xref: /linux/mm/gup.c (revision d4fffba4d04b8d605ff07f1ed987399f6af0ad5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static inline void sanity_check_pinned_pages(struct page **pages,
33 					     unsigned long npages)
34 {
35 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
36 		return;
37 
38 	/*
39 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 	 * can no longer turn them possibly shared and PageAnonExclusive() will
41 	 * stick around until the page is freed.
42 	 *
43 	 * We'd like to verify that our pinned anonymous pages are still mapped
44 	 * exclusively. The issue with anon THP is that we don't know how
45 	 * they are/were mapped when pinning them. However, for anon
46 	 * THP we can assume that either the given page (PTE-mapped THP) or
47 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 	 * neither is the case, there is certainly something wrong.
49 	 */
50 	for (; npages; npages--, pages++) {
51 		struct page *page = *pages;
52 		struct folio *folio = page_folio(page);
53 
54 		if (!folio_test_anon(folio))
55 			continue;
56 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
58 		else
59 			/* Either a PTE-mapped or a PMD-mapped THP. */
60 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 				       !PageAnonExclusive(page), page);
62 	}
63 }
64 
65 /*
66  * Return the folio with ref appropriately incremented,
67  * or NULL if that failed.
68  */
69 static inline struct folio *try_get_folio(struct page *page, int refs)
70 {
71 	struct folio *folio;
72 
73 retry:
74 	folio = page_folio(page);
75 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
76 		return NULL;
77 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
78 		return NULL;
79 
80 	/*
81 	 * At this point we have a stable reference to the folio; but it
82 	 * could be that between calling page_folio() and the refcount
83 	 * increment, the folio was split, in which case we'd end up
84 	 * holding a reference on a folio that has nothing to do with the page
85 	 * we were given anymore.
86 	 * So now that the folio is stable, recheck that the page still
87 	 * belongs to this folio.
88 	 */
89 	if (unlikely(page_folio(page) != folio)) {
90 		if (!put_devmap_managed_page_refs(&folio->page, refs))
91 			folio_put_refs(folio, refs);
92 		goto retry;
93 	}
94 
95 	return folio;
96 }
97 
98 /**
99  * try_grab_folio() - Attempt to get or pin a folio.
100  * @page:  pointer to page to be grabbed
101  * @refs:  the value to (effectively) add to the folio's refcount
102  * @flags: gup flags: these are the FOLL_* flag values.
103  *
104  * "grab" names in this file mean, "look at flags to decide whether to use
105  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
106  *
107  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108  * same time. (That's true throughout the get_user_pages*() and
109  * pin_user_pages*() APIs.) Cases:
110  *
111  *    FOLL_GET: folio's refcount will be incremented by @refs.
112  *
113  *    FOLL_PIN on large folios: folio's refcount will be incremented by
114  *    @refs, and its compound_pincount will be incremented by @refs.
115  *
116  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
117  *    @refs * GUP_PIN_COUNTING_BIAS.
118  *
119  * Return: The folio containing @page (with refcount appropriately
120  * incremented) for success, or NULL upon failure. If neither FOLL_GET
121  * nor FOLL_PIN was set, that's considered failure, and furthermore,
122  * a likely bug in the caller, so a warning is also emitted.
123  */
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
125 {
126 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
127 		return NULL;
128 
129 	if (flags & FOLL_GET)
130 		return try_get_folio(page, refs);
131 	else if (flags & FOLL_PIN) {
132 		struct folio *folio;
133 
134 		/*
135 		 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
136 		 * right zone, so fail and let the caller fall back to the slow
137 		 * path.
138 		 */
139 		if (unlikely((flags & FOLL_LONGTERM) &&
140 			     !is_longterm_pinnable_page(page)))
141 			return NULL;
142 
143 		/*
144 		 * CAUTION: Don't use compound_head() on the page before this
145 		 * point, the result won't be stable.
146 		 */
147 		folio = try_get_folio(page, refs);
148 		if (!folio)
149 			return NULL;
150 
151 		/*
152 		 * When pinning a large folio, use an exact count to track it.
153 		 *
154 		 * However, be sure to *also* increment the normal folio
155 		 * refcount field at least once, so that the folio really
156 		 * is pinned.  That's why the refcount from the earlier
157 		 * try_get_folio() is left intact.
158 		 */
159 		if (folio_test_large(folio))
160 			atomic_add(refs, folio_pincount_ptr(folio));
161 		else
162 			folio_ref_add(folio,
163 					refs * (GUP_PIN_COUNTING_BIAS - 1));
164 		/*
165 		 * Adjust the pincount before re-checking the PTE for changes.
166 		 * This is essentially a smp_mb() and is paired with a memory
167 		 * barrier in page_try_share_anon_rmap().
168 		 */
169 		smp_mb__after_atomic();
170 
171 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
172 
173 		return folio;
174 	}
175 
176 	WARN_ON_ONCE(1);
177 	return NULL;
178 }
179 
180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
181 {
182 	if (flags & FOLL_PIN) {
183 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
184 		if (folio_test_large(folio))
185 			atomic_sub(refs, folio_pincount_ptr(folio));
186 		else
187 			refs *= GUP_PIN_COUNTING_BIAS;
188 	}
189 
190 	if (!put_devmap_managed_page_refs(&folio->page, refs))
191 		folio_put_refs(folio, refs);
192 }
193 
194 /**
195  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
196  * @page:    pointer to page to be grabbed
197  * @flags:   gup flags: these are the FOLL_* flag values.
198  *
199  * This might not do anything at all, depending on the flags argument.
200  *
201  * "grab" names in this file mean, "look at flags to decide whether to use
202  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
203  *
204  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
205  * time. Cases: please see the try_grab_folio() documentation, with
206  * "refs=1".
207  *
208  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
209  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
210  *
211  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
212  *			be grabbed.
213  */
214 int __must_check try_grab_page(struct page *page, unsigned int flags)
215 {
216 	struct folio *folio = page_folio(page);
217 
218 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
219 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
220 		return -ENOMEM;
221 
222 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
223 		return -EREMOTEIO;
224 
225 	if (flags & FOLL_GET)
226 		folio_ref_inc(folio);
227 	else if (flags & FOLL_PIN) {
228 		/*
229 		 * Similar to try_grab_folio(): be sure to *also*
230 		 * increment the normal page refcount field at least once,
231 		 * so that the page really is pinned.
232 		 */
233 		if (folio_test_large(folio)) {
234 			folio_ref_add(folio, 1);
235 			atomic_add(1, folio_pincount_ptr(folio));
236 		} else {
237 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
238 		}
239 
240 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * unpin_user_page() - release a dma-pinned page
248  * @page:            pointer to page to be released
249  *
250  * Pages that were pinned via pin_user_pages*() must be released via either
251  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
252  * that such pages can be separately tracked and uniquely handled. In
253  * particular, interactions with RDMA and filesystems need special handling.
254  */
255 void unpin_user_page(struct page *page)
256 {
257 	sanity_check_pinned_pages(&page, 1);
258 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
259 }
260 EXPORT_SYMBOL(unpin_user_page);
261 
262 static inline struct folio *gup_folio_range_next(struct page *start,
263 		unsigned long npages, unsigned long i, unsigned int *ntails)
264 {
265 	struct page *next = nth_page(start, i);
266 	struct folio *folio = page_folio(next);
267 	unsigned int nr = 1;
268 
269 	if (folio_test_large(folio))
270 		nr = min_t(unsigned int, npages - i,
271 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
272 
273 	*ntails = nr;
274 	return folio;
275 }
276 
277 static inline struct folio *gup_folio_next(struct page **list,
278 		unsigned long npages, unsigned long i, unsigned int *ntails)
279 {
280 	struct folio *folio = page_folio(list[i]);
281 	unsigned int nr;
282 
283 	for (nr = i + 1; nr < npages; nr++) {
284 		if (page_folio(list[nr]) != folio)
285 			break;
286 	}
287 
288 	*ntails = nr - i;
289 	return folio;
290 }
291 
292 /**
293  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
294  * @pages:  array of pages to be maybe marked dirty, and definitely released.
295  * @npages: number of pages in the @pages array.
296  * @make_dirty: whether to mark the pages dirty
297  *
298  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
299  * variants called on that page.
300  *
301  * For each page in the @pages array, make that page (or its head page, if a
302  * compound page) dirty, if @make_dirty is true, and if the page was previously
303  * listed as clean. In any case, releases all pages using unpin_user_page(),
304  * possibly via unpin_user_pages(), for the non-dirty case.
305  *
306  * Please see the unpin_user_page() documentation for details.
307  *
308  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
309  * required, then the caller should a) verify that this is really correct,
310  * because _lock() is usually required, and b) hand code it:
311  * set_page_dirty_lock(), unpin_user_page().
312  *
313  */
314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
315 				 bool make_dirty)
316 {
317 	unsigned long i;
318 	struct folio *folio;
319 	unsigned int nr;
320 
321 	if (!make_dirty) {
322 		unpin_user_pages(pages, npages);
323 		return;
324 	}
325 
326 	sanity_check_pinned_pages(pages, npages);
327 	for (i = 0; i < npages; i += nr) {
328 		folio = gup_folio_next(pages, npages, i, &nr);
329 		/*
330 		 * Checking PageDirty at this point may race with
331 		 * clear_page_dirty_for_io(), but that's OK. Two key
332 		 * cases:
333 		 *
334 		 * 1) This code sees the page as already dirty, so it
335 		 * skips the call to set_page_dirty(). That could happen
336 		 * because clear_page_dirty_for_io() called
337 		 * page_mkclean(), followed by set_page_dirty().
338 		 * However, now the page is going to get written back,
339 		 * which meets the original intention of setting it
340 		 * dirty, so all is well: clear_page_dirty_for_io() goes
341 		 * on to call TestClearPageDirty(), and write the page
342 		 * back.
343 		 *
344 		 * 2) This code sees the page as clean, so it calls
345 		 * set_page_dirty(). The page stays dirty, despite being
346 		 * written back, so it gets written back again in the
347 		 * next writeback cycle. This is harmless.
348 		 */
349 		if (!folio_test_dirty(folio)) {
350 			folio_lock(folio);
351 			folio_mark_dirty(folio);
352 			folio_unlock(folio);
353 		}
354 		gup_put_folio(folio, nr, FOLL_PIN);
355 	}
356 }
357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
358 
359 /**
360  * unpin_user_page_range_dirty_lock() - release and optionally dirty
361  * gup-pinned page range
362  *
363  * @page:  the starting page of a range maybe marked dirty, and definitely released.
364  * @npages: number of consecutive pages to release.
365  * @make_dirty: whether to mark the pages dirty
366  *
367  * "gup-pinned page range" refers to a range of pages that has had one of the
368  * pin_user_pages() variants called on that page.
369  *
370  * For the page ranges defined by [page .. page+npages], make that range (or
371  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
372  * page range was previously listed as clean.
373  *
374  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
375  * required, then the caller should a) verify that this is really correct,
376  * because _lock() is usually required, and b) hand code it:
377  * set_page_dirty_lock(), unpin_user_page().
378  *
379  */
380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
381 				      bool make_dirty)
382 {
383 	unsigned long i;
384 	struct folio *folio;
385 	unsigned int nr;
386 
387 	for (i = 0; i < npages; i += nr) {
388 		folio = gup_folio_range_next(page, npages, i, &nr);
389 		if (make_dirty && !folio_test_dirty(folio)) {
390 			folio_lock(folio);
391 			folio_mark_dirty(folio);
392 			folio_unlock(folio);
393 		}
394 		gup_put_folio(folio, nr, FOLL_PIN);
395 	}
396 }
397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
398 
399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
400 {
401 	unsigned long i;
402 	struct folio *folio;
403 	unsigned int nr;
404 
405 	/*
406 	 * Don't perform any sanity checks because we might have raced with
407 	 * fork() and some anonymous pages might now actually be shared --
408 	 * which is why we're unpinning after all.
409 	 */
410 	for (i = 0; i < npages; i += nr) {
411 		folio = gup_folio_next(pages, npages, i, &nr);
412 		gup_put_folio(folio, nr, FOLL_PIN);
413 	}
414 }
415 
416 /**
417  * unpin_user_pages() - release an array of gup-pinned pages.
418  * @pages:  array of pages to be marked dirty and released.
419  * @npages: number of pages in the @pages array.
420  *
421  * For each page in the @pages array, release the page using unpin_user_page().
422  *
423  * Please see the unpin_user_page() documentation for details.
424  */
425 void unpin_user_pages(struct page **pages, unsigned long npages)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	/*
432 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
433 	 * leaving them pinned), but probably not. More likely, gup/pup returned
434 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
435 	 */
436 	if (WARN_ON(IS_ERR_VALUE(npages)))
437 		return;
438 
439 	sanity_check_pinned_pages(pages, npages);
440 	for (i = 0; i < npages; i += nr) {
441 		folio = gup_folio_next(pages, npages, i, &nr);
442 		gup_put_folio(folio, nr, FOLL_PIN);
443 	}
444 }
445 EXPORT_SYMBOL(unpin_user_pages);
446 
447 /*
448  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
449  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
450  * cache bouncing on large SMP machines for concurrent pinned gups.
451  */
452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
453 {
454 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
455 		set_bit(MMF_HAS_PINNED, mm_flags);
456 }
457 
458 #ifdef CONFIG_MMU
459 static struct page *no_page_table(struct vm_area_struct *vma,
460 		unsigned int flags)
461 {
462 	/*
463 	 * When core dumping an enormous anonymous area that nobody
464 	 * has touched so far, we don't want to allocate unnecessary pages or
465 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
466 	 * then get_dump_page() will return NULL to leave a hole in the dump.
467 	 * But we can only make this optimization where a hole would surely
468 	 * be zero-filled if handle_mm_fault() actually did handle it.
469 	 */
470 	if ((flags & FOLL_DUMP) &&
471 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
472 		return ERR_PTR(-EFAULT);
473 	return NULL;
474 }
475 
476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
477 		pte_t *pte, unsigned int flags)
478 {
479 	if (flags & FOLL_TOUCH) {
480 		pte_t entry = *pte;
481 
482 		if (flags & FOLL_WRITE)
483 			entry = pte_mkdirty(entry);
484 		entry = pte_mkyoung(entry);
485 
486 		if (!pte_same(*pte, entry)) {
487 			set_pte_at(vma->vm_mm, address, pte, entry);
488 			update_mmu_cache(vma, address, pte);
489 		}
490 	}
491 
492 	/* Proper page table entry exists, but no corresponding struct page */
493 	return -EEXIST;
494 }
495 
496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
497 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
498 					struct vm_area_struct *vma,
499 					unsigned int flags)
500 {
501 	/* If the pte is writable, we can write to the page. */
502 	if (pte_write(pte))
503 		return true;
504 
505 	/* Maybe FOLL_FORCE is set to override it? */
506 	if (!(flags & FOLL_FORCE))
507 		return false;
508 
509 	/* But FOLL_FORCE has no effect on shared mappings */
510 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
511 		return false;
512 
513 	/* ... or read-only private ones */
514 	if (!(vma->vm_flags & VM_MAYWRITE))
515 		return false;
516 
517 	/* ... or already writable ones that just need to take a write fault */
518 	if (vma->vm_flags & VM_WRITE)
519 		return false;
520 
521 	/*
522 	 * See can_change_pte_writable(): we broke COW and could map the page
523 	 * writable if we have an exclusive anonymous page ...
524 	 */
525 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
526 		return false;
527 
528 	/* ... and a write-fault isn't required for other reasons. */
529 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
530 		return false;
531 	return !userfaultfd_pte_wp(vma, pte);
532 }
533 
534 static struct page *follow_page_pte(struct vm_area_struct *vma,
535 		unsigned long address, pmd_t *pmd, unsigned int flags,
536 		struct dev_pagemap **pgmap)
537 {
538 	struct mm_struct *mm = vma->vm_mm;
539 	struct page *page;
540 	spinlock_t *ptl;
541 	pte_t *ptep, pte;
542 	int ret;
543 
544 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
545 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
546 			 (FOLL_PIN | FOLL_GET)))
547 		return ERR_PTR(-EINVAL);
548 
549 	/*
550 	 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
551 	 * ARM64 architecture.
552 	 */
553 	if (is_vm_hugetlb_page(vma)) {
554 		page = follow_huge_pmd_pte(vma, address, flags);
555 		if (page)
556 			return page;
557 		return no_page_table(vma, flags);
558 	}
559 
560 retry:
561 	if (unlikely(pmd_bad(*pmd)))
562 		return no_page_table(vma, flags);
563 
564 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
565 	pte = *ptep;
566 	if (!pte_present(pte)) {
567 		swp_entry_t entry;
568 		/*
569 		 * KSM's break_ksm() relies upon recognizing a ksm page
570 		 * even while it is being migrated, so for that case we
571 		 * need migration_entry_wait().
572 		 */
573 		if (likely(!(flags & FOLL_MIGRATION)))
574 			goto no_page;
575 		if (pte_none(pte))
576 			goto no_page;
577 		entry = pte_to_swp_entry(pte);
578 		if (!is_migration_entry(entry))
579 			goto no_page;
580 		pte_unmap_unlock(ptep, ptl);
581 		migration_entry_wait(mm, pmd, address);
582 		goto retry;
583 	}
584 	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
585 		goto no_page;
586 
587 	page = vm_normal_page(vma, address, pte);
588 
589 	/*
590 	 * We only care about anon pages in can_follow_write_pte() and don't
591 	 * have to worry about pte_devmap() because they are never anon.
592 	 */
593 	if ((flags & FOLL_WRITE) &&
594 	    !can_follow_write_pte(pte, page, vma, flags)) {
595 		page = NULL;
596 		goto out;
597 	}
598 
599 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
600 		/*
601 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
602 		 * case since they are only valid while holding the pgmap
603 		 * reference.
604 		 */
605 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
606 		if (*pgmap)
607 			page = pte_page(pte);
608 		else
609 			goto no_page;
610 	} else if (unlikely(!page)) {
611 		if (flags & FOLL_DUMP) {
612 			/* Avoid special (like zero) pages in core dumps */
613 			page = ERR_PTR(-EFAULT);
614 			goto out;
615 		}
616 
617 		if (is_zero_pfn(pte_pfn(pte))) {
618 			page = pte_page(pte);
619 		} else {
620 			ret = follow_pfn_pte(vma, address, ptep, flags);
621 			page = ERR_PTR(ret);
622 			goto out;
623 		}
624 	}
625 
626 	if (!pte_write(pte) && gup_must_unshare(flags, page)) {
627 		page = ERR_PTR(-EMLINK);
628 		goto out;
629 	}
630 
631 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
632 		       !PageAnonExclusive(page), page);
633 
634 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
635 	ret = try_grab_page(page, flags);
636 	if (unlikely(ret)) {
637 		page = ERR_PTR(ret);
638 		goto out;
639 	}
640 
641 	/*
642 	 * We need to make the page accessible if and only if we are going
643 	 * to access its content (the FOLL_PIN case).  Please see
644 	 * Documentation/core-api/pin_user_pages.rst for details.
645 	 */
646 	if (flags & FOLL_PIN) {
647 		ret = arch_make_page_accessible(page);
648 		if (ret) {
649 			unpin_user_page(page);
650 			page = ERR_PTR(ret);
651 			goto out;
652 		}
653 	}
654 	if (flags & FOLL_TOUCH) {
655 		if ((flags & FOLL_WRITE) &&
656 		    !pte_dirty(pte) && !PageDirty(page))
657 			set_page_dirty(page);
658 		/*
659 		 * pte_mkyoung() would be more correct here, but atomic care
660 		 * is needed to avoid losing the dirty bit: it is easier to use
661 		 * mark_page_accessed().
662 		 */
663 		mark_page_accessed(page);
664 	}
665 out:
666 	pte_unmap_unlock(ptep, ptl);
667 	return page;
668 no_page:
669 	pte_unmap_unlock(ptep, ptl);
670 	if (!pte_none(pte))
671 		return NULL;
672 	return no_page_table(vma, flags);
673 }
674 
675 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
676 				    unsigned long address, pud_t *pudp,
677 				    unsigned int flags,
678 				    struct follow_page_context *ctx)
679 {
680 	pmd_t *pmd, pmdval;
681 	spinlock_t *ptl;
682 	struct page *page;
683 	struct mm_struct *mm = vma->vm_mm;
684 
685 	pmd = pmd_offset(pudp, address);
686 	/*
687 	 * The READ_ONCE() will stabilize the pmdval in a register or
688 	 * on the stack so that it will stop changing under the code.
689 	 */
690 	pmdval = READ_ONCE(*pmd);
691 	if (pmd_none(pmdval))
692 		return no_page_table(vma, flags);
693 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
694 		page = follow_huge_pmd_pte(vma, address, flags);
695 		if (page)
696 			return page;
697 		return no_page_table(vma, flags);
698 	}
699 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
700 		page = follow_huge_pd(vma, address,
701 				      __hugepd(pmd_val(pmdval)), flags,
702 				      PMD_SHIFT);
703 		if (page)
704 			return page;
705 		return no_page_table(vma, flags);
706 	}
707 retry:
708 	if (!pmd_present(pmdval)) {
709 		/*
710 		 * Should never reach here, if thp migration is not supported;
711 		 * Otherwise, it must be a thp migration entry.
712 		 */
713 		VM_BUG_ON(!thp_migration_supported() ||
714 				  !is_pmd_migration_entry(pmdval));
715 
716 		if (likely(!(flags & FOLL_MIGRATION)))
717 			return no_page_table(vma, flags);
718 
719 		pmd_migration_entry_wait(mm, pmd);
720 		pmdval = READ_ONCE(*pmd);
721 		/*
722 		 * MADV_DONTNEED may convert the pmd to null because
723 		 * mmap_lock is held in read mode
724 		 */
725 		if (pmd_none(pmdval))
726 			return no_page_table(vma, flags);
727 		goto retry;
728 	}
729 	if (pmd_devmap(pmdval)) {
730 		ptl = pmd_lock(mm, pmd);
731 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
732 		spin_unlock(ptl);
733 		if (page)
734 			return page;
735 	}
736 	if (likely(!pmd_trans_huge(pmdval)))
737 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
738 
739 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
740 		return no_page_table(vma, flags);
741 
742 retry_locked:
743 	ptl = pmd_lock(mm, pmd);
744 	if (unlikely(pmd_none(*pmd))) {
745 		spin_unlock(ptl);
746 		return no_page_table(vma, flags);
747 	}
748 	if (unlikely(!pmd_present(*pmd))) {
749 		spin_unlock(ptl);
750 		if (likely(!(flags & FOLL_MIGRATION)))
751 			return no_page_table(vma, flags);
752 		pmd_migration_entry_wait(mm, pmd);
753 		goto retry_locked;
754 	}
755 	if (unlikely(!pmd_trans_huge(*pmd))) {
756 		spin_unlock(ptl);
757 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
758 	}
759 	if (flags & FOLL_SPLIT_PMD) {
760 		int ret;
761 		page = pmd_page(*pmd);
762 		if (is_huge_zero_page(page)) {
763 			spin_unlock(ptl);
764 			ret = 0;
765 			split_huge_pmd(vma, pmd, address);
766 			if (pmd_trans_unstable(pmd))
767 				ret = -EBUSY;
768 		} else {
769 			spin_unlock(ptl);
770 			split_huge_pmd(vma, pmd, address);
771 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
772 		}
773 
774 		return ret ? ERR_PTR(ret) :
775 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
776 	}
777 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
778 	spin_unlock(ptl);
779 	ctx->page_mask = HPAGE_PMD_NR - 1;
780 	return page;
781 }
782 
783 static struct page *follow_pud_mask(struct vm_area_struct *vma,
784 				    unsigned long address, p4d_t *p4dp,
785 				    unsigned int flags,
786 				    struct follow_page_context *ctx)
787 {
788 	pud_t *pud;
789 	spinlock_t *ptl;
790 	struct page *page;
791 	struct mm_struct *mm = vma->vm_mm;
792 
793 	pud = pud_offset(p4dp, address);
794 	if (pud_none(*pud))
795 		return no_page_table(vma, flags);
796 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
797 		page = follow_huge_pud(mm, address, pud, flags);
798 		if (page)
799 			return page;
800 		return no_page_table(vma, flags);
801 	}
802 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
803 		page = follow_huge_pd(vma, address,
804 				      __hugepd(pud_val(*pud)), flags,
805 				      PUD_SHIFT);
806 		if (page)
807 			return page;
808 		return no_page_table(vma, flags);
809 	}
810 	if (pud_devmap(*pud)) {
811 		ptl = pud_lock(mm, pud);
812 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
813 		spin_unlock(ptl);
814 		if (page)
815 			return page;
816 	}
817 	if (unlikely(pud_bad(*pud)))
818 		return no_page_table(vma, flags);
819 
820 	return follow_pmd_mask(vma, address, pud, flags, ctx);
821 }
822 
823 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
824 				    unsigned long address, pgd_t *pgdp,
825 				    unsigned int flags,
826 				    struct follow_page_context *ctx)
827 {
828 	p4d_t *p4d;
829 	struct page *page;
830 
831 	p4d = p4d_offset(pgdp, address);
832 	if (p4d_none(*p4d))
833 		return no_page_table(vma, flags);
834 	BUILD_BUG_ON(p4d_huge(*p4d));
835 	if (unlikely(p4d_bad(*p4d)))
836 		return no_page_table(vma, flags);
837 
838 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
839 		page = follow_huge_pd(vma, address,
840 				      __hugepd(p4d_val(*p4d)), flags,
841 				      P4D_SHIFT);
842 		if (page)
843 			return page;
844 		return no_page_table(vma, flags);
845 	}
846 	return follow_pud_mask(vma, address, p4d, flags, ctx);
847 }
848 
849 /**
850  * follow_page_mask - look up a page descriptor from a user-virtual address
851  * @vma: vm_area_struct mapping @address
852  * @address: virtual address to look up
853  * @flags: flags modifying lookup behaviour
854  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
855  *       pointer to output page_mask
856  *
857  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
858  *
859  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
860  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
861  *
862  * When getting an anonymous page and the caller has to trigger unsharing
863  * of a shared anonymous page first, -EMLINK is returned. The caller should
864  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
865  * relevant with FOLL_PIN and !FOLL_WRITE.
866  *
867  * On output, the @ctx->page_mask is set according to the size of the page.
868  *
869  * Return: the mapped (struct page *), %NULL if no mapping exists, or
870  * an error pointer if there is a mapping to something not represented
871  * by a page descriptor (see also vm_normal_page()).
872  */
873 static struct page *follow_page_mask(struct vm_area_struct *vma,
874 			      unsigned long address, unsigned int flags,
875 			      struct follow_page_context *ctx)
876 {
877 	pgd_t *pgd;
878 	struct page *page;
879 	struct mm_struct *mm = vma->vm_mm;
880 
881 	ctx->page_mask = 0;
882 
883 	/* make this handle hugepd */
884 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
885 	if (!IS_ERR(page)) {
886 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
887 		return page;
888 	}
889 
890 	pgd = pgd_offset(mm, address);
891 
892 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
893 		return no_page_table(vma, flags);
894 
895 	if (pgd_huge(*pgd)) {
896 		page = follow_huge_pgd(mm, address, pgd, flags);
897 		if (page)
898 			return page;
899 		return no_page_table(vma, flags);
900 	}
901 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
902 		page = follow_huge_pd(vma, address,
903 				      __hugepd(pgd_val(*pgd)), flags,
904 				      PGDIR_SHIFT);
905 		if (page)
906 			return page;
907 		return no_page_table(vma, flags);
908 	}
909 
910 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
911 }
912 
913 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
914 			 unsigned int foll_flags)
915 {
916 	struct follow_page_context ctx = { NULL };
917 	struct page *page;
918 
919 	if (vma_is_secretmem(vma))
920 		return NULL;
921 
922 	if (foll_flags & FOLL_PIN)
923 		return NULL;
924 
925 	page = follow_page_mask(vma, address, foll_flags, &ctx);
926 	if (ctx.pgmap)
927 		put_dev_pagemap(ctx.pgmap);
928 	return page;
929 }
930 
931 static int get_gate_page(struct mm_struct *mm, unsigned long address,
932 		unsigned int gup_flags, struct vm_area_struct **vma,
933 		struct page **page)
934 {
935 	pgd_t *pgd;
936 	p4d_t *p4d;
937 	pud_t *pud;
938 	pmd_t *pmd;
939 	pte_t *pte;
940 	int ret = -EFAULT;
941 
942 	/* user gate pages are read-only */
943 	if (gup_flags & FOLL_WRITE)
944 		return -EFAULT;
945 	if (address > TASK_SIZE)
946 		pgd = pgd_offset_k(address);
947 	else
948 		pgd = pgd_offset_gate(mm, address);
949 	if (pgd_none(*pgd))
950 		return -EFAULT;
951 	p4d = p4d_offset(pgd, address);
952 	if (p4d_none(*p4d))
953 		return -EFAULT;
954 	pud = pud_offset(p4d, address);
955 	if (pud_none(*pud))
956 		return -EFAULT;
957 	pmd = pmd_offset(pud, address);
958 	if (!pmd_present(*pmd))
959 		return -EFAULT;
960 	VM_BUG_ON(pmd_trans_huge(*pmd));
961 	pte = pte_offset_map(pmd, address);
962 	if (pte_none(*pte))
963 		goto unmap;
964 	*vma = get_gate_vma(mm);
965 	if (!page)
966 		goto out;
967 	*page = vm_normal_page(*vma, address, *pte);
968 	if (!*page) {
969 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
970 			goto unmap;
971 		*page = pte_page(*pte);
972 	}
973 	ret = try_grab_page(*page, gup_flags);
974 	if (unlikely(ret))
975 		goto unmap;
976 out:
977 	ret = 0;
978 unmap:
979 	pte_unmap(pte);
980 	return ret;
981 }
982 
983 /*
984  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
985  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
986  * is, *@locked will be set to 0 and -EBUSY returned.
987  */
988 static int faultin_page(struct vm_area_struct *vma,
989 		unsigned long address, unsigned int *flags, bool unshare,
990 		int *locked)
991 {
992 	unsigned int fault_flags = 0;
993 	vm_fault_t ret;
994 
995 	if (*flags & FOLL_NOFAULT)
996 		return -EFAULT;
997 	if (*flags & FOLL_WRITE)
998 		fault_flags |= FAULT_FLAG_WRITE;
999 	if (*flags & FOLL_REMOTE)
1000 		fault_flags |= FAULT_FLAG_REMOTE;
1001 	if (locked)
1002 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1003 	if (*flags & FOLL_NOWAIT)
1004 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
1005 	if (*flags & FOLL_TRIED) {
1006 		/*
1007 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
1008 		 * can co-exist
1009 		 */
1010 		fault_flags |= FAULT_FLAG_TRIED;
1011 	}
1012 	if (unshare) {
1013 		fault_flags |= FAULT_FLAG_UNSHARE;
1014 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
1015 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
1016 	}
1017 
1018 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1019 
1020 	if (ret & VM_FAULT_COMPLETED) {
1021 		/*
1022 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
1023 		 * mmap lock in the page fault handler. Sanity check this.
1024 		 */
1025 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
1026 		if (locked)
1027 			*locked = 0;
1028 		/*
1029 		 * We should do the same as VM_FAULT_RETRY, but let's not
1030 		 * return -EBUSY since that's not reflecting the reality of
1031 		 * what has happened - we've just fully completed a page
1032 		 * fault, with the mmap lock released.  Use -EAGAIN to show
1033 		 * that we want to take the mmap lock _again_.
1034 		 */
1035 		return -EAGAIN;
1036 	}
1037 
1038 	if (ret & VM_FAULT_ERROR) {
1039 		int err = vm_fault_to_errno(ret, *flags);
1040 
1041 		if (err)
1042 			return err;
1043 		BUG();
1044 	}
1045 
1046 	if (ret & VM_FAULT_RETRY) {
1047 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
1048 			*locked = 0;
1049 		return -EBUSY;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1056 {
1057 	vm_flags_t vm_flags = vma->vm_flags;
1058 	int write = (gup_flags & FOLL_WRITE);
1059 	int foreign = (gup_flags & FOLL_REMOTE);
1060 
1061 	if (vm_flags & (VM_IO | VM_PFNMAP))
1062 		return -EFAULT;
1063 
1064 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1065 		return -EFAULT;
1066 
1067 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1068 		return -EOPNOTSUPP;
1069 
1070 	if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA))
1071 		return -EOPNOTSUPP;
1072 
1073 	if (vma_is_secretmem(vma))
1074 		return -EFAULT;
1075 
1076 	if (write) {
1077 		if (!(vm_flags & VM_WRITE)) {
1078 			if (!(gup_flags & FOLL_FORCE))
1079 				return -EFAULT;
1080 			/*
1081 			 * We used to let the write,force case do COW in a
1082 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1083 			 * set a breakpoint in a read-only mapping of an
1084 			 * executable, without corrupting the file (yet only
1085 			 * when that file had been opened for writing!).
1086 			 * Anon pages in shared mappings are surprising: now
1087 			 * just reject it.
1088 			 */
1089 			if (!is_cow_mapping(vm_flags))
1090 				return -EFAULT;
1091 		}
1092 	} else if (!(vm_flags & VM_READ)) {
1093 		if (!(gup_flags & FOLL_FORCE))
1094 			return -EFAULT;
1095 		/*
1096 		 * Is there actually any vma we can reach here which does not
1097 		 * have VM_MAYREAD set?
1098 		 */
1099 		if (!(vm_flags & VM_MAYREAD))
1100 			return -EFAULT;
1101 	}
1102 	/*
1103 	 * gups are always data accesses, not instruction
1104 	 * fetches, so execute=false here
1105 	 */
1106 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1107 		return -EFAULT;
1108 	return 0;
1109 }
1110 
1111 /**
1112  * __get_user_pages() - pin user pages in memory
1113  * @mm:		mm_struct of target mm
1114  * @start:	starting user address
1115  * @nr_pages:	number of pages from start to pin
1116  * @gup_flags:	flags modifying pin behaviour
1117  * @pages:	array that receives pointers to the pages pinned.
1118  *		Should be at least nr_pages long. Or NULL, if caller
1119  *		only intends to ensure the pages are faulted in.
1120  * @vmas:	array of pointers to vmas corresponding to each page.
1121  *		Or NULL if the caller does not require them.
1122  * @locked:     whether we're still with the mmap_lock held
1123  *
1124  * Returns either number of pages pinned (which may be less than the
1125  * number requested), or an error. Details about the return value:
1126  *
1127  * -- If nr_pages is 0, returns 0.
1128  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1129  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1130  *    pages pinned. Again, this may be less than nr_pages.
1131  * -- 0 return value is possible when the fault would need to be retried.
1132  *
1133  * The caller is responsible for releasing returned @pages, via put_page().
1134  *
1135  * @vmas are valid only as long as mmap_lock is held.
1136  *
1137  * Must be called with mmap_lock held.  It may be released.  See below.
1138  *
1139  * __get_user_pages walks a process's page tables and takes a reference to
1140  * each struct page that each user address corresponds to at a given
1141  * instant. That is, it takes the page that would be accessed if a user
1142  * thread accesses the given user virtual address at that instant.
1143  *
1144  * This does not guarantee that the page exists in the user mappings when
1145  * __get_user_pages returns, and there may even be a completely different
1146  * page there in some cases (eg. if mmapped pagecache has been invalidated
1147  * and subsequently re faulted). However it does guarantee that the page
1148  * won't be freed completely. And mostly callers simply care that the page
1149  * contains data that was valid *at some point in time*. Typically, an IO
1150  * or similar operation cannot guarantee anything stronger anyway because
1151  * locks can't be held over the syscall boundary.
1152  *
1153  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1154  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1155  * appropriate) must be called after the page is finished with, and
1156  * before put_page is called.
1157  *
1158  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1159  * released by an up_read().  That can happen if @gup_flags does not
1160  * have FOLL_NOWAIT.
1161  *
1162  * A caller using such a combination of @locked and @gup_flags
1163  * must therefore hold the mmap_lock for reading only, and recognize
1164  * when it's been released.  Otherwise, it must be held for either
1165  * reading or writing and will not be released.
1166  *
1167  * In most cases, get_user_pages or get_user_pages_fast should be used
1168  * instead of __get_user_pages. __get_user_pages should be used only if
1169  * you need some special @gup_flags.
1170  */
1171 static long __get_user_pages(struct mm_struct *mm,
1172 		unsigned long start, unsigned long nr_pages,
1173 		unsigned int gup_flags, struct page **pages,
1174 		struct vm_area_struct **vmas, int *locked)
1175 {
1176 	long ret = 0, i = 0;
1177 	struct vm_area_struct *vma = NULL;
1178 	struct follow_page_context ctx = { NULL };
1179 
1180 	if (!nr_pages)
1181 		return 0;
1182 
1183 	start = untagged_addr(start);
1184 
1185 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1186 
1187 	do {
1188 		struct page *page;
1189 		unsigned int foll_flags = gup_flags;
1190 		unsigned int page_increm;
1191 
1192 		/* first iteration or cross vma bound */
1193 		if (!vma || start >= vma->vm_end) {
1194 			vma = find_extend_vma(mm, start);
1195 			if (!vma && in_gate_area(mm, start)) {
1196 				ret = get_gate_page(mm, start & PAGE_MASK,
1197 						gup_flags, &vma,
1198 						pages ? &pages[i] : NULL);
1199 				if (ret)
1200 					goto out;
1201 				ctx.page_mask = 0;
1202 				goto next_page;
1203 			}
1204 
1205 			if (!vma) {
1206 				ret = -EFAULT;
1207 				goto out;
1208 			}
1209 			ret = check_vma_flags(vma, gup_flags);
1210 			if (ret)
1211 				goto out;
1212 
1213 			if (is_vm_hugetlb_page(vma)) {
1214 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1215 						&start, &nr_pages, i,
1216 						gup_flags, locked);
1217 				if (locked && *locked == 0) {
1218 					/*
1219 					 * We've got a VM_FAULT_RETRY
1220 					 * and we've lost mmap_lock.
1221 					 * We must stop here.
1222 					 */
1223 					BUG_ON(gup_flags & FOLL_NOWAIT);
1224 					goto out;
1225 				}
1226 				continue;
1227 			}
1228 		}
1229 retry:
1230 		/*
1231 		 * If we have a pending SIGKILL, don't keep faulting pages and
1232 		 * potentially allocating memory.
1233 		 */
1234 		if (fatal_signal_pending(current)) {
1235 			ret = -EINTR;
1236 			goto out;
1237 		}
1238 		cond_resched();
1239 
1240 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1241 		if (!page || PTR_ERR(page) == -EMLINK) {
1242 			ret = faultin_page(vma, start, &foll_flags,
1243 					   PTR_ERR(page) == -EMLINK, locked);
1244 			switch (ret) {
1245 			case 0:
1246 				goto retry;
1247 			case -EBUSY:
1248 			case -EAGAIN:
1249 				ret = 0;
1250 				fallthrough;
1251 			case -EFAULT:
1252 			case -ENOMEM:
1253 			case -EHWPOISON:
1254 				goto out;
1255 			}
1256 			BUG();
1257 		} else if (PTR_ERR(page) == -EEXIST) {
1258 			/*
1259 			 * Proper page table entry exists, but no corresponding
1260 			 * struct page. If the caller expects **pages to be
1261 			 * filled in, bail out now, because that can't be done
1262 			 * for this page.
1263 			 */
1264 			if (pages) {
1265 				ret = PTR_ERR(page);
1266 				goto out;
1267 			}
1268 
1269 			goto next_page;
1270 		} else if (IS_ERR(page)) {
1271 			ret = PTR_ERR(page);
1272 			goto out;
1273 		}
1274 		if (pages) {
1275 			pages[i] = page;
1276 			flush_anon_page(vma, page, start);
1277 			flush_dcache_page(page);
1278 			ctx.page_mask = 0;
1279 		}
1280 next_page:
1281 		if (vmas) {
1282 			vmas[i] = vma;
1283 			ctx.page_mask = 0;
1284 		}
1285 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1286 		if (page_increm > nr_pages)
1287 			page_increm = nr_pages;
1288 		i += page_increm;
1289 		start += page_increm * PAGE_SIZE;
1290 		nr_pages -= page_increm;
1291 	} while (nr_pages);
1292 out:
1293 	if (ctx.pgmap)
1294 		put_dev_pagemap(ctx.pgmap);
1295 	return i ? i : ret;
1296 }
1297 
1298 static bool vma_permits_fault(struct vm_area_struct *vma,
1299 			      unsigned int fault_flags)
1300 {
1301 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1302 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1303 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1304 
1305 	if (!(vm_flags & vma->vm_flags))
1306 		return false;
1307 
1308 	/*
1309 	 * The architecture might have a hardware protection
1310 	 * mechanism other than read/write that can deny access.
1311 	 *
1312 	 * gup always represents data access, not instruction
1313 	 * fetches, so execute=false here:
1314 	 */
1315 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1316 		return false;
1317 
1318 	return true;
1319 }
1320 
1321 /**
1322  * fixup_user_fault() - manually resolve a user page fault
1323  * @mm:		mm_struct of target mm
1324  * @address:	user address
1325  * @fault_flags:flags to pass down to handle_mm_fault()
1326  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1327  *		does not allow retry. If NULL, the caller must guarantee
1328  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1329  *
1330  * This is meant to be called in the specific scenario where for locking reasons
1331  * we try to access user memory in atomic context (within a pagefault_disable()
1332  * section), this returns -EFAULT, and we want to resolve the user fault before
1333  * trying again.
1334  *
1335  * Typically this is meant to be used by the futex code.
1336  *
1337  * The main difference with get_user_pages() is that this function will
1338  * unconditionally call handle_mm_fault() which will in turn perform all the
1339  * necessary SW fixup of the dirty and young bits in the PTE, while
1340  * get_user_pages() only guarantees to update these in the struct page.
1341  *
1342  * This is important for some architectures where those bits also gate the
1343  * access permission to the page because they are maintained in software.  On
1344  * such architectures, gup() will not be enough to make a subsequent access
1345  * succeed.
1346  *
1347  * This function will not return with an unlocked mmap_lock. So it has not the
1348  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1349  */
1350 int fixup_user_fault(struct mm_struct *mm,
1351 		     unsigned long address, unsigned int fault_flags,
1352 		     bool *unlocked)
1353 {
1354 	struct vm_area_struct *vma;
1355 	vm_fault_t ret;
1356 
1357 	address = untagged_addr(address);
1358 
1359 	if (unlocked)
1360 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1361 
1362 retry:
1363 	vma = find_extend_vma(mm, address);
1364 	if (!vma || address < vma->vm_start)
1365 		return -EFAULT;
1366 
1367 	if (!vma_permits_fault(vma, fault_flags))
1368 		return -EFAULT;
1369 
1370 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1371 	    fatal_signal_pending(current))
1372 		return -EINTR;
1373 
1374 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1375 
1376 	if (ret & VM_FAULT_COMPLETED) {
1377 		/*
1378 		 * NOTE: it's a pity that we need to retake the lock here
1379 		 * to pair with the unlock() in the callers. Ideally we
1380 		 * could tell the callers so they do not need to unlock.
1381 		 */
1382 		mmap_read_lock(mm);
1383 		*unlocked = true;
1384 		return 0;
1385 	}
1386 
1387 	if (ret & VM_FAULT_ERROR) {
1388 		int err = vm_fault_to_errno(ret, 0);
1389 
1390 		if (err)
1391 			return err;
1392 		BUG();
1393 	}
1394 
1395 	if (ret & VM_FAULT_RETRY) {
1396 		mmap_read_lock(mm);
1397 		*unlocked = true;
1398 		fault_flags |= FAULT_FLAG_TRIED;
1399 		goto retry;
1400 	}
1401 
1402 	return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(fixup_user_fault);
1405 
1406 /*
1407  * Please note that this function, unlike __get_user_pages will not
1408  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1409  */
1410 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1411 						unsigned long start,
1412 						unsigned long nr_pages,
1413 						struct page **pages,
1414 						struct vm_area_struct **vmas,
1415 						int *locked,
1416 						unsigned int flags)
1417 {
1418 	long ret, pages_done;
1419 	bool lock_dropped;
1420 
1421 	if (locked) {
1422 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1423 		BUG_ON(vmas);
1424 		/* check caller initialized locked */
1425 		BUG_ON(*locked != 1);
1426 	}
1427 
1428 	if (flags & FOLL_PIN)
1429 		mm_set_has_pinned_flag(&mm->flags);
1430 
1431 	/*
1432 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1433 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1434 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1435 	 * for FOLL_GET, not for the newer FOLL_PIN.
1436 	 *
1437 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1438 	 * that here, as any failures will be obvious enough.
1439 	 */
1440 	if (pages && !(flags & FOLL_PIN))
1441 		flags |= FOLL_GET;
1442 
1443 	pages_done = 0;
1444 	lock_dropped = false;
1445 	for (;;) {
1446 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1447 				       vmas, locked);
1448 		if (!locked)
1449 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1450 			return ret;
1451 
1452 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1453 		if (!*locked) {
1454 			BUG_ON(ret < 0);
1455 			BUG_ON(ret >= nr_pages);
1456 		}
1457 
1458 		if (ret > 0) {
1459 			nr_pages -= ret;
1460 			pages_done += ret;
1461 			if (!nr_pages)
1462 				break;
1463 		}
1464 		if (*locked) {
1465 			/*
1466 			 * VM_FAULT_RETRY didn't trigger or it was a
1467 			 * FOLL_NOWAIT.
1468 			 */
1469 			if (!pages_done)
1470 				pages_done = ret;
1471 			break;
1472 		}
1473 		/*
1474 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1475 		 * For the prefault case (!pages) we only update counts.
1476 		 */
1477 		if (likely(pages))
1478 			pages += ret;
1479 		start += ret << PAGE_SHIFT;
1480 		lock_dropped = true;
1481 
1482 retry:
1483 		/*
1484 		 * Repeat on the address that fired VM_FAULT_RETRY
1485 		 * with both FAULT_FLAG_ALLOW_RETRY and
1486 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1487 		 * by fatal signals, so we need to check it before we
1488 		 * start trying again otherwise it can loop forever.
1489 		 */
1490 
1491 		if (fatal_signal_pending(current)) {
1492 			if (!pages_done)
1493 				pages_done = -EINTR;
1494 			break;
1495 		}
1496 
1497 		ret = mmap_read_lock_killable(mm);
1498 		if (ret) {
1499 			BUG_ON(ret > 0);
1500 			if (!pages_done)
1501 				pages_done = ret;
1502 			break;
1503 		}
1504 
1505 		*locked = 1;
1506 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1507 				       pages, NULL, locked);
1508 		if (!*locked) {
1509 			/* Continue to retry until we succeeded */
1510 			BUG_ON(ret != 0);
1511 			goto retry;
1512 		}
1513 		if (ret != 1) {
1514 			BUG_ON(ret > 1);
1515 			if (!pages_done)
1516 				pages_done = ret;
1517 			break;
1518 		}
1519 		nr_pages--;
1520 		pages_done++;
1521 		if (!nr_pages)
1522 			break;
1523 		if (likely(pages))
1524 			pages++;
1525 		start += PAGE_SIZE;
1526 	}
1527 	if (lock_dropped && *locked) {
1528 		/*
1529 		 * We must let the caller know we temporarily dropped the lock
1530 		 * and so the critical section protected by it was lost.
1531 		 */
1532 		mmap_read_unlock(mm);
1533 		*locked = 0;
1534 	}
1535 	return pages_done;
1536 }
1537 
1538 /**
1539  * populate_vma_page_range() -  populate a range of pages in the vma.
1540  * @vma:   target vma
1541  * @start: start address
1542  * @end:   end address
1543  * @locked: whether the mmap_lock is still held
1544  *
1545  * This takes care of mlocking the pages too if VM_LOCKED is set.
1546  *
1547  * Return either number of pages pinned in the vma, or a negative error
1548  * code on error.
1549  *
1550  * vma->vm_mm->mmap_lock must be held.
1551  *
1552  * If @locked is NULL, it may be held for read or write and will
1553  * be unperturbed.
1554  *
1555  * If @locked is non-NULL, it must held for read only and may be
1556  * released.  If it's released, *@locked will be set to 0.
1557  */
1558 long populate_vma_page_range(struct vm_area_struct *vma,
1559 		unsigned long start, unsigned long end, int *locked)
1560 {
1561 	struct mm_struct *mm = vma->vm_mm;
1562 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1563 	int gup_flags;
1564 	long ret;
1565 
1566 	VM_BUG_ON(!PAGE_ALIGNED(start));
1567 	VM_BUG_ON(!PAGE_ALIGNED(end));
1568 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1569 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1570 	mmap_assert_locked(mm);
1571 
1572 	/*
1573 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1574 	 * faultin_page() to break COW, so it has no work to do here.
1575 	 */
1576 	if (vma->vm_flags & VM_LOCKONFAULT)
1577 		return nr_pages;
1578 
1579 	gup_flags = FOLL_TOUCH;
1580 	/*
1581 	 * We want to touch writable mappings with a write fault in order
1582 	 * to break COW, except for shared mappings because these don't COW
1583 	 * and we would not want to dirty them for nothing.
1584 	 */
1585 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1586 		gup_flags |= FOLL_WRITE;
1587 
1588 	/*
1589 	 * We want mlock to succeed for regions that have any permissions
1590 	 * other than PROT_NONE.
1591 	 */
1592 	if (vma_is_accessible(vma))
1593 		gup_flags |= FOLL_FORCE;
1594 
1595 	/*
1596 	 * We made sure addr is within a VMA, so the following will
1597 	 * not result in a stack expansion that recurses back here.
1598 	 */
1599 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1600 				NULL, NULL, locked);
1601 	lru_add_drain();
1602 	return ret;
1603 }
1604 
1605 /*
1606  * faultin_vma_page_range() - populate (prefault) page tables inside the
1607  *			      given VMA range readable/writable
1608  *
1609  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1610  *
1611  * @vma: target vma
1612  * @start: start address
1613  * @end: end address
1614  * @write: whether to prefault readable or writable
1615  * @locked: whether the mmap_lock is still held
1616  *
1617  * Returns either number of processed pages in the vma, or a negative error
1618  * code on error (see __get_user_pages()).
1619  *
1620  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1621  * covered by the VMA.
1622  *
1623  * If @locked is NULL, it may be held for read or write and will be unperturbed.
1624  *
1625  * If @locked is non-NULL, it must held for read only and may be released.  If
1626  * it's released, *@locked will be set to 0.
1627  */
1628 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1629 			    unsigned long end, bool write, int *locked)
1630 {
1631 	struct mm_struct *mm = vma->vm_mm;
1632 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1633 	int gup_flags;
1634 	long ret;
1635 
1636 	VM_BUG_ON(!PAGE_ALIGNED(start));
1637 	VM_BUG_ON(!PAGE_ALIGNED(end));
1638 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1639 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1640 	mmap_assert_locked(mm);
1641 
1642 	/*
1643 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1644 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1645 	 *	       difference with !FOLL_FORCE, because the page is writable
1646 	 *	       in the page table.
1647 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1648 	 *		  a poisoned page.
1649 	 * !FOLL_FORCE: Require proper access permissions.
1650 	 */
1651 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1652 	if (write)
1653 		gup_flags |= FOLL_WRITE;
1654 
1655 	/*
1656 	 * We want to report -EINVAL instead of -EFAULT for any permission
1657 	 * problems or incompatible mappings.
1658 	 */
1659 	if (check_vma_flags(vma, gup_flags))
1660 		return -EINVAL;
1661 
1662 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1663 				NULL, NULL, locked);
1664 	lru_add_drain();
1665 	return ret;
1666 }
1667 
1668 /*
1669  * __mm_populate - populate and/or mlock pages within a range of address space.
1670  *
1671  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1672  * flags. VMAs must be already marked with the desired vm_flags, and
1673  * mmap_lock must not be held.
1674  */
1675 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1676 {
1677 	struct mm_struct *mm = current->mm;
1678 	unsigned long end, nstart, nend;
1679 	struct vm_area_struct *vma = NULL;
1680 	int locked = 0;
1681 	long ret = 0;
1682 
1683 	end = start + len;
1684 
1685 	for (nstart = start; nstart < end; nstart = nend) {
1686 		/*
1687 		 * We want to fault in pages for [nstart; end) address range.
1688 		 * Find first corresponding VMA.
1689 		 */
1690 		if (!locked) {
1691 			locked = 1;
1692 			mmap_read_lock(mm);
1693 			vma = find_vma_intersection(mm, nstart, end);
1694 		} else if (nstart >= vma->vm_end)
1695 			vma = find_vma_intersection(mm, vma->vm_end, end);
1696 
1697 		if (!vma)
1698 			break;
1699 		/*
1700 		 * Set [nstart; nend) to intersection of desired address
1701 		 * range with the first VMA. Also, skip undesirable VMA types.
1702 		 */
1703 		nend = min(end, vma->vm_end);
1704 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1705 			continue;
1706 		if (nstart < vma->vm_start)
1707 			nstart = vma->vm_start;
1708 		/*
1709 		 * Now fault in a range of pages. populate_vma_page_range()
1710 		 * double checks the vma flags, so that it won't mlock pages
1711 		 * if the vma was already munlocked.
1712 		 */
1713 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1714 		if (ret < 0) {
1715 			if (ignore_errors) {
1716 				ret = 0;
1717 				continue;	/* continue at next VMA */
1718 			}
1719 			break;
1720 		}
1721 		nend = nstart + ret * PAGE_SIZE;
1722 		ret = 0;
1723 	}
1724 	if (locked)
1725 		mmap_read_unlock(mm);
1726 	return ret;	/* 0 or negative error code */
1727 }
1728 #else /* CONFIG_MMU */
1729 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1730 		unsigned long nr_pages, struct page **pages,
1731 		struct vm_area_struct **vmas, int *locked,
1732 		unsigned int foll_flags)
1733 {
1734 	struct vm_area_struct *vma;
1735 	unsigned long vm_flags;
1736 	long i;
1737 
1738 	/* calculate required read or write permissions.
1739 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1740 	 */
1741 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1742 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1743 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1744 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1745 
1746 	for (i = 0; i < nr_pages; i++) {
1747 		vma = find_vma(mm, start);
1748 		if (!vma)
1749 			goto finish_or_fault;
1750 
1751 		/* protect what we can, including chardevs */
1752 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1753 		    !(vm_flags & vma->vm_flags))
1754 			goto finish_or_fault;
1755 
1756 		if (pages) {
1757 			pages[i] = virt_to_page((void *)start);
1758 			if (pages[i])
1759 				get_page(pages[i]);
1760 		}
1761 		if (vmas)
1762 			vmas[i] = vma;
1763 		start = (start + PAGE_SIZE) & PAGE_MASK;
1764 	}
1765 
1766 	return i;
1767 
1768 finish_or_fault:
1769 	return i ? : -EFAULT;
1770 }
1771 #endif /* !CONFIG_MMU */
1772 
1773 /**
1774  * fault_in_writeable - fault in userspace address range for writing
1775  * @uaddr: start of address range
1776  * @size: size of address range
1777  *
1778  * Returns the number of bytes not faulted in (like copy_to_user() and
1779  * copy_from_user()).
1780  */
1781 size_t fault_in_writeable(char __user *uaddr, size_t size)
1782 {
1783 	char __user *start = uaddr, *end;
1784 
1785 	if (unlikely(size == 0))
1786 		return 0;
1787 	if (!user_write_access_begin(uaddr, size))
1788 		return size;
1789 	if (!PAGE_ALIGNED(uaddr)) {
1790 		unsafe_put_user(0, uaddr, out);
1791 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1792 	}
1793 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1794 	if (unlikely(end < start))
1795 		end = NULL;
1796 	while (uaddr != end) {
1797 		unsafe_put_user(0, uaddr, out);
1798 		uaddr += PAGE_SIZE;
1799 	}
1800 
1801 out:
1802 	user_write_access_end();
1803 	if (size > uaddr - start)
1804 		return size - (uaddr - start);
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL(fault_in_writeable);
1808 
1809 /**
1810  * fault_in_subpage_writeable - fault in an address range for writing
1811  * @uaddr: start of address range
1812  * @size: size of address range
1813  *
1814  * Fault in a user address range for writing while checking for permissions at
1815  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1816  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1817  *
1818  * Returns the number of bytes not faulted in (like copy_to_user() and
1819  * copy_from_user()).
1820  */
1821 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1822 {
1823 	size_t faulted_in;
1824 
1825 	/*
1826 	 * Attempt faulting in at page granularity first for page table
1827 	 * permission checking. The arch-specific probe_subpage_writeable()
1828 	 * functions may not check for this.
1829 	 */
1830 	faulted_in = size - fault_in_writeable(uaddr, size);
1831 	if (faulted_in)
1832 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1833 
1834 	return size - faulted_in;
1835 }
1836 EXPORT_SYMBOL(fault_in_subpage_writeable);
1837 
1838 /*
1839  * fault_in_safe_writeable - fault in an address range for writing
1840  * @uaddr: start of address range
1841  * @size: length of address range
1842  *
1843  * Faults in an address range for writing.  This is primarily useful when we
1844  * already know that some or all of the pages in the address range aren't in
1845  * memory.
1846  *
1847  * Unlike fault_in_writeable(), this function is non-destructive.
1848  *
1849  * Note that we don't pin or otherwise hold the pages referenced that we fault
1850  * in.  There's no guarantee that they'll stay in memory for any duration of
1851  * time.
1852  *
1853  * Returns the number of bytes not faulted in, like copy_to_user() and
1854  * copy_from_user().
1855  */
1856 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1857 {
1858 	unsigned long start = (unsigned long)uaddr, end;
1859 	struct mm_struct *mm = current->mm;
1860 	bool unlocked = false;
1861 
1862 	if (unlikely(size == 0))
1863 		return 0;
1864 	end = PAGE_ALIGN(start + size);
1865 	if (end < start)
1866 		end = 0;
1867 
1868 	mmap_read_lock(mm);
1869 	do {
1870 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1871 			break;
1872 		start = (start + PAGE_SIZE) & PAGE_MASK;
1873 	} while (start != end);
1874 	mmap_read_unlock(mm);
1875 
1876 	if (size > (unsigned long)uaddr - start)
1877 		return size - ((unsigned long)uaddr - start);
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL(fault_in_safe_writeable);
1881 
1882 /**
1883  * fault_in_readable - fault in userspace address range for reading
1884  * @uaddr: start of user address range
1885  * @size: size of user address range
1886  *
1887  * Returns the number of bytes not faulted in (like copy_to_user() and
1888  * copy_from_user()).
1889  */
1890 size_t fault_in_readable(const char __user *uaddr, size_t size)
1891 {
1892 	const char __user *start = uaddr, *end;
1893 	volatile char c;
1894 
1895 	if (unlikely(size == 0))
1896 		return 0;
1897 	if (!user_read_access_begin(uaddr, size))
1898 		return size;
1899 	if (!PAGE_ALIGNED(uaddr)) {
1900 		unsafe_get_user(c, uaddr, out);
1901 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1902 	}
1903 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1904 	if (unlikely(end < start))
1905 		end = NULL;
1906 	while (uaddr != end) {
1907 		unsafe_get_user(c, uaddr, out);
1908 		uaddr += PAGE_SIZE;
1909 	}
1910 
1911 out:
1912 	user_read_access_end();
1913 	(void)c;
1914 	if (size > uaddr - start)
1915 		return size - (uaddr - start);
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL(fault_in_readable);
1919 
1920 /**
1921  * get_dump_page() - pin user page in memory while writing it to core dump
1922  * @addr: user address
1923  *
1924  * Returns struct page pointer of user page pinned for dump,
1925  * to be freed afterwards by put_page().
1926  *
1927  * Returns NULL on any kind of failure - a hole must then be inserted into
1928  * the corefile, to preserve alignment with its headers; and also returns
1929  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1930  * allowing a hole to be left in the corefile to save disk space.
1931  *
1932  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1933  */
1934 #ifdef CONFIG_ELF_CORE
1935 struct page *get_dump_page(unsigned long addr)
1936 {
1937 	struct mm_struct *mm = current->mm;
1938 	struct page *page;
1939 	int locked = 1;
1940 	int ret;
1941 
1942 	if (mmap_read_lock_killable(mm))
1943 		return NULL;
1944 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1945 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1946 	if (locked)
1947 		mmap_read_unlock(mm);
1948 	return (ret == 1) ? page : NULL;
1949 }
1950 #endif /* CONFIG_ELF_CORE */
1951 
1952 #ifdef CONFIG_MIGRATION
1953 /*
1954  * Returns the number of collected pages. Return value is always >= 0.
1955  */
1956 static unsigned long collect_longterm_unpinnable_pages(
1957 					struct list_head *movable_page_list,
1958 					unsigned long nr_pages,
1959 					struct page **pages)
1960 {
1961 	unsigned long i, collected = 0;
1962 	struct folio *prev_folio = NULL;
1963 	bool drain_allow = true;
1964 
1965 	for (i = 0; i < nr_pages; i++) {
1966 		struct folio *folio = page_folio(pages[i]);
1967 
1968 		if (folio == prev_folio)
1969 			continue;
1970 		prev_folio = folio;
1971 
1972 		if (folio_is_longterm_pinnable(folio))
1973 			continue;
1974 
1975 		collected++;
1976 
1977 		if (folio_is_device_coherent(folio))
1978 			continue;
1979 
1980 		if (folio_test_hugetlb(folio)) {
1981 			isolate_hugetlb(&folio->page, movable_page_list);
1982 			continue;
1983 		}
1984 
1985 		if (!folio_test_lru(folio) && drain_allow) {
1986 			lru_add_drain_all();
1987 			drain_allow = false;
1988 		}
1989 
1990 		if (!folio_isolate_lru(folio))
1991 			continue;
1992 
1993 		list_add_tail(&folio->lru, movable_page_list);
1994 		node_stat_mod_folio(folio,
1995 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
1996 				    folio_nr_pages(folio));
1997 	}
1998 
1999 	return collected;
2000 }
2001 
2002 /*
2003  * Unpins all pages and migrates device coherent pages and movable_page_list.
2004  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2005  * (or partial success).
2006  */
2007 static int migrate_longterm_unpinnable_pages(
2008 					struct list_head *movable_page_list,
2009 					unsigned long nr_pages,
2010 					struct page **pages)
2011 {
2012 	int ret;
2013 	unsigned long i;
2014 
2015 	for (i = 0; i < nr_pages; i++) {
2016 		struct folio *folio = page_folio(pages[i]);
2017 
2018 		if (folio_is_device_coherent(folio)) {
2019 			/*
2020 			 * Migration will fail if the page is pinned, so convert
2021 			 * the pin on the source page to a normal reference.
2022 			 */
2023 			pages[i] = NULL;
2024 			folio_get(folio);
2025 			gup_put_folio(folio, 1, FOLL_PIN);
2026 
2027 			if (migrate_device_coherent_page(&folio->page)) {
2028 				ret = -EBUSY;
2029 				goto err;
2030 			}
2031 
2032 			continue;
2033 		}
2034 
2035 		/*
2036 		 * We can't migrate pages with unexpected references, so drop
2037 		 * the reference obtained by __get_user_pages_locked().
2038 		 * Migrating pages have been added to movable_page_list after
2039 		 * calling folio_isolate_lru() which takes a reference so the
2040 		 * page won't be freed if it's migrating.
2041 		 */
2042 		unpin_user_page(pages[i]);
2043 		pages[i] = NULL;
2044 	}
2045 
2046 	if (!list_empty(movable_page_list)) {
2047 		struct migration_target_control mtc = {
2048 			.nid = NUMA_NO_NODE,
2049 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2050 		};
2051 
2052 		if (migrate_pages(movable_page_list, alloc_migration_target,
2053 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2054 				  MR_LONGTERM_PIN, NULL)) {
2055 			ret = -ENOMEM;
2056 			goto err;
2057 		}
2058 	}
2059 
2060 	putback_movable_pages(movable_page_list);
2061 
2062 	return -EAGAIN;
2063 
2064 err:
2065 	for (i = 0; i < nr_pages; i++)
2066 		if (pages[i])
2067 			unpin_user_page(pages[i]);
2068 	putback_movable_pages(movable_page_list);
2069 
2070 	return ret;
2071 }
2072 
2073 /*
2074  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2075  * pages in the range are required to be pinned via FOLL_PIN, before calling
2076  * this routine.
2077  *
2078  * If any pages in the range are not allowed to be pinned, then this routine
2079  * will migrate those pages away, unpin all the pages in the range and return
2080  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2081  * call this routine again.
2082  *
2083  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2084  * The caller should give up, and propagate the error back up the call stack.
2085  *
2086  * If everything is OK and all pages in the range are allowed to be pinned, then
2087  * this routine leaves all pages pinned and returns zero for success.
2088  */
2089 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2090 					    struct page **pages)
2091 {
2092 	unsigned long collected;
2093 	LIST_HEAD(movable_page_list);
2094 
2095 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2096 						nr_pages, pages);
2097 	if (!collected)
2098 		return 0;
2099 
2100 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2101 						pages);
2102 }
2103 #else
2104 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2105 					    struct page **pages)
2106 {
2107 	return 0;
2108 }
2109 #endif /* CONFIG_MIGRATION */
2110 
2111 /*
2112  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2113  * allows us to process the FOLL_LONGTERM flag.
2114  */
2115 static long __gup_longterm_locked(struct mm_struct *mm,
2116 				  unsigned long start,
2117 				  unsigned long nr_pages,
2118 				  struct page **pages,
2119 				  struct vm_area_struct **vmas,
2120 				  unsigned int gup_flags)
2121 {
2122 	unsigned int flags;
2123 	long rc, nr_pinned_pages;
2124 
2125 	if (!(gup_flags & FOLL_LONGTERM))
2126 		return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2127 					       NULL, gup_flags);
2128 
2129 	/*
2130 	 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2131 	 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2132 	 * correct to unconditionally call check_and_migrate_movable_pages()
2133 	 * which assumes pages have been pinned via FOLL_PIN.
2134 	 *
2135 	 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2136 	 */
2137 	if (WARN_ON(!(gup_flags & FOLL_PIN)))
2138 		return -EINVAL;
2139 	flags = memalloc_pin_save();
2140 	do {
2141 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2142 							  pages, vmas, NULL,
2143 							  gup_flags);
2144 		if (nr_pinned_pages <= 0) {
2145 			rc = nr_pinned_pages;
2146 			break;
2147 		}
2148 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2149 	} while (rc == -EAGAIN);
2150 	memalloc_pin_restore(flags);
2151 
2152 	return rc ? rc : nr_pinned_pages;
2153 }
2154 
2155 static bool is_valid_gup_flags(unsigned int gup_flags)
2156 {
2157 	/*
2158 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2159 	 * never directly by the caller, so enforce that with an assertion:
2160 	 */
2161 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2162 		return false;
2163 	/*
2164 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2165 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2166 	 * FOLL_PIN.
2167 	 */
2168 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2169 		return false;
2170 
2171 	return true;
2172 }
2173 
2174 #ifdef CONFIG_MMU
2175 static long __get_user_pages_remote(struct mm_struct *mm,
2176 				    unsigned long start, unsigned long nr_pages,
2177 				    unsigned int gup_flags, struct page **pages,
2178 				    struct vm_area_struct **vmas, int *locked)
2179 {
2180 	/*
2181 	 * Parts of FOLL_LONGTERM behavior are incompatible with
2182 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2183 	 * vmas. However, this only comes up if locked is set, and there are
2184 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2185 	 * allow what we can.
2186 	 */
2187 	if (gup_flags & FOLL_LONGTERM) {
2188 		if (WARN_ON_ONCE(locked))
2189 			return -EINVAL;
2190 		/*
2191 		 * This will check the vmas (even if our vmas arg is NULL)
2192 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
2193 		 */
2194 		return __gup_longterm_locked(mm, start, nr_pages, pages,
2195 					     vmas, gup_flags | FOLL_TOUCH |
2196 					     FOLL_REMOTE);
2197 	}
2198 
2199 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2200 				       locked,
2201 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2202 }
2203 
2204 /**
2205  * get_user_pages_remote() - pin user pages in memory
2206  * @mm:		mm_struct of target mm
2207  * @start:	starting user address
2208  * @nr_pages:	number of pages from start to pin
2209  * @gup_flags:	flags modifying lookup behaviour
2210  * @pages:	array that receives pointers to the pages pinned.
2211  *		Should be at least nr_pages long. Or NULL, if caller
2212  *		only intends to ensure the pages are faulted in.
2213  * @vmas:	array of pointers to vmas corresponding to each page.
2214  *		Or NULL if the caller does not require them.
2215  * @locked:	pointer to lock flag indicating whether lock is held and
2216  *		subsequently whether VM_FAULT_RETRY functionality can be
2217  *		utilised. Lock must initially be held.
2218  *
2219  * Returns either number of pages pinned (which may be less than the
2220  * number requested), or an error. Details about the return value:
2221  *
2222  * -- If nr_pages is 0, returns 0.
2223  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2224  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2225  *    pages pinned. Again, this may be less than nr_pages.
2226  *
2227  * The caller is responsible for releasing returned @pages, via put_page().
2228  *
2229  * @vmas are valid only as long as mmap_lock is held.
2230  *
2231  * Must be called with mmap_lock held for read or write.
2232  *
2233  * get_user_pages_remote walks a process's page tables and takes a reference
2234  * to each struct page that each user address corresponds to at a given
2235  * instant. That is, it takes the page that would be accessed if a user
2236  * thread accesses the given user virtual address at that instant.
2237  *
2238  * This does not guarantee that the page exists in the user mappings when
2239  * get_user_pages_remote returns, and there may even be a completely different
2240  * page there in some cases (eg. if mmapped pagecache has been invalidated
2241  * and subsequently re faulted). However it does guarantee that the page
2242  * won't be freed completely. And mostly callers simply care that the page
2243  * contains data that was valid *at some point in time*. Typically, an IO
2244  * or similar operation cannot guarantee anything stronger anyway because
2245  * locks can't be held over the syscall boundary.
2246  *
2247  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2248  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2249  * be called after the page is finished with, and before put_page is called.
2250  *
2251  * get_user_pages_remote is typically used for fewer-copy IO operations,
2252  * to get a handle on the memory by some means other than accesses
2253  * via the user virtual addresses. The pages may be submitted for
2254  * DMA to devices or accessed via their kernel linear mapping (via the
2255  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2256  *
2257  * See also get_user_pages_fast, for performance critical applications.
2258  *
2259  * get_user_pages_remote should be phased out in favor of
2260  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2261  * should use get_user_pages_remote because it cannot pass
2262  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2263  */
2264 long get_user_pages_remote(struct mm_struct *mm,
2265 		unsigned long start, unsigned long nr_pages,
2266 		unsigned int gup_flags, struct page **pages,
2267 		struct vm_area_struct **vmas, int *locked)
2268 {
2269 	if (!is_valid_gup_flags(gup_flags))
2270 		return -EINVAL;
2271 
2272 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2273 				       pages, vmas, locked);
2274 }
2275 EXPORT_SYMBOL(get_user_pages_remote);
2276 
2277 #else /* CONFIG_MMU */
2278 long get_user_pages_remote(struct mm_struct *mm,
2279 			   unsigned long start, unsigned long nr_pages,
2280 			   unsigned int gup_flags, struct page **pages,
2281 			   struct vm_area_struct **vmas, int *locked)
2282 {
2283 	return 0;
2284 }
2285 
2286 static long __get_user_pages_remote(struct mm_struct *mm,
2287 				    unsigned long start, unsigned long nr_pages,
2288 				    unsigned int gup_flags, struct page **pages,
2289 				    struct vm_area_struct **vmas, int *locked)
2290 {
2291 	return 0;
2292 }
2293 #endif /* !CONFIG_MMU */
2294 
2295 /**
2296  * get_user_pages() - pin user pages in memory
2297  * @start:      starting user address
2298  * @nr_pages:   number of pages from start to pin
2299  * @gup_flags:  flags modifying lookup behaviour
2300  * @pages:      array that receives pointers to the pages pinned.
2301  *              Should be at least nr_pages long. Or NULL, if caller
2302  *              only intends to ensure the pages are faulted in.
2303  * @vmas:       array of pointers to vmas corresponding to each page.
2304  *              Or NULL if the caller does not require them.
2305  *
2306  * This is the same as get_user_pages_remote(), just with a less-flexible
2307  * calling convention where we assume that the mm being operated on belongs to
2308  * the current task, and doesn't allow passing of a locked parameter.  We also
2309  * obviously don't pass FOLL_REMOTE in here.
2310  */
2311 long get_user_pages(unsigned long start, unsigned long nr_pages,
2312 		unsigned int gup_flags, struct page **pages,
2313 		struct vm_area_struct **vmas)
2314 {
2315 	if (!is_valid_gup_flags(gup_flags))
2316 		return -EINVAL;
2317 
2318 	return __gup_longterm_locked(current->mm, start, nr_pages,
2319 				     pages, vmas, gup_flags | FOLL_TOUCH);
2320 }
2321 EXPORT_SYMBOL(get_user_pages);
2322 
2323 /*
2324  * get_user_pages_unlocked() is suitable to replace the form:
2325  *
2326  *      mmap_read_lock(mm);
2327  *      get_user_pages(mm, ..., pages, NULL);
2328  *      mmap_read_unlock(mm);
2329  *
2330  *  with:
2331  *
2332  *      get_user_pages_unlocked(mm, ..., pages);
2333  *
2334  * It is functionally equivalent to get_user_pages_fast so
2335  * get_user_pages_fast should be used instead if specific gup_flags
2336  * (e.g. FOLL_FORCE) are not required.
2337  */
2338 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2339 			     struct page **pages, unsigned int gup_flags)
2340 {
2341 	struct mm_struct *mm = current->mm;
2342 	int locked = 1;
2343 	long ret;
2344 
2345 	/*
2346 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2347 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2348 	 * vmas.  As there are no users of this flag in this call we simply
2349 	 * disallow this option for now.
2350 	 */
2351 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2352 		return -EINVAL;
2353 
2354 	mmap_read_lock(mm);
2355 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2356 				      &locked, gup_flags | FOLL_TOUCH);
2357 	if (locked)
2358 		mmap_read_unlock(mm);
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL(get_user_pages_unlocked);
2362 
2363 /*
2364  * Fast GUP
2365  *
2366  * get_user_pages_fast attempts to pin user pages by walking the page
2367  * tables directly and avoids taking locks. Thus the walker needs to be
2368  * protected from page table pages being freed from under it, and should
2369  * block any THP splits.
2370  *
2371  * One way to achieve this is to have the walker disable interrupts, and
2372  * rely on IPIs from the TLB flushing code blocking before the page table
2373  * pages are freed. This is unsuitable for architectures that do not need
2374  * to broadcast an IPI when invalidating TLBs.
2375  *
2376  * Another way to achieve this is to batch up page table containing pages
2377  * belonging to more than one mm_user, then rcu_sched a callback to free those
2378  * pages. Disabling interrupts will allow the fast_gup walker to both block
2379  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2380  * (which is a relatively rare event). The code below adopts this strategy.
2381  *
2382  * Before activating this code, please be aware that the following assumptions
2383  * are currently made:
2384  *
2385  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2386  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2387  *
2388  *  *) ptes can be read atomically by the architecture.
2389  *
2390  *  *) access_ok is sufficient to validate userspace address ranges.
2391  *
2392  * The last two assumptions can be relaxed by the addition of helper functions.
2393  *
2394  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2395  */
2396 #ifdef CONFIG_HAVE_FAST_GUP
2397 
2398 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2399 					    unsigned int flags,
2400 					    struct page **pages)
2401 {
2402 	while ((*nr) - nr_start) {
2403 		struct page *page = pages[--(*nr)];
2404 
2405 		ClearPageReferenced(page);
2406 		if (flags & FOLL_PIN)
2407 			unpin_user_page(page);
2408 		else
2409 			put_page(page);
2410 	}
2411 }
2412 
2413 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2414 /*
2415  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2416  * operations.
2417  *
2418  * To pin the page, fast-gup needs to do below in order:
2419  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2420  *
2421  * For the rest of pgtable operations where pgtable updates can be racy
2422  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2423  * is pinned.
2424  *
2425  * Above will work for all pte-level operations, including THP split.
2426  *
2427  * For THP collapse, it's a bit more complicated because fast-gup may be
2428  * walking a pgtable page that is being freed (pte is still valid but pmd
2429  * can be cleared already).  To avoid race in such condition, we need to
2430  * also check pmd here to make sure pmd doesn't change (corresponds to
2431  * pmdp_collapse_flush() in the THP collapse code path).
2432  */
2433 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2434 			 unsigned long end, unsigned int flags,
2435 			 struct page **pages, int *nr)
2436 {
2437 	struct dev_pagemap *pgmap = NULL;
2438 	int nr_start = *nr, ret = 0;
2439 	pte_t *ptep, *ptem;
2440 
2441 	ptem = ptep = pte_offset_map(&pmd, addr);
2442 	do {
2443 		pte_t pte = ptep_get_lockless(ptep);
2444 		struct page *page;
2445 		struct folio *folio;
2446 
2447 		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2448 			goto pte_unmap;
2449 
2450 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2451 			goto pte_unmap;
2452 
2453 		if (pte_devmap(pte)) {
2454 			if (unlikely(flags & FOLL_LONGTERM))
2455 				goto pte_unmap;
2456 
2457 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2458 			if (unlikely(!pgmap)) {
2459 				undo_dev_pagemap(nr, nr_start, flags, pages);
2460 				goto pte_unmap;
2461 			}
2462 		} else if (pte_special(pte))
2463 			goto pte_unmap;
2464 
2465 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2466 		page = pte_page(pte);
2467 
2468 		folio = try_grab_folio(page, 1, flags);
2469 		if (!folio)
2470 			goto pte_unmap;
2471 
2472 		if (unlikely(page_is_secretmem(page))) {
2473 			gup_put_folio(folio, 1, flags);
2474 			goto pte_unmap;
2475 		}
2476 
2477 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2478 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2479 			gup_put_folio(folio, 1, flags);
2480 			goto pte_unmap;
2481 		}
2482 
2483 		if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2484 			gup_put_folio(folio, 1, flags);
2485 			goto pte_unmap;
2486 		}
2487 
2488 		/*
2489 		 * We need to make the page accessible if and only if we are
2490 		 * going to access its content (the FOLL_PIN case).  Please
2491 		 * see Documentation/core-api/pin_user_pages.rst for
2492 		 * details.
2493 		 */
2494 		if (flags & FOLL_PIN) {
2495 			ret = arch_make_page_accessible(page);
2496 			if (ret) {
2497 				gup_put_folio(folio, 1, flags);
2498 				goto pte_unmap;
2499 			}
2500 		}
2501 		folio_set_referenced(folio);
2502 		pages[*nr] = page;
2503 		(*nr)++;
2504 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2505 
2506 	ret = 1;
2507 
2508 pte_unmap:
2509 	if (pgmap)
2510 		put_dev_pagemap(pgmap);
2511 	pte_unmap(ptem);
2512 	return ret;
2513 }
2514 #else
2515 
2516 /*
2517  * If we can't determine whether or not a pte is special, then fail immediately
2518  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2519  * to be special.
2520  *
2521  * For a futex to be placed on a THP tail page, get_futex_key requires a
2522  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2523  * useful to have gup_huge_pmd even if we can't operate on ptes.
2524  */
2525 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2526 			 unsigned long end, unsigned int flags,
2527 			 struct page **pages, int *nr)
2528 {
2529 	return 0;
2530 }
2531 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2532 
2533 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2534 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2535 			     unsigned long end, unsigned int flags,
2536 			     struct page **pages, int *nr)
2537 {
2538 	int nr_start = *nr;
2539 	struct dev_pagemap *pgmap = NULL;
2540 
2541 	do {
2542 		struct page *page = pfn_to_page(pfn);
2543 
2544 		pgmap = get_dev_pagemap(pfn, pgmap);
2545 		if (unlikely(!pgmap)) {
2546 			undo_dev_pagemap(nr, nr_start, flags, pages);
2547 			break;
2548 		}
2549 
2550 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2551 			undo_dev_pagemap(nr, nr_start, flags, pages);
2552 			break;
2553 		}
2554 
2555 		SetPageReferenced(page);
2556 		pages[*nr] = page;
2557 		if (unlikely(try_grab_page(page, flags))) {
2558 			undo_dev_pagemap(nr, nr_start, flags, pages);
2559 			break;
2560 		}
2561 		(*nr)++;
2562 		pfn++;
2563 	} while (addr += PAGE_SIZE, addr != end);
2564 
2565 	put_dev_pagemap(pgmap);
2566 	return addr == end;
2567 }
2568 
2569 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2570 				 unsigned long end, unsigned int flags,
2571 				 struct page **pages, int *nr)
2572 {
2573 	unsigned long fault_pfn;
2574 	int nr_start = *nr;
2575 
2576 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2577 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2578 		return 0;
2579 
2580 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2581 		undo_dev_pagemap(nr, nr_start, flags, pages);
2582 		return 0;
2583 	}
2584 	return 1;
2585 }
2586 
2587 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2588 				 unsigned long end, unsigned int flags,
2589 				 struct page **pages, int *nr)
2590 {
2591 	unsigned long fault_pfn;
2592 	int nr_start = *nr;
2593 
2594 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2595 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2596 		return 0;
2597 
2598 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2599 		undo_dev_pagemap(nr, nr_start, flags, pages);
2600 		return 0;
2601 	}
2602 	return 1;
2603 }
2604 #else
2605 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2606 				 unsigned long end, unsigned int flags,
2607 				 struct page **pages, int *nr)
2608 {
2609 	BUILD_BUG();
2610 	return 0;
2611 }
2612 
2613 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2614 				 unsigned long end, unsigned int flags,
2615 				 struct page **pages, int *nr)
2616 {
2617 	BUILD_BUG();
2618 	return 0;
2619 }
2620 #endif
2621 
2622 static int record_subpages(struct page *page, unsigned long addr,
2623 			   unsigned long end, struct page **pages)
2624 {
2625 	int nr;
2626 
2627 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2628 		pages[nr] = nth_page(page, nr);
2629 
2630 	return nr;
2631 }
2632 
2633 #ifdef CONFIG_ARCH_HAS_HUGEPD
2634 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2635 				      unsigned long sz)
2636 {
2637 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2638 	return (__boundary - 1 < end - 1) ? __boundary : end;
2639 }
2640 
2641 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2642 		       unsigned long end, unsigned int flags,
2643 		       struct page **pages, int *nr)
2644 {
2645 	unsigned long pte_end;
2646 	struct page *page;
2647 	struct folio *folio;
2648 	pte_t pte;
2649 	int refs;
2650 
2651 	pte_end = (addr + sz) & ~(sz-1);
2652 	if (pte_end < end)
2653 		end = pte_end;
2654 
2655 	pte = huge_ptep_get(ptep);
2656 
2657 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2658 		return 0;
2659 
2660 	/* hugepages are never "special" */
2661 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2662 
2663 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2664 	refs = record_subpages(page, addr, end, pages + *nr);
2665 
2666 	folio = try_grab_folio(page, refs, flags);
2667 	if (!folio)
2668 		return 0;
2669 
2670 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2671 		gup_put_folio(folio, refs, flags);
2672 		return 0;
2673 	}
2674 
2675 	if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2676 		gup_put_folio(folio, refs, flags);
2677 		return 0;
2678 	}
2679 
2680 	*nr += refs;
2681 	folio_set_referenced(folio);
2682 	return 1;
2683 }
2684 
2685 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2686 		unsigned int pdshift, unsigned long end, unsigned int flags,
2687 		struct page **pages, int *nr)
2688 {
2689 	pte_t *ptep;
2690 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2691 	unsigned long next;
2692 
2693 	ptep = hugepte_offset(hugepd, addr, pdshift);
2694 	do {
2695 		next = hugepte_addr_end(addr, end, sz);
2696 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2697 			return 0;
2698 	} while (ptep++, addr = next, addr != end);
2699 
2700 	return 1;
2701 }
2702 #else
2703 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2704 		unsigned int pdshift, unsigned long end, unsigned int flags,
2705 		struct page **pages, int *nr)
2706 {
2707 	return 0;
2708 }
2709 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2710 
2711 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2712 			unsigned long end, unsigned int flags,
2713 			struct page **pages, int *nr)
2714 {
2715 	struct page *page;
2716 	struct folio *folio;
2717 	int refs;
2718 
2719 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2720 		return 0;
2721 
2722 	if (pmd_devmap(orig)) {
2723 		if (unlikely(flags & FOLL_LONGTERM))
2724 			return 0;
2725 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2726 					     pages, nr);
2727 	}
2728 
2729 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2730 	refs = record_subpages(page, addr, end, pages + *nr);
2731 
2732 	folio = try_grab_folio(page, refs, flags);
2733 	if (!folio)
2734 		return 0;
2735 
2736 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2737 		gup_put_folio(folio, refs, flags);
2738 		return 0;
2739 	}
2740 
2741 	if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2742 		gup_put_folio(folio, refs, flags);
2743 		return 0;
2744 	}
2745 
2746 	*nr += refs;
2747 	folio_set_referenced(folio);
2748 	return 1;
2749 }
2750 
2751 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2752 			unsigned long end, unsigned int flags,
2753 			struct page **pages, int *nr)
2754 {
2755 	struct page *page;
2756 	struct folio *folio;
2757 	int refs;
2758 
2759 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2760 		return 0;
2761 
2762 	if (pud_devmap(orig)) {
2763 		if (unlikely(flags & FOLL_LONGTERM))
2764 			return 0;
2765 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2766 					     pages, nr);
2767 	}
2768 
2769 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2770 	refs = record_subpages(page, addr, end, pages + *nr);
2771 
2772 	folio = try_grab_folio(page, refs, flags);
2773 	if (!folio)
2774 		return 0;
2775 
2776 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2777 		gup_put_folio(folio, refs, flags);
2778 		return 0;
2779 	}
2780 
2781 	if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2782 		gup_put_folio(folio, refs, flags);
2783 		return 0;
2784 	}
2785 
2786 	*nr += refs;
2787 	folio_set_referenced(folio);
2788 	return 1;
2789 }
2790 
2791 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2792 			unsigned long end, unsigned int flags,
2793 			struct page **pages, int *nr)
2794 {
2795 	int refs;
2796 	struct page *page;
2797 	struct folio *folio;
2798 
2799 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2800 		return 0;
2801 
2802 	BUILD_BUG_ON(pgd_devmap(orig));
2803 
2804 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2805 	refs = record_subpages(page, addr, end, pages + *nr);
2806 
2807 	folio = try_grab_folio(page, refs, flags);
2808 	if (!folio)
2809 		return 0;
2810 
2811 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2812 		gup_put_folio(folio, refs, flags);
2813 		return 0;
2814 	}
2815 
2816 	*nr += refs;
2817 	folio_set_referenced(folio);
2818 	return 1;
2819 }
2820 
2821 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2822 		unsigned int flags, struct page **pages, int *nr)
2823 {
2824 	unsigned long next;
2825 	pmd_t *pmdp;
2826 
2827 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2828 	do {
2829 		pmd_t pmd = READ_ONCE(*pmdp);
2830 
2831 		next = pmd_addr_end(addr, end);
2832 		if (!pmd_present(pmd))
2833 			return 0;
2834 
2835 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2836 			     pmd_devmap(pmd))) {
2837 			if (pmd_protnone(pmd) &&
2838 			    !gup_can_follow_protnone(flags))
2839 				return 0;
2840 
2841 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2842 				pages, nr))
2843 				return 0;
2844 
2845 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2846 			/*
2847 			 * architecture have different format for hugetlbfs
2848 			 * pmd format and THP pmd format
2849 			 */
2850 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2851 					 PMD_SHIFT, next, flags, pages, nr))
2852 				return 0;
2853 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2854 			return 0;
2855 	} while (pmdp++, addr = next, addr != end);
2856 
2857 	return 1;
2858 }
2859 
2860 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2861 			 unsigned int flags, struct page **pages, int *nr)
2862 {
2863 	unsigned long next;
2864 	pud_t *pudp;
2865 
2866 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2867 	do {
2868 		pud_t pud = READ_ONCE(*pudp);
2869 
2870 		next = pud_addr_end(addr, end);
2871 		if (unlikely(!pud_present(pud)))
2872 			return 0;
2873 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2874 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2875 					  pages, nr))
2876 				return 0;
2877 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2878 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2879 					 PUD_SHIFT, next, flags, pages, nr))
2880 				return 0;
2881 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2882 			return 0;
2883 	} while (pudp++, addr = next, addr != end);
2884 
2885 	return 1;
2886 }
2887 
2888 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2889 			 unsigned int flags, struct page **pages, int *nr)
2890 {
2891 	unsigned long next;
2892 	p4d_t *p4dp;
2893 
2894 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2895 	do {
2896 		p4d_t p4d = READ_ONCE(*p4dp);
2897 
2898 		next = p4d_addr_end(addr, end);
2899 		if (p4d_none(p4d))
2900 			return 0;
2901 		BUILD_BUG_ON(p4d_huge(p4d));
2902 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2903 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2904 					 P4D_SHIFT, next, flags, pages, nr))
2905 				return 0;
2906 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2907 			return 0;
2908 	} while (p4dp++, addr = next, addr != end);
2909 
2910 	return 1;
2911 }
2912 
2913 static void gup_pgd_range(unsigned long addr, unsigned long end,
2914 		unsigned int flags, struct page **pages, int *nr)
2915 {
2916 	unsigned long next;
2917 	pgd_t *pgdp;
2918 
2919 	pgdp = pgd_offset(current->mm, addr);
2920 	do {
2921 		pgd_t pgd = READ_ONCE(*pgdp);
2922 
2923 		next = pgd_addr_end(addr, end);
2924 		if (pgd_none(pgd))
2925 			return;
2926 		if (unlikely(pgd_huge(pgd))) {
2927 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2928 					  pages, nr))
2929 				return;
2930 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2931 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2932 					 PGDIR_SHIFT, next, flags, pages, nr))
2933 				return;
2934 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2935 			return;
2936 	} while (pgdp++, addr = next, addr != end);
2937 }
2938 #else
2939 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2940 		unsigned int flags, struct page **pages, int *nr)
2941 {
2942 }
2943 #endif /* CONFIG_HAVE_FAST_GUP */
2944 
2945 #ifndef gup_fast_permitted
2946 /*
2947  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2948  * we need to fall back to the slow version:
2949  */
2950 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2951 {
2952 	return true;
2953 }
2954 #endif
2955 
2956 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2957 				   unsigned int gup_flags, struct page **pages)
2958 {
2959 	int ret;
2960 
2961 	/*
2962 	 * FIXME: FOLL_LONGTERM does not work with
2963 	 * get_user_pages_unlocked() (see comments in that function)
2964 	 */
2965 	if (gup_flags & FOLL_LONGTERM) {
2966 		mmap_read_lock(current->mm);
2967 		ret = __gup_longterm_locked(current->mm,
2968 					    start, nr_pages,
2969 					    pages, NULL, gup_flags);
2970 		mmap_read_unlock(current->mm);
2971 	} else {
2972 		ret = get_user_pages_unlocked(start, nr_pages,
2973 					      pages, gup_flags);
2974 	}
2975 
2976 	return ret;
2977 }
2978 
2979 static unsigned long lockless_pages_from_mm(unsigned long start,
2980 					    unsigned long end,
2981 					    unsigned int gup_flags,
2982 					    struct page **pages)
2983 {
2984 	unsigned long flags;
2985 	int nr_pinned = 0;
2986 	unsigned seq;
2987 
2988 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2989 	    !gup_fast_permitted(start, end))
2990 		return 0;
2991 
2992 	if (gup_flags & FOLL_PIN) {
2993 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2994 		if (seq & 1)
2995 			return 0;
2996 	}
2997 
2998 	/*
2999 	 * Disable interrupts. The nested form is used, in order to allow full,
3000 	 * general purpose use of this routine.
3001 	 *
3002 	 * With interrupts disabled, we block page table pages from being freed
3003 	 * from under us. See struct mmu_table_batch comments in
3004 	 * include/asm-generic/tlb.h for more details.
3005 	 *
3006 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3007 	 * that come from THPs splitting.
3008 	 */
3009 	local_irq_save(flags);
3010 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3011 	local_irq_restore(flags);
3012 
3013 	/*
3014 	 * When pinning pages for DMA there could be a concurrent write protect
3015 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3016 	 */
3017 	if (gup_flags & FOLL_PIN) {
3018 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3019 			unpin_user_pages_lockless(pages, nr_pinned);
3020 			return 0;
3021 		} else {
3022 			sanity_check_pinned_pages(pages, nr_pinned);
3023 		}
3024 	}
3025 	return nr_pinned;
3026 }
3027 
3028 static int internal_get_user_pages_fast(unsigned long start,
3029 					unsigned long nr_pages,
3030 					unsigned int gup_flags,
3031 					struct page **pages)
3032 {
3033 	unsigned long len, end;
3034 	unsigned long nr_pinned;
3035 	int ret;
3036 
3037 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3038 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3039 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3040 				       FOLL_PCI_P2PDMA)))
3041 		return -EINVAL;
3042 
3043 	if (gup_flags & FOLL_PIN)
3044 		mm_set_has_pinned_flag(&current->mm->flags);
3045 
3046 	if (!(gup_flags & FOLL_FAST_ONLY))
3047 		might_lock_read(&current->mm->mmap_lock);
3048 
3049 	start = untagged_addr(start) & PAGE_MASK;
3050 	len = nr_pages << PAGE_SHIFT;
3051 	if (check_add_overflow(start, len, &end))
3052 		return 0;
3053 	if (unlikely(!access_ok((void __user *)start, len)))
3054 		return -EFAULT;
3055 
3056 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3057 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3058 		return nr_pinned;
3059 
3060 	/* Slow path: try to get the remaining pages with get_user_pages */
3061 	start += nr_pinned << PAGE_SHIFT;
3062 	pages += nr_pinned;
3063 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
3064 				      pages);
3065 	if (ret < 0) {
3066 		/*
3067 		 * The caller has to unpin the pages we already pinned so
3068 		 * returning -errno is not an option
3069 		 */
3070 		if (nr_pinned)
3071 			return nr_pinned;
3072 		return ret;
3073 	}
3074 	return ret + nr_pinned;
3075 }
3076 
3077 /**
3078  * get_user_pages_fast_only() - pin user pages in memory
3079  * @start:      starting user address
3080  * @nr_pages:   number of pages from start to pin
3081  * @gup_flags:  flags modifying pin behaviour
3082  * @pages:      array that receives pointers to the pages pinned.
3083  *              Should be at least nr_pages long.
3084  *
3085  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3086  * the regular GUP.
3087  * Note a difference with get_user_pages_fast: this always returns the
3088  * number of pages pinned, 0 if no pages were pinned.
3089  *
3090  * If the architecture does not support this function, simply return with no
3091  * pages pinned.
3092  *
3093  * Careful, careful! COW breaking can go either way, so a non-write
3094  * access can get ambiguous page results. If you call this function without
3095  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3096  */
3097 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3098 			     unsigned int gup_flags, struct page **pages)
3099 {
3100 	int nr_pinned;
3101 	/*
3102 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3103 	 * because gup fast is always a "pin with a +1 page refcount" request.
3104 	 *
3105 	 * FOLL_FAST_ONLY is required in order to match the API description of
3106 	 * this routine: no fall back to regular ("slow") GUP.
3107 	 */
3108 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3109 
3110 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3111 						 pages);
3112 
3113 	/*
3114 	 * As specified in the API description above, this routine is not
3115 	 * allowed to return negative values. However, the common core
3116 	 * routine internal_get_user_pages_fast() *can* return -errno.
3117 	 * Therefore, correct for that here:
3118 	 */
3119 	if (nr_pinned < 0)
3120 		nr_pinned = 0;
3121 
3122 	return nr_pinned;
3123 }
3124 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3125 
3126 /**
3127  * get_user_pages_fast() - pin user pages in memory
3128  * @start:      starting user address
3129  * @nr_pages:   number of pages from start to pin
3130  * @gup_flags:  flags modifying pin behaviour
3131  * @pages:      array that receives pointers to the pages pinned.
3132  *              Should be at least nr_pages long.
3133  *
3134  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3135  * If not successful, it will fall back to taking the lock and
3136  * calling get_user_pages().
3137  *
3138  * Returns number of pages pinned. This may be fewer than the number requested.
3139  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3140  * -errno.
3141  */
3142 int get_user_pages_fast(unsigned long start, int nr_pages,
3143 			unsigned int gup_flags, struct page **pages)
3144 {
3145 	if (!is_valid_gup_flags(gup_flags))
3146 		return -EINVAL;
3147 
3148 	/*
3149 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3150 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3151 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3152 	 * request.
3153 	 */
3154 	gup_flags |= FOLL_GET;
3155 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3156 }
3157 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3158 
3159 /**
3160  * pin_user_pages_fast() - pin user pages in memory without taking locks
3161  *
3162  * @start:      starting user address
3163  * @nr_pages:   number of pages from start to pin
3164  * @gup_flags:  flags modifying pin behaviour
3165  * @pages:      array that receives pointers to the pages pinned.
3166  *              Should be at least nr_pages long.
3167  *
3168  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3169  * get_user_pages_fast() for documentation on the function arguments, because
3170  * the arguments here are identical.
3171  *
3172  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3173  * see Documentation/core-api/pin_user_pages.rst for further details.
3174  */
3175 int pin_user_pages_fast(unsigned long start, int nr_pages,
3176 			unsigned int gup_flags, struct page **pages)
3177 {
3178 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3179 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3180 		return -EINVAL;
3181 
3182 	if (WARN_ON_ONCE(!pages))
3183 		return -EINVAL;
3184 
3185 	gup_flags |= FOLL_PIN;
3186 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3187 }
3188 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3189 
3190 /*
3191  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3192  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3193  *
3194  * The API rules are the same, too: no negative values may be returned.
3195  */
3196 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3197 			     unsigned int gup_flags, struct page **pages)
3198 {
3199 	int nr_pinned;
3200 
3201 	/*
3202 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3203 	 * rules require returning 0, rather than -errno:
3204 	 */
3205 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3206 		return 0;
3207 
3208 	if (WARN_ON_ONCE(!pages))
3209 		return 0;
3210 	/*
3211 	 * FOLL_FAST_ONLY is required in order to match the API description of
3212 	 * this routine: no fall back to regular ("slow") GUP.
3213 	 */
3214 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3215 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3216 						 pages);
3217 	/*
3218 	 * This routine is not allowed to return negative values. However,
3219 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3220 	 * correct for that here:
3221 	 */
3222 	if (nr_pinned < 0)
3223 		nr_pinned = 0;
3224 
3225 	return nr_pinned;
3226 }
3227 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3228 
3229 /**
3230  * pin_user_pages_remote() - pin pages of a remote process
3231  *
3232  * @mm:		mm_struct of target mm
3233  * @start:	starting user address
3234  * @nr_pages:	number of pages from start to pin
3235  * @gup_flags:	flags modifying lookup behaviour
3236  * @pages:	array that receives pointers to the pages pinned.
3237  *		Should be at least nr_pages long.
3238  * @vmas:	array of pointers to vmas corresponding to each page.
3239  *		Or NULL if the caller does not require them.
3240  * @locked:	pointer to lock flag indicating whether lock is held and
3241  *		subsequently whether VM_FAULT_RETRY functionality can be
3242  *		utilised. Lock must initially be held.
3243  *
3244  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3245  * get_user_pages_remote() for documentation on the function arguments, because
3246  * the arguments here are identical.
3247  *
3248  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3249  * see Documentation/core-api/pin_user_pages.rst for details.
3250  */
3251 long pin_user_pages_remote(struct mm_struct *mm,
3252 			   unsigned long start, unsigned long nr_pages,
3253 			   unsigned int gup_flags, struct page **pages,
3254 			   struct vm_area_struct **vmas, int *locked)
3255 {
3256 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3257 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3258 		return -EINVAL;
3259 
3260 	if (WARN_ON_ONCE(!pages))
3261 		return -EINVAL;
3262 
3263 	gup_flags |= FOLL_PIN;
3264 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3265 				       pages, vmas, locked);
3266 }
3267 EXPORT_SYMBOL(pin_user_pages_remote);
3268 
3269 /**
3270  * pin_user_pages() - pin user pages in memory for use by other devices
3271  *
3272  * @start:	starting user address
3273  * @nr_pages:	number of pages from start to pin
3274  * @gup_flags:	flags modifying lookup behaviour
3275  * @pages:	array that receives pointers to the pages pinned.
3276  *		Should be at least nr_pages long.
3277  * @vmas:	array of pointers to vmas corresponding to each page.
3278  *		Or NULL if the caller does not require them.
3279  *
3280  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3281  * FOLL_PIN is set.
3282  *
3283  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3284  * see Documentation/core-api/pin_user_pages.rst for details.
3285  */
3286 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3287 		    unsigned int gup_flags, struct page **pages,
3288 		    struct vm_area_struct **vmas)
3289 {
3290 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3291 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3292 		return -EINVAL;
3293 
3294 	if (WARN_ON_ONCE(!pages))
3295 		return -EINVAL;
3296 
3297 	gup_flags |= FOLL_PIN;
3298 	return __gup_longterm_locked(current->mm, start, nr_pages,
3299 				     pages, vmas, gup_flags);
3300 }
3301 EXPORT_SYMBOL(pin_user_pages);
3302 
3303 /*
3304  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3305  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3306  * FOLL_PIN and rejects FOLL_GET.
3307  */
3308 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3309 			     struct page **pages, unsigned int gup_flags)
3310 {
3311 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3312 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3313 		return -EINVAL;
3314 
3315 	if (WARN_ON_ONCE(!pages))
3316 		return -EINVAL;
3317 
3318 	gup_flags |= FOLL_PIN;
3319 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3320 }
3321 EXPORT_SYMBOL(pin_user_pages_unlocked);
3322