1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 #include <linux/secretmem.h> 14 15 #include <linux/sched/signal.h> 16 #include <linux/rwsem.h> 17 #include <linux/hugetlb.h> 18 #include <linux/migrate.h> 19 #include <linux/mm_inline.h> 20 #include <linux/sched/mm.h> 21 22 #include <asm/mmu_context.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static inline void sanity_check_pinned_pages(struct page **pages, 33 unsigned long npages) 34 { 35 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 36 return; 37 38 /* 39 * We only pin anonymous pages if they are exclusive. Once pinned, we 40 * can no longer turn them possibly shared and PageAnonExclusive() will 41 * stick around until the page is freed. 42 * 43 * We'd like to verify that our pinned anonymous pages are still mapped 44 * exclusively. The issue with anon THP is that we don't know how 45 * they are/were mapped when pinning them. However, for anon 46 * THP we can assume that either the given page (PTE-mapped THP) or 47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If 48 * neither is the case, there is certainly something wrong. 49 */ 50 for (; npages; npages--, pages++) { 51 struct page *page = *pages; 52 struct folio *folio = page_folio(page); 53 54 if (!folio_test_anon(folio)) 55 continue; 56 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); 58 else 59 /* Either a PTE-mapped or a PMD-mapped THP. */ 60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && 61 !PageAnonExclusive(page), page); 62 } 63 } 64 65 /* 66 * Return the folio with ref appropriately incremented, 67 * or NULL if that failed. 68 */ 69 static inline struct folio *try_get_folio(struct page *page, int refs) 70 { 71 struct folio *folio; 72 73 retry: 74 folio = page_folio(page); 75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) 76 return NULL; 77 if (unlikely(!folio_ref_try_add_rcu(folio, refs))) 78 return NULL; 79 80 /* 81 * At this point we have a stable reference to the folio; but it 82 * could be that between calling page_folio() and the refcount 83 * increment, the folio was split, in which case we'd end up 84 * holding a reference on a folio that has nothing to do with the page 85 * we were given anymore. 86 * So now that the folio is stable, recheck that the page still 87 * belongs to this folio. 88 */ 89 if (unlikely(page_folio(page) != folio)) { 90 if (!put_devmap_managed_page_refs(&folio->page, refs)) 91 folio_put_refs(folio, refs); 92 goto retry; 93 } 94 95 return folio; 96 } 97 98 /** 99 * try_grab_folio() - Attempt to get or pin a folio. 100 * @page: pointer to page to be grabbed 101 * @refs: the value to (effectively) add to the folio's refcount 102 * @flags: gup flags: these are the FOLL_* flag values. 103 * 104 * "grab" names in this file mean, "look at flags to decide whether to use 105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. 106 * 107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 108 * same time. (That's true throughout the get_user_pages*() and 109 * pin_user_pages*() APIs.) Cases: 110 * 111 * FOLL_GET: folio's refcount will be incremented by @refs. 112 * 113 * FOLL_PIN on large folios: folio's refcount will be incremented by 114 * @refs, and its compound_pincount will be incremented by @refs. 115 * 116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by 117 * @refs * GUP_PIN_COUNTING_BIAS. 118 * 119 * Return: The folio containing @page (with refcount appropriately 120 * incremented) for success, or NULL upon failure. If neither FOLL_GET 121 * nor FOLL_PIN was set, that's considered failure, and furthermore, 122 * a likely bug in the caller, so a warning is also emitted. 123 */ 124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) 125 { 126 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 127 return NULL; 128 129 if (flags & FOLL_GET) 130 return try_get_folio(page, refs); 131 else if (flags & FOLL_PIN) { 132 struct folio *folio; 133 134 /* 135 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a 136 * right zone, so fail and let the caller fall back to the slow 137 * path. 138 */ 139 if (unlikely((flags & FOLL_LONGTERM) && 140 !is_longterm_pinnable_page(page))) 141 return NULL; 142 143 /* 144 * CAUTION: Don't use compound_head() on the page before this 145 * point, the result won't be stable. 146 */ 147 folio = try_get_folio(page, refs); 148 if (!folio) 149 return NULL; 150 151 /* 152 * When pinning a large folio, use an exact count to track it. 153 * 154 * However, be sure to *also* increment the normal folio 155 * refcount field at least once, so that the folio really 156 * is pinned. That's why the refcount from the earlier 157 * try_get_folio() is left intact. 158 */ 159 if (folio_test_large(folio)) 160 atomic_add(refs, folio_pincount_ptr(folio)); 161 else 162 folio_ref_add(folio, 163 refs * (GUP_PIN_COUNTING_BIAS - 1)); 164 /* 165 * Adjust the pincount before re-checking the PTE for changes. 166 * This is essentially a smp_mb() and is paired with a memory 167 * barrier in page_try_share_anon_rmap(). 168 */ 169 smp_mb__after_atomic(); 170 171 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); 172 173 return folio; 174 } 175 176 WARN_ON_ONCE(1); 177 return NULL; 178 } 179 180 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) 181 { 182 if (flags & FOLL_PIN) { 183 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); 184 if (folio_test_large(folio)) 185 atomic_sub(refs, folio_pincount_ptr(folio)); 186 else 187 refs *= GUP_PIN_COUNTING_BIAS; 188 } 189 190 if (!put_devmap_managed_page_refs(&folio->page, refs)) 191 folio_put_refs(folio, refs); 192 } 193 194 /** 195 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 196 * @page: pointer to page to be grabbed 197 * @flags: gup flags: these are the FOLL_* flag values. 198 * 199 * This might not do anything at all, depending on the flags argument. 200 * 201 * "grab" names in this file mean, "look at flags to decide whether to use 202 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 203 * 204 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 205 * time. Cases: please see the try_grab_folio() documentation, with 206 * "refs=1". 207 * 208 * Return: 0 for success, or if no action was required (if neither FOLL_PIN 209 * nor FOLL_GET was set, nothing is done). A negative error code for failure: 210 * 211 * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not 212 * be grabbed. 213 */ 214 int __must_check try_grab_page(struct page *page, unsigned int flags) 215 { 216 struct folio *folio = page_folio(page); 217 218 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 219 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) 220 return -ENOMEM; 221 222 if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) 223 return -EREMOTEIO; 224 225 if (flags & FOLL_GET) 226 folio_ref_inc(folio); 227 else if (flags & FOLL_PIN) { 228 /* 229 * Similar to try_grab_folio(): be sure to *also* 230 * increment the normal page refcount field at least once, 231 * so that the page really is pinned. 232 */ 233 if (folio_test_large(folio)) { 234 folio_ref_add(folio, 1); 235 atomic_add(1, folio_pincount_ptr(folio)); 236 } else { 237 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); 238 } 239 240 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); 241 } 242 243 return 0; 244 } 245 246 /** 247 * unpin_user_page() - release a dma-pinned page 248 * @page: pointer to page to be released 249 * 250 * Pages that were pinned via pin_user_pages*() must be released via either 251 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 252 * that such pages can be separately tracked and uniquely handled. In 253 * particular, interactions with RDMA and filesystems need special handling. 254 */ 255 void unpin_user_page(struct page *page) 256 { 257 sanity_check_pinned_pages(&page, 1); 258 gup_put_folio(page_folio(page), 1, FOLL_PIN); 259 } 260 EXPORT_SYMBOL(unpin_user_page); 261 262 static inline struct folio *gup_folio_range_next(struct page *start, 263 unsigned long npages, unsigned long i, unsigned int *ntails) 264 { 265 struct page *next = nth_page(start, i); 266 struct folio *folio = page_folio(next); 267 unsigned int nr = 1; 268 269 if (folio_test_large(folio)) 270 nr = min_t(unsigned int, npages - i, 271 folio_nr_pages(folio) - folio_page_idx(folio, next)); 272 273 *ntails = nr; 274 return folio; 275 } 276 277 static inline struct folio *gup_folio_next(struct page **list, 278 unsigned long npages, unsigned long i, unsigned int *ntails) 279 { 280 struct folio *folio = page_folio(list[i]); 281 unsigned int nr; 282 283 for (nr = i + 1; nr < npages; nr++) { 284 if (page_folio(list[nr]) != folio) 285 break; 286 } 287 288 *ntails = nr - i; 289 return folio; 290 } 291 292 /** 293 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 294 * @pages: array of pages to be maybe marked dirty, and definitely released. 295 * @npages: number of pages in the @pages array. 296 * @make_dirty: whether to mark the pages dirty 297 * 298 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 299 * variants called on that page. 300 * 301 * For each page in the @pages array, make that page (or its head page, if a 302 * compound page) dirty, if @make_dirty is true, and if the page was previously 303 * listed as clean. In any case, releases all pages using unpin_user_page(), 304 * possibly via unpin_user_pages(), for the non-dirty case. 305 * 306 * Please see the unpin_user_page() documentation for details. 307 * 308 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 309 * required, then the caller should a) verify that this is really correct, 310 * because _lock() is usually required, and b) hand code it: 311 * set_page_dirty_lock(), unpin_user_page(). 312 * 313 */ 314 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 315 bool make_dirty) 316 { 317 unsigned long i; 318 struct folio *folio; 319 unsigned int nr; 320 321 if (!make_dirty) { 322 unpin_user_pages(pages, npages); 323 return; 324 } 325 326 sanity_check_pinned_pages(pages, npages); 327 for (i = 0; i < npages; i += nr) { 328 folio = gup_folio_next(pages, npages, i, &nr); 329 /* 330 * Checking PageDirty at this point may race with 331 * clear_page_dirty_for_io(), but that's OK. Two key 332 * cases: 333 * 334 * 1) This code sees the page as already dirty, so it 335 * skips the call to set_page_dirty(). That could happen 336 * because clear_page_dirty_for_io() called 337 * page_mkclean(), followed by set_page_dirty(). 338 * However, now the page is going to get written back, 339 * which meets the original intention of setting it 340 * dirty, so all is well: clear_page_dirty_for_io() goes 341 * on to call TestClearPageDirty(), and write the page 342 * back. 343 * 344 * 2) This code sees the page as clean, so it calls 345 * set_page_dirty(). The page stays dirty, despite being 346 * written back, so it gets written back again in the 347 * next writeback cycle. This is harmless. 348 */ 349 if (!folio_test_dirty(folio)) { 350 folio_lock(folio); 351 folio_mark_dirty(folio); 352 folio_unlock(folio); 353 } 354 gup_put_folio(folio, nr, FOLL_PIN); 355 } 356 } 357 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 358 359 /** 360 * unpin_user_page_range_dirty_lock() - release and optionally dirty 361 * gup-pinned page range 362 * 363 * @page: the starting page of a range maybe marked dirty, and definitely released. 364 * @npages: number of consecutive pages to release. 365 * @make_dirty: whether to mark the pages dirty 366 * 367 * "gup-pinned page range" refers to a range of pages that has had one of the 368 * pin_user_pages() variants called on that page. 369 * 370 * For the page ranges defined by [page .. page+npages], make that range (or 371 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the 372 * page range was previously listed as clean. 373 * 374 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 375 * required, then the caller should a) verify that this is really correct, 376 * because _lock() is usually required, and b) hand code it: 377 * set_page_dirty_lock(), unpin_user_page(). 378 * 379 */ 380 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 381 bool make_dirty) 382 { 383 unsigned long i; 384 struct folio *folio; 385 unsigned int nr; 386 387 for (i = 0; i < npages; i += nr) { 388 folio = gup_folio_range_next(page, npages, i, &nr); 389 if (make_dirty && !folio_test_dirty(folio)) { 390 folio_lock(folio); 391 folio_mark_dirty(folio); 392 folio_unlock(folio); 393 } 394 gup_put_folio(folio, nr, FOLL_PIN); 395 } 396 } 397 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); 398 399 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages) 400 { 401 unsigned long i; 402 struct folio *folio; 403 unsigned int nr; 404 405 /* 406 * Don't perform any sanity checks because we might have raced with 407 * fork() and some anonymous pages might now actually be shared -- 408 * which is why we're unpinning after all. 409 */ 410 for (i = 0; i < npages; i += nr) { 411 folio = gup_folio_next(pages, npages, i, &nr); 412 gup_put_folio(folio, nr, FOLL_PIN); 413 } 414 } 415 416 /** 417 * unpin_user_pages() - release an array of gup-pinned pages. 418 * @pages: array of pages to be marked dirty and released. 419 * @npages: number of pages in the @pages array. 420 * 421 * For each page in the @pages array, release the page using unpin_user_page(). 422 * 423 * Please see the unpin_user_page() documentation for details. 424 */ 425 void unpin_user_pages(struct page **pages, unsigned long npages) 426 { 427 unsigned long i; 428 struct folio *folio; 429 unsigned int nr; 430 431 /* 432 * If this WARN_ON() fires, then the system *might* be leaking pages (by 433 * leaving them pinned), but probably not. More likely, gup/pup returned 434 * a hard -ERRNO error to the caller, who erroneously passed it here. 435 */ 436 if (WARN_ON(IS_ERR_VALUE(npages))) 437 return; 438 439 sanity_check_pinned_pages(pages, npages); 440 for (i = 0; i < npages; i += nr) { 441 folio = gup_folio_next(pages, npages, i, &nr); 442 gup_put_folio(folio, nr, FOLL_PIN); 443 } 444 } 445 EXPORT_SYMBOL(unpin_user_pages); 446 447 /* 448 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's 449 * lifecycle. Avoid setting the bit unless necessary, or it might cause write 450 * cache bouncing on large SMP machines for concurrent pinned gups. 451 */ 452 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) 453 { 454 if (!test_bit(MMF_HAS_PINNED, mm_flags)) 455 set_bit(MMF_HAS_PINNED, mm_flags); 456 } 457 458 #ifdef CONFIG_MMU 459 static struct page *no_page_table(struct vm_area_struct *vma, 460 unsigned int flags) 461 { 462 /* 463 * When core dumping an enormous anonymous area that nobody 464 * has touched so far, we don't want to allocate unnecessary pages or 465 * page tables. Return error instead of NULL to skip handle_mm_fault, 466 * then get_dump_page() will return NULL to leave a hole in the dump. 467 * But we can only make this optimization where a hole would surely 468 * be zero-filled if handle_mm_fault() actually did handle it. 469 */ 470 if ((flags & FOLL_DUMP) && 471 (vma_is_anonymous(vma) || !vma->vm_ops->fault)) 472 return ERR_PTR(-EFAULT); 473 return NULL; 474 } 475 476 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 477 pte_t *pte, unsigned int flags) 478 { 479 if (flags & FOLL_TOUCH) { 480 pte_t entry = *pte; 481 482 if (flags & FOLL_WRITE) 483 entry = pte_mkdirty(entry); 484 entry = pte_mkyoung(entry); 485 486 if (!pte_same(*pte, entry)) { 487 set_pte_at(vma->vm_mm, address, pte, entry); 488 update_mmu_cache(vma, address, pte); 489 } 490 } 491 492 /* Proper page table entry exists, but no corresponding struct page */ 493 return -EEXIST; 494 } 495 496 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ 497 static inline bool can_follow_write_pte(pte_t pte, struct page *page, 498 struct vm_area_struct *vma, 499 unsigned int flags) 500 { 501 /* If the pte is writable, we can write to the page. */ 502 if (pte_write(pte)) 503 return true; 504 505 /* Maybe FOLL_FORCE is set to override it? */ 506 if (!(flags & FOLL_FORCE)) 507 return false; 508 509 /* But FOLL_FORCE has no effect on shared mappings */ 510 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) 511 return false; 512 513 /* ... or read-only private ones */ 514 if (!(vma->vm_flags & VM_MAYWRITE)) 515 return false; 516 517 /* ... or already writable ones that just need to take a write fault */ 518 if (vma->vm_flags & VM_WRITE) 519 return false; 520 521 /* 522 * See can_change_pte_writable(): we broke COW and could map the page 523 * writable if we have an exclusive anonymous page ... 524 */ 525 if (!page || !PageAnon(page) || !PageAnonExclusive(page)) 526 return false; 527 528 /* ... and a write-fault isn't required for other reasons. */ 529 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) 530 return false; 531 return !userfaultfd_pte_wp(vma, pte); 532 } 533 534 static struct page *follow_page_pte(struct vm_area_struct *vma, 535 unsigned long address, pmd_t *pmd, unsigned int flags, 536 struct dev_pagemap **pgmap) 537 { 538 struct mm_struct *mm = vma->vm_mm; 539 struct page *page; 540 spinlock_t *ptl; 541 pte_t *ptep, pte; 542 int ret; 543 544 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 545 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 546 (FOLL_PIN | FOLL_GET))) 547 return ERR_PTR(-EINVAL); 548 549 /* 550 * Considering PTE level hugetlb, like continuous-PTE hugetlb on 551 * ARM64 architecture. 552 */ 553 if (is_vm_hugetlb_page(vma)) { 554 page = follow_huge_pmd_pte(vma, address, flags); 555 if (page) 556 return page; 557 return no_page_table(vma, flags); 558 } 559 560 retry: 561 if (unlikely(pmd_bad(*pmd))) 562 return no_page_table(vma, flags); 563 564 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 565 pte = *ptep; 566 if (!pte_present(pte)) { 567 swp_entry_t entry; 568 /* 569 * KSM's break_ksm() relies upon recognizing a ksm page 570 * even while it is being migrated, so for that case we 571 * need migration_entry_wait(). 572 */ 573 if (likely(!(flags & FOLL_MIGRATION))) 574 goto no_page; 575 if (pte_none(pte)) 576 goto no_page; 577 entry = pte_to_swp_entry(pte); 578 if (!is_migration_entry(entry)) 579 goto no_page; 580 pte_unmap_unlock(ptep, ptl); 581 migration_entry_wait(mm, pmd, address); 582 goto retry; 583 } 584 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 585 goto no_page; 586 587 page = vm_normal_page(vma, address, pte); 588 589 /* 590 * We only care about anon pages in can_follow_write_pte() and don't 591 * have to worry about pte_devmap() because they are never anon. 592 */ 593 if ((flags & FOLL_WRITE) && 594 !can_follow_write_pte(pte, page, vma, flags)) { 595 page = NULL; 596 goto out; 597 } 598 599 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 600 /* 601 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 602 * case since they are only valid while holding the pgmap 603 * reference. 604 */ 605 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 606 if (*pgmap) 607 page = pte_page(pte); 608 else 609 goto no_page; 610 } else if (unlikely(!page)) { 611 if (flags & FOLL_DUMP) { 612 /* Avoid special (like zero) pages in core dumps */ 613 page = ERR_PTR(-EFAULT); 614 goto out; 615 } 616 617 if (is_zero_pfn(pte_pfn(pte))) { 618 page = pte_page(pte); 619 } else { 620 ret = follow_pfn_pte(vma, address, ptep, flags); 621 page = ERR_PTR(ret); 622 goto out; 623 } 624 } 625 626 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 627 page = ERR_PTR(-EMLINK); 628 goto out; 629 } 630 631 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && 632 !PageAnonExclusive(page), page); 633 634 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 635 ret = try_grab_page(page, flags); 636 if (unlikely(ret)) { 637 page = ERR_PTR(ret); 638 goto out; 639 } 640 641 /* 642 * We need to make the page accessible if and only if we are going 643 * to access its content (the FOLL_PIN case). Please see 644 * Documentation/core-api/pin_user_pages.rst for details. 645 */ 646 if (flags & FOLL_PIN) { 647 ret = arch_make_page_accessible(page); 648 if (ret) { 649 unpin_user_page(page); 650 page = ERR_PTR(ret); 651 goto out; 652 } 653 } 654 if (flags & FOLL_TOUCH) { 655 if ((flags & FOLL_WRITE) && 656 !pte_dirty(pte) && !PageDirty(page)) 657 set_page_dirty(page); 658 /* 659 * pte_mkyoung() would be more correct here, but atomic care 660 * is needed to avoid losing the dirty bit: it is easier to use 661 * mark_page_accessed(). 662 */ 663 mark_page_accessed(page); 664 } 665 out: 666 pte_unmap_unlock(ptep, ptl); 667 return page; 668 no_page: 669 pte_unmap_unlock(ptep, ptl); 670 if (!pte_none(pte)) 671 return NULL; 672 return no_page_table(vma, flags); 673 } 674 675 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 676 unsigned long address, pud_t *pudp, 677 unsigned int flags, 678 struct follow_page_context *ctx) 679 { 680 pmd_t *pmd, pmdval; 681 spinlock_t *ptl; 682 struct page *page; 683 struct mm_struct *mm = vma->vm_mm; 684 685 pmd = pmd_offset(pudp, address); 686 /* 687 * The READ_ONCE() will stabilize the pmdval in a register or 688 * on the stack so that it will stop changing under the code. 689 */ 690 pmdval = READ_ONCE(*pmd); 691 if (pmd_none(pmdval)) 692 return no_page_table(vma, flags); 693 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 694 page = follow_huge_pmd_pte(vma, address, flags); 695 if (page) 696 return page; 697 return no_page_table(vma, flags); 698 } 699 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 700 page = follow_huge_pd(vma, address, 701 __hugepd(pmd_val(pmdval)), flags, 702 PMD_SHIFT); 703 if (page) 704 return page; 705 return no_page_table(vma, flags); 706 } 707 retry: 708 if (!pmd_present(pmdval)) { 709 /* 710 * Should never reach here, if thp migration is not supported; 711 * Otherwise, it must be a thp migration entry. 712 */ 713 VM_BUG_ON(!thp_migration_supported() || 714 !is_pmd_migration_entry(pmdval)); 715 716 if (likely(!(flags & FOLL_MIGRATION))) 717 return no_page_table(vma, flags); 718 719 pmd_migration_entry_wait(mm, pmd); 720 pmdval = READ_ONCE(*pmd); 721 /* 722 * MADV_DONTNEED may convert the pmd to null because 723 * mmap_lock is held in read mode 724 */ 725 if (pmd_none(pmdval)) 726 return no_page_table(vma, flags); 727 goto retry; 728 } 729 if (pmd_devmap(pmdval)) { 730 ptl = pmd_lock(mm, pmd); 731 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 732 spin_unlock(ptl); 733 if (page) 734 return page; 735 } 736 if (likely(!pmd_trans_huge(pmdval))) 737 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 738 739 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags)) 740 return no_page_table(vma, flags); 741 742 retry_locked: 743 ptl = pmd_lock(mm, pmd); 744 if (unlikely(pmd_none(*pmd))) { 745 spin_unlock(ptl); 746 return no_page_table(vma, flags); 747 } 748 if (unlikely(!pmd_present(*pmd))) { 749 spin_unlock(ptl); 750 if (likely(!(flags & FOLL_MIGRATION))) 751 return no_page_table(vma, flags); 752 pmd_migration_entry_wait(mm, pmd); 753 goto retry_locked; 754 } 755 if (unlikely(!pmd_trans_huge(*pmd))) { 756 spin_unlock(ptl); 757 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 758 } 759 if (flags & FOLL_SPLIT_PMD) { 760 int ret; 761 page = pmd_page(*pmd); 762 if (is_huge_zero_page(page)) { 763 spin_unlock(ptl); 764 ret = 0; 765 split_huge_pmd(vma, pmd, address); 766 if (pmd_trans_unstable(pmd)) 767 ret = -EBUSY; 768 } else { 769 spin_unlock(ptl); 770 split_huge_pmd(vma, pmd, address); 771 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 772 } 773 774 return ret ? ERR_PTR(ret) : 775 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 776 } 777 page = follow_trans_huge_pmd(vma, address, pmd, flags); 778 spin_unlock(ptl); 779 ctx->page_mask = HPAGE_PMD_NR - 1; 780 return page; 781 } 782 783 static struct page *follow_pud_mask(struct vm_area_struct *vma, 784 unsigned long address, p4d_t *p4dp, 785 unsigned int flags, 786 struct follow_page_context *ctx) 787 { 788 pud_t *pud; 789 spinlock_t *ptl; 790 struct page *page; 791 struct mm_struct *mm = vma->vm_mm; 792 793 pud = pud_offset(p4dp, address); 794 if (pud_none(*pud)) 795 return no_page_table(vma, flags); 796 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 797 page = follow_huge_pud(mm, address, pud, flags); 798 if (page) 799 return page; 800 return no_page_table(vma, flags); 801 } 802 if (is_hugepd(__hugepd(pud_val(*pud)))) { 803 page = follow_huge_pd(vma, address, 804 __hugepd(pud_val(*pud)), flags, 805 PUD_SHIFT); 806 if (page) 807 return page; 808 return no_page_table(vma, flags); 809 } 810 if (pud_devmap(*pud)) { 811 ptl = pud_lock(mm, pud); 812 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 813 spin_unlock(ptl); 814 if (page) 815 return page; 816 } 817 if (unlikely(pud_bad(*pud))) 818 return no_page_table(vma, flags); 819 820 return follow_pmd_mask(vma, address, pud, flags, ctx); 821 } 822 823 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 824 unsigned long address, pgd_t *pgdp, 825 unsigned int flags, 826 struct follow_page_context *ctx) 827 { 828 p4d_t *p4d; 829 struct page *page; 830 831 p4d = p4d_offset(pgdp, address); 832 if (p4d_none(*p4d)) 833 return no_page_table(vma, flags); 834 BUILD_BUG_ON(p4d_huge(*p4d)); 835 if (unlikely(p4d_bad(*p4d))) 836 return no_page_table(vma, flags); 837 838 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 839 page = follow_huge_pd(vma, address, 840 __hugepd(p4d_val(*p4d)), flags, 841 P4D_SHIFT); 842 if (page) 843 return page; 844 return no_page_table(vma, flags); 845 } 846 return follow_pud_mask(vma, address, p4d, flags, ctx); 847 } 848 849 /** 850 * follow_page_mask - look up a page descriptor from a user-virtual address 851 * @vma: vm_area_struct mapping @address 852 * @address: virtual address to look up 853 * @flags: flags modifying lookup behaviour 854 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 855 * pointer to output page_mask 856 * 857 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 858 * 859 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 860 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 861 * 862 * When getting an anonymous page and the caller has to trigger unsharing 863 * of a shared anonymous page first, -EMLINK is returned. The caller should 864 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only 865 * relevant with FOLL_PIN and !FOLL_WRITE. 866 * 867 * On output, the @ctx->page_mask is set according to the size of the page. 868 * 869 * Return: the mapped (struct page *), %NULL if no mapping exists, or 870 * an error pointer if there is a mapping to something not represented 871 * by a page descriptor (see also vm_normal_page()). 872 */ 873 static struct page *follow_page_mask(struct vm_area_struct *vma, 874 unsigned long address, unsigned int flags, 875 struct follow_page_context *ctx) 876 { 877 pgd_t *pgd; 878 struct page *page; 879 struct mm_struct *mm = vma->vm_mm; 880 881 ctx->page_mask = 0; 882 883 /* make this handle hugepd */ 884 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 885 if (!IS_ERR(page)) { 886 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 887 return page; 888 } 889 890 pgd = pgd_offset(mm, address); 891 892 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 893 return no_page_table(vma, flags); 894 895 if (pgd_huge(*pgd)) { 896 page = follow_huge_pgd(mm, address, pgd, flags); 897 if (page) 898 return page; 899 return no_page_table(vma, flags); 900 } 901 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 902 page = follow_huge_pd(vma, address, 903 __hugepd(pgd_val(*pgd)), flags, 904 PGDIR_SHIFT); 905 if (page) 906 return page; 907 return no_page_table(vma, flags); 908 } 909 910 return follow_p4d_mask(vma, address, pgd, flags, ctx); 911 } 912 913 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 914 unsigned int foll_flags) 915 { 916 struct follow_page_context ctx = { NULL }; 917 struct page *page; 918 919 if (vma_is_secretmem(vma)) 920 return NULL; 921 922 if (foll_flags & FOLL_PIN) 923 return NULL; 924 925 page = follow_page_mask(vma, address, foll_flags, &ctx); 926 if (ctx.pgmap) 927 put_dev_pagemap(ctx.pgmap); 928 return page; 929 } 930 931 static int get_gate_page(struct mm_struct *mm, unsigned long address, 932 unsigned int gup_flags, struct vm_area_struct **vma, 933 struct page **page) 934 { 935 pgd_t *pgd; 936 p4d_t *p4d; 937 pud_t *pud; 938 pmd_t *pmd; 939 pte_t *pte; 940 int ret = -EFAULT; 941 942 /* user gate pages are read-only */ 943 if (gup_flags & FOLL_WRITE) 944 return -EFAULT; 945 if (address > TASK_SIZE) 946 pgd = pgd_offset_k(address); 947 else 948 pgd = pgd_offset_gate(mm, address); 949 if (pgd_none(*pgd)) 950 return -EFAULT; 951 p4d = p4d_offset(pgd, address); 952 if (p4d_none(*p4d)) 953 return -EFAULT; 954 pud = pud_offset(p4d, address); 955 if (pud_none(*pud)) 956 return -EFAULT; 957 pmd = pmd_offset(pud, address); 958 if (!pmd_present(*pmd)) 959 return -EFAULT; 960 VM_BUG_ON(pmd_trans_huge(*pmd)); 961 pte = pte_offset_map(pmd, address); 962 if (pte_none(*pte)) 963 goto unmap; 964 *vma = get_gate_vma(mm); 965 if (!page) 966 goto out; 967 *page = vm_normal_page(*vma, address, *pte); 968 if (!*page) { 969 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 970 goto unmap; 971 *page = pte_page(*pte); 972 } 973 ret = try_grab_page(*page, gup_flags); 974 if (unlikely(ret)) 975 goto unmap; 976 out: 977 ret = 0; 978 unmap: 979 pte_unmap(pte); 980 return ret; 981 } 982 983 /* 984 * mmap_lock must be held on entry. If @locked != NULL and *@flags 985 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it 986 * is, *@locked will be set to 0 and -EBUSY returned. 987 */ 988 static int faultin_page(struct vm_area_struct *vma, 989 unsigned long address, unsigned int *flags, bool unshare, 990 int *locked) 991 { 992 unsigned int fault_flags = 0; 993 vm_fault_t ret; 994 995 if (*flags & FOLL_NOFAULT) 996 return -EFAULT; 997 if (*flags & FOLL_WRITE) 998 fault_flags |= FAULT_FLAG_WRITE; 999 if (*flags & FOLL_REMOTE) 1000 fault_flags |= FAULT_FLAG_REMOTE; 1001 if (locked) 1002 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1003 if (*flags & FOLL_NOWAIT) 1004 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 1005 if (*flags & FOLL_TRIED) { 1006 /* 1007 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 1008 * can co-exist 1009 */ 1010 fault_flags |= FAULT_FLAG_TRIED; 1011 } 1012 if (unshare) { 1013 fault_flags |= FAULT_FLAG_UNSHARE; 1014 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ 1015 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); 1016 } 1017 1018 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1019 1020 if (ret & VM_FAULT_COMPLETED) { 1021 /* 1022 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the 1023 * mmap lock in the page fault handler. Sanity check this. 1024 */ 1025 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); 1026 if (locked) 1027 *locked = 0; 1028 /* 1029 * We should do the same as VM_FAULT_RETRY, but let's not 1030 * return -EBUSY since that's not reflecting the reality of 1031 * what has happened - we've just fully completed a page 1032 * fault, with the mmap lock released. Use -EAGAIN to show 1033 * that we want to take the mmap lock _again_. 1034 */ 1035 return -EAGAIN; 1036 } 1037 1038 if (ret & VM_FAULT_ERROR) { 1039 int err = vm_fault_to_errno(ret, *flags); 1040 1041 if (err) 1042 return err; 1043 BUG(); 1044 } 1045 1046 if (ret & VM_FAULT_RETRY) { 1047 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 1048 *locked = 0; 1049 return -EBUSY; 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 1056 { 1057 vm_flags_t vm_flags = vma->vm_flags; 1058 int write = (gup_flags & FOLL_WRITE); 1059 int foreign = (gup_flags & FOLL_REMOTE); 1060 1061 if (vm_flags & (VM_IO | VM_PFNMAP)) 1062 return -EFAULT; 1063 1064 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 1065 return -EFAULT; 1066 1067 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) 1068 return -EOPNOTSUPP; 1069 1070 if ((gup_flags & FOLL_LONGTERM) && (gup_flags & FOLL_PCI_P2PDMA)) 1071 return -EOPNOTSUPP; 1072 1073 if (vma_is_secretmem(vma)) 1074 return -EFAULT; 1075 1076 if (write) { 1077 if (!(vm_flags & VM_WRITE)) { 1078 if (!(gup_flags & FOLL_FORCE)) 1079 return -EFAULT; 1080 /* 1081 * We used to let the write,force case do COW in a 1082 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 1083 * set a breakpoint in a read-only mapping of an 1084 * executable, without corrupting the file (yet only 1085 * when that file had been opened for writing!). 1086 * Anon pages in shared mappings are surprising: now 1087 * just reject it. 1088 */ 1089 if (!is_cow_mapping(vm_flags)) 1090 return -EFAULT; 1091 } 1092 } else if (!(vm_flags & VM_READ)) { 1093 if (!(gup_flags & FOLL_FORCE)) 1094 return -EFAULT; 1095 /* 1096 * Is there actually any vma we can reach here which does not 1097 * have VM_MAYREAD set? 1098 */ 1099 if (!(vm_flags & VM_MAYREAD)) 1100 return -EFAULT; 1101 } 1102 /* 1103 * gups are always data accesses, not instruction 1104 * fetches, so execute=false here 1105 */ 1106 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1107 return -EFAULT; 1108 return 0; 1109 } 1110 1111 /** 1112 * __get_user_pages() - pin user pages in memory 1113 * @mm: mm_struct of target mm 1114 * @start: starting user address 1115 * @nr_pages: number of pages from start to pin 1116 * @gup_flags: flags modifying pin behaviour 1117 * @pages: array that receives pointers to the pages pinned. 1118 * Should be at least nr_pages long. Or NULL, if caller 1119 * only intends to ensure the pages are faulted in. 1120 * @vmas: array of pointers to vmas corresponding to each page. 1121 * Or NULL if the caller does not require them. 1122 * @locked: whether we're still with the mmap_lock held 1123 * 1124 * Returns either number of pages pinned (which may be less than the 1125 * number requested), or an error. Details about the return value: 1126 * 1127 * -- If nr_pages is 0, returns 0. 1128 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1129 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1130 * pages pinned. Again, this may be less than nr_pages. 1131 * -- 0 return value is possible when the fault would need to be retried. 1132 * 1133 * The caller is responsible for releasing returned @pages, via put_page(). 1134 * 1135 * @vmas are valid only as long as mmap_lock is held. 1136 * 1137 * Must be called with mmap_lock held. It may be released. See below. 1138 * 1139 * __get_user_pages walks a process's page tables and takes a reference to 1140 * each struct page that each user address corresponds to at a given 1141 * instant. That is, it takes the page that would be accessed if a user 1142 * thread accesses the given user virtual address at that instant. 1143 * 1144 * This does not guarantee that the page exists in the user mappings when 1145 * __get_user_pages returns, and there may even be a completely different 1146 * page there in some cases (eg. if mmapped pagecache has been invalidated 1147 * and subsequently re faulted). However it does guarantee that the page 1148 * won't be freed completely. And mostly callers simply care that the page 1149 * contains data that was valid *at some point in time*. Typically, an IO 1150 * or similar operation cannot guarantee anything stronger anyway because 1151 * locks can't be held over the syscall boundary. 1152 * 1153 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1154 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1155 * appropriate) must be called after the page is finished with, and 1156 * before put_page is called. 1157 * 1158 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is 1159 * released by an up_read(). That can happen if @gup_flags does not 1160 * have FOLL_NOWAIT. 1161 * 1162 * A caller using such a combination of @locked and @gup_flags 1163 * must therefore hold the mmap_lock for reading only, and recognize 1164 * when it's been released. Otherwise, it must be held for either 1165 * reading or writing and will not be released. 1166 * 1167 * In most cases, get_user_pages or get_user_pages_fast should be used 1168 * instead of __get_user_pages. __get_user_pages should be used only if 1169 * you need some special @gup_flags. 1170 */ 1171 static long __get_user_pages(struct mm_struct *mm, 1172 unsigned long start, unsigned long nr_pages, 1173 unsigned int gup_flags, struct page **pages, 1174 struct vm_area_struct **vmas, int *locked) 1175 { 1176 long ret = 0, i = 0; 1177 struct vm_area_struct *vma = NULL; 1178 struct follow_page_context ctx = { NULL }; 1179 1180 if (!nr_pages) 1181 return 0; 1182 1183 start = untagged_addr(start); 1184 1185 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1186 1187 do { 1188 struct page *page; 1189 unsigned int foll_flags = gup_flags; 1190 unsigned int page_increm; 1191 1192 /* first iteration or cross vma bound */ 1193 if (!vma || start >= vma->vm_end) { 1194 vma = find_extend_vma(mm, start); 1195 if (!vma && in_gate_area(mm, start)) { 1196 ret = get_gate_page(mm, start & PAGE_MASK, 1197 gup_flags, &vma, 1198 pages ? &pages[i] : NULL); 1199 if (ret) 1200 goto out; 1201 ctx.page_mask = 0; 1202 goto next_page; 1203 } 1204 1205 if (!vma) { 1206 ret = -EFAULT; 1207 goto out; 1208 } 1209 ret = check_vma_flags(vma, gup_flags); 1210 if (ret) 1211 goto out; 1212 1213 if (is_vm_hugetlb_page(vma)) { 1214 i = follow_hugetlb_page(mm, vma, pages, vmas, 1215 &start, &nr_pages, i, 1216 gup_flags, locked); 1217 if (locked && *locked == 0) { 1218 /* 1219 * We've got a VM_FAULT_RETRY 1220 * and we've lost mmap_lock. 1221 * We must stop here. 1222 */ 1223 BUG_ON(gup_flags & FOLL_NOWAIT); 1224 goto out; 1225 } 1226 continue; 1227 } 1228 } 1229 retry: 1230 /* 1231 * If we have a pending SIGKILL, don't keep faulting pages and 1232 * potentially allocating memory. 1233 */ 1234 if (fatal_signal_pending(current)) { 1235 ret = -EINTR; 1236 goto out; 1237 } 1238 cond_resched(); 1239 1240 page = follow_page_mask(vma, start, foll_flags, &ctx); 1241 if (!page || PTR_ERR(page) == -EMLINK) { 1242 ret = faultin_page(vma, start, &foll_flags, 1243 PTR_ERR(page) == -EMLINK, locked); 1244 switch (ret) { 1245 case 0: 1246 goto retry; 1247 case -EBUSY: 1248 case -EAGAIN: 1249 ret = 0; 1250 fallthrough; 1251 case -EFAULT: 1252 case -ENOMEM: 1253 case -EHWPOISON: 1254 goto out; 1255 } 1256 BUG(); 1257 } else if (PTR_ERR(page) == -EEXIST) { 1258 /* 1259 * Proper page table entry exists, but no corresponding 1260 * struct page. If the caller expects **pages to be 1261 * filled in, bail out now, because that can't be done 1262 * for this page. 1263 */ 1264 if (pages) { 1265 ret = PTR_ERR(page); 1266 goto out; 1267 } 1268 1269 goto next_page; 1270 } else if (IS_ERR(page)) { 1271 ret = PTR_ERR(page); 1272 goto out; 1273 } 1274 if (pages) { 1275 pages[i] = page; 1276 flush_anon_page(vma, page, start); 1277 flush_dcache_page(page); 1278 ctx.page_mask = 0; 1279 } 1280 next_page: 1281 if (vmas) { 1282 vmas[i] = vma; 1283 ctx.page_mask = 0; 1284 } 1285 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1286 if (page_increm > nr_pages) 1287 page_increm = nr_pages; 1288 i += page_increm; 1289 start += page_increm * PAGE_SIZE; 1290 nr_pages -= page_increm; 1291 } while (nr_pages); 1292 out: 1293 if (ctx.pgmap) 1294 put_dev_pagemap(ctx.pgmap); 1295 return i ? i : ret; 1296 } 1297 1298 static bool vma_permits_fault(struct vm_area_struct *vma, 1299 unsigned int fault_flags) 1300 { 1301 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1302 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1303 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1304 1305 if (!(vm_flags & vma->vm_flags)) 1306 return false; 1307 1308 /* 1309 * The architecture might have a hardware protection 1310 * mechanism other than read/write that can deny access. 1311 * 1312 * gup always represents data access, not instruction 1313 * fetches, so execute=false here: 1314 */ 1315 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1316 return false; 1317 1318 return true; 1319 } 1320 1321 /** 1322 * fixup_user_fault() - manually resolve a user page fault 1323 * @mm: mm_struct of target mm 1324 * @address: user address 1325 * @fault_flags:flags to pass down to handle_mm_fault() 1326 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller 1327 * does not allow retry. If NULL, the caller must guarantee 1328 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. 1329 * 1330 * This is meant to be called in the specific scenario where for locking reasons 1331 * we try to access user memory in atomic context (within a pagefault_disable() 1332 * section), this returns -EFAULT, and we want to resolve the user fault before 1333 * trying again. 1334 * 1335 * Typically this is meant to be used by the futex code. 1336 * 1337 * The main difference with get_user_pages() is that this function will 1338 * unconditionally call handle_mm_fault() which will in turn perform all the 1339 * necessary SW fixup of the dirty and young bits in the PTE, while 1340 * get_user_pages() only guarantees to update these in the struct page. 1341 * 1342 * This is important for some architectures where those bits also gate the 1343 * access permission to the page because they are maintained in software. On 1344 * such architectures, gup() will not be enough to make a subsequent access 1345 * succeed. 1346 * 1347 * This function will not return with an unlocked mmap_lock. So it has not the 1348 * same semantics wrt the @mm->mmap_lock as does filemap_fault(). 1349 */ 1350 int fixup_user_fault(struct mm_struct *mm, 1351 unsigned long address, unsigned int fault_flags, 1352 bool *unlocked) 1353 { 1354 struct vm_area_struct *vma; 1355 vm_fault_t ret; 1356 1357 address = untagged_addr(address); 1358 1359 if (unlocked) 1360 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1361 1362 retry: 1363 vma = find_extend_vma(mm, address); 1364 if (!vma || address < vma->vm_start) 1365 return -EFAULT; 1366 1367 if (!vma_permits_fault(vma, fault_flags)) 1368 return -EFAULT; 1369 1370 if ((fault_flags & FAULT_FLAG_KILLABLE) && 1371 fatal_signal_pending(current)) 1372 return -EINTR; 1373 1374 ret = handle_mm_fault(vma, address, fault_flags, NULL); 1375 1376 if (ret & VM_FAULT_COMPLETED) { 1377 /* 1378 * NOTE: it's a pity that we need to retake the lock here 1379 * to pair with the unlock() in the callers. Ideally we 1380 * could tell the callers so they do not need to unlock. 1381 */ 1382 mmap_read_lock(mm); 1383 *unlocked = true; 1384 return 0; 1385 } 1386 1387 if (ret & VM_FAULT_ERROR) { 1388 int err = vm_fault_to_errno(ret, 0); 1389 1390 if (err) 1391 return err; 1392 BUG(); 1393 } 1394 1395 if (ret & VM_FAULT_RETRY) { 1396 mmap_read_lock(mm); 1397 *unlocked = true; 1398 fault_flags |= FAULT_FLAG_TRIED; 1399 goto retry; 1400 } 1401 1402 return 0; 1403 } 1404 EXPORT_SYMBOL_GPL(fixup_user_fault); 1405 1406 /* 1407 * Please note that this function, unlike __get_user_pages will not 1408 * return 0 for nr_pages > 0 without FOLL_NOWAIT 1409 */ 1410 static __always_inline long __get_user_pages_locked(struct mm_struct *mm, 1411 unsigned long start, 1412 unsigned long nr_pages, 1413 struct page **pages, 1414 struct vm_area_struct **vmas, 1415 int *locked, 1416 unsigned int flags) 1417 { 1418 long ret, pages_done; 1419 bool lock_dropped; 1420 1421 if (locked) { 1422 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1423 BUG_ON(vmas); 1424 /* check caller initialized locked */ 1425 BUG_ON(*locked != 1); 1426 } 1427 1428 if (flags & FOLL_PIN) 1429 mm_set_has_pinned_flag(&mm->flags); 1430 1431 /* 1432 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1433 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1434 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1435 * for FOLL_GET, not for the newer FOLL_PIN. 1436 * 1437 * FOLL_PIN always expects pages to be non-null, but no need to assert 1438 * that here, as any failures will be obvious enough. 1439 */ 1440 if (pages && !(flags & FOLL_PIN)) 1441 flags |= FOLL_GET; 1442 1443 pages_done = 0; 1444 lock_dropped = false; 1445 for (;;) { 1446 ret = __get_user_pages(mm, start, nr_pages, flags, pages, 1447 vmas, locked); 1448 if (!locked) 1449 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1450 return ret; 1451 1452 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ 1453 if (!*locked) { 1454 BUG_ON(ret < 0); 1455 BUG_ON(ret >= nr_pages); 1456 } 1457 1458 if (ret > 0) { 1459 nr_pages -= ret; 1460 pages_done += ret; 1461 if (!nr_pages) 1462 break; 1463 } 1464 if (*locked) { 1465 /* 1466 * VM_FAULT_RETRY didn't trigger or it was a 1467 * FOLL_NOWAIT. 1468 */ 1469 if (!pages_done) 1470 pages_done = ret; 1471 break; 1472 } 1473 /* 1474 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1475 * For the prefault case (!pages) we only update counts. 1476 */ 1477 if (likely(pages)) 1478 pages += ret; 1479 start += ret << PAGE_SHIFT; 1480 lock_dropped = true; 1481 1482 retry: 1483 /* 1484 * Repeat on the address that fired VM_FAULT_RETRY 1485 * with both FAULT_FLAG_ALLOW_RETRY and 1486 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1487 * by fatal signals, so we need to check it before we 1488 * start trying again otherwise it can loop forever. 1489 */ 1490 1491 if (fatal_signal_pending(current)) { 1492 if (!pages_done) 1493 pages_done = -EINTR; 1494 break; 1495 } 1496 1497 ret = mmap_read_lock_killable(mm); 1498 if (ret) { 1499 BUG_ON(ret > 0); 1500 if (!pages_done) 1501 pages_done = ret; 1502 break; 1503 } 1504 1505 *locked = 1; 1506 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, 1507 pages, NULL, locked); 1508 if (!*locked) { 1509 /* Continue to retry until we succeeded */ 1510 BUG_ON(ret != 0); 1511 goto retry; 1512 } 1513 if (ret != 1) { 1514 BUG_ON(ret > 1); 1515 if (!pages_done) 1516 pages_done = ret; 1517 break; 1518 } 1519 nr_pages--; 1520 pages_done++; 1521 if (!nr_pages) 1522 break; 1523 if (likely(pages)) 1524 pages++; 1525 start += PAGE_SIZE; 1526 } 1527 if (lock_dropped && *locked) { 1528 /* 1529 * We must let the caller know we temporarily dropped the lock 1530 * and so the critical section protected by it was lost. 1531 */ 1532 mmap_read_unlock(mm); 1533 *locked = 0; 1534 } 1535 return pages_done; 1536 } 1537 1538 /** 1539 * populate_vma_page_range() - populate a range of pages in the vma. 1540 * @vma: target vma 1541 * @start: start address 1542 * @end: end address 1543 * @locked: whether the mmap_lock is still held 1544 * 1545 * This takes care of mlocking the pages too if VM_LOCKED is set. 1546 * 1547 * Return either number of pages pinned in the vma, or a negative error 1548 * code on error. 1549 * 1550 * vma->vm_mm->mmap_lock must be held. 1551 * 1552 * If @locked is NULL, it may be held for read or write and will 1553 * be unperturbed. 1554 * 1555 * If @locked is non-NULL, it must held for read only and may be 1556 * released. If it's released, *@locked will be set to 0. 1557 */ 1558 long populate_vma_page_range(struct vm_area_struct *vma, 1559 unsigned long start, unsigned long end, int *locked) 1560 { 1561 struct mm_struct *mm = vma->vm_mm; 1562 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1563 int gup_flags; 1564 long ret; 1565 1566 VM_BUG_ON(!PAGE_ALIGNED(start)); 1567 VM_BUG_ON(!PAGE_ALIGNED(end)); 1568 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1569 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1570 mmap_assert_locked(mm); 1571 1572 /* 1573 * Rightly or wrongly, the VM_LOCKONFAULT case has never used 1574 * faultin_page() to break COW, so it has no work to do here. 1575 */ 1576 if (vma->vm_flags & VM_LOCKONFAULT) 1577 return nr_pages; 1578 1579 gup_flags = FOLL_TOUCH; 1580 /* 1581 * We want to touch writable mappings with a write fault in order 1582 * to break COW, except for shared mappings because these don't COW 1583 * and we would not want to dirty them for nothing. 1584 */ 1585 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1586 gup_flags |= FOLL_WRITE; 1587 1588 /* 1589 * We want mlock to succeed for regions that have any permissions 1590 * other than PROT_NONE. 1591 */ 1592 if (vma_is_accessible(vma)) 1593 gup_flags |= FOLL_FORCE; 1594 1595 /* 1596 * We made sure addr is within a VMA, so the following will 1597 * not result in a stack expansion that recurses back here. 1598 */ 1599 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1600 NULL, NULL, locked); 1601 lru_add_drain(); 1602 return ret; 1603 } 1604 1605 /* 1606 * faultin_vma_page_range() - populate (prefault) page tables inside the 1607 * given VMA range readable/writable 1608 * 1609 * This takes care of mlocking the pages, too, if VM_LOCKED is set. 1610 * 1611 * @vma: target vma 1612 * @start: start address 1613 * @end: end address 1614 * @write: whether to prefault readable or writable 1615 * @locked: whether the mmap_lock is still held 1616 * 1617 * Returns either number of processed pages in the vma, or a negative error 1618 * code on error (see __get_user_pages()). 1619 * 1620 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and 1621 * covered by the VMA. 1622 * 1623 * If @locked is NULL, it may be held for read or write and will be unperturbed. 1624 * 1625 * If @locked is non-NULL, it must held for read only and may be released. If 1626 * it's released, *@locked will be set to 0. 1627 */ 1628 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start, 1629 unsigned long end, bool write, int *locked) 1630 { 1631 struct mm_struct *mm = vma->vm_mm; 1632 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1633 int gup_flags; 1634 long ret; 1635 1636 VM_BUG_ON(!PAGE_ALIGNED(start)); 1637 VM_BUG_ON(!PAGE_ALIGNED(end)); 1638 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1639 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1640 mmap_assert_locked(mm); 1641 1642 /* 1643 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark 1644 * the page dirty with FOLL_WRITE -- which doesn't make a 1645 * difference with !FOLL_FORCE, because the page is writable 1646 * in the page table. 1647 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit 1648 * a poisoned page. 1649 * !FOLL_FORCE: Require proper access permissions. 1650 */ 1651 gup_flags = FOLL_TOUCH | FOLL_HWPOISON; 1652 if (write) 1653 gup_flags |= FOLL_WRITE; 1654 1655 /* 1656 * We want to report -EINVAL instead of -EFAULT for any permission 1657 * problems or incompatible mappings. 1658 */ 1659 if (check_vma_flags(vma, gup_flags)) 1660 return -EINVAL; 1661 1662 ret = __get_user_pages(mm, start, nr_pages, gup_flags, 1663 NULL, NULL, locked); 1664 lru_add_drain(); 1665 return ret; 1666 } 1667 1668 /* 1669 * __mm_populate - populate and/or mlock pages within a range of address space. 1670 * 1671 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1672 * flags. VMAs must be already marked with the desired vm_flags, and 1673 * mmap_lock must not be held. 1674 */ 1675 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1676 { 1677 struct mm_struct *mm = current->mm; 1678 unsigned long end, nstart, nend; 1679 struct vm_area_struct *vma = NULL; 1680 int locked = 0; 1681 long ret = 0; 1682 1683 end = start + len; 1684 1685 for (nstart = start; nstart < end; nstart = nend) { 1686 /* 1687 * We want to fault in pages for [nstart; end) address range. 1688 * Find first corresponding VMA. 1689 */ 1690 if (!locked) { 1691 locked = 1; 1692 mmap_read_lock(mm); 1693 vma = find_vma_intersection(mm, nstart, end); 1694 } else if (nstart >= vma->vm_end) 1695 vma = find_vma_intersection(mm, vma->vm_end, end); 1696 1697 if (!vma) 1698 break; 1699 /* 1700 * Set [nstart; nend) to intersection of desired address 1701 * range with the first VMA. Also, skip undesirable VMA types. 1702 */ 1703 nend = min(end, vma->vm_end); 1704 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1705 continue; 1706 if (nstart < vma->vm_start) 1707 nstart = vma->vm_start; 1708 /* 1709 * Now fault in a range of pages. populate_vma_page_range() 1710 * double checks the vma flags, so that it won't mlock pages 1711 * if the vma was already munlocked. 1712 */ 1713 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1714 if (ret < 0) { 1715 if (ignore_errors) { 1716 ret = 0; 1717 continue; /* continue at next VMA */ 1718 } 1719 break; 1720 } 1721 nend = nstart + ret * PAGE_SIZE; 1722 ret = 0; 1723 } 1724 if (locked) 1725 mmap_read_unlock(mm); 1726 return ret; /* 0 or negative error code */ 1727 } 1728 #else /* CONFIG_MMU */ 1729 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, 1730 unsigned long nr_pages, struct page **pages, 1731 struct vm_area_struct **vmas, int *locked, 1732 unsigned int foll_flags) 1733 { 1734 struct vm_area_struct *vma; 1735 unsigned long vm_flags; 1736 long i; 1737 1738 /* calculate required read or write permissions. 1739 * If FOLL_FORCE is set, we only require the "MAY" flags. 1740 */ 1741 vm_flags = (foll_flags & FOLL_WRITE) ? 1742 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1743 vm_flags &= (foll_flags & FOLL_FORCE) ? 1744 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1745 1746 for (i = 0; i < nr_pages; i++) { 1747 vma = find_vma(mm, start); 1748 if (!vma) 1749 goto finish_or_fault; 1750 1751 /* protect what we can, including chardevs */ 1752 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1753 !(vm_flags & vma->vm_flags)) 1754 goto finish_or_fault; 1755 1756 if (pages) { 1757 pages[i] = virt_to_page((void *)start); 1758 if (pages[i]) 1759 get_page(pages[i]); 1760 } 1761 if (vmas) 1762 vmas[i] = vma; 1763 start = (start + PAGE_SIZE) & PAGE_MASK; 1764 } 1765 1766 return i; 1767 1768 finish_or_fault: 1769 return i ? : -EFAULT; 1770 } 1771 #endif /* !CONFIG_MMU */ 1772 1773 /** 1774 * fault_in_writeable - fault in userspace address range for writing 1775 * @uaddr: start of address range 1776 * @size: size of address range 1777 * 1778 * Returns the number of bytes not faulted in (like copy_to_user() and 1779 * copy_from_user()). 1780 */ 1781 size_t fault_in_writeable(char __user *uaddr, size_t size) 1782 { 1783 char __user *start = uaddr, *end; 1784 1785 if (unlikely(size == 0)) 1786 return 0; 1787 if (!user_write_access_begin(uaddr, size)) 1788 return size; 1789 if (!PAGE_ALIGNED(uaddr)) { 1790 unsafe_put_user(0, uaddr, out); 1791 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); 1792 } 1793 end = (char __user *)PAGE_ALIGN((unsigned long)start + size); 1794 if (unlikely(end < start)) 1795 end = NULL; 1796 while (uaddr != end) { 1797 unsafe_put_user(0, uaddr, out); 1798 uaddr += PAGE_SIZE; 1799 } 1800 1801 out: 1802 user_write_access_end(); 1803 if (size > uaddr - start) 1804 return size - (uaddr - start); 1805 return 0; 1806 } 1807 EXPORT_SYMBOL(fault_in_writeable); 1808 1809 /** 1810 * fault_in_subpage_writeable - fault in an address range for writing 1811 * @uaddr: start of address range 1812 * @size: size of address range 1813 * 1814 * Fault in a user address range for writing while checking for permissions at 1815 * sub-page granularity (e.g. arm64 MTE). This function should be used when 1816 * the caller cannot guarantee forward progress of a copy_to_user() loop. 1817 * 1818 * Returns the number of bytes not faulted in (like copy_to_user() and 1819 * copy_from_user()). 1820 */ 1821 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) 1822 { 1823 size_t faulted_in; 1824 1825 /* 1826 * Attempt faulting in at page granularity first for page table 1827 * permission checking. The arch-specific probe_subpage_writeable() 1828 * functions may not check for this. 1829 */ 1830 faulted_in = size - fault_in_writeable(uaddr, size); 1831 if (faulted_in) 1832 faulted_in -= probe_subpage_writeable(uaddr, faulted_in); 1833 1834 return size - faulted_in; 1835 } 1836 EXPORT_SYMBOL(fault_in_subpage_writeable); 1837 1838 /* 1839 * fault_in_safe_writeable - fault in an address range for writing 1840 * @uaddr: start of address range 1841 * @size: length of address range 1842 * 1843 * Faults in an address range for writing. This is primarily useful when we 1844 * already know that some or all of the pages in the address range aren't in 1845 * memory. 1846 * 1847 * Unlike fault_in_writeable(), this function is non-destructive. 1848 * 1849 * Note that we don't pin or otherwise hold the pages referenced that we fault 1850 * in. There's no guarantee that they'll stay in memory for any duration of 1851 * time. 1852 * 1853 * Returns the number of bytes not faulted in, like copy_to_user() and 1854 * copy_from_user(). 1855 */ 1856 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) 1857 { 1858 unsigned long start = (unsigned long)uaddr, end; 1859 struct mm_struct *mm = current->mm; 1860 bool unlocked = false; 1861 1862 if (unlikely(size == 0)) 1863 return 0; 1864 end = PAGE_ALIGN(start + size); 1865 if (end < start) 1866 end = 0; 1867 1868 mmap_read_lock(mm); 1869 do { 1870 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) 1871 break; 1872 start = (start + PAGE_SIZE) & PAGE_MASK; 1873 } while (start != end); 1874 mmap_read_unlock(mm); 1875 1876 if (size > (unsigned long)uaddr - start) 1877 return size - ((unsigned long)uaddr - start); 1878 return 0; 1879 } 1880 EXPORT_SYMBOL(fault_in_safe_writeable); 1881 1882 /** 1883 * fault_in_readable - fault in userspace address range for reading 1884 * @uaddr: start of user address range 1885 * @size: size of user address range 1886 * 1887 * Returns the number of bytes not faulted in (like copy_to_user() and 1888 * copy_from_user()). 1889 */ 1890 size_t fault_in_readable(const char __user *uaddr, size_t size) 1891 { 1892 const char __user *start = uaddr, *end; 1893 volatile char c; 1894 1895 if (unlikely(size == 0)) 1896 return 0; 1897 if (!user_read_access_begin(uaddr, size)) 1898 return size; 1899 if (!PAGE_ALIGNED(uaddr)) { 1900 unsafe_get_user(c, uaddr, out); 1901 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); 1902 } 1903 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); 1904 if (unlikely(end < start)) 1905 end = NULL; 1906 while (uaddr != end) { 1907 unsafe_get_user(c, uaddr, out); 1908 uaddr += PAGE_SIZE; 1909 } 1910 1911 out: 1912 user_read_access_end(); 1913 (void)c; 1914 if (size > uaddr - start) 1915 return size - (uaddr - start); 1916 return 0; 1917 } 1918 EXPORT_SYMBOL(fault_in_readable); 1919 1920 /** 1921 * get_dump_page() - pin user page in memory while writing it to core dump 1922 * @addr: user address 1923 * 1924 * Returns struct page pointer of user page pinned for dump, 1925 * to be freed afterwards by put_page(). 1926 * 1927 * Returns NULL on any kind of failure - a hole must then be inserted into 1928 * the corefile, to preserve alignment with its headers; and also returns 1929 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1930 * allowing a hole to be left in the corefile to save disk space. 1931 * 1932 * Called without mmap_lock (takes and releases the mmap_lock by itself). 1933 */ 1934 #ifdef CONFIG_ELF_CORE 1935 struct page *get_dump_page(unsigned long addr) 1936 { 1937 struct mm_struct *mm = current->mm; 1938 struct page *page; 1939 int locked = 1; 1940 int ret; 1941 1942 if (mmap_read_lock_killable(mm)) 1943 return NULL; 1944 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked, 1945 FOLL_FORCE | FOLL_DUMP | FOLL_GET); 1946 if (locked) 1947 mmap_read_unlock(mm); 1948 return (ret == 1) ? page : NULL; 1949 } 1950 #endif /* CONFIG_ELF_CORE */ 1951 1952 #ifdef CONFIG_MIGRATION 1953 /* 1954 * Returns the number of collected pages. Return value is always >= 0. 1955 */ 1956 static unsigned long collect_longterm_unpinnable_pages( 1957 struct list_head *movable_page_list, 1958 unsigned long nr_pages, 1959 struct page **pages) 1960 { 1961 unsigned long i, collected = 0; 1962 struct folio *prev_folio = NULL; 1963 bool drain_allow = true; 1964 1965 for (i = 0; i < nr_pages; i++) { 1966 struct folio *folio = page_folio(pages[i]); 1967 1968 if (folio == prev_folio) 1969 continue; 1970 prev_folio = folio; 1971 1972 if (folio_is_longterm_pinnable(folio)) 1973 continue; 1974 1975 collected++; 1976 1977 if (folio_is_device_coherent(folio)) 1978 continue; 1979 1980 if (folio_test_hugetlb(folio)) { 1981 isolate_hugetlb(&folio->page, movable_page_list); 1982 continue; 1983 } 1984 1985 if (!folio_test_lru(folio) && drain_allow) { 1986 lru_add_drain_all(); 1987 drain_allow = false; 1988 } 1989 1990 if (!folio_isolate_lru(folio)) 1991 continue; 1992 1993 list_add_tail(&folio->lru, movable_page_list); 1994 node_stat_mod_folio(folio, 1995 NR_ISOLATED_ANON + folio_is_file_lru(folio), 1996 folio_nr_pages(folio)); 1997 } 1998 1999 return collected; 2000 } 2001 2002 /* 2003 * Unpins all pages and migrates device coherent pages and movable_page_list. 2004 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure 2005 * (or partial success). 2006 */ 2007 static int migrate_longterm_unpinnable_pages( 2008 struct list_head *movable_page_list, 2009 unsigned long nr_pages, 2010 struct page **pages) 2011 { 2012 int ret; 2013 unsigned long i; 2014 2015 for (i = 0; i < nr_pages; i++) { 2016 struct folio *folio = page_folio(pages[i]); 2017 2018 if (folio_is_device_coherent(folio)) { 2019 /* 2020 * Migration will fail if the page is pinned, so convert 2021 * the pin on the source page to a normal reference. 2022 */ 2023 pages[i] = NULL; 2024 folio_get(folio); 2025 gup_put_folio(folio, 1, FOLL_PIN); 2026 2027 if (migrate_device_coherent_page(&folio->page)) { 2028 ret = -EBUSY; 2029 goto err; 2030 } 2031 2032 continue; 2033 } 2034 2035 /* 2036 * We can't migrate pages with unexpected references, so drop 2037 * the reference obtained by __get_user_pages_locked(). 2038 * Migrating pages have been added to movable_page_list after 2039 * calling folio_isolate_lru() which takes a reference so the 2040 * page won't be freed if it's migrating. 2041 */ 2042 unpin_user_page(pages[i]); 2043 pages[i] = NULL; 2044 } 2045 2046 if (!list_empty(movable_page_list)) { 2047 struct migration_target_control mtc = { 2048 .nid = NUMA_NO_NODE, 2049 .gfp_mask = GFP_USER | __GFP_NOWARN, 2050 }; 2051 2052 if (migrate_pages(movable_page_list, alloc_migration_target, 2053 NULL, (unsigned long)&mtc, MIGRATE_SYNC, 2054 MR_LONGTERM_PIN, NULL)) { 2055 ret = -ENOMEM; 2056 goto err; 2057 } 2058 } 2059 2060 putback_movable_pages(movable_page_list); 2061 2062 return -EAGAIN; 2063 2064 err: 2065 for (i = 0; i < nr_pages; i++) 2066 if (pages[i]) 2067 unpin_user_page(pages[i]); 2068 putback_movable_pages(movable_page_list); 2069 2070 return ret; 2071 } 2072 2073 /* 2074 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all 2075 * pages in the range are required to be pinned via FOLL_PIN, before calling 2076 * this routine. 2077 * 2078 * If any pages in the range are not allowed to be pinned, then this routine 2079 * will migrate those pages away, unpin all the pages in the range and return 2080 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then 2081 * call this routine again. 2082 * 2083 * If an error other than -EAGAIN occurs, this indicates a migration failure. 2084 * The caller should give up, and propagate the error back up the call stack. 2085 * 2086 * If everything is OK and all pages in the range are allowed to be pinned, then 2087 * this routine leaves all pages pinned and returns zero for success. 2088 */ 2089 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2090 struct page **pages) 2091 { 2092 unsigned long collected; 2093 LIST_HEAD(movable_page_list); 2094 2095 collected = collect_longterm_unpinnable_pages(&movable_page_list, 2096 nr_pages, pages); 2097 if (!collected) 2098 return 0; 2099 2100 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, 2101 pages); 2102 } 2103 #else 2104 static long check_and_migrate_movable_pages(unsigned long nr_pages, 2105 struct page **pages) 2106 { 2107 return 0; 2108 } 2109 #endif /* CONFIG_MIGRATION */ 2110 2111 /* 2112 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 2113 * allows us to process the FOLL_LONGTERM flag. 2114 */ 2115 static long __gup_longterm_locked(struct mm_struct *mm, 2116 unsigned long start, 2117 unsigned long nr_pages, 2118 struct page **pages, 2119 struct vm_area_struct **vmas, 2120 unsigned int gup_flags) 2121 { 2122 unsigned int flags; 2123 long rc, nr_pinned_pages; 2124 2125 if (!(gup_flags & FOLL_LONGTERM)) 2126 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2127 NULL, gup_flags); 2128 2129 /* 2130 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM 2131 * implies FOLL_PIN (although the reverse is not true). Therefore it is 2132 * correct to unconditionally call check_and_migrate_movable_pages() 2133 * which assumes pages have been pinned via FOLL_PIN. 2134 * 2135 * Enforce the above reasoning by asserting that FOLL_PIN is set. 2136 */ 2137 if (WARN_ON(!(gup_flags & FOLL_PIN))) 2138 return -EINVAL; 2139 flags = memalloc_pin_save(); 2140 do { 2141 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, 2142 pages, vmas, NULL, 2143 gup_flags); 2144 if (nr_pinned_pages <= 0) { 2145 rc = nr_pinned_pages; 2146 break; 2147 } 2148 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); 2149 } while (rc == -EAGAIN); 2150 memalloc_pin_restore(flags); 2151 2152 return rc ? rc : nr_pinned_pages; 2153 } 2154 2155 static bool is_valid_gup_flags(unsigned int gup_flags) 2156 { 2157 /* 2158 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2159 * never directly by the caller, so enforce that with an assertion: 2160 */ 2161 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2162 return false; 2163 /* 2164 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying 2165 * that is, FOLL_LONGTERM is a specific case, more restrictive case of 2166 * FOLL_PIN. 2167 */ 2168 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2169 return false; 2170 2171 return true; 2172 } 2173 2174 #ifdef CONFIG_MMU 2175 static long __get_user_pages_remote(struct mm_struct *mm, 2176 unsigned long start, unsigned long nr_pages, 2177 unsigned int gup_flags, struct page **pages, 2178 struct vm_area_struct **vmas, int *locked) 2179 { 2180 /* 2181 * Parts of FOLL_LONGTERM behavior are incompatible with 2182 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2183 * vmas. However, this only comes up if locked is set, and there are 2184 * callers that do request FOLL_LONGTERM, but do not set locked. So, 2185 * allow what we can. 2186 */ 2187 if (gup_flags & FOLL_LONGTERM) { 2188 if (WARN_ON_ONCE(locked)) 2189 return -EINVAL; 2190 /* 2191 * This will check the vmas (even if our vmas arg is NULL) 2192 * and return -ENOTSUPP if DAX isn't allowed in this case: 2193 */ 2194 return __gup_longterm_locked(mm, start, nr_pages, pages, 2195 vmas, gup_flags | FOLL_TOUCH | 2196 FOLL_REMOTE); 2197 } 2198 2199 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas, 2200 locked, 2201 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 2202 } 2203 2204 /** 2205 * get_user_pages_remote() - pin user pages in memory 2206 * @mm: mm_struct of target mm 2207 * @start: starting user address 2208 * @nr_pages: number of pages from start to pin 2209 * @gup_flags: flags modifying lookup behaviour 2210 * @pages: array that receives pointers to the pages pinned. 2211 * Should be at least nr_pages long. Or NULL, if caller 2212 * only intends to ensure the pages are faulted in. 2213 * @vmas: array of pointers to vmas corresponding to each page. 2214 * Or NULL if the caller does not require them. 2215 * @locked: pointer to lock flag indicating whether lock is held and 2216 * subsequently whether VM_FAULT_RETRY functionality can be 2217 * utilised. Lock must initially be held. 2218 * 2219 * Returns either number of pages pinned (which may be less than the 2220 * number requested), or an error. Details about the return value: 2221 * 2222 * -- If nr_pages is 0, returns 0. 2223 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 2224 * -- If nr_pages is >0, and some pages were pinned, returns the number of 2225 * pages pinned. Again, this may be less than nr_pages. 2226 * 2227 * The caller is responsible for releasing returned @pages, via put_page(). 2228 * 2229 * @vmas are valid only as long as mmap_lock is held. 2230 * 2231 * Must be called with mmap_lock held for read or write. 2232 * 2233 * get_user_pages_remote walks a process's page tables and takes a reference 2234 * to each struct page that each user address corresponds to at a given 2235 * instant. That is, it takes the page that would be accessed if a user 2236 * thread accesses the given user virtual address at that instant. 2237 * 2238 * This does not guarantee that the page exists in the user mappings when 2239 * get_user_pages_remote returns, and there may even be a completely different 2240 * page there in some cases (eg. if mmapped pagecache has been invalidated 2241 * and subsequently re faulted). However it does guarantee that the page 2242 * won't be freed completely. And mostly callers simply care that the page 2243 * contains data that was valid *at some point in time*. Typically, an IO 2244 * or similar operation cannot guarantee anything stronger anyway because 2245 * locks can't be held over the syscall boundary. 2246 * 2247 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 2248 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 2249 * be called after the page is finished with, and before put_page is called. 2250 * 2251 * get_user_pages_remote is typically used for fewer-copy IO operations, 2252 * to get a handle on the memory by some means other than accesses 2253 * via the user virtual addresses. The pages may be submitted for 2254 * DMA to devices or accessed via their kernel linear mapping (via the 2255 * kmap APIs). Care should be taken to use the correct cache flushing APIs. 2256 * 2257 * See also get_user_pages_fast, for performance critical applications. 2258 * 2259 * get_user_pages_remote should be phased out in favor of 2260 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 2261 * should use get_user_pages_remote because it cannot pass 2262 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 2263 */ 2264 long get_user_pages_remote(struct mm_struct *mm, 2265 unsigned long start, unsigned long nr_pages, 2266 unsigned int gup_flags, struct page **pages, 2267 struct vm_area_struct **vmas, int *locked) 2268 { 2269 if (!is_valid_gup_flags(gup_flags)) 2270 return -EINVAL; 2271 2272 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 2273 pages, vmas, locked); 2274 } 2275 EXPORT_SYMBOL(get_user_pages_remote); 2276 2277 #else /* CONFIG_MMU */ 2278 long get_user_pages_remote(struct mm_struct *mm, 2279 unsigned long start, unsigned long nr_pages, 2280 unsigned int gup_flags, struct page **pages, 2281 struct vm_area_struct **vmas, int *locked) 2282 { 2283 return 0; 2284 } 2285 2286 static long __get_user_pages_remote(struct mm_struct *mm, 2287 unsigned long start, unsigned long nr_pages, 2288 unsigned int gup_flags, struct page **pages, 2289 struct vm_area_struct **vmas, int *locked) 2290 { 2291 return 0; 2292 } 2293 #endif /* !CONFIG_MMU */ 2294 2295 /** 2296 * get_user_pages() - pin user pages in memory 2297 * @start: starting user address 2298 * @nr_pages: number of pages from start to pin 2299 * @gup_flags: flags modifying lookup behaviour 2300 * @pages: array that receives pointers to the pages pinned. 2301 * Should be at least nr_pages long. Or NULL, if caller 2302 * only intends to ensure the pages are faulted in. 2303 * @vmas: array of pointers to vmas corresponding to each page. 2304 * Or NULL if the caller does not require them. 2305 * 2306 * This is the same as get_user_pages_remote(), just with a less-flexible 2307 * calling convention where we assume that the mm being operated on belongs to 2308 * the current task, and doesn't allow passing of a locked parameter. We also 2309 * obviously don't pass FOLL_REMOTE in here. 2310 */ 2311 long get_user_pages(unsigned long start, unsigned long nr_pages, 2312 unsigned int gup_flags, struct page **pages, 2313 struct vm_area_struct **vmas) 2314 { 2315 if (!is_valid_gup_flags(gup_flags)) 2316 return -EINVAL; 2317 2318 return __gup_longterm_locked(current->mm, start, nr_pages, 2319 pages, vmas, gup_flags | FOLL_TOUCH); 2320 } 2321 EXPORT_SYMBOL(get_user_pages); 2322 2323 /* 2324 * get_user_pages_unlocked() is suitable to replace the form: 2325 * 2326 * mmap_read_lock(mm); 2327 * get_user_pages(mm, ..., pages, NULL); 2328 * mmap_read_unlock(mm); 2329 * 2330 * with: 2331 * 2332 * get_user_pages_unlocked(mm, ..., pages); 2333 * 2334 * It is functionally equivalent to get_user_pages_fast so 2335 * get_user_pages_fast should be used instead if specific gup_flags 2336 * (e.g. FOLL_FORCE) are not required. 2337 */ 2338 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2339 struct page **pages, unsigned int gup_flags) 2340 { 2341 struct mm_struct *mm = current->mm; 2342 int locked = 1; 2343 long ret; 2344 2345 /* 2346 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2347 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2348 * vmas. As there are no users of this flag in this call we simply 2349 * disallow this option for now. 2350 */ 2351 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2352 return -EINVAL; 2353 2354 mmap_read_lock(mm); 2355 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL, 2356 &locked, gup_flags | FOLL_TOUCH); 2357 if (locked) 2358 mmap_read_unlock(mm); 2359 return ret; 2360 } 2361 EXPORT_SYMBOL(get_user_pages_unlocked); 2362 2363 /* 2364 * Fast GUP 2365 * 2366 * get_user_pages_fast attempts to pin user pages by walking the page 2367 * tables directly and avoids taking locks. Thus the walker needs to be 2368 * protected from page table pages being freed from under it, and should 2369 * block any THP splits. 2370 * 2371 * One way to achieve this is to have the walker disable interrupts, and 2372 * rely on IPIs from the TLB flushing code blocking before the page table 2373 * pages are freed. This is unsuitable for architectures that do not need 2374 * to broadcast an IPI when invalidating TLBs. 2375 * 2376 * Another way to achieve this is to batch up page table containing pages 2377 * belonging to more than one mm_user, then rcu_sched a callback to free those 2378 * pages. Disabling interrupts will allow the fast_gup walker to both block 2379 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2380 * (which is a relatively rare event). The code below adopts this strategy. 2381 * 2382 * Before activating this code, please be aware that the following assumptions 2383 * are currently made: 2384 * 2385 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2386 * free pages containing page tables or TLB flushing requires IPI broadcast. 2387 * 2388 * *) ptes can be read atomically by the architecture. 2389 * 2390 * *) access_ok is sufficient to validate userspace address ranges. 2391 * 2392 * The last two assumptions can be relaxed by the addition of helper functions. 2393 * 2394 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2395 */ 2396 #ifdef CONFIG_HAVE_FAST_GUP 2397 2398 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2399 unsigned int flags, 2400 struct page **pages) 2401 { 2402 while ((*nr) - nr_start) { 2403 struct page *page = pages[--(*nr)]; 2404 2405 ClearPageReferenced(page); 2406 if (flags & FOLL_PIN) 2407 unpin_user_page(page); 2408 else 2409 put_page(page); 2410 } 2411 } 2412 2413 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2414 /* 2415 * Fast-gup relies on pte change detection to avoid concurrent pgtable 2416 * operations. 2417 * 2418 * To pin the page, fast-gup needs to do below in order: 2419 * (1) pin the page (by prefetching pte), then (2) check pte not changed. 2420 * 2421 * For the rest of pgtable operations where pgtable updates can be racy 2422 * with fast-gup, we need to do (1) clear pte, then (2) check whether page 2423 * is pinned. 2424 * 2425 * Above will work for all pte-level operations, including THP split. 2426 * 2427 * For THP collapse, it's a bit more complicated because fast-gup may be 2428 * walking a pgtable page that is being freed (pte is still valid but pmd 2429 * can be cleared already). To avoid race in such condition, we need to 2430 * also check pmd here to make sure pmd doesn't change (corresponds to 2431 * pmdp_collapse_flush() in the THP collapse code path). 2432 */ 2433 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2434 unsigned long end, unsigned int flags, 2435 struct page **pages, int *nr) 2436 { 2437 struct dev_pagemap *pgmap = NULL; 2438 int nr_start = *nr, ret = 0; 2439 pte_t *ptep, *ptem; 2440 2441 ptem = ptep = pte_offset_map(&pmd, addr); 2442 do { 2443 pte_t pte = ptep_get_lockless(ptep); 2444 struct page *page; 2445 struct folio *folio; 2446 2447 if (pte_protnone(pte) && !gup_can_follow_protnone(flags)) 2448 goto pte_unmap; 2449 2450 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2451 goto pte_unmap; 2452 2453 if (pte_devmap(pte)) { 2454 if (unlikely(flags & FOLL_LONGTERM)) 2455 goto pte_unmap; 2456 2457 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2458 if (unlikely(!pgmap)) { 2459 undo_dev_pagemap(nr, nr_start, flags, pages); 2460 goto pte_unmap; 2461 } 2462 } else if (pte_special(pte)) 2463 goto pte_unmap; 2464 2465 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2466 page = pte_page(pte); 2467 2468 folio = try_grab_folio(page, 1, flags); 2469 if (!folio) 2470 goto pte_unmap; 2471 2472 if (unlikely(page_is_secretmem(page))) { 2473 gup_put_folio(folio, 1, flags); 2474 goto pte_unmap; 2475 } 2476 2477 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || 2478 unlikely(pte_val(pte) != pte_val(*ptep))) { 2479 gup_put_folio(folio, 1, flags); 2480 goto pte_unmap; 2481 } 2482 2483 if (!pte_write(pte) && gup_must_unshare(flags, page)) { 2484 gup_put_folio(folio, 1, flags); 2485 goto pte_unmap; 2486 } 2487 2488 /* 2489 * We need to make the page accessible if and only if we are 2490 * going to access its content (the FOLL_PIN case). Please 2491 * see Documentation/core-api/pin_user_pages.rst for 2492 * details. 2493 */ 2494 if (flags & FOLL_PIN) { 2495 ret = arch_make_page_accessible(page); 2496 if (ret) { 2497 gup_put_folio(folio, 1, flags); 2498 goto pte_unmap; 2499 } 2500 } 2501 folio_set_referenced(folio); 2502 pages[*nr] = page; 2503 (*nr)++; 2504 } while (ptep++, addr += PAGE_SIZE, addr != end); 2505 2506 ret = 1; 2507 2508 pte_unmap: 2509 if (pgmap) 2510 put_dev_pagemap(pgmap); 2511 pte_unmap(ptem); 2512 return ret; 2513 } 2514 #else 2515 2516 /* 2517 * If we can't determine whether or not a pte is special, then fail immediately 2518 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2519 * to be special. 2520 * 2521 * For a futex to be placed on a THP tail page, get_futex_key requires a 2522 * get_user_pages_fast_only implementation that can pin pages. Thus it's still 2523 * useful to have gup_huge_pmd even if we can't operate on ptes. 2524 */ 2525 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, 2526 unsigned long end, unsigned int flags, 2527 struct page **pages, int *nr) 2528 { 2529 return 0; 2530 } 2531 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2532 2533 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2534 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2535 unsigned long end, unsigned int flags, 2536 struct page **pages, int *nr) 2537 { 2538 int nr_start = *nr; 2539 struct dev_pagemap *pgmap = NULL; 2540 2541 do { 2542 struct page *page = pfn_to_page(pfn); 2543 2544 pgmap = get_dev_pagemap(pfn, pgmap); 2545 if (unlikely(!pgmap)) { 2546 undo_dev_pagemap(nr, nr_start, flags, pages); 2547 break; 2548 } 2549 2550 if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { 2551 undo_dev_pagemap(nr, nr_start, flags, pages); 2552 break; 2553 } 2554 2555 SetPageReferenced(page); 2556 pages[*nr] = page; 2557 if (unlikely(try_grab_page(page, flags))) { 2558 undo_dev_pagemap(nr, nr_start, flags, pages); 2559 break; 2560 } 2561 (*nr)++; 2562 pfn++; 2563 } while (addr += PAGE_SIZE, addr != end); 2564 2565 put_dev_pagemap(pgmap); 2566 return addr == end; 2567 } 2568 2569 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2570 unsigned long end, unsigned int flags, 2571 struct page **pages, int *nr) 2572 { 2573 unsigned long fault_pfn; 2574 int nr_start = *nr; 2575 2576 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2577 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2578 return 0; 2579 2580 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2581 undo_dev_pagemap(nr, nr_start, flags, pages); 2582 return 0; 2583 } 2584 return 1; 2585 } 2586 2587 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2588 unsigned long end, unsigned int flags, 2589 struct page **pages, int *nr) 2590 { 2591 unsigned long fault_pfn; 2592 int nr_start = *nr; 2593 2594 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2595 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2596 return 0; 2597 2598 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2599 undo_dev_pagemap(nr, nr_start, flags, pages); 2600 return 0; 2601 } 2602 return 1; 2603 } 2604 #else 2605 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2606 unsigned long end, unsigned int flags, 2607 struct page **pages, int *nr) 2608 { 2609 BUILD_BUG(); 2610 return 0; 2611 } 2612 2613 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2614 unsigned long end, unsigned int flags, 2615 struct page **pages, int *nr) 2616 { 2617 BUILD_BUG(); 2618 return 0; 2619 } 2620 #endif 2621 2622 static int record_subpages(struct page *page, unsigned long addr, 2623 unsigned long end, struct page **pages) 2624 { 2625 int nr; 2626 2627 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) 2628 pages[nr] = nth_page(page, nr); 2629 2630 return nr; 2631 } 2632 2633 #ifdef CONFIG_ARCH_HAS_HUGEPD 2634 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2635 unsigned long sz) 2636 { 2637 unsigned long __boundary = (addr + sz) & ~(sz-1); 2638 return (__boundary - 1 < end - 1) ? __boundary : end; 2639 } 2640 2641 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2642 unsigned long end, unsigned int flags, 2643 struct page **pages, int *nr) 2644 { 2645 unsigned long pte_end; 2646 struct page *page; 2647 struct folio *folio; 2648 pte_t pte; 2649 int refs; 2650 2651 pte_end = (addr + sz) & ~(sz-1); 2652 if (pte_end < end) 2653 end = pte_end; 2654 2655 pte = huge_ptep_get(ptep); 2656 2657 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2658 return 0; 2659 2660 /* hugepages are never "special" */ 2661 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2662 2663 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT); 2664 refs = record_subpages(page, addr, end, pages + *nr); 2665 2666 folio = try_grab_folio(page, refs, flags); 2667 if (!folio) 2668 return 0; 2669 2670 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2671 gup_put_folio(folio, refs, flags); 2672 return 0; 2673 } 2674 2675 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) { 2676 gup_put_folio(folio, refs, flags); 2677 return 0; 2678 } 2679 2680 *nr += refs; 2681 folio_set_referenced(folio); 2682 return 1; 2683 } 2684 2685 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2686 unsigned int pdshift, unsigned long end, unsigned int flags, 2687 struct page **pages, int *nr) 2688 { 2689 pte_t *ptep; 2690 unsigned long sz = 1UL << hugepd_shift(hugepd); 2691 unsigned long next; 2692 2693 ptep = hugepte_offset(hugepd, addr, pdshift); 2694 do { 2695 next = hugepte_addr_end(addr, end, sz); 2696 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2697 return 0; 2698 } while (ptep++, addr = next, addr != end); 2699 2700 return 1; 2701 } 2702 #else 2703 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2704 unsigned int pdshift, unsigned long end, unsigned int flags, 2705 struct page **pages, int *nr) 2706 { 2707 return 0; 2708 } 2709 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2710 2711 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2712 unsigned long end, unsigned int flags, 2713 struct page **pages, int *nr) 2714 { 2715 struct page *page; 2716 struct folio *folio; 2717 int refs; 2718 2719 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2720 return 0; 2721 2722 if (pmd_devmap(orig)) { 2723 if (unlikely(flags & FOLL_LONGTERM)) 2724 return 0; 2725 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2726 pages, nr); 2727 } 2728 2729 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT); 2730 refs = record_subpages(page, addr, end, pages + *nr); 2731 2732 folio = try_grab_folio(page, refs, flags); 2733 if (!folio) 2734 return 0; 2735 2736 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2737 gup_put_folio(folio, refs, flags); 2738 return 0; 2739 } 2740 2741 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) { 2742 gup_put_folio(folio, refs, flags); 2743 return 0; 2744 } 2745 2746 *nr += refs; 2747 folio_set_referenced(folio); 2748 return 1; 2749 } 2750 2751 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2752 unsigned long end, unsigned int flags, 2753 struct page **pages, int *nr) 2754 { 2755 struct page *page; 2756 struct folio *folio; 2757 int refs; 2758 2759 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2760 return 0; 2761 2762 if (pud_devmap(orig)) { 2763 if (unlikely(flags & FOLL_LONGTERM)) 2764 return 0; 2765 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2766 pages, nr); 2767 } 2768 2769 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT); 2770 refs = record_subpages(page, addr, end, pages + *nr); 2771 2772 folio = try_grab_folio(page, refs, flags); 2773 if (!folio) 2774 return 0; 2775 2776 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2777 gup_put_folio(folio, refs, flags); 2778 return 0; 2779 } 2780 2781 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) { 2782 gup_put_folio(folio, refs, flags); 2783 return 0; 2784 } 2785 2786 *nr += refs; 2787 folio_set_referenced(folio); 2788 return 1; 2789 } 2790 2791 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2792 unsigned long end, unsigned int flags, 2793 struct page **pages, int *nr) 2794 { 2795 int refs; 2796 struct page *page; 2797 struct folio *folio; 2798 2799 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2800 return 0; 2801 2802 BUILD_BUG_ON(pgd_devmap(orig)); 2803 2804 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2805 refs = record_subpages(page, addr, end, pages + *nr); 2806 2807 folio = try_grab_folio(page, refs, flags); 2808 if (!folio) 2809 return 0; 2810 2811 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2812 gup_put_folio(folio, refs, flags); 2813 return 0; 2814 } 2815 2816 *nr += refs; 2817 folio_set_referenced(folio); 2818 return 1; 2819 } 2820 2821 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end, 2822 unsigned int flags, struct page **pages, int *nr) 2823 { 2824 unsigned long next; 2825 pmd_t *pmdp; 2826 2827 pmdp = pmd_offset_lockless(pudp, pud, addr); 2828 do { 2829 pmd_t pmd = READ_ONCE(*pmdp); 2830 2831 next = pmd_addr_end(addr, end); 2832 if (!pmd_present(pmd)) 2833 return 0; 2834 2835 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2836 pmd_devmap(pmd))) { 2837 if (pmd_protnone(pmd) && 2838 !gup_can_follow_protnone(flags)) 2839 return 0; 2840 2841 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2842 pages, nr)) 2843 return 0; 2844 2845 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2846 /* 2847 * architecture have different format for hugetlbfs 2848 * pmd format and THP pmd format 2849 */ 2850 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2851 PMD_SHIFT, next, flags, pages, nr)) 2852 return 0; 2853 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr)) 2854 return 0; 2855 } while (pmdp++, addr = next, addr != end); 2856 2857 return 1; 2858 } 2859 2860 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end, 2861 unsigned int flags, struct page **pages, int *nr) 2862 { 2863 unsigned long next; 2864 pud_t *pudp; 2865 2866 pudp = pud_offset_lockless(p4dp, p4d, addr); 2867 do { 2868 pud_t pud = READ_ONCE(*pudp); 2869 2870 next = pud_addr_end(addr, end); 2871 if (unlikely(!pud_present(pud))) 2872 return 0; 2873 if (unlikely(pud_huge(pud) || pud_devmap(pud))) { 2874 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2875 pages, nr)) 2876 return 0; 2877 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2878 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2879 PUD_SHIFT, next, flags, pages, nr)) 2880 return 0; 2881 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr)) 2882 return 0; 2883 } while (pudp++, addr = next, addr != end); 2884 2885 return 1; 2886 } 2887 2888 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end, 2889 unsigned int flags, struct page **pages, int *nr) 2890 { 2891 unsigned long next; 2892 p4d_t *p4dp; 2893 2894 p4dp = p4d_offset_lockless(pgdp, pgd, addr); 2895 do { 2896 p4d_t p4d = READ_ONCE(*p4dp); 2897 2898 next = p4d_addr_end(addr, end); 2899 if (p4d_none(p4d)) 2900 return 0; 2901 BUILD_BUG_ON(p4d_huge(p4d)); 2902 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2903 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2904 P4D_SHIFT, next, flags, pages, nr)) 2905 return 0; 2906 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr)) 2907 return 0; 2908 } while (p4dp++, addr = next, addr != end); 2909 2910 return 1; 2911 } 2912 2913 static void gup_pgd_range(unsigned long addr, unsigned long end, 2914 unsigned int flags, struct page **pages, int *nr) 2915 { 2916 unsigned long next; 2917 pgd_t *pgdp; 2918 2919 pgdp = pgd_offset(current->mm, addr); 2920 do { 2921 pgd_t pgd = READ_ONCE(*pgdp); 2922 2923 next = pgd_addr_end(addr, end); 2924 if (pgd_none(pgd)) 2925 return; 2926 if (unlikely(pgd_huge(pgd))) { 2927 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2928 pages, nr)) 2929 return; 2930 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2931 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2932 PGDIR_SHIFT, next, flags, pages, nr)) 2933 return; 2934 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr)) 2935 return; 2936 } while (pgdp++, addr = next, addr != end); 2937 } 2938 #else 2939 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2940 unsigned int flags, struct page **pages, int *nr) 2941 { 2942 } 2943 #endif /* CONFIG_HAVE_FAST_GUP */ 2944 2945 #ifndef gup_fast_permitted 2946 /* 2947 * Check if it's allowed to use get_user_pages_fast_only() for the range, or 2948 * we need to fall back to the slow version: 2949 */ 2950 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2951 { 2952 return true; 2953 } 2954 #endif 2955 2956 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2957 unsigned int gup_flags, struct page **pages) 2958 { 2959 int ret; 2960 2961 /* 2962 * FIXME: FOLL_LONGTERM does not work with 2963 * get_user_pages_unlocked() (see comments in that function) 2964 */ 2965 if (gup_flags & FOLL_LONGTERM) { 2966 mmap_read_lock(current->mm); 2967 ret = __gup_longterm_locked(current->mm, 2968 start, nr_pages, 2969 pages, NULL, gup_flags); 2970 mmap_read_unlock(current->mm); 2971 } else { 2972 ret = get_user_pages_unlocked(start, nr_pages, 2973 pages, gup_flags); 2974 } 2975 2976 return ret; 2977 } 2978 2979 static unsigned long lockless_pages_from_mm(unsigned long start, 2980 unsigned long end, 2981 unsigned int gup_flags, 2982 struct page **pages) 2983 { 2984 unsigned long flags; 2985 int nr_pinned = 0; 2986 unsigned seq; 2987 2988 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) || 2989 !gup_fast_permitted(start, end)) 2990 return 0; 2991 2992 if (gup_flags & FOLL_PIN) { 2993 seq = raw_read_seqcount(¤t->mm->write_protect_seq); 2994 if (seq & 1) 2995 return 0; 2996 } 2997 2998 /* 2999 * Disable interrupts. The nested form is used, in order to allow full, 3000 * general purpose use of this routine. 3001 * 3002 * With interrupts disabled, we block page table pages from being freed 3003 * from under us. See struct mmu_table_batch comments in 3004 * include/asm-generic/tlb.h for more details. 3005 * 3006 * We do not adopt an rcu_read_lock() here as we also want to block IPIs 3007 * that come from THPs splitting. 3008 */ 3009 local_irq_save(flags); 3010 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 3011 local_irq_restore(flags); 3012 3013 /* 3014 * When pinning pages for DMA there could be a concurrent write protect 3015 * from fork() via copy_page_range(), in this case always fail fast GUP. 3016 */ 3017 if (gup_flags & FOLL_PIN) { 3018 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { 3019 unpin_user_pages_lockless(pages, nr_pinned); 3020 return 0; 3021 } else { 3022 sanity_check_pinned_pages(pages, nr_pinned); 3023 } 3024 } 3025 return nr_pinned; 3026 } 3027 3028 static int internal_get_user_pages_fast(unsigned long start, 3029 unsigned long nr_pages, 3030 unsigned int gup_flags, 3031 struct page **pages) 3032 { 3033 unsigned long len, end; 3034 unsigned long nr_pinned; 3035 int ret; 3036 3037 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 3038 FOLL_FORCE | FOLL_PIN | FOLL_GET | 3039 FOLL_FAST_ONLY | FOLL_NOFAULT | 3040 FOLL_PCI_P2PDMA))) 3041 return -EINVAL; 3042 3043 if (gup_flags & FOLL_PIN) 3044 mm_set_has_pinned_flag(¤t->mm->flags); 3045 3046 if (!(gup_flags & FOLL_FAST_ONLY)) 3047 might_lock_read(¤t->mm->mmap_lock); 3048 3049 start = untagged_addr(start) & PAGE_MASK; 3050 len = nr_pages << PAGE_SHIFT; 3051 if (check_add_overflow(start, len, &end)) 3052 return 0; 3053 if (unlikely(!access_ok((void __user *)start, len))) 3054 return -EFAULT; 3055 3056 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages); 3057 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) 3058 return nr_pinned; 3059 3060 /* Slow path: try to get the remaining pages with get_user_pages */ 3061 start += nr_pinned << PAGE_SHIFT; 3062 pages += nr_pinned; 3063 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags, 3064 pages); 3065 if (ret < 0) { 3066 /* 3067 * The caller has to unpin the pages we already pinned so 3068 * returning -errno is not an option 3069 */ 3070 if (nr_pinned) 3071 return nr_pinned; 3072 return ret; 3073 } 3074 return ret + nr_pinned; 3075 } 3076 3077 /** 3078 * get_user_pages_fast_only() - pin user pages in memory 3079 * @start: starting user address 3080 * @nr_pages: number of pages from start to pin 3081 * @gup_flags: flags modifying pin behaviour 3082 * @pages: array that receives pointers to the pages pinned. 3083 * Should be at least nr_pages long. 3084 * 3085 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 3086 * the regular GUP. 3087 * Note a difference with get_user_pages_fast: this always returns the 3088 * number of pages pinned, 0 if no pages were pinned. 3089 * 3090 * If the architecture does not support this function, simply return with no 3091 * pages pinned. 3092 * 3093 * Careful, careful! COW breaking can go either way, so a non-write 3094 * access can get ambiguous page results. If you call this function without 3095 * 'write' set, you'd better be sure that you're ok with that ambiguity. 3096 */ 3097 int get_user_pages_fast_only(unsigned long start, int nr_pages, 3098 unsigned int gup_flags, struct page **pages) 3099 { 3100 int nr_pinned; 3101 /* 3102 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 3103 * because gup fast is always a "pin with a +1 page refcount" request. 3104 * 3105 * FOLL_FAST_ONLY is required in order to match the API description of 3106 * this routine: no fall back to regular ("slow") GUP. 3107 */ 3108 gup_flags |= FOLL_GET | FOLL_FAST_ONLY; 3109 3110 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3111 pages); 3112 3113 /* 3114 * As specified in the API description above, this routine is not 3115 * allowed to return negative values. However, the common core 3116 * routine internal_get_user_pages_fast() *can* return -errno. 3117 * Therefore, correct for that here: 3118 */ 3119 if (nr_pinned < 0) 3120 nr_pinned = 0; 3121 3122 return nr_pinned; 3123 } 3124 EXPORT_SYMBOL_GPL(get_user_pages_fast_only); 3125 3126 /** 3127 * get_user_pages_fast() - pin user pages in memory 3128 * @start: starting user address 3129 * @nr_pages: number of pages from start to pin 3130 * @gup_flags: flags modifying pin behaviour 3131 * @pages: array that receives pointers to the pages pinned. 3132 * Should be at least nr_pages long. 3133 * 3134 * Attempt to pin user pages in memory without taking mm->mmap_lock. 3135 * If not successful, it will fall back to taking the lock and 3136 * calling get_user_pages(). 3137 * 3138 * Returns number of pages pinned. This may be fewer than the number requested. 3139 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 3140 * -errno. 3141 */ 3142 int get_user_pages_fast(unsigned long start, int nr_pages, 3143 unsigned int gup_flags, struct page **pages) 3144 { 3145 if (!is_valid_gup_flags(gup_flags)) 3146 return -EINVAL; 3147 3148 /* 3149 * The caller may or may not have explicitly set FOLL_GET; either way is 3150 * OK. However, internally (within mm/gup.c), gup fast variants must set 3151 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 3152 * request. 3153 */ 3154 gup_flags |= FOLL_GET; 3155 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3156 } 3157 EXPORT_SYMBOL_GPL(get_user_pages_fast); 3158 3159 /** 3160 * pin_user_pages_fast() - pin user pages in memory without taking locks 3161 * 3162 * @start: starting user address 3163 * @nr_pages: number of pages from start to pin 3164 * @gup_flags: flags modifying pin behaviour 3165 * @pages: array that receives pointers to the pages pinned. 3166 * Should be at least nr_pages long. 3167 * 3168 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 3169 * get_user_pages_fast() for documentation on the function arguments, because 3170 * the arguments here are identical. 3171 * 3172 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3173 * see Documentation/core-api/pin_user_pages.rst for further details. 3174 */ 3175 int pin_user_pages_fast(unsigned long start, int nr_pages, 3176 unsigned int gup_flags, struct page **pages) 3177 { 3178 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3179 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3180 return -EINVAL; 3181 3182 if (WARN_ON_ONCE(!pages)) 3183 return -EINVAL; 3184 3185 gup_flags |= FOLL_PIN; 3186 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 3187 } 3188 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 3189 3190 /* 3191 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior 3192 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET. 3193 * 3194 * The API rules are the same, too: no negative values may be returned. 3195 */ 3196 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 3197 unsigned int gup_flags, struct page **pages) 3198 { 3199 int nr_pinned; 3200 3201 /* 3202 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API 3203 * rules require returning 0, rather than -errno: 3204 */ 3205 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3206 return 0; 3207 3208 if (WARN_ON_ONCE(!pages)) 3209 return 0; 3210 /* 3211 * FOLL_FAST_ONLY is required in order to match the API description of 3212 * this routine: no fall back to regular ("slow") GUP. 3213 */ 3214 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY); 3215 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags, 3216 pages); 3217 /* 3218 * This routine is not allowed to return negative values. However, 3219 * internal_get_user_pages_fast() *can* return -errno. Therefore, 3220 * correct for that here: 3221 */ 3222 if (nr_pinned < 0) 3223 nr_pinned = 0; 3224 3225 return nr_pinned; 3226 } 3227 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only); 3228 3229 /** 3230 * pin_user_pages_remote() - pin pages of a remote process 3231 * 3232 * @mm: mm_struct of target mm 3233 * @start: starting user address 3234 * @nr_pages: number of pages from start to pin 3235 * @gup_flags: flags modifying lookup behaviour 3236 * @pages: array that receives pointers to the pages pinned. 3237 * Should be at least nr_pages long. 3238 * @vmas: array of pointers to vmas corresponding to each page. 3239 * Or NULL if the caller does not require them. 3240 * @locked: pointer to lock flag indicating whether lock is held and 3241 * subsequently whether VM_FAULT_RETRY functionality can be 3242 * utilised. Lock must initially be held. 3243 * 3244 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 3245 * get_user_pages_remote() for documentation on the function arguments, because 3246 * the arguments here are identical. 3247 * 3248 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3249 * see Documentation/core-api/pin_user_pages.rst for details. 3250 */ 3251 long pin_user_pages_remote(struct mm_struct *mm, 3252 unsigned long start, unsigned long nr_pages, 3253 unsigned int gup_flags, struct page **pages, 3254 struct vm_area_struct **vmas, int *locked) 3255 { 3256 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3257 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3258 return -EINVAL; 3259 3260 if (WARN_ON_ONCE(!pages)) 3261 return -EINVAL; 3262 3263 gup_flags |= FOLL_PIN; 3264 return __get_user_pages_remote(mm, start, nr_pages, gup_flags, 3265 pages, vmas, locked); 3266 } 3267 EXPORT_SYMBOL(pin_user_pages_remote); 3268 3269 /** 3270 * pin_user_pages() - pin user pages in memory for use by other devices 3271 * 3272 * @start: starting user address 3273 * @nr_pages: number of pages from start to pin 3274 * @gup_flags: flags modifying lookup behaviour 3275 * @pages: array that receives pointers to the pages pinned. 3276 * Should be at least nr_pages long. 3277 * @vmas: array of pointers to vmas corresponding to each page. 3278 * Or NULL if the caller does not require them. 3279 * 3280 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 3281 * FOLL_PIN is set. 3282 * 3283 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 3284 * see Documentation/core-api/pin_user_pages.rst for details. 3285 */ 3286 long pin_user_pages(unsigned long start, unsigned long nr_pages, 3287 unsigned int gup_flags, struct page **pages, 3288 struct vm_area_struct **vmas) 3289 { 3290 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3291 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3292 return -EINVAL; 3293 3294 if (WARN_ON_ONCE(!pages)) 3295 return -EINVAL; 3296 3297 gup_flags |= FOLL_PIN; 3298 return __gup_longterm_locked(current->mm, start, nr_pages, 3299 pages, vmas, gup_flags); 3300 } 3301 EXPORT_SYMBOL(pin_user_pages); 3302 3303 /* 3304 * pin_user_pages_unlocked() is the FOLL_PIN variant of 3305 * get_user_pages_unlocked(). Behavior is the same, except that this one sets 3306 * FOLL_PIN and rejects FOLL_GET. 3307 */ 3308 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 3309 struct page **pages, unsigned int gup_flags) 3310 { 3311 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 3312 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 3313 return -EINVAL; 3314 3315 if (WARN_ON_ONCE(!pages)) 3316 return -EINVAL; 3317 3318 gup_flags |= FOLL_PIN; 3319 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags); 3320 } 3321 EXPORT_SYMBOL(pin_user_pages_unlocked); 3322