xref: /linux/mm/gup.c (revision cff66ace51e3acfcba3ab03f92adc9510830c365)
1  // SPDX-License-Identifier: GPL-2.0-only
2  #include <linux/kernel.h>
3  #include <linux/errno.h>
4  #include <linux/err.h>
5  #include <linux/spinlock.h>
6  
7  #include <linux/mm.h>
8  #include <linux/memremap.h>
9  #include <linux/pagemap.h>
10  #include <linux/rmap.h>
11  #include <linux/swap.h>
12  #include <linux/swapops.h>
13  #include <linux/secretmem.h>
14  
15  #include <linux/sched/signal.h>
16  #include <linux/rwsem.h>
17  #include <linux/hugetlb.h>
18  #include <linux/migrate.h>
19  #include <linux/mm_inline.h>
20  #include <linux/sched/mm.h>
21  #include <linux/shmem_fs.h>
22  
23  #include <asm/mmu_context.h>
24  #include <asm/tlbflush.h>
25  
26  #include "internal.h"
27  
28  struct follow_page_context {
29  	struct dev_pagemap *pgmap;
30  	unsigned int page_mask;
31  };
32  
33  static inline void sanity_check_pinned_pages(struct page **pages,
34  					     unsigned long npages)
35  {
36  	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37  		return;
38  
39  	/*
40  	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41  	 * can no longer turn them possibly shared and PageAnonExclusive() will
42  	 * stick around until the page is freed.
43  	 *
44  	 * We'd like to verify that our pinned anonymous pages are still mapped
45  	 * exclusively. The issue with anon THP is that we don't know how
46  	 * they are/were mapped when pinning them. However, for anon
47  	 * THP we can assume that either the given page (PTE-mapped THP) or
48  	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49  	 * neither is the case, there is certainly something wrong.
50  	 */
51  	for (; npages; npages--, pages++) {
52  		struct page *page = *pages;
53  		struct folio *folio = page_folio(page);
54  
55  		if (is_zero_page(page) ||
56  		    !folio_test_anon(folio))
57  			continue;
58  		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59  			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60  		else
61  			/* Either a PTE-mapped or a PMD-mapped THP. */
62  			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63  				       !PageAnonExclusive(page), page);
64  	}
65  }
66  
67  /*
68   * Return the folio with ref appropriately incremented,
69   * or NULL if that failed.
70   */
71  static inline struct folio *try_get_folio(struct page *page, int refs)
72  {
73  	struct folio *folio;
74  
75  retry:
76  	folio = page_folio(page);
77  	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78  		return NULL;
79  	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80  		return NULL;
81  
82  	/*
83  	 * At this point we have a stable reference to the folio; but it
84  	 * could be that between calling page_folio() and the refcount
85  	 * increment, the folio was split, in which case we'd end up
86  	 * holding a reference on a folio that has nothing to do with the page
87  	 * we were given anymore.
88  	 * So now that the folio is stable, recheck that the page still
89  	 * belongs to this folio.
90  	 */
91  	if (unlikely(page_folio(page) != folio)) {
92  		if (!put_devmap_managed_page_refs(&folio->page, refs))
93  			folio_put_refs(folio, refs);
94  		goto retry;
95  	}
96  
97  	return folio;
98  }
99  
100  /**
101   * try_grab_folio() - Attempt to get or pin a folio.
102   * @page:  pointer to page to be grabbed
103   * @refs:  the value to (effectively) add to the folio's refcount
104   * @flags: gup flags: these are the FOLL_* flag values.
105   *
106   * "grab" names in this file mean, "look at flags to decide whether to use
107   * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108   *
109   * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110   * same time. (That's true throughout the get_user_pages*() and
111   * pin_user_pages*() APIs.) Cases:
112   *
113   *    FOLL_GET: folio's refcount will be incremented by @refs.
114   *
115   *    FOLL_PIN on large folios: folio's refcount will be incremented by
116   *    @refs, and its pincount will be incremented by @refs.
117   *
118   *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119   *    @refs * GUP_PIN_COUNTING_BIAS.
120   *
121   * Return: The folio containing @page (with refcount appropriately
122   * incremented) for success, or NULL upon failure. If neither FOLL_GET
123   * nor FOLL_PIN was set, that's considered failure, and furthermore,
124   * a likely bug in the caller, so a warning is also emitted.
125   */
126  struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127  {
128  	struct folio *folio;
129  
130  	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131  		return NULL;
132  
133  	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134  		return NULL;
135  
136  	if (flags & FOLL_GET)
137  		return try_get_folio(page, refs);
138  
139  	/* FOLL_PIN is set */
140  
141  	/*
142  	 * Don't take a pin on the zero page - it's not going anywhere
143  	 * and it is used in a *lot* of places.
144  	 */
145  	if (is_zero_page(page))
146  		return page_folio(page);
147  
148  	folio = try_get_folio(page, refs);
149  	if (!folio)
150  		return NULL;
151  
152  	/*
153  	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154  	 * right zone, so fail and let the caller fall back to the slow
155  	 * path.
156  	 */
157  	if (unlikely((flags & FOLL_LONGTERM) &&
158  		     !folio_is_longterm_pinnable(folio))) {
159  		if (!put_devmap_managed_page_refs(&folio->page, refs))
160  			folio_put_refs(folio, refs);
161  		return NULL;
162  	}
163  
164  	/*
165  	 * When pinning a large folio, use an exact count to track it.
166  	 *
167  	 * However, be sure to *also* increment the normal folio
168  	 * refcount field at least once, so that the folio really
169  	 * is pinned.  That's why the refcount from the earlier
170  	 * try_get_folio() is left intact.
171  	 */
172  	if (folio_test_large(folio))
173  		atomic_add(refs, &folio->_pincount);
174  	else
175  		folio_ref_add(folio,
176  				refs * (GUP_PIN_COUNTING_BIAS - 1));
177  	/*
178  	 * Adjust the pincount before re-checking the PTE for changes.
179  	 * This is essentially a smp_mb() and is paired with a memory
180  	 * barrier in page_try_share_anon_rmap().
181  	 */
182  	smp_mb__after_atomic();
183  
184  	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185  
186  	return folio;
187  }
188  
189  static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190  {
191  	if (flags & FOLL_PIN) {
192  		if (is_zero_folio(folio))
193  			return;
194  		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195  		if (folio_test_large(folio))
196  			atomic_sub(refs, &folio->_pincount);
197  		else
198  			refs *= GUP_PIN_COUNTING_BIAS;
199  	}
200  
201  	if (!put_devmap_managed_page_refs(&folio->page, refs))
202  		folio_put_refs(folio, refs);
203  }
204  
205  /**
206   * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207   * @page:    pointer to page to be grabbed
208   * @flags:   gup flags: these are the FOLL_* flag values.
209   *
210   * This might not do anything at all, depending on the flags argument.
211   *
212   * "grab" names in this file mean, "look at flags to decide whether to use
213   * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214   *
215   * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216   * time. Cases: please see the try_grab_folio() documentation, with
217   * "refs=1".
218   *
219   * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220   * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221   *
222   *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223   *			be grabbed.
224   */
225  int __must_check try_grab_page(struct page *page, unsigned int flags)
226  {
227  	struct folio *folio = page_folio(page);
228  
229  	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230  		return -ENOMEM;
231  
232  	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233  		return -EREMOTEIO;
234  
235  	if (flags & FOLL_GET)
236  		folio_ref_inc(folio);
237  	else if (flags & FOLL_PIN) {
238  		/*
239  		 * Don't take a pin on the zero page - it's not going anywhere
240  		 * and it is used in a *lot* of places.
241  		 */
242  		if (is_zero_page(page))
243  			return 0;
244  
245  		/*
246  		 * Similar to try_grab_folio(): be sure to *also*
247  		 * increment the normal page refcount field at least once,
248  		 * so that the page really is pinned.
249  		 */
250  		if (folio_test_large(folio)) {
251  			folio_ref_add(folio, 1);
252  			atomic_add(1, &folio->_pincount);
253  		} else {
254  			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255  		}
256  
257  		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258  	}
259  
260  	return 0;
261  }
262  
263  /**
264   * unpin_user_page() - release a dma-pinned page
265   * @page:            pointer to page to be released
266   *
267   * Pages that were pinned via pin_user_pages*() must be released via either
268   * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269   * that such pages can be separately tracked and uniquely handled. In
270   * particular, interactions with RDMA and filesystems need special handling.
271   */
272  void unpin_user_page(struct page *page)
273  {
274  	sanity_check_pinned_pages(&page, 1);
275  	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276  }
277  EXPORT_SYMBOL(unpin_user_page);
278  
279  /**
280   * folio_add_pin - Try to get an additional pin on a pinned folio
281   * @folio: The folio to be pinned
282   *
283   * Get an additional pin on a folio we already have a pin on.  Makes no change
284   * if the folio is a zero_page.
285   */
286  void folio_add_pin(struct folio *folio)
287  {
288  	if (is_zero_folio(folio))
289  		return;
290  
291  	/*
292  	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293  	 * page refcount field at least once, so that the page really is
294  	 * pinned.
295  	 */
296  	if (folio_test_large(folio)) {
297  		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298  		folio_ref_inc(folio);
299  		atomic_inc(&folio->_pincount);
300  	} else {
301  		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302  		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303  	}
304  }
305  
306  static inline struct folio *gup_folio_range_next(struct page *start,
307  		unsigned long npages, unsigned long i, unsigned int *ntails)
308  {
309  	struct page *next = nth_page(start, i);
310  	struct folio *folio = page_folio(next);
311  	unsigned int nr = 1;
312  
313  	if (folio_test_large(folio))
314  		nr = min_t(unsigned int, npages - i,
315  			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316  
317  	*ntails = nr;
318  	return folio;
319  }
320  
321  static inline struct folio *gup_folio_next(struct page **list,
322  		unsigned long npages, unsigned long i, unsigned int *ntails)
323  {
324  	struct folio *folio = page_folio(list[i]);
325  	unsigned int nr;
326  
327  	for (nr = i + 1; nr < npages; nr++) {
328  		if (page_folio(list[nr]) != folio)
329  			break;
330  	}
331  
332  	*ntails = nr - i;
333  	return folio;
334  }
335  
336  /**
337   * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338   * @pages:  array of pages to be maybe marked dirty, and definitely released.
339   * @npages: number of pages in the @pages array.
340   * @make_dirty: whether to mark the pages dirty
341   *
342   * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343   * variants called on that page.
344   *
345   * For each page in the @pages array, make that page (or its head page, if a
346   * compound page) dirty, if @make_dirty is true, and if the page was previously
347   * listed as clean. In any case, releases all pages using unpin_user_page(),
348   * possibly via unpin_user_pages(), for the non-dirty case.
349   *
350   * Please see the unpin_user_page() documentation for details.
351   *
352   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353   * required, then the caller should a) verify that this is really correct,
354   * because _lock() is usually required, and b) hand code it:
355   * set_page_dirty_lock(), unpin_user_page().
356   *
357   */
358  void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359  				 bool make_dirty)
360  {
361  	unsigned long i;
362  	struct folio *folio;
363  	unsigned int nr;
364  
365  	if (!make_dirty) {
366  		unpin_user_pages(pages, npages);
367  		return;
368  	}
369  
370  	sanity_check_pinned_pages(pages, npages);
371  	for (i = 0; i < npages; i += nr) {
372  		folio = gup_folio_next(pages, npages, i, &nr);
373  		/*
374  		 * Checking PageDirty at this point may race with
375  		 * clear_page_dirty_for_io(), but that's OK. Two key
376  		 * cases:
377  		 *
378  		 * 1) This code sees the page as already dirty, so it
379  		 * skips the call to set_page_dirty(). That could happen
380  		 * because clear_page_dirty_for_io() called
381  		 * page_mkclean(), followed by set_page_dirty().
382  		 * However, now the page is going to get written back,
383  		 * which meets the original intention of setting it
384  		 * dirty, so all is well: clear_page_dirty_for_io() goes
385  		 * on to call TestClearPageDirty(), and write the page
386  		 * back.
387  		 *
388  		 * 2) This code sees the page as clean, so it calls
389  		 * set_page_dirty(). The page stays dirty, despite being
390  		 * written back, so it gets written back again in the
391  		 * next writeback cycle. This is harmless.
392  		 */
393  		if (!folio_test_dirty(folio)) {
394  			folio_lock(folio);
395  			folio_mark_dirty(folio);
396  			folio_unlock(folio);
397  		}
398  		gup_put_folio(folio, nr, FOLL_PIN);
399  	}
400  }
401  EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402  
403  /**
404   * unpin_user_page_range_dirty_lock() - release and optionally dirty
405   * gup-pinned page range
406   *
407   * @page:  the starting page of a range maybe marked dirty, and definitely released.
408   * @npages: number of consecutive pages to release.
409   * @make_dirty: whether to mark the pages dirty
410   *
411   * "gup-pinned page range" refers to a range of pages that has had one of the
412   * pin_user_pages() variants called on that page.
413   *
414   * For the page ranges defined by [page .. page+npages], make that range (or
415   * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416   * page range was previously listed as clean.
417   *
418   * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419   * required, then the caller should a) verify that this is really correct,
420   * because _lock() is usually required, and b) hand code it:
421   * set_page_dirty_lock(), unpin_user_page().
422   *
423   */
424  void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425  				      bool make_dirty)
426  {
427  	unsigned long i;
428  	struct folio *folio;
429  	unsigned int nr;
430  
431  	for (i = 0; i < npages; i += nr) {
432  		folio = gup_folio_range_next(page, npages, i, &nr);
433  		if (make_dirty && !folio_test_dirty(folio)) {
434  			folio_lock(folio);
435  			folio_mark_dirty(folio);
436  			folio_unlock(folio);
437  		}
438  		gup_put_folio(folio, nr, FOLL_PIN);
439  	}
440  }
441  EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442  
443  static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444  {
445  	unsigned long i;
446  	struct folio *folio;
447  	unsigned int nr;
448  
449  	/*
450  	 * Don't perform any sanity checks because we might have raced with
451  	 * fork() and some anonymous pages might now actually be shared --
452  	 * which is why we're unpinning after all.
453  	 */
454  	for (i = 0; i < npages; i += nr) {
455  		folio = gup_folio_next(pages, npages, i, &nr);
456  		gup_put_folio(folio, nr, FOLL_PIN);
457  	}
458  }
459  
460  /**
461   * unpin_user_pages() - release an array of gup-pinned pages.
462   * @pages:  array of pages to be marked dirty and released.
463   * @npages: number of pages in the @pages array.
464   *
465   * For each page in the @pages array, release the page using unpin_user_page().
466   *
467   * Please see the unpin_user_page() documentation for details.
468   */
469  void unpin_user_pages(struct page **pages, unsigned long npages)
470  {
471  	unsigned long i;
472  	struct folio *folio;
473  	unsigned int nr;
474  
475  	/*
476  	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477  	 * leaving them pinned), but probably not. More likely, gup/pup returned
478  	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479  	 */
480  	if (WARN_ON(IS_ERR_VALUE(npages)))
481  		return;
482  
483  	sanity_check_pinned_pages(pages, npages);
484  	for (i = 0; i < npages; i += nr) {
485  		folio = gup_folio_next(pages, npages, i, &nr);
486  		gup_put_folio(folio, nr, FOLL_PIN);
487  	}
488  }
489  EXPORT_SYMBOL(unpin_user_pages);
490  
491  /*
492   * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493   * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494   * cache bouncing on large SMP machines for concurrent pinned gups.
495   */
496  static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497  {
498  	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499  		set_bit(MMF_HAS_PINNED, mm_flags);
500  }
501  
502  #ifdef CONFIG_MMU
503  static struct page *no_page_table(struct vm_area_struct *vma,
504  		unsigned int flags)
505  {
506  	/*
507  	 * When core dumping an enormous anonymous area that nobody
508  	 * has touched so far, we don't want to allocate unnecessary pages or
509  	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510  	 * then get_dump_page() will return NULL to leave a hole in the dump.
511  	 * But we can only make this optimization where a hole would surely
512  	 * be zero-filled if handle_mm_fault() actually did handle it.
513  	 */
514  	if ((flags & FOLL_DUMP) &&
515  			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516  		return ERR_PTR(-EFAULT);
517  	return NULL;
518  }
519  
520  static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521  		pte_t *pte, unsigned int flags)
522  {
523  	if (flags & FOLL_TOUCH) {
524  		pte_t orig_entry = ptep_get(pte);
525  		pte_t entry = orig_entry;
526  
527  		if (flags & FOLL_WRITE)
528  			entry = pte_mkdirty(entry);
529  		entry = pte_mkyoung(entry);
530  
531  		if (!pte_same(orig_entry, entry)) {
532  			set_pte_at(vma->vm_mm, address, pte, entry);
533  			update_mmu_cache(vma, address, pte);
534  		}
535  	}
536  
537  	/* Proper page table entry exists, but no corresponding struct page */
538  	return -EEXIST;
539  }
540  
541  /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542  static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543  					struct vm_area_struct *vma,
544  					unsigned int flags)
545  {
546  	/* If the pte is writable, we can write to the page. */
547  	if (pte_write(pte))
548  		return true;
549  
550  	/* Maybe FOLL_FORCE is set to override it? */
551  	if (!(flags & FOLL_FORCE))
552  		return false;
553  
554  	/* But FOLL_FORCE has no effect on shared mappings */
555  	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556  		return false;
557  
558  	/* ... or read-only private ones */
559  	if (!(vma->vm_flags & VM_MAYWRITE))
560  		return false;
561  
562  	/* ... or already writable ones that just need to take a write fault */
563  	if (vma->vm_flags & VM_WRITE)
564  		return false;
565  
566  	/*
567  	 * See can_change_pte_writable(): we broke COW and could map the page
568  	 * writable if we have an exclusive anonymous page ...
569  	 */
570  	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571  		return false;
572  
573  	/* ... and a write-fault isn't required for other reasons. */
574  	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575  		return false;
576  	return !userfaultfd_pte_wp(vma, pte);
577  }
578  
579  static struct page *follow_page_pte(struct vm_area_struct *vma,
580  		unsigned long address, pmd_t *pmd, unsigned int flags,
581  		struct dev_pagemap **pgmap)
582  {
583  	struct mm_struct *mm = vma->vm_mm;
584  	struct page *page;
585  	spinlock_t *ptl;
586  	pte_t *ptep, pte;
587  	int ret;
588  
589  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590  	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591  			 (FOLL_PIN | FOLL_GET)))
592  		return ERR_PTR(-EINVAL);
593  
594  	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595  	if (!ptep)
596  		return no_page_table(vma, flags);
597  	pte = ptep_get(ptep);
598  	if (!pte_present(pte))
599  		goto no_page;
600  	if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
601  		goto no_page;
602  
603  	page = vm_normal_page(vma, address, pte);
604  
605  	/*
606  	 * We only care about anon pages in can_follow_write_pte() and don't
607  	 * have to worry about pte_devmap() because they are never anon.
608  	 */
609  	if ((flags & FOLL_WRITE) &&
610  	    !can_follow_write_pte(pte, page, vma, flags)) {
611  		page = NULL;
612  		goto out;
613  	}
614  
615  	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616  		/*
617  		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618  		 * case since they are only valid while holding the pgmap
619  		 * reference.
620  		 */
621  		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622  		if (*pgmap)
623  			page = pte_page(pte);
624  		else
625  			goto no_page;
626  	} else if (unlikely(!page)) {
627  		if (flags & FOLL_DUMP) {
628  			/* Avoid special (like zero) pages in core dumps */
629  			page = ERR_PTR(-EFAULT);
630  			goto out;
631  		}
632  
633  		if (is_zero_pfn(pte_pfn(pte))) {
634  			page = pte_page(pte);
635  		} else {
636  			ret = follow_pfn_pte(vma, address, ptep, flags);
637  			page = ERR_PTR(ret);
638  			goto out;
639  		}
640  	}
641  
642  	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643  		page = ERR_PTR(-EMLINK);
644  		goto out;
645  	}
646  
647  	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648  		       !PageAnonExclusive(page), page);
649  
650  	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651  	ret = try_grab_page(page, flags);
652  	if (unlikely(ret)) {
653  		page = ERR_PTR(ret);
654  		goto out;
655  	}
656  
657  	/*
658  	 * We need to make the page accessible if and only if we are going
659  	 * to access its content (the FOLL_PIN case).  Please see
660  	 * Documentation/core-api/pin_user_pages.rst for details.
661  	 */
662  	if (flags & FOLL_PIN) {
663  		ret = arch_make_page_accessible(page);
664  		if (ret) {
665  			unpin_user_page(page);
666  			page = ERR_PTR(ret);
667  			goto out;
668  		}
669  	}
670  	if (flags & FOLL_TOUCH) {
671  		if ((flags & FOLL_WRITE) &&
672  		    !pte_dirty(pte) && !PageDirty(page))
673  			set_page_dirty(page);
674  		/*
675  		 * pte_mkyoung() would be more correct here, but atomic care
676  		 * is needed to avoid losing the dirty bit: it is easier to use
677  		 * mark_page_accessed().
678  		 */
679  		mark_page_accessed(page);
680  	}
681  out:
682  	pte_unmap_unlock(ptep, ptl);
683  	return page;
684  no_page:
685  	pte_unmap_unlock(ptep, ptl);
686  	if (!pte_none(pte))
687  		return NULL;
688  	return no_page_table(vma, flags);
689  }
690  
691  static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692  				    unsigned long address, pud_t *pudp,
693  				    unsigned int flags,
694  				    struct follow_page_context *ctx)
695  {
696  	pmd_t *pmd, pmdval;
697  	spinlock_t *ptl;
698  	struct page *page;
699  	struct mm_struct *mm = vma->vm_mm;
700  
701  	pmd = pmd_offset(pudp, address);
702  	pmdval = pmdp_get_lockless(pmd);
703  	if (pmd_none(pmdval))
704  		return no_page_table(vma, flags);
705  	if (!pmd_present(pmdval))
706  		return no_page_table(vma, flags);
707  	if (pmd_devmap(pmdval)) {
708  		ptl = pmd_lock(mm, pmd);
709  		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710  		spin_unlock(ptl);
711  		if (page)
712  			return page;
713  	}
714  	if (likely(!pmd_trans_huge(pmdval)))
715  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
716  
717  	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
718  		return no_page_table(vma, flags);
719  
720  	ptl = pmd_lock(mm, pmd);
721  	if (unlikely(!pmd_present(*pmd))) {
722  		spin_unlock(ptl);
723  		return no_page_table(vma, flags);
724  	}
725  	if (unlikely(!pmd_trans_huge(*pmd))) {
726  		spin_unlock(ptl);
727  		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
728  	}
729  	if (flags & FOLL_SPLIT_PMD) {
730  		spin_unlock(ptl);
731  		split_huge_pmd(vma, pmd, address);
732  		/* If pmd was left empty, stuff a page table in there quickly */
733  		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
734  			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
735  	}
736  	page = follow_trans_huge_pmd(vma, address, pmd, flags);
737  	spin_unlock(ptl);
738  	ctx->page_mask = HPAGE_PMD_NR - 1;
739  	return page;
740  }
741  
742  static struct page *follow_pud_mask(struct vm_area_struct *vma,
743  				    unsigned long address, p4d_t *p4dp,
744  				    unsigned int flags,
745  				    struct follow_page_context *ctx)
746  {
747  	pud_t *pud;
748  	spinlock_t *ptl;
749  	struct page *page;
750  	struct mm_struct *mm = vma->vm_mm;
751  
752  	pud = pud_offset(p4dp, address);
753  	if (pud_none(*pud))
754  		return no_page_table(vma, flags);
755  	if (pud_devmap(*pud)) {
756  		ptl = pud_lock(mm, pud);
757  		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
758  		spin_unlock(ptl);
759  		if (page)
760  			return page;
761  	}
762  	if (unlikely(pud_bad(*pud)))
763  		return no_page_table(vma, flags);
764  
765  	return follow_pmd_mask(vma, address, pud, flags, ctx);
766  }
767  
768  static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769  				    unsigned long address, pgd_t *pgdp,
770  				    unsigned int flags,
771  				    struct follow_page_context *ctx)
772  {
773  	p4d_t *p4d;
774  
775  	p4d = p4d_offset(pgdp, address);
776  	if (p4d_none(*p4d))
777  		return no_page_table(vma, flags);
778  	BUILD_BUG_ON(p4d_huge(*p4d));
779  	if (unlikely(p4d_bad(*p4d)))
780  		return no_page_table(vma, flags);
781  
782  	return follow_pud_mask(vma, address, p4d, flags, ctx);
783  }
784  
785  /**
786   * follow_page_mask - look up a page descriptor from a user-virtual address
787   * @vma: vm_area_struct mapping @address
788   * @address: virtual address to look up
789   * @flags: flags modifying lookup behaviour
790   * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
791   *       pointer to output page_mask
792   *
793   * @flags can have FOLL_ flags set, defined in <linux/mm.h>
794   *
795   * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
796   * the device's dev_pagemap metadata to avoid repeating expensive lookups.
797   *
798   * When getting an anonymous page and the caller has to trigger unsharing
799   * of a shared anonymous page first, -EMLINK is returned. The caller should
800   * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
801   * relevant with FOLL_PIN and !FOLL_WRITE.
802   *
803   * On output, the @ctx->page_mask is set according to the size of the page.
804   *
805   * Return: the mapped (struct page *), %NULL if no mapping exists, or
806   * an error pointer if there is a mapping to something not represented
807   * by a page descriptor (see also vm_normal_page()).
808   */
809  static struct page *follow_page_mask(struct vm_area_struct *vma,
810  			      unsigned long address, unsigned int flags,
811  			      struct follow_page_context *ctx)
812  {
813  	pgd_t *pgd;
814  	struct page *page;
815  	struct mm_struct *mm = vma->vm_mm;
816  
817  	ctx->page_mask = 0;
818  
819  	/*
820  	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
821  	 * special hugetlb page table walking code.  This eliminates the
822  	 * need to check for hugetlb entries in the general walking code.
823  	 *
824  	 * hugetlb_follow_page_mask is only for follow_page() handling here.
825  	 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
826  	 */
827  	if (is_vm_hugetlb_page(vma)) {
828  		page = hugetlb_follow_page_mask(vma, address, flags);
829  		if (!page)
830  			page = no_page_table(vma, flags);
831  		return page;
832  	}
833  
834  	pgd = pgd_offset(mm, address);
835  
836  	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
837  		return no_page_table(vma, flags);
838  
839  	return follow_p4d_mask(vma, address, pgd, flags, ctx);
840  }
841  
842  struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
843  			 unsigned int foll_flags)
844  {
845  	struct follow_page_context ctx = { NULL };
846  	struct page *page;
847  
848  	if (vma_is_secretmem(vma))
849  		return NULL;
850  
851  	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
852  		return NULL;
853  
854  	page = follow_page_mask(vma, address, foll_flags, &ctx);
855  	if (ctx.pgmap)
856  		put_dev_pagemap(ctx.pgmap);
857  	return page;
858  }
859  
860  static int get_gate_page(struct mm_struct *mm, unsigned long address,
861  		unsigned int gup_flags, struct vm_area_struct **vma,
862  		struct page **page)
863  {
864  	pgd_t *pgd;
865  	p4d_t *p4d;
866  	pud_t *pud;
867  	pmd_t *pmd;
868  	pte_t *pte;
869  	pte_t entry;
870  	int ret = -EFAULT;
871  
872  	/* user gate pages are read-only */
873  	if (gup_flags & FOLL_WRITE)
874  		return -EFAULT;
875  	if (address > TASK_SIZE)
876  		pgd = pgd_offset_k(address);
877  	else
878  		pgd = pgd_offset_gate(mm, address);
879  	if (pgd_none(*pgd))
880  		return -EFAULT;
881  	p4d = p4d_offset(pgd, address);
882  	if (p4d_none(*p4d))
883  		return -EFAULT;
884  	pud = pud_offset(p4d, address);
885  	if (pud_none(*pud))
886  		return -EFAULT;
887  	pmd = pmd_offset(pud, address);
888  	if (!pmd_present(*pmd))
889  		return -EFAULT;
890  	pte = pte_offset_map(pmd, address);
891  	if (!pte)
892  		return -EFAULT;
893  	entry = ptep_get(pte);
894  	if (pte_none(entry))
895  		goto unmap;
896  	*vma = get_gate_vma(mm);
897  	if (!page)
898  		goto out;
899  	*page = vm_normal_page(*vma, address, entry);
900  	if (!*page) {
901  		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
902  			goto unmap;
903  		*page = pte_page(entry);
904  	}
905  	ret = try_grab_page(*page, gup_flags);
906  	if (unlikely(ret))
907  		goto unmap;
908  out:
909  	ret = 0;
910  unmap:
911  	pte_unmap(pte);
912  	return ret;
913  }
914  
915  /*
916   * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
917   * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
918   * to 0 and -EBUSY returned.
919   */
920  static int faultin_page(struct vm_area_struct *vma,
921  		unsigned long address, unsigned int *flags, bool unshare,
922  		int *locked)
923  {
924  	unsigned int fault_flags = 0;
925  	vm_fault_t ret;
926  
927  	if (*flags & FOLL_NOFAULT)
928  		return -EFAULT;
929  	if (*flags & FOLL_WRITE)
930  		fault_flags |= FAULT_FLAG_WRITE;
931  	if (*flags & FOLL_REMOTE)
932  		fault_flags |= FAULT_FLAG_REMOTE;
933  	if (*flags & FOLL_UNLOCKABLE) {
934  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
935  		/*
936  		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
937  		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
938  		 * That's because some callers may not be prepared to
939  		 * handle early exits caused by non-fatal signals.
940  		 */
941  		if (*flags & FOLL_INTERRUPTIBLE)
942  			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
943  	}
944  	if (*flags & FOLL_NOWAIT)
945  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
946  	if (*flags & FOLL_TRIED) {
947  		/*
948  		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
949  		 * can co-exist
950  		 */
951  		fault_flags |= FAULT_FLAG_TRIED;
952  	}
953  	if (unshare) {
954  		fault_flags |= FAULT_FLAG_UNSHARE;
955  		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
956  		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
957  	}
958  
959  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
960  
961  	if (ret & VM_FAULT_COMPLETED) {
962  		/*
963  		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
964  		 * mmap lock in the page fault handler. Sanity check this.
965  		 */
966  		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
967  		*locked = 0;
968  
969  		/*
970  		 * We should do the same as VM_FAULT_RETRY, but let's not
971  		 * return -EBUSY since that's not reflecting the reality of
972  		 * what has happened - we've just fully completed a page
973  		 * fault, with the mmap lock released.  Use -EAGAIN to show
974  		 * that we want to take the mmap lock _again_.
975  		 */
976  		return -EAGAIN;
977  	}
978  
979  	if (ret & VM_FAULT_ERROR) {
980  		int err = vm_fault_to_errno(ret, *flags);
981  
982  		if (err)
983  			return err;
984  		BUG();
985  	}
986  
987  	if (ret & VM_FAULT_RETRY) {
988  		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
989  			*locked = 0;
990  		return -EBUSY;
991  	}
992  
993  	return 0;
994  }
995  
996  /*
997   * Writing to file-backed mappings which require folio dirty tracking using GUP
998   * is a fundamentally broken operation, as kernel write access to GUP mappings
999   * do not adhere to the semantics expected by a file system.
1000   *
1001   * Consider the following scenario:-
1002   *
1003   * 1. A folio is written to via GUP which write-faults the memory, notifying
1004   *    the file system and dirtying the folio.
1005   * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1006   *    the PTE being marked read-only.
1007   * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1008   *    direct mapping.
1009   * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1010   *    (though it does not have to).
1011   *
1012   * This results in both data being written to a folio without writenotify, and
1013   * the folio being dirtied unexpectedly (if the caller decides to do so).
1014   */
1015  static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1016  					  unsigned long gup_flags)
1017  {
1018  	/*
1019  	 * If we aren't pinning then no problematic write can occur. A long term
1020  	 * pin is the most egregious case so this is the case we disallow.
1021  	 */
1022  	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1023  	    (FOLL_PIN | FOLL_LONGTERM))
1024  		return true;
1025  
1026  	/*
1027  	 * If the VMA does not require dirty tracking then no problematic write
1028  	 * can occur either.
1029  	 */
1030  	return !vma_needs_dirty_tracking(vma);
1031  }
1032  
1033  static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1034  {
1035  	vm_flags_t vm_flags = vma->vm_flags;
1036  	int write = (gup_flags & FOLL_WRITE);
1037  	int foreign = (gup_flags & FOLL_REMOTE);
1038  	bool vma_anon = vma_is_anonymous(vma);
1039  
1040  	if (vm_flags & (VM_IO | VM_PFNMAP))
1041  		return -EFAULT;
1042  
1043  	if ((gup_flags & FOLL_ANON) && !vma_anon)
1044  		return -EFAULT;
1045  
1046  	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1047  		return -EOPNOTSUPP;
1048  
1049  	if (vma_is_secretmem(vma))
1050  		return -EFAULT;
1051  
1052  	if (write) {
1053  		if (!vma_anon &&
1054  		    !writable_file_mapping_allowed(vma, gup_flags))
1055  			return -EFAULT;
1056  
1057  		if (!(vm_flags & VM_WRITE)) {
1058  			if (!(gup_flags & FOLL_FORCE))
1059  				return -EFAULT;
1060  			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1061  			if (is_vm_hugetlb_page(vma))
1062  				return -EFAULT;
1063  			/*
1064  			 * We used to let the write,force case do COW in a
1065  			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1066  			 * set a breakpoint in a read-only mapping of an
1067  			 * executable, without corrupting the file (yet only
1068  			 * when that file had been opened for writing!).
1069  			 * Anon pages in shared mappings are surprising: now
1070  			 * just reject it.
1071  			 */
1072  			if (!is_cow_mapping(vm_flags))
1073  				return -EFAULT;
1074  		}
1075  	} else if (!(vm_flags & VM_READ)) {
1076  		if (!(gup_flags & FOLL_FORCE))
1077  			return -EFAULT;
1078  		/*
1079  		 * Is there actually any vma we can reach here which does not
1080  		 * have VM_MAYREAD set?
1081  		 */
1082  		if (!(vm_flags & VM_MAYREAD))
1083  			return -EFAULT;
1084  	}
1085  	/*
1086  	 * gups are always data accesses, not instruction
1087  	 * fetches, so execute=false here
1088  	 */
1089  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1090  		return -EFAULT;
1091  	return 0;
1092  }
1093  
1094  /*
1095   * This is "vma_lookup()", but with a warning if we would have
1096   * historically expanded the stack in the GUP code.
1097   */
1098  static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1099  	 unsigned long addr)
1100  {
1101  #ifdef CONFIG_STACK_GROWSUP
1102  	return vma_lookup(mm, addr);
1103  #else
1104  	static volatile unsigned long next_warn;
1105  	struct vm_area_struct *vma;
1106  	unsigned long now, next;
1107  
1108  	vma = find_vma(mm, addr);
1109  	if (!vma || (addr >= vma->vm_start))
1110  		return vma;
1111  
1112  	/* Only warn for half-way relevant accesses */
1113  	if (!(vma->vm_flags & VM_GROWSDOWN))
1114  		return NULL;
1115  	if (vma->vm_start - addr > 65536)
1116  		return NULL;
1117  
1118  	/* Let's not warn more than once an hour.. */
1119  	now = jiffies; next = next_warn;
1120  	if (next && time_before(now, next))
1121  		return NULL;
1122  	next_warn = now + 60*60*HZ;
1123  
1124  	/* Let people know things may have changed. */
1125  	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1126  		current->comm, task_pid_nr(current),
1127  		vma->vm_start, vma->vm_end, addr);
1128  	dump_stack();
1129  	return NULL;
1130  #endif
1131  }
1132  
1133  /**
1134   * __get_user_pages() - pin user pages in memory
1135   * @mm:		mm_struct of target mm
1136   * @start:	starting user address
1137   * @nr_pages:	number of pages from start to pin
1138   * @gup_flags:	flags modifying pin behaviour
1139   * @pages:	array that receives pointers to the pages pinned.
1140   *		Should be at least nr_pages long. Or NULL, if caller
1141   *		only intends to ensure the pages are faulted in.
1142   * @locked:     whether we're still with the mmap_lock held
1143   *
1144   * Returns either number of pages pinned (which may be less than the
1145   * number requested), or an error. Details about the return value:
1146   *
1147   * -- If nr_pages is 0, returns 0.
1148   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1149   * -- If nr_pages is >0, and some pages were pinned, returns the number of
1150   *    pages pinned. Again, this may be less than nr_pages.
1151   * -- 0 return value is possible when the fault would need to be retried.
1152   *
1153   * The caller is responsible for releasing returned @pages, via put_page().
1154   *
1155   * Must be called with mmap_lock held.  It may be released.  See below.
1156   *
1157   * __get_user_pages walks a process's page tables and takes a reference to
1158   * each struct page that each user address corresponds to at a given
1159   * instant. That is, it takes the page that would be accessed if a user
1160   * thread accesses the given user virtual address at that instant.
1161   *
1162   * This does not guarantee that the page exists in the user mappings when
1163   * __get_user_pages returns, and there may even be a completely different
1164   * page there in some cases (eg. if mmapped pagecache has been invalidated
1165   * and subsequently re-faulted). However it does guarantee that the page
1166   * won't be freed completely. And mostly callers simply care that the page
1167   * contains data that was valid *at some point in time*. Typically, an IO
1168   * or similar operation cannot guarantee anything stronger anyway because
1169   * locks can't be held over the syscall boundary.
1170   *
1171   * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1172   * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1173   * appropriate) must be called after the page is finished with, and
1174   * before put_page is called.
1175   *
1176   * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1177   * be released. If this happens *@locked will be set to 0 on return.
1178   *
1179   * A caller using such a combination of @gup_flags must therefore hold the
1180   * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1181   * it must be held for either reading or writing and will not be released.
1182   *
1183   * In most cases, get_user_pages or get_user_pages_fast should be used
1184   * instead of __get_user_pages. __get_user_pages should be used only if
1185   * you need some special @gup_flags.
1186   */
1187  static long __get_user_pages(struct mm_struct *mm,
1188  		unsigned long start, unsigned long nr_pages,
1189  		unsigned int gup_flags, struct page **pages,
1190  		int *locked)
1191  {
1192  	long ret = 0, i = 0;
1193  	struct vm_area_struct *vma = NULL;
1194  	struct follow_page_context ctx = { NULL };
1195  
1196  	if (!nr_pages)
1197  		return 0;
1198  
1199  	start = untagged_addr_remote(mm, start);
1200  
1201  	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1202  
1203  	do {
1204  		struct page *page;
1205  		unsigned int foll_flags = gup_flags;
1206  		unsigned int page_increm;
1207  
1208  		/* first iteration or cross vma bound */
1209  		if (!vma || start >= vma->vm_end) {
1210  			vma = gup_vma_lookup(mm, start);
1211  			if (!vma && in_gate_area(mm, start)) {
1212  				ret = get_gate_page(mm, start & PAGE_MASK,
1213  						gup_flags, &vma,
1214  						pages ? &pages[i] : NULL);
1215  				if (ret)
1216  					goto out;
1217  				ctx.page_mask = 0;
1218  				goto next_page;
1219  			}
1220  
1221  			if (!vma) {
1222  				ret = -EFAULT;
1223  				goto out;
1224  			}
1225  			ret = check_vma_flags(vma, gup_flags);
1226  			if (ret)
1227  				goto out;
1228  
1229  			if (is_vm_hugetlb_page(vma)) {
1230  				i = follow_hugetlb_page(mm, vma, pages,
1231  							&start, &nr_pages, i,
1232  							gup_flags, locked);
1233  				if (!*locked) {
1234  					/*
1235  					 * We've got a VM_FAULT_RETRY
1236  					 * and we've lost mmap_lock.
1237  					 * We must stop here.
1238  					 */
1239  					BUG_ON(gup_flags & FOLL_NOWAIT);
1240  					goto out;
1241  				}
1242  				continue;
1243  			}
1244  		}
1245  retry:
1246  		/*
1247  		 * If we have a pending SIGKILL, don't keep faulting pages and
1248  		 * potentially allocating memory.
1249  		 */
1250  		if (fatal_signal_pending(current)) {
1251  			ret = -EINTR;
1252  			goto out;
1253  		}
1254  		cond_resched();
1255  
1256  		page = follow_page_mask(vma, start, foll_flags, &ctx);
1257  		if (!page || PTR_ERR(page) == -EMLINK) {
1258  			ret = faultin_page(vma, start, &foll_flags,
1259  					   PTR_ERR(page) == -EMLINK, locked);
1260  			switch (ret) {
1261  			case 0:
1262  				goto retry;
1263  			case -EBUSY:
1264  			case -EAGAIN:
1265  				ret = 0;
1266  				fallthrough;
1267  			case -EFAULT:
1268  			case -ENOMEM:
1269  			case -EHWPOISON:
1270  				goto out;
1271  			}
1272  			BUG();
1273  		} else if (PTR_ERR(page) == -EEXIST) {
1274  			/*
1275  			 * Proper page table entry exists, but no corresponding
1276  			 * struct page. If the caller expects **pages to be
1277  			 * filled in, bail out now, because that can't be done
1278  			 * for this page.
1279  			 */
1280  			if (pages) {
1281  				ret = PTR_ERR(page);
1282  				goto out;
1283  			}
1284  
1285  			goto next_page;
1286  		} else if (IS_ERR(page)) {
1287  			ret = PTR_ERR(page);
1288  			goto out;
1289  		}
1290  		if (pages) {
1291  			pages[i] = page;
1292  			flush_anon_page(vma, page, start);
1293  			flush_dcache_page(page);
1294  			ctx.page_mask = 0;
1295  		}
1296  next_page:
1297  		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1298  		if (page_increm > nr_pages)
1299  			page_increm = nr_pages;
1300  		i += page_increm;
1301  		start += page_increm * PAGE_SIZE;
1302  		nr_pages -= page_increm;
1303  	} while (nr_pages);
1304  out:
1305  	if (ctx.pgmap)
1306  		put_dev_pagemap(ctx.pgmap);
1307  	return i ? i : ret;
1308  }
1309  
1310  static bool vma_permits_fault(struct vm_area_struct *vma,
1311  			      unsigned int fault_flags)
1312  {
1313  	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1314  	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1315  	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1316  
1317  	if (!(vm_flags & vma->vm_flags))
1318  		return false;
1319  
1320  	/*
1321  	 * The architecture might have a hardware protection
1322  	 * mechanism other than read/write that can deny access.
1323  	 *
1324  	 * gup always represents data access, not instruction
1325  	 * fetches, so execute=false here:
1326  	 */
1327  	if (!arch_vma_access_permitted(vma, write, false, foreign))
1328  		return false;
1329  
1330  	return true;
1331  }
1332  
1333  /**
1334   * fixup_user_fault() - manually resolve a user page fault
1335   * @mm:		mm_struct of target mm
1336   * @address:	user address
1337   * @fault_flags:flags to pass down to handle_mm_fault()
1338   * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1339   *		does not allow retry. If NULL, the caller must guarantee
1340   *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1341   *
1342   * This is meant to be called in the specific scenario where for locking reasons
1343   * we try to access user memory in atomic context (within a pagefault_disable()
1344   * section), this returns -EFAULT, and we want to resolve the user fault before
1345   * trying again.
1346   *
1347   * Typically this is meant to be used by the futex code.
1348   *
1349   * The main difference with get_user_pages() is that this function will
1350   * unconditionally call handle_mm_fault() which will in turn perform all the
1351   * necessary SW fixup of the dirty and young bits in the PTE, while
1352   * get_user_pages() only guarantees to update these in the struct page.
1353   *
1354   * This is important for some architectures where those bits also gate the
1355   * access permission to the page because they are maintained in software.  On
1356   * such architectures, gup() will not be enough to make a subsequent access
1357   * succeed.
1358   *
1359   * This function will not return with an unlocked mmap_lock. So it has not the
1360   * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1361   */
1362  int fixup_user_fault(struct mm_struct *mm,
1363  		     unsigned long address, unsigned int fault_flags,
1364  		     bool *unlocked)
1365  {
1366  	struct vm_area_struct *vma;
1367  	vm_fault_t ret;
1368  
1369  	address = untagged_addr_remote(mm, address);
1370  
1371  	if (unlocked)
1372  		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1373  
1374  retry:
1375  	vma = gup_vma_lookup(mm, address);
1376  	if (!vma)
1377  		return -EFAULT;
1378  
1379  	if (!vma_permits_fault(vma, fault_flags))
1380  		return -EFAULT;
1381  
1382  	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1383  	    fatal_signal_pending(current))
1384  		return -EINTR;
1385  
1386  	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1387  
1388  	if (ret & VM_FAULT_COMPLETED) {
1389  		/*
1390  		 * NOTE: it's a pity that we need to retake the lock here
1391  		 * to pair with the unlock() in the callers. Ideally we
1392  		 * could tell the callers so they do not need to unlock.
1393  		 */
1394  		mmap_read_lock(mm);
1395  		*unlocked = true;
1396  		return 0;
1397  	}
1398  
1399  	if (ret & VM_FAULT_ERROR) {
1400  		int err = vm_fault_to_errno(ret, 0);
1401  
1402  		if (err)
1403  			return err;
1404  		BUG();
1405  	}
1406  
1407  	if (ret & VM_FAULT_RETRY) {
1408  		mmap_read_lock(mm);
1409  		*unlocked = true;
1410  		fault_flags |= FAULT_FLAG_TRIED;
1411  		goto retry;
1412  	}
1413  
1414  	return 0;
1415  }
1416  EXPORT_SYMBOL_GPL(fixup_user_fault);
1417  
1418  /*
1419   * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1420   * specified, it'll also respond to generic signals.  The caller of GUP
1421   * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1422   */
1423  static bool gup_signal_pending(unsigned int flags)
1424  {
1425  	if (fatal_signal_pending(current))
1426  		return true;
1427  
1428  	if (!(flags & FOLL_INTERRUPTIBLE))
1429  		return false;
1430  
1431  	return signal_pending(current);
1432  }
1433  
1434  /*
1435   * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1436   * the caller. This function may drop the mmap_lock. If it does so, then it will
1437   * set (*locked = 0).
1438   *
1439   * (*locked == 0) means that the caller expects this function to acquire and
1440   * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1441   * the function returns, even though it may have changed temporarily during
1442   * function execution.
1443   *
1444   * Please note that this function, unlike __get_user_pages(), will not return 0
1445   * for nr_pages > 0, unless FOLL_NOWAIT is used.
1446   */
1447  static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1448  						unsigned long start,
1449  						unsigned long nr_pages,
1450  						struct page **pages,
1451  						int *locked,
1452  						unsigned int flags)
1453  {
1454  	long ret, pages_done;
1455  	bool must_unlock = false;
1456  
1457  	/*
1458  	 * The internal caller expects GUP to manage the lock internally and the
1459  	 * lock must be released when this returns.
1460  	 */
1461  	if (!*locked) {
1462  		if (mmap_read_lock_killable(mm))
1463  			return -EAGAIN;
1464  		must_unlock = true;
1465  		*locked = 1;
1466  	}
1467  	else
1468  		mmap_assert_locked(mm);
1469  
1470  	if (flags & FOLL_PIN)
1471  		mm_set_has_pinned_flag(&mm->flags);
1472  
1473  	/*
1474  	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1475  	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1476  	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1477  	 * for FOLL_GET, not for the newer FOLL_PIN.
1478  	 *
1479  	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1480  	 * that here, as any failures will be obvious enough.
1481  	 */
1482  	if (pages && !(flags & FOLL_PIN))
1483  		flags |= FOLL_GET;
1484  
1485  	pages_done = 0;
1486  	for (;;) {
1487  		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1488  				       locked);
1489  		if (!(flags & FOLL_UNLOCKABLE)) {
1490  			/* VM_FAULT_RETRY couldn't trigger, bypass */
1491  			pages_done = ret;
1492  			break;
1493  		}
1494  
1495  		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1496  		if (!*locked) {
1497  			BUG_ON(ret < 0);
1498  			BUG_ON(ret >= nr_pages);
1499  		}
1500  
1501  		if (ret > 0) {
1502  			nr_pages -= ret;
1503  			pages_done += ret;
1504  			if (!nr_pages)
1505  				break;
1506  		}
1507  		if (*locked) {
1508  			/*
1509  			 * VM_FAULT_RETRY didn't trigger or it was a
1510  			 * FOLL_NOWAIT.
1511  			 */
1512  			if (!pages_done)
1513  				pages_done = ret;
1514  			break;
1515  		}
1516  		/*
1517  		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1518  		 * For the prefault case (!pages) we only update counts.
1519  		 */
1520  		if (likely(pages))
1521  			pages += ret;
1522  		start += ret << PAGE_SHIFT;
1523  
1524  		/* The lock was temporarily dropped, so we must unlock later */
1525  		must_unlock = true;
1526  
1527  retry:
1528  		/*
1529  		 * Repeat on the address that fired VM_FAULT_RETRY
1530  		 * with both FAULT_FLAG_ALLOW_RETRY and
1531  		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1532  		 * by fatal signals of even common signals, depending on
1533  		 * the caller's request. So we need to check it before we
1534  		 * start trying again otherwise it can loop forever.
1535  		 */
1536  		if (gup_signal_pending(flags)) {
1537  			if (!pages_done)
1538  				pages_done = -EINTR;
1539  			break;
1540  		}
1541  
1542  		ret = mmap_read_lock_killable(mm);
1543  		if (ret) {
1544  			BUG_ON(ret > 0);
1545  			if (!pages_done)
1546  				pages_done = ret;
1547  			break;
1548  		}
1549  
1550  		*locked = 1;
1551  		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1552  				       pages, locked);
1553  		if (!*locked) {
1554  			/* Continue to retry until we succeeded */
1555  			BUG_ON(ret != 0);
1556  			goto retry;
1557  		}
1558  		if (ret != 1) {
1559  			BUG_ON(ret > 1);
1560  			if (!pages_done)
1561  				pages_done = ret;
1562  			break;
1563  		}
1564  		nr_pages--;
1565  		pages_done++;
1566  		if (!nr_pages)
1567  			break;
1568  		if (likely(pages))
1569  			pages++;
1570  		start += PAGE_SIZE;
1571  	}
1572  	if (must_unlock && *locked) {
1573  		/*
1574  		 * We either temporarily dropped the lock, or the caller
1575  		 * requested that we both acquire and drop the lock. Either way,
1576  		 * we must now unlock, and notify the caller of that state.
1577  		 */
1578  		mmap_read_unlock(mm);
1579  		*locked = 0;
1580  	}
1581  	return pages_done;
1582  }
1583  
1584  /**
1585   * populate_vma_page_range() -  populate a range of pages in the vma.
1586   * @vma:   target vma
1587   * @start: start address
1588   * @end:   end address
1589   * @locked: whether the mmap_lock is still held
1590   *
1591   * This takes care of mlocking the pages too if VM_LOCKED is set.
1592   *
1593   * Return either number of pages pinned in the vma, or a negative error
1594   * code on error.
1595   *
1596   * vma->vm_mm->mmap_lock must be held.
1597   *
1598   * If @locked is NULL, it may be held for read or write and will
1599   * be unperturbed.
1600   *
1601   * If @locked is non-NULL, it must held for read only and may be
1602   * released.  If it's released, *@locked will be set to 0.
1603   */
1604  long populate_vma_page_range(struct vm_area_struct *vma,
1605  		unsigned long start, unsigned long end, int *locked)
1606  {
1607  	struct mm_struct *mm = vma->vm_mm;
1608  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1609  	int local_locked = 1;
1610  	int gup_flags;
1611  	long ret;
1612  
1613  	VM_BUG_ON(!PAGE_ALIGNED(start));
1614  	VM_BUG_ON(!PAGE_ALIGNED(end));
1615  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1616  	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1617  	mmap_assert_locked(mm);
1618  
1619  	/*
1620  	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1621  	 * faultin_page() to break COW, so it has no work to do here.
1622  	 */
1623  	if (vma->vm_flags & VM_LOCKONFAULT)
1624  		return nr_pages;
1625  
1626  	gup_flags = FOLL_TOUCH;
1627  	/*
1628  	 * We want to touch writable mappings with a write fault in order
1629  	 * to break COW, except for shared mappings because these don't COW
1630  	 * and we would not want to dirty them for nothing.
1631  	 */
1632  	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1633  		gup_flags |= FOLL_WRITE;
1634  
1635  	/*
1636  	 * We want mlock to succeed for regions that have any permissions
1637  	 * other than PROT_NONE.
1638  	 */
1639  	if (vma_is_accessible(vma))
1640  		gup_flags |= FOLL_FORCE;
1641  
1642  	if (locked)
1643  		gup_flags |= FOLL_UNLOCKABLE;
1644  
1645  	/*
1646  	 * We made sure addr is within a VMA, so the following will
1647  	 * not result in a stack expansion that recurses back here.
1648  	 */
1649  	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1650  			       NULL, locked ? locked : &local_locked);
1651  	lru_add_drain();
1652  	return ret;
1653  }
1654  
1655  /*
1656   * faultin_vma_page_range() - populate (prefault) page tables inside the
1657   *			      given VMA range readable/writable
1658   *
1659   * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1660   *
1661   * @vma: target vma
1662   * @start: start address
1663   * @end: end address
1664   * @write: whether to prefault readable or writable
1665   * @locked: whether the mmap_lock is still held
1666   *
1667   * Returns either number of processed pages in the vma, or a negative error
1668   * code on error (see __get_user_pages()).
1669   *
1670   * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1671   * covered by the VMA. If it's released, *@locked will be set to 0.
1672   */
1673  long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1674  			    unsigned long end, bool write, int *locked)
1675  {
1676  	struct mm_struct *mm = vma->vm_mm;
1677  	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1678  	int gup_flags;
1679  	long ret;
1680  
1681  	VM_BUG_ON(!PAGE_ALIGNED(start));
1682  	VM_BUG_ON(!PAGE_ALIGNED(end));
1683  	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1684  	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1685  	mmap_assert_locked(mm);
1686  
1687  	/*
1688  	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1689  	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1690  	 *	       difference with !FOLL_FORCE, because the page is writable
1691  	 *	       in the page table.
1692  	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1693  	 *		  a poisoned page.
1694  	 * !FOLL_FORCE: Require proper access permissions.
1695  	 */
1696  	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1697  	if (write)
1698  		gup_flags |= FOLL_WRITE;
1699  
1700  	/*
1701  	 * We want to report -EINVAL instead of -EFAULT for any permission
1702  	 * problems or incompatible mappings.
1703  	 */
1704  	if (check_vma_flags(vma, gup_flags))
1705  		return -EINVAL;
1706  
1707  	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1708  			       NULL, locked);
1709  	lru_add_drain();
1710  	return ret;
1711  }
1712  
1713  /*
1714   * __mm_populate - populate and/or mlock pages within a range of address space.
1715   *
1716   * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1717   * flags. VMAs must be already marked with the desired vm_flags, and
1718   * mmap_lock must not be held.
1719   */
1720  int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1721  {
1722  	struct mm_struct *mm = current->mm;
1723  	unsigned long end, nstart, nend;
1724  	struct vm_area_struct *vma = NULL;
1725  	int locked = 0;
1726  	long ret = 0;
1727  
1728  	end = start + len;
1729  
1730  	for (nstart = start; nstart < end; nstart = nend) {
1731  		/*
1732  		 * We want to fault in pages for [nstart; end) address range.
1733  		 * Find first corresponding VMA.
1734  		 */
1735  		if (!locked) {
1736  			locked = 1;
1737  			mmap_read_lock(mm);
1738  			vma = find_vma_intersection(mm, nstart, end);
1739  		} else if (nstart >= vma->vm_end)
1740  			vma = find_vma_intersection(mm, vma->vm_end, end);
1741  
1742  		if (!vma)
1743  			break;
1744  		/*
1745  		 * Set [nstart; nend) to intersection of desired address
1746  		 * range with the first VMA. Also, skip undesirable VMA types.
1747  		 */
1748  		nend = min(end, vma->vm_end);
1749  		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750  			continue;
1751  		if (nstart < vma->vm_start)
1752  			nstart = vma->vm_start;
1753  		/*
1754  		 * Now fault in a range of pages. populate_vma_page_range()
1755  		 * double checks the vma flags, so that it won't mlock pages
1756  		 * if the vma was already munlocked.
1757  		 */
1758  		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1759  		if (ret < 0) {
1760  			if (ignore_errors) {
1761  				ret = 0;
1762  				continue;	/* continue at next VMA */
1763  			}
1764  			break;
1765  		}
1766  		nend = nstart + ret * PAGE_SIZE;
1767  		ret = 0;
1768  	}
1769  	if (locked)
1770  		mmap_read_unlock(mm);
1771  	return ret;	/* 0 or negative error code */
1772  }
1773  #else /* CONFIG_MMU */
1774  static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1775  		unsigned long nr_pages, struct page **pages,
1776  		int *locked, unsigned int foll_flags)
1777  {
1778  	struct vm_area_struct *vma;
1779  	bool must_unlock = false;
1780  	unsigned long vm_flags;
1781  	long i;
1782  
1783  	if (!nr_pages)
1784  		return 0;
1785  
1786  	/*
1787  	 * The internal caller expects GUP to manage the lock internally and the
1788  	 * lock must be released when this returns.
1789  	 */
1790  	if (!*locked) {
1791  		if (mmap_read_lock_killable(mm))
1792  			return -EAGAIN;
1793  		must_unlock = true;
1794  		*locked = 1;
1795  	}
1796  
1797  	/* calculate required read or write permissions.
1798  	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1799  	 */
1800  	vm_flags  = (foll_flags & FOLL_WRITE) ?
1801  			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1802  	vm_flags &= (foll_flags & FOLL_FORCE) ?
1803  			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1804  
1805  	for (i = 0; i < nr_pages; i++) {
1806  		vma = find_vma(mm, start);
1807  		if (!vma)
1808  			break;
1809  
1810  		/* protect what we can, including chardevs */
1811  		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1812  		    !(vm_flags & vma->vm_flags))
1813  			break;
1814  
1815  		if (pages) {
1816  			pages[i] = virt_to_page((void *)start);
1817  			if (pages[i])
1818  				get_page(pages[i]);
1819  		}
1820  
1821  		start = (start + PAGE_SIZE) & PAGE_MASK;
1822  	}
1823  
1824  	if (must_unlock && *locked) {
1825  		mmap_read_unlock(mm);
1826  		*locked = 0;
1827  	}
1828  
1829  	return i ? : -EFAULT;
1830  }
1831  #endif /* !CONFIG_MMU */
1832  
1833  /**
1834   * fault_in_writeable - fault in userspace address range for writing
1835   * @uaddr: start of address range
1836   * @size: size of address range
1837   *
1838   * Returns the number of bytes not faulted in (like copy_to_user() and
1839   * copy_from_user()).
1840   */
1841  size_t fault_in_writeable(char __user *uaddr, size_t size)
1842  {
1843  	char __user *start = uaddr, *end;
1844  
1845  	if (unlikely(size == 0))
1846  		return 0;
1847  	if (!user_write_access_begin(uaddr, size))
1848  		return size;
1849  	if (!PAGE_ALIGNED(uaddr)) {
1850  		unsafe_put_user(0, uaddr, out);
1851  		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1852  	}
1853  	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1854  	if (unlikely(end < start))
1855  		end = NULL;
1856  	while (uaddr != end) {
1857  		unsafe_put_user(0, uaddr, out);
1858  		uaddr += PAGE_SIZE;
1859  	}
1860  
1861  out:
1862  	user_write_access_end();
1863  	if (size > uaddr - start)
1864  		return size - (uaddr - start);
1865  	return 0;
1866  }
1867  EXPORT_SYMBOL(fault_in_writeable);
1868  
1869  /**
1870   * fault_in_subpage_writeable - fault in an address range for writing
1871   * @uaddr: start of address range
1872   * @size: size of address range
1873   *
1874   * Fault in a user address range for writing while checking for permissions at
1875   * sub-page granularity (e.g. arm64 MTE). This function should be used when
1876   * the caller cannot guarantee forward progress of a copy_to_user() loop.
1877   *
1878   * Returns the number of bytes not faulted in (like copy_to_user() and
1879   * copy_from_user()).
1880   */
1881  size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1882  {
1883  	size_t faulted_in;
1884  
1885  	/*
1886  	 * Attempt faulting in at page granularity first for page table
1887  	 * permission checking. The arch-specific probe_subpage_writeable()
1888  	 * functions may not check for this.
1889  	 */
1890  	faulted_in = size - fault_in_writeable(uaddr, size);
1891  	if (faulted_in)
1892  		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1893  
1894  	return size - faulted_in;
1895  }
1896  EXPORT_SYMBOL(fault_in_subpage_writeable);
1897  
1898  /*
1899   * fault_in_safe_writeable - fault in an address range for writing
1900   * @uaddr: start of address range
1901   * @size: length of address range
1902   *
1903   * Faults in an address range for writing.  This is primarily useful when we
1904   * already know that some or all of the pages in the address range aren't in
1905   * memory.
1906   *
1907   * Unlike fault_in_writeable(), this function is non-destructive.
1908   *
1909   * Note that we don't pin or otherwise hold the pages referenced that we fault
1910   * in.  There's no guarantee that they'll stay in memory for any duration of
1911   * time.
1912   *
1913   * Returns the number of bytes not faulted in, like copy_to_user() and
1914   * copy_from_user().
1915   */
1916  size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1917  {
1918  	unsigned long start = (unsigned long)uaddr, end;
1919  	struct mm_struct *mm = current->mm;
1920  	bool unlocked = false;
1921  
1922  	if (unlikely(size == 0))
1923  		return 0;
1924  	end = PAGE_ALIGN(start + size);
1925  	if (end < start)
1926  		end = 0;
1927  
1928  	mmap_read_lock(mm);
1929  	do {
1930  		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1931  			break;
1932  		start = (start + PAGE_SIZE) & PAGE_MASK;
1933  	} while (start != end);
1934  	mmap_read_unlock(mm);
1935  
1936  	if (size > (unsigned long)uaddr - start)
1937  		return size - ((unsigned long)uaddr - start);
1938  	return 0;
1939  }
1940  EXPORT_SYMBOL(fault_in_safe_writeable);
1941  
1942  /**
1943   * fault_in_readable - fault in userspace address range for reading
1944   * @uaddr: start of user address range
1945   * @size: size of user address range
1946   *
1947   * Returns the number of bytes not faulted in (like copy_to_user() and
1948   * copy_from_user()).
1949   */
1950  size_t fault_in_readable(const char __user *uaddr, size_t size)
1951  {
1952  	const char __user *start = uaddr, *end;
1953  	volatile char c;
1954  
1955  	if (unlikely(size == 0))
1956  		return 0;
1957  	if (!user_read_access_begin(uaddr, size))
1958  		return size;
1959  	if (!PAGE_ALIGNED(uaddr)) {
1960  		unsafe_get_user(c, uaddr, out);
1961  		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1962  	}
1963  	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1964  	if (unlikely(end < start))
1965  		end = NULL;
1966  	while (uaddr != end) {
1967  		unsafe_get_user(c, uaddr, out);
1968  		uaddr += PAGE_SIZE;
1969  	}
1970  
1971  out:
1972  	user_read_access_end();
1973  	(void)c;
1974  	if (size > uaddr - start)
1975  		return size - (uaddr - start);
1976  	return 0;
1977  }
1978  EXPORT_SYMBOL(fault_in_readable);
1979  
1980  /**
1981   * get_dump_page() - pin user page in memory while writing it to core dump
1982   * @addr: user address
1983   *
1984   * Returns struct page pointer of user page pinned for dump,
1985   * to be freed afterwards by put_page().
1986   *
1987   * Returns NULL on any kind of failure - a hole must then be inserted into
1988   * the corefile, to preserve alignment with its headers; and also returns
1989   * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1990   * allowing a hole to be left in the corefile to save disk space.
1991   *
1992   * Called without mmap_lock (takes and releases the mmap_lock by itself).
1993   */
1994  #ifdef CONFIG_ELF_CORE
1995  struct page *get_dump_page(unsigned long addr)
1996  {
1997  	struct page *page;
1998  	int locked = 0;
1999  	int ret;
2000  
2001  	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2002  				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2003  	return (ret == 1) ? page : NULL;
2004  }
2005  #endif /* CONFIG_ELF_CORE */
2006  
2007  #ifdef CONFIG_MIGRATION
2008  /*
2009   * Returns the number of collected pages. Return value is always >= 0.
2010   */
2011  static unsigned long collect_longterm_unpinnable_pages(
2012  					struct list_head *movable_page_list,
2013  					unsigned long nr_pages,
2014  					struct page **pages)
2015  {
2016  	unsigned long i, collected = 0;
2017  	struct folio *prev_folio = NULL;
2018  	bool drain_allow = true;
2019  
2020  	for (i = 0; i < nr_pages; i++) {
2021  		struct folio *folio = page_folio(pages[i]);
2022  
2023  		if (folio == prev_folio)
2024  			continue;
2025  		prev_folio = folio;
2026  
2027  		if (folio_is_longterm_pinnable(folio))
2028  			continue;
2029  
2030  		collected++;
2031  
2032  		if (folio_is_device_coherent(folio))
2033  			continue;
2034  
2035  		if (folio_test_hugetlb(folio)) {
2036  			isolate_hugetlb(folio, movable_page_list);
2037  			continue;
2038  		}
2039  
2040  		if (!folio_test_lru(folio) && drain_allow) {
2041  			lru_add_drain_all();
2042  			drain_allow = false;
2043  		}
2044  
2045  		if (!folio_isolate_lru(folio))
2046  			continue;
2047  
2048  		list_add_tail(&folio->lru, movable_page_list);
2049  		node_stat_mod_folio(folio,
2050  				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2051  				    folio_nr_pages(folio));
2052  	}
2053  
2054  	return collected;
2055  }
2056  
2057  /*
2058   * Unpins all pages and migrates device coherent pages and movable_page_list.
2059   * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2060   * (or partial success).
2061   */
2062  static int migrate_longterm_unpinnable_pages(
2063  					struct list_head *movable_page_list,
2064  					unsigned long nr_pages,
2065  					struct page **pages)
2066  {
2067  	int ret;
2068  	unsigned long i;
2069  
2070  	for (i = 0; i < nr_pages; i++) {
2071  		struct folio *folio = page_folio(pages[i]);
2072  
2073  		if (folio_is_device_coherent(folio)) {
2074  			/*
2075  			 * Migration will fail if the page is pinned, so convert
2076  			 * the pin on the source page to a normal reference.
2077  			 */
2078  			pages[i] = NULL;
2079  			folio_get(folio);
2080  			gup_put_folio(folio, 1, FOLL_PIN);
2081  
2082  			if (migrate_device_coherent_page(&folio->page)) {
2083  				ret = -EBUSY;
2084  				goto err;
2085  			}
2086  
2087  			continue;
2088  		}
2089  
2090  		/*
2091  		 * We can't migrate pages with unexpected references, so drop
2092  		 * the reference obtained by __get_user_pages_locked().
2093  		 * Migrating pages have been added to movable_page_list after
2094  		 * calling folio_isolate_lru() which takes a reference so the
2095  		 * page won't be freed if it's migrating.
2096  		 */
2097  		unpin_user_page(pages[i]);
2098  		pages[i] = NULL;
2099  	}
2100  
2101  	if (!list_empty(movable_page_list)) {
2102  		struct migration_target_control mtc = {
2103  			.nid = NUMA_NO_NODE,
2104  			.gfp_mask = GFP_USER | __GFP_NOWARN,
2105  		};
2106  
2107  		if (migrate_pages(movable_page_list, alloc_migration_target,
2108  				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2109  				  MR_LONGTERM_PIN, NULL)) {
2110  			ret = -ENOMEM;
2111  			goto err;
2112  		}
2113  	}
2114  
2115  	putback_movable_pages(movable_page_list);
2116  
2117  	return -EAGAIN;
2118  
2119  err:
2120  	for (i = 0; i < nr_pages; i++)
2121  		if (pages[i])
2122  			unpin_user_page(pages[i]);
2123  	putback_movable_pages(movable_page_list);
2124  
2125  	return ret;
2126  }
2127  
2128  /*
2129   * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2130   * pages in the range are required to be pinned via FOLL_PIN, before calling
2131   * this routine.
2132   *
2133   * If any pages in the range are not allowed to be pinned, then this routine
2134   * will migrate those pages away, unpin all the pages in the range and return
2135   * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2136   * call this routine again.
2137   *
2138   * If an error other than -EAGAIN occurs, this indicates a migration failure.
2139   * The caller should give up, and propagate the error back up the call stack.
2140   *
2141   * If everything is OK and all pages in the range are allowed to be pinned, then
2142   * this routine leaves all pages pinned and returns zero for success.
2143   */
2144  static long check_and_migrate_movable_pages(unsigned long nr_pages,
2145  					    struct page **pages)
2146  {
2147  	unsigned long collected;
2148  	LIST_HEAD(movable_page_list);
2149  
2150  	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2151  						nr_pages, pages);
2152  	if (!collected)
2153  		return 0;
2154  
2155  	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2156  						pages);
2157  }
2158  #else
2159  static long check_and_migrate_movable_pages(unsigned long nr_pages,
2160  					    struct page **pages)
2161  {
2162  	return 0;
2163  }
2164  #endif /* CONFIG_MIGRATION */
2165  
2166  /*
2167   * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2168   * allows us to process the FOLL_LONGTERM flag.
2169   */
2170  static long __gup_longterm_locked(struct mm_struct *mm,
2171  				  unsigned long start,
2172  				  unsigned long nr_pages,
2173  				  struct page **pages,
2174  				  int *locked,
2175  				  unsigned int gup_flags)
2176  {
2177  	unsigned int flags;
2178  	long rc, nr_pinned_pages;
2179  
2180  	if (!(gup_flags & FOLL_LONGTERM))
2181  		return __get_user_pages_locked(mm, start, nr_pages, pages,
2182  					       locked, gup_flags);
2183  
2184  	flags = memalloc_pin_save();
2185  	do {
2186  		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2187  							  pages, locked,
2188  							  gup_flags);
2189  		if (nr_pinned_pages <= 0) {
2190  			rc = nr_pinned_pages;
2191  			break;
2192  		}
2193  
2194  		/* FOLL_LONGTERM implies FOLL_PIN */
2195  		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2196  	} while (rc == -EAGAIN);
2197  	memalloc_pin_restore(flags);
2198  	return rc ? rc : nr_pinned_pages;
2199  }
2200  
2201  /*
2202   * Check that the given flags are valid for the exported gup/pup interface, and
2203   * update them with the required flags that the caller must have set.
2204   */
2205  static bool is_valid_gup_args(struct page **pages, int *locked,
2206  			      unsigned int *gup_flags_p, unsigned int to_set)
2207  {
2208  	unsigned int gup_flags = *gup_flags_p;
2209  
2210  	/*
2211  	 * These flags not allowed to be specified externally to the gup
2212  	 * interfaces:
2213  	 * - FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2214  	 * - FOLL_REMOTE is internal only and used on follow_page()
2215  	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2216  	 */
2217  	if (WARN_ON_ONCE(gup_flags & (FOLL_PIN | FOLL_TRIED | FOLL_UNLOCKABLE |
2218  				      FOLL_REMOTE | FOLL_FAST_ONLY)))
2219  		return false;
2220  
2221  	gup_flags |= to_set;
2222  	if (locked) {
2223  		/* At the external interface locked must be set */
2224  		if (WARN_ON_ONCE(*locked != 1))
2225  			return false;
2226  
2227  		gup_flags |= FOLL_UNLOCKABLE;
2228  	}
2229  
2230  	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2231  	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2232  			 (FOLL_PIN | FOLL_GET)))
2233  		return false;
2234  
2235  	/* LONGTERM can only be specified when pinning */
2236  	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2237  		return false;
2238  
2239  	/* Pages input must be given if using GET/PIN */
2240  	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2241  		return false;
2242  
2243  	/* We want to allow the pgmap to be hot-unplugged at all times */
2244  	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2245  			 (gup_flags & FOLL_PCI_P2PDMA)))
2246  		return false;
2247  
2248  	*gup_flags_p = gup_flags;
2249  	return true;
2250  }
2251  
2252  #ifdef CONFIG_MMU
2253  /**
2254   * get_user_pages_remote() - pin user pages in memory
2255   * @mm:		mm_struct of target mm
2256   * @start:	starting user address
2257   * @nr_pages:	number of pages from start to pin
2258   * @gup_flags:	flags modifying lookup behaviour
2259   * @pages:	array that receives pointers to the pages pinned.
2260   *		Should be at least nr_pages long. Or NULL, if caller
2261   *		only intends to ensure the pages are faulted in.
2262   * @locked:	pointer to lock flag indicating whether lock is held and
2263   *		subsequently whether VM_FAULT_RETRY functionality can be
2264   *		utilised. Lock must initially be held.
2265   *
2266   * Returns either number of pages pinned (which may be less than the
2267   * number requested), or an error. Details about the return value:
2268   *
2269   * -- If nr_pages is 0, returns 0.
2270   * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2271   * -- If nr_pages is >0, and some pages were pinned, returns the number of
2272   *    pages pinned. Again, this may be less than nr_pages.
2273   *
2274   * The caller is responsible for releasing returned @pages, via put_page().
2275   *
2276   * Must be called with mmap_lock held for read or write.
2277   *
2278   * get_user_pages_remote walks a process's page tables and takes a reference
2279   * to each struct page that each user address corresponds to at a given
2280   * instant. That is, it takes the page that would be accessed if a user
2281   * thread accesses the given user virtual address at that instant.
2282   *
2283   * This does not guarantee that the page exists in the user mappings when
2284   * get_user_pages_remote returns, and there may even be a completely different
2285   * page there in some cases (eg. if mmapped pagecache has been invalidated
2286   * and subsequently re-faulted). However it does guarantee that the page
2287   * won't be freed completely. And mostly callers simply care that the page
2288   * contains data that was valid *at some point in time*. Typically, an IO
2289   * or similar operation cannot guarantee anything stronger anyway because
2290   * locks can't be held over the syscall boundary.
2291   *
2292   * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2293   * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2294   * be called after the page is finished with, and before put_page is called.
2295   *
2296   * get_user_pages_remote is typically used for fewer-copy IO operations,
2297   * to get a handle on the memory by some means other than accesses
2298   * via the user virtual addresses. The pages may be submitted for
2299   * DMA to devices or accessed via their kernel linear mapping (via the
2300   * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2301   *
2302   * See also get_user_pages_fast, for performance critical applications.
2303   *
2304   * get_user_pages_remote should be phased out in favor of
2305   * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2306   * should use get_user_pages_remote because it cannot pass
2307   * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2308   */
2309  long get_user_pages_remote(struct mm_struct *mm,
2310  		unsigned long start, unsigned long nr_pages,
2311  		unsigned int gup_flags, struct page **pages,
2312  		int *locked)
2313  {
2314  	int local_locked = 1;
2315  
2316  	if (!is_valid_gup_args(pages, locked, &gup_flags,
2317  			       FOLL_TOUCH | FOLL_REMOTE))
2318  		return -EINVAL;
2319  
2320  	return __get_user_pages_locked(mm, start, nr_pages, pages,
2321  				       locked ? locked : &local_locked,
2322  				       gup_flags);
2323  }
2324  EXPORT_SYMBOL(get_user_pages_remote);
2325  
2326  #else /* CONFIG_MMU */
2327  long get_user_pages_remote(struct mm_struct *mm,
2328  			   unsigned long start, unsigned long nr_pages,
2329  			   unsigned int gup_flags, struct page **pages,
2330  			   int *locked)
2331  {
2332  	return 0;
2333  }
2334  #endif /* !CONFIG_MMU */
2335  
2336  /**
2337   * get_user_pages() - pin user pages in memory
2338   * @start:      starting user address
2339   * @nr_pages:   number of pages from start to pin
2340   * @gup_flags:  flags modifying lookup behaviour
2341   * @pages:      array that receives pointers to the pages pinned.
2342   *              Should be at least nr_pages long. Or NULL, if caller
2343   *              only intends to ensure the pages are faulted in.
2344   *
2345   * This is the same as get_user_pages_remote(), just with a less-flexible
2346   * calling convention where we assume that the mm being operated on belongs to
2347   * the current task, and doesn't allow passing of a locked parameter.  We also
2348   * obviously don't pass FOLL_REMOTE in here.
2349   */
2350  long get_user_pages(unsigned long start, unsigned long nr_pages,
2351  		    unsigned int gup_flags, struct page **pages)
2352  {
2353  	int locked = 1;
2354  
2355  	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2356  		return -EINVAL;
2357  
2358  	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2359  				       &locked, gup_flags);
2360  }
2361  EXPORT_SYMBOL(get_user_pages);
2362  
2363  /*
2364   * get_user_pages_unlocked() is suitable to replace the form:
2365   *
2366   *      mmap_read_lock(mm);
2367   *      get_user_pages(mm, ..., pages, NULL);
2368   *      mmap_read_unlock(mm);
2369   *
2370   *  with:
2371   *
2372   *      get_user_pages_unlocked(mm, ..., pages);
2373   *
2374   * It is functionally equivalent to get_user_pages_fast so
2375   * get_user_pages_fast should be used instead if specific gup_flags
2376   * (e.g. FOLL_FORCE) are not required.
2377   */
2378  long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2379  			     struct page **pages, unsigned int gup_flags)
2380  {
2381  	int locked = 0;
2382  
2383  	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2384  			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2385  		return -EINVAL;
2386  
2387  	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2388  				       &locked, gup_flags);
2389  }
2390  EXPORT_SYMBOL(get_user_pages_unlocked);
2391  
2392  /*
2393   * Fast GUP
2394   *
2395   * get_user_pages_fast attempts to pin user pages by walking the page
2396   * tables directly and avoids taking locks. Thus the walker needs to be
2397   * protected from page table pages being freed from under it, and should
2398   * block any THP splits.
2399   *
2400   * One way to achieve this is to have the walker disable interrupts, and
2401   * rely on IPIs from the TLB flushing code blocking before the page table
2402   * pages are freed. This is unsuitable for architectures that do not need
2403   * to broadcast an IPI when invalidating TLBs.
2404   *
2405   * Another way to achieve this is to batch up page table containing pages
2406   * belonging to more than one mm_user, then rcu_sched a callback to free those
2407   * pages. Disabling interrupts will allow the fast_gup walker to both block
2408   * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2409   * (which is a relatively rare event). The code below adopts this strategy.
2410   *
2411   * Before activating this code, please be aware that the following assumptions
2412   * are currently made:
2413   *
2414   *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2415   *  free pages containing page tables or TLB flushing requires IPI broadcast.
2416   *
2417   *  *) ptes can be read atomically by the architecture.
2418   *
2419   *  *) access_ok is sufficient to validate userspace address ranges.
2420   *
2421   * The last two assumptions can be relaxed by the addition of helper functions.
2422   *
2423   * This code is based heavily on the PowerPC implementation by Nick Piggin.
2424   */
2425  #ifdef CONFIG_HAVE_FAST_GUP
2426  
2427  /*
2428   * Used in the GUP-fast path to determine whether a pin is permitted for a
2429   * specific folio.
2430   *
2431   * This call assumes the caller has pinned the folio, that the lowest page table
2432   * level still points to this folio, and that interrupts have been disabled.
2433   *
2434   * Writing to pinned file-backed dirty tracked folios is inherently problematic
2435   * (see comment describing the writable_file_mapping_allowed() function). We
2436   * therefore try to avoid the most egregious case of a long-term mapping doing
2437   * so.
2438   *
2439   * This function cannot be as thorough as that one as the VMA is not available
2440   * in the fast path, so instead we whitelist known good cases and if in doubt,
2441   * fall back to the slow path.
2442   */
2443  static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2444  {
2445  	struct address_space *mapping;
2446  	unsigned long mapping_flags;
2447  
2448  	/*
2449  	 * If we aren't pinning then no problematic write can occur. A long term
2450  	 * pin is the most egregious case so this is the one we disallow.
2451  	 */
2452  	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2453  	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2454  		return true;
2455  
2456  	/* The folio is pinned, so we can safely access folio fields. */
2457  
2458  	if (WARN_ON_ONCE(folio_test_slab(folio)))
2459  		return false;
2460  
2461  	/* hugetlb mappings do not require dirty-tracking. */
2462  	if (folio_test_hugetlb(folio))
2463  		return true;
2464  
2465  	/*
2466  	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2467  	 * cannot proceed, which means no actions performed under RCU can
2468  	 * proceed either.
2469  	 *
2470  	 * inodes and thus their mappings are freed under RCU, which means the
2471  	 * mapping cannot be freed beneath us and thus we can safely dereference
2472  	 * it.
2473  	 */
2474  	lockdep_assert_irqs_disabled();
2475  
2476  	/*
2477  	 * However, there may be operations which _alter_ the mapping, so ensure
2478  	 * we read it once and only once.
2479  	 */
2480  	mapping = READ_ONCE(folio->mapping);
2481  
2482  	/*
2483  	 * The mapping may have been truncated, in any case we cannot determine
2484  	 * if this mapping is safe - fall back to slow path to determine how to
2485  	 * proceed.
2486  	 */
2487  	if (!mapping)
2488  		return false;
2489  
2490  	/* Anonymous folios pose no problem. */
2491  	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2492  	if (mapping_flags)
2493  		return mapping_flags & PAGE_MAPPING_ANON;
2494  
2495  	/*
2496  	 * At this point, we know the mapping is non-null and points to an
2497  	 * address_space object. The only remaining whitelisted file system is
2498  	 * shmem.
2499  	 */
2500  	return shmem_mapping(mapping);
2501  }
2502  
2503  static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2504  					    unsigned int flags,
2505  					    struct page **pages)
2506  {
2507  	while ((*nr) - nr_start) {
2508  		struct page *page = pages[--(*nr)];
2509  
2510  		ClearPageReferenced(page);
2511  		if (flags & FOLL_PIN)
2512  			unpin_user_page(page);
2513  		else
2514  			put_page(page);
2515  	}
2516  }
2517  
2518  #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2519  /*
2520   * Fast-gup relies on pte change detection to avoid concurrent pgtable
2521   * operations.
2522   *
2523   * To pin the page, fast-gup needs to do below in order:
2524   * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2525   *
2526   * For the rest of pgtable operations where pgtable updates can be racy
2527   * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2528   * is pinned.
2529   *
2530   * Above will work for all pte-level operations, including THP split.
2531   *
2532   * For THP collapse, it's a bit more complicated because fast-gup may be
2533   * walking a pgtable page that is being freed (pte is still valid but pmd
2534   * can be cleared already).  To avoid race in such condition, we need to
2535   * also check pmd here to make sure pmd doesn't change (corresponds to
2536   * pmdp_collapse_flush() in the THP collapse code path).
2537   */
2538  static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2539  			 unsigned long end, unsigned int flags,
2540  			 struct page **pages, int *nr)
2541  {
2542  	struct dev_pagemap *pgmap = NULL;
2543  	int nr_start = *nr, ret = 0;
2544  	pte_t *ptep, *ptem;
2545  
2546  	ptem = ptep = pte_offset_map(&pmd, addr);
2547  	if (!ptep)
2548  		return 0;
2549  	do {
2550  		pte_t pte = ptep_get_lockless(ptep);
2551  		struct page *page;
2552  		struct folio *folio;
2553  
2554  		if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2555  			goto pte_unmap;
2556  
2557  		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2558  			goto pte_unmap;
2559  
2560  		if (pte_devmap(pte)) {
2561  			if (unlikely(flags & FOLL_LONGTERM))
2562  				goto pte_unmap;
2563  
2564  			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2565  			if (unlikely(!pgmap)) {
2566  				undo_dev_pagemap(nr, nr_start, flags, pages);
2567  				goto pte_unmap;
2568  			}
2569  		} else if (pte_special(pte))
2570  			goto pte_unmap;
2571  
2572  		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2573  		page = pte_page(pte);
2574  
2575  		folio = try_grab_folio(page, 1, flags);
2576  		if (!folio)
2577  			goto pte_unmap;
2578  
2579  		if (unlikely(page_is_secretmem(page))) {
2580  			gup_put_folio(folio, 1, flags);
2581  			goto pte_unmap;
2582  		}
2583  
2584  		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2585  		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2586  			gup_put_folio(folio, 1, flags);
2587  			goto pte_unmap;
2588  		}
2589  
2590  		if (!folio_fast_pin_allowed(folio, flags)) {
2591  			gup_put_folio(folio, 1, flags);
2592  			goto pte_unmap;
2593  		}
2594  
2595  		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2596  			gup_put_folio(folio, 1, flags);
2597  			goto pte_unmap;
2598  		}
2599  
2600  		/*
2601  		 * We need to make the page accessible if and only if we are
2602  		 * going to access its content (the FOLL_PIN case).  Please
2603  		 * see Documentation/core-api/pin_user_pages.rst for
2604  		 * details.
2605  		 */
2606  		if (flags & FOLL_PIN) {
2607  			ret = arch_make_page_accessible(page);
2608  			if (ret) {
2609  				gup_put_folio(folio, 1, flags);
2610  				goto pte_unmap;
2611  			}
2612  		}
2613  		folio_set_referenced(folio);
2614  		pages[*nr] = page;
2615  		(*nr)++;
2616  	} while (ptep++, addr += PAGE_SIZE, addr != end);
2617  
2618  	ret = 1;
2619  
2620  pte_unmap:
2621  	if (pgmap)
2622  		put_dev_pagemap(pgmap);
2623  	pte_unmap(ptem);
2624  	return ret;
2625  }
2626  #else
2627  
2628  /*
2629   * If we can't determine whether or not a pte is special, then fail immediately
2630   * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2631   * to be special.
2632   *
2633   * For a futex to be placed on a THP tail page, get_futex_key requires a
2634   * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2635   * useful to have gup_huge_pmd even if we can't operate on ptes.
2636   */
2637  static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2638  			 unsigned long end, unsigned int flags,
2639  			 struct page **pages, int *nr)
2640  {
2641  	return 0;
2642  }
2643  #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2644  
2645  #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2646  static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2647  			     unsigned long end, unsigned int flags,
2648  			     struct page **pages, int *nr)
2649  {
2650  	int nr_start = *nr;
2651  	struct dev_pagemap *pgmap = NULL;
2652  
2653  	do {
2654  		struct page *page = pfn_to_page(pfn);
2655  
2656  		pgmap = get_dev_pagemap(pfn, pgmap);
2657  		if (unlikely(!pgmap)) {
2658  			undo_dev_pagemap(nr, nr_start, flags, pages);
2659  			break;
2660  		}
2661  
2662  		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2663  			undo_dev_pagemap(nr, nr_start, flags, pages);
2664  			break;
2665  		}
2666  
2667  		SetPageReferenced(page);
2668  		pages[*nr] = page;
2669  		if (unlikely(try_grab_page(page, flags))) {
2670  			undo_dev_pagemap(nr, nr_start, flags, pages);
2671  			break;
2672  		}
2673  		(*nr)++;
2674  		pfn++;
2675  	} while (addr += PAGE_SIZE, addr != end);
2676  
2677  	put_dev_pagemap(pgmap);
2678  	return addr == end;
2679  }
2680  
2681  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2682  				 unsigned long end, unsigned int flags,
2683  				 struct page **pages, int *nr)
2684  {
2685  	unsigned long fault_pfn;
2686  	int nr_start = *nr;
2687  
2688  	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2689  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2690  		return 0;
2691  
2692  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2693  		undo_dev_pagemap(nr, nr_start, flags, pages);
2694  		return 0;
2695  	}
2696  	return 1;
2697  }
2698  
2699  static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2700  				 unsigned long end, unsigned int flags,
2701  				 struct page **pages, int *nr)
2702  {
2703  	unsigned long fault_pfn;
2704  	int nr_start = *nr;
2705  
2706  	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2707  	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2708  		return 0;
2709  
2710  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2711  		undo_dev_pagemap(nr, nr_start, flags, pages);
2712  		return 0;
2713  	}
2714  	return 1;
2715  }
2716  #else
2717  static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2718  				 unsigned long end, unsigned int flags,
2719  				 struct page **pages, int *nr)
2720  {
2721  	BUILD_BUG();
2722  	return 0;
2723  }
2724  
2725  static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2726  				 unsigned long end, unsigned int flags,
2727  				 struct page **pages, int *nr)
2728  {
2729  	BUILD_BUG();
2730  	return 0;
2731  }
2732  #endif
2733  
2734  static int record_subpages(struct page *page, unsigned long addr,
2735  			   unsigned long end, struct page **pages)
2736  {
2737  	int nr;
2738  
2739  	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2740  		pages[nr] = nth_page(page, nr);
2741  
2742  	return nr;
2743  }
2744  
2745  #ifdef CONFIG_ARCH_HAS_HUGEPD
2746  static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2747  				      unsigned long sz)
2748  {
2749  	unsigned long __boundary = (addr + sz) & ~(sz-1);
2750  	return (__boundary - 1 < end - 1) ? __boundary : end;
2751  }
2752  
2753  static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2754  		       unsigned long end, unsigned int flags,
2755  		       struct page **pages, int *nr)
2756  {
2757  	unsigned long pte_end;
2758  	struct page *page;
2759  	struct folio *folio;
2760  	pte_t pte;
2761  	int refs;
2762  
2763  	pte_end = (addr + sz) & ~(sz-1);
2764  	if (pte_end < end)
2765  		end = pte_end;
2766  
2767  	pte = huge_ptep_get(ptep);
2768  
2769  	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2770  		return 0;
2771  
2772  	/* hugepages are never "special" */
2773  	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2774  
2775  	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2776  	refs = record_subpages(page, addr, end, pages + *nr);
2777  
2778  	folio = try_grab_folio(page, refs, flags);
2779  	if (!folio)
2780  		return 0;
2781  
2782  	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2783  		gup_put_folio(folio, refs, flags);
2784  		return 0;
2785  	}
2786  
2787  	if (!folio_fast_pin_allowed(folio, flags)) {
2788  		gup_put_folio(folio, refs, flags);
2789  		return 0;
2790  	}
2791  
2792  	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2793  		gup_put_folio(folio, refs, flags);
2794  		return 0;
2795  	}
2796  
2797  	*nr += refs;
2798  	folio_set_referenced(folio);
2799  	return 1;
2800  }
2801  
2802  static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2803  		unsigned int pdshift, unsigned long end, unsigned int flags,
2804  		struct page **pages, int *nr)
2805  {
2806  	pte_t *ptep;
2807  	unsigned long sz = 1UL << hugepd_shift(hugepd);
2808  	unsigned long next;
2809  
2810  	ptep = hugepte_offset(hugepd, addr, pdshift);
2811  	do {
2812  		next = hugepte_addr_end(addr, end, sz);
2813  		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2814  			return 0;
2815  	} while (ptep++, addr = next, addr != end);
2816  
2817  	return 1;
2818  }
2819  #else
2820  static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2821  		unsigned int pdshift, unsigned long end, unsigned int flags,
2822  		struct page **pages, int *nr)
2823  {
2824  	return 0;
2825  }
2826  #endif /* CONFIG_ARCH_HAS_HUGEPD */
2827  
2828  static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2829  			unsigned long end, unsigned int flags,
2830  			struct page **pages, int *nr)
2831  {
2832  	struct page *page;
2833  	struct folio *folio;
2834  	int refs;
2835  
2836  	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2837  		return 0;
2838  
2839  	if (pmd_devmap(orig)) {
2840  		if (unlikely(flags & FOLL_LONGTERM))
2841  			return 0;
2842  		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2843  					     pages, nr);
2844  	}
2845  
2846  	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2847  	refs = record_subpages(page, addr, end, pages + *nr);
2848  
2849  	folio = try_grab_folio(page, refs, flags);
2850  	if (!folio)
2851  		return 0;
2852  
2853  	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2854  		gup_put_folio(folio, refs, flags);
2855  		return 0;
2856  	}
2857  
2858  	if (!folio_fast_pin_allowed(folio, flags)) {
2859  		gup_put_folio(folio, refs, flags);
2860  		return 0;
2861  	}
2862  	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2863  		gup_put_folio(folio, refs, flags);
2864  		return 0;
2865  	}
2866  
2867  	*nr += refs;
2868  	folio_set_referenced(folio);
2869  	return 1;
2870  }
2871  
2872  static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2873  			unsigned long end, unsigned int flags,
2874  			struct page **pages, int *nr)
2875  {
2876  	struct page *page;
2877  	struct folio *folio;
2878  	int refs;
2879  
2880  	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2881  		return 0;
2882  
2883  	if (pud_devmap(orig)) {
2884  		if (unlikely(flags & FOLL_LONGTERM))
2885  			return 0;
2886  		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2887  					     pages, nr);
2888  	}
2889  
2890  	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2891  	refs = record_subpages(page, addr, end, pages + *nr);
2892  
2893  	folio = try_grab_folio(page, refs, flags);
2894  	if (!folio)
2895  		return 0;
2896  
2897  	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2898  		gup_put_folio(folio, refs, flags);
2899  		return 0;
2900  	}
2901  
2902  	if (!folio_fast_pin_allowed(folio, flags)) {
2903  		gup_put_folio(folio, refs, flags);
2904  		return 0;
2905  	}
2906  
2907  	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2908  		gup_put_folio(folio, refs, flags);
2909  		return 0;
2910  	}
2911  
2912  	*nr += refs;
2913  	folio_set_referenced(folio);
2914  	return 1;
2915  }
2916  
2917  static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2918  			unsigned long end, unsigned int flags,
2919  			struct page **pages, int *nr)
2920  {
2921  	int refs;
2922  	struct page *page;
2923  	struct folio *folio;
2924  
2925  	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2926  		return 0;
2927  
2928  	BUILD_BUG_ON(pgd_devmap(orig));
2929  
2930  	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2931  	refs = record_subpages(page, addr, end, pages + *nr);
2932  
2933  	folio = try_grab_folio(page, refs, flags);
2934  	if (!folio)
2935  		return 0;
2936  
2937  	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2938  		gup_put_folio(folio, refs, flags);
2939  		return 0;
2940  	}
2941  
2942  	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2943  		gup_put_folio(folio, refs, flags);
2944  		return 0;
2945  	}
2946  
2947  	if (!folio_fast_pin_allowed(folio, flags)) {
2948  		gup_put_folio(folio, refs, flags);
2949  		return 0;
2950  	}
2951  
2952  	*nr += refs;
2953  	folio_set_referenced(folio);
2954  	return 1;
2955  }
2956  
2957  static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2958  		unsigned int flags, struct page **pages, int *nr)
2959  {
2960  	unsigned long next;
2961  	pmd_t *pmdp;
2962  
2963  	pmdp = pmd_offset_lockless(pudp, pud, addr);
2964  	do {
2965  		pmd_t pmd = pmdp_get_lockless(pmdp);
2966  
2967  		next = pmd_addr_end(addr, end);
2968  		if (!pmd_present(pmd))
2969  			return 0;
2970  
2971  		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2972  			     pmd_devmap(pmd))) {
2973  			if (pmd_protnone(pmd) &&
2974  			    !gup_can_follow_protnone(flags))
2975  				return 0;
2976  
2977  			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2978  				pages, nr))
2979  				return 0;
2980  
2981  		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2982  			/*
2983  			 * architecture have different format for hugetlbfs
2984  			 * pmd format and THP pmd format
2985  			 */
2986  			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2987  					 PMD_SHIFT, next, flags, pages, nr))
2988  				return 0;
2989  		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2990  			return 0;
2991  	} while (pmdp++, addr = next, addr != end);
2992  
2993  	return 1;
2994  }
2995  
2996  static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2997  			 unsigned int flags, struct page **pages, int *nr)
2998  {
2999  	unsigned long next;
3000  	pud_t *pudp;
3001  
3002  	pudp = pud_offset_lockless(p4dp, p4d, addr);
3003  	do {
3004  		pud_t pud = READ_ONCE(*pudp);
3005  
3006  		next = pud_addr_end(addr, end);
3007  		if (unlikely(!pud_present(pud)))
3008  			return 0;
3009  		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3010  			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3011  					  pages, nr))
3012  				return 0;
3013  		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3014  			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3015  					 PUD_SHIFT, next, flags, pages, nr))
3016  				return 0;
3017  		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3018  			return 0;
3019  	} while (pudp++, addr = next, addr != end);
3020  
3021  	return 1;
3022  }
3023  
3024  static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3025  			 unsigned int flags, struct page **pages, int *nr)
3026  {
3027  	unsigned long next;
3028  	p4d_t *p4dp;
3029  
3030  	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3031  	do {
3032  		p4d_t p4d = READ_ONCE(*p4dp);
3033  
3034  		next = p4d_addr_end(addr, end);
3035  		if (p4d_none(p4d))
3036  			return 0;
3037  		BUILD_BUG_ON(p4d_huge(p4d));
3038  		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3039  			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3040  					 P4D_SHIFT, next, flags, pages, nr))
3041  				return 0;
3042  		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3043  			return 0;
3044  	} while (p4dp++, addr = next, addr != end);
3045  
3046  	return 1;
3047  }
3048  
3049  static void gup_pgd_range(unsigned long addr, unsigned long end,
3050  		unsigned int flags, struct page **pages, int *nr)
3051  {
3052  	unsigned long next;
3053  	pgd_t *pgdp;
3054  
3055  	pgdp = pgd_offset(current->mm, addr);
3056  	do {
3057  		pgd_t pgd = READ_ONCE(*pgdp);
3058  
3059  		next = pgd_addr_end(addr, end);
3060  		if (pgd_none(pgd))
3061  			return;
3062  		if (unlikely(pgd_huge(pgd))) {
3063  			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3064  					  pages, nr))
3065  				return;
3066  		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3067  			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3068  					 PGDIR_SHIFT, next, flags, pages, nr))
3069  				return;
3070  		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3071  			return;
3072  	} while (pgdp++, addr = next, addr != end);
3073  }
3074  #else
3075  static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3076  		unsigned int flags, struct page **pages, int *nr)
3077  {
3078  }
3079  #endif /* CONFIG_HAVE_FAST_GUP */
3080  
3081  #ifndef gup_fast_permitted
3082  /*
3083   * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3084   * we need to fall back to the slow version:
3085   */
3086  static bool gup_fast_permitted(unsigned long start, unsigned long end)
3087  {
3088  	return true;
3089  }
3090  #endif
3091  
3092  static unsigned long lockless_pages_from_mm(unsigned long start,
3093  					    unsigned long end,
3094  					    unsigned int gup_flags,
3095  					    struct page **pages)
3096  {
3097  	unsigned long flags;
3098  	int nr_pinned = 0;
3099  	unsigned seq;
3100  
3101  	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3102  	    !gup_fast_permitted(start, end))
3103  		return 0;
3104  
3105  	if (gup_flags & FOLL_PIN) {
3106  		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3107  		if (seq & 1)
3108  			return 0;
3109  	}
3110  
3111  	/*
3112  	 * Disable interrupts. The nested form is used, in order to allow full,
3113  	 * general purpose use of this routine.
3114  	 *
3115  	 * With interrupts disabled, we block page table pages from being freed
3116  	 * from under us. See struct mmu_table_batch comments in
3117  	 * include/asm-generic/tlb.h for more details.
3118  	 *
3119  	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3120  	 * that come from THPs splitting.
3121  	 */
3122  	local_irq_save(flags);
3123  	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3124  	local_irq_restore(flags);
3125  
3126  	/*
3127  	 * When pinning pages for DMA there could be a concurrent write protect
3128  	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3129  	 */
3130  	if (gup_flags & FOLL_PIN) {
3131  		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3132  			unpin_user_pages_lockless(pages, nr_pinned);
3133  			return 0;
3134  		} else {
3135  			sanity_check_pinned_pages(pages, nr_pinned);
3136  		}
3137  	}
3138  	return nr_pinned;
3139  }
3140  
3141  static int internal_get_user_pages_fast(unsigned long start,
3142  					unsigned long nr_pages,
3143  					unsigned int gup_flags,
3144  					struct page **pages)
3145  {
3146  	unsigned long len, end;
3147  	unsigned long nr_pinned;
3148  	int locked = 0;
3149  	int ret;
3150  
3151  	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3152  				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3153  				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3154  				       FOLL_PCI_P2PDMA)))
3155  		return -EINVAL;
3156  
3157  	if (gup_flags & FOLL_PIN)
3158  		mm_set_has_pinned_flag(&current->mm->flags);
3159  
3160  	if (!(gup_flags & FOLL_FAST_ONLY))
3161  		might_lock_read(&current->mm->mmap_lock);
3162  
3163  	start = untagged_addr(start) & PAGE_MASK;
3164  	len = nr_pages << PAGE_SHIFT;
3165  	if (check_add_overflow(start, len, &end))
3166  		return -EOVERFLOW;
3167  	if (end > TASK_SIZE_MAX)
3168  		return -EFAULT;
3169  	if (unlikely(!access_ok((void __user *)start, len)))
3170  		return -EFAULT;
3171  
3172  	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3173  	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3174  		return nr_pinned;
3175  
3176  	/* Slow path: try to get the remaining pages with get_user_pages */
3177  	start += nr_pinned << PAGE_SHIFT;
3178  	pages += nr_pinned;
3179  	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3180  				    pages, &locked,
3181  				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3182  	if (ret < 0) {
3183  		/*
3184  		 * The caller has to unpin the pages we already pinned so
3185  		 * returning -errno is not an option
3186  		 */
3187  		if (nr_pinned)
3188  			return nr_pinned;
3189  		return ret;
3190  	}
3191  	return ret + nr_pinned;
3192  }
3193  
3194  /**
3195   * get_user_pages_fast_only() - pin user pages in memory
3196   * @start:      starting user address
3197   * @nr_pages:   number of pages from start to pin
3198   * @gup_flags:  flags modifying pin behaviour
3199   * @pages:      array that receives pointers to the pages pinned.
3200   *              Should be at least nr_pages long.
3201   *
3202   * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3203   * the regular GUP.
3204   *
3205   * If the architecture does not support this function, simply return with no
3206   * pages pinned.
3207   *
3208   * Careful, careful! COW breaking can go either way, so a non-write
3209   * access can get ambiguous page results. If you call this function without
3210   * 'write' set, you'd better be sure that you're ok with that ambiguity.
3211   */
3212  int get_user_pages_fast_only(unsigned long start, int nr_pages,
3213  			     unsigned int gup_flags, struct page **pages)
3214  {
3215  	/*
3216  	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3217  	 * because gup fast is always a "pin with a +1 page refcount" request.
3218  	 *
3219  	 * FOLL_FAST_ONLY is required in order to match the API description of
3220  	 * this routine: no fall back to regular ("slow") GUP.
3221  	 */
3222  	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3223  			       FOLL_GET | FOLL_FAST_ONLY))
3224  		return -EINVAL;
3225  
3226  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3227  }
3228  EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3229  
3230  /**
3231   * get_user_pages_fast() - pin user pages in memory
3232   * @start:      starting user address
3233   * @nr_pages:   number of pages from start to pin
3234   * @gup_flags:  flags modifying pin behaviour
3235   * @pages:      array that receives pointers to the pages pinned.
3236   *              Should be at least nr_pages long.
3237   *
3238   * Attempt to pin user pages in memory without taking mm->mmap_lock.
3239   * If not successful, it will fall back to taking the lock and
3240   * calling get_user_pages().
3241   *
3242   * Returns number of pages pinned. This may be fewer than the number requested.
3243   * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3244   * -errno.
3245   */
3246  int get_user_pages_fast(unsigned long start, int nr_pages,
3247  			unsigned int gup_flags, struct page **pages)
3248  {
3249  	/*
3250  	 * The caller may or may not have explicitly set FOLL_GET; either way is
3251  	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3252  	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3253  	 * request.
3254  	 */
3255  	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3256  		return -EINVAL;
3257  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3258  }
3259  EXPORT_SYMBOL_GPL(get_user_pages_fast);
3260  
3261  /**
3262   * pin_user_pages_fast() - pin user pages in memory without taking locks
3263   *
3264   * @start:      starting user address
3265   * @nr_pages:   number of pages from start to pin
3266   * @gup_flags:  flags modifying pin behaviour
3267   * @pages:      array that receives pointers to the pages pinned.
3268   *              Should be at least nr_pages long.
3269   *
3270   * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3271   * get_user_pages_fast() for documentation on the function arguments, because
3272   * the arguments here are identical.
3273   *
3274   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3275   * see Documentation/core-api/pin_user_pages.rst for further details.
3276   *
3277   * Note that if a zero_page is amongst the returned pages, it will not have
3278   * pins in it and unpin_user_page() will not remove pins from it.
3279   */
3280  int pin_user_pages_fast(unsigned long start, int nr_pages,
3281  			unsigned int gup_flags, struct page **pages)
3282  {
3283  	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3284  		return -EINVAL;
3285  	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3286  }
3287  EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3288  
3289  /**
3290   * pin_user_pages_remote() - pin pages of a remote process
3291   *
3292   * @mm:		mm_struct of target mm
3293   * @start:	starting user address
3294   * @nr_pages:	number of pages from start to pin
3295   * @gup_flags:	flags modifying lookup behaviour
3296   * @pages:	array that receives pointers to the pages pinned.
3297   *		Should be at least nr_pages long.
3298   * @locked:	pointer to lock flag indicating whether lock is held and
3299   *		subsequently whether VM_FAULT_RETRY functionality can be
3300   *		utilised. Lock must initially be held.
3301   *
3302   * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3303   * get_user_pages_remote() for documentation on the function arguments, because
3304   * the arguments here are identical.
3305   *
3306   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3307   * see Documentation/core-api/pin_user_pages.rst for details.
3308   *
3309   * Note that if a zero_page is amongst the returned pages, it will not have
3310   * pins in it and unpin_user_page*() will not remove pins from it.
3311   */
3312  long pin_user_pages_remote(struct mm_struct *mm,
3313  			   unsigned long start, unsigned long nr_pages,
3314  			   unsigned int gup_flags, struct page **pages,
3315  			   int *locked)
3316  {
3317  	int local_locked = 1;
3318  
3319  	if (!is_valid_gup_args(pages, locked, &gup_flags,
3320  			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3321  		return 0;
3322  	return __gup_longterm_locked(mm, start, nr_pages, pages,
3323  				     locked ? locked : &local_locked,
3324  				     gup_flags);
3325  }
3326  EXPORT_SYMBOL(pin_user_pages_remote);
3327  
3328  /**
3329   * pin_user_pages() - pin user pages in memory for use by other devices
3330   *
3331   * @start:	starting user address
3332   * @nr_pages:	number of pages from start to pin
3333   * @gup_flags:	flags modifying lookup behaviour
3334   * @pages:	array that receives pointers to the pages pinned.
3335   *		Should be at least nr_pages long.
3336   *
3337   * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3338   * FOLL_PIN is set.
3339   *
3340   * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3341   * see Documentation/core-api/pin_user_pages.rst for details.
3342   *
3343   * Note that if a zero_page is amongst the returned pages, it will not have
3344   * pins in it and unpin_user_page*() will not remove pins from it.
3345   */
3346  long pin_user_pages(unsigned long start, unsigned long nr_pages,
3347  		    unsigned int gup_flags, struct page **pages)
3348  {
3349  	int locked = 1;
3350  
3351  	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3352  		return 0;
3353  	return __gup_longterm_locked(current->mm, start, nr_pages,
3354  				     pages, &locked, gup_flags);
3355  }
3356  EXPORT_SYMBOL(pin_user_pages);
3357  
3358  /*
3359   * pin_user_pages_unlocked() is the FOLL_PIN variant of
3360   * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3361   * FOLL_PIN and rejects FOLL_GET.
3362   *
3363   * Note that if a zero_page is amongst the returned pages, it will not have
3364   * pins in it and unpin_user_page*() will not remove pins from it.
3365   */
3366  long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3367  			     struct page **pages, unsigned int gup_flags)
3368  {
3369  	int locked = 0;
3370  
3371  	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3372  			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3373  		return 0;
3374  
3375  	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3376  				     &locked, gup_flags);
3377  }
3378  EXPORT_SYMBOL(pin_user_pages_unlocked);
3379