1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* 49 * Return the compound head page with ref appropriately incremented, 50 * or NULL if that failed. 51 */ 52 static inline struct page *try_get_compound_head(struct page *page, int refs) 53 { 54 struct page *head = compound_head(page); 55 56 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 57 return NULL; 58 if (unlikely(!page_cache_add_speculative(head, refs))) 59 return NULL; 60 return head; 61 } 62 63 /* 64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 65 * flags-dependent amount. 66 * 67 * "grab" names in this file mean, "look at flags to decide whether to use 68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 69 * 70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 71 * same time. (That's true throughout the get_user_pages*() and 72 * pin_user_pages*() APIs.) Cases: 73 * 74 * FOLL_GET: page's refcount will be incremented by 1. 75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 76 * 77 * Return: head page (with refcount appropriately incremented) for success, or 78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 79 * considered failure, and furthermore, a likely bug in the caller, so a warning 80 * is also emitted. 81 */ 82 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 83 int refs, 84 unsigned int flags) 85 { 86 if (flags & FOLL_GET) 87 return try_get_compound_head(page, refs); 88 else if (flags & FOLL_PIN) { 89 int orig_refs = refs; 90 91 /* 92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 93 * path, so fail and let the caller fall back to the slow path. 94 */ 95 if (unlikely(flags & FOLL_LONGTERM) && 96 is_migrate_cma_page(page)) 97 return NULL; 98 99 /* 100 * When pinning a compound page of order > 1 (which is what 101 * hpage_pincount_available() checks for), use an exact count to 102 * track it, via hpage_pincount_add/_sub(). 103 * 104 * However, be sure to *also* increment the normal page refcount 105 * field at least once, so that the page really is pinned. 106 */ 107 if (!hpage_pincount_available(page)) 108 refs *= GUP_PIN_COUNTING_BIAS; 109 110 page = try_get_compound_head(page, refs); 111 if (!page) 112 return NULL; 113 114 if (hpage_pincount_available(page)) 115 hpage_pincount_add(page, refs); 116 117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 118 orig_refs); 119 120 return page; 121 } 122 123 WARN_ON_ONCE(1); 124 return NULL; 125 } 126 127 /** 128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 129 * 130 * This might not do anything at all, depending on the flags argument. 131 * 132 * "grab" names in this file mean, "look at flags to decide whether to use 133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 134 * 135 * @page: pointer to page to be grabbed 136 * @flags: gup flags: these are the FOLL_* flag values. 137 * 138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 139 * time. Cases: 140 * 141 * FOLL_GET: page's refcount will be incremented by 1. 142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 143 * 144 * Return: true for success, or if no action was required (if neither FOLL_PIN 145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 146 * FOLL_PIN was set, but the page could not be grabbed. 147 */ 148 bool __must_check try_grab_page(struct page *page, unsigned int flags) 149 { 150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 151 152 if (flags & FOLL_GET) 153 return try_get_page(page); 154 else if (flags & FOLL_PIN) { 155 int refs = 1; 156 157 page = compound_head(page); 158 159 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 160 return false; 161 162 if (hpage_pincount_available(page)) 163 hpage_pincount_add(page, 1); 164 else 165 refs = GUP_PIN_COUNTING_BIAS; 166 167 /* 168 * Similar to try_grab_compound_head(): even if using the 169 * hpage_pincount_add/_sub() routines, be sure to 170 * *also* increment the normal page refcount field at least 171 * once, so that the page really is pinned. 172 */ 173 page_ref_add(page, refs); 174 175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 176 } 177 178 return true; 179 } 180 181 #ifdef CONFIG_DEV_PAGEMAP_OPS 182 static bool __unpin_devmap_managed_user_page(struct page *page) 183 { 184 int count, refs = 1; 185 186 if (!page_is_devmap_managed(page)) 187 return false; 188 189 if (hpage_pincount_available(page)) 190 hpage_pincount_sub(page, 1); 191 else 192 refs = GUP_PIN_COUNTING_BIAS; 193 194 count = page_ref_sub_return(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 197 /* 198 * devmap page refcounts are 1-based, rather than 0-based: if 199 * refcount is 1, then the page is free and the refcount is 200 * stable because nobody holds a reference on the page. 201 */ 202 if (count == 1) 203 free_devmap_managed_page(page); 204 else if (!count) 205 __put_page(page); 206 207 return true; 208 } 209 #else 210 static bool __unpin_devmap_managed_user_page(struct page *page) 211 { 212 return false; 213 } 214 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 215 216 /** 217 * unpin_user_page() - release a dma-pinned page 218 * @page: pointer to page to be released 219 * 220 * Pages that were pinned via pin_user_pages*() must be released via either 221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 222 * that such pages can be separately tracked and uniquely handled. In 223 * particular, interactions with RDMA and filesystems need special handling. 224 */ 225 void unpin_user_page(struct page *page) 226 { 227 int refs = 1; 228 229 page = compound_head(page); 230 231 /* 232 * For devmap managed pages we need to catch refcount transition from 233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 234 * page is free and we need to inform the device driver through 235 * callback. See include/linux/memremap.h and HMM for details. 236 */ 237 if (__unpin_devmap_managed_user_page(page)) 238 return; 239 240 if (hpage_pincount_available(page)) 241 hpage_pincount_sub(page, 1); 242 else 243 refs = GUP_PIN_COUNTING_BIAS; 244 245 if (page_ref_sub_and_test(page, refs)) 246 __put_page(page); 247 248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 249 } 250 EXPORT_SYMBOL(unpin_user_page); 251 252 /** 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 254 * @pages: array of pages to be maybe marked dirty, and definitely released. 255 * @npages: number of pages in the @pages array. 256 * @make_dirty: whether to mark the pages dirty 257 * 258 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 259 * variants called on that page. 260 * 261 * For each page in the @pages array, make that page (or its head page, if a 262 * compound page) dirty, if @make_dirty is true, and if the page was previously 263 * listed as clean. In any case, releases all pages using unpin_user_page(), 264 * possibly via unpin_user_pages(), for the non-dirty case. 265 * 266 * Please see the unpin_user_page() documentation for details. 267 * 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 269 * required, then the caller should a) verify that this is really correct, 270 * because _lock() is usually required, and b) hand code it: 271 * set_page_dirty_lock(), unpin_user_page(). 272 * 273 */ 274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 275 bool make_dirty) 276 { 277 unsigned long index; 278 279 /* 280 * TODO: this can be optimized for huge pages: if a series of pages is 281 * physically contiguous and part of the same compound page, then a 282 * single operation to the head page should suffice. 283 */ 284 285 if (!make_dirty) { 286 unpin_user_pages(pages, npages); 287 return; 288 } 289 290 for (index = 0; index < npages; index++) { 291 struct page *page = compound_head(pages[index]); 292 /* 293 * Checking PageDirty at this point may race with 294 * clear_page_dirty_for_io(), but that's OK. Two key 295 * cases: 296 * 297 * 1) This code sees the page as already dirty, so it 298 * skips the call to set_page_dirty(). That could happen 299 * because clear_page_dirty_for_io() called 300 * page_mkclean(), followed by set_page_dirty(). 301 * However, now the page is going to get written back, 302 * which meets the original intention of setting it 303 * dirty, so all is well: clear_page_dirty_for_io() goes 304 * on to call TestClearPageDirty(), and write the page 305 * back. 306 * 307 * 2) This code sees the page as clean, so it calls 308 * set_page_dirty(). The page stays dirty, despite being 309 * written back, so it gets written back again in the 310 * next writeback cycle. This is harmless. 311 */ 312 if (!PageDirty(page)) 313 set_page_dirty_lock(page); 314 unpin_user_page(page); 315 } 316 } 317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 318 319 /** 320 * unpin_user_pages() - release an array of gup-pinned pages. 321 * @pages: array of pages to be marked dirty and released. 322 * @npages: number of pages in the @pages array. 323 * 324 * For each page in the @pages array, release the page using unpin_user_page(). 325 * 326 * Please see the unpin_user_page() documentation for details. 327 */ 328 void unpin_user_pages(struct page **pages, unsigned long npages) 329 { 330 unsigned long index; 331 332 /* 333 * TODO: this can be optimized for huge pages: if a series of pages is 334 * physically contiguous and part of the same compound page, then a 335 * single operation to the head page should suffice. 336 */ 337 for (index = 0; index < npages; index++) 338 unpin_user_page(pages[index]); 339 } 340 EXPORT_SYMBOL(unpin_user_pages); 341 342 #ifdef CONFIG_MMU 343 static struct page *no_page_table(struct vm_area_struct *vma, 344 unsigned int flags) 345 { 346 /* 347 * When core dumping an enormous anonymous area that nobody 348 * has touched so far, we don't want to allocate unnecessary pages or 349 * page tables. Return error instead of NULL to skip handle_mm_fault, 350 * then get_dump_page() will return NULL to leave a hole in the dump. 351 * But we can only make this optimization where a hole would surely 352 * be zero-filled if handle_mm_fault() actually did handle it. 353 */ 354 if ((flags & FOLL_DUMP) && 355 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 356 return ERR_PTR(-EFAULT); 357 return NULL; 358 } 359 360 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 361 pte_t *pte, unsigned int flags) 362 { 363 /* No page to get reference */ 364 if (flags & FOLL_GET) 365 return -EFAULT; 366 367 if (flags & FOLL_TOUCH) { 368 pte_t entry = *pte; 369 370 if (flags & FOLL_WRITE) 371 entry = pte_mkdirty(entry); 372 entry = pte_mkyoung(entry); 373 374 if (!pte_same(*pte, entry)) { 375 set_pte_at(vma->vm_mm, address, pte, entry); 376 update_mmu_cache(vma, address, pte); 377 } 378 } 379 380 /* Proper page table entry exists, but no corresponding struct page */ 381 return -EEXIST; 382 } 383 384 /* 385 * FOLL_FORCE or a forced COW break can write even to unwritable pte's, 386 * but only after we've gone through a COW cycle and they are dirty. 387 */ 388 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 389 { 390 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte)); 391 } 392 393 /* 394 * A (separate) COW fault might break the page the other way and 395 * get_user_pages() would return the page from what is now the wrong 396 * VM. So we need to force a COW break at GUP time even for reads. 397 */ 398 static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags) 399 { 400 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN)); 401 } 402 403 static struct page *follow_page_pte(struct vm_area_struct *vma, 404 unsigned long address, pmd_t *pmd, unsigned int flags, 405 struct dev_pagemap **pgmap) 406 { 407 struct mm_struct *mm = vma->vm_mm; 408 struct page *page; 409 spinlock_t *ptl; 410 pte_t *ptep, pte; 411 int ret; 412 413 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 414 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 415 (FOLL_PIN | FOLL_GET))) 416 return ERR_PTR(-EINVAL); 417 retry: 418 if (unlikely(pmd_bad(*pmd))) 419 return no_page_table(vma, flags); 420 421 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 422 pte = *ptep; 423 if (!pte_present(pte)) { 424 swp_entry_t entry; 425 /* 426 * KSM's break_ksm() relies upon recognizing a ksm page 427 * even while it is being migrated, so for that case we 428 * need migration_entry_wait(). 429 */ 430 if (likely(!(flags & FOLL_MIGRATION))) 431 goto no_page; 432 if (pte_none(pte)) 433 goto no_page; 434 entry = pte_to_swp_entry(pte); 435 if (!is_migration_entry(entry)) 436 goto no_page; 437 pte_unmap_unlock(ptep, ptl); 438 migration_entry_wait(mm, pmd, address); 439 goto retry; 440 } 441 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 442 goto no_page; 443 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 444 pte_unmap_unlock(ptep, ptl); 445 return NULL; 446 } 447 448 page = vm_normal_page(vma, address, pte); 449 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 450 /* 451 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 452 * case since they are only valid while holding the pgmap 453 * reference. 454 */ 455 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 456 if (*pgmap) 457 page = pte_page(pte); 458 else 459 goto no_page; 460 } else if (unlikely(!page)) { 461 if (flags & FOLL_DUMP) { 462 /* Avoid special (like zero) pages in core dumps */ 463 page = ERR_PTR(-EFAULT); 464 goto out; 465 } 466 467 if (is_zero_pfn(pte_pfn(pte))) { 468 page = pte_page(pte); 469 } else { 470 ret = follow_pfn_pte(vma, address, ptep, flags); 471 page = ERR_PTR(ret); 472 goto out; 473 } 474 } 475 476 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 477 get_page(page); 478 pte_unmap_unlock(ptep, ptl); 479 lock_page(page); 480 ret = split_huge_page(page); 481 unlock_page(page); 482 put_page(page); 483 if (ret) 484 return ERR_PTR(ret); 485 goto retry; 486 } 487 488 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 489 if (unlikely(!try_grab_page(page, flags))) { 490 page = ERR_PTR(-ENOMEM); 491 goto out; 492 } 493 /* 494 * We need to make the page accessible if and only if we are going 495 * to access its content (the FOLL_PIN case). Please see 496 * Documentation/core-api/pin_user_pages.rst for details. 497 */ 498 if (flags & FOLL_PIN) { 499 ret = arch_make_page_accessible(page); 500 if (ret) { 501 unpin_user_page(page); 502 page = ERR_PTR(ret); 503 goto out; 504 } 505 } 506 if (flags & FOLL_TOUCH) { 507 if ((flags & FOLL_WRITE) && 508 !pte_dirty(pte) && !PageDirty(page)) 509 set_page_dirty(page); 510 /* 511 * pte_mkyoung() would be more correct here, but atomic care 512 * is needed to avoid losing the dirty bit: it is easier to use 513 * mark_page_accessed(). 514 */ 515 mark_page_accessed(page); 516 } 517 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 518 /* Do not mlock pte-mapped THP */ 519 if (PageTransCompound(page)) 520 goto out; 521 522 /* 523 * The preliminary mapping check is mainly to avoid the 524 * pointless overhead of lock_page on the ZERO_PAGE 525 * which might bounce very badly if there is contention. 526 * 527 * If the page is already locked, we don't need to 528 * handle it now - vmscan will handle it later if and 529 * when it attempts to reclaim the page. 530 */ 531 if (page->mapping && trylock_page(page)) { 532 lru_add_drain(); /* push cached pages to LRU */ 533 /* 534 * Because we lock page here, and migration is 535 * blocked by the pte's page reference, and we 536 * know the page is still mapped, we don't even 537 * need to check for file-cache page truncation. 538 */ 539 mlock_vma_page(page); 540 unlock_page(page); 541 } 542 } 543 out: 544 pte_unmap_unlock(ptep, ptl); 545 return page; 546 no_page: 547 pte_unmap_unlock(ptep, ptl); 548 if (!pte_none(pte)) 549 return NULL; 550 return no_page_table(vma, flags); 551 } 552 553 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 554 unsigned long address, pud_t *pudp, 555 unsigned int flags, 556 struct follow_page_context *ctx) 557 { 558 pmd_t *pmd, pmdval; 559 spinlock_t *ptl; 560 struct page *page; 561 struct mm_struct *mm = vma->vm_mm; 562 563 pmd = pmd_offset(pudp, address); 564 /* 565 * The READ_ONCE() will stabilize the pmdval in a register or 566 * on the stack so that it will stop changing under the code. 567 */ 568 pmdval = READ_ONCE(*pmd); 569 if (pmd_none(pmdval)) 570 return no_page_table(vma, flags); 571 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 572 page = follow_huge_pmd(mm, address, pmd, flags); 573 if (page) 574 return page; 575 return no_page_table(vma, flags); 576 } 577 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 578 page = follow_huge_pd(vma, address, 579 __hugepd(pmd_val(pmdval)), flags, 580 PMD_SHIFT); 581 if (page) 582 return page; 583 return no_page_table(vma, flags); 584 } 585 retry: 586 if (!pmd_present(pmdval)) { 587 if (likely(!(flags & FOLL_MIGRATION))) 588 return no_page_table(vma, flags); 589 VM_BUG_ON(thp_migration_supported() && 590 !is_pmd_migration_entry(pmdval)); 591 if (is_pmd_migration_entry(pmdval)) 592 pmd_migration_entry_wait(mm, pmd); 593 pmdval = READ_ONCE(*pmd); 594 /* 595 * MADV_DONTNEED may convert the pmd to null because 596 * mmap_sem is held in read mode 597 */ 598 if (pmd_none(pmdval)) 599 return no_page_table(vma, flags); 600 goto retry; 601 } 602 if (pmd_devmap(pmdval)) { 603 ptl = pmd_lock(mm, pmd); 604 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 605 spin_unlock(ptl); 606 if (page) 607 return page; 608 } 609 if (likely(!pmd_trans_huge(pmdval))) 610 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 611 612 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 613 return no_page_table(vma, flags); 614 615 retry_locked: 616 ptl = pmd_lock(mm, pmd); 617 if (unlikely(pmd_none(*pmd))) { 618 spin_unlock(ptl); 619 return no_page_table(vma, flags); 620 } 621 if (unlikely(!pmd_present(*pmd))) { 622 spin_unlock(ptl); 623 if (likely(!(flags & FOLL_MIGRATION))) 624 return no_page_table(vma, flags); 625 pmd_migration_entry_wait(mm, pmd); 626 goto retry_locked; 627 } 628 if (unlikely(!pmd_trans_huge(*pmd))) { 629 spin_unlock(ptl); 630 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 631 } 632 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 633 int ret; 634 page = pmd_page(*pmd); 635 if (is_huge_zero_page(page)) { 636 spin_unlock(ptl); 637 ret = 0; 638 split_huge_pmd(vma, pmd, address); 639 if (pmd_trans_unstable(pmd)) 640 ret = -EBUSY; 641 } else if (flags & FOLL_SPLIT) { 642 if (unlikely(!try_get_page(page))) { 643 spin_unlock(ptl); 644 return ERR_PTR(-ENOMEM); 645 } 646 spin_unlock(ptl); 647 lock_page(page); 648 ret = split_huge_page(page); 649 unlock_page(page); 650 put_page(page); 651 if (pmd_none(*pmd)) 652 return no_page_table(vma, flags); 653 } else { /* flags & FOLL_SPLIT_PMD */ 654 spin_unlock(ptl); 655 split_huge_pmd(vma, pmd, address); 656 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 657 } 658 659 return ret ? ERR_PTR(ret) : 660 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 661 } 662 page = follow_trans_huge_pmd(vma, address, pmd, flags); 663 spin_unlock(ptl); 664 ctx->page_mask = HPAGE_PMD_NR - 1; 665 return page; 666 } 667 668 static struct page *follow_pud_mask(struct vm_area_struct *vma, 669 unsigned long address, p4d_t *p4dp, 670 unsigned int flags, 671 struct follow_page_context *ctx) 672 { 673 pud_t *pud; 674 spinlock_t *ptl; 675 struct page *page; 676 struct mm_struct *mm = vma->vm_mm; 677 678 pud = pud_offset(p4dp, address); 679 if (pud_none(*pud)) 680 return no_page_table(vma, flags); 681 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 682 page = follow_huge_pud(mm, address, pud, flags); 683 if (page) 684 return page; 685 return no_page_table(vma, flags); 686 } 687 if (is_hugepd(__hugepd(pud_val(*pud)))) { 688 page = follow_huge_pd(vma, address, 689 __hugepd(pud_val(*pud)), flags, 690 PUD_SHIFT); 691 if (page) 692 return page; 693 return no_page_table(vma, flags); 694 } 695 if (pud_devmap(*pud)) { 696 ptl = pud_lock(mm, pud); 697 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 698 spin_unlock(ptl); 699 if (page) 700 return page; 701 } 702 if (unlikely(pud_bad(*pud))) 703 return no_page_table(vma, flags); 704 705 return follow_pmd_mask(vma, address, pud, flags, ctx); 706 } 707 708 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 709 unsigned long address, pgd_t *pgdp, 710 unsigned int flags, 711 struct follow_page_context *ctx) 712 { 713 p4d_t *p4d; 714 struct page *page; 715 716 p4d = p4d_offset(pgdp, address); 717 if (p4d_none(*p4d)) 718 return no_page_table(vma, flags); 719 BUILD_BUG_ON(p4d_huge(*p4d)); 720 if (unlikely(p4d_bad(*p4d))) 721 return no_page_table(vma, flags); 722 723 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 724 page = follow_huge_pd(vma, address, 725 __hugepd(p4d_val(*p4d)), flags, 726 P4D_SHIFT); 727 if (page) 728 return page; 729 return no_page_table(vma, flags); 730 } 731 return follow_pud_mask(vma, address, p4d, flags, ctx); 732 } 733 734 /** 735 * follow_page_mask - look up a page descriptor from a user-virtual address 736 * @vma: vm_area_struct mapping @address 737 * @address: virtual address to look up 738 * @flags: flags modifying lookup behaviour 739 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 740 * pointer to output page_mask 741 * 742 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 743 * 744 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 745 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 746 * 747 * On output, the @ctx->page_mask is set according to the size of the page. 748 * 749 * Return: the mapped (struct page *), %NULL if no mapping exists, or 750 * an error pointer if there is a mapping to something not represented 751 * by a page descriptor (see also vm_normal_page()). 752 */ 753 static struct page *follow_page_mask(struct vm_area_struct *vma, 754 unsigned long address, unsigned int flags, 755 struct follow_page_context *ctx) 756 { 757 pgd_t *pgd; 758 struct page *page; 759 struct mm_struct *mm = vma->vm_mm; 760 761 ctx->page_mask = 0; 762 763 /* make this handle hugepd */ 764 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 765 if (!IS_ERR(page)) { 766 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 767 return page; 768 } 769 770 pgd = pgd_offset(mm, address); 771 772 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 773 return no_page_table(vma, flags); 774 775 if (pgd_huge(*pgd)) { 776 page = follow_huge_pgd(mm, address, pgd, flags); 777 if (page) 778 return page; 779 return no_page_table(vma, flags); 780 } 781 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 782 page = follow_huge_pd(vma, address, 783 __hugepd(pgd_val(*pgd)), flags, 784 PGDIR_SHIFT); 785 if (page) 786 return page; 787 return no_page_table(vma, flags); 788 } 789 790 return follow_p4d_mask(vma, address, pgd, flags, ctx); 791 } 792 793 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 794 unsigned int foll_flags) 795 { 796 struct follow_page_context ctx = { NULL }; 797 struct page *page; 798 799 page = follow_page_mask(vma, address, foll_flags, &ctx); 800 if (ctx.pgmap) 801 put_dev_pagemap(ctx.pgmap); 802 return page; 803 } 804 805 static int get_gate_page(struct mm_struct *mm, unsigned long address, 806 unsigned int gup_flags, struct vm_area_struct **vma, 807 struct page **page) 808 { 809 pgd_t *pgd; 810 p4d_t *p4d; 811 pud_t *pud; 812 pmd_t *pmd; 813 pte_t *pte; 814 int ret = -EFAULT; 815 816 /* user gate pages are read-only */ 817 if (gup_flags & FOLL_WRITE) 818 return -EFAULT; 819 if (address > TASK_SIZE) 820 pgd = pgd_offset_k(address); 821 else 822 pgd = pgd_offset_gate(mm, address); 823 if (pgd_none(*pgd)) 824 return -EFAULT; 825 p4d = p4d_offset(pgd, address); 826 if (p4d_none(*p4d)) 827 return -EFAULT; 828 pud = pud_offset(p4d, address); 829 if (pud_none(*pud)) 830 return -EFAULT; 831 pmd = pmd_offset(pud, address); 832 if (!pmd_present(*pmd)) 833 return -EFAULT; 834 VM_BUG_ON(pmd_trans_huge(*pmd)); 835 pte = pte_offset_map(pmd, address); 836 if (pte_none(*pte)) 837 goto unmap; 838 *vma = get_gate_vma(mm); 839 if (!page) 840 goto out; 841 *page = vm_normal_page(*vma, address, *pte); 842 if (!*page) { 843 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 844 goto unmap; 845 *page = pte_page(*pte); 846 } 847 if (unlikely(!try_get_page(*page))) { 848 ret = -ENOMEM; 849 goto unmap; 850 } 851 out: 852 ret = 0; 853 unmap: 854 pte_unmap(pte); 855 return ret; 856 } 857 858 /* 859 * mmap_sem must be held on entry. If @locked != NULL and *@flags 860 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it 861 * is, *@locked will be set to 0 and -EBUSY returned. 862 */ 863 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 864 unsigned long address, unsigned int *flags, int *locked) 865 { 866 unsigned int fault_flags = 0; 867 vm_fault_t ret; 868 869 /* mlock all present pages, but do not fault in new pages */ 870 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 871 return -ENOENT; 872 if (*flags & FOLL_WRITE) 873 fault_flags |= FAULT_FLAG_WRITE; 874 if (*flags & FOLL_REMOTE) 875 fault_flags |= FAULT_FLAG_REMOTE; 876 if (locked) 877 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 878 if (*flags & FOLL_NOWAIT) 879 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 880 if (*flags & FOLL_TRIED) { 881 /* 882 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 883 * can co-exist 884 */ 885 fault_flags |= FAULT_FLAG_TRIED; 886 } 887 888 ret = handle_mm_fault(vma, address, fault_flags); 889 if (ret & VM_FAULT_ERROR) { 890 int err = vm_fault_to_errno(ret, *flags); 891 892 if (err) 893 return err; 894 BUG(); 895 } 896 897 if (tsk) { 898 if (ret & VM_FAULT_MAJOR) 899 tsk->maj_flt++; 900 else 901 tsk->min_flt++; 902 } 903 904 if (ret & VM_FAULT_RETRY) { 905 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 906 *locked = 0; 907 return -EBUSY; 908 } 909 910 /* 911 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 912 * necessary, even if maybe_mkwrite decided not to set pte_write. We 913 * can thus safely do subsequent page lookups as if they were reads. 914 * But only do so when looping for pte_write is futile: in some cases 915 * userspace may also be wanting to write to the gotten user page, 916 * which a read fault here might prevent (a readonly page might get 917 * reCOWed by userspace write). 918 */ 919 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 920 *flags |= FOLL_COW; 921 return 0; 922 } 923 924 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 925 { 926 vm_flags_t vm_flags = vma->vm_flags; 927 int write = (gup_flags & FOLL_WRITE); 928 int foreign = (gup_flags & FOLL_REMOTE); 929 930 if (vm_flags & (VM_IO | VM_PFNMAP)) 931 return -EFAULT; 932 933 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 934 return -EFAULT; 935 936 if (write) { 937 if (!(vm_flags & VM_WRITE)) { 938 if (!(gup_flags & FOLL_FORCE)) 939 return -EFAULT; 940 /* 941 * We used to let the write,force case do COW in a 942 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 943 * set a breakpoint in a read-only mapping of an 944 * executable, without corrupting the file (yet only 945 * when that file had been opened for writing!). 946 * Anon pages in shared mappings are surprising: now 947 * just reject it. 948 */ 949 if (!is_cow_mapping(vm_flags)) 950 return -EFAULT; 951 } 952 } else if (!(vm_flags & VM_READ)) { 953 if (!(gup_flags & FOLL_FORCE)) 954 return -EFAULT; 955 /* 956 * Is there actually any vma we can reach here which does not 957 * have VM_MAYREAD set? 958 */ 959 if (!(vm_flags & VM_MAYREAD)) 960 return -EFAULT; 961 } 962 /* 963 * gups are always data accesses, not instruction 964 * fetches, so execute=false here 965 */ 966 if (!arch_vma_access_permitted(vma, write, false, foreign)) 967 return -EFAULT; 968 return 0; 969 } 970 971 /** 972 * __get_user_pages() - pin user pages in memory 973 * @tsk: task_struct of target task 974 * @mm: mm_struct of target mm 975 * @start: starting user address 976 * @nr_pages: number of pages from start to pin 977 * @gup_flags: flags modifying pin behaviour 978 * @pages: array that receives pointers to the pages pinned. 979 * Should be at least nr_pages long. Or NULL, if caller 980 * only intends to ensure the pages are faulted in. 981 * @vmas: array of pointers to vmas corresponding to each page. 982 * Or NULL if the caller does not require them. 983 * @locked: whether we're still with the mmap_sem held 984 * 985 * Returns either number of pages pinned (which may be less than the 986 * number requested), or an error. Details about the return value: 987 * 988 * -- If nr_pages is 0, returns 0. 989 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 990 * -- If nr_pages is >0, and some pages were pinned, returns the number of 991 * pages pinned. Again, this may be less than nr_pages. 992 * 993 * The caller is responsible for releasing returned @pages, via put_page(). 994 * 995 * @vmas are valid only as long as mmap_sem is held. 996 * 997 * Must be called with mmap_sem held. It may be released. See below. 998 * 999 * __get_user_pages walks a process's page tables and takes a reference to 1000 * each struct page that each user address corresponds to at a given 1001 * instant. That is, it takes the page that would be accessed if a user 1002 * thread accesses the given user virtual address at that instant. 1003 * 1004 * This does not guarantee that the page exists in the user mappings when 1005 * __get_user_pages returns, and there may even be a completely different 1006 * page there in some cases (eg. if mmapped pagecache has been invalidated 1007 * and subsequently re faulted). However it does guarantee that the page 1008 * won't be freed completely. And mostly callers simply care that the page 1009 * contains data that was valid *at some point in time*. Typically, an IO 1010 * or similar operation cannot guarantee anything stronger anyway because 1011 * locks can't be held over the syscall boundary. 1012 * 1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1015 * appropriate) must be called after the page is finished with, and 1016 * before put_page is called. 1017 * 1018 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is 1019 * released by an up_read(). That can happen if @gup_flags does not 1020 * have FOLL_NOWAIT. 1021 * 1022 * A caller using such a combination of @locked and @gup_flags 1023 * must therefore hold the mmap_sem for reading only, and recognize 1024 * when it's been released. Otherwise, it must be held for either 1025 * reading or writing and will not be released. 1026 * 1027 * In most cases, get_user_pages or get_user_pages_fast should be used 1028 * instead of __get_user_pages. __get_user_pages should be used only if 1029 * you need some special @gup_flags. 1030 */ 1031 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1032 unsigned long start, unsigned long nr_pages, 1033 unsigned int gup_flags, struct page **pages, 1034 struct vm_area_struct **vmas, int *locked) 1035 { 1036 long ret = 0, i = 0; 1037 struct vm_area_struct *vma = NULL; 1038 struct follow_page_context ctx = { NULL }; 1039 1040 if (!nr_pages) 1041 return 0; 1042 1043 start = untagged_addr(start); 1044 1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1046 1047 /* 1048 * If FOLL_FORCE is set then do not force a full fault as the hinting 1049 * fault information is unrelated to the reference behaviour of a task 1050 * using the address space 1051 */ 1052 if (!(gup_flags & FOLL_FORCE)) 1053 gup_flags |= FOLL_NUMA; 1054 1055 do { 1056 struct page *page; 1057 unsigned int foll_flags = gup_flags; 1058 unsigned int page_increm; 1059 1060 /* first iteration or cross vma bound */ 1061 if (!vma || start >= vma->vm_end) { 1062 vma = find_extend_vma(mm, start); 1063 if (!vma && in_gate_area(mm, start)) { 1064 ret = get_gate_page(mm, start & PAGE_MASK, 1065 gup_flags, &vma, 1066 pages ? &pages[i] : NULL); 1067 if (ret) 1068 goto out; 1069 ctx.page_mask = 0; 1070 goto next_page; 1071 } 1072 1073 if (!vma || check_vma_flags(vma, gup_flags)) { 1074 ret = -EFAULT; 1075 goto out; 1076 } 1077 if (is_vm_hugetlb_page(vma)) { 1078 if (should_force_cow_break(vma, foll_flags)) 1079 foll_flags |= FOLL_WRITE; 1080 i = follow_hugetlb_page(mm, vma, pages, vmas, 1081 &start, &nr_pages, i, 1082 foll_flags, locked); 1083 if (locked && *locked == 0) { 1084 /* 1085 * We've got a VM_FAULT_RETRY 1086 * and we've lost mmap_sem. 1087 * We must stop here. 1088 */ 1089 BUG_ON(gup_flags & FOLL_NOWAIT); 1090 BUG_ON(ret != 0); 1091 goto out; 1092 } 1093 continue; 1094 } 1095 } 1096 1097 if (should_force_cow_break(vma, foll_flags)) 1098 foll_flags |= FOLL_WRITE; 1099 1100 retry: 1101 /* 1102 * If we have a pending SIGKILL, don't keep faulting pages and 1103 * potentially allocating memory. 1104 */ 1105 if (fatal_signal_pending(current)) { 1106 ret = -EINTR; 1107 goto out; 1108 } 1109 cond_resched(); 1110 1111 page = follow_page_mask(vma, start, foll_flags, &ctx); 1112 if (!page) { 1113 ret = faultin_page(tsk, vma, start, &foll_flags, 1114 locked); 1115 switch (ret) { 1116 case 0: 1117 goto retry; 1118 case -EBUSY: 1119 ret = 0; 1120 fallthrough; 1121 case -EFAULT: 1122 case -ENOMEM: 1123 case -EHWPOISON: 1124 goto out; 1125 case -ENOENT: 1126 goto next_page; 1127 } 1128 BUG(); 1129 } else if (PTR_ERR(page) == -EEXIST) { 1130 /* 1131 * Proper page table entry exists, but no corresponding 1132 * struct page. 1133 */ 1134 goto next_page; 1135 } else if (IS_ERR(page)) { 1136 ret = PTR_ERR(page); 1137 goto out; 1138 } 1139 if (pages) { 1140 pages[i] = page; 1141 flush_anon_page(vma, page, start); 1142 flush_dcache_page(page); 1143 ctx.page_mask = 0; 1144 } 1145 next_page: 1146 if (vmas) { 1147 vmas[i] = vma; 1148 ctx.page_mask = 0; 1149 } 1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1151 if (page_increm > nr_pages) 1152 page_increm = nr_pages; 1153 i += page_increm; 1154 start += page_increm * PAGE_SIZE; 1155 nr_pages -= page_increm; 1156 } while (nr_pages); 1157 out: 1158 if (ctx.pgmap) 1159 put_dev_pagemap(ctx.pgmap); 1160 return i ? i : ret; 1161 } 1162 1163 static bool vma_permits_fault(struct vm_area_struct *vma, 1164 unsigned int fault_flags) 1165 { 1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1169 1170 if (!(vm_flags & vma->vm_flags)) 1171 return false; 1172 1173 /* 1174 * The architecture might have a hardware protection 1175 * mechanism other than read/write that can deny access. 1176 * 1177 * gup always represents data access, not instruction 1178 * fetches, so execute=false here: 1179 */ 1180 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1181 return false; 1182 1183 return true; 1184 } 1185 1186 /** 1187 * fixup_user_fault() - manually resolve a user page fault 1188 * @tsk: the task_struct to use for page fault accounting, or 1189 * NULL if faults are not to be recorded. 1190 * @mm: mm_struct of target mm 1191 * @address: user address 1192 * @fault_flags:flags to pass down to handle_mm_fault() 1193 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 1194 * does not allow retry. If NULL, the caller must guarantee 1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1196 * 1197 * This is meant to be called in the specific scenario where for locking reasons 1198 * we try to access user memory in atomic context (within a pagefault_disable() 1199 * section), this returns -EFAULT, and we want to resolve the user fault before 1200 * trying again. 1201 * 1202 * Typically this is meant to be used by the futex code. 1203 * 1204 * The main difference with get_user_pages() is that this function will 1205 * unconditionally call handle_mm_fault() which will in turn perform all the 1206 * necessary SW fixup of the dirty and young bits in the PTE, while 1207 * get_user_pages() only guarantees to update these in the struct page. 1208 * 1209 * This is important for some architectures where those bits also gate the 1210 * access permission to the page because they are maintained in software. On 1211 * such architectures, gup() will not be enough to make a subsequent access 1212 * succeed. 1213 * 1214 * This function will not return with an unlocked mmap_sem. So it has not the 1215 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 1216 */ 1217 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1218 unsigned long address, unsigned int fault_flags, 1219 bool *unlocked) 1220 { 1221 struct vm_area_struct *vma; 1222 vm_fault_t ret, major = 0; 1223 1224 address = untagged_addr(address); 1225 1226 if (unlocked) 1227 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1228 1229 retry: 1230 vma = find_extend_vma(mm, address); 1231 if (!vma || address < vma->vm_start) 1232 return -EFAULT; 1233 1234 if (!vma_permits_fault(vma, fault_flags)) 1235 return -EFAULT; 1236 1237 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1238 fatal_signal_pending(current)) 1239 return -EINTR; 1240 1241 ret = handle_mm_fault(vma, address, fault_flags); 1242 major |= ret & VM_FAULT_MAJOR; 1243 if (ret & VM_FAULT_ERROR) { 1244 int err = vm_fault_to_errno(ret, 0); 1245 1246 if (err) 1247 return err; 1248 BUG(); 1249 } 1250 1251 if (ret & VM_FAULT_RETRY) { 1252 down_read(&mm->mmap_sem); 1253 *unlocked = true; 1254 fault_flags |= FAULT_FLAG_TRIED; 1255 goto retry; 1256 } 1257 1258 if (tsk) { 1259 if (major) 1260 tsk->maj_flt++; 1261 else 1262 tsk->min_flt++; 1263 } 1264 return 0; 1265 } 1266 EXPORT_SYMBOL_GPL(fixup_user_fault); 1267 1268 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1269 struct mm_struct *mm, 1270 unsigned long start, 1271 unsigned long nr_pages, 1272 struct page **pages, 1273 struct vm_area_struct **vmas, 1274 int *locked, 1275 unsigned int flags) 1276 { 1277 long ret, pages_done; 1278 bool lock_dropped; 1279 1280 if (locked) { 1281 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1282 BUG_ON(vmas); 1283 /* check caller initialized locked */ 1284 BUG_ON(*locked != 1); 1285 } 1286 1287 /* 1288 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1289 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1290 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1291 * for FOLL_GET, not for the newer FOLL_PIN. 1292 * 1293 * FOLL_PIN always expects pages to be non-null, but no need to assert 1294 * that here, as any failures will be obvious enough. 1295 */ 1296 if (pages && !(flags & FOLL_PIN)) 1297 flags |= FOLL_GET; 1298 1299 pages_done = 0; 1300 lock_dropped = false; 1301 for (;;) { 1302 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1303 vmas, locked); 1304 if (!locked) 1305 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1306 return ret; 1307 1308 /* VM_FAULT_RETRY cannot return errors */ 1309 if (!*locked) { 1310 BUG_ON(ret < 0); 1311 BUG_ON(ret >= nr_pages); 1312 } 1313 1314 if (ret > 0) { 1315 nr_pages -= ret; 1316 pages_done += ret; 1317 if (!nr_pages) 1318 break; 1319 } 1320 if (*locked) { 1321 /* 1322 * VM_FAULT_RETRY didn't trigger or it was a 1323 * FOLL_NOWAIT. 1324 */ 1325 if (!pages_done) 1326 pages_done = ret; 1327 break; 1328 } 1329 /* 1330 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1331 * For the prefault case (!pages) we only update counts. 1332 */ 1333 if (likely(pages)) 1334 pages += ret; 1335 start += ret << PAGE_SHIFT; 1336 lock_dropped = true; 1337 1338 retry: 1339 /* 1340 * Repeat on the address that fired VM_FAULT_RETRY 1341 * with both FAULT_FLAG_ALLOW_RETRY and 1342 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1343 * by fatal signals, so we need to check it before we 1344 * start trying again otherwise it can loop forever. 1345 */ 1346 1347 if (fatal_signal_pending(current)) { 1348 if (!pages_done) 1349 pages_done = -EINTR; 1350 break; 1351 } 1352 1353 ret = down_read_killable(&mm->mmap_sem); 1354 if (ret) { 1355 BUG_ON(ret > 0); 1356 if (!pages_done) 1357 pages_done = ret; 1358 break; 1359 } 1360 1361 *locked = 1; 1362 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1363 pages, NULL, locked); 1364 if (!*locked) { 1365 /* Continue to retry until we succeeded */ 1366 BUG_ON(ret != 0); 1367 goto retry; 1368 } 1369 if (ret != 1) { 1370 BUG_ON(ret > 1); 1371 if (!pages_done) 1372 pages_done = ret; 1373 break; 1374 } 1375 nr_pages--; 1376 pages_done++; 1377 if (!nr_pages) 1378 break; 1379 if (likely(pages)) 1380 pages++; 1381 start += PAGE_SIZE; 1382 } 1383 if (lock_dropped && *locked) { 1384 /* 1385 * We must let the caller know we temporarily dropped the lock 1386 * and so the critical section protected by it was lost. 1387 */ 1388 up_read(&mm->mmap_sem); 1389 *locked = 0; 1390 } 1391 return pages_done; 1392 } 1393 1394 /** 1395 * populate_vma_page_range() - populate a range of pages in the vma. 1396 * @vma: target vma 1397 * @start: start address 1398 * @end: end address 1399 * @locked: whether the mmap_sem is still held 1400 * 1401 * This takes care of mlocking the pages too if VM_LOCKED is set. 1402 * 1403 * return 0 on success, negative error code on error. 1404 * 1405 * vma->vm_mm->mmap_sem must be held. 1406 * 1407 * If @locked is NULL, it may be held for read or write and will 1408 * be unperturbed. 1409 * 1410 * If @locked is non-NULL, it must held for read only and may be 1411 * released. If it's released, *@locked will be set to 0. 1412 */ 1413 long populate_vma_page_range(struct vm_area_struct *vma, 1414 unsigned long start, unsigned long end, int *locked) 1415 { 1416 struct mm_struct *mm = vma->vm_mm; 1417 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1418 int gup_flags; 1419 1420 VM_BUG_ON(start & ~PAGE_MASK); 1421 VM_BUG_ON(end & ~PAGE_MASK); 1422 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1423 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1424 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1425 1426 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1427 if (vma->vm_flags & VM_LOCKONFAULT) 1428 gup_flags &= ~FOLL_POPULATE; 1429 /* 1430 * We want to touch writable mappings with a write fault in order 1431 * to break COW, except for shared mappings because these don't COW 1432 * and we would not want to dirty them for nothing. 1433 */ 1434 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1435 gup_flags |= FOLL_WRITE; 1436 1437 /* 1438 * We want mlock to succeed for regions that have any permissions 1439 * other than PROT_NONE. 1440 */ 1441 if (vma_is_accessible(vma)) 1442 gup_flags |= FOLL_FORCE; 1443 1444 /* 1445 * We made sure addr is within a VMA, so the following will 1446 * not result in a stack expansion that recurses back here. 1447 */ 1448 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1449 NULL, NULL, locked); 1450 } 1451 1452 /* 1453 * __mm_populate - populate and/or mlock pages within a range of address space. 1454 * 1455 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1456 * flags. VMAs must be already marked with the desired vm_flags, and 1457 * mmap_sem must not be held. 1458 */ 1459 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1460 { 1461 struct mm_struct *mm = current->mm; 1462 unsigned long end, nstart, nend; 1463 struct vm_area_struct *vma = NULL; 1464 int locked = 0; 1465 long ret = 0; 1466 1467 end = start + len; 1468 1469 for (nstart = start; nstart < end; nstart = nend) { 1470 /* 1471 * We want to fault in pages for [nstart; end) address range. 1472 * Find first corresponding VMA. 1473 */ 1474 if (!locked) { 1475 locked = 1; 1476 down_read(&mm->mmap_sem); 1477 vma = find_vma(mm, nstart); 1478 } else if (nstart >= vma->vm_end) 1479 vma = vma->vm_next; 1480 if (!vma || vma->vm_start >= end) 1481 break; 1482 /* 1483 * Set [nstart; nend) to intersection of desired address 1484 * range with the first VMA. Also, skip undesirable VMA types. 1485 */ 1486 nend = min(end, vma->vm_end); 1487 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1488 continue; 1489 if (nstart < vma->vm_start) 1490 nstart = vma->vm_start; 1491 /* 1492 * Now fault in a range of pages. populate_vma_page_range() 1493 * double checks the vma flags, so that it won't mlock pages 1494 * if the vma was already munlocked. 1495 */ 1496 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1497 if (ret < 0) { 1498 if (ignore_errors) { 1499 ret = 0; 1500 continue; /* continue at next VMA */ 1501 } 1502 break; 1503 } 1504 nend = nstart + ret * PAGE_SIZE; 1505 ret = 0; 1506 } 1507 if (locked) 1508 up_read(&mm->mmap_sem); 1509 return ret; /* 0 or negative error code */ 1510 } 1511 1512 /** 1513 * get_dump_page() - pin user page in memory while writing it to core dump 1514 * @addr: user address 1515 * 1516 * Returns struct page pointer of user page pinned for dump, 1517 * to be freed afterwards by put_page(). 1518 * 1519 * Returns NULL on any kind of failure - a hole must then be inserted into 1520 * the corefile, to preserve alignment with its headers; and also returns 1521 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1522 * allowing a hole to be left in the corefile to save diskspace. 1523 * 1524 * Called without mmap_sem, but after all other threads have been killed. 1525 */ 1526 #ifdef CONFIG_ELF_CORE 1527 struct page *get_dump_page(unsigned long addr) 1528 { 1529 struct vm_area_struct *vma; 1530 struct page *page; 1531 1532 if (__get_user_pages(current, current->mm, addr, 1, 1533 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1534 NULL) < 1) 1535 return NULL; 1536 flush_cache_page(vma, addr, page_to_pfn(page)); 1537 return page; 1538 } 1539 #endif /* CONFIG_ELF_CORE */ 1540 #else /* CONFIG_MMU */ 1541 static long __get_user_pages_locked(struct task_struct *tsk, 1542 struct mm_struct *mm, unsigned long start, 1543 unsigned long nr_pages, struct page **pages, 1544 struct vm_area_struct **vmas, int *locked, 1545 unsigned int foll_flags) 1546 { 1547 struct vm_area_struct *vma; 1548 unsigned long vm_flags; 1549 int i; 1550 1551 /* calculate required read or write permissions. 1552 * If FOLL_FORCE is set, we only require the "MAY" flags. 1553 */ 1554 vm_flags = (foll_flags & FOLL_WRITE) ? 1555 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1556 vm_flags &= (foll_flags & FOLL_FORCE) ? 1557 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1558 1559 for (i = 0; i < nr_pages; i++) { 1560 vma = find_vma(mm, start); 1561 if (!vma) 1562 goto finish_or_fault; 1563 1564 /* protect what we can, including chardevs */ 1565 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1566 !(vm_flags & vma->vm_flags)) 1567 goto finish_or_fault; 1568 1569 if (pages) { 1570 pages[i] = virt_to_page(start); 1571 if (pages[i]) 1572 get_page(pages[i]); 1573 } 1574 if (vmas) 1575 vmas[i] = vma; 1576 start = (start + PAGE_SIZE) & PAGE_MASK; 1577 } 1578 1579 return i; 1580 1581 finish_or_fault: 1582 return i ? : -EFAULT; 1583 } 1584 #endif /* !CONFIG_MMU */ 1585 1586 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1587 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1588 { 1589 long i; 1590 struct vm_area_struct *vma_prev = NULL; 1591 1592 for (i = 0; i < nr_pages; i++) { 1593 struct vm_area_struct *vma = vmas[i]; 1594 1595 if (vma == vma_prev) 1596 continue; 1597 1598 vma_prev = vma; 1599 1600 if (vma_is_fsdax(vma)) 1601 return true; 1602 } 1603 return false; 1604 } 1605 1606 #ifdef CONFIG_CMA 1607 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1608 { 1609 /* 1610 * We want to make sure we allocate the new page from the same node 1611 * as the source page. 1612 */ 1613 int nid = page_to_nid(page); 1614 /* 1615 * Trying to allocate a page for migration. Ignore allocation 1616 * failure warnings. We don't force __GFP_THISNODE here because 1617 * this node here is the node where we have CMA reservation and 1618 * in some case these nodes will have really less non movable 1619 * allocation memory. 1620 */ 1621 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1622 1623 if (PageHighMem(page)) 1624 gfp_mask |= __GFP_HIGHMEM; 1625 1626 #ifdef CONFIG_HUGETLB_PAGE 1627 if (PageHuge(page)) { 1628 struct hstate *h = page_hstate(page); 1629 /* 1630 * We don't want to dequeue from the pool because pool pages will 1631 * mostly be from the CMA region. 1632 */ 1633 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1634 } 1635 #endif 1636 if (PageTransHuge(page)) { 1637 struct page *thp; 1638 /* 1639 * ignore allocation failure warnings 1640 */ 1641 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1642 1643 /* 1644 * Remove the movable mask so that we don't allocate from 1645 * CMA area again. 1646 */ 1647 thp_gfpmask &= ~__GFP_MOVABLE; 1648 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1649 if (!thp) 1650 return NULL; 1651 prep_transhuge_page(thp); 1652 return thp; 1653 } 1654 1655 return __alloc_pages_node(nid, gfp_mask, 0); 1656 } 1657 1658 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1659 struct mm_struct *mm, 1660 unsigned long start, 1661 unsigned long nr_pages, 1662 struct page **pages, 1663 struct vm_area_struct **vmas, 1664 unsigned int gup_flags) 1665 { 1666 unsigned long i; 1667 unsigned long step; 1668 bool drain_allow = true; 1669 bool migrate_allow = true; 1670 LIST_HEAD(cma_page_list); 1671 long ret = nr_pages; 1672 1673 check_again: 1674 for (i = 0; i < nr_pages;) { 1675 1676 struct page *head = compound_head(pages[i]); 1677 1678 /* 1679 * gup may start from a tail page. Advance step by the left 1680 * part. 1681 */ 1682 step = compound_nr(head) - (pages[i] - head); 1683 /* 1684 * If we get a page from the CMA zone, since we are going to 1685 * be pinning these entries, we might as well move them out 1686 * of the CMA zone if possible. 1687 */ 1688 if (is_migrate_cma_page(head)) { 1689 if (PageHuge(head)) 1690 isolate_huge_page(head, &cma_page_list); 1691 else { 1692 if (!PageLRU(head) && drain_allow) { 1693 lru_add_drain_all(); 1694 drain_allow = false; 1695 } 1696 1697 if (!isolate_lru_page(head)) { 1698 list_add_tail(&head->lru, &cma_page_list); 1699 mod_node_page_state(page_pgdat(head), 1700 NR_ISOLATED_ANON + 1701 page_is_file_lru(head), 1702 hpage_nr_pages(head)); 1703 } 1704 } 1705 } 1706 1707 i += step; 1708 } 1709 1710 if (!list_empty(&cma_page_list)) { 1711 /* 1712 * drop the above get_user_pages reference. 1713 */ 1714 for (i = 0; i < nr_pages; i++) 1715 put_page(pages[i]); 1716 1717 if (migrate_pages(&cma_page_list, new_non_cma_page, 1718 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1719 /* 1720 * some of the pages failed migration. Do get_user_pages 1721 * without migration. 1722 */ 1723 migrate_allow = false; 1724 1725 if (!list_empty(&cma_page_list)) 1726 putback_movable_pages(&cma_page_list); 1727 } 1728 /* 1729 * We did migrate all the pages, Try to get the page references 1730 * again migrating any new CMA pages which we failed to isolate 1731 * earlier. 1732 */ 1733 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1734 pages, vmas, NULL, 1735 gup_flags); 1736 1737 if ((ret > 0) && migrate_allow) { 1738 nr_pages = ret; 1739 drain_allow = true; 1740 goto check_again; 1741 } 1742 } 1743 1744 return ret; 1745 } 1746 #else 1747 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1748 struct mm_struct *mm, 1749 unsigned long start, 1750 unsigned long nr_pages, 1751 struct page **pages, 1752 struct vm_area_struct **vmas, 1753 unsigned int gup_flags) 1754 { 1755 return nr_pages; 1756 } 1757 #endif /* CONFIG_CMA */ 1758 1759 /* 1760 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1761 * allows us to process the FOLL_LONGTERM flag. 1762 */ 1763 static long __gup_longterm_locked(struct task_struct *tsk, 1764 struct mm_struct *mm, 1765 unsigned long start, 1766 unsigned long nr_pages, 1767 struct page **pages, 1768 struct vm_area_struct **vmas, 1769 unsigned int gup_flags) 1770 { 1771 struct vm_area_struct **vmas_tmp = vmas; 1772 unsigned long flags = 0; 1773 long rc, i; 1774 1775 if (gup_flags & FOLL_LONGTERM) { 1776 if (!pages) 1777 return -EINVAL; 1778 1779 if (!vmas_tmp) { 1780 vmas_tmp = kcalloc(nr_pages, 1781 sizeof(struct vm_area_struct *), 1782 GFP_KERNEL); 1783 if (!vmas_tmp) 1784 return -ENOMEM; 1785 } 1786 flags = memalloc_nocma_save(); 1787 } 1788 1789 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1790 vmas_tmp, NULL, gup_flags); 1791 1792 if (gup_flags & FOLL_LONGTERM) { 1793 memalloc_nocma_restore(flags); 1794 if (rc < 0) 1795 goto out; 1796 1797 if (check_dax_vmas(vmas_tmp, rc)) { 1798 for (i = 0; i < rc; i++) 1799 put_page(pages[i]); 1800 rc = -EOPNOTSUPP; 1801 goto out; 1802 } 1803 1804 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1805 vmas_tmp, gup_flags); 1806 } 1807 1808 out: 1809 if (vmas_tmp != vmas) 1810 kfree(vmas_tmp); 1811 return rc; 1812 } 1813 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1814 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1815 struct mm_struct *mm, 1816 unsigned long start, 1817 unsigned long nr_pages, 1818 struct page **pages, 1819 struct vm_area_struct **vmas, 1820 unsigned int flags) 1821 { 1822 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1823 NULL, flags); 1824 } 1825 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1826 1827 #ifdef CONFIG_MMU 1828 static long __get_user_pages_remote(struct task_struct *tsk, 1829 struct mm_struct *mm, 1830 unsigned long start, unsigned long nr_pages, 1831 unsigned int gup_flags, struct page **pages, 1832 struct vm_area_struct **vmas, int *locked) 1833 { 1834 /* 1835 * Parts of FOLL_LONGTERM behavior are incompatible with 1836 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1837 * vmas. However, this only comes up if locked is set, and there are 1838 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1839 * allow what we can. 1840 */ 1841 if (gup_flags & FOLL_LONGTERM) { 1842 if (WARN_ON_ONCE(locked)) 1843 return -EINVAL; 1844 /* 1845 * This will check the vmas (even if our vmas arg is NULL) 1846 * and return -ENOTSUPP if DAX isn't allowed in this case: 1847 */ 1848 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1849 vmas, gup_flags | FOLL_TOUCH | 1850 FOLL_REMOTE); 1851 } 1852 1853 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1854 locked, 1855 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1856 } 1857 1858 /** 1859 * get_user_pages_remote() - pin user pages in memory 1860 * @tsk: the task_struct to use for page fault accounting, or 1861 * NULL if faults are not to be recorded. 1862 * @mm: mm_struct of target mm 1863 * @start: starting user address 1864 * @nr_pages: number of pages from start to pin 1865 * @gup_flags: flags modifying lookup behaviour 1866 * @pages: array that receives pointers to the pages pinned. 1867 * Should be at least nr_pages long. Or NULL, if caller 1868 * only intends to ensure the pages are faulted in. 1869 * @vmas: array of pointers to vmas corresponding to each page. 1870 * Or NULL if the caller does not require them. 1871 * @locked: pointer to lock flag indicating whether lock is held and 1872 * subsequently whether VM_FAULT_RETRY functionality can be 1873 * utilised. Lock must initially be held. 1874 * 1875 * Returns either number of pages pinned (which may be less than the 1876 * number requested), or an error. Details about the return value: 1877 * 1878 * -- If nr_pages is 0, returns 0. 1879 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1880 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1881 * pages pinned. Again, this may be less than nr_pages. 1882 * 1883 * The caller is responsible for releasing returned @pages, via put_page(). 1884 * 1885 * @vmas are valid only as long as mmap_sem is held. 1886 * 1887 * Must be called with mmap_sem held for read or write. 1888 * 1889 * get_user_pages_remote walks a process's page tables and takes a reference 1890 * to each struct page that each user address corresponds to at a given 1891 * instant. That is, it takes the page that would be accessed if a user 1892 * thread accesses the given user virtual address at that instant. 1893 * 1894 * This does not guarantee that the page exists in the user mappings when 1895 * get_user_pages_remote returns, and there may even be a completely different 1896 * page there in some cases (eg. if mmapped pagecache has been invalidated 1897 * and subsequently re faulted). However it does guarantee that the page 1898 * won't be freed completely. And mostly callers simply care that the page 1899 * contains data that was valid *at some point in time*. Typically, an IO 1900 * or similar operation cannot guarantee anything stronger anyway because 1901 * locks can't be held over the syscall boundary. 1902 * 1903 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1904 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1905 * be called after the page is finished with, and before put_page is called. 1906 * 1907 * get_user_pages_remote is typically used for fewer-copy IO operations, 1908 * to get a handle on the memory by some means other than accesses 1909 * via the user virtual addresses. The pages may be submitted for 1910 * DMA to devices or accessed via their kernel linear mapping (via the 1911 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 1912 * 1913 * See also get_user_pages_fast, for performance critical applications. 1914 * 1915 * get_user_pages_remote should be phased out in favor of 1916 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1917 * should use get_user_pages_remote because it cannot pass 1918 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1919 */ 1920 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1921 unsigned long start, unsigned long nr_pages, 1922 unsigned int gup_flags, struct page **pages, 1923 struct vm_area_struct **vmas, int *locked) 1924 { 1925 /* 1926 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1927 * never directly by the caller, so enforce that with an assertion: 1928 */ 1929 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1930 return -EINVAL; 1931 1932 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1933 pages, vmas, locked); 1934 } 1935 EXPORT_SYMBOL(get_user_pages_remote); 1936 1937 #else /* CONFIG_MMU */ 1938 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1939 unsigned long start, unsigned long nr_pages, 1940 unsigned int gup_flags, struct page **pages, 1941 struct vm_area_struct **vmas, int *locked) 1942 { 1943 return 0; 1944 } 1945 1946 static long __get_user_pages_remote(struct task_struct *tsk, 1947 struct mm_struct *mm, 1948 unsigned long start, unsigned long nr_pages, 1949 unsigned int gup_flags, struct page **pages, 1950 struct vm_area_struct **vmas, int *locked) 1951 { 1952 return 0; 1953 } 1954 #endif /* !CONFIG_MMU */ 1955 1956 /** 1957 * get_user_pages() - pin user pages in memory 1958 * @start: starting user address 1959 * @nr_pages: number of pages from start to pin 1960 * @gup_flags: flags modifying lookup behaviour 1961 * @pages: array that receives pointers to the pages pinned. 1962 * Should be at least nr_pages long. Or NULL, if caller 1963 * only intends to ensure the pages are faulted in. 1964 * @vmas: array of pointers to vmas corresponding to each page. 1965 * Or NULL if the caller does not require them. 1966 * 1967 * This is the same as get_user_pages_remote(), just with a 1968 * less-flexible calling convention where we assume that the task 1969 * and mm being operated on are the current task's and don't allow 1970 * passing of a locked parameter. We also obviously don't pass 1971 * FOLL_REMOTE in here. 1972 */ 1973 long get_user_pages(unsigned long start, unsigned long nr_pages, 1974 unsigned int gup_flags, struct page **pages, 1975 struct vm_area_struct **vmas) 1976 { 1977 /* 1978 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1979 * never directly by the caller, so enforce that with an assertion: 1980 */ 1981 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1982 return -EINVAL; 1983 1984 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1985 pages, vmas, gup_flags | FOLL_TOUCH); 1986 } 1987 EXPORT_SYMBOL(get_user_pages); 1988 1989 /** 1990 * get_user_pages_locked() is suitable to replace the form: 1991 * 1992 * down_read(&mm->mmap_sem); 1993 * do_something() 1994 * get_user_pages(tsk, mm, ..., pages, NULL); 1995 * up_read(&mm->mmap_sem); 1996 * 1997 * to: 1998 * 1999 * int locked = 1; 2000 * down_read(&mm->mmap_sem); 2001 * do_something() 2002 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 2003 * if (locked) 2004 * up_read(&mm->mmap_sem); 2005 * 2006 * @start: starting user address 2007 * @nr_pages: number of pages from start to pin 2008 * @gup_flags: flags modifying lookup behaviour 2009 * @pages: array that receives pointers to the pages pinned. 2010 * Should be at least nr_pages long. Or NULL, if caller 2011 * only intends to ensure the pages are faulted in. 2012 * @locked: pointer to lock flag indicating whether lock is held and 2013 * subsequently whether VM_FAULT_RETRY functionality can be 2014 * utilised. Lock must initially be held. 2015 * 2016 * We can leverage the VM_FAULT_RETRY functionality in the page fault 2017 * paths better by using either get_user_pages_locked() or 2018 * get_user_pages_unlocked(). 2019 * 2020 */ 2021 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 2022 unsigned int gup_flags, struct page **pages, 2023 int *locked) 2024 { 2025 /* 2026 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2027 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2028 * vmas. As there are no users of this flag in this call we simply 2029 * disallow this option for now. 2030 */ 2031 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2032 return -EINVAL; 2033 2034 return __get_user_pages_locked(current, current->mm, start, nr_pages, 2035 pages, NULL, locked, 2036 gup_flags | FOLL_TOUCH); 2037 } 2038 EXPORT_SYMBOL(get_user_pages_locked); 2039 2040 /* 2041 * get_user_pages_unlocked() is suitable to replace the form: 2042 * 2043 * down_read(&mm->mmap_sem); 2044 * get_user_pages(tsk, mm, ..., pages, NULL); 2045 * up_read(&mm->mmap_sem); 2046 * 2047 * with: 2048 * 2049 * get_user_pages_unlocked(tsk, mm, ..., pages); 2050 * 2051 * It is functionally equivalent to get_user_pages_fast so 2052 * get_user_pages_fast should be used instead if specific gup_flags 2053 * (e.g. FOLL_FORCE) are not required. 2054 */ 2055 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2056 struct page **pages, unsigned int gup_flags) 2057 { 2058 struct mm_struct *mm = current->mm; 2059 int locked = 1; 2060 long ret; 2061 2062 /* 2063 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2064 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2065 * vmas. As there are no users of this flag in this call we simply 2066 * disallow this option for now. 2067 */ 2068 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2069 return -EINVAL; 2070 2071 down_read(&mm->mmap_sem); 2072 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2073 &locked, gup_flags | FOLL_TOUCH); 2074 if (locked) 2075 up_read(&mm->mmap_sem); 2076 return ret; 2077 } 2078 EXPORT_SYMBOL(get_user_pages_unlocked); 2079 2080 /* 2081 * Fast GUP 2082 * 2083 * get_user_pages_fast attempts to pin user pages by walking the page 2084 * tables directly and avoids taking locks. Thus the walker needs to be 2085 * protected from page table pages being freed from under it, and should 2086 * block any THP splits. 2087 * 2088 * One way to achieve this is to have the walker disable interrupts, and 2089 * rely on IPIs from the TLB flushing code blocking before the page table 2090 * pages are freed. This is unsuitable for architectures that do not need 2091 * to broadcast an IPI when invalidating TLBs. 2092 * 2093 * Another way to achieve this is to batch up page table containing pages 2094 * belonging to more than one mm_user, then rcu_sched a callback to free those 2095 * pages. Disabling interrupts will allow the fast_gup walker to both block 2096 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2097 * (which is a relatively rare event). The code below adopts this strategy. 2098 * 2099 * Before activating this code, please be aware that the following assumptions 2100 * are currently made: 2101 * 2102 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2103 * free pages containing page tables or TLB flushing requires IPI broadcast. 2104 * 2105 * *) ptes can be read atomically by the architecture. 2106 * 2107 * *) access_ok is sufficient to validate userspace address ranges. 2108 * 2109 * The last two assumptions can be relaxed by the addition of helper functions. 2110 * 2111 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2112 */ 2113 #ifdef CONFIG_HAVE_FAST_GUP 2114 2115 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2116 { 2117 if (flags & FOLL_PIN) { 2118 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2119 refs); 2120 2121 if (hpage_pincount_available(page)) 2122 hpage_pincount_sub(page, refs); 2123 else 2124 refs *= GUP_PIN_COUNTING_BIAS; 2125 } 2126 2127 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2128 /* 2129 * Calling put_page() for each ref is unnecessarily slow. Only the last 2130 * ref needs a put_page(). 2131 */ 2132 if (refs > 1) 2133 page_ref_sub(page, refs - 1); 2134 put_page(page); 2135 } 2136 2137 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2138 2139 /* 2140 * WARNING: only to be used in the get_user_pages_fast() implementation. 2141 * 2142 * With get_user_pages_fast(), we walk down the pagetables without taking any 2143 * locks. For this we would like to load the pointers atomically, but sometimes 2144 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2145 * we do have is the guarantee that a PTE will only either go from not present 2146 * to present, or present to not present or both -- it will not switch to a 2147 * completely different present page without a TLB flush in between; something 2148 * that we are blocking by holding interrupts off. 2149 * 2150 * Setting ptes from not present to present goes: 2151 * 2152 * ptep->pte_high = h; 2153 * smp_wmb(); 2154 * ptep->pte_low = l; 2155 * 2156 * And present to not present goes: 2157 * 2158 * ptep->pte_low = 0; 2159 * smp_wmb(); 2160 * ptep->pte_high = 0; 2161 * 2162 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2163 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2164 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2165 * picked up a changed pte high. We might have gotten rubbish values from 2166 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2167 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2168 * operates on present ptes we're safe. 2169 */ 2170 static inline pte_t gup_get_pte(pte_t *ptep) 2171 { 2172 pte_t pte; 2173 2174 do { 2175 pte.pte_low = ptep->pte_low; 2176 smp_rmb(); 2177 pte.pte_high = ptep->pte_high; 2178 smp_rmb(); 2179 } while (unlikely(pte.pte_low != ptep->pte_low)); 2180 2181 return pte; 2182 } 2183 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2184 /* 2185 * We require that the PTE can be read atomically. 2186 */ 2187 static inline pte_t gup_get_pte(pte_t *ptep) 2188 { 2189 return READ_ONCE(*ptep); 2190 } 2191 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2192 2193 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2194 unsigned int flags, 2195 struct page **pages) 2196 { 2197 while ((*nr) - nr_start) { 2198 struct page *page = pages[--(*nr)]; 2199 2200 ClearPageReferenced(page); 2201 if (flags & FOLL_PIN) 2202 unpin_user_page(page); 2203 else 2204 put_page(page); 2205 } 2206 } 2207 2208 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2209 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2210 unsigned int flags, struct page **pages, int *nr) 2211 { 2212 struct dev_pagemap *pgmap = NULL; 2213 int nr_start = *nr, ret = 0; 2214 pte_t *ptep, *ptem; 2215 2216 ptem = ptep = pte_offset_map(&pmd, addr); 2217 do { 2218 pte_t pte = gup_get_pte(ptep); 2219 struct page *head, *page; 2220 2221 /* 2222 * Similar to the PMD case below, NUMA hinting must take slow 2223 * path using the pte_protnone check. 2224 */ 2225 if (pte_protnone(pte)) 2226 goto pte_unmap; 2227 2228 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2229 goto pte_unmap; 2230 2231 if (pte_devmap(pte)) { 2232 if (unlikely(flags & FOLL_LONGTERM)) 2233 goto pte_unmap; 2234 2235 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2236 if (unlikely(!pgmap)) { 2237 undo_dev_pagemap(nr, nr_start, flags, pages); 2238 goto pte_unmap; 2239 } 2240 } else if (pte_special(pte)) 2241 goto pte_unmap; 2242 2243 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2244 page = pte_page(pte); 2245 2246 head = try_grab_compound_head(page, 1, flags); 2247 if (!head) 2248 goto pte_unmap; 2249 2250 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2251 put_compound_head(head, 1, flags); 2252 goto pte_unmap; 2253 } 2254 2255 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2256 2257 /* 2258 * We need to make the page accessible if and only if we are 2259 * going to access its content (the FOLL_PIN case). Please 2260 * see Documentation/core-api/pin_user_pages.rst for 2261 * details. 2262 */ 2263 if (flags & FOLL_PIN) { 2264 ret = arch_make_page_accessible(page); 2265 if (ret) { 2266 unpin_user_page(page); 2267 goto pte_unmap; 2268 } 2269 } 2270 SetPageReferenced(page); 2271 pages[*nr] = page; 2272 (*nr)++; 2273 2274 } while (ptep++, addr += PAGE_SIZE, addr != end); 2275 2276 ret = 1; 2277 2278 pte_unmap: 2279 if (pgmap) 2280 put_dev_pagemap(pgmap); 2281 pte_unmap(ptem); 2282 return ret; 2283 } 2284 #else 2285 2286 /* 2287 * If we can't determine whether or not a pte is special, then fail immediately 2288 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2289 * to be special. 2290 * 2291 * For a futex to be placed on a THP tail page, get_futex_key requires a 2292 * __get_user_pages_fast implementation that can pin pages. Thus it's still 2293 * useful to have gup_huge_pmd even if we can't operate on ptes. 2294 */ 2295 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2296 unsigned int flags, struct page **pages, int *nr) 2297 { 2298 return 0; 2299 } 2300 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2301 2302 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2303 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2304 unsigned long end, unsigned int flags, 2305 struct page **pages, int *nr) 2306 { 2307 int nr_start = *nr; 2308 struct dev_pagemap *pgmap = NULL; 2309 2310 do { 2311 struct page *page = pfn_to_page(pfn); 2312 2313 pgmap = get_dev_pagemap(pfn, pgmap); 2314 if (unlikely(!pgmap)) { 2315 undo_dev_pagemap(nr, nr_start, flags, pages); 2316 return 0; 2317 } 2318 SetPageReferenced(page); 2319 pages[*nr] = page; 2320 if (unlikely(!try_grab_page(page, flags))) { 2321 undo_dev_pagemap(nr, nr_start, flags, pages); 2322 return 0; 2323 } 2324 (*nr)++; 2325 pfn++; 2326 } while (addr += PAGE_SIZE, addr != end); 2327 2328 if (pgmap) 2329 put_dev_pagemap(pgmap); 2330 return 1; 2331 } 2332 2333 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2334 unsigned long end, unsigned int flags, 2335 struct page **pages, int *nr) 2336 { 2337 unsigned long fault_pfn; 2338 int nr_start = *nr; 2339 2340 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2341 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2342 return 0; 2343 2344 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2345 undo_dev_pagemap(nr, nr_start, flags, pages); 2346 return 0; 2347 } 2348 return 1; 2349 } 2350 2351 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2352 unsigned long end, unsigned int flags, 2353 struct page **pages, int *nr) 2354 { 2355 unsigned long fault_pfn; 2356 int nr_start = *nr; 2357 2358 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2359 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2360 return 0; 2361 2362 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2363 undo_dev_pagemap(nr, nr_start, flags, pages); 2364 return 0; 2365 } 2366 return 1; 2367 } 2368 #else 2369 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2370 unsigned long end, unsigned int flags, 2371 struct page **pages, int *nr) 2372 { 2373 BUILD_BUG(); 2374 return 0; 2375 } 2376 2377 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2378 unsigned long end, unsigned int flags, 2379 struct page **pages, int *nr) 2380 { 2381 BUILD_BUG(); 2382 return 0; 2383 } 2384 #endif 2385 2386 static int record_subpages(struct page *page, unsigned long addr, 2387 unsigned long end, struct page **pages) 2388 { 2389 int nr; 2390 2391 for (nr = 0; addr != end; addr += PAGE_SIZE) 2392 pages[nr++] = page++; 2393 2394 return nr; 2395 } 2396 2397 #ifdef CONFIG_ARCH_HAS_HUGEPD 2398 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2399 unsigned long sz) 2400 { 2401 unsigned long __boundary = (addr + sz) & ~(sz-1); 2402 return (__boundary - 1 < end - 1) ? __boundary : end; 2403 } 2404 2405 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2406 unsigned long end, unsigned int flags, 2407 struct page **pages, int *nr) 2408 { 2409 unsigned long pte_end; 2410 struct page *head, *page; 2411 pte_t pte; 2412 int refs; 2413 2414 pte_end = (addr + sz) & ~(sz-1); 2415 if (pte_end < end) 2416 end = pte_end; 2417 2418 pte = READ_ONCE(*ptep); 2419 2420 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2421 return 0; 2422 2423 /* hugepages are never "special" */ 2424 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2425 2426 head = pte_page(pte); 2427 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2428 refs = record_subpages(page, addr, end, pages + *nr); 2429 2430 head = try_grab_compound_head(head, refs, flags); 2431 if (!head) 2432 return 0; 2433 2434 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2435 put_compound_head(head, refs, flags); 2436 return 0; 2437 } 2438 2439 *nr += refs; 2440 SetPageReferenced(head); 2441 return 1; 2442 } 2443 2444 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2445 unsigned int pdshift, unsigned long end, unsigned int flags, 2446 struct page **pages, int *nr) 2447 { 2448 pte_t *ptep; 2449 unsigned long sz = 1UL << hugepd_shift(hugepd); 2450 unsigned long next; 2451 2452 ptep = hugepte_offset(hugepd, addr, pdshift); 2453 do { 2454 next = hugepte_addr_end(addr, end, sz); 2455 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2456 return 0; 2457 } while (ptep++, addr = next, addr != end); 2458 2459 return 1; 2460 } 2461 #else 2462 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2463 unsigned int pdshift, unsigned long end, unsigned int flags, 2464 struct page **pages, int *nr) 2465 { 2466 return 0; 2467 } 2468 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2469 2470 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2471 unsigned long end, unsigned int flags, 2472 struct page **pages, int *nr) 2473 { 2474 struct page *head, *page; 2475 int refs; 2476 2477 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2478 return 0; 2479 2480 if (pmd_devmap(orig)) { 2481 if (unlikely(flags & FOLL_LONGTERM)) 2482 return 0; 2483 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2484 pages, nr); 2485 } 2486 2487 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2488 refs = record_subpages(page, addr, end, pages + *nr); 2489 2490 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2491 if (!head) 2492 return 0; 2493 2494 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2495 put_compound_head(head, refs, flags); 2496 return 0; 2497 } 2498 2499 *nr += refs; 2500 SetPageReferenced(head); 2501 return 1; 2502 } 2503 2504 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2505 unsigned long end, unsigned int flags, 2506 struct page **pages, int *nr) 2507 { 2508 struct page *head, *page; 2509 int refs; 2510 2511 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2512 return 0; 2513 2514 if (pud_devmap(orig)) { 2515 if (unlikely(flags & FOLL_LONGTERM)) 2516 return 0; 2517 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2518 pages, nr); 2519 } 2520 2521 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2522 refs = record_subpages(page, addr, end, pages + *nr); 2523 2524 head = try_grab_compound_head(pud_page(orig), refs, flags); 2525 if (!head) 2526 return 0; 2527 2528 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2529 put_compound_head(head, refs, flags); 2530 return 0; 2531 } 2532 2533 *nr += refs; 2534 SetPageReferenced(head); 2535 return 1; 2536 } 2537 2538 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2539 unsigned long end, unsigned int flags, 2540 struct page **pages, int *nr) 2541 { 2542 int refs; 2543 struct page *head, *page; 2544 2545 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2546 return 0; 2547 2548 BUILD_BUG_ON(pgd_devmap(orig)); 2549 2550 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2551 refs = record_subpages(page, addr, end, pages + *nr); 2552 2553 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2554 if (!head) 2555 return 0; 2556 2557 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2558 put_compound_head(head, refs, flags); 2559 return 0; 2560 } 2561 2562 *nr += refs; 2563 SetPageReferenced(head); 2564 return 1; 2565 } 2566 2567 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2568 unsigned int flags, struct page **pages, int *nr) 2569 { 2570 unsigned long next; 2571 pmd_t *pmdp; 2572 2573 pmdp = pmd_offset(&pud, addr); 2574 do { 2575 pmd_t pmd = READ_ONCE(*pmdp); 2576 2577 next = pmd_addr_end(addr, end); 2578 if (!pmd_present(pmd)) 2579 return 0; 2580 2581 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2582 pmd_devmap(pmd))) { 2583 /* 2584 * NUMA hinting faults need to be handled in the GUP 2585 * slowpath for accounting purposes and so that they 2586 * can be serialised against THP migration. 2587 */ 2588 if (pmd_protnone(pmd)) 2589 return 0; 2590 2591 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2592 pages, nr)) 2593 return 0; 2594 2595 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2596 /* 2597 * architecture have different format for hugetlbfs 2598 * pmd format and THP pmd format 2599 */ 2600 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2601 PMD_SHIFT, next, flags, pages, nr)) 2602 return 0; 2603 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2604 return 0; 2605 } while (pmdp++, addr = next, addr != end); 2606 2607 return 1; 2608 } 2609 2610 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2611 unsigned int flags, struct page **pages, int *nr) 2612 { 2613 unsigned long next; 2614 pud_t *pudp; 2615 2616 pudp = pud_offset(&p4d, addr); 2617 do { 2618 pud_t pud = READ_ONCE(*pudp); 2619 2620 next = pud_addr_end(addr, end); 2621 if (unlikely(!pud_present(pud))) 2622 return 0; 2623 if (unlikely(pud_huge(pud))) { 2624 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2625 pages, nr)) 2626 return 0; 2627 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2628 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2629 PUD_SHIFT, next, flags, pages, nr)) 2630 return 0; 2631 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2632 return 0; 2633 } while (pudp++, addr = next, addr != end); 2634 2635 return 1; 2636 } 2637 2638 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2639 unsigned int flags, struct page **pages, int *nr) 2640 { 2641 unsigned long next; 2642 p4d_t *p4dp; 2643 2644 p4dp = p4d_offset(&pgd, addr); 2645 do { 2646 p4d_t p4d = READ_ONCE(*p4dp); 2647 2648 next = p4d_addr_end(addr, end); 2649 if (p4d_none(p4d)) 2650 return 0; 2651 BUILD_BUG_ON(p4d_huge(p4d)); 2652 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2653 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2654 P4D_SHIFT, next, flags, pages, nr)) 2655 return 0; 2656 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2657 return 0; 2658 } while (p4dp++, addr = next, addr != end); 2659 2660 return 1; 2661 } 2662 2663 static void gup_pgd_range(unsigned long addr, unsigned long end, 2664 unsigned int flags, struct page **pages, int *nr) 2665 { 2666 unsigned long next; 2667 pgd_t *pgdp; 2668 2669 pgdp = pgd_offset(current->mm, addr); 2670 do { 2671 pgd_t pgd = READ_ONCE(*pgdp); 2672 2673 next = pgd_addr_end(addr, end); 2674 if (pgd_none(pgd)) 2675 return; 2676 if (unlikely(pgd_huge(pgd))) { 2677 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2678 pages, nr)) 2679 return; 2680 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2681 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2682 PGDIR_SHIFT, next, flags, pages, nr)) 2683 return; 2684 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2685 return; 2686 } while (pgdp++, addr = next, addr != end); 2687 } 2688 #else 2689 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2690 unsigned int flags, struct page **pages, int *nr) 2691 { 2692 } 2693 #endif /* CONFIG_HAVE_FAST_GUP */ 2694 2695 #ifndef gup_fast_permitted 2696 /* 2697 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2698 * we need to fall back to the slow version: 2699 */ 2700 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2701 { 2702 return true; 2703 } 2704 #endif 2705 2706 /* 2707 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2708 * the regular GUP. 2709 * Note a difference with get_user_pages_fast: this always returns the 2710 * number of pages pinned, 0 if no pages were pinned. 2711 * 2712 * If the architecture does not support this function, simply return with no 2713 * pages pinned. 2714 * 2715 * Careful, careful! COW breaking can go either way, so a non-write 2716 * access can get ambiguous page results. If you call this function without 2717 * 'write' set, you'd better be sure that you're ok with that ambiguity. 2718 */ 2719 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2720 struct page **pages) 2721 { 2722 unsigned long len, end; 2723 unsigned long flags; 2724 int nr_pinned = 0; 2725 /* 2726 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2727 * because gup fast is always a "pin with a +1 page refcount" request. 2728 */ 2729 unsigned int gup_flags = FOLL_GET; 2730 2731 if (write) 2732 gup_flags |= FOLL_WRITE; 2733 2734 start = untagged_addr(start) & PAGE_MASK; 2735 len = (unsigned long) nr_pages << PAGE_SHIFT; 2736 end = start + len; 2737 2738 if (end <= start) 2739 return 0; 2740 if (unlikely(!access_ok((void __user *)start, len))) 2741 return 0; 2742 2743 /* 2744 * Disable interrupts. We use the nested form as we can already have 2745 * interrupts disabled by get_futex_key. 2746 * 2747 * With interrupts disabled, we block page table pages from being 2748 * freed from under us. See struct mmu_table_batch comments in 2749 * include/asm-generic/tlb.h for more details. 2750 * 2751 * We do not adopt an rcu_read_lock(.) here as we also want to 2752 * block IPIs that come from THPs splitting. 2753 * 2754 * NOTE! We allow read-only gup_fast() here, but you'd better be 2755 * careful about possible COW pages. You'll get _a_ COW page, but 2756 * not necessarily the one you intended to get depending on what 2757 * COW event happens after this. COW may break the page copy in a 2758 * random direction. 2759 */ 2760 2761 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2762 gup_fast_permitted(start, end)) { 2763 local_irq_save(flags); 2764 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2765 local_irq_restore(flags); 2766 } 2767 2768 return nr_pinned; 2769 } 2770 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2771 2772 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2773 unsigned int gup_flags, struct page **pages) 2774 { 2775 int ret; 2776 2777 /* 2778 * FIXME: FOLL_LONGTERM does not work with 2779 * get_user_pages_unlocked() (see comments in that function) 2780 */ 2781 if (gup_flags & FOLL_LONGTERM) { 2782 down_read(¤t->mm->mmap_sem); 2783 ret = __gup_longterm_locked(current, current->mm, 2784 start, nr_pages, 2785 pages, NULL, gup_flags); 2786 up_read(¤t->mm->mmap_sem); 2787 } else { 2788 ret = get_user_pages_unlocked(start, nr_pages, 2789 pages, gup_flags); 2790 } 2791 2792 return ret; 2793 } 2794 2795 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2796 unsigned int gup_flags, 2797 struct page **pages) 2798 { 2799 unsigned long addr, len, end; 2800 int nr_pinned = 0, ret = 0; 2801 2802 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2803 FOLL_FORCE | FOLL_PIN | FOLL_GET))) 2804 return -EINVAL; 2805 2806 start = untagged_addr(start) & PAGE_MASK; 2807 addr = start; 2808 len = (unsigned long) nr_pages << PAGE_SHIFT; 2809 end = start + len; 2810 2811 if (end <= start) 2812 return 0; 2813 if (unlikely(!access_ok((void __user *)start, len))) 2814 return -EFAULT; 2815 2816 /* 2817 * The FAST_GUP case requires FOLL_WRITE even for pure reads, 2818 * because get_user_pages() may need to cause an early COW in 2819 * order to avoid confusing the normal COW routines. So only 2820 * targets that are already writable are safe to do by just 2821 * looking at the page tables. 2822 */ 2823 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2824 gup_fast_permitted(start, end)) { 2825 local_irq_disable(); 2826 gup_pgd_range(addr, end, gup_flags | FOLL_WRITE, pages, &nr_pinned); 2827 local_irq_enable(); 2828 ret = nr_pinned; 2829 } 2830 2831 if (nr_pinned < nr_pages) { 2832 /* Try to get the remaining pages with get_user_pages */ 2833 start += nr_pinned << PAGE_SHIFT; 2834 pages += nr_pinned; 2835 2836 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2837 gup_flags, pages); 2838 2839 /* Have to be a bit careful with return values */ 2840 if (nr_pinned > 0) { 2841 if (ret < 0) 2842 ret = nr_pinned; 2843 else 2844 ret += nr_pinned; 2845 } 2846 } 2847 2848 return ret; 2849 } 2850 2851 /** 2852 * get_user_pages_fast() - pin user pages in memory 2853 * @start: starting user address 2854 * @nr_pages: number of pages from start to pin 2855 * @gup_flags: flags modifying pin behaviour 2856 * @pages: array that receives pointers to the pages pinned. 2857 * Should be at least nr_pages long. 2858 * 2859 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2860 * If not successful, it will fall back to taking the lock and 2861 * calling get_user_pages(). 2862 * 2863 * Returns number of pages pinned. This may be fewer than the number requested. 2864 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2865 * -errno. 2866 */ 2867 int get_user_pages_fast(unsigned long start, int nr_pages, 2868 unsigned int gup_flags, struct page **pages) 2869 { 2870 /* 2871 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2872 * never directly by the caller, so enforce that: 2873 */ 2874 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2875 return -EINVAL; 2876 2877 /* 2878 * The caller may or may not have explicitly set FOLL_GET; either way is 2879 * OK. However, internally (within mm/gup.c), gup fast variants must set 2880 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2881 * request. 2882 */ 2883 gup_flags |= FOLL_GET; 2884 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2885 } 2886 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2887 2888 /** 2889 * pin_user_pages_fast() - pin user pages in memory without taking locks 2890 * 2891 * @start: starting user address 2892 * @nr_pages: number of pages from start to pin 2893 * @gup_flags: flags modifying pin behaviour 2894 * @pages: array that receives pointers to the pages pinned. 2895 * Should be at least nr_pages long. 2896 * 2897 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2898 * get_user_pages_fast() for documentation on the function arguments, because 2899 * the arguments here are identical. 2900 * 2901 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2902 * see Documentation/core-api/pin_user_pages.rst for further details. 2903 * 2904 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2905 * is NOT intended for Case 2 (RDMA: long-term pins). 2906 */ 2907 int pin_user_pages_fast(unsigned long start, int nr_pages, 2908 unsigned int gup_flags, struct page **pages) 2909 { 2910 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2911 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2912 return -EINVAL; 2913 2914 gup_flags |= FOLL_PIN; 2915 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2916 } 2917 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2918 2919 /** 2920 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2921 * 2922 * @tsk: the task_struct to use for page fault accounting, or 2923 * NULL if faults are not to be recorded. 2924 * @mm: mm_struct of target mm 2925 * @start: starting user address 2926 * @nr_pages: number of pages from start to pin 2927 * @gup_flags: flags modifying lookup behaviour 2928 * @pages: array that receives pointers to the pages pinned. 2929 * Should be at least nr_pages long. Or NULL, if caller 2930 * only intends to ensure the pages are faulted in. 2931 * @vmas: array of pointers to vmas corresponding to each page. 2932 * Or NULL if the caller does not require them. 2933 * @locked: pointer to lock flag indicating whether lock is held and 2934 * subsequently whether VM_FAULT_RETRY functionality can be 2935 * utilised. Lock must initially be held. 2936 * 2937 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2938 * get_user_pages_remote() for documentation on the function arguments, because 2939 * the arguments here are identical. 2940 * 2941 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2942 * see Documentation/core-api/pin_user_pages.rst for details. 2943 * 2944 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2945 * is NOT intended for Case 2 (RDMA: long-term pins). 2946 */ 2947 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2948 unsigned long start, unsigned long nr_pages, 2949 unsigned int gup_flags, struct page **pages, 2950 struct vm_area_struct **vmas, int *locked) 2951 { 2952 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2953 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2954 return -EINVAL; 2955 2956 gup_flags |= FOLL_PIN; 2957 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 2958 pages, vmas, locked); 2959 } 2960 EXPORT_SYMBOL(pin_user_pages_remote); 2961 2962 /** 2963 * pin_user_pages() - pin user pages in memory for use by other devices 2964 * 2965 * @start: starting user address 2966 * @nr_pages: number of pages from start to pin 2967 * @gup_flags: flags modifying lookup behaviour 2968 * @pages: array that receives pointers to the pages pinned. 2969 * Should be at least nr_pages long. Or NULL, if caller 2970 * only intends to ensure the pages are faulted in. 2971 * @vmas: array of pointers to vmas corresponding to each page. 2972 * Or NULL if the caller does not require them. 2973 * 2974 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2975 * FOLL_PIN is set. 2976 * 2977 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2978 * see Documentation/core-api/pin_user_pages.rst for details. 2979 * 2980 * This is intended for Case 1 (DIO) in Documentation/core-api/pin_user_pages.rst. It 2981 * is NOT intended for Case 2 (RDMA: long-term pins). 2982 */ 2983 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2984 unsigned int gup_flags, struct page **pages, 2985 struct vm_area_struct **vmas) 2986 { 2987 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2988 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2989 return -EINVAL; 2990 2991 gup_flags |= FOLL_PIN; 2992 return __gup_longterm_locked(current, current->mm, start, nr_pages, 2993 pages, vmas, gup_flags); 2994 } 2995 EXPORT_SYMBOL(pin_user_pages); 2996 2997 /* 2998 * pin_user_pages_unlocked() is the FOLL_PIN variant of 2999 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3000 * FOLL_PIN and rejects FOLL_GET. 3001 */ 3002 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3003 struct page **pages, unsigned int gup_flags) 3004 { 3005 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3006 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3007 return -EINVAL; 3008 3009 gup_flags |= FOLL_PIN; 3010 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3011 } 3012 EXPORT_SYMBOL(pin_user_pages_unlocked); 3013