the range are required to be pinned via FOLL_PIN, before calling 2016 * this routine. 2017 * 2018 * If any pages in the range are not allowed to be pinned, then this routine 2019 * will migrate those pages away, unpin all the pages in the range and return 2020 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2021 * call this routine again. 2022 * 2023 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2024 * The caller should give up, and propagate the error back up the call stack. 2025 * 2026 * If everything is OK and all pages in the range are allowed to be pinned, then 2027 * this routine leaves all pages pinned and returns zero for success. 2028 */ 2029 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2030 struct page **pages) 2031 { 2032 unsigned long collected; 2033 LIST_HEAD(movable_page_list); 2034 2035 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2036 nr_pages, pages); 2037 if (!collected) 2038 return 0; 2039 2040 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2041 pages); 2042 } 2043 #else 2044 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2045 struct page **pages) 2046 { 2047 return 0; 2048 } 2049 #endif /* CONFIG_MIGRATION */ 2050 2051 /* 2052 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2053 * allows us to process the FOLL_LONGTERM flag. 2054 */ 2055 static long __gup_longterm_locked(struct mm_struct *mm, 2056 unsigned long start, 2057 unsigned long nr_pages, 2058 struct page **pages, 2059 int *locked, 2060 unsigned int gup_flags) 2061 { 2062 unsigned int flags; 2063 long rc, nr_pinned_pages; 2064 2065 if (!(gup_flags & FOLL_LONGTERM)) 2066 return __get_user_pages_locked(mm, start, nr_pages, pages, 2067 locked, gup_flags); 2068 2069 flags = memalloc_pin_save(); 2070 do { 2071 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2072 pages, locked, 2073 gup_flags); 2074 if (nr_pinned_pages <= 0) { 2075 rc = nr_pinned_pages; 2076 break; 2077 } 2078 2079 /* FOLL_LONGTERM implies FOLL_PIN */ 2080 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2081 } while (rc == -EAGAIN); 2082 memalloc_pin_restore(flags); 2083 return rc ? rc : nr_pinned_pages; 2084 } 2085 2086 /* 2087 * Check that the given flags are valid for the exported gup/pup interface, and 2088 * update them with the required flags that the caller must have set. 2089 */ 2090 static bool is_valid_gup_args(struct page **pages, int *locked, 2091 unsigned int *gup_flags_p, unsigned int to_set) 2092 { 2093 unsigned int gup_flags = *gup_flags_p; 2094 2095 /* 2096 * These flags not allowed to be specified externally to the gup 2097 * interfaces: 2098 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2099 * - FOLL_REMOTE is internal only and used on follow_page() 2100 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2101 */ 2102 if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE | 2103 FOLL_REMOTE | FOLL_FAST_ONLY))) 2104 return false; 2105 2106 gup_flags |= to_set; 2107 if (locked) { 2108 /* At the external interface locked must be set */ 2109 if (WARN_ON_ONCE(*locked != 1)) 2110 return false; 2111 2112 gup_flags |= FOLL_UNLOCKABLE; 2113 } 2114 2115 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2116 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2117 (FOLL_PIN | FOLL_GET))) 2118 return false; 2119 2120 /* LONGTERM can only be specified when pinning */ 2121 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2122 return false; 2123 2124 /* Pages input must be given if using GET/PIN */ 2125 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2126 return false; 2127 2128 /* We want to allow the pgmap to be hot-unplugged at all times */ 2129 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2130 (gup_flags & FOLL_PCI_P2PDMA))) 2131 return false; 2132 2133 *gup_flags_p = gup_flags; 2134 return true; 2135 } 2136 2137 #ifdef CONFIG_MMU 2138 /** 2139 * get_user_pages_remote() - pin user pages in memory 2140 * @mm: mm_struct of target mm 2141 * @start: starting user address 2142 * @nr_pages: number of pages from start to pin 2143 * @gup_flags: flags modifying lookup behaviour 2144 * @pages: array that receives pointers to the pages pinned. 2145 * Should be at least nr_pages long. Or NULL, if caller 2146 * only intends to ensure the pages are faulted in. 2147 * @locked: pointer to lock flag indicating whether lock is held and 2148 * subsequently whether VM_FAULT_RETRY functionality can be 2149 * utilised. Lock must initially be held. 2150 * 2151 * Returns either number of pages pinned (which may be less than the 2152 * number requested), or an error. Details about the return value: 2153 * 2154 * -- If nr_pages is 0, returns 0. 2155 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2156 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2157 * pages pinned. Again, this may be less than nr_pages. 2158 * 2159 * The caller is responsible for releasing returned @pages, via put_page(). 2160 * 2161 * Must be called with mmap_lock held for read or write. 2162 * 2163 * get_user_pages_remote walks a process's page tables and takes a reference 2164 * to each struct page that each user address corresponds to at a given 2165 * instant. That is, it takes the page that would be accessed if a user 2166 * thread accesses the given user virtual address at that instant. 2167 * 2168 * This does not guarantee that the page exists in the user mappings when 2169 * get_user_pages_remote returns, and there may even be a completely different 2170 * page there in some cases (eg. if mmapped pagecache has been invalidated 2171 * and subsequently re-faulted). However it does guarantee that the page 2172 * won't be freed completely. And mostly callers simply care that the page 2173 * contains data that was valid *at some point in time*. Typically, an IO 2174 * or similar operation cannot guarantee anything stronger anyway because 2175 * locks can't be held over the syscall boundary. 2176 * 2177 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2178 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2179 * be called after the page is finished with, and before put_page is called. 2180 * 2181 * get_user_pages_remote is typically used for fewer-copy IO operations, 2182 * to get a handle on the memory by some means other than accesses 2183 * via the user virtual addresses. The pages may be submitted for 2184 * DMA to devices or accessed via their kernel linear mapping (via the 2185 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2186 * 2187 * See also get_user_pages_fast, for performance critical applications. 2188 * 2189 * get_user_pages_remote should be phased out in favor of 2190 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2191 * should use get_user_pages_remote because it cannot pass 2192 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2193 */ 2194 long get_user_pages_remote(struct mm_struct *mm, 2195 unsigned long start, unsigned long nr_pages, 2196 unsigned int gup_flags, struct page **pages, 2197 int *locked) 2198 { 2199 int local_locked = 1; 2200 2201 if (!is_valid_gup_args(pages, locked, &gup_flags, 2202 FOLL_TOUCH | FOLL_REMOTE)) 2203 return -EINVAL; 2204 2205 return __get_user_pages_locked(mm, start, nr_pages, pages, 2206 locked ? locked : &local_locked, 2207 gup_flags); 2208 } 2209 EXPORT_SYMBOL(get_user_pages_remote); 2210 2211 #else /* CONFIG_MMU */ 2212 long get_user_pages_remote(struct mm_struct *mm, 2213 unsigned long start, unsigned long nr_pages, 2214 unsigned int gup_flags, struct page **pages, 2215 int *locked) 2216 { 2217 return 0; 2218 } 2219 #endif /* !CONFIG_MMU */ 2220 2221 /** 2222 * get_user_pages() - pin user pages in memory 2223 * @start: starting user address 2224 * @nr_pages: number of pages from start to pin 2225 * @gup_flags: flags modifying lookup behaviour 2226 * @pages: array that receives pointers to the pages pinned. 2227 * Should be at least nr_pages long. Or NULL, if caller 2228 * only intends to ensure the pages are faulted in. 2229 * 2230 * This is the same as get_user_pages_remote(), just with a less-flexible 2231 * calling convention where we assume that the mm being operated on belongs to 2232 * the current task, and doesn't allow passing of a locked parameter. We also 2233 * obviously don't pass FOLL_REMOTE in here. 2234 */ 2235 long get_user_pages(unsigned long start, unsigned long nr_pages, 2236 unsigned int gup_flags, struct page **pages) 2237 { 2238 int locked = 1; 2239 2240 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2241 return -EINVAL; 2242 2243 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2244 &locked, gup_flags); 2245 } 2246 EXPORT_SYMBOL(get_user_pages); 2247 2248 /* 2249 * get_user_pages_unlocked() is suitable to replace the form: 2250 * 2251 * mmap_read_lock(mm); 2252 * get_user_pages(mm, ..., pages, NULL); 2253 * mmap_read_unlock(mm); 2254 * 2255 * with: 2256 * 2257 * get_user_pages_unlocked(mm, ..., pages); 2258 * 2259 * It is functionally equivalent to get_user_pages_fast so 2260 * get_user_pages_fast should be used instead if specific gup_flags 2261 * (e.g. FOLL_FORCE) are not required. 2262 */ 2263 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2264 struct page **pages, unsigned int gup_flags) 2265 { 2266 int locked = 0; 2267 2268 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2269 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2270 return -EINVAL; 2271 2272 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2273 &locked, gup_flags); 2274 } 2275 EXPORT_SYMBOL(get_user_pages_unlocked); 2276 2277 /* 2278 * Fast GUP 2279 * 2280 * get_user_pages_fast attempts to pin user pages by walking the page 2281 * tables directly and avoids taking locks. Thus the walker needs to be 2282 * protected from page table pages being freed from under it, and should 2283 * block any THP splits. 2284 * 2285 * One way to achieve this is to have the walker disable interrupts, and 2286 * rely on IPIs from the TLB flushing code blocking before the page table 2287 * pages are freed. This is unsuitable for architectures that do not need 2288 * to broadcast an IPI when invalidating TLBs. 2289 * 2290 * Another way to achieve this is to batch up page table containing pages 2291 * belonging to more than one mm_user, then rcu_sched a callback to free those 2292 * pages. Disabling interrupts will allow the fast_gup walker to both block 2293 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2294 * (which is a relatively rare event). The code below adopts this strategy. 2295 * 2296 * Before activating this code, please be aware that the following assumptions 2297 * are currently made: 2298 * 2299 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2300 * free pages containing page tables or TLB flushing requires IPI broadcast. 2301 * 2302 * *) ptes can be read atomically by the architecture. 2303 * 2304 * *) access_ok is sufficient to validate userspace address ranges. 2305 * 2306 * The last two assumptions can be relaxed by the addition of helper functions. 2307 * 2308 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2309 */ 2310 #ifdef CONFIG_HAVE_FAST_GUP 2311 2312 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2313 unsigned int flags, 2314 struct page **pages) 2315 { 2316 while ((*nr) - nr_start) { 2317 struct page *page = pages[--(*nr)]; 2318 2319 ClearPageReferenced(page); 2320 if (flags & FOLL_PIN) 2321 unpin_user_page(page); 2322 else 2323 put_page(page); 2324 } 2325 } 2326 2327 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2328 /* 2329 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2330 * operations. 2331 * 2332 * To pin the page, fast-gup needs to do below in order: 2333 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2334 * 2335 * For the rest of pgtable operations where pgtable updates can be racy 2336 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2337 * is pinned. 2338 * 2339 * Above will work for all pte-level operations, including THP split. 2340 * 2341 * For THP collapse, it's a bit more complicated because fast-gup may be 2342 * walking a pgtable page that is being freed (pte is still valid but pmd 2343 * can be cleared already). To avoid race in such condition, we need to 2344 * also check pmd here to make sure pmd doesn't change (corresponds to 2345 * pmdp_collapse_flush() in the THP collapse code path). 2346 */ 2347 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2348 unsigned long end, unsigned int flags, 2349 struct page **pages, int *nr) 2350 { 2351 struct dev_pagemap *pgmap = NULL; 2352 int nr_start = *nr, ret = 0; 2353 pte_t *ptep, *ptem; 2354 2355 ptem = ptep = pte_offset_map(&pmd, addr); 2356 do { 2357 pte_t pte = ptep_get_lockless(ptep); 2358 struct page *page; 2359 struct folio *folio; 2360 2361 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2362 goto pte_unmap; 2363 2364 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2365 goto pte_unmap; 2366 2367 if (pte_devmap(pte)) { 2368 if (unlikely(flags & FOLL_LONGTERM)) 2369 goto pte_unmap; 2370 2371 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2372 if (unlikely(!pgmap)) { 2373 undo_dev_pagemap(nr, nr_start, flags, pages); 2374 goto pte_unmap; 2375 } 2376 } else if (pte_special(pte)) 2377 goto pte_unmap; 2378 2379 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2380 page = pte_page(pte); 2381 2382 folio = try_grab_folio(page, 1, flags); 2383 if (!folio) 2384 goto pte_unmap; 2385 2386 if (unlikely(page_is_secretmem(page))) { 2387 gup_put_folio(folio, 1, flags); 2388 goto pte_unmap; 2389 } 2390 2391 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2392 unlikely(pte_val(pte) != pte_val(*ptep))) { 2393 gup_put_folio(folio, 1, flags); 2394 goto pte_unmap; 2395 } 2396 2397 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2398 gup_put_folio(folio, 1, flags); 2399 goto pte_unmap; 2400 } 2401 2402 /* 2403 * We need to make the page accessible if and only if we are 2404 * going to access its content (the FOLL_PIN case). Please 2405 * see Documentation/core-api/pin_user_pages.rst for 2406 * details. 2407 */ 2408 if (flags & FOLL_PIN) { 2409 ret = arch_make_page_accessible(page); 2410 if (ret) { 2411 gup_put_folio(folio, 1, flags); 2412 goto pte_unmap; 2413 } 2414 } 2415 folio_set_referenced(folio); 2416 pages[*nr] = page; 2417 (*nr)++; 2418 } while (ptep++, addr += PAGE_SIZE, addr != end); 2419 2420 ret = 1; 2421 2422 pte_unmap: 2423 if (pgmap) 2424 put_dev_pagemap(pgmap); 2425 pte_unmap(ptem); 2426 return ret; 2427 } 2428 #else 2429 2430 /* 2431 * If we can't determine whether or not a pte is special, then fail immediately 2432 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2433 * to be special. 2434 * 2435 * For a futex to be placed on a THP tail page, get_futex_key requires a 2436 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2437 * useful to have gup_huge_pmd even if we can't operate on ptes. 2438 */ 2439 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2440 unsigned long end, unsigned int flags, 2441 struct page **pages, int *nr) 2442 { 2443 return 0; 2444 } 2445 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2446 2447 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2448 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2449 unsigned long end, unsigned int flags, 2450 struct page **pages, int *nr) 2451 { 2452 int nr_start = *nr; 2453 struct dev_pagemap *pgmap = NULL; 2454 2455 do { 2456 struct page *page = pfn_to_page(pfn); 2457 2458 pgmap = get_dev_pagemap(pfn, pgmap); 2459 if (unlikely(!pgmap)) { 2460 undo_dev_pagemap(nr, nr_start, flags, pages); 2461 break; 2462 } 2463 2464 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2465 undo_dev_pagemap(nr, nr_start, flags, pages); 2466 break; 2467 } 2468 2469 SetPageReferenced(page); 2470 pages[*nr] = page; 2471 if (unlikely(try_grab_page(page, flags))) { 2472 undo_dev_pagemap(nr, nr_start, flags, pages); 2473 break; 2474 } 2475 (*nr)++; 2476 pfn++; 2477 } while (addr += PAGE_SIZE, addr != end); 2478 2479 put_dev_pagemap(pgmap); 2480 return addr == end; 2481 } 2482 2483 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2484 unsigned long end, unsigned int flags, 2485 struct page **pages, int *nr) 2486 { 2487 unsigned long fault_pfn; 2488 int nr_start = *nr; 2489 2490 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2491 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2492 return 0; 2493 2494 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2495 undo_dev_pagemap(nr, nr_start, flags, pages); 2496 return 0; 2497 } 2498 return 1; 2499 } 2500 2501 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2502 unsigned long end, unsigned int flags, 2503 struct page **pages, int *nr) 2504 { 2505 unsigned long fault_pfn; 2506 int nr_start = *nr; 2507 2508 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2509 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2510 return 0; 2511 2512 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2513 undo_dev_pagemap(nr, nr_start, flags, pages); 2514 return 0; 2515 } 2516 return 1; 2517 } 2518 #else 2519 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2520 unsigned long end, unsigned int flags, 2521 struct page **pages, int *nr) 2522 { 2523 BUILD_BUG(); 2524 return 0; 2525 } 2526 2527 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2528 unsigned long end, unsigned int flags, 2529 struct page **pages, int *nr) 2530 { 2531 BUILD_BUG(); 2532 return 0; 2533 } 2534 #endif 2535 2536 static int record_subpages(struct page *page, unsigned long addr, 2537 unsigned long end, struct page **pages) 2538 { 2539 int nr; 2540 2541 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2542 pages[nr] = nth_page(page, nr); 2543 2544 return nr; 2545 } 2546 2547 #ifdef CONFIG_ARCH_HAS_HUGEPD 2548 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2549 unsigned long sz) 2550 { 2551 unsigned long __boundary = (addr + sz) & ~(sz-1); 2552 return (__boundary - 1 < end - 1) ? __boundary : end; 2553 } 2554 2555 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2556 unsigned long end, unsigned int flags, 2557 struct page **pages, int *nr) 2558 { 2559 unsigned long pte_end; 2560 struct page *page; 2561 struct folio *folio; 2562 pte_t pte; 2563 int refs; 2564 2565 pte_end = (addr + sz) & ~(sz-1); 2566 if (pte_end < end) 2567 end = pte_end; 2568 2569 pte = huge_ptep_get(ptep); 2570 2571 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2572 return 0; 2573 2574 /* hugepages are never "special" */ 2575 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2576 2577 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2578 refs = record_subpages(page, addr, end, pages + *nr); 2579 2580 folio = try_grab_folio(page, refs, flags); 2581 if (!folio) 2582 return 0; 2583 2584 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2585 gup_put_folio(folio, refs, flags); 2586 return 0; 2587 } 2588 2589 if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) { 2590 gup_put_folio(folio, refs, flags); 2591 return 0; 2592 } 2593 2594 *nr += refs; 2595 folio_set_referenced(folio); 2596 return 1; 2597 } 2598 2599 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2600 unsigned int pdshift, unsigned long end, unsigned int flags, 2601 struct page **pages, int *nr) 2602 { 2603 pte_t *ptep; 2604 unsigned long sz = 1UL << hugepd_shift(hugepd); 2605 unsigned long next; 2606 2607 ptep = hugepte_offset(hugepd, addr, pdshift); 2608 do { 2609 next = hugepte_addr_end(addr, end, sz); 2610 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2611 return 0; 2612 } while (ptep++, addr = next, addr != end); 2613 2614 return 1; 2615 } 2616 #else 2617 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2618 unsigned int pdshift, unsigned long end, unsigned int flags, 2619 struct page **pages, int *nr) 2620 { 2621 return 0; 2622 } 2623 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2624 2625 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2626 unsigned long end, unsigned int flags, 2627 struct page **pages, int *nr) 2628 { 2629 struct page *page; 2630 struct folio *folio; 2631 int refs; 2632 2633 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2634 return 0; 2635 2636 if (pmd_devmap(orig)) { 2637 if (unlikely(flags & FOLL_LONGTERM)) 2638 return 0; 2639 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2640 pages, nr); 2641 } 2642 2643 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2644 refs = record_subpages(page, addr, end, pages + *nr); 2645 2646 folio = try_grab_folio(page, refs, flags); 2647 if (!folio) 2648 return 0; 2649 2650 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2651 gup_put_folio(folio, refs, flags); 2652 return 0; 2653 } 2654 2655 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2656 gup_put_folio(folio, refs, flags); 2657 return 0; 2658 } 2659 2660 *nr += refs; 2661 folio_set_referenced(folio); 2662 return 1; 2663 } 2664 2665 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2666 unsigned long end, unsigned int flags, 2667 struct page **pages, int *nr) 2668 { 2669 struct page *page; 2670 struct folio *folio; 2671 int refs; 2672 2673 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2674 return 0; 2675 2676 if (pud_devmap(orig)) { 2677 if (unlikely(flags & FOLL_LONGTERM)) 2678 return 0; 2679 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2680 pages, nr); 2681 } 2682 2683 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2684 refs = record_subpages(page, addr, end, pages + *nr); 2685 2686 folio = try_grab_folio(page, refs, flags); 2687 if (!folio) 2688 return 0; 2689 2690 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2691 gup_put_folio(folio, refs, flags); 2692 return 0; 2693 } 2694 2695 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2696 gup_put_folio(folio, refs, flags); 2697 return 0; 2698 } 2699 2700 *nr += refs; 2701 folio_set_referenced(folio); 2702 return 1; 2703 } 2704 2705 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2706 unsigned long end, unsigned int flags, 2707 struct page **pages, int *nr) 2708 { 2709 int refs; 2710 struct page *page; 2711 struct folio *folio; 2712 2713 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2714 return 0; 2715 2716 BUILD_BUG_ON(pgd_devmap(orig)); 2717 2718 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2719 refs = record_subpages(page, addr, end, pages + *nr); 2720 2721 folio = try_grab_folio(page, refs, flags); 2722 if (!folio) 2723 return 0; 2724 2725 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2726 gup_put_folio(folio, refs, flags); 2727 return 0; 2728 } 2729 2730 if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2731 gup_put_folio(folio, refs, flags); 2732 return 0; 2733 } 2734 2735 *nr += refs; 2736 folio_set_referenced(folio); 2737 return 1; 2738 } 2739 2740 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2741 unsigned int flags, struct page **pages, int *nr) 2742 { 2743 unsigned long next; 2744 pmd_t *pmdp; 2745 2746 pmdp = pmd_offset_lockless(pudp, pud, addr); 2747 do { 2748 pmd_t pmd = pmdp_get_lockless(pmdp); 2749 2750 next = pmd_addr_end(addr, end); 2751 if (!pmd_present(pmd)) 2752 return 0; 2753 2754 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2755 pmd_devmap(pmd))) { 2756 if (pmd_protnone(pmd) && 2757 !gup_can_follow_protnone(flags)) 2758 return 0; 2759 2760 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2761 pages, nr)) 2762 return 0; 2763 2764 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2765 /* 2766 * architecture have different format for hugetlbfs 2767 * pmd format and THP pmd format 2768 */ 2769 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2770 PMD_SHIFT, next, flags, pages, nr)) 2771 return 0; 2772 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2773 return 0; 2774 } while (pmdp++, addr = next, addr != end); 2775 2776 return 1; 2777 } 2778 2779 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2780 unsigned int flags, struct page **pages, int *nr) 2781 { 2782 unsigned long next; 2783 pud_t *pudp; 2784 2785 pudp = pud_offset_lockless(p4dp, p4d, addr); 2786 do { 2787 pud_t pud = READ_ONCE(*pudp); 2788 2789 next = pud_addr_end(addr, end); 2790 if (unlikely(!pud_present(pud))) 2791 return 0; 2792 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2793 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2794 pages, nr)) 2795 return 0; 2796 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2797 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2798 PUD_SHIFT, next, flags, pages, nr)) 2799 return 0; 2800 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2801 return 0; 2802 } while (pudp++, addr = next, addr != end); 2803 2804 return 1; 2805 } 2806 2807 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2808 unsigned int flags, struct page **pages, int *nr) 2809 { 2810 unsigned long next; 2811 p4d_t *p4dp; 2812 2813 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2814 do { 2815 p4d_t p4d = READ_ONCE(*p4dp); 2816 2817 next = p4d_addr_end(addr, end); 2818 if (p4d_none(p4d)) 2819 return 0; 2820 BUILD_BUG_ON(p4d_huge(p4d)); 2821 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2822 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2823 P4D_SHIFT, next, flags, pages, nr)) 2824 return 0; 2825 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2826 return 0; 2827 } while (p4dp++, addr = next, addr != end); 2828 2829 return 1; 2830 } 2831 2832 static void gup_pgd_range(unsigned long addr, unsigned long end, 2833 unsigned int flags, struct page **pages, int *nr) 2834 { 2835 unsigned long next; 2836 pgd_t *pgdp; 2837 2838 pgdp = pgd_offset(current->mm, addr); 2839 do { 2840 pgd_t pgd = READ_ONCE(*pgdp); 2841 2842 next = pgd_addr_end(addr, end); 2843 if (pgd_none(pgd)) 2844 return; 2845 if (unlikely(pgd_huge(pgd))) { 2846 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2847 pages, nr)) 2848 return; 2849 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2850 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2851 PGDIR_SHIFT, next, flags, pages, nr)) 2852 return; 2853 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2854 return; 2855 } while (pgdp++, addr = next, addr != end); 2856 } 2857 #else 2858 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2859 unsigned int flags, struct page **pages, int *nr) 2860 { 2861 } 2862 #endif /* CONFIG_HAVE_FAST_GUP */ 2863 2864 #ifndef gup_fast_permitted 2865 /* 2866 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2867 * we need to fall back to the slow version: 2868 */ 2869 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2870 { 2871 return true; 2872 } 2873 #endif 2874 2875 static unsigned long lockless_pages_from_mm(unsigned long start, 2876 unsigned long end, 2877 unsigned int gup_flags, 2878 struct page **pages) 2879 { 2880 unsigned long flags; 2881 int nr_pinned = 0; 2882 unsigned seq; 2883 2884 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2885 !gup_fast_permitted(start, end)) 2886 return 0; 2887 2888 if (gup_flags & FOLL_PIN) { 2889 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2890 if (seq & 1) 2891 return 0; 2892 } 2893 2894 /* 2895 * Disable interrupts. The nested form is used, in order to allow full, 2896 * general purpose use of this routine. 2897 * 2898 * With interrupts disabled, we block page table pages from being freed 2899 * from under us. See struct mmu_table_batch comments in 2900 * include/asm-generic/tlb.h for more details. 2901 * 2902 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 2903 * that come from THPs splitting. 2904 */ 2905 local_irq_save(flags); 2906 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2907 local_irq_restore(flags); 2908 2909 /* 2910 * When pinning pages for DMA there could be a concurrent write protect 2911 * from fork() via copy_page_range(), in this case always fail fast GUP. 2912 */ 2913 if (gup_flags & FOLL_PIN) { 2914 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 2915 unpin_user_pages_lockless(pages, nr_pinned); 2916 return 0; 2917 } else { 2918 sanity_check_pinned_pages(pages, nr_pinned); 2919 } 2920 } 2921 return nr_pinned; 2922 } 2923 2924 static int internal_get_user_pages_fast(unsigned long start, 2925 unsigned long nr_pages, 2926 unsigned int gup_flags, 2927 struct page **pages) 2928 { 2929 unsigned long len, end; 2930 unsigned long nr_pinned; 2931 int locked = 0; 2932 int ret; 2933 2934 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2935 FOLL_FORCE | FOLL_PIN | FOLL_GET | 2936 FOLL_FAST_ONLY | FOLL_NOFAULT | 2937 FOLL_PCI_P2PDMA))) 2938 return -EINVAL; 2939 2940 if (gup_flags & FOLL_PIN) 2941 mm_set_has_pinned_flag(¤t->mm->flags); 2942 2943 if (!(gup_flags & FOLL_FAST_ONLY)) 2944 might_lock_read(¤t->mm->mmap_lock); 2945 2946 start = untagged_addr(start) & PAGE_MASK; 2947 len = nr_pages << PAGE_SHIFT; 2948 if (check_add_overflow(start, len, &end)) 2949 return 0; 2950 if (end > TASK_SIZE_MAX) 2951 return -EFAULT; 2952 if (unlikely(!access_ok((void __user *)start, len))) 2953 return -EFAULT; 2954 2955 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 2956 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 2957 return nr_pinned; 2958 2959 /* Slow path: try to get the remaining pages with get_user_pages */ 2960 start += nr_pinned << PAGE_SHIFT; 2961 pages += nr_pinned; 2962 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 2963 pages, &locked, 2964 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 2965 if (ret < 0) { 2966 /* 2967 * The caller has to unpin the pages we already pinned so 2968 * returning -errno is not an option 2969 */ 2970 if (nr_pinned) 2971 return nr_pinned; 2972 return ret; 2973 } 2974 return ret + nr_pinned; 2975 } 2976 2977 /** 2978 * get_user_pages_fast_only() - pin user pages in memory 2979 * @start: starting user address 2980 * @nr_pages: number of pages from start to pin 2981 * @gup_flags: flags modifying pin behaviour 2982 * @pages: array that receives pointers to the pages pinned. 2983 * Should be at least nr_pages long. 2984 * 2985 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2986 * the regular GUP. 2987 * 2988 * If the architecture does not support this function, simply return with no 2989 * pages pinned. 2990 * 2991 * Careful, careful! COW breaking can go either way, so a non-write 2992 * access can get ambiguous page results. If you call this function without 2993 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2994 */ 2995 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2996 unsigned int gup_flags, struct page **pages) 2997 { 2998 /* 2999 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3000 * because gup fast is always a "pin with a +1 page refcount" request. 3001 * 3002 * FOLL_FAST_ONLY is required in order to match the API description of 3003 * this routine: no fall back to regular ("slow") GUP. 3004 */ 3005 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3006 FOLL_GET | FOLL_FAST_ONLY)) 3007 return -EINVAL; 3008 3009 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3010 } 3011 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3012 3013 /** 3014 * get_user_pages_fast() - pin user pages in memory 3015 * @start: starting user address 3016 * @nr_pages: number of pages from start to pin 3017 * @gup_flags: flags modifying pin behaviour 3018 * @pages: array that receives pointers to the pages pinned. 3019 * Should be at least nr_pages long. 3020 * 3021 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3022 * If not successful, it will fall back to taking the lock and 3023 * calling get_user_pages(). 3024 * 3025 * Returns number of pages pinned. This may be fewer than the number requested. 3026 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3027 * -errno. 3028 */ 3029 int get_user_pages_fast(unsigned long start, int nr_pages, 3030 unsigned int gup_flags, struct page **pages) 3031 { 3032 /* 3033 * The caller may or may not have explicitly set FOLL_GET; either way is 3034 * OK. However, internally (within mm/gup.c), gup fast variants must set 3035 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3036 * request. 3037 */ 3038 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3039 return -EINVAL; 3040 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3041 } 3042 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3043 3044 /** 3045 * pin_user_pages_fast() - pin user pages in memory without taking locks 3046 * 3047 * @start: starting user address 3048 * @nr_pages: number of pages from start to pin 3049 * @gup_flags: flags modifying pin behaviour 3050 * @pages: array that receives pointers to the pages pinned. 3051 * Should be at least nr_pages long. 3052 * 3053 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3054 * get_user_pages_fast() for documentation on the function arguments, because 3055 * the arguments here are identical. 3056 * 3057 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3058 * see Documentation/core-api/pin_user_pages.rst for further details. 3059 */ 3060 int pin_user_pages_fast(unsigned long start, int nr_pages, 3061 unsigned int gup_flags, struct page **pages) 3062 { 3063 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3064 return -EINVAL; 3065 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3066 } 3067 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3068 3069 /** 3070 * pin_user_pages_remote() - pin pages of a remote process 3071 * 3072 * @mm: mm_struct of target mm 3073 * @start: starting user address 3074 * @nr_pages: number of pages from start to pin 3075 * @gup_flags: flags modifying lookup behaviour 3076 * @pages: array that receives pointers to the pages pinned. 3077 * Should be at least nr_pages long. 3078 * @locked: pointer to lock flag indicating whether lock is held and 3079 * subsequently whether VM_FAULT_RETRY functionality can be 3080 * utilised. Lock must initially be held. 3081 * 3082 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3083 * get_user_pages_remote() for documentation on the function arguments, because 3084 * the arguments here are identical. 3085 * 3086 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3087 * see Documentation/core-api/pin_user_pages.rst for details. 3088 */ 3089 long pin_user_pages_remote(struct mm_struct *mm, 3090 unsigned long start, unsigned long nr_pages, 3091 unsigned int gup_flags, struct page **pages, 3092 int *locked) 3093 { 3094 int local_locked = 1; 3095 3096 if (!is_valid_gup_args(pages, locked, &gup_flags, 3097 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3098 return 0; 3099 return __gup_longterm_locked(mm, start, nr_pages, pages, 3100 locked ? locked : &local_locked, 3101 gup_flags); 3102 } 3103 EXPORT_SYMBOL(pin_user_pages_remote); 3104 3105 /** 3106 * pin_user_pages() - pin user pages in memory for use by other devices 3107 * 3108 * @start: starting user address 3109 * @nr_pages: number of pages from start to pin 3110 * @gup_flags: flags modifying lookup behaviour 3111 * @pages: array that receives pointers to the pages pinned. 3112 * Should be at least nr_pages long. 3113 * 3114 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3115 * FOLL_PIN is set. 3116 * 3117 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3118 * see Documentation/core-api/pin_user_pages.rst for details. 3119 */ 3120 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3121 unsigned int gup_flags, struct page **pages) 3122 { 3123 int locked = 1; 3124 3125 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3126 return 0; 3127 return __gup_longterm_locked(current->mm, start, nr_pages, 3128 pages, &locked, gup_flags); 3129 } 3130 EXPORT_SYMBOL(pin_user_pages); 3131 3132 /* 3133 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3134 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3135 * FOLL_PIN and rejects FOLL_GET. 3136 */ 3137 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3138 struct page **pages, unsigned int gup_flags) 3139 { 3140 int locked = 0; 3141 3142 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3143 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3144 return 0; 3145 3146 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3147 &locked, gup_flags); 3148 } 3149 EXPORT_SYMBOL(pin_user_pages_unlocked); 3150