1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memfd.h> 9 #include <linux/memremap.h> 10 #include <linux/pagemap.h> 11 #include <linux/rmap.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/secretmem.h> 15 16 #include <linux/sched/signal.h> 17 #include <linux/rwsem.h> 18 #include <linux/hugetlb.h> 19 #include <linux/migrate.h> 20 #include <linux/mm_inline.h> 21 #include <linux/pagevec.h> 22 #include <linux/sched/mm.h> 23 #include <linux/shmem_fs.h> 24 25 #include <asm/mmu_context.h> 26 #include <asm/tlbflush.h> 27 28 #include "internal.h" 29 #include "swap.h" 30 31 struct follow_page_context { 32 struct dev_pagemap *pgmap; 33 unsigned int page_mask; 34 }; 35 36 static inline void sanity_check_pinned_pages(struct page **pages, 37 unsigned long npages) 38 { 39 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 40 return; 41 42 /* 43 * We only pin anonymous pages if they are exclusive. Once pinned, we 44 * can no longer turn them possibly shared and PageAnonExclusive() will 45 * stick around until the page is freed. 46 * 47 * We'd like to verify that our pinned anonymous pages are still mapped 48 * exclusively. The issue with anon THP is that we don't know how 49 * they are/were mapped when pinning them. However, for anon 50 * THP we can assume that either the given page (PTE-mapped THP) or 51 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 52 * neither is the case, there is certainly something wrong. 53 */ 54 for (; npages; npages--, pages++) { 55 struct page *page = *pages; 56 struct folio *folio; 57 58 if (!page) 59 continue; 60 61 folio = page_folio(page); 62 63 if (is_zero_page(page) || 64 !folio_test_anon(folio)) 65 continue; 66 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 67 VM_WARN_ON_ONCE_FOLIO(!PageAnonExclusive(&folio->page), folio); 68 else 69 /* Either a PTE-mapped or a PMD-mapped THP. */ 70 VM_WARN_ON_ONCE_PAGE(!PageAnonExclusive(&folio->page) && 71 !PageAnonExclusive(page), page); 72 } 73 } 74 75 /* 76 * Return the folio with ref appropriately incremented, 77 * or NULL if that failed. 78 */ 79 static inline struct folio *try_get_folio(struct page *page, int refs) 80 { 81 struct folio *folio; 82 83 retry: 84 folio = page_folio(page); 85 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 86 return NULL; 87 if (unlikely(!folio_ref_try_add(folio, refs))) 88 return NULL; 89 90 /* 91 * At this point we have a stable reference to the folio; but it 92 * could be that between calling page_folio() and the refcount 93 * increment, the folio was split, in which case we'd end up 94 * holding a reference on a folio that has nothing to do with the page 95 * we were given anymore. 96 * So now that the folio is stable, recheck that the page still 97 * belongs to this folio. 98 */ 99 if (unlikely(page_folio(page) != folio)) { 100 folio_put_refs(folio, refs); 101 goto retry; 102 } 103 104 return folio; 105 } 106 107 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 108 { 109 if (flags & FOLL_PIN) { 110 if (is_zero_folio(folio)) 111 return; 112 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 113 if (folio_has_pincount(folio)) 114 atomic_sub(refs, &folio->_pincount); 115 else 116 refs *= GUP_PIN_COUNTING_BIAS; 117 } 118 119 folio_put_refs(folio, refs); 120 } 121 122 /** 123 * try_grab_folio() - add a folio's refcount by a flag-dependent amount 124 * @folio: pointer to folio to be grabbed 125 * @refs: the value to (effectively) add to the folio's refcount 126 * @flags: gup flags: these are the FOLL_* flag values 127 * 128 * This might not do anything at all, depending on the flags argument. 129 * 130 * "grab" names in this file mean, "look at flags to decide whether to use 131 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 132 * 133 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 134 * time. 135 * 136 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 137 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 138 * 139 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the folio could not 140 * be grabbed. 141 * 142 * It is called when we have a stable reference for the folio, typically in 143 * GUP slow path. 144 */ 145 int __must_check try_grab_folio(struct folio *folio, int refs, 146 unsigned int flags) 147 { 148 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 149 return -ENOMEM; 150 151 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && folio_is_pci_p2pdma(folio))) 152 return -EREMOTEIO; 153 154 if (flags & FOLL_GET) 155 folio_ref_add(folio, refs); 156 else if (flags & FOLL_PIN) { 157 /* 158 * Don't take a pin on the zero page - it's not going anywhere 159 * and it is used in a *lot* of places. 160 */ 161 if (is_zero_folio(folio)) 162 return 0; 163 164 /* 165 * Increment the normal page refcount field at least once, 166 * so that the page really is pinned. 167 */ 168 if (folio_has_pincount(folio)) { 169 folio_ref_add(folio, refs); 170 atomic_add(refs, &folio->_pincount); 171 } else { 172 folio_ref_add(folio, refs * GUP_PIN_COUNTING_BIAS); 173 } 174 175 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 176 } 177 178 return 0; 179 } 180 181 /** 182 * unpin_user_page() - release a dma-pinned page 183 * @page: pointer to page to be released 184 * 185 * Pages that were pinned via pin_user_pages*() must be released via either 186 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 187 * that such pages can be separately tracked and uniquely handled. In 188 * particular, interactions with RDMA and filesystems need special handling. 189 */ 190 void unpin_user_page(struct page *page) 191 { 192 sanity_check_pinned_pages(&page, 1); 193 gup_put_folio(page_folio(page), 1, FOLL_PIN); 194 } 195 EXPORT_SYMBOL(unpin_user_page); 196 197 /** 198 * unpin_folio() - release a dma-pinned folio 199 * @folio: pointer to folio to be released 200 * 201 * Folios that were pinned via memfd_pin_folios() or other similar routines 202 * must be released either using unpin_folio() or unpin_folios(). 203 */ 204 void unpin_folio(struct folio *folio) 205 { 206 gup_put_folio(folio, 1, FOLL_PIN); 207 } 208 EXPORT_SYMBOL_GPL(unpin_folio); 209 210 /** 211 * folio_add_pin - Try to get an additional pin on a pinned folio 212 * @folio: The folio to be pinned 213 * 214 * Get an additional pin on a folio we already have a pin on. Makes no change 215 * if the folio is a zero_page. 216 */ 217 void folio_add_pin(struct folio *folio) 218 { 219 if (is_zero_folio(folio)) 220 return; 221 222 /* 223 * Similar to try_grab_folio(): be sure to *also* increment the normal 224 * page refcount field at least once, so that the page really is 225 * pinned. 226 */ 227 if (folio_has_pincount(folio)) { 228 WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); 229 folio_ref_inc(folio); 230 atomic_inc(&folio->_pincount); 231 } else { 232 WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); 233 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 234 } 235 } 236 237 static inline struct folio *gup_folio_range_next(struct page *start, 238 unsigned long npages, unsigned long i, unsigned int *ntails) 239 { 240 struct page *next = start + i; 241 struct folio *folio = page_folio(next); 242 unsigned int nr = 1; 243 244 if (folio_test_large(folio)) 245 nr = min_t(unsigned int, npages - i, 246 folio_nr_pages(folio) - folio_page_idx(folio, next)); 247 248 *ntails = nr; 249 return folio; 250 } 251 252 static inline struct folio *gup_folio_next(struct page **list, 253 unsigned long npages, unsigned long i, unsigned int *ntails) 254 { 255 struct folio *folio = page_folio(list[i]); 256 unsigned int nr; 257 258 for (nr = i + 1; nr < npages; nr++) { 259 if (page_folio(list[nr]) != folio) 260 break; 261 } 262 263 *ntails = nr - i; 264 return folio; 265 } 266 267 /** 268 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 269 * @pages: array of pages to be maybe marked dirty, and definitely released. 270 * @npages: number of pages in the @pages array. 271 * @make_dirty: whether to mark the pages dirty 272 * 273 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 274 * variants called on that page. 275 * 276 * For each page in the @pages array, make that page (or its head page, if a 277 * compound page) dirty, if @make_dirty is true, and if the page was previously 278 * listed as clean. In any case, releases all pages using unpin_user_page(), 279 * possibly via unpin_user_pages(), for the non-dirty case. 280 * 281 * Please see the unpin_user_page() documentation for details. 282 * 283 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 284 * required, then the caller should a) verify that this is really correct, 285 * because _lock() is usually required, and b) hand code it: 286 * set_page_dirty_lock(), unpin_user_page(). 287 * 288 */ 289 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 290 bool make_dirty) 291 { 292 unsigned long i; 293 struct folio *folio; 294 unsigned int nr; 295 296 if (!make_dirty) { 297 unpin_user_pages(pages, npages); 298 return; 299 } 300 301 sanity_check_pinned_pages(pages, npages); 302 for (i = 0; i < npages; i += nr) { 303 folio = gup_folio_next(pages, npages, i, &nr); 304 /* 305 * Checking PageDirty at this point may race with 306 * clear_page_dirty_for_io(), but that's OK. Two key 307 * cases: 308 * 309 * 1) This code sees the page as already dirty, so it 310 * skips the call to set_page_dirty(). That could happen 311 * because clear_page_dirty_for_io() called 312 * folio_mkclean(), followed by set_page_dirty(). 313 * However, now the page is going to get written back, 314 * which meets the original intention of setting it 315 * dirty, so all is well: clear_page_dirty_for_io() goes 316 * on to call TestClearPageDirty(), and write the page 317 * back. 318 * 319 * 2) This code sees the page as clean, so it calls 320 * set_page_dirty(). The page stays dirty, despite being 321 * written back, so it gets written back again in the 322 * next writeback cycle. This is harmless. 323 */ 324 if (!folio_test_dirty(folio)) { 325 folio_lock(folio); 326 folio_mark_dirty(folio); 327 folio_unlock(folio); 328 } 329 gup_put_folio(folio, nr, FOLL_PIN); 330 } 331 } 332 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 333 334 /** 335 * unpin_user_page_range_dirty_lock() - release and optionally dirty 336 * gup-pinned page range 337 * 338 * @page: the starting page of a range maybe marked dirty, and definitely released. 339 * @npages: number of consecutive pages to release. 340 * @make_dirty: whether to mark the pages dirty 341 * 342 * "gup-pinned page range" refers to a range of pages that has had one of the 343 * pin_user_pages() variants called on that page. 344 * 345 * The page range must be truly physically contiguous: the page range 346 * corresponds to a contiguous PFN range and all pages can be iterated 347 * naturally. 348 * 349 * For the page ranges defined by [page .. page+npages], make that range (or 350 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 351 * page range was previously listed as clean. 352 * 353 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 354 * required, then the caller should a) verify that this is really correct, 355 * because _lock() is usually required, and b) hand code it: 356 * set_page_dirty_lock(), unpin_user_page(). 357 * 358 */ 359 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 360 bool make_dirty) 361 { 362 unsigned long i; 363 struct folio *folio; 364 unsigned int nr; 365 366 VM_WARN_ON_ONCE(!page_range_contiguous(page, npages)); 367 368 for (i = 0; i < npages; i += nr) { 369 folio = gup_folio_range_next(page, npages, i, &nr); 370 if (make_dirty && !folio_test_dirty(folio)) { 371 folio_lock(folio); 372 folio_mark_dirty(folio); 373 folio_unlock(folio); 374 } 375 gup_put_folio(folio, nr, FOLL_PIN); 376 } 377 } 378 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 379 380 static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) 381 { 382 unsigned long i; 383 struct folio *folio; 384 unsigned int nr; 385 386 /* 387 * Don't perform any sanity checks because we might have raced with 388 * fork() and some anonymous pages might now actually be shared -- 389 * which is why we're unpinning after all. 390 */ 391 for (i = 0; i < npages; i += nr) { 392 folio = gup_folio_next(pages, npages, i, &nr); 393 gup_put_folio(folio, nr, FOLL_PIN); 394 } 395 } 396 397 /** 398 * unpin_user_pages() - release an array of gup-pinned pages. 399 * @pages: array of pages to be marked dirty and released. 400 * @npages: number of pages in the @pages array. 401 * 402 * For each page in the @pages array, release the page using unpin_user_page(). 403 * 404 * Please see the unpin_user_page() documentation for details. 405 */ 406 void unpin_user_pages(struct page **pages, unsigned long npages) 407 { 408 unsigned long i; 409 struct folio *folio; 410 unsigned int nr; 411 412 /* 413 * If this WARN_ON() fires, then the system *might* be leaking pages (by 414 * leaving them pinned), but probably not. More likely, gup/pup returned 415 * a hard -ERRNO error to the caller, who erroneously passed it here. 416 */ 417 if (WARN_ON(IS_ERR_VALUE(npages))) 418 return; 419 420 sanity_check_pinned_pages(pages, npages); 421 for (i = 0; i < npages; i += nr) { 422 if (!pages[i]) { 423 nr = 1; 424 continue; 425 } 426 folio = gup_folio_next(pages, npages, i, &nr); 427 gup_put_folio(folio, nr, FOLL_PIN); 428 } 429 } 430 EXPORT_SYMBOL(unpin_user_pages); 431 432 /** 433 * unpin_user_folio() - release pages of a folio 434 * @folio: pointer to folio to be released 435 * @npages: number of pages of same folio 436 * 437 * Release npages of the folio 438 */ 439 void unpin_user_folio(struct folio *folio, unsigned long npages) 440 { 441 gup_put_folio(folio, npages, FOLL_PIN); 442 } 443 EXPORT_SYMBOL(unpin_user_folio); 444 445 /** 446 * unpin_folios() - release an array of gup-pinned folios. 447 * @folios: array of folios to be marked dirty and released. 448 * @nfolios: number of folios in the @folios array. 449 * 450 * For each folio in the @folios array, release the folio using gup_put_folio. 451 * 452 * Please see the unpin_folio() documentation for details. 453 */ 454 void unpin_folios(struct folio **folios, unsigned long nfolios) 455 { 456 unsigned long i = 0, j; 457 458 /* 459 * If this WARN_ON() fires, then the system *might* be leaking folios 460 * (by leaving them pinned), but probably not. More likely, gup/pup 461 * returned a hard -ERRNO error to the caller, who erroneously passed 462 * it here. 463 */ 464 if (WARN_ON(IS_ERR_VALUE(nfolios))) 465 return; 466 467 while (i < nfolios) { 468 for (j = i + 1; j < nfolios; j++) 469 if (folios[i] != folios[j]) 470 break; 471 472 if (folios[i]) 473 gup_put_folio(folios[i], j - i, FOLL_PIN); 474 i = j; 475 } 476 } 477 EXPORT_SYMBOL_GPL(unpin_folios); 478 479 /* 480 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 481 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 482 * cache bouncing on large SMP machines for concurrent pinned gups. 483 */ 484 static inline void mm_set_has_pinned_flag(struct mm_struct *mm) 485 { 486 if (!mm_flags_test(MMF_HAS_PINNED, mm)) 487 mm_flags_set(MMF_HAS_PINNED, mm); 488 } 489 490 #ifdef CONFIG_MMU 491 492 #ifdef CONFIG_HAVE_GUP_FAST 493 /** 494 * try_grab_folio_fast() - Attempt to get or pin a folio in fast path. 495 * @page: pointer to page to be grabbed 496 * @refs: the value to (effectively) add to the folio's refcount 497 * @flags: gup flags: these are the FOLL_* flag values. 498 * 499 * "grab" names in this file mean, "look at flags to decide whether to use 500 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 501 * 502 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 503 * same time. (That's true throughout the get_user_pages*() and 504 * pin_user_pages*() APIs.) Cases: 505 * 506 * FOLL_GET: folio's refcount will be incremented by @refs. 507 * 508 * FOLL_PIN on large folios: folio's refcount will be incremented by 509 * @refs, and its pincount will be incremented by @refs. 510 * 511 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 512 * @refs * GUP_PIN_COUNTING_BIAS. 513 * 514 * Return: The folio containing @page (with refcount appropriately 515 * incremented) for success, or NULL upon failure. If neither FOLL_GET 516 * nor FOLL_PIN was set, that's considered failure, and furthermore, 517 * a likely bug in the caller, so a warning is also emitted. 518 * 519 * It uses add ref unless zero to elevate the folio refcount and must be called 520 * in fast path only. 521 */ 522 static struct folio *try_grab_folio_fast(struct page *page, int refs, 523 unsigned int flags) 524 { 525 struct folio *folio; 526 527 /* Raise warn if it is not called in fast GUP */ 528 VM_WARN_ON_ONCE(!irqs_disabled()); 529 530 if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) 531 return NULL; 532 533 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 534 return NULL; 535 536 if (flags & FOLL_GET) 537 return try_get_folio(page, refs); 538 539 /* FOLL_PIN is set */ 540 541 /* 542 * Don't take a pin on the zero page - it's not going anywhere 543 * and it is used in a *lot* of places. 544 */ 545 if (is_zero_page(page)) 546 return page_folio(page); 547 548 folio = try_get_folio(page, refs); 549 if (!folio) 550 return NULL; 551 552 /* 553 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 554 * right zone, so fail and let the caller fall back to the slow 555 * path. 556 */ 557 if (unlikely((flags & FOLL_LONGTERM) && 558 !folio_is_longterm_pinnable(folio))) { 559 folio_put_refs(folio, refs); 560 return NULL; 561 } 562 563 /* 564 * When pinning a large folio, use an exact count to track it. 565 * 566 * However, be sure to *also* increment the normal folio 567 * refcount field at least once, so that the folio really 568 * is pinned. That's why the refcount from the earlier 569 * try_get_folio() is left intact. 570 */ 571 if (folio_has_pincount(folio)) 572 atomic_add(refs, &folio->_pincount); 573 else 574 folio_ref_add(folio, 575 refs * (GUP_PIN_COUNTING_BIAS - 1)); 576 /* 577 * Adjust the pincount before re-checking the PTE for changes. 578 * This is essentially a smp_mb() and is paired with a memory 579 * barrier in folio_try_share_anon_rmap_*(). 580 */ 581 smp_mb__after_atomic(); 582 583 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 584 585 return folio; 586 } 587 #endif /* CONFIG_HAVE_GUP_FAST */ 588 589 /* Common code for can_follow_write_* */ 590 static inline bool can_follow_write_common(struct page *page, 591 struct vm_area_struct *vma, unsigned int flags) 592 { 593 /* Maybe FOLL_FORCE is set to override it? */ 594 if (!(flags & FOLL_FORCE)) 595 return false; 596 597 /* But FOLL_FORCE has no effect on shared mappings */ 598 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 599 return false; 600 601 /* ... or read-only private ones */ 602 if (!(vma->vm_flags & VM_MAYWRITE)) 603 return false; 604 605 /* ... or already writable ones that just need to take a write fault */ 606 if (vma->vm_flags & VM_WRITE) 607 return false; 608 609 /* 610 * See can_change_pte_writable(): we broke COW and could map the page 611 * writable if we have an exclusive anonymous page ... 612 */ 613 return page && PageAnon(page) && PageAnonExclusive(page); 614 } 615 616 static struct page *no_page_table(struct vm_area_struct *vma, 617 unsigned int flags, unsigned long address) 618 { 619 if (!(flags & FOLL_DUMP)) 620 return NULL; 621 622 /* 623 * When core dumping, we don't want to allocate unnecessary pages or 624 * page tables. Return error instead of NULL to skip handle_mm_fault, 625 * then get_dump_page() will return NULL to leave a hole in the dump. 626 * But we can only make this optimization where a hole would surely 627 * be zero-filled if handle_mm_fault() actually did handle it. 628 */ 629 if (is_vm_hugetlb_page(vma)) { 630 struct hstate *h = hstate_vma(vma); 631 632 if (!hugetlbfs_pagecache_present(h, vma, address)) 633 return ERR_PTR(-EFAULT); 634 } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { 635 return ERR_PTR(-EFAULT); 636 } 637 638 return NULL; 639 } 640 641 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 642 /* FOLL_FORCE can write to even unwritable PUDs in COW mappings. */ 643 static inline bool can_follow_write_pud(pud_t pud, struct page *page, 644 struct vm_area_struct *vma, 645 unsigned int flags) 646 { 647 /* If the pud is writable, we can write to the page. */ 648 if (pud_write(pud)) 649 return true; 650 651 return can_follow_write_common(page, vma, flags); 652 } 653 654 static struct page *follow_huge_pud(struct vm_area_struct *vma, 655 unsigned long addr, pud_t *pudp, 656 int flags, struct follow_page_context *ctx) 657 { 658 struct mm_struct *mm = vma->vm_mm; 659 struct page *page; 660 pud_t pud = *pudp; 661 unsigned long pfn = pud_pfn(pud); 662 int ret; 663 664 assert_spin_locked(pud_lockptr(mm, pudp)); 665 666 if (!pud_present(pud)) 667 return NULL; 668 669 if ((flags & FOLL_WRITE) && 670 !can_follow_write_pud(pud, pfn_to_page(pfn), vma, flags)) 671 return NULL; 672 673 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; 674 page = pfn_to_page(pfn); 675 676 if (!pud_write(pud) && gup_must_unshare(vma, flags, page)) 677 return ERR_PTR(-EMLINK); 678 679 ret = try_grab_folio(page_folio(page), 1, flags); 680 if (ret) 681 page = ERR_PTR(ret); 682 else 683 ctx->page_mask = HPAGE_PUD_NR - 1; 684 685 return page; 686 } 687 688 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ 689 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, 690 struct vm_area_struct *vma, 691 unsigned int flags) 692 { 693 /* If the pmd is writable, we can write to the page. */ 694 if (pmd_write(pmd)) 695 return true; 696 697 if (!can_follow_write_common(page, vma, flags)) 698 return false; 699 700 /* ... and a write-fault isn't required for other reasons. */ 701 if (pmd_needs_soft_dirty_wp(vma, pmd)) 702 return false; 703 return !userfaultfd_huge_pmd_wp(vma, pmd); 704 } 705 706 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 707 unsigned long addr, pmd_t *pmd, 708 unsigned int flags, 709 struct follow_page_context *ctx) 710 { 711 struct mm_struct *mm = vma->vm_mm; 712 pmd_t pmdval = *pmd; 713 struct page *page; 714 int ret; 715 716 assert_spin_locked(pmd_lockptr(mm, pmd)); 717 718 page = pmd_page(pmdval); 719 if ((flags & FOLL_WRITE) && 720 !can_follow_write_pmd(pmdval, page, vma, flags)) 721 return NULL; 722 723 /* Avoid dumping huge zero page */ 724 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) 725 return ERR_PTR(-EFAULT); 726 727 if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) 728 return NULL; 729 730 if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) 731 return ERR_PTR(-EMLINK); 732 733 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && 734 !PageAnonExclusive(page), page); 735 736 ret = try_grab_folio(page_folio(page), 1, flags); 737 if (ret) 738 return ERR_PTR(ret); 739 740 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 741 if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) 742 touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); 743 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 744 745 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; 746 ctx->page_mask = HPAGE_PMD_NR - 1; 747 748 return page; 749 } 750 751 #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 752 static struct page *follow_huge_pud(struct vm_area_struct *vma, 753 unsigned long addr, pud_t *pudp, 754 int flags, struct follow_page_context *ctx) 755 { 756 return NULL; 757 } 758 759 static struct page *follow_huge_pmd(struct vm_area_struct *vma, 760 unsigned long addr, pmd_t *pmd, 761 unsigned int flags, 762 struct follow_page_context *ctx) 763 { 764 return NULL; 765 } 766 #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ 767 768 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 769 pte_t *pte, unsigned int flags) 770 { 771 if (flags & FOLL_TOUCH) { 772 pte_t orig_entry = ptep_get(pte); 773 pte_t entry = orig_entry; 774 775 if (flags & FOLL_WRITE) 776 entry = pte_mkdirty(entry); 777 entry = pte_mkyoung(entry); 778 779 if (!pte_same(orig_entry, entry)) { 780 set_pte_at(vma->vm_mm, address, pte, entry); 781 update_mmu_cache(vma, address, pte); 782 } 783 } 784 785 /* Proper page table entry exists, but no corresponding struct page */ 786 return -EEXIST; 787 } 788 789 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 790 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 791 struct vm_area_struct *vma, 792 unsigned int flags) 793 { 794 /* If the pte is writable, we can write to the page. */ 795 if (pte_write(pte)) 796 return true; 797 798 if (!can_follow_write_common(page, vma, flags)) 799 return false; 800 801 /* ... and a write-fault isn't required for other reasons. */ 802 if (pte_needs_soft_dirty_wp(vma, pte)) 803 return false; 804 return !userfaultfd_pte_wp(vma, pte); 805 } 806 807 static struct page *follow_page_pte(struct vm_area_struct *vma, 808 unsigned long address, pmd_t *pmd, unsigned int flags, 809 struct dev_pagemap **pgmap) 810 { 811 struct mm_struct *mm = vma->vm_mm; 812 struct folio *folio; 813 struct page *page; 814 spinlock_t *ptl; 815 pte_t *ptep, pte; 816 int ret; 817 818 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 819 if (!ptep) 820 return no_page_table(vma, flags, address); 821 pte = ptep_get(ptep); 822 if (!pte_present(pte)) 823 goto no_page; 824 if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) 825 goto no_page; 826 827 page = vm_normal_page(vma, address, pte); 828 829 /* 830 * We only care about anon pages in can_follow_write_pte(). 831 */ 832 if ((flags & FOLL_WRITE) && 833 !can_follow_write_pte(pte, page, vma, flags)) { 834 page = NULL; 835 goto out; 836 } 837 838 if (unlikely(!page)) { 839 if (flags & FOLL_DUMP) { 840 /* Avoid special (like zero) pages in core dumps */ 841 page = ERR_PTR(-EFAULT); 842 goto out; 843 } 844 845 if (is_zero_pfn(pte_pfn(pte))) { 846 page = pte_page(pte); 847 } else { 848 ret = follow_pfn_pte(vma, address, ptep, flags); 849 page = ERR_PTR(ret); 850 goto out; 851 } 852 } 853 folio = page_folio(page); 854 855 if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { 856 page = ERR_PTR(-EMLINK); 857 goto out; 858 } 859 860 VM_WARN_ON_ONCE_PAGE((flags & FOLL_PIN) && PageAnon(page) && 861 !PageAnonExclusive(page), page); 862 863 /* try_grab_folio() does nothing unless FOLL_GET or FOLL_PIN is set. */ 864 ret = try_grab_folio(folio, 1, flags); 865 if (unlikely(ret)) { 866 page = ERR_PTR(ret); 867 goto out; 868 } 869 870 /* 871 * We need to make the page accessible if and only if we are going 872 * to access its content (the FOLL_PIN case). Please see 873 * Documentation/core-api/pin_user_pages.rst for details. 874 */ 875 if (flags & FOLL_PIN) { 876 ret = arch_make_folio_accessible(folio); 877 if (ret) { 878 unpin_user_page(page); 879 page = ERR_PTR(ret); 880 goto out; 881 } 882 } 883 if (flags & FOLL_TOUCH) { 884 if ((flags & FOLL_WRITE) && 885 !pte_dirty(pte) && !folio_test_dirty(folio)) 886 folio_mark_dirty(folio); 887 /* 888 * pte_mkyoung() would be more correct here, but atomic care 889 * is needed to avoid losing the dirty bit: it is easier to use 890 * folio_mark_accessed(). 891 */ 892 folio_mark_accessed(folio); 893 } 894 out: 895 pte_unmap_unlock(ptep, ptl); 896 return page; 897 no_page: 898 pte_unmap_unlock(ptep, ptl); 899 if (!pte_none(pte)) 900 return NULL; 901 return no_page_table(vma, flags, address); 902 } 903 904 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 905 unsigned long address, pud_t *pudp, 906 unsigned int flags, 907 struct follow_page_context *ctx) 908 { 909 pmd_t *pmd, pmdval; 910 spinlock_t *ptl; 911 struct page *page; 912 struct mm_struct *mm = vma->vm_mm; 913 914 pmd = pmd_offset(pudp, address); 915 pmdval = pmdp_get_lockless(pmd); 916 if (pmd_none(pmdval)) 917 return no_page_table(vma, flags, address); 918 if (!pmd_present(pmdval)) 919 return no_page_table(vma, flags, address); 920 if (likely(!pmd_leaf(pmdval))) 921 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 922 923 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) 924 return no_page_table(vma, flags, address); 925 926 ptl = pmd_lock(mm, pmd); 927 pmdval = *pmd; 928 if (unlikely(!pmd_present(pmdval))) { 929 spin_unlock(ptl); 930 return no_page_table(vma, flags, address); 931 } 932 if (unlikely(!pmd_leaf(pmdval))) { 933 spin_unlock(ptl); 934 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 935 } 936 if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { 937 spin_unlock(ptl); 938 split_huge_pmd(vma, pmd, address); 939 /* If pmd was left empty, stuff a page table in there quickly */ 940 return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : 941 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 942 } 943 page = follow_huge_pmd(vma, address, pmd, flags, ctx); 944 spin_unlock(ptl); 945 return page; 946 } 947 948 static struct page *follow_pud_mask(struct vm_area_struct *vma, 949 unsigned long address, p4d_t *p4dp, 950 unsigned int flags, 951 struct follow_page_context *ctx) 952 { 953 pud_t *pudp, pud; 954 spinlock_t *ptl; 955 struct page *page; 956 struct mm_struct *mm = vma->vm_mm; 957 958 pudp = pud_offset(p4dp, address); 959 pud = READ_ONCE(*pudp); 960 if (!pud_present(pud)) 961 return no_page_table(vma, flags, address); 962 if (pud_leaf(pud)) { 963 ptl = pud_lock(mm, pudp); 964 page = follow_huge_pud(vma, address, pudp, flags, ctx); 965 spin_unlock(ptl); 966 if (page) 967 return page; 968 return no_page_table(vma, flags, address); 969 } 970 if (unlikely(pud_bad(pud))) 971 return no_page_table(vma, flags, address); 972 973 return follow_pmd_mask(vma, address, pudp, flags, ctx); 974 } 975 976 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 977 unsigned long address, pgd_t *pgdp, 978 unsigned int flags, 979 struct follow_page_context *ctx) 980 { 981 p4d_t *p4dp, p4d; 982 983 p4dp = p4d_offset(pgdp, address); 984 p4d = READ_ONCE(*p4dp); 985 BUILD_BUG_ON(p4d_leaf(p4d)); 986 987 if (!p4d_present(p4d) || p4d_bad(p4d)) 988 return no_page_table(vma, flags, address); 989 990 return follow_pud_mask(vma, address, p4dp, flags, ctx); 991 } 992 993 /** 994 * follow_page_mask - look up a page descriptor from a user-virtual address 995 * @vma: vm_area_struct mapping @address 996 * @address: virtual address to look up 997 * @flags: flags modifying lookup behaviour 998 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 999 * pointer to output page_mask 1000 * 1001 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1002 * 1003 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 1004 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 1005 * 1006 * When getting an anonymous page and the caller has to trigger unsharing 1007 * of a shared anonymous page first, -EMLINK is returned. The caller should 1008 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 1009 * relevant with FOLL_PIN and !FOLL_WRITE. 1010 * 1011 * On output, the @ctx->page_mask is set according to the size of the page. 1012 * 1013 * Return: the mapped (struct page *), %NULL if no mapping exists, or 1014 * an error pointer if there is a mapping to something not represented 1015 * by a page descriptor (see also vm_normal_page()). 1016 */ 1017 static struct page *follow_page_mask(struct vm_area_struct *vma, 1018 unsigned long address, unsigned int flags, 1019 struct follow_page_context *ctx) 1020 { 1021 pgd_t *pgd; 1022 struct mm_struct *mm = vma->vm_mm; 1023 struct page *page; 1024 1025 vma_pgtable_walk_begin(vma); 1026 1027 ctx->page_mask = 0; 1028 pgd = pgd_offset(mm, address); 1029 1030 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1031 page = no_page_table(vma, flags, address); 1032 else 1033 page = follow_p4d_mask(vma, address, pgd, flags, ctx); 1034 1035 vma_pgtable_walk_end(vma); 1036 1037 return page; 1038 } 1039 1040 static int get_gate_page(struct mm_struct *mm, unsigned long address, 1041 unsigned int gup_flags, struct vm_area_struct **vma, 1042 struct page **page) 1043 { 1044 pgd_t *pgd; 1045 p4d_t *p4d; 1046 pud_t *pud; 1047 pmd_t *pmd; 1048 pte_t *pte; 1049 pte_t entry; 1050 int ret = -EFAULT; 1051 1052 /* user gate pages are read-only */ 1053 if (gup_flags & FOLL_WRITE) 1054 return -EFAULT; 1055 pgd = pgd_offset(mm, address); 1056 if (pgd_none(*pgd)) 1057 return -EFAULT; 1058 p4d = p4d_offset(pgd, address); 1059 if (p4d_none(*p4d)) 1060 return -EFAULT; 1061 pud = pud_offset(p4d, address); 1062 if (pud_none(*pud)) 1063 return -EFAULT; 1064 pmd = pmd_offset(pud, address); 1065 if (!pmd_present(*pmd)) 1066 return -EFAULT; 1067 pte = pte_offset_map(pmd, address); 1068 if (!pte) 1069 return -EFAULT; 1070 entry = ptep_get(pte); 1071 if (pte_none(entry)) 1072 goto unmap; 1073 *vma = get_gate_vma(mm); 1074 if (!page) 1075 goto out; 1076 *page = vm_normal_page(*vma, address, entry); 1077 if (!*page) { 1078 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) 1079 goto unmap; 1080 *page = pte_page(entry); 1081 } 1082 ret = try_grab_folio(page_folio(*page), 1, gup_flags); 1083 if (unlikely(ret)) 1084 goto unmap; 1085 out: 1086 ret = 0; 1087 unmap: 1088 pte_unmap(pte); 1089 return ret; 1090 } 1091 1092 /* 1093 * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not 1094 * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set 1095 * to 0 and -EBUSY returned. 1096 */ 1097 static int faultin_page(struct vm_area_struct *vma, 1098 unsigned long address, unsigned int flags, bool unshare, 1099 int *locked) 1100 { 1101 unsigned int fault_flags = 0; 1102 vm_fault_t ret; 1103 1104 if (flags & FOLL_NOFAULT) 1105 return -EFAULT; 1106 if (flags & FOLL_WRITE) 1107 fault_flags |= FAULT_FLAG_WRITE; 1108 if (flags & FOLL_REMOTE) 1109 fault_flags |= FAULT_FLAG_REMOTE; 1110 if (flags & FOLL_UNLOCKABLE) { 1111 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1112 /* 1113 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set 1114 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. 1115 * That's because some callers may not be prepared to 1116 * handle early exits caused by non-fatal signals. 1117 */ 1118 if (flags & FOLL_INTERRUPTIBLE) 1119 fault_flags |= FAULT_FLAG_INTERRUPTIBLE; 1120 } 1121 if (flags & FOLL_NOWAIT) 1122 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1123 if (flags & FOLL_TRIED) { 1124 /* 1125 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1126 * can co-exist 1127 */ 1128 fault_flags |= FAULT_FLAG_TRIED; 1129 } 1130 if (unshare) { 1131 fault_flags |= FAULT_FLAG_UNSHARE; 1132 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1133 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_WRITE); 1134 } 1135 1136 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1137 1138 if (ret & VM_FAULT_COMPLETED) { 1139 /* 1140 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1141 * mmap lock in the page fault handler. Sanity check this. 1142 */ 1143 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1144 *locked = 0; 1145 1146 /* 1147 * We should do the same as VM_FAULT_RETRY, but let's not 1148 * return -EBUSY since that's not reflecting the reality of 1149 * what has happened - we've just fully completed a page 1150 * fault, with the mmap lock released. Use -EAGAIN to show 1151 * that we want to take the mmap lock _again_. 1152 */ 1153 return -EAGAIN; 1154 } 1155 1156 if (ret & VM_FAULT_ERROR) { 1157 int err = vm_fault_to_errno(ret, flags); 1158 1159 if (err) 1160 return err; 1161 BUG(); 1162 } 1163 1164 if (ret & VM_FAULT_RETRY) { 1165 if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1166 *locked = 0; 1167 return -EBUSY; 1168 } 1169 1170 return 0; 1171 } 1172 1173 /* 1174 * Writing to file-backed mappings which require folio dirty tracking using GUP 1175 * is a fundamentally broken operation, as kernel write access to GUP mappings 1176 * do not adhere to the semantics expected by a file system. 1177 * 1178 * Consider the following scenario:- 1179 * 1180 * 1. A folio is written to via GUP which write-faults the memory, notifying 1181 * the file system and dirtying the folio. 1182 * 2. Later, writeback is triggered, resulting in the folio being cleaned and 1183 * the PTE being marked read-only. 1184 * 3. The GUP caller writes to the folio, as it is mapped read/write via the 1185 * direct mapping. 1186 * 4. The GUP caller, now done with the page, unpins it and sets it dirty 1187 * (though it does not have to). 1188 * 1189 * This results in both data being written to a folio without writenotify, and 1190 * the folio being dirtied unexpectedly (if the caller decides to do so). 1191 */ 1192 static bool writable_file_mapping_allowed(struct vm_area_struct *vma, 1193 unsigned long gup_flags) 1194 { 1195 /* 1196 * If we aren't pinning then no problematic write can occur. A long term 1197 * pin is the most egregious case so this is the case we disallow. 1198 */ 1199 if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != 1200 (FOLL_PIN | FOLL_LONGTERM)) 1201 return true; 1202 1203 /* 1204 * If the VMA does not require dirty tracking then no problematic write 1205 * can occur either. 1206 */ 1207 return !vma_needs_dirty_tracking(vma); 1208 } 1209 1210 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1211 { 1212 vm_flags_t vm_flags = vma->vm_flags; 1213 int write = (gup_flags & FOLL_WRITE); 1214 int foreign = (gup_flags & FOLL_REMOTE); 1215 bool vma_anon = vma_is_anonymous(vma); 1216 1217 if (vm_flags & (VM_IO | VM_PFNMAP)) 1218 return -EFAULT; 1219 1220 if ((gup_flags & FOLL_ANON) && !vma_anon) 1221 return -EFAULT; 1222 1223 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1224 return -EOPNOTSUPP; 1225 1226 if ((gup_flags & FOLL_SPLIT_PMD) && is_vm_hugetlb_page(vma)) 1227 return -EOPNOTSUPP; 1228 1229 if (vma_is_secretmem(vma)) 1230 return -EFAULT; 1231 1232 if (write) { 1233 if (!vma_anon && 1234 !writable_file_mapping_allowed(vma, gup_flags)) 1235 return -EFAULT; 1236 1237 if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { 1238 if (!(gup_flags & FOLL_FORCE)) 1239 return -EFAULT; 1240 /* 1241 * We used to let the write,force case do COW in a 1242 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1243 * set a breakpoint in a read-only mapping of an 1244 * executable, without corrupting the file (yet only 1245 * when that file had been opened for writing!). 1246 * Anon pages in shared mappings are surprising: now 1247 * just reject it. 1248 */ 1249 if (!is_cow_mapping(vm_flags)) 1250 return -EFAULT; 1251 } 1252 } else if (!(vm_flags & VM_READ)) { 1253 if (!(gup_flags & FOLL_FORCE)) 1254 return -EFAULT; 1255 /* 1256 * Is there actually any vma we can reach here which does not 1257 * have VM_MAYREAD set? 1258 */ 1259 if (!(vm_flags & VM_MAYREAD)) 1260 return -EFAULT; 1261 } 1262 /* 1263 * gups are always data accesses, not instruction 1264 * fetches, so execute=false here 1265 */ 1266 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1267 return -EFAULT; 1268 return 0; 1269 } 1270 1271 /* 1272 * This is "vma_lookup()", but with a warning if we would have 1273 * historically expanded the stack in the GUP code. 1274 */ 1275 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, 1276 unsigned long addr) 1277 { 1278 #ifdef CONFIG_STACK_GROWSUP 1279 return vma_lookup(mm, addr); 1280 #else 1281 static volatile unsigned long next_warn; 1282 struct vm_area_struct *vma; 1283 unsigned long now, next; 1284 1285 vma = find_vma(mm, addr); 1286 if (!vma || (addr >= vma->vm_start)) 1287 return vma; 1288 1289 /* Only warn for half-way relevant accesses */ 1290 if (!(vma->vm_flags & VM_GROWSDOWN)) 1291 return NULL; 1292 if (vma->vm_start - addr > 65536) 1293 return NULL; 1294 1295 /* Let's not warn more than once an hour.. */ 1296 now = jiffies; next = next_warn; 1297 if (next && time_before(now, next)) 1298 return NULL; 1299 next_warn = now + 60*60*HZ; 1300 1301 /* Let people know things may have changed. */ 1302 pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", 1303 current->comm, task_pid_nr(current), 1304 vma->vm_start, vma->vm_end, addr); 1305 dump_stack(); 1306 return NULL; 1307 #endif 1308 } 1309 1310 /** 1311 * __get_user_pages() - pin user pages in memory 1312 * @mm: mm_struct of target mm 1313 * @start: starting user address 1314 * @nr_pages: number of pages from start to pin 1315 * @gup_flags: flags modifying pin behaviour 1316 * @pages: array that receives pointers to the pages pinned. 1317 * Should be at least nr_pages long. Or NULL, if caller 1318 * only intends to ensure the pages are faulted in. 1319 * @locked: whether we're still with the mmap_lock held 1320 * 1321 * Returns either number of pages pinned (which may be less than the 1322 * number requested), or an error. Details about the return value: 1323 * 1324 * -- If nr_pages is 0, returns 0. 1325 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1326 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1327 * pages pinned. Again, this may be less than nr_pages. 1328 * -- 0 return value is possible when the fault would need to be retried. 1329 * 1330 * The caller is responsible for releasing returned @pages, via put_page(). 1331 * 1332 * Must be called with mmap_lock held. It may be released. See below. 1333 * 1334 * __get_user_pages walks a process's page tables and takes a reference to 1335 * each struct page that each user address corresponds to at a given 1336 * instant. That is, it takes the page that would be accessed if a user 1337 * thread accesses the given user virtual address at that instant. 1338 * 1339 * This does not guarantee that the page exists in the user mappings when 1340 * __get_user_pages returns, and there may even be a completely different 1341 * page there in some cases (eg. if mmapped pagecache has been invalidated 1342 * and subsequently re-faulted). However it does guarantee that the page 1343 * won't be freed completely. And mostly callers simply care that the page 1344 * contains data that was valid *at some point in time*. Typically, an IO 1345 * or similar operation cannot guarantee anything stronger anyway because 1346 * locks can't be held over the syscall boundary. 1347 * 1348 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1349 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1350 * appropriate) must be called after the page is finished with, and 1351 * before put_page is called. 1352 * 1353 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may 1354 * be released. If this happens *@locked will be set to 0 on return. 1355 * 1356 * A caller using such a combination of @gup_flags must therefore hold the 1357 * mmap_lock for reading only, and recognize when it's been released. Otherwise, 1358 * it must be held for either reading or writing and will not be released. 1359 * 1360 * In most cases, get_user_pages or get_user_pages_fast should be used 1361 * instead of __get_user_pages. __get_user_pages should be used only if 1362 * you need some special @gup_flags. 1363 */ 1364 static long __get_user_pages(struct mm_struct *mm, 1365 unsigned long start, unsigned long nr_pages, 1366 unsigned int gup_flags, struct page **pages, 1367 int *locked) 1368 { 1369 long ret = 0, i = 0; 1370 struct vm_area_struct *vma = NULL; 1371 struct follow_page_context ctx = { NULL }; 1372 1373 if (!nr_pages) 1374 return 0; 1375 1376 start = untagged_addr_remote(mm, start); 1377 1378 VM_WARN_ON_ONCE(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1379 1380 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 1381 VM_WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 1382 (FOLL_PIN | FOLL_GET)); 1383 1384 do { 1385 struct page *page; 1386 unsigned int page_increm; 1387 1388 /* first iteration or cross vma bound */ 1389 if (!vma || start >= vma->vm_end) { 1390 /* 1391 * MADV_POPULATE_(READ|WRITE) wants to handle VMA 1392 * lookups+error reporting differently. 1393 */ 1394 if (gup_flags & FOLL_MADV_POPULATE) { 1395 vma = vma_lookup(mm, start); 1396 if (!vma) { 1397 ret = -ENOMEM; 1398 goto out; 1399 } 1400 if (check_vma_flags(vma, gup_flags)) { 1401 ret = -EINVAL; 1402 goto out; 1403 } 1404 goto retry; 1405 } 1406 vma = gup_vma_lookup(mm, start); 1407 if (!vma && in_gate_area(mm, start)) { 1408 ret = get_gate_page(mm, start & PAGE_MASK, 1409 gup_flags, &vma, 1410 pages ? &page : NULL); 1411 if (ret) 1412 goto out; 1413 ctx.page_mask = 0; 1414 goto next_page; 1415 } 1416 1417 if (!vma) { 1418 ret = -EFAULT; 1419 goto out; 1420 } 1421 ret = check_vma_flags(vma, gup_flags); 1422 if (ret) 1423 goto out; 1424 } 1425 retry: 1426 /* 1427 * If we have a pending SIGKILL, don't keep faulting pages and 1428 * potentially allocating memory. 1429 */ 1430 if (fatal_signal_pending(current)) { 1431 ret = -EINTR; 1432 goto out; 1433 } 1434 cond_resched(); 1435 1436 page = follow_page_mask(vma, start, gup_flags, &ctx); 1437 if (!page || PTR_ERR(page) == -EMLINK) { 1438 ret = faultin_page(vma, start, gup_flags, 1439 PTR_ERR(page) == -EMLINK, locked); 1440 switch (ret) { 1441 case 0: 1442 goto retry; 1443 case -EBUSY: 1444 case -EAGAIN: 1445 ret = 0; 1446 fallthrough; 1447 case -EFAULT: 1448 case -ENOMEM: 1449 case -EHWPOISON: 1450 goto out; 1451 } 1452 BUG(); 1453 } else if (PTR_ERR(page) == -EEXIST) { 1454 /* 1455 * Proper page table entry exists, but no corresponding 1456 * struct page. If the caller expects **pages to be 1457 * filled in, bail out now, because that can't be done 1458 * for this page. 1459 */ 1460 if (pages) { 1461 ret = PTR_ERR(page); 1462 goto out; 1463 } 1464 } else if (IS_ERR(page)) { 1465 ret = PTR_ERR(page); 1466 goto out; 1467 } 1468 next_page: 1469 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1470 if (page_increm > nr_pages) 1471 page_increm = nr_pages; 1472 1473 if (pages) { 1474 struct page *subpage; 1475 unsigned int j; 1476 1477 /* 1478 * This must be a large folio (and doesn't need to 1479 * be the whole folio; it can be part of it), do 1480 * the refcount work for all the subpages too. 1481 * 1482 * NOTE: here the page may not be the head page 1483 * e.g. when start addr is not thp-size aligned. 1484 * try_grab_folio() should have taken care of tail 1485 * pages. 1486 */ 1487 if (page_increm > 1) { 1488 struct folio *folio = page_folio(page); 1489 1490 /* 1491 * Since we already hold refcount on the 1492 * large folio, this should never fail. 1493 */ 1494 if (try_grab_folio(folio, page_increm - 1, 1495 gup_flags)) { 1496 /* 1497 * Release the 1st page ref if the 1498 * folio is problematic, fail hard. 1499 */ 1500 gup_put_folio(folio, 1, gup_flags); 1501 ret = -EFAULT; 1502 goto out; 1503 } 1504 } 1505 1506 for (j = 0; j < page_increm; j++) { 1507 subpage = page + j; 1508 pages[i + j] = subpage; 1509 flush_anon_page(vma, subpage, start + j * PAGE_SIZE); 1510 flush_dcache_page(subpage); 1511 } 1512 } 1513 1514 i += page_increm; 1515 start += page_increm * PAGE_SIZE; 1516 nr_pages -= page_increm; 1517 } while (nr_pages); 1518 out: 1519 if (ctx.pgmap) 1520 put_dev_pagemap(ctx.pgmap); 1521 return i ? i : ret; 1522 } 1523 1524 static bool vma_permits_fault(struct vm_area_struct *vma, 1525 unsigned int fault_flags) 1526 { 1527 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1528 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1529 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1530 1531 if (!(vm_flags & vma->vm_flags)) 1532 return false; 1533 1534 /* 1535 * The architecture might have a hardware protection 1536 * mechanism other than read/write that can deny access. 1537 * 1538 * gup always represents data access, not instruction 1539 * fetches, so execute=false here: 1540 */ 1541 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1542 return false; 1543 1544 return true; 1545 } 1546 1547 /** 1548 * fixup_user_fault() - manually resolve a user page fault 1549 * @mm: mm_struct of target mm 1550 * @address: user address 1551 * @fault_flags:flags to pass down to handle_mm_fault() 1552 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1553 * does not allow retry. If NULL, the caller must guarantee 1554 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1555 * 1556 * This is meant to be called in the specific scenario where for locking reasons 1557 * we try to access user memory in atomic context (within a pagefault_disable() 1558 * section), this returns -EFAULT, and we want to resolve the user fault before 1559 * trying again. 1560 * 1561 * Typically this is meant to be used by the futex code. 1562 * 1563 * The main difference with get_user_pages() is that this function will 1564 * unconditionally call handle_mm_fault() which will in turn perform all the 1565 * necessary SW fixup of the dirty and young bits in the PTE, while 1566 * get_user_pages() only guarantees to update these in the struct page. 1567 * 1568 * This is important for some architectures where those bits also gate the 1569 * access permission to the page because they are maintained in software. On 1570 * such architectures, gup() will not be enough to make a subsequent access 1571 * succeed. 1572 * 1573 * This function will not return with an unlocked mmap_lock. So it has not the 1574 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1575 */ 1576 int fixup_user_fault(struct mm_struct *mm, 1577 unsigned long address, unsigned int fault_flags, 1578 bool *unlocked) 1579 { 1580 struct vm_area_struct *vma; 1581 vm_fault_t ret; 1582 1583 address = untagged_addr_remote(mm, address); 1584 1585 if (unlocked) 1586 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1587 1588 retry: 1589 vma = gup_vma_lookup(mm, address); 1590 if (!vma) 1591 return -EFAULT; 1592 1593 if (!vma_permits_fault(vma, fault_flags)) 1594 return -EFAULT; 1595 1596 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1597 fatal_signal_pending(current)) 1598 return -EINTR; 1599 1600 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1601 1602 if (ret & VM_FAULT_COMPLETED) { 1603 /* 1604 * NOTE: it's a pity that we need to retake the lock here 1605 * to pair with the unlock() in the callers. Ideally we 1606 * could tell the callers so they do not need to unlock. 1607 */ 1608 mmap_read_lock(mm); 1609 *unlocked = true; 1610 return 0; 1611 } 1612 1613 if (ret & VM_FAULT_ERROR) { 1614 int err = vm_fault_to_errno(ret, 0); 1615 1616 if (err) 1617 return err; 1618 BUG(); 1619 } 1620 1621 if (ret & VM_FAULT_RETRY) { 1622 mmap_read_lock(mm); 1623 *unlocked = true; 1624 fault_flags |= FAULT_FLAG_TRIED; 1625 goto retry; 1626 } 1627 1628 return 0; 1629 } 1630 EXPORT_SYMBOL_GPL(fixup_user_fault); 1631 1632 /* 1633 * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is 1634 * specified, it'll also respond to generic signals. The caller of GUP 1635 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. 1636 */ 1637 static bool gup_signal_pending(unsigned int flags) 1638 { 1639 if (fatal_signal_pending(current)) 1640 return true; 1641 1642 if (!(flags & FOLL_INTERRUPTIBLE)) 1643 return false; 1644 1645 return signal_pending(current); 1646 } 1647 1648 /* 1649 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by 1650 * the caller. This function may drop the mmap_lock. If it does so, then it will 1651 * set (*locked = 0). 1652 * 1653 * (*locked == 0) means that the caller expects this function to acquire and 1654 * drop the mmap_lock. Therefore, the value of *locked will still be zero when 1655 * the function returns, even though it may have changed temporarily during 1656 * function execution. 1657 * 1658 * Please note that this function, unlike __get_user_pages(), will not return 0 1659 * for nr_pages > 0, unless FOLL_NOWAIT is used. 1660 */ 1661 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1662 unsigned long start, 1663 unsigned long nr_pages, 1664 struct page **pages, 1665 int *locked, 1666 unsigned int flags) 1667 { 1668 long ret, pages_done; 1669 bool must_unlock = false; 1670 1671 if (!nr_pages) 1672 return 0; 1673 1674 /* 1675 * The internal caller expects GUP to manage the lock internally and the 1676 * lock must be released when this returns. 1677 */ 1678 if (!*locked) { 1679 if (mmap_read_lock_killable(mm)) 1680 return -EAGAIN; 1681 must_unlock = true; 1682 *locked = 1; 1683 } 1684 else 1685 mmap_assert_locked(mm); 1686 1687 if (flags & FOLL_PIN) 1688 mm_set_has_pinned_flag(mm); 1689 1690 /* 1691 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1692 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1693 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1694 * for FOLL_GET, not for the newer FOLL_PIN. 1695 * 1696 * FOLL_PIN always expects pages to be non-null, but no need to assert 1697 * that here, as any failures will be obvious enough. 1698 */ 1699 if (pages && !(flags & FOLL_PIN)) 1700 flags |= FOLL_GET; 1701 1702 pages_done = 0; 1703 for (;;) { 1704 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1705 locked); 1706 if (!(flags & FOLL_UNLOCKABLE)) { 1707 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1708 pages_done = ret; 1709 break; 1710 } 1711 1712 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1713 VM_WARN_ON_ONCE(!*locked && (ret < 0 || ret >= nr_pages)); 1714 1715 if (ret > 0) { 1716 nr_pages -= ret; 1717 pages_done += ret; 1718 if (!nr_pages) 1719 break; 1720 } 1721 if (*locked) { 1722 /* 1723 * VM_FAULT_RETRY didn't trigger or it was a 1724 * FOLL_NOWAIT. 1725 */ 1726 if (!pages_done) 1727 pages_done = ret; 1728 break; 1729 } 1730 /* 1731 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1732 * For the prefault case (!pages) we only update counts. 1733 */ 1734 if (likely(pages)) 1735 pages += ret; 1736 start += ret << PAGE_SHIFT; 1737 1738 /* The lock was temporarily dropped, so we must unlock later */ 1739 must_unlock = true; 1740 1741 retry: 1742 /* 1743 * Repeat on the address that fired VM_FAULT_RETRY 1744 * with both FAULT_FLAG_ALLOW_RETRY and 1745 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1746 * by fatal signals of even common signals, depending on 1747 * the caller's request. So we need to check it before we 1748 * start trying again otherwise it can loop forever. 1749 */ 1750 if (gup_signal_pending(flags)) { 1751 if (!pages_done) 1752 pages_done = -EINTR; 1753 break; 1754 } 1755 1756 ret = mmap_read_lock_killable(mm); 1757 if (ret) { 1758 if (!pages_done) 1759 pages_done = ret; 1760 break; 1761 } 1762 1763 *locked = 1; 1764 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1765 pages, locked); 1766 if (!*locked) { 1767 /* Continue to retry until we succeeded */ 1768 VM_WARN_ON_ONCE(ret != 0); 1769 goto retry; 1770 } 1771 if (ret != 1) { 1772 VM_WARN_ON_ONCE(ret > 1); 1773 if (!pages_done) 1774 pages_done = ret; 1775 break; 1776 } 1777 nr_pages--; 1778 pages_done++; 1779 if (!nr_pages) 1780 break; 1781 if (likely(pages)) 1782 pages++; 1783 start += PAGE_SIZE; 1784 } 1785 if (must_unlock && *locked) { 1786 /* 1787 * We either temporarily dropped the lock, or the caller 1788 * requested that we both acquire and drop the lock. Either way, 1789 * we must now unlock, and notify the caller of that state. 1790 */ 1791 mmap_read_unlock(mm); 1792 *locked = 0; 1793 } 1794 1795 /* 1796 * Failing to pin anything implies something has gone wrong (except when 1797 * FOLL_NOWAIT is specified). 1798 */ 1799 if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) 1800 return -EFAULT; 1801 1802 return pages_done; 1803 } 1804 1805 /** 1806 * populate_vma_page_range() - populate a range of pages in the vma. 1807 * @vma: target vma 1808 * @start: start address 1809 * @end: end address 1810 * @locked: whether the mmap_lock is still held 1811 * 1812 * This takes care of mlocking the pages too if VM_LOCKED is set. 1813 * 1814 * Return either number of pages pinned in the vma, or a negative error 1815 * code on error. 1816 * 1817 * vma->vm_mm->mmap_lock must be held. 1818 * 1819 * If @locked is NULL, it may be held for read or write and will 1820 * be unperturbed. 1821 * 1822 * If @locked is non-NULL, it must held for read only and may be 1823 * released. If it's released, *@locked will be set to 0. 1824 */ 1825 long populate_vma_page_range(struct vm_area_struct *vma, 1826 unsigned long start, unsigned long end, int *locked) 1827 { 1828 struct mm_struct *mm = vma->vm_mm; 1829 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1830 int local_locked = 1; 1831 int gup_flags; 1832 long ret; 1833 1834 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); 1835 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); 1836 VM_WARN_ON_ONCE_VMA(start < vma->vm_start, vma); 1837 VM_WARN_ON_ONCE_VMA(end > vma->vm_end, vma); 1838 mmap_assert_locked(mm); 1839 1840 /* 1841 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1842 * faultin_page() to break COW, so it has no work to do here. 1843 */ 1844 if (vma->vm_flags & VM_LOCKONFAULT) 1845 return nr_pages; 1846 1847 /* ... similarly, we've never faulted in PROT_NONE pages */ 1848 if (!vma_is_accessible(vma)) 1849 return -EFAULT; 1850 1851 gup_flags = FOLL_TOUCH; 1852 /* 1853 * We want to touch writable mappings with a write fault in order 1854 * to break COW, except for shared mappings because these don't COW 1855 * and we would not want to dirty them for nothing. 1856 * 1857 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not 1858 * readable (ie write-only or executable). 1859 */ 1860 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1861 gup_flags |= FOLL_WRITE; 1862 else 1863 gup_flags |= FOLL_FORCE; 1864 1865 if (locked) 1866 gup_flags |= FOLL_UNLOCKABLE; 1867 1868 /* 1869 * We made sure addr is within a VMA, so the following will 1870 * not result in a stack expansion that recurses back here. 1871 */ 1872 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1873 NULL, locked ? locked : &local_locked); 1874 lru_add_drain(); 1875 return ret; 1876 } 1877 1878 /* 1879 * faultin_page_range() - populate (prefault) page tables inside the 1880 * given range readable/writable 1881 * 1882 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1883 * 1884 * @mm: the mm to populate page tables in 1885 * @start: start address 1886 * @end: end address 1887 * @write: whether to prefault readable or writable 1888 * @locked: whether the mmap_lock is still held 1889 * 1890 * Returns either number of processed pages in the MM, or a negative error 1891 * code on error (see __get_user_pages()). Note that this function reports 1892 * errors related to VMAs, such as incompatible mappings, as expected by 1893 * MADV_POPULATE_(READ|WRITE). 1894 * 1895 * The range must be page-aligned. 1896 * 1897 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. 1898 */ 1899 long faultin_page_range(struct mm_struct *mm, unsigned long start, 1900 unsigned long end, bool write, int *locked) 1901 { 1902 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1903 int gup_flags; 1904 long ret; 1905 1906 VM_WARN_ON_ONCE(!PAGE_ALIGNED(start)); 1907 VM_WARN_ON_ONCE(!PAGE_ALIGNED(end)); 1908 mmap_assert_locked(mm); 1909 1910 /* 1911 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1912 * the page dirty with FOLL_WRITE -- which doesn't make a 1913 * difference with !FOLL_FORCE, because the page is writable 1914 * in the page table. 1915 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1916 * a poisoned page. 1917 * !FOLL_FORCE: Require proper access permissions. 1918 */ 1919 gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | 1920 FOLL_MADV_POPULATE; 1921 if (write) 1922 gup_flags |= FOLL_WRITE; 1923 1924 ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, 1925 gup_flags); 1926 lru_add_drain(); 1927 return ret; 1928 } 1929 1930 /* 1931 * __mm_populate - populate and/or mlock pages within a range of address space. 1932 * 1933 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1934 * flags. VMAs must be already marked with the desired vm_flags, and 1935 * mmap_lock must not be held. 1936 */ 1937 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1938 { 1939 struct mm_struct *mm = current->mm; 1940 unsigned long end, nstart, nend; 1941 struct vm_area_struct *vma = NULL; 1942 int locked = 0; 1943 long ret = 0; 1944 1945 end = start + len; 1946 1947 for (nstart = start; nstart < end; nstart = nend) { 1948 /* 1949 * We want to fault in pages for [nstart; end) address range. 1950 * Find first corresponding VMA. 1951 */ 1952 if (!locked) { 1953 locked = 1; 1954 mmap_read_lock(mm); 1955 vma = find_vma_intersection(mm, nstart, end); 1956 } else if (nstart >= vma->vm_end) 1957 vma = find_vma_intersection(mm, vma->vm_end, end); 1958 1959 if (!vma) 1960 break; 1961 /* 1962 * Set [nstart; nend) to intersection of desired address 1963 * range with the first VMA. Also, skip undesirable VMA types. 1964 */ 1965 nend = min(end, vma->vm_end); 1966 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1967 continue; 1968 if (nstart < vma->vm_start) 1969 nstart = vma->vm_start; 1970 /* 1971 * Now fault in a range of pages. populate_vma_page_range() 1972 * double checks the vma flags, so that it won't mlock pages 1973 * if the vma was already munlocked. 1974 */ 1975 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1976 if (ret < 0) { 1977 if (ignore_errors) { 1978 ret = 0; 1979 continue; /* continue at next VMA */ 1980 } 1981 break; 1982 } 1983 nend = nstart + ret * PAGE_SIZE; 1984 ret = 0; 1985 } 1986 if (locked) 1987 mmap_read_unlock(mm); 1988 return ret; /* 0 or negative error code */ 1989 } 1990 #else /* CONFIG_MMU */ 1991 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1992 unsigned long nr_pages, struct page **pages, 1993 int *locked, unsigned int foll_flags) 1994 { 1995 struct vm_area_struct *vma; 1996 bool must_unlock = false; 1997 vm_flags_t vm_flags; 1998 long i; 1999 2000 if (!nr_pages) 2001 return 0; 2002 2003 /* 2004 * The internal caller expects GUP to manage the lock internally and the 2005 * lock must be released when this returns. 2006 */ 2007 if (!*locked) { 2008 if (mmap_read_lock_killable(mm)) 2009 return -EAGAIN; 2010 must_unlock = true; 2011 *locked = 1; 2012 } 2013 2014 /* calculate required read or write permissions. 2015 * If FOLL_FORCE is set, we only require the "MAY" flags. 2016 */ 2017 vm_flags = (foll_flags & FOLL_WRITE) ? 2018 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 2019 vm_flags &= (foll_flags & FOLL_FORCE) ? 2020 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 2021 2022 for (i = 0; i < nr_pages; i++) { 2023 vma = find_vma(mm, start); 2024 if (!vma) 2025 break; 2026 2027 /* protect what we can, including chardevs */ 2028 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 2029 !(vm_flags & vma->vm_flags)) 2030 break; 2031 2032 if (pages) { 2033 pages[i] = virt_to_page((void *)start); 2034 if (pages[i]) 2035 get_page(pages[i]); 2036 } 2037 2038 start = (start + PAGE_SIZE) & PAGE_MASK; 2039 } 2040 2041 if (must_unlock && *locked) { 2042 mmap_read_unlock(mm); 2043 *locked = 0; 2044 } 2045 2046 return i ? : -EFAULT; 2047 } 2048 #endif /* !CONFIG_MMU */ 2049 2050 /** 2051 * fault_in_writeable - fault in userspace address range for writing 2052 * @uaddr: start of address range 2053 * @size: size of address range 2054 * 2055 * Returns the number of bytes not faulted in (like copy_to_user() and 2056 * copy_from_user()). 2057 */ 2058 size_t fault_in_writeable(char __user *uaddr, size_t size) 2059 { 2060 const unsigned long start = (unsigned long)uaddr; 2061 const unsigned long end = start + size; 2062 unsigned long cur; 2063 2064 if (unlikely(size == 0)) 2065 return 0; 2066 if (!user_write_access_begin(uaddr, size)) 2067 return size; 2068 2069 /* Stop once we overflow to 0. */ 2070 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2071 unsafe_put_user(0, (char __user *)cur, out); 2072 out: 2073 user_write_access_end(); 2074 if (size > cur - start) 2075 return size - (cur - start); 2076 return 0; 2077 } 2078 EXPORT_SYMBOL(fault_in_writeable); 2079 2080 /** 2081 * fault_in_subpage_writeable - fault in an address range for writing 2082 * @uaddr: start of address range 2083 * @size: size of address range 2084 * 2085 * Fault in a user address range for writing while checking for permissions at 2086 * sub-page granularity (e.g. arm64 MTE). This function should be used when 2087 * the caller cannot guarantee forward progress of a copy_to_user() loop. 2088 * 2089 * Returns the number of bytes not faulted in (like copy_to_user() and 2090 * copy_from_user()). 2091 */ 2092 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 2093 { 2094 size_t faulted_in; 2095 2096 /* 2097 * Attempt faulting in at page granularity first for page table 2098 * permission checking. The arch-specific probe_subpage_writeable() 2099 * functions may not check for this. 2100 */ 2101 faulted_in = size - fault_in_writeable(uaddr, size); 2102 if (faulted_in) 2103 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 2104 2105 return size - faulted_in; 2106 } 2107 EXPORT_SYMBOL(fault_in_subpage_writeable); 2108 2109 /* 2110 * fault_in_safe_writeable - fault in an address range for writing 2111 * @uaddr: start of address range 2112 * @size: length of address range 2113 * 2114 * Faults in an address range for writing. This is primarily useful when we 2115 * already know that some or all of the pages in the address range aren't in 2116 * memory. 2117 * 2118 * Unlike fault_in_writeable(), this function is non-destructive. 2119 * 2120 * Note that we don't pin or otherwise hold the pages referenced that we fault 2121 * in. There's no guarantee that they'll stay in memory for any duration of 2122 * time. 2123 * 2124 * Returns the number of bytes not faulted in, like copy_to_user() and 2125 * copy_from_user(). 2126 */ 2127 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 2128 { 2129 const unsigned long start = (unsigned long)uaddr; 2130 const unsigned long end = start + size; 2131 unsigned long cur; 2132 struct mm_struct *mm = current->mm; 2133 bool unlocked = false; 2134 2135 if (unlikely(size == 0)) 2136 return 0; 2137 2138 mmap_read_lock(mm); 2139 /* Stop once we overflow to 0. */ 2140 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2141 if (fixup_user_fault(mm, cur, FAULT_FLAG_WRITE, &unlocked)) 2142 break; 2143 mmap_read_unlock(mm); 2144 2145 if (size > cur - start) 2146 return size - (cur - start); 2147 return 0; 2148 } 2149 EXPORT_SYMBOL(fault_in_safe_writeable); 2150 2151 /** 2152 * fault_in_readable - fault in userspace address range for reading 2153 * @uaddr: start of user address range 2154 * @size: size of user address range 2155 * 2156 * Returns the number of bytes not faulted in (like copy_to_user() and 2157 * copy_from_user()). 2158 */ 2159 size_t fault_in_readable(const char __user *uaddr, size_t size) 2160 { 2161 const unsigned long start = (unsigned long)uaddr; 2162 const unsigned long end = start + size; 2163 unsigned long cur; 2164 volatile char c; 2165 2166 if (unlikely(size == 0)) 2167 return 0; 2168 if (!user_read_access_begin(uaddr, size)) 2169 return size; 2170 2171 /* Stop once we overflow to 0. */ 2172 for (cur = start; cur && cur < end; cur = PAGE_ALIGN_DOWN(cur + PAGE_SIZE)) 2173 unsafe_get_user(c, (const char __user *)cur, out); 2174 out: 2175 user_read_access_end(); 2176 (void)c; 2177 if (size > cur - start) 2178 return size - (cur - start); 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(fault_in_readable); 2182 2183 /** 2184 * get_dump_page() - pin user page in memory while writing it to core dump 2185 * @addr: user address 2186 * @locked: a pointer to an int denoting whether the mmap sem is held 2187 * 2188 * Returns struct page pointer of user page pinned for dump, 2189 * to be freed afterwards by put_page(). 2190 * 2191 * Returns NULL on any kind of failure - a hole must then be inserted into 2192 * the corefile, to preserve alignment with its headers; and also returns 2193 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2194 * allowing a hole to be left in the corefile to save disk space. 2195 * 2196 * Called without mmap_lock (takes and releases the mmap_lock by itself). 2197 */ 2198 #ifdef CONFIG_ELF_CORE 2199 struct page *get_dump_page(unsigned long addr, int *locked) 2200 { 2201 struct page *page; 2202 int ret; 2203 2204 ret = __get_user_pages_locked(current->mm, addr, 1, &page, locked, 2205 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 2206 return (ret == 1) ? page : NULL; 2207 } 2208 #endif /* CONFIG_ELF_CORE */ 2209 2210 #ifdef CONFIG_MIGRATION 2211 2212 /* 2213 * An array of either pages or folios ("pofs"). Although it may seem tempting to 2214 * avoid this complication, by simply interpreting a list of folios as a list of 2215 * pages, that approach won't work in the longer term, because eventually the 2216 * layouts of struct page and struct folio will become completely different. 2217 * Furthermore, this pof approach avoids excessive page_folio() calls. 2218 */ 2219 struct pages_or_folios { 2220 union { 2221 struct page **pages; 2222 struct folio **folios; 2223 void **entries; 2224 }; 2225 bool has_folios; 2226 long nr_entries; 2227 }; 2228 2229 static struct folio *pofs_get_folio(struct pages_or_folios *pofs, long i) 2230 { 2231 if (pofs->has_folios) 2232 return pofs->folios[i]; 2233 return page_folio(pofs->pages[i]); 2234 } 2235 2236 static void pofs_clear_entry(struct pages_or_folios *pofs, long i) 2237 { 2238 pofs->entries[i] = NULL; 2239 } 2240 2241 static void pofs_unpin(struct pages_or_folios *pofs) 2242 { 2243 if (pofs->has_folios) 2244 unpin_folios(pofs->folios, pofs->nr_entries); 2245 else 2246 unpin_user_pages(pofs->pages, pofs->nr_entries); 2247 } 2248 2249 static struct folio *pofs_next_folio(struct folio *folio, 2250 struct pages_or_folios *pofs, long *index_ptr) 2251 { 2252 long i = *index_ptr + 1; 2253 2254 if (!pofs->has_folios && folio_test_large(folio)) { 2255 const unsigned long start_pfn = folio_pfn(folio); 2256 const unsigned long end_pfn = start_pfn + folio_nr_pages(folio); 2257 2258 for (; i < pofs->nr_entries; i++) { 2259 unsigned long pfn = page_to_pfn(pofs->pages[i]); 2260 2261 /* Is this page part of this folio? */ 2262 if (pfn < start_pfn || pfn >= end_pfn) 2263 break; 2264 } 2265 } 2266 2267 if (unlikely(i == pofs->nr_entries)) 2268 return NULL; 2269 *index_ptr = i; 2270 2271 return pofs_get_folio(pofs, i); 2272 } 2273 2274 /* 2275 * Returns the number of collected folios. Return value is always >= 0. 2276 */ 2277 static unsigned long collect_longterm_unpinnable_folios( 2278 struct list_head *movable_folio_list, 2279 struct pages_or_folios *pofs) 2280 { 2281 unsigned long collected = 0; 2282 struct folio *folio; 2283 int drained = 0; 2284 long i = 0; 2285 2286 for (folio = pofs_get_folio(pofs, i); folio; 2287 folio = pofs_next_folio(folio, pofs, &i)) { 2288 2289 if (folio_is_longterm_pinnable(folio)) 2290 continue; 2291 2292 collected++; 2293 2294 if (folio_is_device_coherent(folio)) 2295 continue; 2296 2297 if (folio_test_hugetlb(folio)) { 2298 folio_isolate_hugetlb(folio, movable_folio_list); 2299 continue; 2300 } 2301 2302 if (drained == 0 && folio_may_be_lru_cached(folio) && 2303 folio_ref_count(folio) != 2304 folio_expected_ref_count(folio) + 1) { 2305 lru_add_drain(); 2306 drained = 1; 2307 } 2308 if (drained == 1 && folio_may_be_lru_cached(folio) && 2309 folio_ref_count(folio) != 2310 folio_expected_ref_count(folio) + 1) { 2311 lru_add_drain_all(); 2312 drained = 2; 2313 } 2314 2315 if (!folio_isolate_lru(folio)) 2316 continue; 2317 2318 list_add_tail(&folio->lru, movable_folio_list); 2319 node_stat_mod_folio(folio, 2320 NR_ISOLATED_ANON + folio_is_file_lru(folio), 2321 folio_nr_pages(folio)); 2322 } 2323 2324 return collected; 2325 } 2326 2327 /* 2328 * Unpins all folios and migrates device coherent folios and movable_folio_list. 2329 * Returns -EAGAIN if all folios were successfully migrated or -errno for 2330 * failure (or partial success). 2331 */ 2332 static int 2333 migrate_longterm_unpinnable_folios(struct list_head *movable_folio_list, 2334 struct pages_or_folios *pofs) 2335 { 2336 int ret; 2337 unsigned long i; 2338 2339 for (i = 0; i < pofs->nr_entries; i++) { 2340 struct folio *folio = pofs_get_folio(pofs, i); 2341 2342 if (folio_is_device_coherent(folio)) { 2343 /* 2344 * Migration will fail if the folio is pinned, so 2345 * convert the pin on the source folio to a normal 2346 * reference. 2347 */ 2348 pofs_clear_entry(pofs, i); 2349 folio_get(folio); 2350 gup_put_folio(folio, 1, FOLL_PIN); 2351 2352 if (migrate_device_coherent_folio(folio)) { 2353 ret = -EBUSY; 2354 goto err; 2355 } 2356 2357 continue; 2358 } 2359 2360 /* 2361 * We can't migrate folios with unexpected references, so drop 2362 * the reference obtained by __get_user_pages_locked(). 2363 * Migrating folios have been added to movable_folio_list after 2364 * calling folio_isolate_lru() which takes a reference so the 2365 * folio won't be freed if it's migrating. 2366 */ 2367 unpin_folio(folio); 2368 pofs_clear_entry(pofs, i); 2369 } 2370 2371 if (!list_empty(movable_folio_list)) { 2372 struct migration_target_control mtc = { 2373 .nid = NUMA_NO_NODE, 2374 .gfp_mask = GFP_USER | __GFP_NOWARN, 2375 .reason = MR_LONGTERM_PIN, 2376 }; 2377 2378 if (migrate_pages(movable_folio_list, alloc_migration_target, 2379 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2380 MR_LONGTERM_PIN, NULL)) { 2381 ret = -ENOMEM; 2382 goto err; 2383 } 2384 } 2385 2386 putback_movable_pages(movable_folio_list); 2387 2388 return -EAGAIN; 2389 2390 err: 2391 pofs_unpin(pofs); 2392 putback_movable_pages(movable_folio_list); 2393 2394 return ret; 2395 } 2396 2397 static long 2398 check_and_migrate_movable_pages_or_folios(struct pages_or_folios *pofs) 2399 { 2400 LIST_HEAD(movable_folio_list); 2401 unsigned long collected; 2402 2403 collected = collect_longterm_unpinnable_folios(&movable_folio_list, 2404 pofs); 2405 if (!collected) 2406 return 0; 2407 2408 return migrate_longterm_unpinnable_folios(&movable_folio_list, pofs); 2409 } 2410 2411 /* 2412 * Check whether all folios are *allowed* to be pinned indefinitely (long term). 2413 * Rather confusingly, all folios in the range are required to be pinned via 2414 * FOLL_PIN, before calling this routine. 2415 * 2416 * Return values: 2417 * 2418 * 0: if everything is OK and all folios in the range are allowed to be pinned, 2419 * then this routine leaves all folios pinned and returns zero for success. 2420 * 2421 * -EAGAIN: if any folios in the range are not allowed to be pinned, then this 2422 * routine will migrate those folios away, unpin all the folios in the range. If 2423 * migration of the entire set of folios succeeds, then -EAGAIN is returned. The 2424 * caller should re-pin the entire range with FOLL_PIN and then call this 2425 * routine again. 2426 * 2427 * -ENOMEM, or any other -errno: if an error *other* than -EAGAIN occurs, this 2428 * indicates a migration failure. The caller should give up, and propagate the 2429 * error back up the call stack. The caller does not need to unpin any folios in 2430 * that case, because this routine will do the unpinning. 2431 */ 2432 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2433 struct folio **folios) 2434 { 2435 struct pages_or_folios pofs = { 2436 .folios = folios, 2437 .has_folios = true, 2438 .nr_entries = nr_folios, 2439 }; 2440 2441 return check_and_migrate_movable_pages_or_folios(&pofs); 2442 } 2443 2444 /* 2445 * Return values and behavior are the same as those for 2446 * check_and_migrate_movable_folios(). 2447 */ 2448 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2449 struct page **pages) 2450 { 2451 struct pages_or_folios pofs = { 2452 .pages = pages, 2453 .has_folios = false, 2454 .nr_entries = nr_pages, 2455 }; 2456 2457 return check_and_migrate_movable_pages_or_folios(&pofs); 2458 } 2459 #else 2460 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2461 struct page **pages) 2462 { 2463 return 0; 2464 } 2465 2466 static long check_and_migrate_movable_folios(unsigned long nr_folios, 2467 struct folio **folios) 2468 { 2469 return 0; 2470 } 2471 #endif /* CONFIG_MIGRATION */ 2472 2473 /* 2474 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2475 * allows us to process the FOLL_LONGTERM flag. 2476 */ 2477 static long __gup_longterm_locked(struct mm_struct *mm, 2478 unsigned long start, 2479 unsigned long nr_pages, 2480 struct page **pages, 2481 int *locked, 2482 unsigned int gup_flags) 2483 { 2484 unsigned int flags; 2485 long rc, nr_pinned_pages; 2486 2487 if (!(gup_flags & FOLL_LONGTERM)) 2488 return __get_user_pages_locked(mm, start, nr_pages, pages, 2489 locked, gup_flags); 2490 2491 flags = memalloc_pin_save(); 2492 do { 2493 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2494 pages, locked, 2495 gup_flags); 2496 if (nr_pinned_pages <= 0) { 2497 rc = nr_pinned_pages; 2498 break; 2499 } 2500 2501 /* FOLL_LONGTERM implies FOLL_PIN */ 2502 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2503 } while (rc == -EAGAIN); 2504 memalloc_pin_restore(flags); 2505 return rc ? rc : nr_pinned_pages; 2506 } 2507 2508 /* 2509 * Check that the given flags are valid for the exported gup/pup interface, and 2510 * update them with the required flags that the caller must have set. 2511 */ 2512 static bool is_valid_gup_args(struct page **pages, int *locked, 2513 unsigned int *gup_flags_p, unsigned int to_set) 2514 { 2515 unsigned int gup_flags = *gup_flags_p; 2516 2517 /* 2518 * These flags not allowed to be specified externally to the gup 2519 * interfaces: 2520 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only 2521 * - FOLL_REMOTE is internal only, set in (get|pin)_user_pages_remote() 2522 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL 2523 */ 2524 if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) 2525 return false; 2526 2527 gup_flags |= to_set; 2528 if (locked) { 2529 /* At the external interface locked must be set */ 2530 if (WARN_ON_ONCE(*locked != 1)) 2531 return false; 2532 2533 gup_flags |= FOLL_UNLOCKABLE; 2534 } 2535 2536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2537 if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == 2538 (FOLL_PIN | FOLL_GET))) 2539 return false; 2540 2541 /* LONGTERM can only be specified when pinning */ 2542 if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) 2543 return false; 2544 2545 /* Pages input must be given if using GET/PIN */ 2546 if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) 2547 return false; 2548 2549 /* We want to allow the pgmap to be hot-unplugged at all times */ 2550 if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && 2551 (gup_flags & FOLL_PCI_P2PDMA))) 2552 return false; 2553 2554 *gup_flags_p = gup_flags; 2555 return true; 2556 } 2557 2558 #ifdef CONFIG_MMU 2559 /** 2560 * get_user_pages_remote() - pin user pages in memory 2561 * @mm: mm_struct of target mm 2562 * @start: starting user address 2563 * @nr_pages: number of pages from start to pin 2564 * @gup_flags: flags modifying lookup behaviour 2565 * @pages: array that receives pointers to the pages pinned. 2566 * Should be at least nr_pages long. Or NULL, if caller 2567 * only intends to ensure the pages are faulted in. 2568 * @locked: pointer to lock flag indicating whether lock is held and 2569 * subsequently whether VM_FAULT_RETRY functionality can be 2570 * utilised. Lock must initially be held. 2571 * 2572 * Returns either number of pages pinned (which may be less than the 2573 * number requested), or an error. Details about the return value: 2574 * 2575 * -- If nr_pages is 0, returns 0. 2576 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2577 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2578 * pages pinned. Again, this may be less than nr_pages. 2579 * 2580 * The caller is responsible for releasing returned @pages, via put_page(). 2581 * 2582 * Must be called with mmap_lock held for read or write. 2583 * 2584 * get_user_pages_remote walks a process's page tables and takes a reference 2585 * to each struct page that each user address corresponds to at a given 2586 * instant. That is, it takes the page that would be accessed if a user 2587 * thread accesses the given user virtual address at that instant. 2588 * 2589 * This does not guarantee that the page exists in the user mappings when 2590 * get_user_pages_remote returns, and there may even be a completely different 2591 * page there in some cases (eg. if mmapped pagecache has been invalidated 2592 * and subsequently re-faulted). However it does guarantee that the page 2593 * won't be freed completely. And mostly callers simply care that the page 2594 * contains data that was valid *at some point in time*. Typically, an IO 2595 * or similar operation cannot guarantee anything stronger anyway because 2596 * locks can't be held over the syscall boundary. 2597 * 2598 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2599 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2600 * be called after the page is finished with, and before put_page is called. 2601 * 2602 * get_user_pages_remote is typically used for fewer-copy IO operations, 2603 * to get a handle on the memory by some means other than accesses 2604 * via the user virtual addresses. The pages may be submitted for 2605 * DMA to devices or accessed via their kernel linear mapping (via the 2606 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2607 * 2608 * See also get_user_pages_fast, for performance critical applications. 2609 * 2610 * get_user_pages_remote should be phased out in favor of 2611 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2612 * should use get_user_pages_remote because it cannot pass 2613 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2614 */ 2615 long get_user_pages_remote(struct mm_struct *mm, 2616 unsigned long start, unsigned long nr_pages, 2617 unsigned int gup_flags, struct page **pages, 2618 int *locked) 2619 { 2620 int local_locked = 1; 2621 2622 if (!is_valid_gup_args(pages, locked, &gup_flags, 2623 FOLL_TOUCH | FOLL_REMOTE)) 2624 return -EINVAL; 2625 2626 return __get_user_pages_locked(mm, start, nr_pages, pages, 2627 locked ? locked : &local_locked, 2628 gup_flags); 2629 } 2630 EXPORT_SYMBOL(get_user_pages_remote); 2631 2632 #else /* CONFIG_MMU */ 2633 long get_user_pages_remote(struct mm_struct *mm, 2634 unsigned long start, unsigned long nr_pages, 2635 unsigned int gup_flags, struct page **pages, 2636 int *locked) 2637 { 2638 return 0; 2639 } 2640 #endif /* !CONFIG_MMU */ 2641 2642 /** 2643 * get_user_pages() - pin user pages in memory 2644 * @start: starting user address 2645 * @nr_pages: number of pages from start to pin 2646 * @gup_flags: flags modifying lookup behaviour 2647 * @pages: array that receives pointers to the pages pinned. 2648 * Should be at least nr_pages long. Or NULL, if caller 2649 * only intends to ensure the pages are faulted in. 2650 * 2651 * This is the same as get_user_pages_remote(), just with a less-flexible 2652 * calling convention where we assume that the mm being operated on belongs to 2653 * the current task, and doesn't allow passing of a locked parameter. We also 2654 * obviously don't pass FOLL_REMOTE in here. 2655 */ 2656 long get_user_pages(unsigned long start, unsigned long nr_pages, 2657 unsigned int gup_flags, struct page **pages) 2658 { 2659 int locked = 1; 2660 2661 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) 2662 return -EINVAL; 2663 2664 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2665 &locked, gup_flags); 2666 } 2667 EXPORT_SYMBOL(get_user_pages); 2668 2669 /* 2670 * get_user_pages_unlocked() is suitable to replace the form: 2671 * 2672 * mmap_read_lock(mm); 2673 * get_user_pages(mm, ..., pages, NULL); 2674 * mmap_read_unlock(mm); 2675 * 2676 * with: 2677 * 2678 * get_user_pages_unlocked(mm, ..., pages); 2679 * 2680 * It is functionally equivalent to get_user_pages_fast so 2681 * get_user_pages_fast should be used instead if specific gup_flags 2682 * (e.g. FOLL_FORCE) are not required. 2683 */ 2684 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2685 struct page **pages, unsigned int gup_flags) 2686 { 2687 int locked = 0; 2688 2689 if (!is_valid_gup_args(pages, NULL, &gup_flags, 2690 FOLL_TOUCH | FOLL_UNLOCKABLE)) 2691 return -EINVAL; 2692 2693 return __get_user_pages_locked(current->mm, start, nr_pages, pages, 2694 &locked, gup_flags); 2695 } 2696 EXPORT_SYMBOL(get_user_pages_unlocked); 2697 2698 /* 2699 * GUP-fast 2700 * 2701 * get_user_pages_fast attempts to pin user pages by walking the page 2702 * tables directly and avoids taking locks. Thus the walker needs to be 2703 * protected from page table pages being freed from under it, and should 2704 * block any THP splits. 2705 * 2706 * One way to achieve this is to have the walker disable interrupts, and 2707 * rely on IPIs from the TLB flushing code blocking before the page table 2708 * pages are freed. This is unsuitable for architectures that do not need 2709 * to broadcast an IPI when invalidating TLBs. 2710 * 2711 * Another way to achieve this is to batch up page table containing pages 2712 * belonging to more than one mm_user, then rcu_sched a callback to free those 2713 * pages. Disabling interrupts will allow the gup_fast() walker to both block 2714 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2715 * (which is a relatively rare event). The code below adopts this strategy. 2716 * 2717 * Before activating this code, please be aware that the following assumptions 2718 * are currently made: 2719 * 2720 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2721 * free pages containing page tables or TLB flushing requires IPI broadcast. 2722 * 2723 * *) ptes can be read atomically by the architecture. 2724 * 2725 * *) valid user addesses are below TASK_MAX_SIZE 2726 * 2727 * The last two assumptions can be relaxed by the addition of helper functions. 2728 * 2729 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2730 */ 2731 #ifdef CONFIG_HAVE_GUP_FAST 2732 /* 2733 * Used in the GUP-fast path to determine whether GUP is permitted to work on 2734 * a specific folio. 2735 * 2736 * This call assumes the caller has pinned the folio, that the lowest page table 2737 * level still points to this folio, and that interrupts have been disabled. 2738 * 2739 * GUP-fast must reject all secretmem folios. 2740 * 2741 * Writing to pinned file-backed dirty tracked folios is inherently problematic 2742 * (see comment describing the writable_file_mapping_allowed() function). We 2743 * therefore try to avoid the most egregious case of a long-term mapping doing 2744 * so. 2745 * 2746 * This function cannot be as thorough as that one as the VMA is not available 2747 * in the fast path, so instead we whitelist known good cases and if in doubt, 2748 * fall back to the slow path. 2749 */ 2750 static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) 2751 { 2752 bool reject_file_backed = false; 2753 struct address_space *mapping; 2754 bool check_secretmem = false; 2755 unsigned long mapping_flags; 2756 2757 /* 2758 * If we aren't pinning then no problematic write can occur. A long term 2759 * pin is the most egregious case so this is the one we disallow. 2760 */ 2761 if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == 2762 (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) 2763 reject_file_backed = true; 2764 2765 /* We hold a folio reference, so we can safely access folio fields. */ 2766 2767 /* secretmem folios are always order-0 folios. */ 2768 if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) 2769 check_secretmem = true; 2770 2771 if (!reject_file_backed && !check_secretmem) 2772 return true; 2773 2774 if (WARN_ON_ONCE(folio_test_slab(folio))) 2775 return false; 2776 2777 /* hugetlb neither requires dirty-tracking nor can be secretmem. */ 2778 if (folio_test_hugetlb(folio)) 2779 return true; 2780 2781 /* 2782 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods 2783 * cannot proceed, which means no actions performed under RCU can 2784 * proceed either. 2785 * 2786 * inodes and thus their mappings are freed under RCU, which means the 2787 * mapping cannot be freed beneath us and thus we can safely dereference 2788 * it. 2789 */ 2790 lockdep_assert_irqs_disabled(); 2791 2792 /* 2793 * However, there may be operations which _alter_ the mapping, so ensure 2794 * we read it once and only once. 2795 */ 2796 mapping = READ_ONCE(folio->mapping); 2797 2798 /* 2799 * The mapping may have been truncated, in any case we cannot determine 2800 * if this mapping is safe - fall back to slow path to determine how to 2801 * proceed. 2802 */ 2803 if (!mapping) 2804 return false; 2805 2806 /* Anonymous folios pose no problem. */ 2807 mapping_flags = (unsigned long)mapping & FOLIO_MAPPING_FLAGS; 2808 if (mapping_flags) 2809 return mapping_flags & FOLIO_MAPPING_ANON; 2810 2811 /* 2812 * At this point, we know the mapping is non-null and points to an 2813 * address_space object. 2814 */ 2815 if (check_secretmem && secretmem_mapping(mapping)) 2816 return false; 2817 /* The only remaining allowed file system is shmem. */ 2818 return !reject_file_backed || shmem_mapping(mapping); 2819 } 2820 2821 static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, 2822 unsigned int flags, struct page **pages) 2823 { 2824 while ((*nr) - nr_start) { 2825 struct folio *folio = page_folio(pages[--(*nr)]); 2826 2827 folio_clear_referenced(folio); 2828 gup_put_folio(folio, 1, flags); 2829 } 2830 } 2831 2832 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2833 /* 2834 * GUP-fast relies on pte change detection to avoid concurrent pgtable 2835 * operations. 2836 * 2837 * To pin the page, GUP-fast needs to do below in order: 2838 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2839 * 2840 * For the rest of pgtable operations where pgtable updates can be racy 2841 * with GUP-fast, we need to do (1) clear pte, then (2) check whether page 2842 * is pinned. 2843 * 2844 * Above will work for all pte-level operations, including THP split. 2845 * 2846 * For THP collapse, it's a bit more complicated because GUP-fast may be 2847 * walking a pgtable page that is being freed (pte is still valid but pmd 2848 * can be cleared already). To avoid race in such condition, we need to 2849 * also check pmd here to make sure pmd doesn't change (corresponds to 2850 * pmdp_collapse_flush() in the THP collapse code path). 2851 */ 2852 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2853 unsigned long end, unsigned int flags, struct page **pages, 2854 int *nr) 2855 { 2856 struct dev_pagemap *pgmap = NULL; 2857 int ret = 0; 2858 pte_t *ptep, *ptem; 2859 2860 ptem = ptep = pte_offset_map(&pmd, addr); 2861 if (!ptep) 2862 return 0; 2863 do { 2864 pte_t pte = ptep_get_lockless(ptep); 2865 struct page *page; 2866 struct folio *folio; 2867 2868 /* 2869 * Always fallback to ordinary GUP on PROT_NONE-mapped pages: 2870 * pte_access_permitted() better should reject these pages 2871 * either way: otherwise, GUP-fast might succeed in 2872 * cases where ordinary GUP would fail due to VMA access 2873 * permissions. 2874 */ 2875 if (pte_protnone(pte)) 2876 goto pte_unmap; 2877 2878 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2879 goto pte_unmap; 2880 2881 if (pte_special(pte)) 2882 goto pte_unmap; 2883 2884 /* If it's not marked as special it must have a valid memmap. */ 2885 VM_WARN_ON_ONCE(!pfn_valid(pte_pfn(pte))); 2886 page = pte_page(pte); 2887 2888 folio = try_grab_folio_fast(page, 1, flags); 2889 if (!folio) 2890 goto pte_unmap; 2891 2892 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2893 unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { 2894 gup_put_folio(folio, 1, flags); 2895 goto pte_unmap; 2896 } 2897 2898 if (!gup_fast_folio_allowed(folio, flags)) { 2899 gup_put_folio(folio, 1, flags); 2900 goto pte_unmap; 2901 } 2902 2903 if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { 2904 gup_put_folio(folio, 1, flags); 2905 goto pte_unmap; 2906 } 2907 2908 /* 2909 * We need to make the page accessible if and only if we are 2910 * going to access its content (the FOLL_PIN case). Please 2911 * see Documentation/core-api/pin_user_pages.rst for 2912 * details. 2913 */ 2914 if (flags & FOLL_PIN) { 2915 ret = arch_make_folio_accessible(folio); 2916 if (ret) { 2917 gup_put_folio(folio, 1, flags); 2918 goto pte_unmap; 2919 } 2920 } 2921 folio_set_referenced(folio); 2922 pages[*nr] = page; 2923 (*nr)++; 2924 } while (ptep++, addr += PAGE_SIZE, addr != end); 2925 2926 ret = 1; 2927 2928 pte_unmap: 2929 if (pgmap) 2930 put_dev_pagemap(pgmap); 2931 pte_unmap(ptem); 2932 return ret; 2933 } 2934 #else 2935 2936 /* 2937 * If we can't determine whether or not a pte is special, then fail immediately 2938 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2939 * to be special. 2940 * 2941 * For a futex to be placed on a THP tail page, get_futex_key requires a 2942 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2943 * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. 2944 */ 2945 static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2946 unsigned long end, unsigned int flags, struct page **pages, 2947 int *nr) 2948 { 2949 return 0; 2950 } 2951 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2952 2953 static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2954 unsigned long end, unsigned int flags, struct page **pages, 2955 int *nr) 2956 { 2957 struct page *page; 2958 struct folio *folio; 2959 int refs; 2960 2961 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2962 return 0; 2963 2964 if (pmd_special(orig)) 2965 return 0; 2966 2967 refs = (end - addr) >> PAGE_SHIFT; 2968 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2969 2970 folio = try_grab_folio_fast(page, refs, flags); 2971 if (!folio) 2972 return 0; 2973 2974 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2975 gup_put_folio(folio, refs, flags); 2976 return 0; 2977 } 2978 2979 if (!gup_fast_folio_allowed(folio, flags)) { 2980 gup_put_folio(folio, refs, flags); 2981 return 0; 2982 } 2983 if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 2984 gup_put_folio(folio, refs, flags); 2985 return 0; 2986 } 2987 2988 pages += *nr; 2989 *nr += refs; 2990 for (; refs; refs--) 2991 *(pages++) = page++; 2992 folio_set_referenced(folio); 2993 return 1; 2994 } 2995 2996 static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, 2997 unsigned long end, unsigned int flags, struct page **pages, 2998 int *nr) 2999 { 3000 struct page *page; 3001 struct folio *folio; 3002 int refs; 3003 3004 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 3005 return 0; 3006 3007 if (pud_special(orig)) 3008 return 0; 3009 3010 refs = (end - addr) >> PAGE_SHIFT; 3011 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 3012 3013 folio = try_grab_folio_fast(page, refs, flags); 3014 if (!folio) 3015 return 0; 3016 3017 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 3018 gup_put_folio(folio, refs, flags); 3019 return 0; 3020 } 3021 3022 if (!gup_fast_folio_allowed(folio, flags)) { 3023 gup_put_folio(folio, refs, flags); 3024 return 0; 3025 } 3026 3027 if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { 3028 gup_put_folio(folio, refs, flags); 3029 return 0; 3030 } 3031 3032 pages += *nr; 3033 *nr += refs; 3034 for (; refs; refs--) 3035 *(pages++) = page++; 3036 folio_set_referenced(folio); 3037 return 1; 3038 } 3039 3040 static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, 3041 unsigned long end, unsigned int flags, struct page **pages, 3042 int *nr) 3043 { 3044 unsigned long next; 3045 pmd_t *pmdp; 3046 3047 pmdp = pmd_offset_lockless(pudp, pud, addr); 3048 do { 3049 pmd_t pmd = pmdp_get_lockless(pmdp); 3050 3051 next = pmd_addr_end(addr, end); 3052 if (!pmd_present(pmd)) 3053 return 0; 3054 3055 if (unlikely(pmd_leaf(pmd))) { 3056 /* See gup_fast_pte_range() */ 3057 if (pmd_protnone(pmd)) 3058 return 0; 3059 3060 if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, 3061 pages, nr)) 3062 return 0; 3063 3064 } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, 3065 pages, nr)) 3066 return 0; 3067 } while (pmdp++, addr = next, addr != end); 3068 3069 return 1; 3070 } 3071 3072 static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, 3073 unsigned long end, unsigned int flags, struct page **pages, 3074 int *nr) 3075 { 3076 unsigned long next; 3077 pud_t *pudp; 3078 3079 pudp = pud_offset_lockless(p4dp, p4d, addr); 3080 do { 3081 pud_t pud = READ_ONCE(*pudp); 3082 3083 next = pud_addr_end(addr, end); 3084 if (unlikely(!pud_present(pud))) 3085 return 0; 3086 if (unlikely(pud_leaf(pud))) { 3087 if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, 3088 pages, nr)) 3089 return 0; 3090 } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, 3091 pages, nr)) 3092 return 0; 3093 } while (pudp++, addr = next, addr != end); 3094 3095 return 1; 3096 } 3097 3098 static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, 3099 unsigned long end, unsigned int flags, struct page **pages, 3100 int *nr) 3101 { 3102 unsigned long next; 3103 p4d_t *p4dp; 3104 3105 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 3106 do { 3107 p4d_t p4d = READ_ONCE(*p4dp); 3108 3109 next = p4d_addr_end(addr, end); 3110 if (!p4d_present(p4d)) 3111 return 0; 3112 BUILD_BUG_ON(p4d_leaf(p4d)); 3113 if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, 3114 pages, nr)) 3115 return 0; 3116 } while (p4dp++, addr = next, addr != end); 3117 3118 return 1; 3119 } 3120 3121 static void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3122 unsigned int flags, struct page **pages, int *nr) 3123 { 3124 unsigned long next; 3125 pgd_t *pgdp; 3126 3127 pgdp = pgd_offset(current->mm, addr); 3128 do { 3129 pgd_t pgd = READ_ONCE(*pgdp); 3130 3131 next = pgd_addr_end(addr, end); 3132 if (pgd_none(pgd)) 3133 return; 3134 BUILD_BUG_ON(pgd_leaf(pgd)); 3135 if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, 3136 pages, nr)) 3137 return; 3138 } while (pgdp++, addr = next, addr != end); 3139 } 3140 #else 3141 static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, 3142 unsigned int flags, struct page **pages, int *nr) 3143 { 3144 } 3145 #endif /* CONFIG_HAVE_GUP_FAST */ 3146 3147 #ifndef gup_fast_permitted 3148 /* 3149 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 3150 * we need to fall back to the slow version: 3151 */ 3152 static bool gup_fast_permitted(unsigned long start, unsigned long end) 3153 { 3154 return true; 3155 } 3156 #endif 3157 3158 static unsigned long gup_fast(unsigned long start, unsigned long end, 3159 unsigned int gup_flags, struct page **pages) 3160 { 3161 unsigned long flags; 3162 int nr_pinned = 0; 3163 unsigned seq; 3164 3165 if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || 3166 !gup_fast_permitted(start, end)) 3167 return 0; 3168 3169 if (gup_flags & FOLL_PIN) { 3170 if (!raw_seqcount_try_begin(¤t->mm->write_protect_seq, seq)) 3171 return 0; 3172 } 3173 3174 /* 3175 * Disable interrupts. The nested form is used, in order to allow full, 3176 * general purpose use of this routine. 3177 * 3178 * With interrupts disabled, we block page table pages from being freed 3179 * from under us. See struct mmu_table_batch comments in 3180 * include/asm-generic/tlb.h for more details. 3181 * 3182 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3183 * that come from callers of tlb_remove_table_sync_one(). 3184 */ 3185 local_irq_save(flags); 3186 gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3187 local_irq_restore(flags); 3188 3189 /* 3190 * When pinning pages for DMA there could be a concurrent write protect 3191 * from fork() via copy_page_range(), in this case always fail GUP-fast. 3192 */ 3193 if (gup_flags & FOLL_PIN) { 3194 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3195 gup_fast_unpin_user_pages(pages, nr_pinned); 3196 return 0; 3197 } else { 3198 sanity_check_pinned_pages(pages, nr_pinned); 3199 } 3200 } 3201 return nr_pinned; 3202 } 3203 3204 static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, 3205 unsigned int gup_flags, struct page **pages) 3206 { 3207 unsigned long len, end; 3208 unsigned long nr_pinned; 3209 int locked = 0; 3210 int ret; 3211 3212 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3213 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3214 FOLL_FAST_ONLY | FOLL_NOFAULT | 3215 FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) 3216 return -EINVAL; 3217 3218 if (gup_flags & FOLL_PIN) 3219 mm_set_has_pinned_flag(current->mm); 3220 3221 if (!(gup_flags & FOLL_FAST_ONLY)) 3222 might_lock_read(¤t->mm->mmap_lock); 3223 3224 start = untagged_addr(start) & PAGE_MASK; 3225 len = nr_pages << PAGE_SHIFT; 3226 if (check_add_overflow(start, len, &end)) 3227 return -EOVERFLOW; 3228 if (end > TASK_SIZE_MAX) 3229 return -EFAULT; 3230 3231 nr_pinned = gup_fast(start, end, gup_flags, pages); 3232 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3233 return nr_pinned; 3234 3235 /* Slow path: try to get the remaining pages with get_user_pages */ 3236 start += nr_pinned << PAGE_SHIFT; 3237 pages += nr_pinned; 3238 ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, 3239 pages, &locked, 3240 gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); 3241 if (ret < 0) { 3242 /* 3243 * The caller has to unpin the pages we already pinned so 3244 * returning -errno is not an option 3245 */ 3246 if (nr_pinned) 3247 return nr_pinned; 3248 return ret; 3249 } 3250 return ret + nr_pinned; 3251 } 3252 3253 /** 3254 * get_user_pages_fast_only() - pin user pages in memory 3255 * @start: starting user address 3256 * @nr_pages: number of pages from start to pin 3257 * @gup_flags: flags modifying pin behaviour 3258 * @pages: array that receives pointers to the pages pinned. 3259 * Should be at least nr_pages long. 3260 * 3261 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3262 * the regular GUP. 3263 * 3264 * If the architecture does not support this function, simply return with no 3265 * pages pinned. 3266 * 3267 * Careful, careful! COW breaking can go either way, so a non-write 3268 * access can get ambiguous page results. If you call this function without 3269 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3270 */ 3271 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3272 unsigned int gup_flags, struct page **pages) 3273 { 3274 /* 3275 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3276 * because gup fast is always a "pin with a +1 page refcount" request. 3277 * 3278 * FOLL_FAST_ONLY is required in order to match the API description of 3279 * this routine: no fall back to regular ("slow") GUP. 3280 */ 3281 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3282 FOLL_GET | FOLL_FAST_ONLY)) 3283 return -EINVAL; 3284 3285 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3286 } 3287 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3288 3289 /** 3290 * get_user_pages_fast() - pin user pages in memory 3291 * @start: starting user address 3292 * @nr_pages: number of pages from start to pin 3293 * @gup_flags: flags modifying pin behaviour 3294 * @pages: array that receives pointers to the pages pinned. 3295 * Should be at least nr_pages long. 3296 * 3297 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3298 * If not successful, it will fall back to taking the lock and 3299 * calling get_user_pages(). 3300 * 3301 * Returns number of pages pinned. This may be fewer than the number requested. 3302 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3303 * -errno. 3304 */ 3305 int get_user_pages_fast(unsigned long start, int nr_pages, 3306 unsigned int gup_flags, struct page **pages) 3307 { 3308 /* 3309 * The caller may or may not have explicitly set FOLL_GET; either way is 3310 * OK. However, internally (within mm/gup.c), gup fast variants must set 3311 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3312 * request. 3313 */ 3314 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) 3315 return -EINVAL; 3316 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3317 } 3318 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3319 3320 /** 3321 * pin_user_pages_fast() - pin user pages in memory without taking locks 3322 * 3323 * @start: starting user address 3324 * @nr_pages: number of pages from start to pin 3325 * @gup_flags: flags modifying pin behaviour 3326 * @pages: array that receives pointers to the pages pinned. 3327 * Should be at least nr_pages long. 3328 * 3329 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3330 * get_user_pages_fast() for documentation on the function arguments, because 3331 * the arguments here are identical. 3332 * 3333 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3334 * see Documentation/core-api/pin_user_pages.rst for further details. 3335 * 3336 * Note that if a zero_page is amongst the returned pages, it will not have 3337 * pins in it and unpin_user_page() will not remove pins from it. 3338 */ 3339 int pin_user_pages_fast(unsigned long start, int nr_pages, 3340 unsigned int gup_flags, struct page **pages) 3341 { 3342 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3343 return -EINVAL; 3344 return gup_fast_fallback(start, nr_pages, gup_flags, pages); 3345 } 3346 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3347 3348 /** 3349 * pin_user_pages_remote() - pin pages of a remote process 3350 * 3351 * @mm: mm_struct of target mm 3352 * @start: starting user address 3353 * @nr_pages: number of pages from start to pin 3354 * @gup_flags: flags modifying lookup behaviour 3355 * @pages: array that receives pointers to the pages pinned. 3356 * Should be at least nr_pages long. 3357 * @locked: pointer to lock flag indicating whether lock is held and 3358 * subsequently whether VM_FAULT_RETRY functionality can be 3359 * utilised. Lock must initially be held. 3360 * 3361 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3362 * get_user_pages_remote() for documentation on the function arguments, because 3363 * the arguments here are identical. 3364 * 3365 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3366 * see Documentation/core-api/pin_user_pages.rst for details. 3367 * 3368 * Note that if a zero_page is amongst the returned pages, it will not have 3369 * pins in it and unpin_user_page*() will not remove pins from it. 3370 */ 3371 long pin_user_pages_remote(struct mm_struct *mm, 3372 unsigned long start, unsigned long nr_pages, 3373 unsigned int gup_flags, struct page **pages, 3374 int *locked) 3375 { 3376 int local_locked = 1; 3377 3378 if (!is_valid_gup_args(pages, locked, &gup_flags, 3379 FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) 3380 return 0; 3381 return __gup_longterm_locked(mm, start, nr_pages, pages, 3382 locked ? locked : &local_locked, 3383 gup_flags); 3384 } 3385 EXPORT_SYMBOL(pin_user_pages_remote); 3386 3387 /** 3388 * pin_user_pages() - pin user pages in memory for use by other devices 3389 * 3390 * @start: starting user address 3391 * @nr_pages: number of pages from start to pin 3392 * @gup_flags: flags modifying lookup behaviour 3393 * @pages: array that receives pointers to the pages pinned. 3394 * Should be at least nr_pages long. 3395 * 3396 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3397 * FOLL_PIN is set. 3398 * 3399 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3400 * see Documentation/core-api/pin_user_pages.rst for details. 3401 * 3402 * Note that if a zero_page is amongst the returned pages, it will not have 3403 * pins in it and unpin_user_page*() will not remove pins from it. 3404 */ 3405 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3406 unsigned int gup_flags, struct page **pages) 3407 { 3408 int locked = 1; 3409 3410 if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) 3411 return 0; 3412 return __gup_longterm_locked(current->mm, start, nr_pages, 3413 pages, &locked, gup_flags); 3414 } 3415 EXPORT_SYMBOL(pin_user_pages); 3416 3417 /* 3418 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3419 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3420 * FOLL_PIN and rejects FOLL_GET. 3421 * 3422 * Note that if a zero_page is amongst the returned pages, it will not have 3423 * pins in it and unpin_user_page*() will not remove pins from it. 3424 */ 3425 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3426 struct page **pages, unsigned int gup_flags) 3427 { 3428 int locked = 0; 3429 3430 if (!is_valid_gup_args(pages, NULL, &gup_flags, 3431 FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) 3432 return 0; 3433 3434 return __gup_longterm_locked(current->mm, start, nr_pages, pages, 3435 &locked, gup_flags); 3436 } 3437 EXPORT_SYMBOL(pin_user_pages_unlocked); 3438 3439 /** 3440 * memfd_pin_folios() - pin folios associated with a memfd 3441 * @memfd: the memfd whose folios are to be pinned 3442 * @start: the first memfd offset 3443 * @end: the last memfd offset (inclusive) 3444 * @folios: array that receives pointers to the folios pinned 3445 * @max_folios: maximum number of entries in @folios 3446 * @offset: the offset into the first folio 3447 * 3448 * Attempt to pin folios associated with a memfd in the contiguous range 3449 * [start, end]. Given that a memfd is either backed by shmem or hugetlb, 3450 * the folios can either be found in the page cache or need to be allocated 3451 * if necessary. Once the folios are located, they are all pinned via 3452 * FOLL_PIN and @offset is populatedwith the offset into the first folio. 3453 * And, eventually, these pinned folios must be released either using 3454 * unpin_folios() or unpin_folio(). 3455 * 3456 * It must be noted that the folios may be pinned for an indefinite amount 3457 * of time. And, in most cases, the duration of time they may stay pinned 3458 * would be controlled by the userspace. This behavior is effectively the 3459 * same as using FOLL_LONGTERM with other GUP APIs. 3460 * 3461 * Returns number of folios pinned, which could be less than @max_folios 3462 * as it depends on the folio sizes that cover the range [start, end]. 3463 * If no folios were pinned, it returns -errno. 3464 */ 3465 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 3466 struct folio **folios, unsigned int max_folios, 3467 pgoff_t *offset) 3468 { 3469 unsigned int flags, nr_folios, nr_found; 3470 unsigned int i, pgshift = PAGE_SHIFT; 3471 pgoff_t start_idx, end_idx; 3472 struct folio *folio = NULL; 3473 struct folio_batch fbatch; 3474 struct hstate *h; 3475 long ret = -EINVAL; 3476 3477 if (start < 0 || start > end || !max_folios) 3478 return -EINVAL; 3479 3480 if (!memfd) 3481 return -EINVAL; 3482 3483 if (!shmem_file(memfd) && !is_file_hugepages(memfd)) 3484 return -EINVAL; 3485 3486 if (end >= i_size_read(file_inode(memfd))) 3487 return -EINVAL; 3488 3489 if (is_file_hugepages(memfd)) { 3490 h = hstate_file(memfd); 3491 pgshift = huge_page_shift(h); 3492 } 3493 3494 flags = memalloc_pin_save(); 3495 do { 3496 nr_folios = 0; 3497 start_idx = start >> pgshift; 3498 end_idx = end >> pgshift; 3499 if (is_file_hugepages(memfd)) { 3500 start_idx <<= huge_page_order(h); 3501 end_idx <<= huge_page_order(h); 3502 } 3503 3504 folio_batch_init(&fbatch); 3505 while (start_idx <= end_idx && nr_folios < max_folios) { 3506 /* 3507 * In most cases, we should be able to find the folios 3508 * in the page cache. If we cannot find them for some 3509 * reason, we try to allocate them and add them to the 3510 * page cache. 3511 */ 3512 nr_found = filemap_get_folios_contig(memfd->f_mapping, 3513 &start_idx, 3514 end_idx, 3515 &fbatch); 3516 if (folio) { 3517 folio_put(folio); 3518 folio = NULL; 3519 } 3520 3521 for (i = 0; i < nr_found; i++) { 3522 folio = fbatch.folios[i]; 3523 3524 if (try_grab_folio(folio, 1, FOLL_PIN)) { 3525 folio_batch_release(&fbatch); 3526 ret = -EINVAL; 3527 goto err; 3528 } 3529 3530 if (nr_folios == 0) 3531 *offset = offset_in_folio(folio, start); 3532 3533 folios[nr_folios] = folio; 3534 if (++nr_folios == max_folios) 3535 break; 3536 } 3537 3538 folio = NULL; 3539 folio_batch_release(&fbatch); 3540 if (!nr_found) { 3541 folio = memfd_alloc_folio(memfd, start_idx); 3542 if (IS_ERR(folio)) { 3543 ret = PTR_ERR(folio); 3544 if (ret != -EEXIST) 3545 goto err; 3546 folio = NULL; 3547 } 3548 } 3549 } 3550 3551 ret = check_and_migrate_movable_folios(nr_folios, folios); 3552 } while (ret == -EAGAIN); 3553 3554 memalloc_pin_restore(flags); 3555 return ret ? ret : nr_folios; 3556 err: 3557 memalloc_pin_restore(flags); 3558 unpin_folios(folios, nr_folios); 3559 3560 return ret; 3561 } 3562 EXPORT_SYMBOL_GPL(memfd_pin_folios); 3563 3564 /** 3565 * folio_add_pins() - add pins to an already-pinned folio 3566 * @folio: the folio to add more pins to 3567 * @pins: number of pins to add 3568 * 3569 * Try to add more pins to an already-pinned folio. The semantics 3570 * of the pin (e.g., FOLL_WRITE) follow any existing pin and cannot 3571 * be changed. 3572 * 3573 * This function is helpful when having obtained a pin on a large folio 3574 * using memfd_pin_folios(), but wanting to logically unpin parts 3575 * (e.g., individual pages) of the folio later, for example, using 3576 * unpin_user_page_range_dirty_lock(). 3577 * 3578 * This is not the right interface to initially pin a folio. 3579 */ 3580 int folio_add_pins(struct folio *folio, unsigned int pins) 3581 { 3582 VM_WARN_ON_ONCE(!folio_maybe_dma_pinned(folio)); 3583 3584 return try_grab_folio(folio, pins, FOLL_PIN); 3585 } 3586 EXPORT_SYMBOL_GPL(folio_add_pins); 3587