1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 static void hpage_pincount_add(struct page *page, int refs) 33 { 34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 35 VM_BUG_ON_PAGE(page != compound_head(page), page); 36 37 atomic_add(refs, compound_pincount_ptr(page)); 38 } 39 40 static void hpage_pincount_sub(struct page *page, int refs) 41 { 42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 43 VM_BUG_ON_PAGE(page != compound_head(page), page); 44 45 atomic_sub(refs, compound_pincount_ptr(page)); 46 } 47 48 /* 49 * Return the compound head page with ref appropriately incremented, 50 * or NULL if that failed. 51 */ 52 static inline struct page *try_get_compound_head(struct page *page, int refs) 53 { 54 struct page *head = compound_head(page); 55 56 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 57 return NULL; 58 if (unlikely(!page_cache_add_speculative(head, refs))) 59 return NULL; 60 return head; 61 } 62 63 /* 64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a 65 * flags-dependent amount. 66 * 67 * "grab" names in this file mean, "look at flags to decide whether to use 68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 69 * 70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the 71 * same time. (That's true throughout the get_user_pages*() and 72 * pin_user_pages*() APIs.) Cases: 73 * 74 * FOLL_GET: page's refcount will be incremented by 1. 75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 76 * 77 * Return: head page (with refcount appropriately incremented) for success, or 78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's 79 * considered failure, and furthermore, a likely bug in the caller, so a warning 80 * is also emitted. 81 */ 82 static __maybe_unused struct page *try_grab_compound_head(struct page *page, 83 int refs, 84 unsigned int flags) 85 { 86 if (flags & FOLL_GET) 87 return try_get_compound_head(page, refs); 88 else if (flags & FOLL_PIN) { 89 int orig_refs = refs; 90 91 /* 92 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast 93 * path, so fail and let the caller fall back to the slow path. 94 */ 95 if (unlikely(flags & FOLL_LONGTERM) && 96 is_migrate_cma_page(page)) 97 return NULL; 98 99 /* 100 * When pinning a compound page of order > 1 (which is what 101 * hpage_pincount_available() checks for), use an exact count to 102 * track it, via hpage_pincount_add/_sub(). 103 * 104 * However, be sure to *also* increment the normal page refcount 105 * field at least once, so that the page really is pinned. 106 */ 107 if (!hpage_pincount_available(page)) 108 refs *= GUP_PIN_COUNTING_BIAS; 109 110 page = try_get_compound_head(page, refs); 111 if (!page) 112 return NULL; 113 114 if (hpage_pincount_available(page)) 115 hpage_pincount_add(page, refs); 116 117 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 118 orig_refs); 119 120 return page; 121 } 122 123 WARN_ON_ONCE(1); 124 return NULL; 125 } 126 127 /** 128 * try_grab_page() - elevate a page's refcount by a flag-dependent amount 129 * 130 * This might not do anything at all, depending on the flags argument. 131 * 132 * "grab" names in this file mean, "look at flags to decide whether to use 133 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. 134 * 135 * @page: pointer to page to be grabbed 136 * @flags: gup flags: these are the FOLL_* flag values. 137 * 138 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same 139 * time. Cases: 140 * 141 * FOLL_GET: page's refcount will be incremented by 1. 142 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS. 143 * 144 * Return: true for success, or if no action was required (if neither FOLL_PIN 145 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or 146 * FOLL_PIN was set, but the page could not be grabbed. 147 */ 148 bool __must_check try_grab_page(struct page *page, unsigned int flags) 149 { 150 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN)); 151 152 if (flags & FOLL_GET) 153 return try_get_page(page); 154 else if (flags & FOLL_PIN) { 155 int refs = 1; 156 157 page = compound_head(page); 158 159 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 160 return false; 161 162 if (hpage_pincount_available(page)) 163 hpage_pincount_add(page, 1); 164 else 165 refs = GUP_PIN_COUNTING_BIAS; 166 167 /* 168 * Similar to try_grab_compound_head(): even if using the 169 * hpage_pincount_add/_sub() routines, be sure to 170 * *also* increment the normal page refcount field at least 171 * once, so that the page really is pinned. 172 */ 173 page_ref_add(page, refs); 174 175 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1); 176 } 177 178 return true; 179 } 180 181 #ifdef CONFIG_DEV_PAGEMAP_OPS 182 static bool __unpin_devmap_managed_user_page(struct page *page) 183 { 184 int count, refs = 1; 185 186 if (!page_is_devmap_managed(page)) 187 return false; 188 189 if (hpage_pincount_available(page)) 190 hpage_pincount_sub(page, 1); 191 else 192 refs = GUP_PIN_COUNTING_BIAS; 193 194 count = page_ref_sub_return(page, refs); 195 196 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 197 /* 198 * devmap page refcounts are 1-based, rather than 0-based: if 199 * refcount is 1, then the page is free and the refcount is 200 * stable because nobody holds a reference on the page. 201 */ 202 if (count == 1) 203 free_devmap_managed_page(page); 204 else if (!count) 205 __put_page(page); 206 207 return true; 208 } 209 #else 210 static bool __unpin_devmap_managed_user_page(struct page *page) 211 { 212 return false; 213 } 214 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 215 216 /** 217 * unpin_user_page() - release a dma-pinned page 218 * @page: pointer to page to be released 219 * 220 * Pages that were pinned via pin_user_pages*() must be released via either 221 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 222 * that such pages can be separately tracked and uniquely handled. In 223 * particular, interactions with RDMA and filesystems need special handling. 224 */ 225 void unpin_user_page(struct page *page) 226 { 227 int refs = 1; 228 229 page = compound_head(page); 230 231 /* 232 * For devmap managed pages we need to catch refcount transition from 233 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the 234 * page is free and we need to inform the device driver through 235 * callback. See include/linux/memremap.h and HMM for details. 236 */ 237 if (__unpin_devmap_managed_user_page(page)) 238 return; 239 240 if (hpage_pincount_available(page)) 241 hpage_pincount_sub(page, 1); 242 else 243 refs = GUP_PIN_COUNTING_BIAS; 244 245 if (page_ref_sub_and_test(page, refs)) 246 __put_page(page); 247 248 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1); 249 } 250 EXPORT_SYMBOL(unpin_user_page); 251 252 /** 253 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 254 * @pages: array of pages to be maybe marked dirty, and definitely released. 255 * @npages: number of pages in the @pages array. 256 * @make_dirty: whether to mark the pages dirty 257 * 258 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 259 * variants called on that page. 260 * 261 * For each page in the @pages array, make that page (or its head page, if a 262 * compound page) dirty, if @make_dirty is true, and if the page was previously 263 * listed as clean. In any case, releases all pages using unpin_user_page(), 264 * possibly via unpin_user_pages(), for the non-dirty case. 265 * 266 * Please see the unpin_user_page() documentation for details. 267 * 268 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 269 * required, then the caller should a) verify that this is really correct, 270 * because _lock() is usually required, and b) hand code it: 271 * set_page_dirty_lock(), unpin_user_page(). 272 * 273 */ 274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 275 bool make_dirty) 276 { 277 unsigned long index; 278 279 /* 280 * TODO: this can be optimized for huge pages: if a series of pages is 281 * physically contiguous and part of the same compound page, then a 282 * single operation to the head page should suffice. 283 */ 284 285 if (!make_dirty) { 286 unpin_user_pages(pages, npages); 287 return; 288 } 289 290 for (index = 0; index < npages; index++) { 291 struct page *page = compound_head(pages[index]); 292 /* 293 * Checking PageDirty at this point may race with 294 * clear_page_dirty_for_io(), but that's OK. Two key 295 * cases: 296 * 297 * 1) This code sees the page as already dirty, so it 298 * skips the call to set_page_dirty(). That could happen 299 * because clear_page_dirty_for_io() called 300 * page_mkclean(), followed by set_page_dirty(). 301 * However, now the page is going to get written back, 302 * which meets the original intention of setting it 303 * dirty, so all is well: clear_page_dirty_for_io() goes 304 * on to call TestClearPageDirty(), and write the page 305 * back. 306 * 307 * 2) This code sees the page as clean, so it calls 308 * set_page_dirty(). The page stays dirty, despite being 309 * written back, so it gets written back again in the 310 * next writeback cycle. This is harmless. 311 */ 312 if (!PageDirty(page)) 313 set_page_dirty_lock(page); 314 unpin_user_page(page); 315 } 316 } 317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock); 318 319 /** 320 * unpin_user_pages() - release an array of gup-pinned pages. 321 * @pages: array of pages to be marked dirty and released. 322 * @npages: number of pages in the @pages array. 323 * 324 * For each page in the @pages array, release the page using unpin_user_page(). 325 * 326 * Please see the unpin_user_page() documentation for details. 327 */ 328 void unpin_user_pages(struct page **pages, unsigned long npages) 329 { 330 unsigned long index; 331 332 /* 333 * TODO: this can be optimized for huge pages: if a series of pages is 334 * physically contiguous and part of the same compound page, then a 335 * single operation to the head page should suffice. 336 */ 337 for (index = 0; index < npages; index++) 338 unpin_user_page(pages[index]); 339 } 340 EXPORT_SYMBOL(unpin_user_pages); 341 342 #ifdef CONFIG_MMU 343 static struct page *no_page_table(struct vm_area_struct *vma, 344 unsigned int flags) 345 { 346 /* 347 * When core dumping an enormous anonymous area that nobody 348 * has touched so far, we don't want to allocate unnecessary pages or 349 * page tables. Return error instead of NULL to skip handle_mm_fault, 350 * then get_dump_page() will return NULL to leave a hole in the dump. 351 * But we can only make this optimization where a hole would surely 352 * be zero-filled if handle_mm_fault() actually did handle it. 353 */ 354 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 355 return ERR_PTR(-EFAULT); 356 return NULL; 357 } 358 359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 360 pte_t *pte, unsigned int flags) 361 { 362 /* No page to get reference */ 363 if (flags & FOLL_GET) 364 return -EFAULT; 365 366 if (flags & FOLL_TOUCH) { 367 pte_t entry = *pte; 368 369 if (flags & FOLL_WRITE) 370 entry = pte_mkdirty(entry); 371 entry = pte_mkyoung(entry); 372 373 if (!pte_same(*pte, entry)) { 374 set_pte_at(vma->vm_mm, address, pte, entry); 375 update_mmu_cache(vma, address, pte); 376 } 377 } 378 379 /* Proper page table entry exists, but no corresponding struct page */ 380 return -EEXIST; 381 } 382 383 /* 384 * FOLL_FORCE can write to even unwritable pte's, but only 385 * after we've gone through a COW cycle and they are dirty. 386 */ 387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 388 { 389 return pte_write(pte) || 390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 391 } 392 393 static struct page *follow_page_pte(struct vm_area_struct *vma, 394 unsigned long address, pmd_t *pmd, unsigned int flags, 395 struct dev_pagemap **pgmap) 396 { 397 struct mm_struct *mm = vma->vm_mm; 398 struct page *page; 399 spinlock_t *ptl; 400 pte_t *ptep, pte; 401 int ret; 402 403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == 405 (FOLL_PIN | FOLL_GET))) 406 return ERR_PTR(-EINVAL); 407 retry: 408 if (unlikely(pmd_bad(*pmd))) 409 return no_page_table(vma, flags); 410 411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 412 pte = *ptep; 413 if (!pte_present(pte)) { 414 swp_entry_t entry; 415 /* 416 * KSM's break_ksm() relies upon recognizing a ksm page 417 * even while it is being migrated, so for that case we 418 * need migration_entry_wait(). 419 */ 420 if (likely(!(flags & FOLL_MIGRATION))) 421 goto no_page; 422 if (pte_none(pte)) 423 goto no_page; 424 entry = pte_to_swp_entry(pte); 425 if (!is_migration_entry(entry)) 426 goto no_page; 427 pte_unmap_unlock(ptep, ptl); 428 migration_entry_wait(mm, pmd, address); 429 goto retry; 430 } 431 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 432 goto no_page; 433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 434 pte_unmap_unlock(ptep, ptl); 435 return NULL; 436 } 437 438 page = vm_normal_page(vma, address, pte); 439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { 440 /* 441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN 442 * case since they are only valid while holding the pgmap 443 * reference. 444 */ 445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 446 if (*pgmap) 447 page = pte_page(pte); 448 else 449 goto no_page; 450 } else if (unlikely(!page)) { 451 if (flags & FOLL_DUMP) { 452 /* Avoid special (like zero) pages in core dumps */ 453 page = ERR_PTR(-EFAULT); 454 goto out; 455 } 456 457 if (is_zero_pfn(pte_pfn(pte))) { 458 page = pte_page(pte); 459 } else { 460 ret = follow_pfn_pte(vma, address, ptep, flags); 461 page = ERR_PTR(ret); 462 goto out; 463 } 464 } 465 466 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 467 get_page(page); 468 pte_unmap_unlock(ptep, ptl); 469 lock_page(page); 470 ret = split_huge_page(page); 471 unlock_page(page); 472 put_page(page); 473 if (ret) 474 return ERR_PTR(ret); 475 goto retry; 476 } 477 478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ 479 if (unlikely(!try_grab_page(page, flags))) { 480 page = ERR_PTR(-ENOMEM); 481 goto out; 482 } 483 /* 484 * We need to make the page accessible if and only if we are going 485 * to access its content (the FOLL_PIN case). Please see 486 * Documentation/core-api/pin_user_pages.rst for details. 487 */ 488 if (flags & FOLL_PIN) { 489 ret = arch_make_page_accessible(page); 490 if (ret) { 491 unpin_user_page(page); 492 page = ERR_PTR(ret); 493 goto out; 494 } 495 } 496 if (flags & FOLL_TOUCH) { 497 if ((flags & FOLL_WRITE) && 498 !pte_dirty(pte) && !PageDirty(page)) 499 set_page_dirty(page); 500 /* 501 * pte_mkyoung() would be more correct here, but atomic care 502 * is needed to avoid losing the dirty bit: it is easier to use 503 * mark_page_accessed(). 504 */ 505 mark_page_accessed(page); 506 } 507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 508 /* Do not mlock pte-mapped THP */ 509 if (PageTransCompound(page)) 510 goto out; 511 512 /* 513 * The preliminary mapping check is mainly to avoid the 514 * pointless overhead of lock_page on the ZERO_PAGE 515 * which might bounce very badly if there is contention. 516 * 517 * If the page is already locked, we don't need to 518 * handle it now - vmscan will handle it later if and 519 * when it attempts to reclaim the page. 520 */ 521 if (page->mapping && trylock_page(page)) { 522 lru_add_drain(); /* push cached pages to LRU */ 523 /* 524 * Because we lock page here, and migration is 525 * blocked by the pte's page reference, and we 526 * know the page is still mapped, we don't even 527 * need to check for file-cache page truncation. 528 */ 529 mlock_vma_page(page); 530 unlock_page(page); 531 } 532 } 533 out: 534 pte_unmap_unlock(ptep, ptl); 535 return page; 536 no_page: 537 pte_unmap_unlock(ptep, ptl); 538 if (!pte_none(pte)) 539 return NULL; 540 return no_page_table(vma, flags); 541 } 542 543 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 544 unsigned long address, pud_t *pudp, 545 unsigned int flags, 546 struct follow_page_context *ctx) 547 { 548 pmd_t *pmd, pmdval; 549 spinlock_t *ptl; 550 struct page *page; 551 struct mm_struct *mm = vma->vm_mm; 552 553 pmd = pmd_offset(pudp, address); 554 /* 555 * The READ_ONCE() will stabilize the pmdval in a register or 556 * on the stack so that it will stop changing under the code. 557 */ 558 pmdval = READ_ONCE(*pmd); 559 if (pmd_none(pmdval)) 560 return no_page_table(vma, flags); 561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) { 562 page = follow_huge_pmd(mm, address, pmd, flags); 563 if (page) 564 return page; 565 return no_page_table(vma, flags); 566 } 567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 568 page = follow_huge_pd(vma, address, 569 __hugepd(pmd_val(pmdval)), flags, 570 PMD_SHIFT); 571 if (page) 572 return page; 573 return no_page_table(vma, flags); 574 } 575 retry: 576 if (!pmd_present(pmdval)) { 577 if (likely(!(flags & FOLL_MIGRATION))) 578 return no_page_table(vma, flags); 579 VM_BUG_ON(thp_migration_supported() && 580 !is_pmd_migration_entry(pmdval)); 581 if (is_pmd_migration_entry(pmdval)) 582 pmd_migration_entry_wait(mm, pmd); 583 pmdval = READ_ONCE(*pmd); 584 /* 585 * MADV_DONTNEED may convert the pmd to null because 586 * mmap_sem is held in read mode 587 */ 588 if (pmd_none(pmdval)) 589 return no_page_table(vma, flags); 590 goto retry; 591 } 592 if (pmd_devmap(pmdval)) { 593 ptl = pmd_lock(mm, pmd); 594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 595 spin_unlock(ptl); 596 if (page) 597 return page; 598 } 599 if (likely(!pmd_trans_huge(pmdval))) 600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 601 602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 603 return no_page_table(vma, flags); 604 605 retry_locked: 606 ptl = pmd_lock(mm, pmd); 607 if (unlikely(pmd_none(*pmd))) { 608 spin_unlock(ptl); 609 return no_page_table(vma, flags); 610 } 611 if (unlikely(!pmd_present(*pmd))) { 612 spin_unlock(ptl); 613 if (likely(!(flags & FOLL_MIGRATION))) 614 return no_page_table(vma, flags); 615 pmd_migration_entry_wait(mm, pmd); 616 goto retry_locked; 617 } 618 if (unlikely(!pmd_trans_huge(*pmd))) { 619 spin_unlock(ptl); 620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 621 } 622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 623 int ret; 624 page = pmd_page(*pmd); 625 if (is_huge_zero_page(page)) { 626 spin_unlock(ptl); 627 ret = 0; 628 split_huge_pmd(vma, pmd, address); 629 if (pmd_trans_unstable(pmd)) 630 ret = -EBUSY; 631 } else if (flags & FOLL_SPLIT) { 632 if (unlikely(!try_get_page(page))) { 633 spin_unlock(ptl); 634 return ERR_PTR(-ENOMEM); 635 } 636 spin_unlock(ptl); 637 lock_page(page); 638 ret = split_huge_page(page); 639 unlock_page(page); 640 put_page(page); 641 if (pmd_none(*pmd)) 642 return no_page_table(vma, flags); 643 } else { /* flags & FOLL_SPLIT_PMD */ 644 spin_unlock(ptl); 645 split_huge_pmd(vma, pmd, address); 646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 647 } 648 649 return ret ? ERR_PTR(ret) : 650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 651 } 652 page = follow_trans_huge_pmd(vma, address, pmd, flags); 653 spin_unlock(ptl); 654 ctx->page_mask = HPAGE_PMD_NR - 1; 655 return page; 656 } 657 658 static struct page *follow_pud_mask(struct vm_area_struct *vma, 659 unsigned long address, p4d_t *p4dp, 660 unsigned int flags, 661 struct follow_page_context *ctx) 662 { 663 pud_t *pud; 664 spinlock_t *ptl; 665 struct page *page; 666 struct mm_struct *mm = vma->vm_mm; 667 668 pud = pud_offset(p4dp, address); 669 if (pud_none(*pud)) 670 return no_page_table(vma, flags); 671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) { 672 page = follow_huge_pud(mm, address, pud, flags); 673 if (page) 674 return page; 675 return no_page_table(vma, flags); 676 } 677 if (is_hugepd(__hugepd(pud_val(*pud)))) { 678 page = follow_huge_pd(vma, address, 679 __hugepd(pud_val(*pud)), flags, 680 PUD_SHIFT); 681 if (page) 682 return page; 683 return no_page_table(vma, flags); 684 } 685 if (pud_devmap(*pud)) { 686 ptl = pud_lock(mm, pud); 687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 688 spin_unlock(ptl); 689 if (page) 690 return page; 691 } 692 if (unlikely(pud_bad(*pud))) 693 return no_page_table(vma, flags); 694 695 return follow_pmd_mask(vma, address, pud, flags, ctx); 696 } 697 698 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 699 unsigned long address, pgd_t *pgdp, 700 unsigned int flags, 701 struct follow_page_context *ctx) 702 { 703 p4d_t *p4d; 704 struct page *page; 705 706 p4d = p4d_offset(pgdp, address); 707 if (p4d_none(*p4d)) 708 return no_page_table(vma, flags); 709 BUILD_BUG_ON(p4d_huge(*p4d)); 710 if (unlikely(p4d_bad(*p4d))) 711 return no_page_table(vma, flags); 712 713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 714 page = follow_huge_pd(vma, address, 715 __hugepd(p4d_val(*p4d)), flags, 716 P4D_SHIFT); 717 if (page) 718 return page; 719 return no_page_table(vma, flags); 720 } 721 return follow_pud_mask(vma, address, p4d, flags, ctx); 722 } 723 724 /** 725 * follow_page_mask - look up a page descriptor from a user-virtual address 726 * @vma: vm_area_struct mapping @address 727 * @address: virtual address to look up 728 * @flags: flags modifying lookup behaviour 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 730 * pointer to output page_mask 731 * 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 733 * 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 736 * 737 * On output, the @ctx->page_mask is set according to the size of the page. 738 * 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or 740 * an error pointer if there is a mapping to something not represented 741 * by a page descriptor (see also vm_normal_page()). 742 */ 743 static struct page *follow_page_mask(struct vm_area_struct *vma, 744 unsigned long address, unsigned int flags, 745 struct follow_page_context *ctx) 746 { 747 pgd_t *pgd; 748 struct page *page; 749 struct mm_struct *mm = vma->vm_mm; 750 751 ctx->page_mask = 0; 752 753 /* make this handle hugepd */ 754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 755 if (!IS_ERR(page)) { 756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN)); 757 return page; 758 } 759 760 pgd = pgd_offset(mm, address); 761 762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 763 return no_page_table(vma, flags); 764 765 if (pgd_huge(*pgd)) { 766 page = follow_huge_pgd(mm, address, pgd, flags); 767 if (page) 768 return page; 769 return no_page_table(vma, flags); 770 } 771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 772 page = follow_huge_pd(vma, address, 773 __hugepd(pgd_val(*pgd)), flags, 774 PGDIR_SHIFT); 775 if (page) 776 return page; 777 return no_page_table(vma, flags); 778 } 779 780 return follow_p4d_mask(vma, address, pgd, flags, ctx); 781 } 782 783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 784 unsigned int foll_flags) 785 { 786 struct follow_page_context ctx = { NULL }; 787 struct page *page; 788 789 page = follow_page_mask(vma, address, foll_flags, &ctx); 790 if (ctx.pgmap) 791 put_dev_pagemap(ctx.pgmap); 792 return page; 793 } 794 795 static int get_gate_page(struct mm_struct *mm, unsigned long address, 796 unsigned int gup_flags, struct vm_area_struct **vma, 797 struct page **page) 798 { 799 pgd_t *pgd; 800 p4d_t *p4d; 801 pud_t *pud; 802 pmd_t *pmd; 803 pte_t *pte; 804 int ret = -EFAULT; 805 806 /* user gate pages are read-only */ 807 if (gup_flags & FOLL_WRITE) 808 return -EFAULT; 809 if (address > TASK_SIZE) 810 pgd = pgd_offset_k(address); 811 else 812 pgd = pgd_offset_gate(mm, address); 813 if (pgd_none(*pgd)) 814 return -EFAULT; 815 p4d = p4d_offset(pgd, address); 816 if (p4d_none(*p4d)) 817 return -EFAULT; 818 pud = pud_offset(p4d, address); 819 if (pud_none(*pud)) 820 return -EFAULT; 821 pmd = pmd_offset(pud, address); 822 if (!pmd_present(*pmd)) 823 return -EFAULT; 824 VM_BUG_ON(pmd_trans_huge(*pmd)); 825 pte = pte_offset_map(pmd, address); 826 if (pte_none(*pte)) 827 goto unmap; 828 *vma = get_gate_vma(mm); 829 if (!page) 830 goto out; 831 *page = vm_normal_page(*vma, address, *pte); 832 if (!*page) { 833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 834 goto unmap; 835 *page = pte_page(*pte); 836 } 837 if (unlikely(!try_get_page(*page))) { 838 ret = -ENOMEM; 839 goto unmap; 840 } 841 out: 842 ret = 0; 843 unmap: 844 pte_unmap(pte); 845 return ret; 846 } 847 848 /* 849 * mmap_sem must be held on entry. If @locked != NULL and *@flags 850 * does not include FOLL_NOWAIT, the mmap_sem may be released. If it 851 * is, *@locked will be set to 0 and -EBUSY returned. 852 */ 853 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 854 unsigned long address, unsigned int *flags, int *locked) 855 { 856 unsigned int fault_flags = 0; 857 vm_fault_t ret; 858 859 /* mlock all present pages, but do not fault in new pages */ 860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 861 return -ENOENT; 862 if (*flags & FOLL_WRITE) 863 fault_flags |= FAULT_FLAG_WRITE; 864 if (*flags & FOLL_REMOTE) 865 fault_flags |= FAULT_FLAG_REMOTE; 866 if (locked) 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 868 if (*flags & FOLL_NOWAIT) 869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 870 if (*flags & FOLL_TRIED) { 871 /* 872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED 873 * can co-exist 874 */ 875 fault_flags |= FAULT_FLAG_TRIED; 876 } 877 878 ret = handle_mm_fault(vma, address, fault_flags); 879 if (ret & VM_FAULT_ERROR) { 880 int err = vm_fault_to_errno(ret, *flags); 881 882 if (err) 883 return err; 884 BUG(); 885 } 886 887 if (tsk) { 888 if (ret & VM_FAULT_MAJOR) 889 tsk->maj_flt++; 890 else 891 tsk->min_flt++; 892 } 893 894 if (ret & VM_FAULT_RETRY) { 895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 896 *locked = 0; 897 return -EBUSY; 898 } 899 900 /* 901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 902 * necessary, even if maybe_mkwrite decided not to set pte_write. We 903 * can thus safely do subsequent page lookups as if they were reads. 904 * But only do so when looping for pte_write is futile: in some cases 905 * userspace may also be wanting to write to the gotten user page, 906 * which a read fault here might prevent (a readonly page might get 907 * reCOWed by userspace write). 908 */ 909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 910 *flags |= FOLL_COW; 911 return 0; 912 } 913 914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 915 { 916 vm_flags_t vm_flags = vma->vm_flags; 917 int write = (gup_flags & FOLL_WRITE); 918 int foreign = (gup_flags & FOLL_REMOTE); 919 920 if (vm_flags & (VM_IO | VM_PFNMAP)) 921 return -EFAULT; 922 923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 924 return -EFAULT; 925 926 if (write) { 927 if (!(vm_flags & VM_WRITE)) { 928 if (!(gup_flags & FOLL_FORCE)) 929 return -EFAULT; 930 /* 931 * We used to let the write,force case do COW in a 932 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 933 * set a breakpoint in a read-only mapping of an 934 * executable, without corrupting the file (yet only 935 * when that file had been opened for writing!). 936 * Anon pages in shared mappings are surprising: now 937 * just reject it. 938 */ 939 if (!is_cow_mapping(vm_flags)) 940 return -EFAULT; 941 } 942 } else if (!(vm_flags & VM_READ)) { 943 if (!(gup_flags & FOLL_FORCE)) 944 return -EFAULT; 945 /* 946 * Is there actually any vma we can reach here which does not 947 * have VM_MAYREAD set? 948 */ 949 if (!(vm_flags & VM_MAYREAD)) 950 return -EFAULT; 951 } 952 /* 953 * gups are always data accesses, not instruction 954 * fetches, so execute=false here 955 */ 956 if (!arch_vma_access_permitted(vma, write, false, foreign)) 957 return -EFAULT; 958 return 0; 959 } 960 961 /** 962 * __get_user_pages() - pin user pages in memory 963 * @tsk: task_struct of target task 964 * @mm: mm_struct of target mm 965 * @start: starting user address 966 * @nr_pages: number of pages from start to pin 967 * @gup_flags: flags modifying pin behaviour 968 * @pages: array that receives pointers to the pages pinned. 969 * Should be at least nr_pages long. Or NULL, if caller 970 * only intends to ensure the pages are faulted in. 971 * @vmas: array of pointers to vmas corresponding to each page. 972 * Or NULL if the caller does not require them. 973 * @locked: whether we're still with the mmap_sem held 974 * 975 * Returns either number of pages pinned (which may be less than the 976 * number requested), or an error. Details about the return value: 977 * 978 * -- If nr_pages is 0, returns 0. 979 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 980 * -- If nr_pages is >0, and some pages were pinned, returns the number of 981 * pages pinned. Again, this may be less than nr_pages. 982 * 983 * The caller is responsible for releasing returned @pages, via put_page(). 984 * 985 * @vmas are valid only as long as mmap_sem is held. 986 * 987 * Must be called with mmap_sem held. It may be released. See below. 988 * 989 * __get_user_pages walks a process's page tables and takes a reference to 990 * each struct page that each user address corresponds to at a given 991 * instant. That is, it takes the page that would be accessed if a user 992 * thread accesses the given user virtual address at that instant. 993 * 994 * This does not guarantee that the page exists in the user mappings when 995 * __get_user_pages returns, and there may even be a completely different 996 * page there in some cases (eg. if mmapped pagecache has been invalidated 997 * and subsequently re faulted). However it does guarantee that the page 998 * won't be freed completely. And mostly callers simply care that the page 999 * contains data that was valid *at some point in time*. Typically, an IO 1000 * or similar operation cannot guarantee anything stronger anyway because 1001 * locks can't be held over the syscall boundary. 1002 * 1003 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1004 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1005 * appropriate) must be called after the page is finished with, and 1006 * before put_page is called. 1007 * 1008 * If @locked != NULL, *@locked will be set to 0 when mmap_sem is 1009 * released by an up_read(). That can happen if @gup_flags does not 1010 * have FOLL_NOWAIT. 1011 * 1012 * A caller using such a combination of @locked and @gup_flags 1013 * must therefore hold the mmap_sem for reading only, and recognize 1014 * when it's been released. Otherwise, it must be held for either 1015 * reading or writing and will not be released. 1016 * 1017 * In most cases, get_user_pages or get_user_pages_fast should be used 1018 * instead of __get_user_pages. __get_user_pages should be used only if 1019 * you need some special @gup_flags. 1020 */ 1021 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1022 unsigned long start, unsigned long nr_pages, 1023 unsigned int gup_flags, struct page **pages, 1024 struct vm_area_struct **vmas, int *locked) 1025 { 1026 long ret = 0, i = 0; 1027 struct vm_area_struct *vma = NULL; 1028 struct follow_page_context ctx = { NULL }; 1029 1030 if (!nr_pages) 1031 return 0; 1032 1033 start = untagged_addr(start); 1034 1035 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); 1036 1037 /* 1038 * If FOLL_FORCE is set then do not force a full fault as the hinting 1039 * fault information is unrelated to the reference behaviour of a task 1040 * using the address space 1041 */ 1042 if (!(gup_flags & FOLL_FORCE)) 1043 gup_flags |= FOLL_NUMA; 1044 1045 do { 1046 struct page *page; 1047 unsigned int foll_flags = gup_flags; 1048 unsigned int page_increm; 1049 1050 /* first iteration or cross vma bound */ 1051 if (!vma || start >= vma->vm_end) { 1052 vma = find_extend_vma(mm, start); 1053 if (!vma && in_gate_area(mm, start)) { 1054 ret = get_gate_page(mm, start & PAGE_MASK, 1055 gup_flags, &vma, 1056 pages ? &pages[i] : NULL); 1057 if (ret) 1058 goto out; 1059 ctx.page_mask = 0; 1060 goto next_page; 1061 } 1062 1063 if (!vma || check_vma_flags(vma, gup_flags)) { 1064 ret = -EFAULT; 1065 goto out; 1066 } 1067 if (is_vm_hugetlb_page(vma)) { 1068 i = follow_hugetlb_page(mm, vma, pages, vmas, 1069 &start, &nr_pages, i, 1070 gup_flags, locked); 1071 if (locked && *locked == 0) { 1072 /* 1073 * We've got a VM_FAULT_RETRY 1074 * and we've lost mmap_sem. 1075 * We must stop here. 1076 */ 1077 BUG_ON(gup_flags & FOLL_NOWAIT); 1078 BUG_ON(ret != 0); 1079 goto out; 1080 } 1081 continue; 1082 } 1083 } 1084 retry: 1085 /* 1086 * If we have a pending SIGKILL, don't keep faulting pages and 1087 * potentially allocating memory. 1088 */ 1089 if (fatal_signal_pending(current)) { 1090 ret = -ERESTARTSYS; 1091 goto out; 1092 } 1093 cond_resched(); 1094 1095 page = follow_page_mask(vma, start, foll_flags, &ctx); 1096 if (!page) { 1097 ret = faultin_page(tsk, vma, start, &foll_flags, 1098 locked); 1099 switch (ret) { 1100 case 0: 1101 goto retry; 1102 case -EBUSY: 1103 ret = 0; 1104 /* FALLTHRU */ 1105 case -EFAULT: 1106 case -ENOMEM: 1107 case -EHWPOISON: 1108 goto out; 1109 case -ENOENT: 1110 goto next_page; 1111 } 1112 BUG(); 1113 } else if (PTR_ERR(page) == -EEXIST) { 1114 /* 1115 * Proper page table entry exists, but no corresponding 1116 * struct page. 1117 */ 1118 goto next_page; 1119 } else if (IS_ERR(page)) { 1120 ret = PTR_ERR(page); 1121 goto out; 1122 } 1123 if (pages) { 1124 pages[i] = page; 1125 flush_anon_page(vma, page, start); 1126 flush_dcache_page(page); 1127 ctx.page_mask = 0; 1128 } 1129 next_page: 1130 if (vmas) { 1131 vmas[i] = vma; 1132 ctx.page_mask = 0; 1133 } 1134 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 1135 if (page_increm > nr_pages) 1136 page_increm = nr_pages; 1137 i += page_increm; 1138 start += page_increm * PAGE_SIZE; 1139 nr_pages -= page_increm; 1140 } while (nr_pages); 1141 out: 1142 if (ctx.pgmap) 1143 put_dev_pagemap(ctx.pgmap); 1144 return i ? i : ret; 1145 } 1146 1147 static bool vma_permits_fault(struct vm_area_struct *vma, 1148 unsigned int fault_flags) 1149 { 1150 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 1151 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 1152 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 1153 1154 if (!(vm_flags & vma->vm_flags)) 1155 return false; 1156 1157 /* 1158 * The architecture might have a hardware protection 1159 * mechanism other than read/write that can deny access. 1160 * 1161 * gup always represents data access, not instruction 1162 * fetches, so execute=false here: 1163 */ 1164 if (!arch_vma_access_permitted(vma, write, false, foreign)) 1165 return false; 1166 1167 return true; 1168 } 1169 1170 /* 1171 * fixup_user_fault() - manually resolve a user page fault 1172 * @tsk: the task_struct to use for page fault accounting, or 1173 * NULL if faults are not to be recorded. 1174 * @mm: mm_struct of target mm 1175 * @address: user address 1176 * @fault_flags:flags to pass down to handle_mm_fault() 1177 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 1178 * does not allow retry 1179 * 1180 * This is meant to be called in the specific scenario where for locking reasons 1181 * we try to access user memory in atomic context (within a pagefault_disable() 1182 * section), this returns -EFAULT, and we want to resolve the user fault before 1183 * trying again. 1184 * 1185 * Typically this is meant to be used by the futex code. 1186 * 1187 * The main difference with get_user_pages() is that this function will 1188 * unconditionally call handle_mm_fault() which will in turn perform all the 1189 * necessary SW fixup of the dirty and young bits in the PTE, while 1190 * get_user_pages() only guarantees to update these in the struct page. 1191 * 1192 * This is important for some architectures where those bits also gate the 1193 * access permission to the page because they are maintained in software. On 1194 * such architectures, gup() will not be enough to make a subsequent access 1195 * succeed. 1196 * 1197 * This function will not return with an unlocked mmap_sem. So it has not the 1198 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 1199 */ 1200 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1201 unsigned long address, unsigned int fault_flags, 1202 bool *unlocked) 1203 { 1204 struct vm_area_struct *vma; 1205 vm_fault_t ret, major = 0; 1206 1207 address = untagged_addr(address); 1208 1209 if (unlocked) 1210 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 1211 1212 retry: 1213 vma = find_extend_vma(mm, address); 1214 if (!vma || address < vma->vm_start) 1215 return -EFAULT; 1216 1217 if (!vma_permits_fault(vma, fault_flags)) 1218 return -EFAULT; 1219 1220 ret = handle_mm_fault(vma, address, fault_flags); 1221 major |= ret & VM_FAULT_MAJOR; 1222 if (ret & VM_FAULT_ERROR) { 1223 int err = vm_fault_to_errno(ret, 0); 1224 1225 if (err) 1226 return err; 1227 BUG(); 1228 } 1229 1230 if (ret & VM_FAULT_RETRY) { 1231 down_read(&mm->mmap_sem); 1232 if (!(fault_flags & FAULT_FLAG_TRIED)) { 1233 *unlocked = true; 1234 fault_flags |= FAULT_FLAG_TRIED; 1235 goto retry; 1236 } 1237 } 1238 1239 if (tsk) { 1240 if (major) 1241 tsk->maj_flt++; 1242 else 1243 tsk->min_flt++; 1244 } 1245 return 0; 1246 } 1247 EXPORT_SYMBOL_GPL(fixup_user_fault); 1248 1249 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1250 struct mm_struct *mm, 1251 unsigned long start, 1252 unsigned long nr_pages, 1253 struct page **pages, 1254 struct vm_area_struct **vmas, 1255 int *locked, 1256 unsigned int flags) 1257 { 1258 long ret, pages_done; 1259 bool lock_dropped; 1260 1261 if (locked) { 1262 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1263 BUG_ON(vmas); 1264 /* check caller initialized locked */ 1265 BUG_ON(*locked != 1); 1266 } 1267 1268 /* 1269 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior 1270 * is to set FOLL_GET if the caller wants pages[] filled in (but has 1271 * carelessly failed to specify FOLL_GET), so keep doing that, but only 1272 * for FOLL_GET, not for the newer FOLL_PIN. 1273 * 1274 * FOLL_PIN always expects pages to be non-null, but no need to assert 1275 * that here, as any failures will be obvious enough. 1276 */ 1277 if (pages && !(flags & FOLL_PIN)) 1278 flags |= FOLL_GET; 1279 1280 pages_done = 0; 1281 lock_dropped = false; 1282 for (;;) { 1283 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1284 vmas, locked); 1285 if (!locked) 1286 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1287 return ret; 1288 1289 /* VM_FAULT_RETRY cannot return errors */ 1290 if (!*locked) { 1291 BUG_ON(ret < 0); 1292 BUG_ON(ret >= nr_pages); 1293 } 1294 1295 if (ret > 0) { 1296 nr_pages -= ret; 1297 pages_done += ret; 1298 if (!nr_pages) 1299 break; 1300 } 1301 if (*locked) { 1302 /* 1303 * VM_FAULT_RETRY didn't trigger or it was a 1304 * FOLL_NOWAIT. 1305 */ 1306 if (!pages_done) 1307 pages_done = ret; 1308 break; 1309 } 1310 /* 1311 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1312 * For the prefault case (!pages) we only update counts. 1313 */ 1314 if (likely(pages)) 1315 pages += ret; 1316 start += ret << PAGE_SHIFT; 1317 lock_dropped = true; 1318 1319 retry: 1320 /* 1321 * Repeat on the address that fired VM_FAULT_RETRY 1322 * with both FAULT_FLAG_ALLOW_RETRY and 1323 * FAULT_FLAG_TRIED. Note that GUP can be interrupted 1324 * by fatal signals, so we need to check it before we 1325 * start trying again otherwise it can loop forever. 1326 */ 1327 1328 if (fatal_signal_pending(current)) 1329 break; 1330 1331 *locked = 1; 1332 ret = down_read_killable(&mm->mmap_sem); 1333 if (ret) { 1334 BUG_ON(ret > 0); 1335 if (!pages_done) 1336 pages_done = ret; 1337 break; 1338 } 1339 1340 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1341 pages, NULL, locked); 1342 if (!*locked) { 1343 /* Continue to retry until we succeeded */ 1344 BUG_ON(ret != 0); 1345 goto retry; 1346 } 1347 if (ret != 1) { 1348 BUG_ON(ret > 1); 1349 if (!pages_done) 1350 pages_done = ret; 1351 break; 1352 } 1353 nr_pages--; 1354 pages_done++; 1355 if (!nr_pages) 1356 break; 1357 if (likely(pages)) 1358 pages++; 1359 start += PAGE_SIZE; 1360 } 1361 if (lock_dropped && *locked) { 1362 /* 1363 * We must let the caller know we temporarily dropped the lock 1364 * and so the critical section protected by it was lost. 1365 */ 1366 up_read(&mm->mmap_sem); 1367 *locked = 0; 1368 } 1369 return pages_done; 1370 } 1371 1372 /** 1373 * populate_vma_page_range() - populate a range of pages in the vma. 1374 * @vma: target vma 1375 * @start: start address 1376 * @end: end address 1377 * @locked: whether the mmap_sem is still held 1378 * 1379 * This takes care of mlocking the pages too if VM_LOCKED is set. 1380 * 1381 * return 0 on success, negative error code on error. 1382 * 1383 * vma->vm_mm->mmap_sem must be held. 1384 * 1385 * If @locked is NULL, it may be held for read or write and will 1386 * be unperturbed. 1387 * 1388 * If @locked is non-NULL, it must held for read only and may be 1389 * released. If it's released, *@locked will be set to 0. 1390 */ 1391 long populate_vma_page_range(struct vm_area_struct *vma, 1392 unsigned long start, unsigned long end, int *locked) 1393 { 1394 struct mm_struct *mm = vma->vm_mm; 1395 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1396 int gup_flags; 1397 1398 VM_BUG_ON(start & ~PAGE_MASK); 1399 VM_BUG_ON(end & ~PAGE_MASK); 1400 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1401 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1402 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1403 1404 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1405 if (vma->vm_flags & VM_LOCKONFAULT) 1406 gup_flags &= ~FOLL_POPULATE; 1407 /* 1408 * We want to touch writable mappings with a write fault in order 1409 * to break COW, except for shared mappings because these don't COW 1410 * and we would not want to dirty them for nothing. 1411 */ 1412 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1413 gup_flags |= FOLL_WRITE; 1414 1415 /* 1416 * We want mlock to succeed for regions that have any permissions 1417 * other than PROT_NONE. 1418 */ 1419 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1420 gup_flags |= FOLL_FORCE; 1421 1422 /* 1423 * We made sure addr is within a VMA, so the following will 1424 * not result in a stack expansion that recurses back here. 1425 */ 1426 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1427 NULL, NULL, locked); 1428 } 1429 1430 /* 1431 * __mm_populate - populate and/or mlock pages within a range of address space. 1432 * 1433 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1434 * flags. VMAs must be already marked with the desired vm_flags, and 1435 * mmap_sem must not be held. 1436 */ 1437 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1438 { 1439 struct mm_struct *mm = current->mm; 1440 unsigned long end, nstart, nend; 1441 struct vm_area_struct *vma = NULL; 1442 int locked = 0; 1443 long ret = 0; 1444 1445 end = start + len; 1446 1447 for (nstart = start; nstart < end; nstart = nend) { 1448 /* 1449 * We want to fault in pages for [nstart; end) address range. 1450 * Find first corresponding VMA. 1451 */ 1452 if (!locked) { 1453 locked = 1; 1454 down_read(&mm->mmap_sem); 1455 vma = find_vma(mm, nstart); 1456 } else if (nstart >= vma->vm_end) 1457 vma = vma->vm_next; 1458 if (!vma || vma->vm_start >= end) 1459 break; 1460 /* 1461 * Set [nstart; nend) to intersection of desired address 1462 * range with the first VMA. Also, skip undesirable VMA types. 1463 */ 1464 nend = min(end, vma->vm_end); 1465 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1466 continue; 1467 if (nstart < vma->vm_start) 1468 nstart = vma->vm_start; 1469 /* 1470 * Now fault in a range of pages. populate_vma_page_range() 1471 * double checks the vma flags, so that it won't mlock pages 1472 * if the vma was already munlocked. 1473 */ 1474 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1475 if (ret < 0) { 1476 if (ignore_errors) { 1477 ret = 0; 1478 continue; /* continue at next VMA */ 1479 } 1480 break; 1481 } 1482 nend = nstart + ret * PAGE_SIZE; 1483 ret = 0; 1484 } 1485 if (locked) 1486 up_read(&mm->mmap_sem); 1487 return ret; /* 0 or negative error code */ 1488 } 1489 1490 /** 1491 * get_dump_page() - pin user page in memory while writing it to core dump 1492 * @addr: user address 1493 * 1494 * Returns struct page pointer of user page pinned for dump, 1495 * to be freed afterwards by put_page(). 1496 * 1497 * Returns NULL on any kind of failure - a hole must then be inserted into 1498 * the corefile, to preserve alignment with its headers; and also returns 1499 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1500 * allowing a hole to be left in the corefile to save diskspace. 1501 * 1502 * Called without mmap_sem, but after all other threads have been killed. 1503 */ 1504 #ifdef CONFIG_ELF_CORE 1505 struct page *get_dump_page(unsigned long addr) 1506 { 1507 struct vm_area_struct *vma; 1508 struct page *page; 1509 1510 if (__get_user_pages(current, current->mm, addr, 1, 1511 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1512 NULL) < 1) 1513 return NULL; 1514 flush_cache_page(vma, addr, page_to_pfn(page)); 1515 return page; 1516 } 1517 #endif /* CONFIG_ELF_CORE */ 1518 #else /* CONFIG_MMU */ 1519 static long __get_user_pages_locked(struct task_struct *tsk, 1520 struct mm_struct *mm, unsigned long start, 1521 unsigned long nr_pages, struct page **pages, 1522 struct vm_area_struct **vmas, int *locked, 1523 unsigned int foll_flags) 1524 { 1525 struct vm_area_struct *vma; 1526 unsigned long vm_flags; 1527 int i; 1528 1529 /* calculate required read or write permissions. 1530 * If FOLL_FORCE is set, we only require the "MAY" flags. 1531 */ 1532 vm_flags = (foll_flags & FOLL_WRITE) ? 1533 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1534 vm_flags &= (foll_flags & FOLL_FORCE) ? 1535 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1536 1537 for (i = 0; i < nr_pages; i++) { 1538 vma = find_vma(mm, start); 1539 if (!vma) 1540 goto finish_or_fault; 1541 1542 /* protect what we can, including chardevs */ 1543 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1544 !(vm_flags & vma->vm_flags)) 1545 goto finish_or_fault; 1546 1547 if (pages) { 1548 pages[i] = virt_to_page(start); 1549 if (pages[i]) 1550 get_page(pages[i]); 1551 } 1552 if (vmas) 1553 vmas[i] = vma; 1554 start = (start + PAGE_SIZE) & PAGE_MASK; 1555 } 1556 1557 return i; 1558 1559 finish_or_fault: 1560 return i ? : -EFAULT; 1561 } 1562 #endif /* !CONFIG_MMU */ 1563 1564 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1565 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1566 { 1567 long i; 1568 struct vm_area_struct *vma_prev = NULL; 1569 1570 for (i = 0; i < nr_pages; i++) { 1571 struct vm_area_struct *vma = vmas[i]; 1572 1573 if (vma == vma_prev) 1574 continue; 1575 1576 vma_prev = vma; 1577 1578 if (vma_is_fsdax(vma)) 1579 return true; 1580 } 1581 return false; 1582 } 1583 1584 #ifdef CONFIG_CMA 1585 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1586 { 1587 /* 1588 * We want to make sure we allocate the new page from the same node 1589 * as the source page. 1590 */ 1591 int nid = page_to_nid(page); 1592 /* 1593 * Trying to allocate a page for migration. Ignore allocation 1594 * failure warnings. We don't force __GFP_THISNODE here because 1595 * this node here is the node where we have CMA reservation and 1596 * in some case these nodes will have really less non movable 1597 * allocation memory. 1598 */ 1599 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1600 1601 if (PageHighMem(page)) 1602 gfp_mask |= __GFP_HIGHMEM; 1603 1604 #ifdef CONFIG_HUGETLB_PAGE 1605 if (PageHuge(page)) { 1606 struct hstate *h = page_hstate(page); 1607 /* 1608 * We don't want to dequeue from the pool because pool pages will 1609 * mostly be from the CMA region. 1610 */ 1611 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1612 } 1613 #endif 1614 if (PageTransHuge(page)) { 1615 struct page *thp; 1616 /* 1617 * ignore allocation failure warnings 1618 */ 1619 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1620 1621 /* 1622 * Remove the movable mask so that we don't allocate from 1623 * CMA area again. 1624 */ 1625 thp_gfpmask &= ~__GFP_MOVABLE; 1626 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1627 if (!thp) 1628 return NULL; 1629 prep_transhuge_page(thp); 1630 return thp; 1631 } 1632 1633 return __alloc_pages_node(nid, gfp_mask, 0); 1634 } 1635 1636 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1637 struct mm_struct *mm, 1638 unsigned long start, 1639 unsigned long nr_pages, 1640 struct page **pages, 1641 struct vm_area_struct **vmas, 1642 unsigned int gup_flags) 1643 { 1644 unsigned long i; 1645 unsigned long step; 1646 bool drain_allow = true; 1647 bool migrate_allow = true; 1648 LIST_HEAD(cma_page_list); 1649 long ret = nr_pages; 1650 1651 check_again: 1652 for (i = 0; i < nr_pages;) { 1653 1654 struct page *head = compound_head(pages[i]); 1655 1656 /* 1657 * gup may start from a tail page. Advance step by the left 1658 * part. 1659 */ 1660 step = compound_nr(head) - (pages[i] - head); 1661 /* 1662 * If we get a page from the CMA zone, since we are going to 1663 * be pinning these entries, we might as well move them out 1664 * of the CMA zone if possible. 1665 */ 1666 if (is_migrate_cma_page(head)) { 1667 if (PageHuge(head)) 1668 isolate_huge_page(head, &cma_page_list); 1669 else { 1670 if (!PageLRU(head) && drain_allow) { 1671 lru_add_drain_all(); 1672 drain_allow = false; 1673 } 1674 1675 if (!isolate_lru_page(head)) { 1676 list_add_tail(&head->lru, &cma_page_list); 1677 mod_node_page_state(page_pgdat(head), 1678 NR_ISOLATED_ANON + 1679 page_is_file_cache(head), 1680 hpage_nr_pages(head)); 1681 } 1682 } 1683 } 1684 1685 i += step; 1686 } 1687 1688 if (!list_empty(&cma_page_list)) { 1689 /* 1690 * drop the above get_user_pages reference. 1691 */ 1692 for (i = 0; i < nr_pages; i++) 1693 put_page(pages[i]); 1694 1695 if (migrate_pages(&cma_page_list, new_non_cma_page, 1696 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1697 /* 1698 * some of the pages failed migration. Do get_user_pages 1699 * without migration. 1700 */ 1701 migrate_allow = false; 1702 1703 if (!list_empty(&cma_page_list)) 1704 putback_movable_pages(&cma_page_list); 1705 } 1706 /* 1707 * We did migrate all the pages, Try to get the page references 1708 * again migrating any new CMA pages which we failed to isolate 1709 * earlier. 1710 */ 1711 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1712 pages, vmas, NULL, 1713 gup_flags); 1714 1715 if ((ret > 0) && migrate_allow) { 1716 nr_pages = ret; 1717 drain_allow = true; 1718 goto check_again; 1719 } 1720 } 1721 1722 return ret; 1723 } 1724 #else 1725 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1726 struct mm_struct *mm, 1727 unsigned long start, 1728 unsigned long nr_pages, 1729 struct page **pages, 1730 struct vm_area_struct **vmas, 1731 unsigned int gup_flags) 1732 { 1733 return nr_pages; 1734 } 1735 #endif /* CONFIG_CMA */ 1736 1737 /* 1738 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1739 * allows us to process the FOLL_LONGTERM flag. 1740 */ 1741 static long __gup_longterm_locked(struct task_struct *tsk, 1742 struct mm_struct *mm, 1743 unsigned long start, 1744 unsigned long nr_pages, 1745 struct page **pages, 1746 struct vm_area_struct **vmas, 1747 unsigned int gup_flags) 1748 { 1749 struct vm_area_struct **vmas_tmp = vmas; 1750 unsigned long flags = 0; 1751 long rc, i; 1752 1753 if (gup_flags & FOLL_LONGTERM) { 1754 if (!pages) 1755 return -EINVAL; 1756 1757 if (!vmas_tmp) { 1758 vmas_tmp = kcalloc(nr_pages, 1759 sizeof(struct vm_area_struct *), 1760 GFP_KERNEL); 1761 if (!vmas_tmp) 1762 return -ENOMEM; 1763 } 1764 flags = memalloc_nocma_save(); 1765 } 1766 1767 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1768 vmas_tmp, NULL, gup_flags); 1769 1770 if (gup_flags & FOLL_LONGTERM) { 1771 memalloc_nocma_restore(flags); 1772 if (rc < 0) 1773 goto out; 1774 1775 if (check_dax_vmas(vmas_tmp, rc)) { 1776 for (i = 0; i < rc; i++) 1777 put_page(pages[i]); 1778 rc = -EOPNOTSUPP; 1779 goto out; 1780 } 1781 1782 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1783 vmas_tmp, gup_flags); 1784 } 1785 1786 out: 1787 if (vmas_tmp != vmas) 1788 kfree(vmas_tmp); 1789 return rc; 1790 } 1791 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1792 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1793 struct mm_struct *mm, 1794 unsigned long start, 1795 unsigned long nr_pages, 1796 struct page **pages, 1797 struct vm_area_struct **vmas, 1798 unsigned int flags) 1799 { 1800 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1801 NULL, flags); 1802 } 1803 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1804 1805 #ifdef CONFIG_MMU 1806 static long __get_user_pages_remote(struct task_struct *tsk, 1807 struct mm_struct *mm, 1808 unsigned long start, unsigned long nr_pages, 1809 unsigned int gup_flags, struct page **pages, 1810 struct vm_area_struct **vmas, int *locked) 1811 { 1812 /* 1813 * Parts of FOLL_LONGTERM behavior are incompatible with 1814 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1815 * vmas. However, this only comes up if locked is set, and there are 1816 * callers that do request FOLL_LONGTERM, but do not set locked. So, 1817 * allow what we can. 1818 */ 1819 if (gup_flags & FOLL_LONGTERM) { 1820 if (WARN_ON_ONCE(locked)) 1821 return -EINVAL; 1822 /* 1823 * This will check the vmas (even if our vmas arg is NULL) 1824 * and return -ENOTSUPP if DAX isn't allowed in this case: 1825 */ 1826 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages, 1827 vmas, gup_flags | FOLL_TOUCH | 1828 FOLL_REMOTE); 1829 } 1830 1831 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1832 locked, 1833 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1834 } 1835 1836 /* 1837 * get_user_pages_remote() - pin user pages in memory 1838 * @tsk: the task_struct to use for page fault accounting, or 1839 * NULL if faults are not to be recorded. 1840 * @mm: mm_struct of target mm 1841 * @start: starting user address 1842 * @nr_pages: number of pages from start to pin 1843 * @gup_flags: flags modifying lookup behaviour 1844 * @pages: array that receives pointers to the pages pinned. 1845 * Should be at least nr_pages long. Or NULL, if caller 1846 * only intends to ensure the pages are faulted in. 1847 * @vmas: array of pointers to vmas corresponding to each page. 1848 * Or NULL if the caller does not require them. 1849 * @locked: pointer to lock flag indicating whether lock is held and 1850 * subsequently whether VM_FAULT_RETRY functionality can be 1851 * utilised. Lock must initially be held. 1852 * 1853 * Returns either number of pages pinned (which may be less than the 1854 * number requested), or an error. Details about the return value: 1855 * 1856 * -- If nr_pages is 0, returns 0. 1857 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1858 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1859 * pages pinned. Again, this may be less than nr_pages. 1860 * 1861 * The caller is responsible for releasing returned @pages, via put_page(). 1862 * 1863 * @vmas are valid only as long as mmap_sem is held. 1864 * 1865 * Must be called with mmap_sem held for read or write. 1866 * 1867 * get_user_pages walks a process's page tables and takes a reference to 1868 * each struct page that each user address corresponds to at a given 1869 * instant. That is, it takes the page that would be accessed if a user 1870 * thread accesses the given user virtual address at that instant. 1871 * 1872 * This does not guarantee that the page exists in the user mappings when 1873 * get_user_pages returns, and there may even be a completely different 1874 * page there in some cases (eg. if mmapped pagecache has been invalidated 1875 * and subsequently re faulted). However it does guarantee that the page 1876 * won't be freed completely. And mostly callers simply care that the page 1877 * contains data that was valid *at some point in time*. Typically, an IO 1878 * or similar operation cannot guarantee anything stronger anyway because 1879 * locks can't be held over the syscall boundary. 1880 * 1881 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1882 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1883 * be called after the page is finished with, and before put_page is called. 1884 * 1885 * get_user_pages is typically used for fewer-copy IO operations, to get a 1886 * handle on the memory by some means other than accesses via the user virtual 1887 * addresses. The pages may be submitted for DMA to devices or accessed via 1888 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1889 * use the correct cache flushing APIs. 1890 * 1891 * See also get_user_pages_fast, for performance critical applications. 1892 * 1893 * get_user_pages should be phased out in favor of 1894 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1895 * should use get_user_pages because it cannot pass 1896 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1897 */ 1898 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1899 unsigned long start, unsigned long nr_pages, 1900 unsigned int gup_flags, struct page **pages, 1901 struct vm_area_struct **vmas, int *locked) 1902 { 1903 /* 1904 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1905 * never directly by the caller, so enforce that with an assertion: 1906 */ 1907 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1908 return -EINVAL; 1909 1910 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 1911 pages, vmas, locked); 1912 } 1913 EXPORT_SYMBOL(get_user_pages_remote); 1914 1915 #else /* CONFIG_MMU */ 1916 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1917 unsigned long start, unsigned long nr_pages, 1918 unsigned int gup_flags, struct page **pages, 1919 struct vm_area_struct **vmas, int *locked) 1920 { 1921 return 0; 1922 } 1923 1924 static long __get_user_pages_remote(struct task_struct *tsk, 1925 struct mm_struct *mm, 1926 unsigned long start, unsigned long nr_pages, 1927 unsigned int gup_flags, struct page **pages, 1928 struct vm_area_struct **vmas, int *locked) 1929 { 1930 return 0; 1931 } 1932 #endif /* !CONFIG_MMU */ 1933 1934 /* 1935 * This is the same as get_user_pages_remote(), just with a 1936 * less-flexible calling convention where we assume that the task 1937 * and mm being operated on are the current task's and don't allow 1938 * passing of a locked parameter. We also obviously don't pass 1939 * FOLL_REMOTE in here. 1940 */ 1941 long get_user_pages(unsigned long start, unsigned long nr_pages, 1942 unsigned int gup_flags, struct page **pages, 1943 struct vm_area_struct **vmas) 1944 { 1945 /* 1946 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 1947 * never directly by the caller, so enforce that with an assertion: 1948 */ 1949 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 1950 return -EINVAL; 1951 1952 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1953 pages, vmas, gup_flags | FOLL_TOUCH); 1954 } 1955 EXPORT_SYMBOL(get_user_pages); 1956 1957 /* 1958 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1959 * paths better by using either get_user_pages_locked() or 1960 * get_user_pages_unlocked(). 1961 * 1962 * get_user_pages_locked() is suitable to replace the form: 1963 * 1964 * down_read(&mm->mmap_sem); 1965 * do_something() 1966 * get_user_pages(tsk, mm, ..., pages, NULL); 1967 * up_read(&mm->mmap_sem); 1968 * 1969 * to: 1970 * 1971 * int locked = 1; 1972 * down_read(&mm->mmap_sem); 1973 * do_something() 1974 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1975 * if (locked) 1976 * up_read(&mm->mmap_sem); 1977 */ 1978 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1979 unsigned int gup_flags, struct page **pages, 1980 int *locked) 1981 { 1982 /* 1983 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1984 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1985 * vmas. As there are no users of this flag in this call we simply 1986 * disallow this option for now. 1987 */ 1988 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1989 return -EINVAL; 1990 1991 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1992 pages, NULL, locked, 1993 gup_flags | FOLL_TOUCH); 1994 } 1995 EXPORT_SYMBOL(get_user_pages_locked); 1996 1997 /* 1998 * get_user_pages_unlocked() is suitable to replace the form: 1999 * 2000 * down_read(&mm->mmap_sem); 2001 * get_user_pages(tsk, mm, ..., pages, NULL); 2002 * up_read(&mm->mmap_sem); 2003 * 2004 * with: 2005 * 2006 * get_user_pages_unlocked(tsk, mm, ..., pages); 2007 * 2008 * It is functionally equivalent to get_user_pages_fast so 2009 * get_user_pages_fast should be used instead if specific gup_flags 2010 * (e.g. FOLL_FORCE) are not required. 2011 */ 2012 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2013 struct page **pages, unsigned int gup_flags) 2014 { 2015 struct mm_struct *mm = current->mm; 2016 int locked = 1; 2017 long ret; 2018 2019 /* 2020 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 2021 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 2022 * vmas. As there are no users of this flag in this call we simply 2023 * disallow this option for now. 2024 */ 2025 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 2026 return -EINVAL; 2027 2028 down_read(&mm->mmap_sem); 2029 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 2030 &locked, gup_flags | FOLL_TOUCH); 2031 if (locked) 2032 up_read(&mm->mmap_sem); 2033 return ret; 2034 } 2035 EXPORT_SYMBOL(get_user_pages_unlocked); 2036 2037 /* 2038 * Fast GUP 2039 * 2040 * get_user_pages_fast attempts to pin user pages by walking the page 2041 * tables directly and avoids taking locks. Thus the walker needs to be 2042 * protected from page table pages being freed from under it, and should 2043 * block any THP splits. 2044 * 2045 * One way to achieve this is to have the walker disable interrupts, and 2046 * rely on IPIs from the TLB flushing code blocking before the page table 2047 * pages are freed. This is unsuitable for architectures that do not need 2048 * to broadcast an IPI when invalidating TLBs. 2049 * 2050 * Another way to achieve this is to batch up page table containing pages 2051 * belonging to more than one mm_user, then rcu_sched a callback to free those 2052 * pages. Disabling interrupts will allow the fast_gup walker to both block 2053 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 2054 * (which is a relatively rare event). The code below adopts this strategy. 2055 * 2056 * Before activating this code, please be aware that the following assumptions 2057 * are currently made: 2058 * 2059 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 2060 * free pages containing page tables or TLB flushing requires IPI broadcast. 2061 * 2062 * *) ptes can be read atomically by the architecture. 2063 * 2064 * *) access_ok is sufficient to validate userspace address ranges. 2065 * 2066 * The last two assumptions can be relaxed by the addition of helper functions. 2067 * 2068 * This code is based heavily on the PowerPC implementation by Nick Piggin. 2069 */ 2070 #ifdef CONFIG_HAVE_FAST_GUP 2071 2072 static void put_compound_head(struct page *page, int refs, unsigned int flags) 2073 { 2074 if (flags & FOLL_PIN) { 2075 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 2076 refs); 2077 2078 if (hpage_pincount_available(page)) 2079 hpage_pincount_sub(page, refs); 2080 else 2081 refs *= GUP_PIN_COUNTING_BIAS; 2082 } 2083 2084 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page); 2085 /* 2086 * Calling put_page() for each ref is unnecessarily slow. Only the last 2087 * ref needs a put_page(). 2088 */ 2089 if (refs > 1) 2090 page_ref_sub(page, refs - 1); 2091 put_page(page); 2092 } 2093 2094 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 2095 2096 /* 2097 * WARNING: only to be used in the get_user_pages_fast() implementation. 2098 * 2099 * With get_user_pages_fast(), we walk down the pagetables without taking any 2100 * locks. For this we would like to load the pointers atomically, but sometimes 2101 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 2102 * we do have is the guarantee that a PTE will only either go from not present 2103 * to present, or present to not present or both -- it will not switch to a 2104 * completely different present page without a TLB flush in between; something 2105 * that we are blocking by holding interrupts off. 2106 * 2107 * Setting ptes from not present to present goes: 2108 * 2109 * ptep->pte_high = h; 2110 * smp_wmb(); 2111 * ptep->pte_low = l; 2112 * 2113 * And present to not present goes: 2114 * 2115 * ptep->pte_low = 0; 2116 * smp_wmb(); 2117 * ptep->pte_high = 0; 2118 * 2119 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 2120 * We load pte_high *after* loading pte_low, which ensures we don't see an older 2121 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 2122 * picked up a changed pte high. We might have gotten rubbish values from 2123 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 2124 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 2125 * operates on present ptes we're safe. 2126 */ 2127 static inline pte_t gup_get_pte(pte_t *ptep) 2128 { 2129 pte_t pte; 2130 2131 do { 2132 pte.pte_low = ptep->pte_low; 2133 smp_rmb(); 2134 pte.pte_high = ptep->pte_high; 2135 smp_rmb(); 2136 } while (unlikely(pte.pte_low != ptep->pte_low)); 2137 2138 return pte; 2139 } 2140 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2141 /* 2142 * We require that the PTE can be read atomically. 2143 */ 2144 static inline pte_t gup_get_pte(pte_t *ptep) 2145 { 2146 return READ_ONCE(*ptep); 2147 } 2148 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 2149 2150 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 2151 unsigned int flags, 2152 struct page **pages) 2153 { 2154 while ((*nr) - nr_start) { 2155 struct page *page = pages[--(*nr)]; 2156 2157 ClearPageReferenced(page); 2158 if (flags & FOLL_PIN) 2159 unpin_user_page(page); 2160 else 2161 put_page(page); 2162 } 2163 } 2164 2165 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 2166 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2167 unsigned int flags, struct page **pages, int *nr) 2168 { 2169 struct dev_pagemap *pgmap = NULL; 2170 int nr_start = *nr, ret = 0; 2171 pte_t *ptep, *ptem; 2172 2173 ptem = ptep = pte_offset_map(&pmd, addr); 2174 do { 2175 pte_t pte = gup_get_pte(ptep); 2176 struct page *head, *page; 2177 2178 /* 2179 * Similar to the PMD case below, NUMA hinting must take slow 2180 * path using the pte_protnone check. 2181 */ 2182 if (pte_protnone(pte)) 2183 goto pte_unmap; 2184 2185 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2186 goto pte_unmap; 2187 2188 if (pte_devmap(pte)) { 2189 if (unlikely(flags & FOLL_LONGTERM)) 2190 goto pte_unmap; 2191 2192 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 2193 if (unlikely(!pgmap)) { 2194 undo_dev_pagemap(nr, nr_start, flags, pages); 2195 goto pte_unmap; 2196 } 2197 } else if (pte_special(pte)) 2198 goto pte_unmap; 2199 2200 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2201 page = pte_page(pte); 2202 2203 head = try_grab_compound_head(page, 1, flags); 2204 if (!head) 2205 goto pte_unmap; 2206 2207 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2208 put_compound_head(head, 1, flags); 2209 goto pte_unmap; 2210 } 2211 2212 VM_BUG_ON_PAGE(compound_head(page) != head, page); 2213 2214 /* 2215 * We need to make the page accessible if and only if we are 2216 * going to access its content (the FOLL_PIN case). Please 2217 * see Documentation/core-api/pin_user_pages.rst for 2218 * details. 2219 */ 2220 if (flags & FOLL_PIN) { 2221 ret = arch_make_page_accessible(page); 2222 if (ret) { 2223 unpin_user_page(page); 2224 goto pte_unmap; 2225 } 2226 } 2227 SetPageReferenced(page); 2228 pages[*nr] = page; 2229 (*nr)++; 2230 2231 } while (ptep++, addr += PAGE_SIZE, addr != end); 2232 2233 ret = 1; 2234 2235 pte_unmap: 2236 if (pgmap) 2237 put_dev_pagemap(pgmap); 2238 pte_unmap(ptem); 2239 return ret; 2240 } 2241 #else 2242 2243 /* 2244 * If we can't determine whether or not a pte is special, then fail immediately 2245 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 2246 * to be special. 2247 * 2248 * For a futex to be placed on a THP tail page, get_futex_key requires a 2249 * __get_user_pages_fast implementation that can pin pages. Thus it's still 2250 * useful to have gup_huge_pmd even if we can't operate on ptes. 2251 */ 2252 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 2253 unsigned int flags, struct page **pages, int *nr) 2254 { 2255 return 0; 2256 } 2257 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 2258 2259 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 2260 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 2261 unsigned long end, unsigned int flags, 2262 struct page **pages, int *nr) 2263 { 2264 int nr_start = *nr; 2265 struct dev_pagemap *pgmap = NULL; 2266 2267 do { 2268 struct page *page = pfn_to_page(pfn); 2269 2270 pgmap = get_dev_pagemap(pfn, pgmap); 2271 if (unlikely(!pgmap)) { 2272 undo_dev_pagemap(nr, nr_start, flags, pages); 2273 return 0; 2274 } 2275 SetPageReferenced(page); 2276 pages[*nr] = page; 2277 if (unlikely(!try_grab_page(page, flags))) { 2278 undo_dev_pagemap(nr, nr_start, flags, pages); 2279 return 0; 2280 } 2281 (*nr)++; 2282 pfn++; 2283 } while (addr += PAGE_SIZE, addr != end); 2284 2285 if (pgmap) 2286 put_dev_pagemap(pgmap); 2287 return 1; 2288 } 2289 2290 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2291 unsigned long end, unsigned int flags, 2292 struct page **pages, int *nr) 2293 { 2294 unsigned long fault_pfn; 2295 int nr_start = *nr; 2296 2297 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2298 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2299 return 0; 2300 2301 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2302 undo_dev_pagemap(nr, nr_start, flags, pages); 2303 return 0; 2304 } 2305 return 1; 2306 } 2307 2308 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2309 unsigned long end, unsigned int flags, 2310 struct page **pages, int *nr) 2311 { 2312 unsigned long fault_pfn; 2313 int nr_start = *nr; 2314 2315 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2316 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr)) 2317 return 0; 2318 2319 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2320 undo_dev_pagemap(nr, nr_start, flags, pages); 2321 return 0; 2322 } 2323 return 1; 2324 } 2325 #else 2326 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2327 unsigned long end, unsigned int flags, 2328 struct page **pages, int *nr) 2329 { 2330 BUILD_BUG(); 2331 return 0; 2332 } 2333 2334 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 2335 unsigned long end, unsigned int flags, 2336 struct page **pages, int *nr) 2337 { 2338 BUILD_BUG(); 2339 return 0; 2340 } 2341 #endif 2342 2343 static int record_subpages(struct page *page, unsigned long addr, 2344 unsigned long end, struct page **pages) 2345 { 2346 int nr; 2347 2348 for (nr = 0; addr != end; addr += PAGE_SIZE) 2349 pages[nr++] = page++; 2350 2351 return nr; 2352 } 2353 2354 #ifdef CONFIG_ARCH_HAS_HUGEPD 2355 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 2356 unsigned long sz) 2357 { 2358 unsigned long __boundary = (addr + sz) & ~(sz-1); 2359 return (__boundary - 1 < end - 1) ? __boundary : end; 2360 } 2361 2362 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 2363 unsigned long end, unsigned int flags, 2364 struct page **pages, int *nr) 2365 { 2366 unsigned long pte_end; 2367 struct page *head, *page; 2368 pte_t pte; 2369 int refs; 2370 2371 pte_end = (addr + sz) & ~(sz-1); 2372 if (pte_end < end) 2373 end = pte_end; 2374 2375 pte = READ_ONCE(*ptep); 2376 2377 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2378 return 0; 2379 2380 /* hugepages are never "special" */ 2381 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2382 2383 head = pte_page(pte); 2384 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2385 refs = record_subpages(page, addr, end, pages + *nr); 2386 2387 head = try_grab_compound_head(head, refs, flags); 2388 if (!head) 2389 return 0; 2390 2391 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2392 put_compound_head(head, refs, flags); 2393 return 0; 2394 } 2395 2396 *nr += refs; 2397 SetPageReferenced(head); 2398 return 1; 2399 } 2400 2401 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2402 unsigned int pdshift, unsigned long end, unsigned int flags, 2403 struct page **pages, int *nr) 2404 { 2405 pte_t *ptep; 2406 unsigned long sz = 1UL << hugepd_shift(hugepd); 2407 unsigned long next; 2408 2409 ptep = hugepte_offset(hugepd, addr, pdshift); 2410 do { 2411 next = hugepte_addr_end(addr, end, sz); 2412 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2413 return 0; 2414 } while (ptep++, addr = next, addr != end); 2415 2416 return 1; 2417 } 2418 #else 2419 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2420 unsigned int pdshift, unsigned long end, unsigned int flags, 2421 struct page **pages, int *nr) 2422 { 2423 return 0; 2424 } 2425 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2426 2427 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2428 unsigned long end, unsigned int flags, 2429 struct page **pages, int *nr) 2430 { 2431 struct page *head, *page; 2432 int refs; 2433 2434 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2435 return 0; 2436 2437 if (pmd_devmap(orig)) { 2438 if (unlikely(flags & FOLL_LONGTERM)) 2439 return 0; 2440 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags, 2441 pages, nr); 2442 } 2443 2444 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2445 refs = record_subpages(page, addr, end, pages + *nr); 2446 2447 head = try_grab_compound_head(pmd_page(orig), refs, flags); 2448 if (!head) 2449 return 0; 2450 2451 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2452 put_compound_head(head, refs, flags); 2453 return 0; 2454 } 2455 2456 *nr += refs; 2457 SetPageReferenced(head); 2458 return 1; 2459 } 2460 2461 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2462 unsigned long end, unsigned int flags, 2463 struct page **pages, int *nr) 2464 { 2465 struct page *head, *page; 2466 int refs; 2467 2468 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2469 return 0; 2470 2471 if (pud_devmap(orig)) { 2472 if (unlikely(flags & FOLL_LONGTERM)) 2473 return 0; 2474 return __gup_device_huge_pud(orig, pudp, addr, end, flags, 2475 pages, nr); 2476 } 2477 2478 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2479 refs = record_subpages(page, addr, end, pages + *nr); 2480 2481 head = try_grab_compound_head(pud_page(orig), refs, flags); 2482 if (!head) 2483 return 0; 2484 2485 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2486 put_compound_head(head, refs, flags); 2487 return 0; 2488 } 2489 2490 *nr += refs; 2491 SetPageReferenced(head); 2492 return 1; 2493 } 2494 2495 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2496 unsigned long end, unsigned int flags, 2497 struct page **pages, int *nr) 2498 { 2499 int refs; 2500 struct page *head, *page; 2501 2502 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2503 return 0; 2504 2505 BUILD_BUG_ON(pgd_devmap(orig)); 2506 2507 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2508 refs = record_subpages(page, addr, end, pages + *nr); 2509 2510 head = try_grab_compound_head(pgd_page(orig), refs, flags); 2511 if (!head) 2512 return 0; 2513 2514 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2515 put_compound_head(head, refs, flags); 2516 return 0; 2517 } 2518 2519 *nr += refs; 2520 SetPageReferenced(head); 2521 return 1; 2522 } 2523 2524 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2525 unsigned int flags, struct page **pages, int *nr) 2526 { 2527 unsigned long next; 2528 pmd_t *pmdp; 2529 2530 pmdp = pmd_offset(&pud, addr); 2531 do { 2532 pmd_t pmd = READ_ONCE(*pmdp); 2533 2534 next = pmd_addr_end(addr, end); 2535 if (!pmd_present(pmd)) 2536 return 0; 2537 2538 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2539 pmd_devmap(pmd))) { 2540 /* 2541 * NUMA hinting faults need to be handled in the GUP 2542 * slowpath for accounting purposes and so that they 2543 * can be serialised against THP migration. 2544 */ 2545 if (pmd_protnone(pmd)) 2546 return 0; 2547 2548 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2549 pages, nr)) 2550 return 0; 2551 2552 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2553 /* 2554 * architecture have different format for hugetlbfs 2555 * pmd format and THP pmd format 2556 */ 2557 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2558 PMD_SHIFT, next, flags, pages, nr)) 2559 return 0; 2560 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2561 return 0; 2562 } while (pmdp++, addr = next, addr != end); 2563 2564 return 1; 2565 } 2566 2567 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2568 unsigned int flags, struct page **pages, int *nr) 2569 { 2570 unsigned long next; 2571 pud_t *pudp; 2572 2573 pudp = pud_offset(&p4d, addr); 2574 do { 2575 pud_t pud = READ_ONCE(*pudp); 2576 2577 next = pud_addr_end(addr, end); 2578 if (unlikely(!pud_present(pud))) 2579 return 0; 2580 if (unlikely(pud_huge(pud))) { 2581 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2582 pages, nr)) 2583 return 0; 2584 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2585 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2586 PUD_SHIFT, next, flags, pages, nr)) 2587 return 0; 2588 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2589 return 0; 2590 } while (pudp++, addr = next, addr != end); 2591 2592 return 1; 2593 } 2594 2595 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2596 unsigned int flags, struct page **pages, int *nr) 2597 { 2598 unsigned long next; 2599 p4d_t *p4dp; 2600 2601 p4dp = p4d_offset(&pgd, addr); 2602 do { 2603 p4d_t p4d = READ_ONCE(*p4dp); 2604 2605 next = p4d_addr_end(addr, end); 2606 if (p4d_none(p4d)) 2607 return 0; 2608 BUILD_BUG_ON(p4d_huge(p4d)); 2609 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2610 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2611 P4D_SHIFT, next, flags, pages, nr)) 2612 return 0; 2613 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2614 return 0; 2615 } while (p4dp++, addr = next, addr != end); 2616 2617 return 1; 2618 } 2619 2620 static void gup_pgd_range(unsigned long addr, unsigned long end, 2621 unsigned int flags, struct page **pages, int *nr) 2622 { 2623 unsigned long next; 2624 pgd_t *pgdp; 2625 2626 pgdp = pgd_offset(current->mm, addr); 2627 do { 2628 pgd_t pgd = READ_ONCE(*pgdp); 2629 2630 next = pgd_addr_end(addr, end); 2631 if (pgd_none(pgd)) 2632 return; 2633 if (unlikely(pgd_huge(pgd))) { 2634 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2635 pages, nr)) 2636 return; 2637 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2638 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2639 PGDIR_SHIFT, next, flags, pages, nr)) 2640 return; 2641 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2642 return; 2643 } while (pgdp++, addr = next, addr != end); 2644 } 2645 #else 2646 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2647 unsigned int flags, struct page **pages, int *nr) 2648 { 2649 } 2650 #endif /* CONFIG_HAVE_FAST_GUP */ 2651 2652 #ifndef gup_fast_permitted 2653 /* 2654 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2655 * we need to fall back to the slow version: 2656 */ 2657 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2658 { 2659 return true; 2660 } 2661 #endif 2662 2663 /* 2664 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2665 * the regular GUP. 2666 * Note a difference with get_user_pages_fast: this always returns the 2667 * number of pages pinned, 0 if no pages were pinned. 2668 * 2669 * If the architecture does not support this function, simply return with no 2670 * pages pinned. 2671 */ 2672 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2673 struct page **pages) 2674 { 2675 unsigned long len, end; 2676 unsigned long flags; 2677 int nr_pinned = 0; 2678 /* 2679 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, 2680 * because gup fast is always a "pin with a +1 page refcount" request. 2681 */ 2682 unsigned int gup_flags = FOLL_GET; 2683 2684 if (write) 2685 gup_flags |= FOLL_WRITE; 2686 2687 start = untagged_addr(start) & PAGE_MASK; 2688 len = (unsigned long) nr_pages << PAGE_SHIFT; 2689 end = start + len; 2690 2691 if (end <= start) 2692 return 0; 2693 if (unlikely(!access_ok((void __user *)start, len))) 2694 return 0; 2695 2696 /* 2697 * Disable interrupts. We use the nested form as we can already have 2698 * interrupts disabled by get_futex_key. 2699 * 2700 * With interrupts disabled, we block page table pages from being 2701 * freed from under us. See struct mmu_table_batch comments in 2702 * include/asm-generic/tlb.h for more details. 2703 * 2704 * We do not adopt an rcu_read_lock(.) here as we also want to 2705 * block IPIs that come from THPs splitting. 2706 */ 2707 2708 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2709 gup_fast_permitted(start, end)) { 2710 local_irq_save(flags); 2711 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned); 2712 local_irq_restore(flags); 2713 } 2714 2715 return nr_pinned; 2716 } 2717 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2718 2719 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2720 unsigned int gup_flags, struct page **pages) 2721 { 2722 int ret; 2723 2724 /* 2725 * FIXME: FOLL_LONGTERM does not work with 2726 * get_user_pages_unlocked() (see comments in that function) 2727 */ 2728 if (gup_flags & FOLL_LONGTERM) { 2729 down_read(¤t->mm->mmap_sem); 2730 ret = __gup_longterm_locked(current, current->mm, 2731 start, nr_pages, 2732 pages, NULL, gup_flags); 2733 up_read(¤t->mm->mmap_sem); 2734 } else { 2735 ret = get_user_pages_unlocked(start, nr_pages, 2736 pages, gup_flags); 2737 } 2738 2739 return ret; 2740 } 2741 2742 static int internal_get_user_pages_fast(unsigned long start, int nr_pages, 2743 unsigned int gup_flags, 2744 struct page **pages) 2745 { 2746 unsigned long addr, len, end; 2747 int nr_pinned = 0, ret = 0; 2748 2749 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | 2750 FOLL_FORCE | FOLL_PIN | FOLL_GET))) 2751 return -EINVAL; 2752 2753 start = untagged_addr(start) & PAGE_MASK; 2754 addr = start; 2755 len = (unsigned long) nr_pages << PAGE_SHIFT; 2756 end = start + len; 2757 2758 if (end <= start) 2759 return 0; 2760 if (unlikely(!access_ok((void __user *)start, len))) 2761 return -EFAULT; 2762 2763 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2764 gup_fast_permitted(start, end)) { 2765 local_irq_disable(); 2766 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned); 2767 local_irq_enable(); 2768 ret = nr_pinned; 2769 } 2770 2771 if (nr_pinned < nr_pages) { 2772 /* Try to get the remaining pages with get_user_pages */ 2773 start += nr_pinned << PAGE_SHIFT; 2774 pages += nr_pinned; 2775 2776 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, 2777 gup_flags, pages); 2778 2779 /* Have to be a bit careful with return values */ 2780 if (nr_pinned > 0) { 2781 if (ret < 0) 2782 ret = nr_pinned; 2783 else 2784 ret += nr_pinned; 2785 } 2786 } 2787 2788 return ret; 2789 } 2790 2791 /** 2792 * get_user_pages_fast() - pin user pages in memory 2793 * @start: starting user address 2794 * @nr_pages: number of pages from start to pin 2795 * @gup_flags: flags modifying pin behaviour 2796 * @pages: array that receives pointers to the pages pinned. 2797 * Should be at least nr_pages long. 2798 * 2799 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2800 * If not successful, it will fall back to taking the lock and 2801 * calling get_user_pages(). 2802 * 2803 * Returns number of pages pinned. This may be fewer than the number requested. 2804 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns 2805 * -errno. 2806 */ 2807 int get_user_pages_fast(unsigned long start, int nr_pages, 2808 unsigned int gup_flags, struct page **pages) 2809 { 2810 /* 2811 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs, 2812 * never directly by the caller, so enforce that: 2813 */ 2814 if (WARN_ON_ONCE(gup_flags & FOLL_PIN)) 2815 return -EINVAL; 2816 2817 /* 2818 * The caller may or may not have explicitly set FOLL_GET; either way is 2819 * OK. However, internally (within mm/gup.c), gup fast variants must set 2820 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" 2821 * request. 2822 */ 2823 gup_flags |= FOLL_GET; 2824 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2825 } 2826 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2827 2828 /** 2829 * pin_user_pages_fast() - pin user pages in memory without taking locks 2830 * 2831 * @start: starting user address 2832 * @nr_pages: number of pages from start to pin 2833 * @gup_flags: flags modifying pin behaviour 2834 * @pages: array that receives pointers to the pages pinned. 2835 * Should be at least nr_pages long. 2836 * 2837 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See 2838 * get_user_pages_fast() for documentation on the function arguments, because 2839 * the arguments here are identical. 2840 * 2841 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2842 * see Documentation/vm/pin_user_pages.rst for further details. 2843 * 2844 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2845 * is NOT intended for Case 2 (RDMA: long-term pins). 2846 */ 2847 int pin_user_pages_fast(unsigned long start, int nr_pages, 2848 unsigned int gup_flags, struct page **pages) 2849 { 2850 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2851 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2852 return -EINVAL; 2853 2854 gup_flags |= FOLL_PIN; 2855 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages); 2856 } 2857 EXPORT_SYMBOL_GPL(pin_user_pages_fast); 2858 2859 /** 2860 * pin_user_pages_remote() - pin pages of a remote process (task != current) 2861 * 2862 * @tsk: the task_struct to use for page fault accounting, or 2863 * NULL if faults are not to be recorded. 2864 * @mm: mm_struct of target mm 2865 * @start: starting user address 2866 * @nr_pages: number of pages from start to pin 2867 * @gup_flags: flags modifying lookup behaviour 2868 * @pages: array that receives pointers to the pages pinned. 2869 * Should be at least nr_pages long. Or NULL, if caller 2870 * only intends to ensure the pages are faulted in. 2871 * @vmas: array of pointers to vmas corresponding to each page. 2872 * Or NULL if the caller does not require them. 2873 * @locked: pointer to lock flag indicating whether lock is held and 2874 * subsequently whether VM_FAULT_RETRY functionality can be 2875 * utilised. Lock must initially be held. 2876 * 2877 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See 2878 * get_user_pages_remote() for documentation on the function arguments, because 2879 * the arguments here are identical. 2880 * 2881 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2882 * see Documentation/vm/pin_user_pages.rst for details. 2883 * 2884 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2885 * is NOT intended for Case 2 (RDMA: long-term pins). 2886 */ 2887 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 2888 unsigned long start, unsigned long nr_pages, 2889 unsigned int gup_flags, struct page **pages, 2890 struct vm_area_struct **vmas, int *locked) 2891 { 2892 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2893 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2894 return -EINVAL; 2895 2896 gup_flags |= FOLL_PIN; 2897 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags, 2898 pages, vmas, locked); 2899 } 2900 EXPORT_SYMBOL(pin_user_pages_remote); 2901 2902 /** 2903 * pin_user_pages() - pin user pages in memory for use by other devices 2904 * 2905 * @start: starting user address 2906 * @nr_pages: number of pages from start to pin 2907 * @gup_flags: flags modifying lookup behaviour 2908 * @pages: array that receives pointers to the pages pinned. 2909 * Should be at least nr_pages long. Or NULL, if caller 2910 * only intends to ensure the pages are faulted in. 2911 * @vmas: array of pointers to vmas corresponding to each page. 2912 * Or NULL if the caller does not require them. 2913 * 2914 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and 2915 * FOLL_PIN is set. 2916 * 2917 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please 2918 * see Documentation/vm/pin_user_pages.rst for details. 2919 * 2920 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It 2921 * is NOT intended for Case 2 (RDMA: long-term pins). 2922 */ 2923 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2924 unsigned int gup_flags, struct page **pages, 2925 struct vm_area_struct **vmas) 2926 { 2927 /* FOLL_GET and FOLL_PIN are mutually exclusive. */ 2928 if (WARN_ON_ONCE(gup_flags & FOLL_GET)) 2929 return -EINVAL; 2930 2931 gup_flags |= FOLL_PIN; 2932 return __gup_longterm_locked(current, current->mm, start, nr_pages, 2933 pages, vmas, gup_flags); 2934 } 2935 EXPORT_SYMBOL(pin_user_pages); 2936