1 #include <linux/kernel.h> 2 #include <linux/errno.h> 3 #include <linux/err.h> 4 #include <linux/spinlock.h> 5 6 #include <linux/mm.h> 7 #include <linux/memremap.h> 8 #include <linux/pagemap.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/swapops.h> 12 13 #include <linux/sched/signal.h> 14 #include <linux/rwsem.h> 15 #include <linux/hugetlb.h> 16 17 #include <asm/mmu_context.h> 18 #include <asm/pgtable.h> 19 #include <asm/tlbflush.h> 20 21 #include "internal.h" 22 23 static struct page *no_page_table(struct vm_area_struct *vma, 24 unsigned int flags) 25 { 26 /* 27 * When core dumping an enormous anonymous area that nobody 28 * has touched so far, we don't want to allocate unnecessary pages or 29 * page tables. Return error instead of NULL to skip handle_mm_fault, 30 * then get_dump_page() will return NULL to leave a hole in the dump. 31 * But we can only make this optimization where a hole would surely 32 * be zero-filled if handle_mm_fault() actually did handle it. 33 */ 34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 35 return ERR_PTR(-EFAULT); 36 return NULL; 37 } 38 39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 40 pte_t *pte, unsigned int flags) 41 { 42 /* No page to get reference */ 43 if (flags & FOLL_GET) 44 return -EFAULT; 45 46 if (flags & FOLL_TOUCH) { 47 pte_t entry = *pte; 48 49 if (flags & FOLL_WRITE) 50 entry = pte_mkdirty(entry); 51 entry = pte_mkyoung(entry); 52 53 if (!pte_same(*pte, entry)) { 54 set_pte_at(vma->vm_mm, address, pte, entry); 55 update_mmu_cache(vma, address, pte); 56 } 57 } 58 59 /* Proper page table entry exists, but no corresponding struct page */ 60 return -EEXIST; 61 } 62 63 /* 64 * FOLL_FORCE can write to even unwritable pte's, but only 65 * after we've gone through a COW cycle and they are dirty. 66 */ 67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 68 { 69 return pte_write(pte) || 70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 71 } 72 73 static struct page *follow_page_pte(struct vm_area_struct *vma, 74 unsigned long address, pmd_t *pmd, unsigned int flags) 75 { 76 struct mm_struct *mm = vma->vm_mm; 77 struct dev_pagemap *pgmap = NULL; 78 struct page *page; 79 spinlock_t *ptl; 80 pte_t *ptep, pte; 81 82 retry: 83 if (unlikely(pmd_bad(*pmd))) 84 return no_page_table(vma, flags); 85 86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 87 pte = *ptep; 88 if (!pte_present(pte)) { 89 swp_entry_t entry; 90 /* 91 * KSM's break_ksm() relies upon recognizing a ksm page 92 * even while it is being migrated, so for that case we 93 * need migration_entry_wait(). 94 */ 95 if (likely(!(flags & FOLL_MIGRATION))) 96 goto no_page; 97 if (pte_none(pte)) 98 goto no_page; 99 entry = pte_to_swp_entry(pte); 100 if (!is_migration_entry(entry)) 101 goto no_page; 102 pte_unmap_unlock(ptep, ptl); 103 migration_entry_wait(mm, pmd, address); 104 goto retry; 105 } 106 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 107 goto no_page; 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 109 pte_unmap_unlock(ptep, ptl); 110 return NULL; 111 } 112 113 page = vm_normal_page(vma, address, pte); 114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 115 /* 116 * Only return device mapping pages in the FOLL_GET case since 117 * they are only valid while holding the pgmap reference. 118 */ 119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL); 120 if (pgmap) 121 page = pte_page(pte); 122 else 123 goto no_page; 124 } else if (unlikely(!page)) { 125 if (flags & FOLL_DUMP) { 126 /* Avoid special (like zero) pages in core dumps */ 127 page = ERR_PTR(-EFAULT); 128 goto out; 129 } 130 131 if (is_zero_pfn(pte_pfn(pte))) { 132 page = pte_page(pte); 133 } else { 134 int ret; 135 136 ret = follow_pfn_pte(vma, address, ptep, flags); 137 page = ERR_PTR(ret); 138 goto out; 139 } 140 } 141 142 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 143 int ret; 144 get_page(page); 145 pte_unmap_unlock(ptep, ptl); 146 lock_page(page); 147 ret = split_huge_page(page); 148 unlock_page(page); 149 put_page(page); 150 if (ret) 151 return ERR_PTR(ret); 152 goto retry; 153 } 154 155 if (flags & FOLL_GET) { 156 get_page(page); 157 158 /* drop the pgmap reference now that we hold the page */ 159 if (pgmap) { 160 put_dev_pagemap(pgmap); 161 pgmap = NULL; 162 } 163 } 164 if (flags & FOLL_TOUCH) { 165 if ((flags & FOLL_WRITE) && 166 !pte_dirty(pte) && !PageDirty(page)) 167 set_page_dirty(page); 168 /* 169 * pte_mkyoung() would be more correct here, but atomic care 170 * is needed to avoid losing the dirty bit: it is easier to use 171 * mark_page_accessed(). 172 */ 173 mark_page_accessed(page); 174 } 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 176 /* Do not mlock pte-mapped THP */ 177 if (PageTransCompound(page)) 178 goto out; 179 180 /* 181 * The preliminary mapping check is mainly to avoid the 182 * pointless overhead of lock_page on the ZERO_PAGE 183 * which might bounce very badly if there is contention. 184 * 185 * If the page is already locked, we don't need to 186 * handle it now - vmscan will handle it later if and 187 * when it attempts to reclaim the page. 188 */ 189 if (page->mapping && trylock_page(page)) { 190 lru_add_drain(); /* push cached pages to LRU */ 191 /* 192 * Because we lock page here, and migration is 193 * blocked by the pte's page reference, and we 194 * know the page is still mapped, we don't even 195 * need to check for file-cache page truncation. 196 */ 197 mlock_vma_page(page); 198 unlock_page(page); 199 } 200 } 201 out: 202 pte_unmap_unlock(ptep, ptl); 203 return page; 204 no_page: 205 pte_unmap_unlock(ptep, ptl); 206 if (!pte_none(pte)) 207 return NULL; 208 return no_page_table(vma, flags); 209 } 210 211 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 212 unsigned long address, pud_t *pudp, 213 unsigned int flags, unsigned int *page_mask) 214 { 215 pmd_t *pmd; 216 spinlock_t *ptl; 217 struct page *page; 218 struct mm_struct *mm = vma->vm_mm; 219 220 pmd = pmd_offset(pudp, address); 221 if (pmd_none(*pmd)) 222 return no_page_table(vma, flags); 223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 224 page = follow_huge_pmd(mm, address, pmd, flags); 225 if (page) 226 return page; 227 return no_page_table(vma, flags); 228 } 229 if (is_hugepd(__hugepd(pmd_val(*pmd)))) { 230 page = follow_huge_pd(vma, address, 231 __hugepd(pmd_val(*pmd)), flags, 232 PMD_SHIFT); 233 if (page) 234 return page; 235 return no_page_table(vma, flags); 236 } 237 if (pmd_devmap(*pmd)) { 238 ptl = pmd_lock(mm, pmd); 239 page = follow_devmap_pmd(vma, address, pmd, flags); 240 spin_unlock(ptl); 241 if (page) 242 return page; 243 } 244 if (likely(!pmd_trans_huge(*pmd))) 245 return follow_page_pte(vma, address, pmd, flags); 246 247 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd)) 248 return no_page_table(vma, flags); 249 250 ptl = pmd_lock(mm, pmd); 251 if (unlikely(!pmd_trans_huge(*pmd))) { 252 spin_unlock(ptl); 253 return follow_page_pte(vma, address, pmd, flags); 254 } 255 if (flags & FOLL_SPLIT) { 256 int ret; 257 page = pmd_page(*pmd); 258 if (is_huge_zero_page(page)) { 259 spin_unlock(ptl); 260 ret = 0; 261 split_huge_pmd(vma, pmd, address); 262 if (pmd_trans_unstable(pmd)) 263 ret = -EBUSY; 264 } else { 265 get_page(page); 266 spin_unlock(ptl); 267 lock_page(page); 268 ret = split_huge_page(page); 269 unlock_page(page); 270 put_page(page); 271 if (pmd_none(*pmd)) 272 return no_page_table(vma, flags); 273 } 274 275 return ret ? ERR_PTR(ret) : 276 follow_page_pte(vma, address, pmd, flags); 277 } 278 page = follow_trans_huge_pmd(vma, address, pmd, flags); 279 spin_unlock(ptl); 280 *page_mask = HPAGE_PMD_NR - 1; 281 return page; 282 } 283 284 285 static struct page *follow_pud_mask(struct vm_area_struct *vma, 286 unsigned long address, p4d_t *p4dp, 287 unsigned int flags, unsigned int *page_mask) 288 { 289 pud_t *pud; 290 spinlock_t *ptl; 291 struct page *page; 292 struct mm_struct *mm = vma->vm_mm; 293 294 pud = pud_offset(p4dp, address); 295 if (pud_none(*pud)) 296 return no_page_table(vma, flags); 297 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 298 page = follow_huge_pud(mm, address, pud, flags); 299 if (page) 300 return page; 301 return no_page_table(vma, flags); 302 } 303 if (is_hugepd(__hugepd(pud_val(*pud)))) { 304 page = follow_huge_pd(vma, address, 305 __hugepd(pud_val(*pud)), flags, 306 PUD_SHIFT); 307 if (page) 308 return page; 309 return no_page_table(vma, flags); 310 } 311 if (pud_devmap(*pud)) { 312 ptl = pud_lock(mm, pud); 313 page = follow_devmap_pud(vma, address, pud, flags); 314 spin_unlock(ptl); 315 if (page) 316 return page; 317 } 318 if (unlikely(pud_bad(*pud))) 319 return no_page_table(vma, flags); 320 321 return follow_pmd_mask(vma, address, pud, flags, page_mask); 322 } 323 324 325 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 326 unsigned long address, pgd_t *pgdp, 327 unsigned int flags, unsigned int *page_mask) 328 { 329 p4d_t *p4d; 330 struct page *page; 331 332 p4d = p4d_offset(pgdp, address); 333 if (p4d_none(*p4d)) 334 return no_page_table(vma, flags); 335 BUILD_BUG_ON(p4d_huge(*p4d)); 336 if (unlikely(p4d_bad(*p4d))) 337 return no_page_table(vma, flags); 338 339 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 340 page = follow_huge_pd(vma, address, 341 __hugepd(p4d_val(*p4d)), flags, 342 P4D_SHIFT); 343 if (page) 344 return page; 345 return no_page_table(vma, flags); 346 } 347 return follow_pud_mask(vma, address, p4d, flags, page_mask); 348 } 349 350 /** 351 * follow_page_mask - look up a page descriptor from a user-virtual address 352 * @vma: vm_area_struct mapping @address 353 * @address: virtual address to look up 354 * @flags: flags modifying lookup behaviour 355 * @page_mask: on output, *page_mask is set according to the size of the page 356 * 357 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 358 * 359 * Returns the mapped (struct page *), %NULL if no mapping exists, or 360 * an error pointer if there is a mapping to something not represented 361 * by a page descriptor (see also vm_normal_page()). 362 */ 363 struct page *follow_page_mask(struct vm_area_struct *vma, 364 unsigned long address, unsigned int flags, 365 unsigned int *page_mask) 366 { 367 pgd_t *pgd; 368 struct page *page; 369 struct mm_struct *mm = vma->vm_mm; 370 371 *page_mask = 0; 372 373 /* make this handle hugepd */ 374 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 375 if (!IS_ERR(page)) { 376 BUG_ON(flags & FOLL_GET); 377 return page; 378 } 379 380 pgd = pgd_offset(mm, address); 381 382 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 383 return no_page_table(vma, flags); 384 385 if (pgd_huge(*pgd)) { 386 page = follow_huge_pgd(mm, address, pgd, flags); 387 if (page) 388 return page; 389 return no_page_table(vma, flags); 390 } 391 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 392 page = follow_huge_pd(vma, address, 393 __hugepd(pgd_val(*pgd)), flags, 394 PGDIR_SHIFT); 395 if (page) 396 return page; 397 return no_page_table(vma, flags); 398 } 399 400 return follow_p4d_mask(vma, address, pgd, flags, page_mask); 401 } 402 403 static int get_gate_page(struct mm_struct *mm, unsigned long address, 404 unsigned int gup_flags, struct vm_area_struct **vma, 405 struct page **page) 406 { 407 pgd_t *pgd; 408 p4d_t *p4d; 409 pud_t *pud; 410 pmd_t *pmd; 411 pte_t *pte; 412 int ret = -EFAULT; 413 414 /* user gate pages are read-only */ 415 if (gup_flags & FOLL_WRITE) 416 return -EFAULT; 417 if (address > TASK_SIZE) 418 pgd = pgd_offset_k(address); 419 else 420 pgd = pgd_offset_gate(mm, address); 421 BUG_ON(pgd_none(*pgd)); 422 p4d = p4d_offset(pgd, address); 423 BUG_ON(p4d_none(*p4d)); 424 pud = pud_offset(p4d, address); 425 BUG_ON(pud_none(*pud)); 426 pmd = pmd_offset(pud, address); 427 if (pmd_none(*pmd)) 428 return -EFAULT; 429 VM_BUG_ON(pmd_trans_huge(*pmd)); 430 pte = pte_offset_map(pmd, address); 431 if (pte_none(*pte)) 432 goto unmap; 433 *vma = get_gate_vma(mm); 434 if (!page) 435 goto out; 436 *page = vm_normal_page(*vma, address, *pte); 437 if (!*page) { 438 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 439 goto unmap; 440 *page = pte_page(*pte); 441 } 442 get_page(*page); 443 out: 444 ret = 0; 445 unmap: 446 pte_unmap(pte); 447 return ret; 448 } 449 450 /* 451 * mmap_sem must be held on entry. If @nonblocking != NULL and 452 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 453 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 454 */ 455 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 456 unsigned long address, unsigned int *flags, int *nonblocking) 457 { 458 unsigned int fault_flags = 0; 459 int ret; 460 461 /* mlock all present pages, but do not fault in new pages */ 462 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 463 return -ENOENT; 464 if (*flags & FOLL_WRITE) 465 fault_flags |= FAULT_FLAG_WRITE; 466 if (*flags & FOLL_REMOTE) 467 fault_flags |= FAULT_FLAG_REMOTE; 468 if (nonblocking) 469 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 470 if (*flags & FOLL_NOWAIT) 471 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 472 if (*flags & FOLL_TRIED) { 473 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 474 fault_flags |= FAULT_FLAG_TRIED; 475 } 476 477 ret = handle_mm_fault(vma, address, fault_flags); 478 if (ret & VM_FAULT_ERROR) { 479 int err = vm_fault_to_errno(ret, *flags); 480 481 if (err) 482 return err; 483 BUG(); 484 } 485 486 if (tsk) { 487 if (ret & VM_FAULT_MAJOR) 488 tsk->maj_flt++; 489 else 490 tsk->min_flt++; 491 } 492 493 if (ret & VM_FAULT_RETRY) { 494 if (nonblocking) 495 *nonblocking = 0; 496 return -EBUSY; 497 } 498 499 /* 500 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 501 * necessary, even if maybe_mkwrite decided not to set pte_write. We 502 * can thus safely do subsequent page lookups as if they were reads. 503 * But only do so when looping for pte_write is futile: in some cases 504 * userspace may also be wanting to write to the gotten user page, 505 * which a read fault here might prevent (a readonly page might get 506 * reCOWed by userspace write). 507 */ 508 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 509 *flags |= FOLL_COW; 510 return 0; 511 } 512 513 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 514 { 515 vm_flags_t vm_flags = vma->vm_flags; 516 int write = (gup_flags & FOLL_WRITE); 517 int foreign = (gup_flags & FOLL_REMOTE); 518 519 if (vm_flags & (VM_IO | VM_PFNMAP)) 520 return -EFAULT; 521 522 if (write) { 523 if (!(vm_flags & VM_WRITE)) { 524 if (!(gup_flags & FOLL_FORCE)) 525 return -EFAULT; 526 /* 527 * We used to let the write,force case do COW in a 528 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 529 * set a breakpoint in a read-only mapping of an 530 * executable, without corrupting the file (yet only 531 * when that file had been opened for writing!). 532 * Anon pages in shared mappings are surprising: now 533 * just reject it. 534 */ 535 if (!is_cow_mapping(vm_flags)) 536 return -EFAULT; 537 } 538 } else if (!(vm_flags & VM_READ)) { 539 if (!(gup_flags & FOLL_FORCE)) 540 return -EFAULT; 541 /* 542 * Is there actually any vma we can reach here which does not 543 * have VM_MAYREAD set? 544 */ 545 if (!(vm_flags & VM_MAYREAD)) 546 return -EFAULT; 547 } 548 /* 549 * gups are always data accesses, not instruction 550 * fetches, so execute=false here 551 */ 552 if (!arch_vma_access_permitted(vma, write, false, foreign)) 553 return -EFAULT; 554 return 0; 555 } 556 557 /** 558 * __get_user_pages() - pin user pages in memory 559 * @tsk: task_struct of target task 560 * @mm: mm_struct of target mm 561 * @start: starting user address 562 * @nr_pages: number of pages from start to pin 563 * @gup_flags: flags modifying pin behaviour 564 * @pages: array that receives pointers to the pages pinned. 565 * Should be at least nr_pages long. Or NULL, if caller 566 * only intends to ensure the pages are faulted in. 567 * @vmas: array of pointers to vmas corresponding to each page. 568 * Or NULL if the caller does not require them. 569 * @nonblocking: whether waiting for disk IO or mmap_sem contention 570 * 571 * Returns number of pages pinned. This may be fewer than the number 572 * requested. If nr_pages is 0 or negative, returns 0. If no pages 573 * were pinned, returns -errno. Each page returned must be released 574 * with a put_page() call when it is finished with. vmas will only 575 * remain valid while mmap_sem is held. 576 * 577 * Must be called with mmap_sem held. It may be released. See below. 578 * 579 * __get_user_pages walks a process's page tables and takes a reference to 580 * each struct page that each user address corresponds to at a given 581 * instant. That is, it takes the page that would be accessed if a user 582 * thread accesses the given user virtual address at that instant. 583 * 584 * This does not guarantee that the page exists in the user mappings when 585 * __get_user_pages returns, and there may even be a completely different 586 * page there in some cases (eg. if mmapped pagecache has been invalidated 587 * and subsequently re faulted). However it does guarantee that the page 588 * won't be freed completely. And mostly callers simply care that the page 589 * contains data that was valid *at some point in time*. Typically, an IO 590 * or similar operation cannot guarantee anything stronger anyway because 591 * locks can't be held over the syscall boundary. 592 * 593 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 594 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 595 * appropriate) must be called after the page is finished with, and 596 * before put_page is called. 597 * 598 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 599 * or mmap_sem contention, and if waiting is needed to pin all pages, 600 * *@nonblocking will be set to 0. Further, if @gup_flags does not 601 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 602 * this case. 603 * 604 * A caller using such a combination of @nonblocking and @gup_flags 605 * must therefore hold the mmap_sem for reading only, and recognize 606 * when it's been released. Otherwise, it must be held for either 607 * reading or writing and will not be released. 608 * 609 * In most cases, get_user_pages or get_user_pages_fast should be used 610 * instead of __get_user_pages. __get_user_pages should be used only if 611 * you need some special @gup_flags. 612 */ 613 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 614 unsigned long start, unsigned long nr_pages, 615 unsigned int gup_flags, struct page **pages, 616 struct vm_area_struct **vmas, int *nonblocking) 617 { 618 long i = 0; 619 unsigned int page_mask; 620 struct vm_area_struct *vma = NULL; 621 622 if (!nr_pages) 623 return 0; 624 625 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 626 627 /* 628 * If FOLL_FORCE is set then do not force a full fault as the hinting 629 * fault information is unrelated to the reference behaviour of a task 630 * using the address space 631 */ 632 if (!(gup_flags & FOLL_FORCE)) 633 gup_flags |= FOLL_NUMA; 634 635 do { 636 struct page *page; 637 unsigned int foll_flags = gup_flags; 638 unsigned int page_increm; 639 640 /* first iteration or cross vma bound */ 641 if (!vma || start >= vma->vm_end) { 642 vma = find_extend_vma(mm, start); 643 if (!vma && in_gate_area(mm, start)) { 644 int ret; 645 ret = get_gate_page(mm, start & PAGE_MASK, 646 gup_flags, &vma, 647 pages ? &pages[i] : NULL); 648 if (ret) 649 return i ? : ret; 650 page_mask = 0; 651 goto next_page; 652 } 653 654 if (!vma || check_vma_flags(vma, gup_flags)) 655 return i ? : -EFAULT; 656 if (is_vm_hugetlb_page(vma)) { 657 i = follow_hugetlb_page(mm, vma, pages, vmas, 658 &start, &nr_pages, i, 659 gup_flags, nonblocking); 660 continue; 661 } 662 } 663 retry: 664 /* 665 * If we have a pending SIGKILL, don't keep faulting pages and 666 * potentially allocating memory. 667 */ 668 if (unlikely(fatal_signal_pending(current))) 669 return i ? i : -ERESTARTSYS; 670 cond_resched(); 671 page = follow_page_mask(vma, start, foll_flags, &page_mask); 672 if (!page) { 673 int ret; 674 ret = faultin_page(tsk, vma, start, &foll_flags, 675 nonblocking); 676 switch (ret) { 677 case 0: 678 goto retry; 679 case -EFAULT: 680 case -ENOMEM: 681 case -EHWPOISON: 682 return i ? i : ret; 683 case -EBUSY: 684 return i; 685 case -ENOENT: 686 goto next_page; 687 } 688 BUG(); 689 } else if (PTR_ERR(page) == -EEXIST) { 690 /* 691 * Proper page table entry exists, but no corresponding 692 * struct page. 693 */ 694 goto next_page; 695 } else if (IS_ERR(page)) { 696 return i ? i : PTR_ERR(page); 697 } 698 if (pages) { 699 pages[i] = page; 700 flush_anon_page(vma, page, start); 701 flush_dcache_page(page); 702 page_mask = 0; 703 } 704 next_page: 705 if (vmas) { 706 vmas[i] = vma; 707 page_mask = 0; 708 } 709 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 710 if (page_increm > nr_pages) 711 page_increm = nr_pages; 712 i += page_increm; 713 start += page_increm * PAGE_SIZE; 714 nr_pages -= page_increm; 715 } while (nr_pages); 716 return i; 717 } 718 719 static bool vma_permits_fault(struct vm_area_struct *vma, 720 unsigned int fault_flags) 721 { 722 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 723 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 724 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 725 726 if (!(vm_flags & vma->vm_flags)) 727 return false; 728 729 /* 730 * The architecture might have a hardware protection 731 * mechanism other than read/write that can deny access. 732 * 733 * gup always represents data access, not instruction 734 * fetches, so execute=false here: 735 */ 736 if (!arch_vma_access_permitted(vma, write, false, foreign)) 737 return false; 738 739 return true; 740 } 741 742 /* 743 * fixup_user_fault() - manually resolve a user page fault 744 * @tsk: the task_struct to use for page fault accounting, or 745 * NULL if faults are not to be recorded. 746 * @mm: mm_struct of target mm 747 * @address: user address 748 * @fault_flags:flags to pass down to handle_mm_fault() 749 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 750 * does not allow retry 751 * 752 * This is meant to be called in the specific scenario where for locking reasons 753 * we try to access user memory in atomic context (within a pagefault_disable() 754 * section), this returns -EFAULT, and we want to resolve the user fault before 755 * trying again. 756 * 757 * Typically this is meant to be used by the futex code. 758 * 759 * The main difference with get_user_pages() is that this function will 760 * unconditionally call handle_mm_fault() which will in turn perform all the 761 * necessary SW fixup of the dirty and young bits in the PTE, while 762 * get_user_pages() only guarantees to update these in the struct page. 763 * 764 * This is important for some architectures where those bits also gate the 765 * access permission to the page because they are maintained in software. On 766 * such architectures, gup() will not be enough to make a subsequent access 767 * succeed. 768 * 769 * This function will not return with an unlocked mmap_sem. So it has not the 770 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 771 */ 772 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 773 unsigned long address, unsigned int fault_flags, 774 bool *unlocked) 775 { 776 struct vm_area_struct *vma; 777 int ret, major = 0; 778 779 if (unlocked) 780 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 781 782 retry: 783 vma = find_extend_vma(mm, address); 784 if (!vma || address < vma->vm_start) 785 return -EFAULT; 786 787 if (!vma_permits_fault(vma, fault_flags)) 788 return -EFAULT; 789 790 ret = handle_mm_fault(vma, address, fault_flags); 791 major |= ret & VM_FAULT_MAJOR; 792 if (ret & VM_FAULT_ERROR) { 793 int err = vm_fault_to_errno(ret, 0); 794 795 if (err) 796 return err; 797 BUG(); 798 } 799 800 if (ret & VM_FAULT_RETRY) { 801 down_read(&mm->mmap_sem); 802 if (!(fault_flags & FAULT_FLAG_TRIED)) { 803 *unlocked = true; 804 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 805 fault_flags |= FAULT_FLAG_TRIED; 806 goto retry; 807 } 808 } 809 810 if (tsk) { 811 if (major) 812 tsk->maj_flt++; 813 else 814 tsk->min_flt++; 815 } 816 return 0; 817 } 818 EXPORT_SYMBOL_GPL(fixup_user_fault); 819 820 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 821 struct mm_struct *mm, 822 unsigned long start, 823 unsigned long nr_pages, 824 struct page **pages, 825 struct vm_area_struct **vmas, 826 int *locked, bool notify_drop, 827 unsigned int flags) 828 { 829 long ret, pages_done; 830 bool lock_dropped; 831 832 if (locked) { 833 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 834 BUG_ON(vmas); 835 /* check caller initialized locked */ 836 BUG_ON(*locked != 1); 837 } 838 839 if (pages) 840 flags |= FOLL_GET; 841 842 pages_done = 0; 843 lock_dropped = false; 844 for (;;) { 845 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 846 vmas, locked); 847 if (!locked) 848 /* VM_FAULT_RETRY couldn't trigger, bypass */ 849 return ret; 850 851 /* VM_FAULT_RETRY cannot return errors */ 852 if (!*locked) { 853 BUG_ON(ret < 0); 854 BUG_ON(ret >= nr_pages); 855 } 856 857 if (!pages) 858 /* If it's a prefault don't insist harder */ 859 return ret; 860 861 if (ret > 0) { 862 nr_pages -= ret; 863 pages_done += ret; 864 if (!nr_pages) 865 break; 866 } 867 if (*locked) { 868 /* VM_FAULT_RETRY didn't trigger */ 869 if (!pages_done) 870 pages_done = ret; 871 break; 872 } 873 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */ 874 pages += ret; 875 start += ret << PAGE_SHIFT; 876 877 /* 878 * Repeat on the address that fired VM_FAULT_RETRY 879 * without FAULT_FLAG_ALLOW_RETRY but with 880 * FAULT_FLAG_TRIED. 881 */ 882 *locked = 1; 883 lock_dropped = true; 884 down_read(&mm->mmap_sem); 885 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 886 pages, NULL, NULL); 887 if (ret != 1) { 888 BUG_ON(ret > 1); 889 if (!pages_done) 890 pages_done = ret; 891 break; 892 } 893 nr_pages--; 894 pages_done++; 895 if (!nr_pages) 896 break; 897 pages++; 898 start += PAGE_SIZE; 899 } 900 if (notify_drop && lock_dropped && *locked) { 901 /* 902 * We must let the caller know we temporarily dropped the lock 903 * and so the critical section protected by it was lost. 904 */ 905 up_read(&mm->mmap_sem); 906 *locked = 0; 907 } 908 return pages_done; 909 } 910 911 /* 912 * We can leverage the VM_FAULT_RETRY functionality in the page fault 913 * paths better by using either get_user_pages_locked() or 914 * get_user_pages_unlocked(). 915 * 916 * get_user_pages_locked() is suitable to replace the form: 917 * 918 * down_read(&mm->mmap_sem); 919 * do_something() 920 * get_user_pages(tsk, mm, ..., pages, NULL); 921 * up_read(&mm->mmap_sem); 922 * 923 * to: 924 * 925 * int locked = 1; 926 * down_read(&mm->mmap_sem); 927 * do_something() 928 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 929 * if (locked) 930 * up_read(&mm->mmap_sem); 931 */ 932 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 933 unsigned int gup_flags, struct page **pages, 934 int *locked) 935 { 936 return __get_user_pages_locked(current, current->mm, start, nr_pages, 937 pages, NULL, locked, true, 938 gup_flags | FOLL_TOUCH); 939 } 940 EXPORT_SYMBOL(get_user_pages_locked); 941 942 /* 943 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for 944 * tsk, mm to be specified. 945 * 946 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the 947 * caller if required (just like with __get_user_pages). "FOLL_GET" 948 * is set implicitly if "pages" is non-NULL. 949 */ 950 static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, 951 struct mm_struct *mm, unsigned long start, 952 unsigned long nr_pages, struct page **pages, 953 unsigned int gup_flags) 954 { 955 long ret; 956 int locked = 1; 957 958 down_read(&mm->mmap_sem); 959 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL, 960 &locked, false, gup_flags); 961 if (locked) 962 up_read(&mm->mmap_sem); 963 return ret; 964 } 965 966 /* 967 * get_user_pages_unlocked() is suitable to replace the form: 968 * 969 * down_read(&mm->mmap_sem); 970 * get_user_pages(tsk, mm, ..., pages, NULL); 971 * up_read(&mm->mmap_sem); 972 * 973 * with: 974 * 975 * get_user_pages_unlocked(tsk, mm, ..., pages); 976 * 977 * It is functionally equivalent to get_user_pages_fast so 978 * get_user_pages_fast should be used instead if specific gup_flags 979 * (e.g. FOLL_FORCE) are not required. 980 */ 981 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 982 struct page **pages, unsigned int gup_flags) 983 { 984 return __get_user_pages_unlocked(current, current->mm, start, nr_pages, 985 pages, gup_flags | FOLL_TOUCH); 986 } 987 EXPORT_SYMBOL(get_user_pages_unlocked); 988 989 /* 990 * get_user_pages_remote() - pin user pages in memory 991 * @tsk: the task_struct to use for page fault accounting, or 992 * NULL if faults are not to be recorded. 993 * @mm: mm_struct of target mm 994 * @start: starting user address 995 * @nr_pages: number of pages from start to pin 996 * @gup_flags: flags modifying lookup behaviour 997 * @pages: array that receives pointers to the pages pinned. 998 * Should be at least nr_pages long. Or NULL, if caller 999 * only intends to ensure the pages are faulted in. 1000 * @vmas: array of pointers to vmas corresponding to each page. 1001 * Or NULL if the caller does not require them. 1002 * @locked: pointer to lock flag indicating whether lock is held and 1003 * subsequently whether VM_FAULT_RETRY functionality can be 1004 * utilised. Lock must initially be held. 1005 * 1006 * Returns number of pages pinned. This may be fewer than the number 1007 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1008 * were pinned, returns -errno. Each page returned must be released 1009 * with a put_page() call when it is finished with. vmas will only 1010 * remain valid while mmap_sem is held. 1011 * 1012 * Must be called with mmap_sem held for read or write. 1013 * 1014 * get_user_pages walks a process's page tables and takes a reference to 1015 * each struct page that each user address corresponds to at a given 1016 * instant. That is, it takes the page that would be accessed if a user 1017 * thread accesses the given user virtual address at that instant. 1018 * 1019 * This does not guarantee that the page exists in the user mappings when 1020 * get_user_pages returns, and there may even be a completely different 1021 * page there in some cases (eg. if mmapped pagecache has been invalidated 1022 * and subsequently re faulted). However it does guarantee that the page 1023 * won't be freed completely. And mostly callers simply care that the page 1024 * contains data that was valid *at some point in time*. Typically, an IO 1025 * or similar operation cannot guarantee anything stronger anyway because 1026 * locks can't be held over the syscall boundary. 1027 * 1028 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1029 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1030 * be called after the page is finished with, and before put_page is called. 1031 * 1032 * get_user_pages is typically used for fewer-copy IO operations, to get a 1033 * handle on the memory by some means other than accesses via the user virtual 1034 * addresses. The pages may be submitted for DMA to devices or accessed via 1035 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1036 * use the correct cache flushing APIs. 1037 * 1038 * See also get_user_pages_fast, for performance critical applications. 1039 * 1040 * get_user_pages should be phased out in favor of 1041 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1042 * should use get_user_pages because it cannot pass 1043 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1044 */ 1045 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1046 unsigned long start, unsigned long nr_pages, 1047 unsigned int gup_flags, struct page **pages, 1048 struct vm_area_struct **vmas, int *locked) 1049 { 1050 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1051 locked, true, 1052 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1053 } 1054 EXPORT_SYMBOL(get_user_pages_remote); 1055 1056 /* 1057 * This is the same as get_user_pages_remote(), just with a 1058 * less-flexible calling convention where we assume that the task 1059 * and mm being operated on are the current task's and don't allow 1060 * passing of a locked parameter. We also obviously don't pass 1061 * FOLL_REMOTE in here. 1062 */ 1063 long get_user_pages(unsigned long start, unsigned long nr_pages, 1064 unsigned int gup_flags, struct page **pages, 1065 struct vm_area_struct **vmas) 1066 { 1067 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1068 pages, vmas, NULL, false, 1069 gup_flags | FOLL_TOUCH); 1070 } 1071 EXPORT_SYMBOL(get_user_pages); 1072 1073 /** 1074 * populate_vma_page_range() - populate a range of pages in the vma. 1075 * @vma: target vma 1076 * @start: start address 1077 * @end: end address 1078 * @nonblocking: 1079 * 1080 * This takes care of mlocking the pages too if VM_LOCKED is set. 1081 * 1082 * return 0 on success, negative error code on error. 1083 * 1084 * vma->vm_mm->mmap_sem must be held. 1085 * 1086 * If @nonblocking is NULL, it may be held for read or write and will 1087 * be unperturbed. 1088 * 1089 * If @nonblocking is non-NULL, it must held for read only and may be 1090 * released. If it's released, *@nonblocking will be set to 0. 1091 */ 1092 long populate_vma_page_range(struct vm_area_struct *vma, 1093 unsigned long start, unsigned long end, int *nonblocking) 1094 { 1095 struct mm_struct *mm = vma->vm_mm; 1096 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1097 int gup_flags; 1098 1099 VM_BUG_ON(start & ~PAGE_MASK); 1100 VM_BUG_ON(end & ~PAGE_MASK); 1101 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1102 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1103 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1104 1105 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1106 if (vma->vm_flags & VM_LOCKONFAULT) 1107 gup_flags &= ~FOLL_POPULATE; 1108 /* 1109 * We want to touch writable mappings with a write fault in order 1110 * to break COW, except for shared mappings because these don't COW 1111 * and we would not want to dirty them for nothing. 1112 */ 1113 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1114 gup_flags |= FOLL_WRITE; 1115 1116 /* 1117 * We want mlock to succeed for regions that have any permissions 1118 * other than PROT_NONE. 1119 */ 1120 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1121 gup_flags |= FOLL_FORCE; 1122 1123 /* 1124 * We made sure addr is within a VMA, so the following will 1125 * not result in a stack expansion that recurses back here. 1126 */ 1127 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1128 NULL, NULL, nonblocking); 1129 } 1130 1131 /* 1132 * __mm_populate - populate and/or mlock pages within a range of address space. 1133 * 1134 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1135 * flags. VMAs must be already marked with the desired vm_flags, and 1136 * mmap_sem must not be held. 1137 */ 1138 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1139 { 1140 struct mm_struct *mm = current->mm; 1141 unsigned long end, nstart, nend; 1142 struct vm_area_struct *vma = NULL; 1143 int locked = 0; 1144 long ret = 0; 1145 1146 VM_BUG_ON(start & ~PAGE_MASK); 1147 VM_BUG_ON(len != PAGE_ALIGN(len)); 1148 end = start + len; 1149 1150 for (nstart = start; nstart < end; nstart = nend) { 1151 /* 1152 * We want to fault in pages for [nstart; end) address range. 1153 * Find first corresponding VMA. 1154 */ 1155 if (!locked) { 1156 locked = 1; 1157 down_read(&mm->mmap_sem); 1158 vma = find_vma(mm, nstart); 1159 } else if (nstart >= vma->vm_end) 1160 vma = vma->vm_next; 1161 if (!vma || vma->vm_start >= end) 1162 break; 1163 /* 1164 * Set [nstart; nend) to intersection of desired address 1165 * range with the first VMA. Also, skip undesirable VMA types. 1166 */ 1167 nend = min(end, vma->vm_end); 1168 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1169 continue; 1170 if (nstart < vma->vm_start) 1171 nstart = vma->vm_start; 1172 /* 1173 * Now fault in a range of pages. populate_vma_page_range() 1174 * double checks the vma flags, so that it won't mlock pages 1175 * if the vma was already munlocked. 1176 */ 1177 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1178 if (ret < 0) { 1179 if (ignore_errors) { 1180 ret = 0; 1181 continue; /* continue at next VMA */ 1182 } 1183 break; 1184 } 1185 nend = nstart + ret * PAGE_SIZE; 1186 ret = 0; 1187 } 1188 if (locked) 1189 up_read(&mm->mmap_sem); 1190 return ret; /* 0 or negative error code */ 1191 } 1192 1193 /** 1194 * get_dump_page() - pin user page in memory while writing it to core dump 1195 * @addr: user address 1196 * 1197 * Returns struct page pointer of user page pinned for dump, 1198 * to be freed afterwards by put_page(). 1199 * 1200 * Returns NULL on any kind of failure - a hole must then be inserted into 1201 * the corefile, to preserve alignment with its headers; and also returns 1202 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1203 * allowing a hole to be left in the corefile to save diskspace. 1204 * 1205 * Called without mmap_sem, but after all other threads have been killed. 1206 */ 1207 #ifdef CONFIG_ELF_CORE 1208 struct page *get_dump_page(unsigned long addr) 1209 { 1210 struct vm_area_struct *vma; 1211 struct page *page; 1212 1213 if (__get_user_pages(current, current->mm, addr, 1, 1214 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1215 NULL) < 1) 1216 return NULL; 1217 flush_cache_page(vma, addr, page_to_pfn(page)); 1218 return page; 1219 } 1220 #endif /* CONFIG_ELF_CORE */ 1221 1222 /* 1223 * Generic Fast GUP 1224 * 1225 * get_user_pages_fast attempts to pin user pages by walking the page 1226 * tables directly and avoids taking locks. Thus the walker needs to be 1227 * protected from page table pages being freed from under it, and should 1228 * block any THP splits. 1229 * 1230 * One way to achieve this is to have the walker disable interrupts, and 1231 * rely on IPIs from the TLB flushing code blocking before the page table 1232 * pages are freed. This is unsuitable for architectures that do not need 1233 * to broadcast an IPI when invalidating TLBs. 1234 * 1235 * Another way to achieve this is to batch up page table containing pages 1236 * belonging to more than one mm_user, then rcu_sched a callback to free those 1237 * pages. Disabling interrupts will allow the fast_gup walker to both block 1238 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1239 * (which is a relatively rare event). The code below adopts this strategy. 1240 * 1241 * Before activating this code, please be aware that the following assumptions 1242 * are currently made: 1243 * 1244 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1245 * free pages containing page tables or TLB flushing requires IPI broadcast. 1246 * 1247 * *) ptes can be read atomically by the architecture. 1248 * 1249 * *) access_ok is sufficient to validate userspace address ranges. 1250 * 1251 * The last two assumptions can be relaxed by the addition of helper functions. 1252 * 1253 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1254 */ 1255 #ifdef CONFIG_HAVE_GENERIC_GUP 1256 1257 #ifndef gup_get_pte 1258 /* 1259 * We assume that the PTE can be read atomically. If this is not the case for 1260 * your architecture, please provide the helper. 1261 */ 1262 static inline pte_t gup_get_pte(pte_t *ptep) 1263 { 1264 return READ_ONCE(*ptep); 1265 } 1266 #endif 1267 1268 static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages) 1269 { 1270 while ((*nr) - nr_start) { 1271 struct page *page = pages[--(*nr)]; 1272 1273 ClearPageReferenced(page); 1274 put_page(page); 1275 } 1276 } 1277 1278 #ifdef __HAVE_ARCH_PTE_SPECIAL 1279 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1280 int write, struct page **pages, int *nr) 1281 { 1282 struct dev_pagemap *pgmap = NULL; 1283 int nr_start = *nr, ret = 0; 1284 pte_t *ptep, *ptem; 1285 1286 ptem = ptep = pte_offset_map(&pmd, addr); 1287 do { 1288 pte_t pte = gup_get_pte(ptep); 1289 struct page *head, *page; 1290 1291 /* 1292 * Similar to the PMD case below, NUMA hinting must take slow 1293 * path using the pte_protnone check. 1294 */ 1295 if (pte_protnone(pte)) 1296 goto pte_unmap; 1297 1298 if (!pte_access_permitted(pte, write)) 1299 goto pte_unmap; 1300 1301 if (pte_devmap(pte)) { 1302 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1303 if (unlikely(!pgmap)) { 1304 undo_dev_pagemap(nr, nr_start, pages); 1305 goto pte_unmap; 1306 } 1307 } else if (pte_special(pte)) 1308 goto pte_unmap; 1309 1310 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1311 page = pte_page(pte); 1312 head = compound_head(page); 1313 1314 if (!page_cache_get_speculative(head)) 1315 goto pte_unmap; 1316 1317 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1318 put_page(head); 1319 goto pte_unmap; 1320 } 1321 1322 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1323 1324 put_dev_pagemap(pgmap); 1325 SetPageReferenced(page); 1326 pages[*nr] = page; 1327 (*nr)++; 1328 1329 } while (ptep++, addr += PAGE_SIZE, addr != end); 1330 1331 ret = 1; 1332 1333 pte_unmap: 1334 pte_unmap(ptem); 1335 return ret; 1336 } 1337 #else 1338 1339 /* 1340 * If we can't determine whether or not a pte is special, then fail immediately 1341 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1342 * to be special. 1343 * 1344 * For a futex to be placed on a THP tail page, get_futex_key requires a 1345 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1346 * useful to have gup_huge_pmd even if we can't operate on ptes. 1347 */ 1348 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1349 int write, struct page **pages, int *nr) 1350 { 1351 return 0; 1352 } 1353 #endif /* __HAVE_ARCH_PTE_SPECIAL */ 1354 1355 #ifdef __HAVE_ARCH_PTE_DEVMAP 1356 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1357 unsigned long end, struct page **pages, int *nr) 1358 { 1359 int nr_start = *nr; 1360 struct dev_pagemap *pgmap = NULL; 1361 1362 do { 1363 struct page *page = pfn_to_page(pfn); 1364 1365 pgmap = get_dev_pagemap(pfn, pgmap); 1366 if (unlikely(!pgmap)) { 1367 undo_dev_pagemap(nr, nr_start, pages); 1368 return 0; 1369 } 1370 SetPageReferenced(page); 1371 pages[*nr] = page; 1372 get_page(page); 1373 put_dev_pagemap(pgmap); 1374 (*nr)++; 1375 pfn++; 1376 } while (addr += PAGE_SIZE, addr != end); 1377 return 1; 1378 } 1379 1380 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1381 unsigned long end, struct page **pages, int *nr) 1382 { 1383 unsigned long fault_pfn; 1384 1385 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1386 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1387 } 1388 1389 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1390 unsigned long end, struct page **pages, int *nr) 1391 { 1392 unsigned long fault_pfn; 1393 1394 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1395 return __gup_device_huge(fault_pfn, addr, end, pages, nr); 1396 } 1397 #else 1398 static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr, 1399 unsigned long end, struct page **pages, int *nr) 1400 { 1401 BUILD_BUG(); 1402 return 0; 1403 } 1404 1405 static int __gup_device_huge_pud(pud_t pud, unsigned long addr, 1406 unsigned long end, struct page **pages, int *nr) 1407 { 1408 BUILD_BUG(); 1409 return 0; 1410 } 1411 #endif 1412 1413 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1414 unsigned long end, int write, struct page **pages, int *nr) 1415 { 1416 struct page *head, *page; 1417 int refs; 1418 1419 if (!pmd_access_permitted(orig, write)) 1420 return 0; 1421 1422 if (pmd_devmap(orig)) 1423 return __gup_device_huge_pmd(orig, addr, end, pages, nr); 1424 1425 refs = 0; 1426 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1427 do { 1428 pages[*nr] = page; 1429 (*nr)++; 1430 page++; 1431 refs++; 1432 } while (addr += PAGE_SIZE, addr != end); 1433 1434 head = compound_head(pmd_page(orig)); 1435 if (!page_cache_add_speculative(head, refs)) { 1436 *nr -= refs; 1437 return 0; 1438 } 1439 1440 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1441 *nr -= refs; 1442 while (refs--) 1443 put_page(head); 1444 return 0; 1445 } 1446 1447 SetPageReferenced(head); 1448 return 1; 1449 } 1450 1451 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1452 unsigned long end, int write, struct page **pages, int *nr) 1453 { 1454 struct page *head, *page; 1455 int refs; 1456 1457 if (!pud_access_permitted(orig, write)) 1458 return 0; 1459 1460 if (pud_devmap(orig)) 1461 return __gup_device_huge_pud(orig, addr, end, pages, nr); 1462 1463 refs = 0; 1464 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1465 do { 1466 pages[*nr] = page; 1467 (*nr)++; 1468 page++; 1469 refs++; 1470 } while (addr += PAGE_SIZE, addr != end); 1471 1472 head = compound_head(pud_page(orig)); 1473 if (!page_cache_add_speculative(head, refs)) { 1474 *nr -= refs; 1475 return 0; 1476 } 1477 1478 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1479 *nr -= refs; 1480 while (refs--) 1481 put_page(head); 1482 return 0; 1483 } 1484 1485 SetPageReferenced(head); 1486 return 1; 1487 } 1488 1489 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 1490 unsigned long end, int write, 1491 struct page **pages, int *nr) 1492 { 1493 int refs; 1494 struct page *head, *page; 1495 1496 if (!pgd_access_permitted(orig, write)) 1497 return 0; 1498 1499 BUILD_BUG_ON(pgd_devmap(orig)); 1500 refs = 0; 1501 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 1502 do { 1503 pages[*nr] = page; 1504 (*nr)++; 1505 page++; 1506 refs++; 1507 } while (addr += PAGE_SIZE, addr != end); 1508 1509 head = compound_head(pgd_page(orig)); 1510 if (!page_cache_add_speculative(head, refs)) { 1511 *nr -= refs; 1512 return 0; 1513 } 1514 1515 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 1516 *nr -= refs; 1517 while (refs--) 1518 put_page(head); 1519 return 0; 1520 } 1521 1522 SetPageReferenced(head); 1523 return 1; 1524 } 1525 1526 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 1527 int write, struct page **pages, int *nr) 1528 { 1529 unsigned long next; 1530 pmd_t *pmdp; 1531 1532 pmdp = pmd_offset(&pud, addr); 1533 do { 1534 pmd_t pmd = READ_ONCE(*pmdp); 1535 1536 next = pmd_addr_end(addr, end); 1537 if (pmd_none(pmd)) 1538 return 0; 1539 1540 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) { 1541 /* 1542 * NUMA hinting faults need to be handled in the GUP 1543 * slowpath for accounting purposes and so that they 1544 * can be serialised against THP migration. 1545 */ 1546 if (pmd_protnone(pmd)) 1547 return 0; 1548 1549 if (!gup_huge_pmd(pmd, pmdp, addr, next, write, 1550 pages, nr)) 1551 return 0; 1552 1553 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 1554 /* 1555 * architecture have different format for hugetlbfs 1556 * pmd format and THP pmd format 1557 */ 1558 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 1559 PMD_SHIFT, next, write, pages, nr)) 1560 return 0; 1561 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr)) 1562 return 0; 1563 } while (pmdp++, addr = next, addr != end); 1564 1565 return 1; 1566 } 1567 1568 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 1569 int write, struct page **pages, int *nr) 1570 { 1571 unsigned long next; 1572 pud_t *pudp; 1573 1574 pudp = pud_offset(&p4d, addr); 1575 do { 1576 pud_t pud = READ_ONCE(*pudp); 1577 1578 next = pud_addr_end(addr, end); 1579 if (pud_none(pud)) 1580 return 0; 1581 if (unlikely(pud_huge(pud))) { 1582 if (!gup_huge_pud(pud, pudp, addr, next, write, 1583 pages, nr)) 1584 return 0; 1585 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 1586 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 1587 PUD_SHIFT, next, write, pages, nr)) 1588 return 0; 1589 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr)) 1590 return 0; 1591 } while (pudp++, addr = next, addr != end); 1592 1593 return 1; 1594 } 1595 1596 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 1597 int write, struct page **pages, int *nr) 1598 { 1599 unsigned long next; 1600 p4d_t *p4dp; 1601 1602 p4dp = p4d_offset(&pgd, addr); 1603 do { 1604 p4d_t p4d = READ_ONCE(*p4dp); 1605 1606 next = p4d_addr_end(addr, end); 1607 if (p4d_none(p4d)) 1608 return 0; 1609 BUILD_BUG_ON(p4d_huge(p4d)); 1610 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 1611 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 1612 P4D_SHIFT, next, write, pages, nr)) 1613 return 0; 1614 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr)) 1615 return 0; 1616 } while (p4dp++, addr = next, addr != end); 1617 1618 return 1; 1619 } 1620 1621 /* 1622 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 1623 * the regular GUP. It will only return non-negative values. 1624 */ 1625 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1626 struct page **pages) 1627 { 1628 struct mm_struct *mm = current->mm; 1629 unsigned long addr, len, end; 1630 unsigned long next, flags; 1631 pgd_t *pgdp; 1632 int nr = 0; 1633 1634 start &= PAGE_MASK; 1635 addr = start; 1636 len = (unsigned long) nr_pages << PAGE_SHIFT; 1637 end = start + len; 1638 1639 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, 1640 (void __user *)start, len))) 1641 return 0; 1642 1643 /* 1644 * Disable interrupts. We use the nested form as we can already have 1645 * interrupts disabled by get_futex_key. 1646 * 1647 * With interrupts disabled, we block page table pages from being 1648 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h 1649 * for more details. 1650 * 1651 * We do not adopt an rcu_read_lock(.) here as we also want to 1652 * block IPIs that come from THPs splitting. 1653 */ 1654 1655 local_irq_save(flags); 1656 pgdp = pgd_offset(mm, addr); 1657 do { 1658 pgd_t pgd = READ_ONCE(*pgdp); 1659 1660 next = pgd_addr_end(addr, end); 1661 if (pgd_none(pgd)) 1662 break; 1663 if (unlikely(pgd_huge(pgd))) { 1664 if (!gup_huge_pgd(pgd, pgdp, addr, next, write, 1665 pages, &nr)) 1666 break; 1667 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 1668 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 1669 PGDIR_SHIFT, next, write, pages, &nr)) 1670 break; 1671 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr)) 1672 break; 1673 } while (pgdp++, addr = next, addr != end); 1674 local_irq_restore(flags); 1675 1676 return nr; 1677 } 1678 1679 #ifndef gup_fast_permitted 1680 /* 1681 * Check if it's allowed to use __get_user_pages_fast() for the range, or 1682 * we need to fall back to the slow version: 1683 */ 1684 bool gup_fast_permitted(unsigned long start, int nr_pages, int write) 1685 { 1686 unsigned long len, end; 1687 1688 len = (unsigned long) nr_pages << PAGE_SHIFT; 1689 end = start + len; 1690 return end >= start; 1691 } 1692 #endif 1693 1694 /** 1695 * get_user_pages_fast() - pin user pages in memory 1696 * @start: starting user address 1697 * @nr_pages: number of pages from start to pin 1698 * @write: whether pages will be written to 1699 * @pages: array that receives pointers to the pages pinned. 1700 * Should be at least nr_pages long. 1701 * 1702 * Attempt to pin user pages in memory without taking mm->mmap_sem. 1703 * If not successful, it will fall back to taking the lock and 1704 * calling get_user_pages(). 1705 * 1706 * Returns number of pages pinned. This may be fewer than the number 1707 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1708 * were pinned, returns -errno. 1709 */ 1710 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1711 struct page **pages) 1712 { 1713 int nr = 0, ret = 0; 1714 1715 start &= PAGE_MASK; 1716 1717 if (gup_fast_permitted(start, nr_pages, write)) { 1718 nr = __get_user_pages_fast(start, nr_pages, write, pages); 1719 ret = nr; 1720 } 1721 1722 if (nr < nr_pages) { 1723 /* Try to get the remaining pages with get_user_pages */ 1724 start += nr << PAGE_SHIFT; 1725 pages += nr; 1726 1727 ret = get_user_pages_unlocked(start, nr_pages - nr, pages, 1728 write ? FOLL_WRITE : 0); 1729 1730 /* Have to be a bit careful with return values */ 1731 if (nr > 0) { 1732 if (ret < 0) 1733 ret = nr; 1734 else 1735 ret += nr; 1736 } 1737 } 1738 1739 return ret; 1740 } 1741 1742 #endif /* CONFIG_HAVE_GENERIC_GUP */ 1743