xref: /linux/mm/gup.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 	VM_BUG_ON_PAGE(page != compound_head(page), page);
36 
37 	atomic_add(refs, compound_pincount_ptr(page));
38 }
39 
40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 	VM_BUG_ON_PAGE(page != compound_head(page), page);
44 
45 	atomic_sub(refs, compound_pincount_ptr(page));
46 }
47 
48 /*
49  * Return the compound head page with ref appropriately incremented,
50  * or NULL if that failed.
51  */
52 static inline struct page *try_get_compound_head(struct page *page, int refs)
53 {
54 	struct page *head = compound_head(page);
55 
56 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 		return NULL;
58 	if (unlikely(!page_cache_add_speculative(head, refs)))
59 		return NULL;
60 	return head;
61 }
62 
63 /*
64  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65  * flags-dependent amount.
66  *
67  * "grab" names in this file mean, "look at flags to decide whether to use
68  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69  *
70  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71  * same time. (That's true throughout the get_user_pages*() and
72  * pin_user_pages*() APIs.) Cases:
73  *
74  *    FOLL_GET: page's refcount will be incremented by 1.
75  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76  *
77  * Return: head page (with refcount appropriately incremented) for success, or
78  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79  * considered failure, and furthermore, a likely bug in the caller, so a warning
80  * is also emitted.
81  */
82 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 							  int refs,
84 							  unsigned int flags)
85 {
86 	if (flags & FOLL_GET)
87 		return try_get_compound_head(page, refs);
88 	else if (flags & FOLL_PIN) {
89 		int orig_refs = refs;
90 
91 		/*
92 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
93 		 * path, so fail and let the caller fall back to the slow path.
94 		 */
95 		if (unlikely(flags & FOLL_LONGTERM) &&
96 				is_migrate_cma_page(page))
97 			return NULL;
98 
99 		/*
100 		 * When pinning a compound page of order > 1 (which is what
101 		 * hpage_pincount_available() checks for), use an exact count to
102 		 * track it, via hpage_pincount_add/_sub().
103 		 *
104 		 * However, be sure to *also* increment the normal page refcount
105 		 * field at least once, so that the page really is pinned.
106 		 */
107 		if (!hpage_pincount_available(page))
108 			refs *= GUP_PIN_COUNTING_BIAS;
109 
110 		page = try_get_compound_head(page, refs);
111 		if (!page)
112 			return NULL;
113 
114 		if (hpage_pincount_available(page))
115 			hpage_pincount_add(page, refs);
116 
117 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
118 				    orig_refs);
119 
120 		return page;
121 	}
122 
123 	WARN_ON_ONCE(1);
124 	return NULL;
125 }
126 
127 /**
128  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
129  *
130  * This might not do anything at all, depending on the flags argument.
131  *
132  * "grab" names in this file mean, "look at flags to decide whether to use
133  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
134  *
135  * @page:    pointer to page to be grabbed
136  * @flags:   gup flags: these are the FOLL_* flag values.
137  *
138  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
139  * time. Cases:
140  *
141  *    FOLL_GET: page's refcount will be incremented by 1.
142  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
143  *
144  * Return: true for success, or if no action was required (if neither FOLL_PIN
145  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
146  * FOLL_PIN was set, but the page could not be grabbed.
147  */
148 bool __must_check try_grab_page(struct page *page, unsigned int flags)
149 {
150 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
151 
152 	if (flags & FOLL_GET)
153 		return try_get_page(page);
154 	else if (flags & FOLL_PIN) {
155 		int refs = 1;
156 
157 		page = compound_head(page);
158 
159 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
160 			return false;
161 
162 		if (hpage_pincount_available(page))
163 			hpage_pincount_add(page, 1);
164 		else
165 			refs = GUP_PIN_COUNTING_BIAS;
166 
167 		/*
168 		 * Similar to try_grab_compound_head(): even if using the
169 		 * hpage_pincount_add/_sub() routines, be sure to
170 		 * *also* increment the normal page refcount field at least
171 		 * once, so that the page really is pinned.
172 		 */
173 		page_ref_add(page, refs);
174 
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
176 	}
177 
178 	return true;
179 }
180 
181 #ifdef CONFIG_DEV_PAGEMAP_OPS
182 static bool __unpin_devmap_managed_user_page(struct page *page)
183 {
184 	int count, refs = 1;
185 
186 	if (!page_is_devmap_managed(page))
187 		return false;
188 
189 	if (hpage_pincount_available(page))
190 		hpage_pincount_sub(page, 1);
191 	else
192 		refs = GUP_PIN_COUNTING_BIAS;
193 
194 	count = page_ref_sub_return(page, refs);
195 
196 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
197 	/*
198 	 * devmap page refcounts are 1-based, rather than 0-based: if
199 	 * refcount is 1, then the page is free and the refcount is
200 	 * stable because nobody holds a reference on the page.
201 	 */
202 	if (count == 1)
203 		free_devmap_managed_page(page);
204 	else if (!count)
205 		__put_page(page);
206 
207 	return true;
208 }
209 #else
210 static bool __unpin_devmap_managed_user_page(struct page *page)
211 {
212 	return false;
213 }
214 #endif /* CONFIG_DEV_PAGEMAP_OPS */
215 
216 /**
217  * unpin_user_page() - release a dma-pinned page
218  * @page:            pointer to page to be released
219  *
220  * Pages that were pinned via pin_user_pages*() must be released via either
221  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
222  * that such pages can be separately tracked and uniquely handled. In
223  * particular, interactions with RDMA and filesystems need special handling.
224  */
225 void unpin_user_page(struct page *page)
226 {
227 	int refs = 1;
228 
229 	page = compound_head(page);
230 
231 	/*
232 	 * For devmap managed pages we need to catch refcount transition from
233 	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
234 	 * page is free and we need to inform the device driver through
235 	 * callback. See include/linux/memremap.h and HMM for details.
236 	 */
237 	if (__unpin_devmap_managed_user_page(page))
238 		return;
239 
240 	if (hpage_pincount_available(page))
241 		hpage_pincount_sub(page, 1);
242 	else
243 		refs = GUP_PIN_COUNTING_BIAS;
244 
245 	if (page_ref_sub_and_test(page, refs))
246 		__put_page(page);
247 
248 	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
249 }
250 EXPORT_SYMBOL(unpin_user_page);
251 
252 /**
253  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
254  * @pages:  array of pages to be maybe marked dirty, and definitely released.
255  * @npages: number of pages in the @pages array.
256  * @make_dirty: whether to mark the pages dirty
257  *
258  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
259  * variants called on that page.
260  *
261  * For each page in the @pages array, make that page (or its head page, if a
262  * compound page) dirty, if @make_dirty is true, and if the page was previously
263  * listed as clean. In any case, releases all pages using unpin_user_page(),
264  * possibly via unpin_user_pages(), for the non-dirty case.
265  *
266  * Please see the unpin_user_page() documentation for details.
267  *
268  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
269  * required, then the caller should a) verify that this is really correct,
270  * because _lock() is usually required, and b) hand code it:
271  * set_page_dirty_lock(), unpin_user_page().
272  *
273  */
274 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
275 				 bool make_dirty)
276 {
277 	unsigned long index;
278 
279 	/*
280 	 * TODO: this can be optimized for huge pages: if a series of pages is
281 	 * physically contiguous and part of the same compound page, then a
282 	 * single operation to the head page should suffice.
283 	 */
284 
285 	if (!make_dirty) {
286 		unpin_user_pages(pages, npages);
287 		return;
288 	}
289 
290 	for (index = 0; index < npages; index++) {
291 		struct page *page = compound_head(pages[index]);
292 		/*
293 		 * Checking PageDirty at this point may race with
294 		 * clear_page_dirty_for_io(), but that's OK. Two key
295 		 * cases:
296 		 *
297 		 * 1) This code sees the page as already dirty, so it
298 		 * skips the call to set_page_dirty(). That could happen
299 		 * because clear_page_dirty_for_io() called
300 		 * page_mkclean(), followed by set_page_dirty().
301 		 * However, now the page is going to get written back,
302 		 * which meets the original intention of setting it
303 		 * dirty, so all is well: clear_page_dirty_for_io() goes
304 		 * on to call TestClearPageDirty(), and write the page
305 		 * back.
306 		 *
307 		 * 2) This code sees the page as clean, so it calls
308 		 * set_page_dirty(). The page stays dirty, despite being
309 		 * written back, so it gets written back again in the
310 		 * next writeback cycle. This is harmless.
311 		 */
312 		if (!PageDirty(page))
313 			set_page_dirty_lock(page);
314 		unpin_user_page(page);
315 	}
316 }
317 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
318 
319 /**
320  * unpin_user_pages() - release an array of gup-pinned pages.
321  * @pages:  array of pages to be marked dirty and released.
322  * @npages: number of pages in the @pages array.
323  *
324  * For each page in the @pages array, release the page using unpin_user_page().
325  *
326  * Please see the unpin_user_page() documentation for details.
327  */
328 void unpin_user_pages(struct page **pages, unsigned long npages)
329 {
330 	unsigned long index;
331 
332 	/*
333 	 * TODO: this can be optimized for huge pages: if a series of pages is
334 	 * physically contiguous and part of the same compound page, then a
335 	 * single operation to the head page should suffice.
336 	 */
337 	for (index = 0; index < npages; index++)
338 		unpin_user_page(pages[index]);
339 }
340 EXPORT_SYMBOL(unpin_user_pages);
341 
342 #ifdef CONFIG_MMU
343 static struct page *no_page_table(struct vm_area_struct *vma,
344 		unsigned int flags)
345 {
346 	/*
347 	 * When core dumping an enormous anonymous area that nobody
348 	 * has touched so far, we don't want to allocate unnecessary pages or
349 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
350 	 * then get_dump_page() will return NULL to leave a hole in the dump.
351 	 * But we can only make this optimization where a hole would surely
352 	 * be zero-filled if handle_mm_fault() actually did handle it.
353 	 */
354 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
355 		return ERR_PTR(-EFAULT);
356 	return NULL;
357 }
358 
359 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 		pte_t *pte, unsigned int flags)
361 {
362 	/* No page to get reference */
363 	if (flags & FOLL_GET)
364 		return -EFAULT;
365 
366 	if (flags & FOLL_TOUCH) {
367 		pte_t entry = *pte;
368 
369 		if (flags & FOLL_WRITE)
370 			entry = pte_mkdirty(entry);
371 		entry = pte_mkyoung(entry);
372 
373 		if (!pte_same(*pte, entry)) {
374 			set_pte_at(vma->vm_mm, address, pte, entry);
375 			update_mmu_cache(vma, address, pte);
376 		}
377 	}
378 
379 	/* Proper page table entry exists, but no corresponding struct page */
380 	return -EEXIST;
381 }
382 
383 /*
384  * FOLL_FORCE can write to even unwritable pte's, but only
385  * after we've gone through a COW cycle and they are dirty.
386  */
387 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388 {
389 	return pte_write(pte) ||
390 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
391 }
392 
393 static struct page *follow_page_pte(struct vm_area_struct *vma,
394 		unsigned long address, pmd_t *pmd, unsigned int flags,
395 		struct dev_pagemap **pgmap)
396 {
397 	struct mm_struct *mm = vma->vm_mm;
398 	struct page *page;
399 	spinlock_t *ptl;
400 	pte_t *ptep, pte;
401 	int ret;
402 
403 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 			 (FOLL_PIN | FOLL_GET)))
406 		return ERR_PTR(-EINVAL);
407 retry:
408 	if (unlikely(pmd_bad(*pmd)))
409 		return no_page_table(vma, flags);
410 
411 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
412 	pte = *ptep;
413 	if (!pte_present(pte)) {
414 		swp_entry_t entry;
415 		/*
416 		 * KSM's break_ksm() relies upon recognizing a ksm page
417 		 * even while it is being migrated, so for that case we
418 		 * need migration_entry_wait().
419 		 */
420 		if (likely(!(flags & FOLL_MIGRATION)))
421 			goto no_page;
422 		if (pte_none(pte))
423 			goto no_page;
424 		entry = pte_to_swp_entry(pte);
425 		if (!is_migration_entry(entry))
426 			goto no_page;
427 		pte_unmap_unlock(ptep, ptl);
428 		migration_entry_wait(mm, pmd, address);
429 		goto retry;
430 	}
431 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
432 		goto no_page;
433 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
434 		pte_unmap_unlock(ptep, ptl);
435 		return NULL;
436 	}
437 
438 	page = vm_normal_page(vma, address, pte);
439 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
440 		/*
441 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 		 * case since they are only valid while holding the pgmap
443 		 * reference.
444 		 */
445 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 		if (*pgmap)
447 			page = pte_page(pte);
448 		else
449 			goto no_page;
450 	} else if (unlikely(!page)) {
451 		if (flags & FOLL_DUMP) {
452 			/* Avoid special (like zero) pages in core dumps */
453 			page = ERR_PTR(-EFAULT);
454 			goto out;
455 		}
456 
457 		if (is_zero_pfn(pte_pfn(pte))) {
458 			page = pte_page(pte);
459 		} else {
460 			ret = follow_pfn_pte(vma, address, ptep, flags);
461 			page = ERR_PTR(ret);
462 			goto out;
463 		}
464 	}
465 
466 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
467 		get_page(page);
468 		pte_unmap_unlock(ptep, ptl);
469 		lock_page(page);
470 		ret = split_huge_page(page);
471 		unlock_page(page);
472 		put_page(page);
473 		if (ret)
474 			return ERR_PTR(ret);
475 		goto retry;
476 	}
477 
478 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 	if (unlikely(!try_grab_page(page, flags))) {
480 		page = ERR_PTR(-ENOMEM);
481 		goto out;
482 	}
483 	/*
484 	 * We need to make the page accessible if and only if we are going
485 	 * to access its content (the FOLL_PIN case).  Please see
486 	 * Documentation/core-api/pin_user_pages.rst for details.
487 	 */
488 	if (flags & FOLL_PIN) {
489 		ret = arch_make_page_accessible(page);
490 		if (ret) {
491 			unpin_user_page(page);
492 			page = ERR_PTR(ret);
493 			goto out;
494 		}
495 	}
496 	if (flags & FOLL_TOUCH) {
497 		if ((flags & FOLL_WRITE) &&
498 		    !pte_dirty(pte) && !PageDirty(page))
499 			set_page_dirty(page);
500 		/*
501 		 * pte_mkyoung() would be more correct here, but atomic care
502 		 * is needed to avoid losing the dirty bit: it is easier to use
503 		 * mark_page_accessed().
504 		 */
505 		mark_page_accessed(page);
506 	}
507 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
508 		/* Do not mlock pte-mapped THP */
509 		if (PageTransCompound(page))
510 			goto out;
511 
512 		/*
513 		 * The preliminary mapping check is mainly to avoid the
514 		 * pointless overhead of lock_page on the ZERO_PAGE
515 		 * which might bounce very badly if there is contention.
516 		 *
517 		 * If the page is already locked, we don't need to
518 		 * handle it now - vmscan will handle it later if and
519 		 * when it attempts to reclaim the page.
520 		 */
521 		if (page->mapping && trylock_page(page)) {
522 			lru_add_drain();  /* push cached pages to LRU */
523 			/*
524 			 * Because we lock page here, and migration is
525 			 * blocked by the pte's page reference, and we
526 			 * know the page is still mapped, we don't even
527 			 * need to check for file-cache page truncation.
528 			 */
529 			mlock_vma_page(page);
530 			unlock_page(page);
531 		}
532 	}
533 out:
534 	pte_unmap_unlock(ptep, ptl);
535 	return page;
536 no_page:
537 	pte_unmap_unlock(ptep, ptl);
538 	if (!pte_none(pte))
539 		return NULL;
540 	return no_page_table(vma, flags);
541 }
542 
543 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 				    unsigned long address, pud_t *pudp,
545 				    unsigned int flags,
546 				    struct follow_page_context *ctx)
547 {
548 	pmd_t *pmd, pmdval;
549 	spinlock_t *ptl;
550 	struct page *page;
551 	struct mm_struct *mm = vma->vm_mm;
552 
553 	pmd = pmd_offset(pudp, address);
554 	/*
555 	 * The READ_ONCE() will stabilize the pmdval in a register or
556 	 * on the stack so that it will stop changing under the code.
557 	 */
558 	pmdval = READ_ONCE(*pmd);
559 	if (pmd_none(pmdval))
560 		return no_page_table(vma, flags);
561 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
562 		page = follow_huge_pmd(mm, address, pmd, flags);
563 		if (page)
564 			return page;
565 		return no_page_table(vma, flags);
566 	}
567 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
568 		page = follow_huge_pd(vma, address,
569 				      __hugepd(pmd_val(pmdval)), flags,
570 				      PMD_SHIFT);
571 		if (page)
572 			return page;
573 		return no_page_table(vma, flags);
574 	}
575 retry:
576 	if (!pmd_present(pmdval)) {
577 		if (likely(!(flags & FOLL_MIGRATION)))
578 			return no_page_table(vma, flags);
579 		VM_BUG_ON(thp_migration_supported() &&
580 				  !is_pmd_migration_entry(pmdval));
581 		if (is_pmd_migration_entry(pmdval))
582 			pmd_migration_entry_wait(mm, pmd);
583 		pmdval = READ_ONCE(*pmd);
584 		/*
585 		 * MADV_DONTNEED may convert the pmd to null because
586 		 * mmap_sem is held in read mode
587 		 */
588 		if (pmd_none(pmdval))
589 			return no_page_table(vma, flags);
590 		goto retry;
591 	}
592 	if (pmd_devmap(pmdval)) {
593 		ptl = pmd_lock(mm, pmd);
594 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
595 		spin_unlock(ptl);
596 		if (page)
597 			return page;
598 	}
599 	if (likely(!pmd_trans_huge(pmdval)))
600 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
601 
602 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
603 		return no_page_table(vma, flags);
604 
605 retry_locked:
606 	ptl = pmd_lock(mm, pmd);
607 	if (unlikely(pmd_none(*pmd))) {
608 		spin_unlock(ptl);
609 		return no_page_table(vma, flags);
610 	}
611 	if (unlikely(!pmd_present(*pmd))) {
612 		spin_unlock(ptl);
613 		if (likely(!(flags & FOLL_MIGRATION)))
614 			return no_page_table(vma, flags);
615 		pmd_migration_entry_wait(mm, pmd);
616 		goto retry_locked;
617 	}
618 	if (unlikely(!pmd_trans_huge(*pmd))) {
619 		spin_unlock(ptl);
620 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
621 	}
622 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
623 		int ret;
624 		page = pmd_page(*pmd);
625 		if (is_huge_zero_page(page)) {
626 			spin_unlock(ptl);
627 			ret = 0;
628 			split_huge_pmd(vma, pmd, address);
629 			if (pmd_trans_unstable(pmd))
630 				ret = -EBUSY;
631 		} else if (flags & FOLL_SPLIT) {
632 			if (unlikely(!try_get_page(page))) {
633 				spin_unlock(ptl);
634 				return ERR_PTR(-ENOMEM);
635 			}
636 			spin_unlock(ptl);
637 			lock_page(page);
638 			ret = split_huge_page(page);
639 			unlock_page(page);
640 			put_page(page);
641 			if (pmd_none(*pmd))
642 				return no_page_table(vma, flags);
643 		} else {  /* flags & FOLL_SPLIT_PMD */
644 			spin_unlock(ptl);
645 			split_huge_pmd(vma, pmd, address);
646 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
647 		}
648 
649 		return ret ? ERR_PTR(ret) :
650 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
651 	}
652 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 	spin_unlock(ptl);
654 	ctx->page_mask = HPAGE_PMD_NR - 1;
655 	return page;
656 }
657 
658 static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 				    unsigned long address, p4d_t *p4dp,
660 				    unsigned int flags,
661 				    struct follow_page_context *ctx)
662 {
663 	pud_t *pud;
664 	spinlock_t *ptl;
665 	struct page *page;
666 	struct mm_struct *mm = vma->vm_mm;
667 
668 	pud = pud_offset(p4dp, address);
669 	if (pud_none(*pud))
670 		return no_page_table(vma, flags);
671 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
672 		page = follow_huge_pud(mm, address, pud, flags);
673 		if (page)
674 			return page;
675 		return no_page_table(vma, flags);
676 	}
677 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 		page = follow_huge_pd(vma, address,
679 				      __hugepd(pud_val(*pud)), flags,
680 				      PUD_SHIFT);
681 		if (page)
682 			return page;
683 		return no_page_table(vma, flags);
684 	}
685 	if (pud_devmap(*pud)) {
686 		ptl = pud_lock(mm, pud);
687 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
688 		spin_unlock(ptl);
689 		if (page)
690 			return page;
691 	}
692 	if (unlikely(pud_bad(*pud)))
693 		return no_page_table(vma, flags);
694 
695 	return follow_pmd_mask(vma, address, pud, flags, ctx);
696 }
697 
698 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 				    unsigned long address, pgd_t *pgdp,
700 				    unsigned int flags,
701 				    struct follow_page_context *ctx)
702 {
703 	p4d_t *p4d;
704 	struct page *page;
705 
706 	p4d = p4d_offset(pgdp, address);
707 	if (p4d_none(*p4d))
708 		return no_page_table(vma, flags);
709 	BUILD_BUG_ON(p4d_huge(*p4d));
710 	if (unlikely(p4d_bad(*p4d)))
711 		return no_page_table(vma, flags);
712 
713 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 		page = follow_huge_pd(vma, address,
715 				      __hugepd(p4d_val(*p4d)), flags,
716 				      P4D_SHIFT);
717 		if (page)
718 			return page;
719 		return no_page_table(vma, flags);
720 	}
721 	return follow_pud_mask(vma, address, p4d, flags, ctx);
722 }
723 
724 /**
725  * follow_page_mask - look up a page descriptor from a user-virtual address
726  * @vma: vm_area_struct mapping @address
727  * @address: virtual address to look up
728  * @flags: flags modifying lookup behaviour
729  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730  *       pointer to output page_mask
731  *
732  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733  *
734  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736  *
737  * On output, the @ctx->page_mask is set according to the size of the page.
738  *
739  * Return: the mapped (struct page *), %NULL if no mapping exists, or
740  * an error pointer if there is a mapping to something not represented
741  * by a page descriptor (see also vm_normal_page()).
742  */
743 static struct page *follow_page_mask(struct vm_area_struct *vma,
744 			      unsigned long address, unsigned int flags,
745 			      struct follow_page_context *ctx)
746 {
747 	pgd_t *pgd;
748 	struct page *page;
749 	struct mm_struct *mm = vma->vm_mm;
750 
751 	ctx->page_mask = 0;
752 
753 	/* make this handle hugepd */
754 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 	if (!IS_ERR(page)) {
756 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
757 		return page;
758 	}
759 
760 	pgd = pgd_offset(mm, address);
761 
762 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 		return no_page_table(vma, flags);
764 
765 	if (pgd_huge(*pgd)) {
766 		page = follow_huge_pgd(mm, address, pgd, flags);
767 		if (page)
768 			return page;
769 		return no_page_table(vma, flags);
770 	}
771 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 		page = follow_huge_pd(vma, address,
773 				      __hugepd(pgd_val(*pgd)), flags,
774 				      PGDIR_SHIFT);
775 		if (page)
776 			return page;
777 		return no_page_table(vma, flags);
778 	}
779 
780 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
781 }
782 
783 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 			 unsigned int foll_flags)
785 {
786 	struct follow_page_context ctx = { NULL };
787 	struct page *page;
788 
789 	page = follow_page_mask(vma, address, foll_flags, &ctx);
790 	if (ctx.pgmap)
791 		put_dev_pagemap(ctx.pgmap);
792 	return page;
793 }
794 
795 static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 		unsigned int gup_flags, struct vm_area_struct **vma,
797 		struct page **page)
798 {
799 	pgd_t *pgd;
800 	p4d_t *p4d;
801 	pud_t *pud;
802 	pmd_t *pmd;
803 	pte_t *pte;
804 	int ret = -EFAULT;
805 
806 	/* user gate pages are read-only */
807 	if (gup_flags & FOLL_WRITE)
808 		return -EFAULT;
809 	if (address > TASK_SIZE)
810 		pgd = pgd_offset_k(address);
811 	else
812 		pgd = pgd_offset_gate(mm, address);
813 	if (pgd_none(*pgd))
814 		return -EFAULT;
815 	p4d = p4d_offset(pgd, address);
816 	if (p4d_none(*p4d))
817 		return -EFAULT;
818 	pud = pud_offset(p4d, address);
819 	if (pud_none(*pud))
820 		return -EFAULT;
821 	pmd = pmd_offset(pud, address);
822 	if (!pmd_present(*pmd))
823 		return -EFAULT;
824 	VM_BUG_ON(pmd_trans_huge(*pmd));
825 	pte = pte_offset_map(pmd, address);
826 	if (pte_none(*pte))
827 		goto unmap;
828 	*vma = get_gate_vma(mm);
829 	if (!page)
830 		goto out;
831 	*page = vm_normal_page(*vma, address, *pte);
832 	if (!*page) {
833 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 			goto unmap;
835 		*page = pte_page(*pte);
836 	}
837 	if (unlikely(!try_get_page(*page))) {
838 		ret = -ENOMEM;
839 		goto unmap;
840 	}
841 out:
842 	ret = 0;
843 unmap:
844 	pte_unmap(pte);
845 	return ret;
846 }
847 
848 /*
849  * mmap_sem must be held on entry.  If @locked != NULL and *@flags
850  * does not include FOLL_NOWAIT, the mmap_sem may be released.  If it
851  * is, *@locked will be set to 0 and -EBUSY returned.
852  */
853 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
854 		unsigned long address, unsigned int *flags, int *locked)
855 {
856 	unsigned int fault_flags = 0;
857 	vm_fault_t ret;
858 
859 	/* mlock all present pages, but do not fault in new pages */
860 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 		return -ENOENT;
862 	if (*flags & FOLL_WRITE)
863 		fault_flags |= FAULT_FLAG_WRITE;
864 	if (*flags & FOLL_REMOTE)
865 		fault_flags |= FAULT_FLAG_REMOTE;
866 	if (locked)
867 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
868 	if (*flags & FOLL_NOWAIT)
869 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
870 	if (*flags & FOLL_TRIED) {
871 		/*
872 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 		 * can co-exist
874 		 */
875 		fault_flags |= FAULT_FLAG_TRIED;
876 	}
877 
878 	ret = handle_mm_fault(vma, address, fault_flags);
879 	if (ret & VM_FAULT_ERROR) {
880 		int err = vm_fault_to_errno(ret, *flags);
881 
882 		if (err)
883 			return err;
884 		BUG();
885 	}
886 
887 	if (tsk) {
888 		if (ret & VM_FAULT_MAJOR)
889 			tsk->maj_flt++;
890 		else
891 			tsk->min_flt++;
892 	}
893 
894 	if (ret & VM_FAULT_RETRY) {
895 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896 			*locked = 0;
897 		return -EBUSY;
898 	}
899 
900 	/*
901 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903 	 * can thus safely do subsequent page lookups as if they were reads.
904 	 * But only do so when looping for pte_write is futile: in some cases
905 	 * userspace may also be wanting to write to the gotten user page,
906 	 * which a read fault here might prevent (a readonly page might get
907 	 * reCOWed by userspace write).
908 	 */
909 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
910 		*flags |= FOLL_COW;
911 	return 0;
912 }
913 
914 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915 {
916 	vm_flags_t vm_flags = vma->vm_flags;
917 	int write = (gup_flags & FOLL_WRITE);
918 	int foreign = (gup_flags & FOLL_REMOTE);
919 
920 	if (vm_flags & (VM_IO | VM_PFNMAP))
921 		return -EFAULT;
922 
923 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924 		return -EFAULT;
925 
926 	if (write) {
927 		if (!(vm_flags & VM_WRITE)) {
928 			if (!(gup_flags & FOLL_FORCE))
929 				return -EFAULT;
930 			/*
931 			 * We used to let the write,force case do COW in a
932 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
933 			 * set a breakpoint in a read-only mapping of an
934 			 * executable, without corrupting the file (yet only
935 			 * when that file had been opened for writing!).
936 			 * Anon pages in shared mappings are surprising: now
937 			 * just reject it.
938 			 */
939 			if (!is_cow_mapping(vm_flags))
940 				return -EFAULT;
941 		}
942 	} else if (!(vm_flags & VM_READ)) {
943 		if (!(gup_flags & FOLL_FORCE))
944 			return -EFAULT;
945 		/*
946 		 * Is there actually any vma we can reach here which does not
947 		 * have VM_MAYREAD set?
948 		 */
949 		if (!(vm_flags & VM_MAYREAD))
950 			return -EFAULT;
951 	}
952 	/*
953 	 * gups are always data accesses, not instruction
954 	 * fetches, so execute=false here
955 	 */
956 	if (!arch_vma_access_permitted(vma, write, false, foreign))
957 		return -EFAULT;
958 	return 0;
959 }
960 
961 /**
962  * __get_user_pages() - pin user pages in memory
963  * @tsk:	task_struct of target task
964  * @mm:		mm_struct of target mm
965  * @start:	starting user address
966  * @nr_pages:	number of pages from start to pin
967  * @gup_flags:	flags modifying pin behaviour
968  * @pages:	array that receives pointers to the pages pinned.
969  *		Should be at least nr_pages long. Or NULL, if caller
970  *		only intends to ensure the pages are faulted in.
971  * @vmas:	array of pointers to vmas corresponding to each page.
972  *		Or NULL if the caller does not require them.
973  * @locked:     whether we're still with the mmap_sem held
974  *
975  * Returns either number of pages pinned (which may be less than the
976  * number requested), or an error. Details about the return value:
977  *
978  * -- If nr_pages is 0, returns 0.
979  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
980  * -- If nr_pages is >0, and some pages were pinned, returns the number of
981  *    pages pinned. Again, this may be less than nr_pages.
982  *
983  * The caller is responsible for releasing returned @pages, via put_page().
984  *
985  * @vmas are valid only as long as mmap_sem is held.
986  *
987  * Must be called with mmap_sem held.  It may be released.  See below.
988  *
989  * __get_user_pages walks a process's page tables and takes a reference to
990  * each struct page that each user address corresponds to at a given
991  * instant. That is, it takes the page that would be accessed if a user
992  * thread accesses the given user virtual address at that instant.
993  *
994  * This does not guarantee that the page exists in the user mappings when
995  * __get_user_pages returns, and there may even be a completely different
996  * page there in some cases (eg. if mmapped pagecache has been invalidated
997  * and subsequently re faulted). However it does guarantee that the page
998  * won't be freed completely. And mostly callers simply care that the page
999  * contains data that was valid *at some point in time*. Typically, an IO
1000  * or similar operation cannot guarantee anything stronger anyway because
1001  * locks can't be held over the syscall boundary.
1002  *
1003  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1004  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1005  * appropriate) must be called after the page is finished with, and
1006  * before put_page is called.
1007  *
1008  * If @locked != NULL, *@locked will be set to 0 when mmap_sem is
1009  * released by an up_read().  That can happen if @gup_flags does not
1010  * have FOLL_NOWAIT.
1011  *
1012  * A caller using such a combination of @locked and @gup_flags
1013  * must therefore hold the mmap_sem for reading only, and recognize
1014  * when it's been released.  Otherwise, it must be held for either
1015  * reading or writing and will not be released.
1016  *
1017  * In most cases, get_user_pages or get_user_pages_fast should be used
1018  * instead of __get_user_pages. __get_user_pages should be used only if
1019  * you need some special @gup_flags.
1020  */
1021 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 		unsigned long start, unsigned long nr_pages,
1023 		unsigned int gup_flags, struct page **pages,
1024 		struct vm_area_struct **vmas, int *locked)
1025 {
1026 	long ret = 0, i = 0;
1027 	struct vm_area_struct *vma = NULL;
1028 	struct follow_page_context ctx = { NULL };
1029 
1030 	if (!nr_pages)
1031 		return 0;
1032 
1033 	start = untagged_addr(start);
1034 
1035 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1036 
1037 	/*
1038 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1039 	 * fault information is unrelated to the reference behaviour of a task
1040 	 * using the address space
1041 	 */
1042 	if (!(gup_flags & FOLL_FORCE))
1043 		gup_flags |= FOLL_NUMA;
1044 
1045 	do {
1046 		struct page *page;
1047 		unsigned int foll_flags = gup_flags;
1048 		unsigned int page_increm;
1049 
1050 		/* first iteration or cross vma bound */
1051 		if (!vma || start >= vma->vm_end) {
1052 			vma = find_extend_vma(mm, start);
1053 			if (!vma && in_gate_area(mm, start)) {
1054 				ret = get_gate_page(mm, start & PAGE_MASK,
1055 						gup_flags, &vma,
1056 						pages ? &pages[i] : NULL);
1057 				if (ret)
1058 					goto out;
1059 				ctx.page_mask = 0;
1060 				goto next_page;
1061 			}
1062 
1063 			if (!vma || check_vma_flags(vma, gup_flags)) {
1064 				ret = -EFAULT;
1065 				goto out;
1066 			}
1067 			if (is_vm_hugetlb_page(vma)) {
1068 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1069 						&start, &nr_pages, i,
1070 						gup_flags, locked);
1071 				if (locked && *locked == 0) {
1072 					/*
1073 					 * We've got a VM_FAULT_RETRY
1074 					 * and we've lost mmap_sem.
1075 					 * We must stop here.
1076 					 */
1077 					BUG_ON(gup_flags & FOLL_NOWAIT);
1078 					BUG_ON(ret != 0);
1079 					goto out;
1080 				}
1081 				continue;
1082 			}
1083 		}
1084 retry:
1085 		/*
1086 		 * If we have a pending SIGKILL, don't keep faulting pages and
1087 		 * potentially allocating memory.
1088 		 */
1089 		if (fatal_signal_pending(current)) {
1090 			ret = -ERESTARTSYS;
1091 			goto out;
1092 		}
1093 		cond_resched();
1094 
1095 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1096 		if (!page) {
1097 			ret = faultin_page(tsk, vma, start, &foll_flags,
1098 					   locked);
1099 			switch (ret) {
1100 			case 0:
1101 				goto retry;
1102 			case -EBUSY:
1103 				ret = 0;
1104 				/* FALLTHRU */
1105 			case -EFAULT:
1106 			case -ENOMEM:
1107 			case -EHWPOISON:
1108 				goto out;
1109 			case -ENOENT:
1110 				goto next_page;
1111 			}
1112 			BUG();
1113 		} else if (PTR_ERR(page) == -EEXIST) {
1114 			/*
1115 			 * Proper page table entry exists, but no corresponding
1116 			 * struct page.
1117 			 */
1118 			goto next_page;
1119 		} else if (IS_ERR(page)) {
1120 			ret = PTR_ERR(page);
1121 			goto out;
1122 		}
1123 		if (pages) {
1124 			pages[i] = page;
1125 			flush_anon_page(vma, page, start);
1126 			flush_dcache_page(page);
1127 			ctx.page_mask = 0;
1128 		}
1129 next_page:
1130 		if (vmas) {
1131 			vmas[i] = vma;
1132 			ctx.page_mask = 0;
1133 		}
1134 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1135 		if (page_increm > nr_pages)
1136 			page_increm = nr_pages;
1137 		i += page_increm;
1138 		start += page_increm * PAGE_SIZE;
1139 		nr_pages -= page_increm;
1140 	} while (nr_pages);
1141 out:
1142 	if (ctx.pgmap)
1143 		put_dev_pagemap(ctx.pgmap);
1144 	return i ? i : ret;
1145 }
1146 
1147 static bool vma_permits_fault(struct vm_area_struct *vma,
1148 			      unsigned int fault_flags)
1149 {
1150 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1151 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1152 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1153 
1154 	if (!(vm_flags & vma->vm_flags))
1155 		return false;
1156 
1157 	/*
1158 	 * The architecture might have a hardware protection
1159 	 * mechanism other than read/write that can deny access.
1160 	 *
1161 	 * gup always represents data access, not instruction
1162 	 * fetches, so execute=false here:
1163 	 */
1164 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1165 		return false;
1166 
1167 	return true;
1168 }
1169 
1170 /*
1171  * fixup_user_fault() - manually resolve a user page fault
1172  * @tsk:	the task_struct to use for page fault accounting, or
1173  *		NULL if faults are not to be recorded.
1174  * @mm:		mm_struct of target mm
1175  * @address:	user address
1176  * @fault_flags:flags to pass down to handle_mm_fault()
1177  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
1178  *		does not allow retry
1179  *
1180  * This is meant to be called in the specific scenario where for locking reasons
1181  * we try to access user memory in atomic context (within a pagefault_disable()
1182  * section), this returns -EFAULT, and we want to resolve the user fault before
1183  * trying again.
1184  *
1185  * Typically this is meant to be used by the futex code.
1186  *
1187  * The main difference with get_user_pages() is that this function will
1188  * unconditionally call handle_mm_fault() which will in turn perform all the
1189  * necessary SW fixup of the dirty and young bits in the PTE, while
1190  * get_user_pages() only guarantees to update these in the struct page.
1191  *
1192  * This is important for some architectures where those bits also gate the
1193  * access permission to the page because they are maintained in software.  On
1194  * such architectures, gup() will not be enough to make a subsequent access
1195  * succeed.
1196  *
1197  * This function will not return with an unlocked mmap_sem. So it has not the
1198  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
1199  */
1200 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1201 		     unsigned long address, unsigned int fault_flags,
1202 		     bool *unlocked)
1203 {
1204 	struct vm_area_struct *vma;
1205 	vm_fault_t ret, major = 0;
1206 
1207 	address = untagged_addr(address);
1208 
1209 	if (unlocked)
1210 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1211 
1212 retry:
1213 	vma = find_extend_vma(mm, address);
1214 	if (!vma || address < vma->vm_start)
1215 		return -EFAULT;
1216 
1217 	if (!vma_permits_fault(vma, fault_flags))
1218 		return -EFAULT;
1219 
1220 	ret = handle_mm_fault(vma, address, fault_flags);
1221 	major |= ret & VM_FAULT_MAJOR;
1222 	if (ret & VM_FAULT_ERROR) {
1223 		int err = vm_fault_to_errno(ret, 0);
1224 
1225 		if (err)
1226 			return err;
1227 		BUG();
1228 	}
1229 
1230 	if (ret & VM_FAULT_RETRY) {
1231 		down_read(&mm->mmap_sem);
1232 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
1233 			*unlocked = true;
1234 			fault_flags |= FAULT_FLAG_TRIED;
1235 			goto retry;
1236 		}
1237 	}
1238 
1239 	if (tsk) {
1240 		if (major)
1241 			tsk->maj_flt++;
1242 		else
1243 			tsk->min_flt++;
1244 	}
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(fixup_user_fault);
1248 
1249 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1250 						struct mm_struct *mm,
1251 						unsigned long start,
1252 						unsigned long nr_pages,
1253 						struct page **pages,
1254 						struct vm_area_struct **vmas,
1255 						int *locked,
1256 						unsigned int flags)
1257 {
1258 	long ret, pages_done;
1259 	bool lock_dropped;
1260 
1261 	if (locked) {
1262 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1263 		BUG_ON(vmas);
1264 		/* check caller initialized locked */
1265 		BUG_ON(*locked != 1);
1266 	}
1267 
1268 	/*
1269 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1270 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1271 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1272 	 * for FOLL_GET, not for the newer FOLL_PIN.
1273 	 *
1274 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1275 	 * that here, as any failures will be obvious enough.
1276 	 */
1277 	if (pages && !(flags & FOLL_PIN))
1278 		flags |= FOLL_GET;
1279 
1280 	pages_done = 0;
1281 	lock_dropped = false;
1282 	for (;;) {
1283 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1284 				       vmas, locked);
1285 		if (!locked)
1286 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1287 			return ret;
1288 
1289 		/* VM_FAULT_RETRY cannot return errors */
1290 		if (!*locked) {
1291 			BUG_ON(ret < 0);
1292 			BUG_ON(ret >= nr_pages);
1293 		}
1294 
1295 		if (ret > 0) {
1296 			nr_pages -= ret;
1297 			pages_done += ret;
1298 			if (!nr_pages)
1299 				break;
1300 		}
1301 		if (*locked) {
1302 			/*
1303 			 * VM_FAULT_RETRY didn't trigger or it was a
1304 			 * FOLL_NOWAIT.
1305 			 */
1306 			if (!pages_done)
1307 				pages_done = ret;
1308 			break;
1309 		}
1310 		/*
1311 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1312 		 * For the prefault case (!pages) we only update counts.
1313 		 */
1314 		if (likely(pages))
1315 			pages += ret;
1316 		start += ret << PAGE_SHIFT;
1317 		lock_dropped = true;
1318 
1319 retry:
1320 		/*
1321 		 * Repeat on the address that fired VM_FAULT_RETRY
1322 		 * with both FAULT_FLAG_ALLOW_RETRY and
1323 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1324 		 * by fatal signals, so we need to check it before we
1325 		 * start trying again otherwise it can loop forever.
1326 		 */
1327 
1328 		if (fatal_signal_pending(current))
1329 			break;
1330 
1331 		*locked = 1;
1332 		ret = down_read_killable(&mm->mmap_sem);
1333 		if (ret) {
1334 			BUG_ON(ret > 0);
1335 			if (!pages_done)
1336 				pages_done = ret;
1337 			break;
1338 		}
1339 
1340 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1341 				       pages, NULL, locked);
1342 		if (!*locked) {
1343 			/* Continue to retry until we succeeded */
1344 			BUG_ON(ret != 0);
1345 			goto retry;
1346 		}
1347 		if (ret != 1) {
1348 			BUG_ON(ret > 1);
1349 			if (!pages_done)
1350 				pages_done = ret;
1351 			break;
1352 		}
1353 		nr_pages--;
1354 		pages_done++;
1355 		if (!nr_pages)
1356 			break;
1357 		if (likely(pages))
1358 			pages++;
1359 		start += PAGE_SIZE;
1360 	}
1361 	if (lock_dropped && *locked) {
1362 		/*
1363 		 * We must let the caller know we temporarily dropped the lock
1364 		 * and so the critical section protected by it was lost.
1365 		 */
1366 		up_read(&mm->mmap_sem);
1367 		*locked = 0;
1368 	}
1369 	return pages_done;
1370 }
1371 
1372 /**
1373  * populate_vma_page_range() -  populate a range of pages in the vma.
1374  * @vma:   target vma
1375  * @start: start address
1376  * @end:   end address
1377  * @locked: whether the mmap_sem is still held
1378  *
1379  * This takes care of mlocking the pages too if VM_LOCKED is set.
1380  *
1381  * return 0 on success, negative error code on error.
1382  *
1383  * vma->vm_mm->mmap_sem must be held.
1384  *
1385  * If @locked is NULL, it may be held for read or write and will
1386  * be unperturbed.
1387  *
1388  * If @locked is non-NULL, it must held for read only and may be
1389  * released.  If it's released, *@locked will be set to 0.
1390  */
1391 long populate_vma_page_range(struct vm_area_struct *vma,
1392 		unsigned long start, unsigned long end, int *locked)
1393 {
1394 	struct mm_struct *mm = vma->vm_mm;
1395 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1396 	int gup_flags;
1397 
1398 	VM_BUG_ON(start & ~PAGE_MASK);
1399 	VM_BUG_ON(end   & ~PAGE_MASK);
1400 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1401 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1402 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1403 
1404 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1405 	if (vma->vm_flags & VM_LOCKONFAULT)
1406 		gup_flags &= ~FOLL_POPULATE;
1407 	/*
1408 	 * We want to touch writable mappings with a write fault in order
1409 	 * to break COW, except for shared mappings because these don't COW
1410 	 * and we would not want to dirty them for nothing.
1411 	 */
1412 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1413 		gup_flags |= FOLL_WRITE;
1414 
1415 	/*
1416 	 * We want mlock to succeed for regions that have any permissions
1417 	 * other than PROT_NONE.
1418 	 */
1419 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1420 		gup_flags |= FOLL_FORCE;
1421 
1422 	/*
1423 	 * We made sure addr is within a VMA, so the following will
1424 	 * not result in a stack expansion that recurses back here.
1425 	 */
1426 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1427 				NULL, NULL, locked);
1428 }
1429 
1430 /*
1431  * __mm_populate - populate and/or mlock pages within a range of address space.
1432  *
1433  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1434  * flags. VMAs must be already marked with the desired vm_flags, and
1435  * mmap_sem must not be held.
1436  */
1437 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1438 {
1439 	struct mm_struct *mm = current->mm;
1440 	unsigned long end, nstart, nend;
1441 	struct vm_area_struct *vma = NULL;
1442 	int locked = 0;
1443 	long ret = 0;
1444 
1445 	end = start + len;
1446 
1447 	for (nstart = start; nstart < end; nstart = nend) {
1448 		/*
1449 		 * We want to fault in pages for [nstart; end) address range.
1450 		 * Find first corresponding VMA.
1451 		 */
1452 		if (!locked) {
1453 			locked = 1;
1454 			down_read(&mm->mmap_sem);
1455 			vma = find_vma(mm, nstart);
1456 		} else if (nstart >= vma->vm_end)
1457 			vma = vma->vm_next;
1458 		if (!vma || vma->vm_start >= end)
1459 			break;
1460 		/*
1461 		 * Set [nstart; nend) to intersection of desired address
1462 		 * range with the first VMA. Also, skip undesirable VMA types.
1463 		 */
1464 		nend = min(end, vma->vm_end);
1465 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1466 			continue;
1467 		if (nstart < vma->vm_start)
1468 			nstart = vma->vm_start;
1469 		/*
1470 		 * Now fault in a range of pages. populate_vma_page_range()
1471 		 * double checks the vma flags, so that it won't mlock pages
1472 		 * if the vma was already munlocked.
1473 		 */
1474 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1475 		if (ret < 0) {
1476 			if (ignore_errors) {
1477 				ret = 0;
1478 				continue;	/* continue at next VMA */
1479 			}
1480 			break;
1481 		}
1482 		nend = nstart + ret * PAGE_SIZE;
1483 		ret = 0;
1484 	}
1485 	if (locked)
1486 		up_read(&mm->mmap_sem);
1487 	return ret;	/* 0 or negative error code */
1488 }
1489 
1490 /**
1491  * get_dump_page() - pin user page in memory while writing it to core dump
1492  * @addr: user address
1493  *
1494  * Returns struct page pointer of user page pinned for dump,
1495  * to be freed afterwards by put_page().
1496  *
1497  * Returns NULL on any kind of failure - a hole must then be inserted into
1498  * the corefile, to preserve alignment with its headers; and also returns
1499  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1500  * allowing a hole to be left in the corefile to save diskspace.
1501  *
1502  * Called without mmap_sem, but after all other threads have been killed.
1503  */
1504 #ifdef CONFIG_ELF_CORE
1505 struct page *get_dump_page(unsigned long addr)
1506 {
1507 	struct vm_area_struct *vma;
1508 	struct page *page;
1509 
1510 	if (__get_user_pages(current, current->mm, addr, 1,
1511 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1512 			     NULL) < 1)
1513 		return NULL;
1514 	flush_cache_page(vma, addr, page_to_pfn(page));
1515 	return page;
1516 }
1517 #endif /* CONFIG_ELF_CORE */
1518 #else /* CONFIG_MMU */
1519 static long __get_user_pages_locked(struct task_struct *tsk,
1520 		struct mm_struct *mm, unsigned long start,
1521 		unsigned long nr_pages, struct page **pages,
1522 		struct vm_area_struct **vmas, int *locked,
1523 		unsigned int foll_flags)
1524 {
1525 	struct vm_area_struct *vma;
1526 	unsigned long vm_flags;
1527 	int i;
1528 
1529 	/* calculate required read or write permissions.
1530 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1531 	 */
1532 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1533 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1534 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1535 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1536 
1537 	for (i = 0; i < nr_pages; i++) {
1538 		vma = find_vma(mm, start);
1539 		if (!vma)
1540 			goto finish_or_fault;
1541 
1542 		/* protect what we can, including chardevs */
1543 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1544 		    !(vm_flags & vma->vm_flags))
1545 			goto finish_or_fault;
1546 
1547 		if (pages) {
1548 			pages[i] = virt_to_page(start);
1549 			if (pages[i])
1550 				get_page(pages[i]);
1551 		}
1552 		if (vmas)
1553 			vmas[i] = vma;
1554 		start = (start + PAGE_SIZE) & PAGE_MASK;
1555 	}
1556 
1557 	return i;
1558 
1559 finish_or_fault:
1560 	return i ? : -EFAULT;
1561 }
1562 #endif /* !CONFIG_MMU */
1563 
1564 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1565 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1566 {
1567 	long i;
1568 	struct vm_area_struct *vma_prev = NULL;
1569 
1570 	for (i = 0; i < nr_pages; i++) {
1571 		struct vm_area_struct *vma = vmas[i];
1572 
1573 		if (vma == vma_prev)
1574 			continue;
1575 
1576 		vma_prev = vma;
1577 
1578 		if (vma_is_fsdax(vma))
1579 			return true;
1580 	}
1581 	return false;
1582 }
1583 
1584 #ifdef CONFIG_CMA
1585 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1586 {
1587 	/*
1588 	 * We want to make sure we allocate the new page from the same node
1589 	 * as the source page.
1590 	 */
1591 	int nid = page_to_nid(page);
1592 	/*
1593 	 * Trying to allocate a page for migration. Ignore allocation
1594 	 * failure warnings. We don't force __GFP_THISNODE here because
1595 	 * this node here is the node where we have CMA reservation and
1596 	 * in some case these nodes will have really less non movable
1597 	 * allocation memory.
1598 	 */
1599 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1600 
1601 	if (PageHighMem(page))
1602 		gfp_mask |= __GFP_HIGHMEM;
1603 
1604 #ifdef CONFIG_HUGETLB_PAGE
1605 	if (PageHuge(page)) {
1606 		struct hstate *h = page_hstate(page);
1607 		/*
1608 		 * We don't want to dequeue from the pool because pool pages will
1609 		 * mostly be from the CMA region.
1610 		 */
1611 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1612 	}
1613 #endif
1614 	if (PageTransHuge(page)) {
1615 		struct page *thp;
1616 		/*
1617 		 * ignore allocation failure warnings
1618 		 */
1619 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1620 
1621 		/*
1622 		 * Remove the movable mask so that we don't allocate from
1623 		 * CMA area again.
1624 		 */
1625 		thp_gfpmask &= ~__GFP_MOVABLE;
1626 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1627 		if (!thp)
1628 			return NULL;
1629 		prep_transhuge_page(thp);
1630 		return thp;
1631 	}
1632 
1633 	return __alloc_pages_node(nid, gfp_mask, 0);
1634 }
1635 
1636 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1637 					struct mm_struct *mm,
1638 					unsigned long start,
1639 					unsigned long nr_pages,
1640 					struct page **pages,
1641 					struct vm_area_struct **vmas,
1642 					unsigned int gup_flags)
1643 {
1644 	unsigned long i;
1645 	unsigned long step;
1646 	bool drain_allow = true;
1647 	bool migrate_allow = true;
1648 	LIST_HEAD(cma_page_list);
1649 	long ret = nr_pages;
1650 
1651 check_again:
1652 	for (i = 0; i < nr_pages;) {
1653 
1654 		struct page *head = compound_head(pages[i]);
1655 
1656 		/*
1657 		 * gup may start from a tail page. Advance step by the left
1658 		 * part.
1659 		 */
1660 		step = compound_nr(head) - (pages[i] - head);
1661 		/*
1662 		 * If we get a page from the CMA zone, since we are going to
1663 		 * be pinning these entries, we might as well move them out
1664 		 * of the CMA zone if possible.
1665 		 */
1666 		if (is_migrate_cma_page(head)) {
1667 			if (PageHuge(head))
1668 				isolate_huge_page(head, &cma_page_list);
1669 			else {
1670 				if (!PageLRU(head) && drain_allow) {
1671 					lru_add_drain_all();
1672 					drain_allow = false;
1673 				}
1674 
1675 				if (!isolate_lru_page(head)) {
1676 					list_add_tail(&head->lru, &cma_page_list);
1677 					mod_node_page_state(page_pgdat(head),
1678 							    NR_ISOLATED_ANON +
1679 							    page_is_file_cache(head),
1680 							    hpage_nr_pages(head));
1681 				}
1682 			}
1683 		}
1684 
1685 		i += step;
1686 	}
1687 
1688 	if (!list_empty(&cma_page_list)) {
1689 		/*
1690 		 * drop the above get_user_pages reference.
1691 		 */
1692 		for (i = 0; i < nr_pages; i++)
1693 			put_page(pages[i]);
1694 
1695 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1696 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1697 			/*
1698 			 * some of the pages failed migration. Do get_user_pages
1699 			 * without migration.
1700 			 */
1701 			migrate_allow = false;
1702 
1703 			if (!list_empty(&cma_page_list))
1704 				putback_movable_pages(&cma_page_list);
1705 		}
1706 		/*
1707 		 * We did migrate all the pages, Try to get the page references
1708 		 * again migrating any new CMA pages which we failed to isolate
1709 		 * earlier.
1710 		 */
1711 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1712 						   pages, vmas, NULL,
1713 						   gup_flags);
1714 
1715 		if ((ret > 0) && migrate_allow) {
1716 			nr_pages = ret;
1717 			drain_allow = true;
1718 			goto check_again;
1719 		}
1720 	}
1721 
1722 	return ret;
1723 }
1724 #else
1725 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1726 					struct mm_struct *mm,
1727 					unsigned long start,
1728 					unsigned long nr_pages,
1729 					struct page **pages,
1730 					struct vm_area_struct **vmas,
1731 					unsigned int gup_flags)
1732 {
1733 	return nr_pages;
1734 }
1735 #endif /* CONFIG_CMA */
1736 
1737 /*
1738  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1739  * allows us to process the FOLL_LONGTERM flag.
1740  */
1741 static long __gup_longterm_locked(struct task_struct *tsk,
1742 				  struct mm_struct *mm,
1743 				  unsigned long start,
1744 				  unsigned long nr_pages,
1745 				  struct page **pages,
1746 				  struct vm_area_struct **vmas,
1747 				  unsigned int gup_flags)
1748 {
1749 	struct vm_area_struct **vmas_tmp = vmas;
1750 	unsigned long flags = 0;
1751 	long rc, i;
1752 
1753 	if (gup_flags & FOLL_LONGTERM) {
1754 		if (!pages)
1755 			return -EINVAL;
1756 
1757 		if (!vmas_tmp) {
1758 			vmas_tmp = kcalloc(nr_pages,
1759 					   sizeof(struct vm_area_struct *),
1760 					   GFP_KERNEL);
1761 			if (!vmas_tmp)
1762 				return -ENOMEM;
1763 		}
1764 		flags = memalloc_nocma_save();
1765 	}
1766 
1767 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1768 				     vmas_tmp, NULL, gup_flags);
1769 
1770 	if (gup_flags & FOLL_LONGTERM) {
1771 		memalloc_nocma_restore(flags);
1772 		if (rc < 0)
1773 			goto out;
1774 
1775 		if (check_dax_vmas(vmas_tmp, rc)) {
1776 			for (i = 0; i < rc; i++)
1777 				put_page(pages[i]);
1778 			rc = -EOPNOTSUPP;
1779 			goto out;
1780 		}
1781 
1782 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1783 						 vmas_tmp, gup_flags);
1784 	}
1785 
1786 out:
1787 	if (vmas_tmp != vmas)
1788 		kfree(vmas_tmp);
1789 	return rc;
1790 }
1791 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1792 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1793 						  struct mm_struct *mm,
1794 						  unsigned long start,
1795 						  unsigned long nr_pages,
1796 						  struct page **pages,
1797 						  struct vm_area_struct **vmas,
1798 						  unsigned int flags)
1799 {
1800 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1801 				       NULL, flags);
1802 }
1803 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1804 
1805 #ifdef CONFIG_MMU
1806 static long __get_user_pages_remote(struct task_struct *tsk,
1807 				    struct mm_struct *mm,
1808 				    unsigned long start, unsigned long nr_pages,
1809 				    unsigned int gup_flags, struct page **pages,
1810 				    struct vm_area_struct **vmas, int *locked)
1811 {
1812 	/*
1813 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1814 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1815 	 * vmas. However, this only comes up if locked is set, and there are
1816 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1817 	 * allow what we can.
1818 	 */
1819 	if (gup_flags & FOLL_LONGTERM) {
1820 		if (WARN_ON_ONCE(locked))
1821 			return -EINVAL;
1822 		/*
1823 		 * This will check the vmas (even if our vmas arg is NULL)
1824 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1825 		 */
1826 		return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1827 					     vmas, gup_flags | FOLL_TOUCH |
1828 					     FOLL_REMOTE);
1829 	}
1830 
1831 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1832 				       locked,
1833 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1834 }
1835 
1836 /*
1837  * get_user_pages_remote() - pin user pages in memory
1838  * @tsk:	the task_struct to use for page fault accounting, or
1839  *		NULL if faults are not to be recorded.
1840  * @mm:		mm_struct of target mm
1841  * @start:	starting user address
1842  * @nr_pages:	number of pages from start to pin
1843  * @gup_flags:	flags modifying lookup behaviour
1844  * @pages:	array that receives pointers to the pages pinned.
1845  *		Should be at least nr_pages long. Or NULL, if caller
1846  *		only intends to ensure the pages are faulted in.
1847  * @vmas:	array of pointers to vmas corresponding to each page.
1848  *		Or NULL if the caller does not require them.
1849  * @locked:	pointer to lock flag indicating whether lock is held and
1850  *		subsequently whether VM_FAULT_RETRY functionality can be
1851  *		utilised. Lock must initially be held.
1852  *
1853  * Returns either number of pages pinned (which may be less than the
1854  * number requested), or an error. Details about the return value:
1855  *
1856  * -- If nr_pages is 0, returns 0.
1857  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1858  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1859  *    pages pinned. Again, this may be less than nr_pages.
1860  *
1861  * The caller is responsible for releasing returned @pages, via put_page().
1862  *
1863  * @vmas are valid only as long as mmap_sem is held.
1864  *
1865  * Must be called with mmap_sem held for read or write.
1866  *
1867  * get_user_pages walks a process's page tables and takes a reference to
1868  * each struct page that each user address corresponds to at a given
1869  * instant. That is, it takes the page that would be accessed if a user
1870  * thread accesses the given user virtual address at that instant.
1871  *
1872  * This does not guarantee that the page exists in the user mappings when
1873  * get_user_pages returns, and there may even be a completely different
1874  * page there in some cases (eg. if mmapped pagecache has been invalidated
1875  * and subsequently re faulted). However it does guarantee that the page
1876  * won't be freed completely. And mostly callers simply care that the page
1877  * contains data that was valid *at some point in time*. Typically, an IO
1878  * or similar operation cannot guarantee anything stronger anyway because
1879  * locks can't be held over the syscall boundary.
1880  *
1881  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1882  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1883  * be called after the page is finished with, and before put_page is called.
1884  *
1885  * get_user_pages is typically used for fewer-copy IO operations, to get a
1886  * handle on the memory by some means other than accesses via the user virtual
1887  * addresses. The pages may be submitted for DMA to devices or accessed via
1888  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1889  * use the correct cache flushing APIs.
1890  *
1891  * See also get_user_pages_fast, for performance critical applications.
1892  *
1893  * get_user_pages should be phased out in favor of
1894  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1895  * should use get_user_pages because it cannot pass
1896  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1897  */
1898 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1899 		unsigned long start, unsigned long nr_pages,
1900 		unsigned int gup_flags, struct page **pages,
1901 		struct vm_area_struct **vmas, int *locked)
1902 {
1903 	/*
1904 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1905 	 * never directly by the caller, so enforce that with an assertion:
1906 	 */
1907 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1908 		return -EINVAL;
1909 
1910 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1911 				       pages, vmas, locked);
1912 }
1913 EXPORT_SYMBOL(get_user_pages_remote);
1914 
1915 #else /* CONFIG_MMU */
1916 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1917 			   unsigned long start, unsigned long nr_pages,
1918 			   unsigned int gup_flags, struct page **pages,
1919 			   struct vm_area_struct **vmas, int *locked)
1920 {
1921 	return 0;
1922 }
1923 
1924 static long __get_user_pages_remote(struct task_struct *tsk,
1925 				    struct mm_struct *mm,
1926 				    unsigned long start, unsigned long nr_pages,
1927 				    unsigned int gup_flags, struct page **pages,
1928 				    struct vm_area_struct **vmas, int *locked)
1929 {
1930 	return 0;
1931 }
1932 #endif /* !CONFIG_MMU */
1933 
1934 /*
1935  * This is the same as get_user_pages_remote(), just with a
1936  * less-flexible calling convention where we assume that the task
1937  * and mm being operated on are the current task's and don't allow
1938  * passing of a locked parameter.  We also obviously don't pass
1939  * FOLL_REMOTE in here.
1940  */
1941 long get_user_pages(unsigned long start, unsigned long nr_pages,
1942 		unsigned int gup_flags, struct page **pages,
1943 		struct vm_area_struct **vmas)
1944 {
1945 	/*
1946 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1947 	 * never directly by the caller, so enforce that with an assertion:
1948 	 */
1949 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1950 		return -EINVAL;
1951 
1952 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1953 				     pages, vmas, gup_flags | FOLL_TOUCH);
1954 }
1955 EXPORT_SYMBOL(get_user_pages);
1956 
1957 /*
1958  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1959  * paths better by using either get_user_pages_locked() or
1960  * get_user_pages_unlocked().
1961  *
1962  * get_user_pages_locked() is suitable to replace the form:
1963  *
1964  *      down_read(&mm->mmap_sem);
1965  *      do_something()
1966  *      get_user_pages(tsk, mm, ..., pages, NULL);
1967  *      up_read(&mm->mmap_sem);
1968  *
1969  *  to:
1970  *
1971  *      int locked = 1;
1972  *      down_read(&mm->mmap_sem);
1973  *      do_something()
1974  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1975  *      if (locked)
1976  *          up_read(&mm->mmap_sem);
1977  */
1978 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1979 			   unsigned int gup_flags, struct page **pages,
1980 			   int *locked)
1981 {
1982 	/*
1983 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1984 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1985 	 * vmas.  As there are no users of this flag in this call we simply
1986 	 * disallow this option for now.
1987 	 */
1988 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1989 		return -EINVAL;
1990 
1991 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1992 				       pages, NULL, locked,
1993 				       gup_flags | FOLL_TOUCH);
1994 }
1995 EXPORT_SYMBOL(get_user_pages_locked);
1996 
1997 /*
1998  * get_user_pages_unlocked() is suitable to replace the form:
1999  *
2000  *      down_read(&mm->mmap_sem);
2001  *      get_user_pages(tsk, mm, ..., pages, NULL);
2002  *      up_read(&mm->mmap_sem);
2003  *
2004  *  with:
2005  *
2006  *      get_user_pages_unlocked(tsk, mm, ..., pages);
2007  *
2008  * It is functionally equivalent to get_user_pages_fast so
2009  * get_user_pages_fast should be used instead if specific gup_flags
2010  * (e.g. FOLL_FORCE) are not required.
2011  */
2012 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2013 			     struct page **pages, unsigned int gup_flags)
2014 {
2015 	struct mm_struct *mm = current->mm;
2016 	int locked = 1;
2017 	long ret;
2018 
2019 	/*
2020 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2021 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2022 	 * vmas.  As there are no users of this flag in this call we simply
2023 	 * disallow this option for now.
2024 	 */
2025 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2026 		return -EINVAL;
2027 
2028 	down_read(&mm->mmap_sem);
2029 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2030 				      &locked, gup_flags | FOLL_TOUCH);
2031 	if (locked)
2032 		up_read(&mm->mmap_sem);
2033 	return ret;
2034 }
2035 EXPORT_SYMBOL(get_user_pages_unlocked);
2036 
2037 /*
2038  * Fast GUP
2039  *
2040  * get_user_pages_fast attempts to pin user pages by walking the page
2041  * tables directly and avoids taking locks. Thus the walker needs to be
2042  * protected from page table pages being freed from under it, and should
2043  * block any THP splits.
2044  *
2045  * One way to achieve this is to have the walker disable interrupts, and
2046  * rely on IPIs from the TLB flushing code blocking before the page table
2047  * pages are freed. This is unsuitable for architectures that do not need
2048  * to broadcast an IPI when invalidating TLBs.
2049  *
2050  * Another way to achieve this is to batch up page table containing pages
2051  * belonging to more than one mm_user, then rcu_sched a callback to free those
2052  * pages. Disabling interrupts will allow the fast_gup walker to both block
2053  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2054  * (which is a relatively rare event). The code below adopts this strategy.
2055  *
2056  * Before activating this code, please be aware that the following assumptions
2057  * are currently made:
2058  *
2059  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2060  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2061  *
2062  *  *) ptes can be read atomically by the architecture.
2063  *
2064  *  *) access_ok is sufficient to validate userspace address ranges.
2065  *
2066  * The last two assumptions can be relaxed by the addition of helper functions.
2067  *
2068  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2069  */
2070 #ifdef CONFIG_HAVE_FAST_GUP
2071 
2072 static void put_compound_head(struct page *page, int refs, unsigned int flags)
2073 {
2074 	if (flags & FOLL_PIN) {
2075 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2076 				    refs);
2077 
2078 		if (hpage_pincount_available(page))
2079 			hpage_pincount_sub(page, refs);
2080 		else
2081 			refs *= GUP_PIN_COUNTING_BIAS;
2082 	}
2083 
2084 	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2085 	/*
2086 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2087 	 * ref needs a put_page().
2088 	 */
2089 	if (refs > 1)
2090 		page_ref_sub(page, refs - 1);
2091 	put_page(page);
2092 }
2093 
2094 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2095 
2096 /*
2097  * WARNING: only to be used in the get_user_pages_fast() implementation.
2098  *
2099  * With get_user_pages_fast(), we walk down the pagetables without taking any
2100  * locks.  For this we would like to load the pointers atomically, but sometimes
2101  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2102  * we do have is the guarantee that a PTE will only either go from not present
2103  * to present, or present to not present or both -- it will not switch to a
2104  * completely different present page without a TLB flush in between; something
2105  * that we are blocking by holding interrupts off.
2106  *
2107  * Setting ptes from not present to present goes:
2108  *
2109  *   ptep->pte_high = h;
2110  *   smp_wmb();
2111  *   ptep->pte_low = l;
2112  *
2113  * And present to not present goes:
2114  *
2115  *   ptep->pte_low = 0;
2116  *   smp_wmb();
2117  *   ptep->pte_high = 0;
2118  *
2119  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2120  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2121  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2122  * picked up a changed pte high. We might have gotten rubbish values from
2123  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2124  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2125  * operates on present ptes we're safe.
2126  */
2127 static inline pte_t gup_get_pte(pte_t *ptep)
2128 {
2129 	pte_t pte;
2130 
2131 	do {
2132 		pte.pte_low = ptep->pte_low;
2133 		smp_rmb();
2134 		pte.pte_high = ptep->pte_high;
2135 		smp_rmb();
2136 	} while (unlikely(pte.pte_low != ptep->pte_low));
2137 
2138 	return pte;
2139 }
2140 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2141 /*
2142  * We require that the PTE can be read atomically.
2143  */
2144 static inline pte_t gup_get_pte(pte_t *ptep)
2145 {
2146 	return READ_ONCE(*ptep);
2147 }
2148 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2149 
2150 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2151 					    unsigned int flags,
2152 					    struct page **pages)
2153 {
2154 	while ((*nr) - nr_start) {
2155 		struct page *page = pages[--(*nr)];
2156 
2157 		ClearPageReferenced(page);
2158 		if (flags & FOLL_PIN)
2159 			unpin_user_page(page);
2160 		else
2161 			put_page(page);
2162 	}
2163 }
2164 
2165 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2166 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2167 			 unsigned int flags, struct page **pages, int *nr)
2168 {
2169 	struct dev_pagemap *pgmap = NULL;
2170 	int nr_start = *nr, ret = 0;
2171 	pte_t *ptep, *ptem;
2172 
2173 	ptem = ptep = pte_offset_map(&pmd, addr);
2174 	do {
2175 		pte_t pte = gup_get_pte(ptep);
2176 		struct page *head, *page;
2177 
2178 		/*
2179 		 * Similar to the PMD case below, NUMA hinting must take slow
2180 		 * path using the pte_protnone check.
2181 		 */
2182 		if (pte_protnone(pte))
2183 			goto pte_unmap;
2184 
2185 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2186 			goto pte_unmap;
2187 
2188 		if (pte_devmap(pte)) {
2189 			if (unlikely(flags & FOLL_LONGTERM))
2190 				goto pte_unmap;
2191 
2192 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2193 			if (unlikely(!pgmap)) {
2194 				undo_dev_pagemap(nr, nr_start, flags, pages);
2195 				goto pte_unmap;
2196 			}
2197 		} else if (pte_special(pte))
2198 			goto pte_unmap;
2199 
2200 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2201 		page = pte_page(pte);
2202 
2203 		head = try_grab_compound_head(page, 1, flags);
2204 		if (!head)
2205 			goto pte_unmap;
2206 
2207 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2208 			put_compound_head(head, 1, flags);
2209 			goto pte_unmap;
2210 		}
2211 
2212 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2213 
2214 		/*
2215 		 * We need to make the page accessible if and only if we are
2216 		 * going to access its content (the FOLL_PIN case).  Please
2217 		 * see Documentation/core-api/pin_user_pages.rst for
2218 		 * details.
2219 		 */
2220 		if (flags & FOLL_PIN) {
2221 			ret = arch_make_page_accessible(page);
2222 			if (ret) {
2223 				unpin_user_page(page);
2224 				goto pte_unmap;
2225 			}
2226 		}
2227 		SetPageReferenced(page);
2228 		pages[*nr] = page;
2229 		(*nr)++;
2230 
2231 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2232 
2233 	ret = 1;
2234 
2235 pte_unmap:
2236 	if (pgmap)
2237 		put_dev_pagemap(pgmap);
2238 	pte_unmap(ptem);
2239 	return ret;
2240 }
2241 #else
2242 
2243 /*
2244  * If we can't determine whether or not a pte is special, then fail immediately
2245  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2246  * to be special.
2247  *
2248  * For a futex to be placed on a THP tail page, get_futex_key requires a
2249  * __get_user_pages_fast implementation that can pin pages. Thus it's still
2250  * useful to have gup_huge_pmd even if we can't operate on ptes.
2251  */
2252 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2253 			 unsigned int flags, struct page **pages, int *nr)
2254 {
2255 	return 0;
2256 }
2257 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2258 
2259 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2260 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2261 			     unsigned long end, unsigned int flags,
2262 			     struct page **pages, int *nr)
2263 {
2264 	int nr_start = *nr;
2265 	struct dev_pagemap *pgmap = NULL;
2266 
2267 	do {
2268 		struct page *page = pfn_to_page(pfn);
2269 
2270 		pgmap = get_dev_pagemap(pfn, pgmap);
2271 		if (unlikely(!pgmap)) {
2272 			undo_dev_pagemap(nr, nr_start, flags, pages);
2273 			return 0;
2274 		}
2275 		SetPageReferenced(page);
2276 		pages[*nr] = page;
2277 		if (unlikely(!try_grab_page(page, flags))) {
2278 			undo_dev_pagemap(nr, nr_start, flags, pages);
2279 			return 0;
2280 		}
2281 		(*nr)++;
2282 		pfn++;
2283 	} while (addr += PAGE_SIZE, addr != end);
2284 
2285 	if (pgmap)
2286 		put_dev_pagemap(pgmap);
2287 	return 1;
2288 }
2289 
2290 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2291 				 unsigned long end, unsigned int flags,
2292 				 struct page **pages, int *nr)
2293 {
2294 	unsigned long fault_pfn;
2295 	int nr_start = *nr;
2296 
2297 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2298 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2299 		return 0;
2300 
2301 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2302 		undo_dev_pagemap(nr, nr_start, flags, pages);
2303 		return 0;
2304 	}
2305 	return 1;
2306 }
2307 
2308 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2309 				 unsigned long end, unsigned int flags,
2310 				 struct page **pages, int *nr)
2311 {
2312 	unsigned long fault_pfn;
2313 	int nr_start = *nr;
2314 
2315 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2316 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2317 		return 0;
2318 
2319 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2320 		undo_dev_pagemap(nr, nr_start, flags, pages);
2321 		return 0;
2322 	}
2323 	return 1;
2324 }
2325 #else
2326 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2327 				 unsigned long end, unsigned int flags,
2328 				 struct page **pages, int *nr)
2329 {
2330 	BUILD_BUG();
2331 	return 0;
2332 }
2333 
2334 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2335 				 unsigned long end, unsigned int flags,
2336 				 struct page **pages, int *nr)
2337 {
2338 	BUILD_BUG();
2339 	return 0;
2340 }
2341 #endif
2342 
2343 static int record_subpages(struct page *page, unsigned long addr,
2344 			   unsigned long end, struct page **pages)
2345 {
2346 	int nr;
2347 
2348 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2349 		pages[nr++] = page++;
2350 
2351 	return nr;
2352 }
2353 
2354 #ifdef CONFIG_ARCH_HAS_HUGEPD
2355 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2356 				      unsigned long sz)
2357 {
2358 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2359 	return (__boundary - 1 < end - 1) ? __boundary : end;
2360 }
2361 
2362 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2363 		       unsigned long end, unsigned int flags,
2364 		       struct page **pages, int *nr)
2365 {
2366 	unsigned long pte_end;
2367 	struct page *head, *page;
2368 	pte_t pte;
2369 	int refs;
2370 
2371 	pte_end = (addr + sz) & ~(sz-1);
2372 	if (pte_end < end)
2373 		end = pte_end;
2374 
2375 	pte = READ_ONCE(*ptep);
2376 
2377 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2378 		return 0;
2379 
2380 	/* hugepages are never "special" */
2381 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2382 
2383 	head = pte_page(pte);
2384 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2385 	refs = record_subpages(page, addr, end, pages + *nr);
2386 
2387 	head = try_grab_compound_head(head, refs, flags);
2388 	if (!head)
2389 		return 0;
2390 
2391 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2392 		put_compound_head(head, refs, flags);
2393 		return 0;
2394 	}
2395 
2396 	*nr += refs;
2397 	SetPageReferenced(head);
2398 	return 1;
2399 }
2400 
2401 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2402 		unsigned int pdshift, unsigned long end, unsigned int flags,
2403 		struct page **pages, int *nr)
2404 {
2405 	pte_t *ptep;
2406 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2407 	unsigned long next;
2408 
2409 	ptep = hugepte_offset(hugepd, addr, pdshift);
2410 	do {
2411 		next = hugepte_addr_end(addr, end, sz);
2412 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2413 			return 0;
2414 	} while (ptep++, addr = next, addr != end);
2415 
2416 	return 1;
2417 }
2418 #else
2419 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2420 		unsigned int pdshift, unsigned long end, unsigned int flags,
2421 		struct page **pages, int *nr)
2422 {
2423 	return 0;
2424 }
2425 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2426 
2427 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2428 			unsigned long end, unsigned int flags,
2429 			struct page **pages, int *nr)
2430 {
2431 	struct page *head, *page;
2432 	int refs;
2433 
2434 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2435 		return 0;
2436 
2437 	if (pmd_devmap(orig)) {
2438 		if (unlikely(flags & FOLL_LONGTERM))
2439 			return 0;
2440 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2441 					     pages, nr);
2442 	}
2443 
2444 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2445 	refs = record_subpages(page, addr, end, pages + *nr);
2446 
2447 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2448 	if (!head)
2449 		return 0;
2450 
2451 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2452 		put_compound_head(head, refs, flags);
2453 		return 0;
2454 	}
2455 
2456 	*nr += refs;
2457 	SetPageReferenced(head);
2458 	return 1;
2459 }
2460 
2461 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2462 			unsigned long end, unsigned int flags,
2463 			struct page **pages, int *nr)
2464 {
2465 	struct page *head, *page;
2466 	int refs;
2467 
2468 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2469 		return 0;
2470 
2471 	if (pud_devmap(orig)) {
2472 		if (unlikely(flags & FOLL_LONGTERM))
2473 			return 0;
2474 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2475 					     pages, nr);
2476 	}
2477 
2478 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2479 	refs = record_subpages(page, addr, end, pages + *nr);
2480 
2481 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2482 	if (!head)
2483 		return 0;
2484 
2485 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2486 		put_compound_head(head, refs, flags);
2487 		return 0;
2488 	}
2489 
2490 	*nr += refs;
2491 	SetPageReferenced(head);
2492 	return 1;
2493 }
2494 
2495 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2496 			unsigned long end, unsigned int flags,
2497 			struct page **pages, int *nr)
2498 {
2499 	int refs;
2500 	struct page *head, *page;
2501 
2502 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2503 		return 0;
2504 
2505 	BUILD_BUG_ON(pgd_devmap(orig));
2506 
2507 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2508 	refs = record_subpages(page, addr, end, pages + *nr);
2509 
2510 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2511 	if (!head)
2512 		return 0;
2513 
2514 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2515 		put_compound_head(head, refs, flags);
2516 		return 0;
2517 	}
2518 
2519 	*nr += refs;
2520 	SetPageReferenced(head);
2521 	return 1;
2522 }
2523 
2524 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2525 		unsigned int flags, struct page **pages, int *nr)
2526 {
2527 	unsigned long next;
2528 	pmd_t *pmdp;
2529 
2530 	pmdp = pmd_offset(&pud, addr);
2531 	do {
2532 		pmd_t pmd = READ_ONCE(*pmdp);
2533 
2534 		next = pmd_addr_end(addr, end);
2535 		if (!pmd_present(pmd))
2536 			return 0;
2537 
2538 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2539 			     pmd_devmap(pmd))) {
2540 			/*
2541 			 * NUMA hinting faults need to be handled in the GUP
2542 			 * slowpath for accounting purposes and so that they
2543 			 * can be serialised against THP migration.
2544 			 */
2545 			if (pmd_protnone(pmd))
2546 				return 0;
2547 
2548 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2549 				pages, nr))
2550 				return 0;
2551 
2552 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2553 			/*
2554 			 * architecture have different format for hugetlbfs
2555 			 * pmd format and THP pmd format
2556 			 */
2557 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2558 					 PMD_SHIFT, next, flags, pages, nr))
2559 				return 0;
2560 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2561 			return 0;
2562 	} while (pmdp++, addr = next, addr != end);
2563 
2564 	return 1;
2565 }
2566 
2567 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2568 			 unsigned int flags, struct page **pages, int *nr)
2569 {
2570 	unsigned long next;
2571 	pud_t *pudp;
2572 
2573 	pudp = pud_offset(&p4d, addr);
2574 	do {
2575 		pud_t pud = READ_ONCE(*pudp);
2576 
2577 		next = pud_addr_end(addr, end);
2578 		if (unlikely(!pud_present(pud)))
2579 			return 0;
2580 		if (unlikely(pud_huge(pud))) {
2581 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2582 					  pages, nr))
2583 				return 0;
2584 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2585 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2586 					 PUD_SHIFT, next, flags, pages, nr))
2587 				return 0;
2588 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2589 			return 0;
2590 	} while (pudp++, addr = next, addr != end);
2591 
2592 	return 1;
2593 }
2594 
2595 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2596 			 unsigned int flags, struct page **pages, int *nr)
2597 {
2598 	unsigned long next;
2599 	p4d_t *p4dp;
2600 
2601 	p4dp = p4d_offset(&pgd, addr);
2602 	do {
2603 		p4d_t p4d = READ_ONCE(*p4dp);
2604 
2605 		next = p4d_addr_end(addr, end);
2606 		if (p4d_none(p4d))
2607 			return 0;
2608 		BUILD_BUG_ON(p4d_huge(p4d));
2609 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2610 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2611 					 P4D_SHIFT, next, flags, pages, nr))
2612 				return 0;
2613 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2614 			return 0;
2615 	} while (p4dp++, addr = next, addr != end);
2616 
2617 	return 1;
2618 }
2619 
2620 static void gup_pgd_range(unsigned long addr, unsigned long end,
2621 		unsigned int flags, struct page **pages, int *nr)
2622 {
2623 	unsigned long next;
2624 	pgd_t *pgdp;
2625 
2626 	pgdp = pgd_offset(current->mm, addr);
2627 	do {
2628 		pgd_t pgd = READ_ONCE(*pgdp);
2629 
2630 		next = pgd_addr_end(addr, end);
2631 		if (pgd_none(pgd))
2632 			return;
2633 		if (unlikely(pgd_huge(pgd))) {
2634 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2635 					  pages, nr))
2636 				return;
2637 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2638 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2639 					 PGDIR_SHIFT, next, flags, pages, nr))
2640 				return;
2641 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2642 			return;
2643 	} while (pgdp++, addr = next, addr != end);
2644 }
2645 #else
2646 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2647 		unsigned int flags, struct page **pages, int *nr)
2648 {
2649 }
2650 #endif /* CONFIG_HAVE_FAST_GUP */
2651 
2652 #ifndef gup_fast_permitted
2653 /*
2654  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2655  * we need to fall back to the slow version:
2656  */
2657 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2658 {
2659 	return true;
2660 }
2661 #endif
2662 
2663 /*
2664  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2665  * the regular GUP.
2666  * Note a difference with get_user_pages_fast: this always returns the
2667  * number of pages pinned, 0 if no pages were pinned.
2668  *
2669  * If the architecture does not support this function, simply return with no
2670  * pages pinned.
2671  */
2672 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2673 			  struct page **pages)
2674 {
2675 	unsigned long len, end;
2676 	unsigned long flags;
2677 	int nr_pinned = 0;
2678 	/*
2679 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2680 	 * because gup fast is always a "pin with a +1 page refcount" request.
2681 	 */
2682 	unsigned int gup_flags = FOLL_GET;
2683 
2684 	if (write)
2685 		gup_flags |= FOLL_WRITE;
2686 
2687 	start = untagged_addr(start) & PAGE_MASK;
2688 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2689 	end = start + len;
2690 
2691 	if (end <= start)
2692 		return 0;
2693 	if (unlikely(!access_ok((void __user *)start, len)))
2694 		return 0;
2695 
2696 	/*
2697 	 * Disable interrupts.  We use the nested form as we can already have
2698 	 * interrupts disabled by get_futex_key.
2699 	 *
2700 	 * With interrupts disabled, we block page table pages from being
2701 	 * freed from under us. See struct mmu_table_batch comments in
2702 	 * include/asm-generic/tlb.h for more details.
2703 	 *
2704 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2705 	 * block IPIs that come from THPs splitting.
2706 	 */
2707 
2708 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2709 	    gup_fast_permitted(start, end)) {
2710 		local_irq_save(flags);
2711 		gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2712 		local_irq_restore(flags);
2713 	}
2714 
2715 	return nr_pinned;
2716 }
2717 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2718 
2719 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2720 				   unsigned int gup_flags, struct page **pages)
2721 {
2722 	int ret;
2723 
2724 	/*
2725 	 * FIXME: FOLL_LONGTERM does not work with
2726 	 * get_user_pages_unlocked() (see comments in that function)
2727 	 */
2728 	if (gup_flags & FOLL_LONGTERM) {
2729 		down_read(&current->mm->mmap_sem);
2730 		ret = __gup_longterm_locked(current, current->mm,
2731 					    start, nr_pages,
2732 					    pages, NULL, gup_flags);
2733 		up_read(&current->mm->mmap_sem);
2734 	} else {
2735 		ret = get_user_pages_unlocked(start, nr_pages,
2736 					      pages, gup_flags);
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2743 					unsigned int gup_flags,
2744 					struct page **pages)
2745 {
2746 	unsigned long addr, len, end;
2747 	int nr_pinned = 0, ret = 0;
2748 
2749 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2750 				       FOLL_FORCE | FOLL_PIN | FOLL_GET)))
2751 		return -EINVAL;
2752 
2753 	start = untagged_addr(start) & PAGE_MASK;
2754 	addr = start;
2755 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2756 	end = start + len;
2757 
2758 	if (end <= start)
2759 		return 0;
2760 	if (unlikely(!access_ok((void __user *)start, len)))
2761 		return -EFAULT;
2762 
2763 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2764 	    gup_fast_permitted(start, end)) {
2765 		local_irq_disable();
2766 		gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
2767 		local_irq_enable();
2768 		ret = nr_pinned;
2769 	}
2770 
2771 	if (nr_pinned < nr_pages) {
2772 		/* Try to get the remaining pages with get_user_pages */
2773 		start += nr_pinned << PAGE_SHIFT;
2774 		pages += nr_pinned;
2775 
2776 		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2777 					      gup_flags, pages);
2778 
2779 		/* Have to be a bit careful with return values */
2780 		if (nr_pinned > 0) {
2781 			if (ret < 0)
2782 				ret = nr_pinned;
2783 			else
2784 				ret += nr_pinned;
2785 		}
2786 	}
2787 
2788 	return ret;
2789 }
2790 
2791 /**
2792  * get_user_pages_fast() - pin user pages in memory
2793  * @start:      starting user address
2794  * @nr_pages:   number of pages from start to pin
2795  * @gup_flags:  flags modifying pin behaviour
2796  * @pages:      array that receives pointers to the pages pinned.
2797  *              Should be at least nr_pages long.
2798  *
2799  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2800  * If not successful, it will fall back to taking the lock and
2801  * calling get_user_pages().
2802  *
2803  * Returns number of pages pinned. This may be fewer than the number requested.
2804  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2805  * -errno.
2806  */
2807 int get_user_pages_fast(unsigned long start, int nr_pages,
2808 			unsigned int gup_flags, struct page **pages)
2809 {
2810 	/*
2811 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2812 	 * never directly by the caller, so enforce that:
2813 	 */
2814 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2815 		return -EINVAL;
2816 
2817 	/*
2818 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2819 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2820 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2821 	 * request.
2822 	 */
2823 	gup_flags |= FOLL_GET;
2824 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2825 }
2826 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2827 
2828 /**
2829  * pin_user_pages_fast() - pin user pages in memory without taking locks
2830  *
2831  * @start:      starting user address
2832  * @nr_pages:   number of pages from start to pin
2833  * @gup_flags:  flags modifying pin behaviour
2834  * @pages:      array that receives pointers to the pages pinned.
2835  *              Should be at least nr_pages long.
2836  *
2837  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2838  * get_user_pages_fast() for documentation on the function arguments, because
2839  * the arguments here are identical.
2840  *
2841  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2842  * see Documentation/vm/pin_user_pages.rst for further details.
2843  *
2844  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2845  * is NOT intended for Case 2 (RDMA: long-term pins).
2846  */
2847 int pin_user_pages_fast(unsigned long start, int nr_pages,
2848 			unsigned int gup_flags, struct page **pages)
2849 {
2850 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2851 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2852 		return -EINVAL;
2853 
2854 	gup_flags |= FOLL_PIN;
2855 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2856 }
2857 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2858 
2859 /**
2860  * pin_user_pages_remote() - pin pages of a remote process (task != current)
2861  *
2862  * @tsk:	the task_struct to use for page fault accounting, or
2863  *		NULL if faults are not to be recorded.
2864  * @mm:		mm_struct of target mm
2865  * @start:	starting user address
2866  * @nr_pages:	number of pages from start to pin
2867  * @gup_flags:	flags modifying lookup behaviour
2868  * @pages:	array that receives pointers to the pages pinned.
2869  *		Should be at least nr_pages long. Or NULL, if caller
2870  *		only intends to ensure the pages are faulted in.
2871  * @vmas:	array of pointers to vmas corresponding to each page.
2872  *		Or NULL if the caller does not require them.
2873  * @locked:	pointer to lock flag indicating whether lock is held and
2874  *		subsequently whether VM_FAULT_RETRY functionality can be
2875  *		utilised. Lock must initially be held.
2876  *
2877  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2878  * get_user_pages_remote() for documentation on the function arguments, because
2879  * the arguments here are identical.
2880  *
2881  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2882  * see Documentation/vm/pin_user_pages.rst for details.
2883  *
2884  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2885  * is NOT intended for Case 2 (RDMA: long-term pins).
2886  */
2887 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2888 			   unsigned long start, unsigned long nr_pages,
2889 			   unsigned int gup_flags, struct page **pages,
2890 			   struct vm_area_struct **vmas, int *locked)
2891 {
2892 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2893 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2894 		return -EINVAL;
2895 
2896 	gup_flags |= FOLL_PIN;
2897 	return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2898 				       pages, vmas, locked);
2899 }
2900 EXPORT_SYMBOL(pin_user_pages_remote);
2901 
2902 /**
2903  * pin_user_pages() - pin user pages in memory for use by other devices
2904  *
2905  * @start:	starting user address
2906  * @nr_pages:	number of pages from start to pin
2907  * @gup_flags:	flags modifying lookup behaviour
2908  * @pages:	array that receives pointers to the pages pinned.
2909  *		Should be at least nr_pages long. Or NULL, if caller
2910  *		only intends to ensure the pages are faulted in.
2911  * @vmas:	array of pointers to vmas corresponding to each page.
2912  *		Or NULL if the caller does not require them.
2913  *
2914  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2915  * FOLL_PIN is set.
2916  *
2917  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2918  * see Documentation/vm/pin_user_pages.rst for details.
2919  *
2920  * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2921  * is NOT intended for Case 2 (RDMA: long-term pins).
2922  */
2923 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2924 		    unsigned int gup_flags, struct page **pages,
2925 		    struct vm_area_struct **vmas)
2926 {
2927 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2928 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2929 		return -EINVAL;
2930 
2931 	gup_flags |= FOLL_PIN;
2932 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
2933 				     pages, vmas, gup_flags);
2934 }
2935 EXPORT_SYMBOL(pin_user_pages);
2936