xref: /linux/mm/gup.c (revision d257f9bf06129613de539ea71ecea60848b662cd)
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
5 
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <linux/sched/signal.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
16 
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
20 
21 #include "internal.h"
22 
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 		unsigned int flags)
25 {
26 	/*
27 	 * When core dumping an enormous anonymous area that nobody
28 	 * has touched so far, we don't want to allocate unnecessary pages or
29 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
30 	 * then get_dump_page() will return NULL to leave a hole in the dump.
31 	 * But we can only make this optimization where a hole would surely
32 	 * be zero-filled if handle_mm_fault() actually did handle it.
33 	 */
34 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 		return ERR_PTR(-EFAULT);
36 	return NULL;
37 }
38 
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 		pte_t *pte, unsigned int flags)
41 {
42 	/* No page to get reference */
43 	if (flags & FOLL_GET)
44 		return -EFAULT;
45 
46 	if (flags & FOLL_TOUCH) {
47 		pte_t entry = *pte;
48 
49 		if (flags & FOLL_WRITE)
50 			entry = pte_mkdirty(entry);
51 		entry = pte_mkyoung(entry);
52 
53 		if (!pte_same(*pte, entry)) {
54 			set_pte_at(vma->vm_mm, address, pte, entry);
55 			update_mmu_cache(vma, address, pte);
56 		}
57 	}
58 
59 	/* Proper page table entry exists, but no corresponding struct page */
60 	return -EEXIST;
61 }
62 
63 /*
64  * FOLL_FORCE can write to even unwritable pte's, but only
65  * after we've gone through a COW cycle and they are dirty.
66  */
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68 {
69 	return pte_write(pte) ||
70 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71 }
72 
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 		unsigned long address, pmd_t *pmd, unsigned int flags)
75 {
76 	struct mm_struct *mm = vma->vm_mm;
77 	struct dev_pagemap *pgmap = NULL;
78 	struct page *page;
79 	spinlock_t *ptl;
80 	pte_t *ptep, pte;
81 
82 retry:
83 	if (unlikely(pmd_bad(*pmd)))
84 		return no_page_table(vma, flags);
85 
86 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 	pte = *ptep;
88 	if (!pte_present(pte)) {
89 		swp_entry_t entry;
90 		/*
91 		 * KSM's break_ksm() relies upon recognizing a ksm page
92 		 * even while it is being migrated, so for that case we
93 		 * need migration_entry_wait().
94 		 */
95 		if (likely(!(flags & FOLL_MIGRATION)))
96 			goto no_page;
97 		if (pte_none(pte))
98 			goto no_page;
99 		entry = pte_to_swp_entry(pte);
100 		if (!is_migration_entry(entry))
101 			goto no_page;
102 		pte_unmap_unlock(ptep, ptl);
103 		migration_entry_wait(mm, pmd, address);
104 		goto retry;
105 	}
106 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 		goto no_page;
108 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 		pte_unmap_unlock(ptep, ptl);
110 		return NULL;
111 	}
112 
113 	page = vm_normal_page(vma, address, pte);
114 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 		/*
116 		 * Only return device mapping pages in the FOLL_GET case since
117 		 * they are only valid while holding the pgmap reference.
118 		 */
119 		pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 		if (pgmap)
121 			page = pte_page(pte);
122 		else
123 			goto no_page;
124 	} else if (unlikely(!page)) {
125 		if (flags & FOLL_DUMP) {
126 			/* Avoid special (like zero) pages in core dumps */
127 			page = ERR_PTR(-EFAULT);
128 			goto out;
129 		}
130 
131 		if (is_zero_pfn(pte_pfn(pte))) {
132 			page = pte_page(pte);
133 		} else {
134 			int ret;
135 
136 			ret = follow_pfn_pte(vma, address, ptep, flags);
137 			page = ERR_PTR(ret);
138 			goto out;
139 		}
140 	}
141 
142 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 		int ret;
144 		get_page(page);
145 		pte_unmap_unlock(ptep, ptl);
146 		lock_page(page);
147 		ret = split_huge_page(page);
148 		unlock_page(page);
149 		put_page(page);
150 		if (ret)
151 			return ERR_PTR(ret);
152 		goto retry;
153 	}
154 
155 	if (flags & FOLL_GET) {
156 		get_page(page);
157 
158 		/* drop the pgmap reference now that we hold the page */
159 		if (pgmap) {
160 			put_dev_pagemap(pgmap);
161 			pgmap = NULL;
162 		}
163 	}
164 	if (flags & FOLL_TOUCH) {
165 		if ((flags & FOLL_WRITE) &&
166 		    !pte_dirty(pte) && !PageDirty(page))
167 			set_page_dirty(page);
168 		/*
169 		 * pte_mkyoung() would be more correct here, but atomic care
170 		 * is needed to avoid losing the dirty bit: it is easier to use
171 		 * mark_page_accessed().
172 		 */
173 		mark_page_accessed(page);
174 	}
175 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 		/* Do not mlock pte-mapped THP */
177 		if (PageTransCompound(page))
178 			goto out;
179 
180 		/*
181 		 * The preliminary mapping check is mainly to avoid the
182 		 * pointless overhead of lock_page on the ZERO_PAGE
183 		 * which might bounce very badly if there is contention.
184 		 *
185 		 * If the page is already locked, we don't need to
186 		 * handle it now - vmscan will handle it later if and
187 		 * when it attempts to reclaim the page.
188 		 */
189 		if (page->mapping && trylock_page(page)) {
190 			lru_add_drain();  /* push cached pages to LRU */
191 			/*
192 			 * Because we lock page here, and migration is
193 			 * blocked by the pte's page reference, and we
194 			 * know the page is still mapped, we don't even
195 			 * need to check for file-cache page truncation.
196 			 */
197 			mlock_vma_page(page);
198 			unlock_page(page);
199 		}
200 	}
201 out:
202 	pte_unmap_unlock(ptep, ptl);
203 	return page;
204 no_page:
205 	pte_unmap_unlock(ptep, ptl);
206 	if (!pte_none(pte))
207 		return NULL;
208 	return no_page_table(vma, flags);
209 }
210 
211 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 				    unsigned long address, pud_t *pudp,
213 				    unsigned int flags, unsigned int *page_mask)
214 {
215 	pmd_t *pmd;
216 	spinlock_t *ptl;
217 	struct page *page;
218 	struct mm_struct *mm = vma->vm_mm;
219 
220 	pmd = pmd_offset(pudp, address);
221 	if (pmd_none(*pmd))
222 		return no_page_table(vma, flags);
223 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
224 		page = follow_huge_pmd(mm, address, pmd, flags);
225 		if (page)
226 			return page;
227 		return no_page_table(vma, flags);
228 	}
229 	if (is_hugepd(__hugepd(pmd_val(*pmd)))) {
230 		page = follow_huge_pd(vma, address,
231 				      __hugepd(pmd_val(*pmd)), flags,
232 				      PMD_SHIFT);
233 		if (page)
234 			return page;
235 		return no_page_table(vma, flags);
236 	}
237 	if (pmd_devmap(*pmd)) {
238 		ptl = pmd_lock(mm, pmd);
239 		page = follow_devmap_pmd(vma, address, pmd, flags);
240 		spin_unlock(ptl);
241 		if (page)
242 			return page;
243 	}
244 	if (likely(!pmd_trans_huge(*pmd)))
245 		return follow_page_pte(vma, address, pmd, flags);
246 
247 	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
248 		return no_page_table(vma, flags);
249 
250 	ptl = pmd_lock(mm, pmd);
251 	if (unlikely(!pmd_trans_huge(*pmd))) {
252 		spin_unlock(ptl);
253 		return follow_page_pte(vma, address, pmd, flags);
254 	}
255 	if (flags & FOLL_SPLIT) {
256 		int ret;
257 		page = pmd_page(*pmd);
258 		if (is_huge_zero_page(page)) {
259 			spin_unlock(ptl);
260 			ret = 0;
261 			split_huge_pmd(vma, pmd, address);
262 			if (pmd_trans_unstable(pmd))
263 				ret = -EBUSY;
264 		} else {
265 			get_page(page);
266 			spin_unlock(ptl);
267 			lock_page(page);
268 			ret = split_huge_page(page);
269 			unlock_page(page);
270 			put_page(page);
271 			if (pmd_none(*pmd))
272 				return no_page_table(vma, flags);
273 		}
274 
275 		return ret ? ERR_PTR(ret) :
276 			follow_page_pte(vma, address, pmd, flags);
277 	}
278 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
279 	spin_unlock(ptl);
280 	*page_mask = HPAGE_PMD_NR - 1;
281 	return page;
282 }
283 
284 
285 static struct page *follow_pud_mask(struct vm_area_struct *vma,
286 				    unsigned long address, p4d_t *p4dp,
287 				    unsigned int flags, unsigned int *page_mask)
288 {
289 	pud_t *pud;
290 	spinlock_t *ptl;
291 	struct page *page;
292 	struct mm_struct *mm = vma->vm_mm;
293 
294 	pud = pud_offset(p4dp, address);
295 	if (pud_none(*pud))
296 		return no_page_table(vma, flags);
297 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
298 		page = follow_huge_pud(mm, address, pud, flags);
299 		if (page)
300 			return page;
301 		return no_page_table(vma, flags);
302 	}
303 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
304 		page = follow_huge_pd(vma, address,
305 				      __hugepd(pud_val(*pud)), flags,
306 				      PUD_SHIFT);
307 		if (page)
308 			return page;
309 		return no_page_table(vma, flags);
310 	}
311 	if (pud_devmap(*pud)) {
312 		ptl = pud_lock(mm, pud);
313 		page = follow_devmap_pud(vma, address, pud, flags);
314 		spin_unlock(ptl);
315 		if (page)
316 			return page;
317 	}
318 	if (unlikely(pud_bad(*pud)))
319 		return no_page_table(vma, flags);
320 
321 	return follow_pmd_mask(vma, address, pud, flags, page_mask);
322 }
323 
324 
325 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
326 				    unsigned long address, pgd_t *pgdp,
327 				    unsigned int flags, unsigned int *page_mask)
328 {
329 	p4d_t *p4d;
330 	struct page *page;
331 
332 	p4d = p4d_offset(pgdp, address);
333 	if (p4d_none(*p4d))
334 		return no_page_table(vma, flags);
335 	BUILD_BUG_ON(p4d_huge(*p4d));
336 	if (unlikely(p4d_bad(*p4d)))
337 		return no_page_table(vma, flags);
338 
339 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
340 		page = follow_huge_pd(vma, address,
341 				      __hugepd(p4d_val(*p4d)), flags,
342 				      P4D_SHIFT);
343 		if (page)
344 			return page;
345 		return no_page_table(vma, flags);
346 	}
347 	return follow_pud_mask(vma, address, p4d, flags, page_mask);
348 }
349 
350 /**
351  * follow_page_mask - look up a page descriptor from a user-virtual address
352  * @vma: vm_area_struct mapping @address
353  * @address: virtual address to look up
354  * @flags: flags modifying lookup behaviour
355  * @page_mask: on output, *page_mask is set according to the size of the page
356  *
357  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
358  *
359  * Returns the mapped (struct page *), %NULL if no mapping exists, or
360  * an error pointer if there is a mapping to something not represented
361  * by a page descriptor (see also vm_normal_page()).
362  */
363 struct page *follow_page_mask(struct vm_area_struct *vma,
364 			      unsigned long address, unsigned int flags,
365 			      unsigned int *page_mask)
366 {
367 	pgd_t *pgd;
368 	struct page *page;
369 	struct mm_struct *mm = vma->vm_mm;
370 
371 	*page_mask = 0;
372 
373 	/* make this handle hugepd */
374 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
375 	if (!IS_ERR(page)) {
376 		BUG_ON(flags & FOLL_GET);
377 		return page;
378 	}
379 
380 	pgd = pgd_offset(mm, address);
381 
382 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
383 		return no_page_table(vma, flags);
384 
385 	if (pgd_huge(*pgd)) {
386 		page = follow_huge_pgd(mm, address, pgd, flags);
387 		if (page)
388 			return page;
389 		return no_page_table(vma, flags);
390 	}
391 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
392 		page = follow_huge_pd(vma, address,
393 				      __hugepd(pgd_val(*pgd)), flags,
394 				      PGDIR_SHIFT);
395 		if (page)
396 			return page;
397 		return no_page_table(vma, flags);
398 	}
399 
400 	return follow_p4d_mask(vma, address, pgd, flags, page_mask);
401 }
402 
403 static int get_gate_page(struct mm_struct *mm, unsigned long address,
404 		unsigned int gup_flags, struct vm_area_struct **vma,
405 		struct page **page)
406 {
407 	pgd_t *pgd;
408 	p4d_t *p4d;
409 	pud_t *pud;
410 	pmd_t *pmd;
411 	pte_t *pte;
412 	int ret = -EFAULT;
413 
414 	/* user gate pages are read-only */
415 	if (gup_flags & FOLL_WRITE)
416 		return -EFAULT;
417 	if (address > TASK_SIZE)
418 		pgd = pgd_offset_k(address);
419 	else
420 		pgd = pgd_offset_gate(mm, address);
421 	BUG_ON(pgd_none(*pgd));
422 	p4d = p4d_offset(pgd, address);
423 	BUG_ON(p4d_none(*p4d));
424 	pud = pud_offset(p4d, address);
425 	BUG_ON(pud_none(*pud));
426 	pmd = pmd_offset(pud, address);
427 	if (pmd_none(*pmd))
428 		return -EFAULT;
429 	VM_BUG_ON(pmd_trans_huge(*pmd));
430 	pte = pte_offset_map(pmd, address);
431 	if (pte_none(*pte))
432 		goto unmap;
433 	*vma = get_gate_vma(mm);
434 	if (!page)
435 		goto out;
436 	*page = vm_normal_page(*vma, address, *pte);
437 	if (!*page) {
438 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
439 			goto unmap;
440 		*page = pte_page(*pte);
441 	}
442 	get_page(*page);
443 out:
444 	ret = 0;
445 unmap:
446 	pte_unmap(pte);
447 	return ret;
448 }
449 
450 /*
451  * mmap_sem must be held on entry.  If @nonblocking != NULL and
452  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
453  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
454  */
455 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
456 		unsigned long address, unsigned int *flags, int *nonblocking)
457 {
458 	unsigned int fault_flags = 0;
459 	int ret;
460 
461 	/* mlock all present pages, but do not fault in new pages */
462 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
463 		return -ENOENT;
464 	if (*flags & FOLL_WRITE)
465 		fault_flags |= FAULT_FLAG_WRITE;
466 	if (*flags & FOLL_REMOTE)
467 		fault_flags |= FAULT_FLAG_REMOTE;
468 	if (nonblocking)
469 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
470 	if (*flags & FOLL_NOWAIT)
471 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
472 	if (*flags & FOLL_TRIED) {
473 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
474 		fault_flags |= FAULT_FLAG_TRIED;
475 	}
476 
477 	ret = handle_mm_fault(vma, address, fault_flags);
478 	if (ret & VM_FAULT_ERROR) {
479 		int err = vm_fault_to_errno(ret, *flags);
480 
481 		if (err)
482 			return err;
483 		BUG();
484 	}
485 
486 	if (tsk) {
487 		if (ret & VM_FAULT_MAJOR)
488 			tsk->maj_flt++;
489 		else
490 			tsk->min_flt++;
491 	}
492 
493 	if (ret & VM_FAULT_RETRY) {
494 		if (nonblocking)
495 			*nonblocking = 0;
496 		return -EBUSY;
497 	}
498 
499 	/*
500 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
501 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
502 	 * can thus safely do subsequent page lookups as if they were reads.
503 	 * But only do so when looping for pte_write is futile: in some cases
504 	 * userspace may also be wanting to write to the gotten user page,
505 	 * which a read fault here might prevent (a readonly page might get
506 	 * reCOWed by userspace write).
507 	 */
508 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
509 	        *flags |= FOLL_COW;
510 	return 0;
511 }
512 
513 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
514 {
515 	vm_flags_t vm_flags = vma->vm_flags;
516 	int write = (gup_flags & FOLL_WRITE);
517 	int foreign = (gup_flags & FOLL_REMOTE);
518 
519 	if (vm_flags & (VM_IO | VM_PFNMAP))
520 		return -EFAULT;
521 
522 	if (write) {
523 		if (!(vm_flags & VM_WRITE)) {
524 			if (!(gup_flags & FOLL_FORCE))
525 				return -EFAULT;
526 			/*
527 			 * We used to let the write,force case do COW in a
528 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
529 			 * set a breakpoint in a read-only mapping of an
530 			 * executable, without corrupting the file (yet only
531 			 * when that file had been opened for writing!).
532 			 * Anon pages in shared mappings are surprising: now
533 			 * just reject it.
534 			 */
535 			if (!is_cow_mapping(vm_flags))
536 				return -EFAULT;
537 		}
538 	} else if (!(vm_flags & VM_READ)) {
539 		if (!(gup_flags & FOLL_FORCE))
540 			return -EFAULT;
541 		/*
542 		 * Is there actually any vma we can reach here which does not
543 		 * have VM_MAYREAD set?
544 		 */
545 		if (!(vm_flags & VM_MAYREAD))
546 			return -EFAULT;
547 	}
548 	/*
549 	 * gups are always data accesses, not instruction
550 	 * fetches, so execute=false here
551 	 */
552 	if (!arch_vma_access_permitted(vma, write, false, foreign))
553 		return -EFAULT;
554 	return 0;
555 }
556 
557 /**
558  * __get_user_pages() - pin user pages in memory
559  * @tsk:	task_struct of target task
560  * @mm:		mm_struct of target mm
561  * @start:	starting user address
562  * @nr_pages:	number of pages from start to pin
563  * @gup_flags:	flags modifying pin behaviour
564  * @pages:	array that receives pointers to the pages pinned.
565  *		Should be at least nr_pages long. Or NULL, if caller
566  *		only intends to ensure the pages are faulted in.
567  * @vmas:	array of pointers to vmas corresponding to each page.
568  *		Or NULL if the caller does not require them.
569  * @nonblocking: whether waiting for disk IO or mmap_sem contention
570  *
571  * Returns number of pages pinned. This may be fewer than the number
572  * requested. If nr_pages is 0 or negative, returns 0. If no pages
573  * were pinned, returns -errno. Each page returned must be released
574  * with a put_page() call when it is finished with. vmas will only
575  * remain valid while mmap_sem is held.
576  *
577  * Must be called with mmap_sem held.  It may be released.  See below.
578  *
579  * __get_user_pages walks a process's page tables and takes a reference to
580  * each struct page that each user address corresponds to at a given
581  * instant. That is, it takes the page that would be accessed if a user
582  * thread accesses the given user virtual address at that instant.
583  *
584  * This does not guarantee that the page exists in the user mappings when
585  * __get_user_pages returns, and there may even be a completely different
586  * page there in some cases (eg. if mmapped pagecache has been invalidated
587  * and subsequently re faulted). However it does guarantee that the page
588  * won't be freed completely. And mostly callers simply care that the page
589  * contains data that was valid *at some point in time*. Typically, an IO
590  * or similar operation cannot guarantee anything stronger anyway because
591  * locks can't be held over the syscall boundary.
592  *
593  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
594  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
595  * appropriate) must be called after the page is finished with, and
596  * before put_page is called.
597  *
598  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
599  * or mmap_sem contention, and if waiting is needed to pin all pages,
600  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
601  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
602  * this case.
603  *
604  * A caller using such a combination of @nonblocking and @gup_flags
605  * must therefore hold the mmap_sem for reading only, and recognize
606  * when it's been released.  Otherwise, it must be held for either
607  * reading or writing and will not be released.
608  *
609  * In most cases, get_user_pages or get_user_pages_fast should be used
610  * instead of __get_user_pages. __get_user_pages should be used only if
611  * you need some special @gup_flags.
612  */
613 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
614 		unsigned long start, unsigned long nr_pages,
615 		unsigned int gup_flags, struct page **pages,
616 		struct vm_area_struct **vmas, int *nonblocking)
617 {
618 	long i = 0;
619 	unsigned int page_mask;
620 	struct vm_area_struct *vma = NULL;
621 
622 	if (!nr_pages)
623 		return 0;
624 
625 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
626 
627 	/*
628 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
629 	 * fault information is unrelated to the reference behaviour of a task
630 	 * using the address space
631 	 */
632 	if (!(gup_flags & FOLL_FORCE))
633 		gup_flags |= FOLL_NUMA;
634 
635 	do {
636 		struct page *page;
637 		unsigned int foll_flags = gup_flags;
638 		unsigned int page_increm;
639 
640 		/* first iteration or cross vma bound */
641 		if (!vma || start >= vma->vm_end) {
642 			vma = find_extend_vma(mm, start);
643 			if (!vma && in_gate_area(mm, start)) {
644 				int ret;
645 				ret = get_gate_page(mm, start & PAGE_MASK,
646 						gup_flags, &vma,
647 						pages ? &pages[i] : NULL);
648 				if (ret)
649 					return i ? : ret;
650 				page_mask = 0;
651 				goto next_page;
652 			}
653 
654 			if (!vma || check_vma_flags(vma, gup_flags))
655 				return i ? : -EFAULT;
656 			if (is_vm_hugetlb_page(vma)) {
657 				i = follow_hugetlb_page(mm, vma, pages, vmas,
658 						&start, &nr_pages, i,
659 						gup_flags, nonblocking);
660 				continue;
661 			}
662 		}
663 retry:
664 		/*
665 		 * If we have a pending SIGKILL, don't keep faulting pages and
666 		 * potentially allocating memory.
667 		 */
668 		if (unlikely(fatal_signal_pending(current)))
669 			return i ? i : -ERESTARTSYS;
670 		cond_resched();
671 		page = follow_page_mask(vma, start, foll_flags, &page_mask);
672 		if (!page) {
673 			int ret;
674 			ret = faultin_page(tsk, vma, start, &foll_flags,
675 					nonblocking);
676 			switch (ret) {
677 			case 0:
678 				goto retry;
679 			case -EFAULT:
680 			case -ENOMEM:
681 			case -EHWPOISON:
682 				return i ? i : ret;
683 			case -EBUSY:
684 				return i;
685 			case -ENOENT:
686 				goto next_page;
687 			}
688 			BUG();
689 		} else if (PTR_ERR(page) == -EEXIST) {
690 			/*
691 			 * Proper page table entry exists, but no corresponding
692 			 * struct page.
693 			 */
694 			goto next_page;
695 		} else if (IS_ERR(page)) {
696 			return i ? i : PTR_ERR(page);
697 		}
698 		if (pages) {
699 			pages[i] = page;
700 			flush_anon_page(vma, page, start);
701 			flush_dcache_page(page);
702 			page_mask = 0;
703 		}
704 next_page:
705 		if (vmas) {
706 			vmas[i] = vma;
707 			page_mask = 0;
708 		}
709 		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
710 		if (page_increm > nr_pages)
711 			page_increm = nr_pages;
712 		i += page_increm;
713 		start += page_increm * PAGE_SIZE;
714 		nr_pages -= page_increm;
715 	} while (nr_pages);
716 	return i;
717 }
718 
719 static bool vma_permits_fault(struct vm_area_struct *vma,
720 			      unsigned int fault_flags)
721 {
722 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
723 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
724 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
725 
726 	if (!(vm_flags & vma->vm_flags))
727 		return false;
728 
729 	/*
730 	 * The architecture might have a hardware protection
731 	 * mechanism other than read/write that can deny access.
732 	 *
733 	 * gup always represents data access, not instruction
734 	 * fetches, so execute=false here:
735 	 */
736 	if (!arch_vma_access_permitted(vma, write, false, foreign))
737 		return false;
738 
739 	return true;
740 }
741 
742 /*
743  * fixup_user_fault() - manually resolve a user page fault
744  * @tsk:	the task_struct to use for page fault accounting, or
745  *		NULL if faults are not to be recorded.
746  * @mm:		mm_struct of target mm
747  * @address:	user address
748  * @fault_flags:flags to pass down to handle_mm_fault()
749  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
750  *		does not allow retry
751  *
752  * This is meant to be called in the specific scenario where for locking reasons
753  * we try to access user memory in atomic context (within a pagefault_disable()
754  * section), this returns -EFAULT, and we want to resolve the user fault before
755  * trying again.
756  *
757  * Typically this is meant to be used by the futex code.
758  *
759  * The main difference with get_user_pages() is that this function will
760  * unconditionally call handle_mm_fault() which will in turn perform all the
761  * necessary SW fixup of the dirty and young bits in the PTE, while
762  * get_user_pages() only guarantees to update these in the struct page.
763  *
764  * This is important for some architectures where those bits also gate the
765  * access permission to the page because they are maintained in software.  On
766  * such architectures, gup() will not be enough to make a subsequent access
767  * succeed.
768  *
769  * This function will not return with an unlocked mmap_sem. So it has not the
770  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
771  */
772 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
773 		     unsigned long address, unsigned int fault_flags,
774 		     bool *unlocked)
775 {
776 	struct vm_area_struct *vma;
777 	int ret, major = 0;
778 
779 	if (unlocked)
780 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
781 
782 retry:
783 	vma = find_extend_vma(mm, address);
784 	if (!vma || address < vma->vm_start)
785 		return -EFAULT;
786 
787 	if (!vma_permits_fault(vma, fault_flags))
788 		return -EFAULT;
789 
790 	ret = handle_mm_fault(vma, address, fault_flags);
791 	major |= ret & VM_FAULT_MAJOR;
792 	if (ret & VM_FAULT_ERROR) {
793 		int err = vm_fault_to_errno(ret, 0);
794 
795 		if (err)
796 			return err;
797 		BUG();
798 	}
799 
800 	if (ret & VM_FAULT_RETRY) {
801 		down_read(&mm->mmap_sem);
802 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
803 			*unlocked = true;
804 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
805 			fault_flags |= FAULT_FLAG_TRIED;
806 			goto retry;
807 		}
808 	}
809 
810 	if (tsk) {
811 		if (major)
812 			tsk->maj_flt++;
813 		else
814 			tsk->min_flt++;
815 	}
816 	return 0;
817 }
818 EXPORT_SYMBOL_GPL(fixup_user_fault);
819 
820 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
821 						struct mm_struct *mm,
822 						unsigned long start,
823 						unsigned long nr_pages,
824 						struct page **pages,
825 						struct vm_area_struct **vmas,
826 						int *locked, bool notify_drop,
827 						unsigned int flags)
828 {
829 	long ret, pages_done;
830 	bool lock_dropped;
831 
832 	if (locked) {
833 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
834 		BUG_ON(vmas);
835 		/* check caller initialized locked */
836 		BUG_ON(*locked != 1);
837 	}
838 
839 	if (pages)
840 		flags |= FOLL_GET;
841 
842 	pages_done = 0;
843 	lock_dropped = false;
844 	for (;;) {
845 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
846 				       vmas, locked);
847 		if (!locked)
848 			/* VM_FAULT_RETRY couldn't trigger, bypass */
849 			return ret;
850 
851 		/* VM_FAULT_RETRY cannot return errors */
852 		if (!*locked) {
853 			BUG_ON(ret < 0);
854 			BUG_ON(ret >= nr_pages);
855 		}
856 
857 		if (!pages)
858 			/* If it's a prefault don't insist harder */
859 			return ret;
860 
861 		if (ret > 0) {
862 			nr_pages -= ret;
863 			pages_done += ret;
864 			if (!nr_pages)
865 				break;
866 		}
867 		if (*locked) {
868 			/* VM_FAULT_RETRY didn't trigger */
869 			if (!pages_done)
870 				pages_done = ret;
871 			break;
872 		}
873 		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
874 		pages += ret;
875 		start += ret << PAGE_SHIFT;
876 
877 		/*
878 		 * Repeat on the address that fired VM_FAULT_RETRY
879 		 * without FAULT_FLAG_ALLOW_RETRY but with
880 		 * FAULT_FLAG_TRIED.
881 		 */
882 		*locked = 1;
883 		lock_dropped = true;
884 		down_read(&mm->mmap_sem);
885 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
886 				       pages, NULL, NULL);
887 		if (ret != 1) {
888 			BUG_ON(ret > 1);
889 			if (!pages_done)
890 				pages_done = ret;
891 			break;
892 		}
893 		nr_pages--;
894 		pages_done++;
895 		if (!nr_pages)
896 			break;
897 		pages++;
898 		start += PAGE_SIZE;
899 	}
900 	if (notify_drop && lock_dropped && *locked) {
901 		/*
902 		 * We must let the caller know we temporarily dropped the lock
903 		 * and so the critical section protected by it was lost.
904 		 */
905 		up_read(&mm->mmap_sem);
906 		*locked = 0;
907 	}
908 	return pages_done;
909 }
910 
911 /*
912  * We can leverage the VM_FAULT_RETRY functionality in the page fault
913  * paths better by using either get_user_pages_locked() or
914  * get_user_pages_unlocked().
915  *
916  * get_user_pages_locked() is suitable to replace the form:
917  *
918  *      down_read(&mm->mmap_sem);
919  *      do_something()
920  *      get_user_pages(tsk, mm, ..., pages, NULL);
921  *      up_read(&mm->mmap_sem);
922  *
923  *  to:
924  *
925  *      int locked = 1;
926  *      down_read(&mm->mmap_sem);
927  *      do_something()
928  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
929  *      if (locked)
930  *          up_read(&mm->mmap_sem);
931  */
932 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
933 			   unsigned int gup_flags, struct page **pages,
934 			   int *locked)
935 {
936 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
937 				       pages, NULL, locked, true,
938 				       gup_flags | FOLL_TOUCH);
939 }
940 EXPORT_SYMBOL(get_user_pages_locked);
941 
942 /*
943  * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
944  * tsk, mm to be specified.
945  *
946  * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
947  * caller if required (just like with __get_user_pages). "FOLL_GET"
948  * is set implicitly if "pages" is non-NULL.
949  */
950 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
951 		struct mm_struct *mm, unsigned long start,
952 		unsigned long nr_pages, struct page **pages,
953 		unsigned int gup_flags)
954 {
955 	long ret;
956 	int locked = 1;
957 
958 	down_read(&mm->mmap_sem);
959 	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
960 				      &locked, false, gup_flags);
961 	if (locked)
962 		up_read(&mm->mmap_sem);
963 	return ret;
964 }
965 
966 /*
967  * get_user_pages_unlocked() is suitable to replace the form:
968  *
969  *      down_read(&mm->mmap_sem);
970  *      get_user_pages(tsk, mm, ..., pages, NULL);
971  *      up_read(&mm->mmap_sem);
972  *
973  *  with:
974  *
975  *      get_user_pages_unlocked(tsk, mm, ..., pages);
976  *
977  * It is functionally equivalent to get_user_pages_fast so
978  * get_user_pages_fast should be used instead if specific gup_flags
979  * (e.g. FOLL_FORCE) are not required.
980  */
981 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
982 			     struct page **pages, unsigned int gup_flags)
983 {
984 	return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
985 					 pages, gup_flags | FOLL_TOUCH);
986 }
987 EXPORT_SYMBOL(get_user_pages_unlocked);
988 
989 /*
990  * get_user_pages_remote() - pin user pages in memory
991  * @tsk:	the task_struct to use for page fault accounting, or
992  *		NULL if faults are not to be recorded.
993  * @mm:		mm_struct of target mm
994  * @start:	starting user address
995  * @nr_pages:	number of pages from start to pin
996  * @gup_flags:	flags modifying lookup behaviour
997  * @pages:	array that receives pointers to the pages pinned.
998  *		Should be at least nr_pages long. Or NULL, if caller
999  *		only intends to ensure the pages are faulted in.
1000  * @vmas:	array of pointers to vmas corresponding to each page.
1001  *		Or NULL if the caller does not require them.
1002  * @locked:	pointer to lock flag indicating whether lock is held and
1003  *		subsequently whether VM_FAULT_RETRY functionality can be
1004  *		utilised. Lock must initially be held.
1005  *
1006  * Returns number of pages pinned. This may be fewer than the number
1007  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1008  * were pinned, returns -errno. Each page returned must be released
1009  * with a put_page() call when it is finished with. vmas will only
1010  * remain valid while mmap_sem is held.
1011  *
1012  * Must be called with mmap_sem held for read or write.
1013  *
1014  * get_user_pages walks a process's page tables and takes a reference to
1015  * each struct page that each user address corresponds to at a given
1016  * instant. That is, it takes the page that would be accessed if a user
1017  * thread accesses the given user virtual address at that instant.
1018  *
1019  * This does not guarantee that the page exists in the user mappings when
1020  * get_user_pages returns, and there may even be a completely different
1021  * page there in some cases (eg. if mmapped pagecache has been invalidated
1022  * and subsequently re faulted). However it does guarantee that the page
1023  * won't be freed completely. And mostly callers simply care that the page
1024  * contains data that was valid *at some point in time*. Typically, an IO
1025  * or similar operation cannot guarantee anything stronger anyway because
1026  * locks can't be held over the syscall boundary.
1027  *
1028  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1029  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1030  * be called after the page is finished with, and before put_page is called.
1031  *
1032  * get_user_pages is typically used for fewer-copy IO operations, to get a
1033  * handle on the memory by some means other than accesses via the user virtual
1034  * addresses. The pages may be submitted for DMA to devices or accessed via
1035  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1036  * use the correct cache flushing APIs.
1037  *
1038  * See also get_user_pages_fast, for performance critical applications.
1039  *
1040  * get_user_pages should be phased out in favor of
1041  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1042  * should use get_user_pages because it cannot pass
1043  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1044  */
1045 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1046 		unsigned long start, unsigned long nr_pages,
1047 		unsigned int gup_flags, struct page **pages,
1048 		struct vm_area_struct **vmas, int *locked)
1049 {
1050 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1051 				       locked, true,
1052 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1053 }
1054 EXPORT_SYMBOL(get_user_pages_remote);
1055 
1056 /*
1057  * This is the same as get_user_pages_remote(), just with a
1058  * less-flexible calling convention where we assume that the task
1059  * and mm being operated on are the current task's and don't allow
1060  * passing of a locked parameter.  We also obviously don't pass
1061  * FOLL_REMOTE in here.
1062  */
1063 long get_user_pages(unsigned long start, unsigned long nr_pages,
1064 		unsigned int gup_flags, struct page **pages,
1065 		struct vm_area_struct **vmas)
1066 {
1067 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1068 				       pages, vmas, NULL, false,
1069 				       gup_flags | FOLL_TOUCH);
1070 }
1071 EXPORT_SYMBOL(get_user_pages);
1072 
1073 /**
1074  * populate_vma_page_range() -  populate a range of pages in the vma.
1075  * @vma:   target vma
1076  * @start: start address
1077  * @end:   end address
1078  * @nonblocking:
1079  *
1080  * This takes care of mlocking the pages too if VM_LOCKED is set.
1081  *
1082  * return 0 on success, negative error code on error.
1083  *
1084  * vma->vm_mm->mmap_sem must be held.
1085  *
1086  * If @nonblocking is NULL, it may be held for read or write and will
1087  * be unperturbed.
1088  *
1089  * If @nonblocking is non-NULL, it must held for read only and may be
1090  * released.  If it's released, *@nonblocking will be set to 0.
1091  */
1092 long populate_vma_page_range(struct vm_area_struct *vma,
1093 		unsigned long start, unsigned long end, int *nonblocking)
1094 {
1095 	struct mm_struct *mm = vma->vm_mm;
1096 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1097 	int gup_flags;
1098 
1099 	VM_BUG_ON(start & ~PAGE_MASK);
1100 	VM_BUG_ON(end   & ~PAGE_MASK);
1101 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1102 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1103 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1104 
1105 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1106 	if (vma->vm_flags & VM_LOCKONFAULT)
1107 		gup_flags &= ~FOLL_POPULATE;
1108 	/*
1109 	 * We want to touch writable mappings with a write fault in order
1110 	 * to break COW, except for shared mappings because these don't COW
1111 	 * and we would not want to dirty them for nothing.
1112 	 */
1113 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1114 		gup_flags |= FOLL_WRITE;
1115 
1116 	/*
1117 	 * We want mlock to succeed for regions that have any permissions
1118 	 * other than PROT_NONE.
1119 	 */
1120 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1121 		gup_flags |= FOLL_FORCE;
1122 
1123 	/*
1124 	 * We made sure addr is within a VMA, so the following will
1125 	 * not result in a stack expansion that recurses back here.
1126 	 */
1127 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1128 				NULL, NULL, nonblocking);
1129 }
1130 
1131 /*
1132  * __mm_populate - populate and/or mlock pages within a range of address space.
1133  *
1134  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1135  * flags. VMAs must be already marked with the desired vm_flags, and
1136  * mmap_sem must not be held.
1137  */
1138 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1139 {
1140 	struct mm_struct *mm = current->mm;
1141 	unsigned long end, nstart, nend;
1142 	struct vm_area_struct *vma = NULL;
1143 	int locked = 0;
1144 	long ret = 0;
1145 
1146 	VM_BUG_ON(start & ~PAGE_MASK);
1147 	VM_BUG_ON(len != PAGE_ALIGN(len));
1148 	end = start + len;
1149 
1150 	for (nstart = start; nstart < end; nstart = nend) {
1151 		/*
1152 		 * We want to fault in pages for [nstart; end) address range.
1153 		 * Find first corresponding VMA.
1154 		 */
1155 		if (!locked) {
1156 			locked = 1;
1157 			down_read(&mm->mmap_sem);
1158 			vma = find_vma(mm, nstart);
1159 		} else if (nstart >= vma->vm_end)
1160 			vma = vma->vm_next;
1161 		if (!vma || vma->vm_start >= end)
1162 			break;
1163 		/*
1164 		 * Set [nstart; nend) to intersection of desired address
1165 		 * range with the first VMA. Also, skip undesirable VMA types.
1166 		 */
1167 		nend = min(end, vma->vm_end);
1168 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1169 			continue;
1170 		if (nstart < vma->vm_start)
1171 			nstart = vma->vm_start;
1172 		/*
1173 		 * Now fault in a range of pages. populate_vma_page_range()
1174 		 * double checks the vma flags, so that it won't mlock pages
1175 		 * if the vma was already munlocked.
1176 		 */
1177 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1178 		if (ret < 0) {
1179 			if (ignore_errors) {
1180 				ret = 0;
1181 				continue;	/* continue at next VMA */
1182 			}
1183 			break;
1184 		}
1185 		nend = nstart + ret * PAGE_SIZE;
1186 		ret = 0;
1187 	}
1188 	if (locked)
1189 		up_read(&mm->mmap_sem);
1190 	return ret;	/* 0 or negative error code */
1191 }
1192 
1193 /**
1194  * get_dump_page() - pin user page in memory while writing it to core dump
1195  * @addr: user address
1196  *
1197  * Returns struct page pointer of user page pinned for dump,
1198  * to be freed afterwards by put_page().
1199  *
1200  * Returns NULL on any kind of failure - a hole must then be inserted into
1201  * the corefile, to preserve alignment with its headers; and also returns
1202  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1203  * allowing a hole to be left in the corefile to save diskspace.
1204  *
1205  * Called without mmap_sem, but after all other threads have been killed.
1206  */
1207 #ifdef CONFIG_ELF_CORE
1208 struct page *get_dump_page(unsigned long addr)
1209 {
1210 	struct vm_area_struct *vma;
1211 	struct page *page;
1212 
1213 	if (__get_user_pages(current, current->mm, addr, 1,
1214 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1215 			     NULL) < 1)
1216 		return NULL;
1217 	flush_cache_page(vma, addr, page_to_pfn(page));
1218 	return page;
1219 }
1220 #endif /* CONFIG_ELF_CORE */
1221 
1222 /*
1223  * Generic Fast GUP
1224  *
1225  * get_user_pages_fast attempts to pin user pages by walking the page
1226  * tables directly and avoids taking locks. Thus the walker needs to be
1227  * protected from page table pages being freed from under it, and should
1228  * block any THP splits.
1229  *
1230  * One way to achieve this is to have the walker disable interrupts, and
1231  * rely on IPIs from the TLB flushing code blocking before the page table
1232  * pages are freed. This is unsuitable for architectures that do not need
1233  * to broadcast an IPI when invalidating TLBs.
1234  *
1235  * Another way to achieve this is to batch up page table containing pages
1236  * belonging to more than one mm_user, then rcu_sched a callback to free those
1237  * pages. Disabling interrupts will allow the fast_gup walker to both block
1238  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1239  * (which is a relatively rare event). The code below adopts this strategy.
1240  *
1241  * Before activating this code, please be aware that the following assumptions
1242  * are currently made:
1243  *
1244  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1245  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1246  *
1247  *  *) ptes can be read atomically by the architecture.
1248  *
1249  *  *) access_ok is sufficient to validate userspace address ranges.
1250  *
1251  * The last two assumptions can be relaxed by the addition of helper functions.
1252  *
1253  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1254  */
1255 #ifdef CONFIG_HAVE_GENERIC_GUP
1256 
1257 #ifndef gup_get_pte
1258 /*
1259  * We assume that the PTE can be read atomically. If this is not the case for
1260  * your architecture, please provide the helper.
1261  */
1262 static inline pte_t gup_get_pte(pte_t *ptep)
1263 {
1264 	return READ_ONCE(*ptep);
1265 }
1266 #endif
1267 
1268 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1269 {
1270 	while ((*nr) - nr_start) {
1271 		struct page *page = pages[--(*nr)];
1272 
1273 		ClearPageReferenced(page);
1274 		put_page(page);
1275 	}
1276 }
1277 
1278 #ifdef __HAVE_ARCH_PTE_SPECIAL
1279 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1280 			 int write, struct page **pages, int *nr)
1281 {
1282 	struct dev_pagemap *pgmap = NULL;
1283 	int nr_start = *nr, ret = 0;
1284 	pte_t *ptep, *ptem;
1285 
1286 	ptem = ptep = pte_offset_map(&pmd, addr);
1287 	do {
1288 		pte_t pte = gup_get_pte(ptep);
1289 		struct page *head, *page;
1290 
1291 		/*
1292 		 * Similar to the PMD case below, NUMA hinting must take slow
1293 		 * path using the pte_protnone check.
1294 		 */
1295 		if (pte_protnone(pte))
1296 			goto pte_unmap;
1297 
1298 		if (!pte_access_permitted(pte, write))
1299 			goto pte_unmap;
1300 
1301 		if (pte_devmap(pte)) {
1302 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1303 			if (unlikely(!pgmap)) {
1304 				undo_dev_pagemap(nr, nr_start, pages);
1305 				goto pte_unmap;
1306 			}
1307 		} else if (pte_special(pte))
1308 			goto pte_unmap;
1309 
1310 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1311 		page = pte_page(pte);
1312 		head = compound_head(page);
1313 
1314 		if (!page_cache_get_speculative(head))
1315 			goto pte_unmap;
1316 
1317 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1318 			put_page(head);
1319 			goto pte_unmap;
1320 		}
1321 
1322 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1323 
1324 		put_dev_pagemap(pgmap);
1325 		SetPageReferenced(page);
1326 		pages[*nr] = page;
1327 		(*nr)++;
1328 
1329 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1330 
1331 	ret = 1;
1332 
1333 pte_unmap:
1334 	pte_unmap(ptem);
1335 	return ret;
1336 }
1337 #else
1338 
1339 /*
1340  * If we can't determine whether or not a pte is special, then fail immediately
1341  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1342  * to be special.
1343  *
1344  * For a futex to be placed on a THP tail page, get_futex_key requires a
1345  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1346  * useful to have gup_huge_pmd even if we can't operate on ptes.
1347  */
1348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1349 			 int write, struct page **pages, int *nr)
1350 {
1351 	return 0;
1352 }
1353 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1354 
1355 #ifdef __HAVE_ARCH_PTE_DEVMAP
1356 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1357 		unsigned long end, struct page **pages, int *nr)
1358 {
1359 	int nr_start = *nr;
1360 	struct dev_pagemap *pgmap = NULL;
1361 
1362 	do {
1363 		struct page *page = pfn_to_page(pfn);
1364 
1365 		pgmap = get_dev_pagemap(pfn, pgmap);
1366 		if (unlikely(!pgmap)) {
1367 			undo_dev_pagemap(nr, nr_start, pages);
1368 			return 0;
1369 		}
1370 		SetPageReferenced(page);
1371 		pages[*nr] = page;
1372 		get_page(page);
1373 		put_dev_pagemap(pgmap);
1374 		(*nr)++;
1375 		pfn++;
1376 	} while (addr += PAGE_SIZE, addr != end);
1377 	return 1;
1378 }
1379 
1380 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1381 		unsigned long end, struct page **pages, int *nr)
1382 {
1383 	unsigned long fault_pfn;
1384 
1385 	fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1386 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1387 }
1388 
1389 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1390 		unsigned long end, struct page **pages, int *nr)
1391 {
1392 	unsigned long fault_pfn;
1393 
1394 	fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1395 	return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1396 }
1397 #else
1398 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1399 		unsigned long end, struct page **pages, int *nr)
1400 {
1401 	BUILD_BUG();
1402 	return 0;
1403 }
1404 
1405 static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1406 		unsigned long end, struct page **pages, int *nr)
1407 {
1408 	BUILD_BUG();
1409 	return 0;
1410 }
1411 #endif
1412 
1413 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1414 		unsigned long end, int write, struct page **pages, int *nr)
1415 {
1416 	struct page *head, *page;
1417 	int refs;
1418 
1419 	if (!pmd_access_permitted(orig, write))
1420 		return 0;
1421 
1422 	if (pmd_devmap(orig))
1423 		return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1424 
1425 	refs = 0;
1426 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1427 	do {
1428 		pages[*nr] = page;
1429 		(*nr)++;
1430 		page++;
1431 		refs++;
1432 	} while (addr += PAGE_SIZE, addr != end);
1433 
1434 	head = compound_head(pmd_page(orig));
1435 	if (!page_cache_add_speculative(head, refs)) {
1436 		*nr -= refs;
1437 		return 0;
1438 	}
1439 
1440 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1441 		*nr -= refs;
1442 		while (refs--)
1443 			put_page(head);
1444 		return 0;
1445 	}
1446 
1447 	SetPageReferenced(head);
1448 	return 1;
1449 }
1450 
1451 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1452 		unsigned long end, int write, struct page **pages, int *nr)
1453 {
1454 	struct page *head, *page;
1455 	int refs;
1456 
1457 	if (!pud_access_permitted(orig, write))
1458 		return 0;
1459 
1460 	if (pud_devmap(orig))
1461 		return __gup_device_huge_pud(orig, addr, end, pages, nr);
1462 
1463 	refs = 0;
1464 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1465 	do {
1466 		pages[*nr] = page;
1467 		(*nr)++;
1468 		page++;
1469 		refs++;
1470 	} while (addr += PAGE_SIZE, addr != end);
1471 
1472 	head = compound_head(pud_page(orig));
1473 	if (!page_cache_add_speculative(head, refs)) {
1474 		*nr -= refs;
1475 		return 0;
1476 	}
1477 
1478 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1479 		*nr -= refs;
1480 		while (refs--)
1481 			put_page(head);
1482 		return 0;
1483 	}
1484 
1485 	SetPageReferenced(head);
1486 	return 1;
1487 }
1488 
1489 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1490 			unsigned long end, int write,
1491 			struct page **pages, int *nr)
1492 {
1493 	int refs;
1494 	struct page *head, *page;
1495 
1496 	if (!pgd_access_permitted(orig, write))
1497 		return 0;
1498 
1499 	BUILD_BUG_ON(pgd_devmap(orig));
1500 	refs = 0;
1501 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1502 	do {
1503 		pages[*nr] = page;
1504 		(*nr)++;
1505 		page++;
1506 		refs++;
1507 	} while (addr += PAGE_SIZE, addr != end);
1508 
1509 	head = compound_head(pgd_page(orig));
1510 	if (!page_cache_add_speculative(head, refs)) {
1511 		*nr -= refs;
1512 		return 0;
1513 	}
1514 
1515 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1516 		*nr -= refs;
1517 		while (refs--)
1518 			put_page(head);
1519 		return 0;
1520 	}
1521 
1522 	SetPageReferenced(head);
1523 	return 1;
1524 }
1525 
1526 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1527 		int write, struct page **pages, int *nr)
1528 {
1529 	unsigned long next;
1530 	pmd_t *pmdp;
1531 
1532 	pmdp = pmd_offset(&pud, addr);
1533 	do {
1534 		pmd_t pmd = READ_ONCE(*pmdp);
1535 
1536 		next = pmd_addr_end(addr, end);
1537 		if (pmd_none(pmd))
1538 			return 0;
1539 
1540 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1541 			/*
1542 			 * NUMA hinting faults need to be handled in the GUP
1543 			 * slowpath for accounting purposes and so that they
1544 			 * can be serialised against THP migration.
1545 			 */
1546 			if (pmd_protnone(pmd))
1547 				return 0;
1548 
1549 			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1550 				pages, nr))
1551 				return 0;
1552 
1553 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1554 			/*
1555 			 * architecture have different format for hugetlbfs
1556 			 * pmd format and THP pmd format
1557 			 */
1558 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1559 					 PMD_SHIFT, next, write, pages, nr))
1560 				return 0;
1561 		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1562 				return 0;
1563 	} while (pmdp++, addr = next, addr != end);
1564 
1565 	return 1;
1566 }
1567 
1568 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1569 			 int write, struct page **pages, int *nr)
1570 {
1571 	unsigned long next;
1572 	pud_t *pudp;
1573 
1574 	pudp = pud_offset(&p4d, addr);
1575 	do {
1576 		pud_t pud = READ_ONCE(*pudp);
1577 
1578 		next = pud_addr_end(addr, end);
1579 		if (pud_none(pud))
1580 			return 0;
1581 		if (unlikely(pud_huge(pud))) {
1582 			if (!gup_huge_pud(pud, pudp, addr, next, write,
1583 					  pages, nr))
1584 				return 0;
1585 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1586 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1587 					 PUD_SHIFT, next, write, pages, nr))
1588 				return 0;
1589 		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1590 			return 0;
1591 	} while (pudp++, addr = next, addr != end);
1592 
1593 	return 1;
1594 }
1595 
1596 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1597 			 int write, struct page **pages, int *nr)
1598 {
1599 	unsigned long next;
1600 	p4d_t *p4dp;
1601 
1602 	p4dp = p4d_offset(&pgd, addr);
1603 	do {
1604 		p4d_t p4d = READ_ONCE(*p4dp);
1605 
1606 		next = p4d_addr_end(addr, end);
1607 		if (p4d_none(p4d))
1608 			return 0;
1609 		BUILD_BUG_ON(p4d_huge(p4d));
1610 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1611 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1612 					 P4D_SHIFT, next, write, pages, nr))
1613 				return 0;
1614 		} else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1615 			return 0;
1616 	} while (p4dp++, addr = next, addr != end);
1617 
1618 	return 1;
1619 }
1620 
1621 /*
1622  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1623  * the regular GUP. It will only return non-negative values.
1624  */
1625 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1626 			  struct page **pages)
1627 {
1628 	struct mm_struct *mm = current->mm;
1629 	unsigned long addr, len, end;
1630 	unsigned long next, flags;
1631 	pgd_t *pgdp;
1632 	int nr = 0;
1633 
1634 	start &= PAGE_MASK;
1635 	addr = start;
1636 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1637 	end = start + len;
1638 
1639 	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1640 					(void __user *)start, len)))
1641 		return 0;
1642 
1643 	/*
1644 	 * Disable interrupts.  We use the nested form as we can already have
1645 	 * interrupts disabled by get_futex_key.
1646 	 *
1647 	 * With interrupts disabled, we block page table pages from being
1648 	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1649 	 * for more details.
1650 	 *
1651 	 * We do not adopt an rcu_read_lock(.) here as we also want to
1652 	 * block IPIs that come from THPs splitting.
1653 	 */
1654 
1655 	local_irq_save(flags);
1656 	pgdp = pgd_offset(mm, addr);
1657 	do {
1658 		pgd_t pgd = READ_ONCE(*pgdp);
1659 
1660 		next = pgd_addr_end(addr, end);
1661 		if (pgd_none(pgd))
1662 			break;
1663 		if (unlikely(pgd_huge(pgd))) {
1664 			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1665 					  pages, &nr))
1666 				break;
1667 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1668 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1669 					 PGDIR_SHIFT, next, write, pages, &nr))
1670 				break;
1671 		} else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
1672 			break;
1673 	} while (pgdp++, addr = next, addr != end);
1674 	local_irq_restore(flags);
1675 
1676 	return nr;
1677 }
1678 
1679 #ifndef gup_fast_permitted
1680 /*
1681  * Check if it's allowed to use __get_user_pages_fast() for the range, or
1682  * we need to fall back to the slow version:
1683  */
1684 bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1685 {
1686 	unsigned long len, end;
1687 
1688 	len = (unsigned long) nr_pages << PAGE_SHIFT;
1689 	end = start + len;
1690 	return end >= start;
1691 }
1692 #endif
1693 
1694 /**
1695  * get_user_pages_fast() - pin user pages in memory
1696  * @start:	starting user address
1697  * @nr_pages:	number of pages from start to pin
1698  * @write:	whether pages will be written to
1699  * @pages:	array that receives pointers to the pages pinned.
1700  *		Should be at least nr_pages long.
1701  *
1702  * Attempt to pin user pages in memory without taking mm->mmap_sem.
1703  * If not successful, it will fall back to taking the lock and
1704  * calling get_user_pages().
1705  *
1706  * Returns number of pages pinned. This may be fewer than the number
1707  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1708  * were pinned, returns -errno.
1709  */
1710 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1711 			struct page **pages)
1712 {
1713 	int nr = 0, ret = 0;
1714 
1715 	start &= PAGE_MASK;
1716 
1717 	if (gup_fast_permitted(start, nr_pages, write)) {
1718 		nr = __get_user_pages_fast(start, nr_pages, write, pages);
1719 		ret = nr;
1720 	}
1721 
1722 	if (nr < nr_pages) {
1723 		/* Try to get the remaining pages with get_user_pages */
1724 		start += nr << PAGE_SHIFT;
1725 		pages += nr;
1726 
1727 		ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1728 				write ? FOLL_WRITE : 0);
1729 
1730 		/* Have to be a bit careful with return values */
1731 		if (nr > 0) {
1732 			if (ret < 0)
1733 				ret = nr;
1734 			else
1735 				ret += nr;
1736 		}
1737 	}
1738 
1739 	return ret;
1740 }
1741 
1742 #endif /* CONFIG_HAVE_GENERIC_GUP */
1743