1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/kernel.h> 3 #include <linux/errno.h> 4 #include <linux/err.h> 5 #include <linux/spinlock.h> 6 7 #include <linux/mm.h> 8 #include <linux/memremap.h> 9 #include <linux/pagemap.h> 10 #include <linux/rmap.h> 11 #include <linux/swap.h> 12 #include <linux/swapops.h> 13 14 #include <linux/sched/signal.h> 15 #include <linux/rwsem.h> 16 #include <linux/hugetlb.h> 17 #include <linux/migrate.h> 18 #include <linux/mm_inline.h> 19 #include <linux/sched/mm.h> 20 21 #include <asm/mmu_context.h> 22 #include <asm/pgtable.h> 23 #include <asm/tlbflush.h> 24 25 #include "internal.h" 26 27 struct follow_page_context { 28 struct dev_pagemap *pgmap; 29 unsigned int page_mask; 30 }; 31 32 /** 33 * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages 34 * @pages: array of pages to be maybe marked dirty, and definitely released. 35 * @npages: number of pages in the @pages array. 36 * @make_dirty: whether to mark the pages dirty 37 * 38 * "gup-pinned page" refers to a page that has had one of the get_user_pages() 39 * variants called on that page. 40 * 41 * For each page in the @pages array, make that page (or its head page, if a 42 * compound page) dirty, if @make_dirty is true, and if the page was previously 43 * listed as clean. In any case, releases all pages using put_user_page(), 44 * possibly via put_user_pages(), for the non-dirty case. 45 * 46 * Please see the put_user_page() documentation for details. 47 * 48 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is 49 * required, then the caller should a) verify that this is really correct, 50 * because _lock() is usually required, and b) hand code it: 51 * set_page_dirty_lock(), put_user_page(). 52 * 53 */ 54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages, 55 bool make_dirty) 56 { 57 unsigned long index; 58 59 /* 60 * TODO: this can be optimized for huge pages: if a series of pages is 61 * physically contiguous and part of the same compound page, then a 62 * single operation to the head page should suffice. 63 */ 64 65 if (!make_dirty) { 66 put_user_pages(pages, npages); 67 return; 68 } 69 70 for (index = 0; index < npages; index++) { 71 struct page *page = compound_head(pages[index]); 72 /* 73 * Checking PageDirty at this point may race with 74 * clear_page_dirty_for_io(), but that's OK. Two key 75 * cases: 76 * 77 * 1) This code sees the page as already dirty, so it 78 * skips the call to set_page_dirty(). That could happen 79 * because clear_page_dirty_for_io() called 80 * page_mkclean(), followed by set_page_dirty(). 81 * However, now the page is going to get written back, 82 * which meets the original intention of setting it 83 * dirty, so all is well: clear_page_dirty_for_io() goes 84 * on to call TestClearPageDirty(), and write the page 85 * back. 86 * 87 * 2) This code sees the page as clean, so it calls 88 * set_page_dirty(). The page stays dirty, despite being 89 * written back, so it gets written back again in the 90 * next writeback cycle. This is harmless. 91 */ 92 if (!PageDirty(page)) 93 set_page_dirty_lock(page); 94 put_user_page(page); 95 } 96 } 97 EXPORT_SYMBOL(put_user_pages_dirty_lock); 98 99 /** 100 * put_user_pages() - release an array of gup-pinned pages. 101 * @pages: array of pages to be marked dirty and released. 102 * @npages: number of pages in the @pages array. 103 * 104 * For each page in the @pages array, release the page using put_user_page(). 105 * 106 * Please see the put_user_page() documentation for details. 107 */ 108 void put_user_pages(struct page **pages, unsigned long npages) 109 { 110 unsigned long index; 111 112 /* 113 * TODO: this can be optimized for huge pages: if a series of pages is 114 * physically contiguous and part of the same compound page, then a 115 * single operation to the head page should suffice. 116 */ 117 for (index = 0; index < npages; index++) 118 put_user_page(pages[index]); 119 } 120 EXPORT_SYMBOL(put_user_pages); 121 122 #ifdef CONFIG_MMU 123 static struct page *no_page_table(struct vm_area_struct *vma, 124 unsigned int flags) 125 { 126 /* 127 * When core dumping an enormous anonymous area that nobody 128 * has touched so far, we don't want to allocate unnecessary pages or 129 * page tables. Return error instead of NULL to skip handle_mm_fault, 130 * then get_dump_page() will return NULL to leave a hole in the dump. 131 * But we can only make this optimization where a hole would surely 132 * be zero-filled if handle_mm_fault() actually did handle it. 133 */ 134 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault)) 135 return ERR_PTR(-EFAULT); 136 return NULL; 137 } 138 139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, 140 pte_t *pte, unsigned int flags) 141 { 142 /* No page to get reference */ 143 if (flags & FOLL_GET) 144 return -EFAULT; 145 146 if (flags & FOLL_TOUCH) { 147 pte_t entry = *pte; 148 149 if (flags & FOLL_WRITE) 150 entry = pte_mkdirty(entry); 151 entry = pte_mkyoung(entry); 152 153 if (!pte_same(*pte, entry)) { 154 set_pte_at(vma->vm_mm, address, pte, entry); 155 update_mmu_cache(vma, address, pte); 156 } 157 } 158 159 /* Proper page table entry exists, but no corresponding struct page */ 160 return -EEXIST; 161 } 162 163 /* 164 * FOLL_FORCE can write to even unwritable pte's, but only 165 * after we've gone through a COW cycle and they are dirty. 166 */ 167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags) 168 { 169 return pte_write(pte) || 170 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte)); 171 } 172 173 static struct page *follow_page_pte(struct vm_area_struct *vma, 174 unsigned long address, pmd_t *pmd, unsigned int flags, 175 struct dev_pagemap **pgmap) 176 { 177 struct mm_struct *mm = vma->vm_mm; 178 struct page *page; 179 spinlock_t *ptl; 180 pte_t *ptep, pte; 181 182 retry: 183 if (unlikely(pmd_bad(*pmd))) 184 return no_page_table(vma, flags); 185 186 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 187 pte = *ptep; 188 if (!pte_present(pte)) { 189 swp_entry_t entry; 190 /* 191 * KSM's break_ksm() relies upon recognizing a ksm page 192 * even while it is being migrated, so for that case we 193 * need migration_entry_wait(). 194 */ 195 if (likely(!(flags & FOLL_MIGRATION))) 196 goto no_page; 197 if (pte_none(pte)) 198 goto no_page; 199 entry = pte_to_swp_entry(pte); 200 if (!is_migration_entry(entry)) 201 goto no_page; 202 pte_unmap_unlock(ptep, ptl); 203 migration_entry_wait(mm, pmd, address); 204 goto retry; 205 } 206 if ((flags & FOLL_NUMA) && pte_protnone(pte)) 207 goto no_page; 208 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) { 209 pte_unmap_unlock(ptep, ptl); 210 return NULL; 211 } 212 213 page = vm_normal_page(vma, address, pte); 214 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) { 215 /* 216 * Only return device mapping pages in the FOLL_GET case since 217 * they are only valid while holding the pgmap reference. 218 */ 219 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); 220 if (*pgmap) 221 page = pte_page(pte); 222 else 223 goto no_page; 224 } else if (unlikely(!page)) { 225 if (flags & FOLL_DUMP) { 226 /* Avoid special (like zero) pages in core dumps */ 227 page = ERR_PTR(-EFAULT); 228 goto out; 229 } 230 231 if (is_zero_pfn(pte_pfn(pte))) { 232 page = pte_page(pte); 233 } else { 234 int ret; 235 236 ret = follow_pfn_pte(vma, address, ptep, flags); 237 page = ERR_PTR(ret); 238 goto out; 239 } 240 } 241 242 if (flags & FOLL_SPLIT && PageTransCompound(page)) { 243 int ret; 244 get_page(page); 245 pte_unmap_unlock(ptep, ptl); 246 lock_page(page); 247 ret = split_huge_page(page); 248 unlock_page(page); 249 put_page(page); 250 if (ret) 251 return ERR_PTR(ret); 252 goto retry; 253 } 254 255 if (flags & FOLL_GET) { 256 if (unlikely(!try_get_page(page))) { 257 page = ERR_PTR(-ENOMEM); 258 goto out; 259 } 260 } 261 if (flags & FOLL_TOUCH) { 262 if ((flags & FOLL_WRITE) && 263 !pte_dirty(pte) && !PageDirty(page)) 264 set_page_dirty(page); 265 /* 266 * pte_mkyoung() would be more correct here, but atomic care 267 * is needed to avoid losing the dirty bit: it is easier to use 268 * mark_page_accessed(). 269 */ 270 mark_page_accessed(page); 271 } 272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 273 /* Do not mlock pte-mapped THP */ 274 if (PageTransCompound(page)) 275 goto out; 276 277 /* 278 * The preliminary mapping check is mainly to avoid the 279 * pointless overhead of lock_page on the ZERO_PAGE 280 * which might bounce very badly if there is contention. 281 * 282 * If the page is already locked, we don't need to 283 * handle it now - vmscan will handle it later if and 284 * when it attempts to reclaim the page. 285 */ 286 if (page->mapping && trylock_page(page)) { 287 lru_add_drain(); /* push cached pages to LRU */ 288 /* 289 * Because we lock page here, and migration is 290 * blocked by the pte's page reference, and we 291 * know the page is still mapped, we don't even 292 * need to check for file-cache page truncation. 293 */ 294 mlock_vma_page(page); 295 unlock_page(page); 296 } 297 } 298 out: 299 pte_unmap_unlock(ptep, ptl); 300 return page; 301 no_page: 302 pte_unmap_unlock(ptep, ptl); 303 if (!pte_none(pte)) 304 return NULL; 305 return no_page_table(vma, flags); 306 } 307 308 static struct page *follow_pmd_mask(struct vm_area_struct *vma, 309 unsigned long address, pud_t *pudp, 310 unsigned int flags, 311 struct follow_page_context *ctx) 312 { 313 pmd_t *pmd, pmdval; 314 spinlock_t *ptl; 315 struct page *page; 316 struct mm_struct *mm = vma->vm_mm; 317 318 pmd = pmd_offset(pudp, address); 319 /* 320 * The READ_ONCE() will stabilize the pmdval in a register or 321 * on the stack so that it will stop changing under the code. 322 */ 323 pmdval = READ_ONCE(*pmd); 324 if (pmd_none(pmdval)) 325 return no_page_table(vma, flags); 326 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) { 327 page = follow_huge_pmd(mm, address, pmd, flags); 328 if (page) 329 return page; 330 return no_page_table(vma, flags); 331 } 332 if (is_hugepd(__hugepd(pmd_val(pmdval)))) { 333 page = follow_huge_pd(vma, address, 334 __hugepd(pmd_val(pmdval)), flags, 335 PMD_SHIFT); 336 if (page) 337 return page; 338 return no_page_table(vma, flags); 339 } 340 retry: 341 if (!pmd_present(pmdval)) { 342 if (likely(!(flags & FOLL_MIGRATION))) 343 return no_page_table(vma, flags); 344 VM_BUG_ON(thp_migration_supported() && 345 !is_pmd_migration_entry(pmdval)); 346 if (is_pmd_migration_entry(pmdval)) 347 pmd_migration_entry_wait(mm, pmd); 348 pmdval = READ_ONCE(*pmd); 349 /* 350 * MADV_DONTNEED may convert the pmd to null because 351 * mmap_sem is held in read mode 352 */ 353 if (pmd_none(pmdval)) 354 return no_page_table(vma, flags); 355 goto retry; 356 } 357 if (pmd_devmap(pmdval)) { 358 ptl = pmd_lock(mm, pmd); 359 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); 360 spin_unlock(ptl); 361 if (page) 362 return page; 363 } 364 if (likely(!pmd_trans_huge(pmdval))) 365 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 366 367 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval)) 368 return no_page_table(vma, flags); 369 370 retry_locked: 371 ptl = pmd_lock(mm, pmd); 372 if (unlikely(pmd_none(*pmd))) { 373 spin_unlock(ptl); 374 return no_page_table(vma, flags); 375 } 376 if (unlikely(!pmd_present(*pmd))) { 377 spin_unlock(ptl); 378 if (likely(!(flags & FOLL_MIGRATION))) 379 return no_page_table(vma, flags); 380 pmd_migration_entry_wait(mm, pmd); 381 goto retry_locked; 382 } 383 if (unlikely(!pmd_trans_huge(*pmd))) { 384 spin_unlock(ptl); 385 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 386 } 387 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) { 388 int ret; 389 page = pmd_page(*pmd); 390 if (is_huge_zero_page(page)) { 391 spin_unlock(ptl); 392 ret = 0; 393 split_huge_pmd(vma, pmd, address); 394 if (pmd_trans_unstable(pmd)) 395 ret = -EBUSY; 396 } else if (flags & FOLL_SPLIT) { 397 if (unlikely(!try_get_page(page))) { 398 spin_unlock(ptl); 399 return ERR_PTR(-ENOMEM); 400 } 401 spin_unlock(ptl); 402 lock_page(page); 403 ret = split_huge_page(page); 404 unlock_page(page); 405 put_page(page); 406 if (pmd_none(*pmd)) 407 return no_page_table(vma, flags); 408 } else { /* flags & FOLL_SPLIT_PMD */ 409 spin_unlock(ptl); 410 split_huge_pmd(vma, pmd, address); 411 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0; 412 } 413 414 return ret ? ERR_PTR(ret) : 415 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); 416 } 417 page = follow_trans_huge_pmd(vma, address, pmd, flags); 418 spin_unlock(ptl); 419 ctx->page_mask = HPAGE_PMD_NR - 1; 420 return page; 421 } 422 423 static struct page *follow_pud_mask(struct vm_area_struct *vma, 424 unsigned long address, p4d_t *p4dp, 425 unsigned int flags, 426 struct follow_page_context *ctx) 427 { 428 pud_t *pud; 429 spinlock_t *ptl; 430 struct page *page; 431 struct mm_struct *mm = vma->vm_mm; 432 433 pud = pud_offset(p4dp, address); 434 if (pud_none(*pud)) 435 return no_page_table(vma, flags); 436 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 437 page = follow_huge_pud(mm, address, pud, flags); 438 if (page) 439 return page; 440 return no_page_table(vma, flags); 441 } 442 if (is_hugepd(__hugepd(pud_val(*pud)))) { 443 page = follow_huge_pd(vma, address, 444 __hugepd(pud_val(*pud)), flags, 445 PUD_SHIFT); 446 if (page) 447 return page; 448 return no_page_table(vma, flags); 449 } 450 if (pud_devmap(*pud)) { 451 ptl = pud_lock(mm, pud); 452 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap); 453 spin_unlock(ptl); 454 if (page) 455 return page; 456 } 457 if (unlikely(pud_bad(*pud))) 458 return no_page_table(vma, flags); 459 460 return follow_pmd_mask(vma, address, pud, flags, ctx); 461 } 462 463 static struct page *follow_p4d_mask(struct vm_area_struct *vma, 464 unsigned long address, pgd_t *pgdp, 465 unsigned int flags, 466 struct follow_page_context *ctx) 467 { 468 p4d_t *p4d; 469 struct page *page; 470 471 p4d = p4d_offset(pgdp, address); 472 if (p4d_none(*p4d)) 473 return no_page_table(vma, flags); 474 BUILD_BUG_ON(p4d_huge(*p4d)); 475 if (unlikely(p4d_bad(*p4d))) 476 return no_page_table(vma, flags); 477 478 if (is_hugepd(__hugepd(p4d_val(*p4d)))) { 479 page = follow_huge_pd(vma, address, 480 __hugepd(p4d_val(*p4d)), flags, 481 P4D_SHIFT); 482 if (page) 483 return page; 484 return no_page_table(vma, flags); 485 } 486 return follow_pud_mask(vma, address, p4d, flags, ctx); 487 } 488 489 /** 490 * follow_page_mask - look up a page descriptor from a user-virtual address 491 * @vma: vm_area_struct mapping @address 492 * @address: virtual address to look up 493 * @flags: flags modifying lookup behaviour 494 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a 495 * pointer to output page_mask 496 * 497 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 498 * 499 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches 500 * the device's dev_pagemap metadata to avoid repeating expensive lookups. 501 * 502 * On output, the @ctx->page_mask is set according to the size of the page. 503 * 504 * Return: the mapped (struct page *), %NULL if no mapping exists, or 505 * an error pointer if there is a mapping to something not represented 506 * by a page descriptor (see also vm_normal_page()). 507 */ 508 static struct page *follow_page_mask(struct vm_area_struct *vma, 509 unsigned long address, unsigned int flags, 510 struct follow_page_context *ctx) 511 { 512 pgd_t *pgd; 513 struct page *page; 514 struct mm_struct *mm = vma->vm_mm; 515 516 ctx->page_mask = 0; 517 518 /* make this handle hugepd */ 519 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 520 if (!IS_ERR(page)) { 521 BUG_ON(flags & FOLL_GET); 522 return page; 523 } 524 525 pgd = pgd_offset(mm, address); 526 527 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 528 return no_page_table(vma, flags); 529 530 if (pgd_huge(*pgd)) { 531 page = follow_huge_pgd(mm, address, pgd, flags); 532 if (page) 533 return page; 534 return no_page_table(vma, flags); 535 } 536 if (is_hugepd(__hugepd(pgd_val(*pgd)))) { 537 page = follow_huge_pd(vma, address, 538 __hugepd(pgd_val(*pgd)), flags, 539 PGDIR_SHIFT); 540 if (page) 541 return page; 542 return no_page_table(vma, flags); 543 } 544 545 return follow_p4d_mask(vma, address, pgd, flags, ctx); 546 } 547 548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 549 unsigned int foll_flags) 550 { 551 struct follow_page_context ctx = { NULL }; 552 struct page *page; 553 554 page = follow_page_mask(vma, address, foll_flags, &ctx); 555 if (ctx.pgmap) 556 put_dev_pagemap(ctx.pgmap); 557 return page; 558 } 559 560 static int get_gate_page(struct mm_struct *mm, unsigned long address, 561 unsigned int gup_flags, struct vm_area_struct **vma, 562 struct page **page) 563 { 564 pgd_t *pgd; 565 p4d_t *p4d; 566 pud_t *pud; 567 pmd_t *pmd; 568 pte_t *pte; 569 int ret = -EFAULT; 570 571 /* user gate pages are read-only */ 572 if (gup_flags & FOLL_WRITE) 573 return -EFAULT; 574 if (address > TASK_SIZE) 575 pgd = pgd_offset_k(address); 576 else 577 pgd = pgd_offset_gate(mm, address); 578 if (pgd_none(*pgd)) 579 return -EFAULT; 580 p4d = p4d_offset(pgd, address); 581 if (p4d_none(*p4d)) 582 return -EFAULT; 583 pud = pud_offset(p4d, address); 584 if (pud_none(*pud)) 585 return -EFAULT; 586 pmd = pmd_offset(pud, address); 587 if (!pmd_present(*pmd)) 588 return -EFAULT; 589 VM_BUG_ON(pmd_trans_huge(*pmd)); 590 pte = pte_offset_map(pmd, address); 591 if (pte_none(*pte)) 592 goto unmap; 593 *vma = get_gate_vma(mm); 594 if (!page) 595 goto out; 596 *page = vm_normal_page(*vma, address, *pte); 597 if (!*page) { 598 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte))) 599 goto unmap; 600 *page = pte_page(*pte); 601 } 602 if (unlikely(!try_get_page(*page))) { 603 ret = -ENOMEM; 604 goto unmap; 605 } 606 out: 607 ret = 0; 608 unmap: 609 pte_unmap(pte); 610 return ret; 611 } 612 613 /* 614 * mmap_sem must be held on entry. If @nonblocking != NULL and 615 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released. 616 * If it is, *@nonblocking will be set to 0 and -EBUSY returned. 617 */ 618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma, 619 unsigned long address, unsigned int *flags, int *nonblocking) 620 { 621 unsigned int fault_flags = 0; 622 vm_fault_t ret; 623 624 /* mlock all present pages, but do not fault in new pages */ 625 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK) 626 return -ENOENT; 627 if (*flags & FOLL_WRITE) 628 fault_flags |= FAULT_FLAG_WRITE; 629 if (*flags & FOLL_REMOTE) 630 fault_flags |= FAULT_FLAG_REMOTE; 631 if (nonblocking) 632 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 633 if (*flags & FOLL_NOWAIT) 634 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; 635 if (*flags & FOLL_TRIED) { 636 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY); 637 fault_flags |= FAULT_FLAG_TRIED; 638 } 639 640 ret = handle_mm_fault(vma, address, fault_flags); 641 if (ret & VM_FAULT_ERROR) { 642 int err = vm_fault_to_errno(ret, *flags); 643 644 if (err) 645 return err; 646 BUG(); 647 } 648 649 if (tsk) { 650 if (ret & VM_FAULT_MAJOR) 651 tsk->maj_flt++; 652 else 653 tsk->min_flt++; 654 } 655 656 if (ret & VM_FAULT_RETRY) { 657 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) 658 *nonblocking = 0; 659 return -EBUSY; 660 } 661 662 /* 663 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when 664 * necessary, even if maybe_mkwrite decided not to set pte_write. We 665 * can thus safely do subsequent page lookups as if they were reads. 666 * But only do so when looping for pte_write is futile: in some cases 667 * userspace may also be wanting to write to the gotten user page, 668 * which a read fault here might prevent (a readonly page might get 669 * reCOWed by userspace write). 670 */ 671 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE)) 672 *flags |= FOLL_COW; 673 return 0; 674 } 675 676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) 677 { 678 vm_flags_t vm_flags = vma->vm_flags; 679 int write = (gup_flags & FOLL_WRITE); 680 int foreign = (gup_flags & FOLL_REMOTE); 681 682 if (vm_flags & (VM_IO | VM_PFNMAP)) 683 return -EFAULT; 684 685 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma)) 686 return -EFAULT; 687 688 if (write) { 689 if (!(vm_flags & VM_WRITE)) { 690 if (!(gup_flags & FOLL_FORCE)) 691 return -EFAULT; 692 /* 693 * We used to let the write,force case do COW in a 694 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could 695 * set a breakpoint in a read-only mapping of an 696 * executable, without corrupting the file (yet only 697 * when that file had been opened for writing!). 698 * Anon pages in shared mappings are surprising: now 699 * just reject it. 700 */ 701 if (!is_cow_mapping(vm_flags)) 702 return -EFAULT; 703 } 704 } else if (!(vm_flags & VM_READ)) { 705 if (!(gup_flags & FOLL_FORCE)) 706 return -EFAULT; 707 /* 708 * Is there actually any vma we can reach here which does not 709 * have VM_MAYREAD set? 710 */ 711 if (!(vm_flags & VM_MAYREAD)) 712 return -EFAULT; 713 } 714 /* 715 * gups are always data accesses, not instruction 716 * fetches, so execute=false here 717 */ 718 if (!arch_vma_access_permitted(vma, write, false, foreign)) 719 return -EFAULT; 720 return 0; 721 } 722 723 /** 724 * __get_user_pages() - pin user pages in memory 725 * @tsk: task_struct of target task 726 * @mm: mm_struct of target mm 727 * @start: starting user address 728 * @nr_pages: number of pages from start to pin 729 * @gup_flags: flags modifying pin behaviour 730 * @pages: array that receives pointers to the pages pinned. 731 * Should be at least nr_pages long. Or NULL, if caller 732 * only intends to ensure the pages are faulted in. 733 * @vmas: array of pointers to vmas corresponding to each page. 734 * Or NULL if the caller does not require them. 735 * @nonblocking: whether waiting for disk IO or mmap_sem contention 736 * 737 * Returns either number of pages pinned (which may be less than the 738 * number requested), or an error. Details about the return value: 739 * 740 * -- If nr_pages is 0, returns 0. 741 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 742 * -- If nr_pages is >0, and some pages were pinned, returns the number of 743 * pages pinned. Again, this may be less than nr_pages. 744 * 745 * The caller is responsible for releasing returned @pages, via put_page(). 746 * 747 * @vmas are valid only as long as mmap_sem is held. 748 * 749 * Must be called with mmap_sem held. It may be released. See below. 750 * 751 * __get_user_pages walks a process's page tables and takes a reference to 752 * each struct page that each user address corresponds to at a given 753 * instant. That is, it takes the page that would be accessed if a user 754 * thread accesses the given user virtual address at that instant. 755 * 756 * This does not guarantee that the page exists in the user mappings when 757 * __get_user_pages returns, and there may even be a completely different 758 * page there in some cases (eg. if mmapped pagecache has been invalidated 759 * and subsequently re faulted). However it does guarantee that the page 760 * won't be freed completely. And mostly callers simply care that the page 761 * contains data that was valid *at some point in time*. Typically, an IO 762 * or similar operation cannot guarantee anything stronger anyway because 763 * locks can't be held over the syscall boundary. 764 * 765 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 766 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 767 * appropriate) must be called after the page is finished with, and 768 * before put_page is called. 769 * 770 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 771 * or mmap_sem contention, and if waiting is needed to pin all pages, 772 * *@nonblocking will be set to 0. Further, if @gup_flags does not 773 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in 774 * this case. 775 * 776 * A caller using such a combination of @nonblocking and @gup_flags 777 * must therefore hold the mmap_sem for reading only, and recognize 778 * when it's been released. Otherwise, it must be held for either 779 * reading or writing and will not be released. 780 * 781 * In most cases, get_user_pages or get_user_pages_fast should be used 782 * instead of __get_user_pages. __get_user_pages should be used only if 783 * you need some special @gup_flags. 784 */ 785 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 786 unsigned long start, unsigned long nr_pages, 787 unsigned int gup_flags, struct page **pages, 788 struct vm_area_struct **vmas, int *nonblocking) 789 { 790 long ret = 0, i = 0; 791 struct vm_area_struct *vma = NULL; 792 struct follow_page_context ctx = { NULL }; 793 794 if (!nr_pages) 795 return 0; 796 797 start = untagged_addr(start); 798 799 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 800 801 /* 802 * If FOLL_FORCE is set then do not force a full fault as the hinting 803 * fault information is unrelated to the reference behaviour of a task 804 * using the address space 805 */ 806 if (!(gup_flags & FOLL_FORCE)) 807 gup_flags |= FOLL_NUMA; 808 809 do { 810 struct page *page; 811 unsigned int foll_flags = gup_flags; 812 unsigned int page_increm; 813 814 /* first iteration or cross vma bound */ 815 if (!vma || start >= vma->vm_end) { 816 vma = find_extend_vma(mm, start); 817 if (!vma && in_gate_area(mm, start)) { 818 ret = get_gate_page(mm, start & PAGE_MASK, 819 gup_flags, &vma, 820 pages ? &pages[i] : NULL); 821 if (ret) 822 goto out; 823 ctx.page_mask = 0; 824 goto next_page; 825 } 826 827 if (!vma || check_vma_flags(vma, gup_flags)) { 828 ret = -EFAULT; 829 goto out; 830 } 831 if (is_vm_hugetlb_page(vma)) { 832 i = follow_hugetlb_page(mm, vma, pages, vmas, 833 &start, &nr_pages, i, 834 gup_flags, nonblocking); 835 continue; 836 } 837 } 838 retry: 839 /* 840 * If we have a pending SIGKILL, don't keep faulting pages and 841 * potentially allocating memory. 842 */ 843 if (fatal_signal_pending(current)) { 844 ret = -ERESTARTSYS; 845 goto out; 846 } 847 cond_resched(); 848 849 page = follow_page_mask(vma, start, foll_flags, &ctx); 850 if (!page) { 851 ret = faultin_page(tsk, vma, start, &foll_flags, 852 nonblocking); 853 switch (ret) { 854 case 0: 855 goto retry; 856 case -EBUSY: 857 ret = 0; 858 /* FALLTHRU */ 859 case -EFAULT: 860 case -ENOMEM: 861 case -EHWPOISON: 862 goto out; 863 case -ENOENT: 864 goto next_page; 865 } 866 BUG(); 867 } else if (PTR_ERR(page) == -EEXIST) { 868 /* 869 * Proper page table entry exists, but no corresponding 870 * struct page. 871 */ 872 goto next_page; 873 } else if (IS_ERR(page)) { 874 ret = PTR_ERR(page); 875 goto out; 876 } 877 if (pages) { 878 pages[i] = page; 879 flush_anon_page(vma, page, start); 880 flush_dcache_page(page); 881 ctx.page_mask = 0; 882 } 883 next_page: 884 if (vmas) { 885 vmas[i] = vma; 886 ctx.page_mask = 0; 887 } 888 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); 889 if (page_increm > nr_pages) 890 page_increm = nr_pages; 891 i += page_increm; 892 start += page_increm * PAGE_SIZE; 893 nr_pages -= page_increm; 894 } while (nr_pages); 895 out: 896 if (ctx.pgmap) 897 put_dev_pagemap(ctx.pgmap); 898 return i ? i : ret; 899 } 900 901 static bool vma_permits_fault(struct vm_area_struct *vma, 902 unsigned int fault_flags) 903 { 904 bool write = !!(fault_flags & FAULT_FLAG_WRITE); 905 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); 906 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; 907 908 if (!(vm_flags & vma->vm_flags)) 909 return false; 910 911 /* 912 * The architecture might have a hardware protection 913 * mechanism other than read/write that can deny access. 914 * 915 * gup always represents data access, not instruction 916 * fetches, so execute=false here: 917 */ 918 if (!arch_vma_access_permitted(vma, write, false, foreign)) 919 return false; 920 921 return true; 922 } 923 924 /* 925 * fixup_user_fault() - manually resolve a user page fault 926 * @tsk: the task_struct to use for page fault accounting, or 927 * NULL if faults are not to be recorded. 928 * @mm: mm_struct of target mm 929 * @address: user address 930 * @fault_flags:flags to pass down to handle_mm_fault() 931 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller 932 * does not allow retry 933 * 934 * This is meant to be called in the specific scenario where for locking reasons 935 * we try to access user memory in atomic context (within a pagefault_disable() 936 * section), this returns -EFAULT, and we want to resolve the user fault before 937 * trying again. 938 * 939 * Typically this is meant to be used by the futex code. 940 * 941 * The main difference with get_user_pages() is that this function will 942 * unconditionally call handle_mm_fault() which will in turn perform all the 943 * necessary SW fixup of the dirty and young bits in the PTE, while 944 * get_user_pages() only guarantees to update these in the struct page. 945 * 946 * This is important for some architectures where those bits also gate the 947 * access permission to the page because they are maintained in software. On 948 * such architectures, gup() will not be enough to make a subsequent access 949 * succeed. 950 * 951 * This function will not return with an unlocked mmap_sem. So it has not the 952 * same semantics wrt the @mm->mmap_sem as does filemap_fault(). 953 */ 954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 955 unsigned long address, unsigned int fault_flags, 956 bool *unlocked) 957 { 958 struct vm_area_struct *vma; 959 vm_fault_t ret, major = 0; 960 961 address = untagged_addr(address); 962 963 if (unlocked) 964 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 965 966 retry: 967 vma = find_extend_vma(mm, address); 968 if (!vma || address < vma->vm_start) 969 return -EFAULT; 970 971 if (!vma_permits_fault(vma, fault_flags)) 972 return -EFAULT; 973 974 ret = handle_mm_fault(vma, address, fault_flags); 975 major |= ret & VM_FAULT_MAJOR; 976 if (ret & VM_FAULT_ERROR) { 977 int err = vm_fault_to_errno(ret, 0); 978 979 if (err) 980 return err; 981 BUG(); 982 } 983 984 if (ret & VM_FAULT_RETRY) { 985 down_read(&mm->mmap_sem); 986 if (!(fault_flags & FAULT_FLAG_TRIED)) { 987 *unlocked = true; 988 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY; 989 fault_flags |= FAULT_FLAG_TRIED; 990 goto retry; 991 } 992 } 993 994 if (tsk) { 995 if (major) 996 tsk->maj_flt++; 997 else 998 tsk->min_flt++; 999 } 1000 return 0; 1001 } 1002 EXPORT_SYMBOL_GPL(fixup_user_fault); 1003 1004 static __always_inline long __get_user_pages_locked(struct task_struct *tsk, 1005 struct mm_struct *mm, 1006 unsigned long start, 1007 unsigned long nr_pages, 1008 struct page **pages, 1009 struct vm_area_struct **vmas, 1010 int *locked, 1011 unsigned int flags) 1012 { 1013 long ret, pages_done; 1014 bool lock_dropped; 1015 1016 if (locked) { 1017 /* if VM_FAULT_RETRY can be returned, vmas become invalid */ 1018 BUG_ON(vmas); 1019 /* check caller initialized locked */ 1020 BUG_ON(*locked != 1); 1021 } 1022 1023 if (pages) 1024 flags |= FOLL_GET; 1025 1026 pages_done = 0; 1027 lock_dropped = false; 1028 for (;;) { 1029 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages, 1030 vmas, locked); 1031 if (!locked) 1032 /* VM_FAULT_RETRY couldn't trigger, bypass */ 1033 return ret; 1034 1035 /* VM_FAULT_RETRY cannot return errors */ 1036 if (!*locked) { 1037 BUG_ON(ret < 0); 1038 BUG_ON(ret >= nr_pages); 1039 } 1040 1041 if (ret > 0) { 1042 nr_pages -= ret; 1043 pages_done += ret; 1044 if (!nr_pages) 1045 break; 1046 } 1047 if (*locked) { 1048 /* 1049 * VM_FAULT_RETRY didn't trigger or it was a 1050 * FOLL_NOWAIT. 1051 */ 1052 if (!pages_done) 1053 pages_done = ret; 1054 break; 1055 } 1056 /* 1057 * VM_FAULT_RETRY triggered, so seek to the faulting offset. 1058 * For the prefault case (!pages) we only update counts. 1059 */ 1060 if (likely(pages)) 1061 pages += ret; 1062 start += ret << PAGE_SHIFT; 1063 1064 /* 1065 * Repeat on the address that fired VM_FAULT_RETRY 1066 * without FAULT_FLAG_ALLOW_RETRY but with 1067 * FAULT_FLAG_TRIED. 1068 */ 1069 *locked = 1; 1070 lock_dropped = true; 1071 down_read(&mm->mmap_sem); 1072 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED, 1073 pages, NULL, NULL); 1074 if (ret != 1) { 1075 BUG_ON(ret > 1); 1076 if (!pages_done) 1077 pages_done = ret; 1078 break; 1079 } 1080 nr_pages--; 1081 pages_done++; 1082 if (!nr_pages) 1083 break; 1084 if (likely(pages)) 1085 pages++; 1086 start += PAGE_SIZE; 1087 } 1088 if (lock_dropped && *locked) { 1089 /* 1090 * We must let the caller know we temporarily dropped the lock 1091 * and so the critical section protected by it was lost. 1092 */ 1093 up_read(&mm->mmap_sem); 1094 *locked = 0; 1095 } 1096 return pages_done; 1097 } 1098 1099 /* 1100 * get_user_pages_remote() - pin user pages in memory 1101 * @tsk: the task_struct to use for page fault accounting, or 1102 * NULL if faults are not to be recorded. 1103 * @mm: mm_struct of target mm 1104 * @start: starting user address 1105 * @nr_pages: number of pages from start to pin 1106 * @gup_flags: flags modifying lookup behaviour 1107 * @pages: array that receives pointers to the pages pinned. 1108 * Should be at least nr_pages long. Or NULL, if caller 1109 * only intends to ensure the pages are faulted in. 1110 * @vmas: array of pointers to vmas corresponding to each page. 1111 * Or NULL if the caller does not require them. 1112 * @locked: pointer to lock flag indicating whether lock is held and 1113 * subsequently whether VM_FAULT_RETRY functionality can be 1114 * utilised. Lock must initially be held. 1115 * 1116 * Returns either number of pages pinned (which may be less than the 1117 * number requested), or an error. Details about the return value: 1118 * 1119 * -- If nr_pages is 0, returns 0. 1120 * -- If nr_pages is >0, but no pages were pinned, returns -errno. 1121 * -- If nr_pages is >0, and some pages were pinned, returns the number of 1122 * pages pinned. Again, this may be less than nr_pages. 1123 * 1124 * The caller is responsible for releasing returned @pages, via put_page(). 1125 * 1126 * @vmas are valid only as long as mmap_sem is held. 1127 * 1128 * Must be called with mmap_sem held for read or write. 1129 * 1130 * get_user_pages walks a process's page tables and takes a reference to 1131 * each struct page that each user address corresponds to at a given 1132 * instant. That is, it takes the page that would be accessed if a user 1133 * thread accesses the given user virtual address at that instant. 1134 * 1135 * This does not guarantee that the page exists in the user mappings when 1136 * get_user_pages returns, and there may even be a completely different 1137 * page there in some cases (eg. if mmapped pagecache has been invalidated 1138 * and subsequently re faulted). However it does guarantee that the page 1139 * won't be freed completely. And mostly callers simply care that the page 1140 * contains data that was valid *at some point in time*. Typically, an IO 1141 * or similar operation cannot guarantee anything stronger anyway because 1142 * locks can't be held over the syscall boundary. 1143 * 1144 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page 1145 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must 1146 * be called after the page is finished with, and before put_page is called. 1147 * 1148 * get_user_pages is typically used for fewer-copy IO operations, to get a 1149 * handle on the memory by some means other than accesses via the user virtual 1150 * addresses. The pages may be submitted for DMA to devices or accessed via 1151 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1152 * use the correct cache flushing APIs. 1153 * 1154 * See also get_user_pages_fast, for performance critical applications. 1155 * 1156 * get_user_pages should be phased out in favor of 1157 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing 1158 * should use get_user_pages because it cannot pass 1159 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. 1160 */ 1161 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1162 unsigned long start, unsigned long nr_pages, 1163 unsigned int gup_flags, struct page **pages, 1164 struct vm_area_struct **vmas, int *locked) 1165 { 1166 /* 1167 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1168 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1169 * vmas. As there are no users of this flag in this call we simply 1170 * disallow this option for now. 1171 */ 1172 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1173 return -EINVAL; 1174 1175 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1176 locked, 1177 gup_flags | FOLL_TOUCH | FOLL_REMOTE); 1178 } 1179 EXPORT_SYMBOL(get_user_pages_remote); 1180 1181 /** 1182 * populate_vma_page_range() - populate a range of pages in the vma. 1183 * @vma: target vma 1184 * @start: start address 1185 * @end: end address 1186 * @nonblocking: 1187 * 1188 * This takes care of mlocking the pages too if VM_LOCKED is set. 1189 * 1190 * return 0 on success, negative error code on error. 1191 * 1192 * vma->vm_mm->mmap_sem must be held. 1193 * 1194 * If @nonblocking is NULL, it may be held for read or write and will 1195 * be unperturbed. 1196 * 1197 * If @nonblocking is non-NULL, it must held for read only and may be 1198 * released. If it's released, *@nonblocking will be set to 0. 1199 */ 1200 long populate_vma_page_range(struct vm_area_struct *vma, 1201 unsigned long start, unsigned long end, int *nonblocking) 1202 { 1203 struct mm_struct *mm = vma->vm_mm; 1204 unsigned long nr_pages = (end - start) / PAGE_SIZE; 1205 int gup_flags; 1206 1207 VM_BUG_ON(start & ~PAGE_MASK); 1208 VM_BUG_ON(end & ~PAGE_MASK); 1209 VM_BUG_ON_VMA(start < vma->vm_start, vma); 1210 VM_BUG_ON_VMA(end > vma->vm_end, vma); 1211 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm); 1212 1213 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK; 1214 if (vma->vm_flags & VM_LOCKONFAULT) 1215 gup_flags &= ~FOLL_POPULATE; 1216 /* 1217 * We want to touch writable mappings with a write fault in order 1218 * to break COW, except for shared mappings because these don't COW 1219 * and we would not want to dirty them for nothing. 1220 */ 1221 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) 1222 gup_flags |= FOLL_WRITE; 1223 1224 /* 1225 * We want mlock to succeed for regions that have any permissions 1226 * other than PROT_NONE. 1227 */ 1228 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) 1229 gup_flags |= FOLL_FORCE; 1230 1231 /* 1232 * We made sure addr is within a VMA, so the following will 1233 * not result in a stack expansion that recurses back here. 1234 */ 1235 return __get_user_pages(current, mm, start, nr_pages, gup_flags, 1236 NULL, NULL, nonblocking); 1237 } 1238 1239 /* 1240 * __mm_populate - populate and/or mlock pages within a range of address space. 1241 * 1242 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap 1243 * flags. VMAs must be already marked with the desired vm_flags, and 1244 * mmap_sem must not be held. 1245 */ 1246 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) 1247 { 1248 struct mm_struct *mm = current->mm; 1249 unsigned long end, nstart, nend; 1250 struct vm_area_struct *vma = NULL; 1251 int locked = 0; 1252 long ret = 0; 1253 1254 end = start + len; 1255 1256 for (nstart = start; nstart < end; nstart = nend) { 1257 /* 1258 * We want to fault in pages for [nstart; end) address range. 1259 * Find first corresponding VMA. 1260 */ 1261 if (!locked) { 1262 locked = 1; 1263 down_read(&mm->mmap_sem); 1264 vma = find_vma(mm, nstart); 1265 } else if (nstart >= vma->vm_end) 1266 vma = vma->vm_next; 1267 if (!vma || vma->vm_start >= end) 1268 break; 1269 /* 1270 * Set [nstart; nend) to intersection of desired address 1271 * range with the first VMA. Also, skip undesirable VMA types. 1272 */ 1273 nend = min(end, vma->vm_end); 1274 if (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1275 continue; 1276 if (nstart < vma->vm_start) 1277 nstart = vma->vm_start; 1278 /* 1279 * Now fault in a range of pages. populate_vma_page_range() 1280 * double checks the vma flags, so that it won't mlock pages 1281 * if the vma was already munlocked. 1282 */ 1283 ret = populate_vma_page_range(vma, nstart, nend, &locked); 1284 if (ret < 0) { 1285 if (ignore_errors) { 1286 ret = 0; 1287 continue; /* continue at next VMA */ 1288 } 1289 break; 1290 } 1291 nend = nstart + ret * PAGE_SIZE; 1292 ret = 0; 1293 } 1294 if (locked) 1295 up_read(&mm->mmap_sem); 1296 return ret; /* 0 or negative error code */ 1297 } 1298 1299 /** 1300 * get_dump_page() - pin user page in memory while writing it to core dump 1301 * @addr: user address 1302 * 1303 * Returns struct page pointer of user page pinned for dump, 1304 * to be freed afterwards by put_page(). 1305 * 1306 * Returns NULL on any kind of failure - a hole must then be inserted into 1307 * the corefile, to preserve alignment with its headers; and also returns 1308 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1309 * allowing a hole to be left in the corefile to save diskspace. 1310 * 1311 * Called without mmap_sem, but after all other threads have been killed. 1312 */ 1313 #ifdef CONFIG_ELF_CORE 1314 struct page *get_dump_page(unsigned long addr) 1315 { 1316 struct vm_area_struct *vma; 1317 struct page *page; 1318 1319 if (__get_user_pages(current, current->mm, addr, 1, 1320 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1321 NULL) < 1) 1322 return NULL; 1323 flush_cache_page(vma, addr, page_to_pfn(page)); 1324 return page; 1325 } 1326 #endif /* CONFIG_ELF_CORE */ 1327 #else /* CONFIG_MMU */ 1328 static long __get_user_pages_locked(struct task_struct *tsk, 1329 struct mm_struct *mm, unsigned long start, 1330 unsigned long nr_pages, struct page **pages, 1331 struct vm_area_struct **vmas, int *locked, 1332 unsigned int foll_flags) 1333 { 1334 struct vm_area_struct *vma; 1335 unsigned long vm_flags; 1336 int i; 1337 1338 /* calculate required read or write permissions. 1339 * If FOLL_FORCE is set, we only require the "MAY" flags. 1340 */ 1341 vm_flags = (foll_flags & FOLL_WRITE) ? 1342 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1343 vm_flags &= (foll_flags & FOLL_FORCE) ? 1344 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1345 1346 for (i = 0; i < nr_pages; i++) { 1347 vma = find_vma(mm, start); 1348 if (!vma) 1349 goto finish_or_fault; 1350 1351 /* protect what we can, including chardevs */ 1352 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1353 !(vm_flags & vma->vm_flags)) 1354 goto finish_or_fault; 1355 1356 if (pages) { 1357 pages[i] = virt_to_page(start); 1358 if (pages[i]) 1359 get_page(pages[i]); 1360 } 1361 if (vmas) 1362 vmas[i] = vma; 1363 start = (start + PAGE_SIZE) & PAGE_MASK; 1364 } 1365 1366 return i; 1367 1368 finish_or_fault: 1369 return i ? : -EFAULT; 1370 } 1371 #endif /* !CONFIG_MMU */ 1372 1373 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA) 1374 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages) 1375 { 1376 long i; 1377 struct vm_area_struct *vma_prev = NULL; 1378 1379 for (i = 0; i < nr_pages; i++) { 1380 struct vm_area_struct *vma = vmas[i]; 1381 1382 if (vma == vma_prev) 1383 continue; 1384 1385 vma_prev = vma; 1386 1387 if (vma_is_fsdax(vma)) 1388 return true; 1389 } 1390 return false; 1391 } 1392 1393 #ifdef CONFIG_CMA 1394 static struct page *new_non_cma_page(struct page *page, unsigned long private) 1395 { 1396 /* 1397 * We want to make sure we allocate the new page from the same node 1398 * as the source page. 1399 */ 1400 int nid = page_to_nid(page); 1401 /* 1402 * Trying to allocate a page for migration. Ignore allocation 1403 * failure warnings. We don't force __GFP_THISNODE here because 1404 * this node here is the node where we have CMA reservation and 1405 * in some case these nodes will have really less non movable 1406 * allocation memory. 1407 */ 1408 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN; 1409 1410 if (PageHighMem(page)) 1411 gfp_mask |= __GFP_HIGHMEM; 1412 1413 #ifdef CONFIG_HUGETLB_PAGE 1414 if (PageHuge(page)) { 1415 struct hstate *h = page_hstate(page); 1416 /* 1417 * We don't want to dequeue from the pool because pool pages will 1418 * mostly be from the CMA region. 1419 */ 1420 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL); 1421 } 1422 #endif 1423 if (PageTransHuge(page)) { 1424 struct page *thp; 1425 /* 1426 * ignore allocation failure warnings 1427 */ 1428 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN; 1429 1430 /* 1431 * Remove the movable mask so that we don't allocate from 1432 * CMA area again. 1433 */ 1434 thp_gfpmask &= ~__GFP_MOVABLE; 1435 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER); 1436 if (!thp) 1437 return NULL; 1438 prep_transhuge_page(thp); 1439 return thp; 1440 } 1441 1442 return __alloc_pages_node(nid, gfp_mask, 0); 1443 } 1444 1445 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1446 struct mm_struct *mm, 1447 unsigned long start, 1448 unsigned long nr_pages, 1449 struct page **pages, 1450 struct vm_area_struct **vmas, 1451 unsigned int gup_flags) 1452 { 1453 unsigned long i; 1454 unsigned long step; 1455 bool drain_allow = true; 1456 bool migrate_allow = true; 1457 LIST_HEAD(cma_page_list); 1458 long ret = nr_pages; 1459 1460 check_again: 1461 for (i = 0; i < nr_pages;) { 1462 1463 struct page *head = compound_head(pages[i]); 1464 1465 /* 1466 * gup may start from a tail page. Advance step by the left 1467 * part. 1468 */ 1469 step = compound_nr(head) - (pages[i] - head); 1470 /* 1471 * If we get a page from the CMA zone, since we are going to 1472 * be pinning these entries, we might as well move them out 1473 * of the CMA zone if possible. 1474 */ 1475 if (is_migrate_cma_page(head)) { 1476 if (PageHuge(head)) 1477 isolate_huge_page(head, &cma_page_list); 1478 else { 1479 if (!PageLRU(head) && drain_allow) { 1480 lru_add_drain_all(); 1481 drain_allow = false; 1482 } 1483 1484 if (!isolate_lru_page(head)) { 1485 list_add_tail(&head->lru, &cma_page_list); 1486 mod_node_page_state(page_pgdat(head), 1487 NR_ISOLATED_ANON + 1488 page_is_file_cache(head), 1489 hpage_nr_pages(head)); 1490 } 1491 } 1492 } 1493 1494 i += step; 1495 } 1496 1497 if (!list_empty(&cma_page_list)) { 1498 /* 1499 * drop the above get_user_pages reference. 1500 */ 1501 for (i = 0; i < nr_pages; i++) 1502 put_page(pages[i]); 1503 1504 if (migrate_pages(&cma_page_list, new_non_cma_page, 1505 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) { 1506 /* 1507 * some of the pages failed migration. Do get_user_pages 1508 * without migration. 1509 */ 1510 migrate_allow = false; 1511 1512 if (!list_empty(&cma_page_list)) 1513 putback_movable_pages(&cma_page_list); 1514 } 1515 /* 1516 * We did migrate all the pages, Try to get the page references 1517 * again migrating any new CMA pages which we failed to isolate 1518 * earlier. 1519 */ 1520 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, 1521 pages, vmas, NULL, 1522 gup_flags); 1523 1524 if ((ret > 0) && migrate_allow) { 1525 nr_pages = ret; 1526 drain_allow = true; 1527 goto check_again; 1528 } 1529 } 1530 1531 return ret; 1532 } 1533 #else 1534 static long check_and_migrate_cma_pages(struct task_struct *tsk, 1535 struct mm_struct *mm, 1536 unsigned long start, 1537 unsigned long nr_pages, 1538 struct page **pages, 1539 struct vm_area_struct **vmas, 1540 unsigned int gup_flags) 1541 { 1542 return nr_pages; 1543 } 1544 #endif /* CONFIG_CMA */ 1545 1546 /* 1547 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which 1548 * allows us to process the FOLL_LONGTERM flag. 1549 */ 1550 static long __gup_longterm_locked(struct task_struct *tsk, 1551 struct mm_struct *mm, 1552 unsigned long start, 1553 unsigned long nr_pages, 1554 struct page **pages, 1555 struct vm_area_struct **vmas, 1556 unsigned int gup_flags) 1557 { 1558 struct vm_area_struct **vmas_tmp = vmas; 1559 unsigned long flags = 0; 1560 long rc, i; 1561 1562 if (gup_flags & FOLL_LONGTERM) { 1563 if (!pages) 1564 return -EINVAL; 1565 1566 if (!vmas_tmp) { 1567 vmas_tmp = kcalloc(nr_pages, 1568 sizeof(struct vm_area_struct *), 1569 GFP_KERNEL); 1570 if (!vmas_tmp) 1571 return -ENOMEM; 1572 } 1573 flags = memalloc_nocma_save(); 1574 } 1575 1576 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, 1577 vmas_tmp, NULL, gup_flags); 1578 1579 if (gup_flags & FOLL_LONGTERM) { 1580 memalloc_nocma_restore(flags); 1581 if (rc < 0) 1582 goto out; 1583 1584 if (check_dax_vmas(vmas_tmp, rc)) { 1585 for (i = 0; i < rc; i++) 1586 put_page(pages[i]); 1587 rc = -EOPNOTSUPP; 1588 goto out; 1589 } 1590 1591 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages, 1592 vmas_tmp, gup_flags); 1593 } 1594 1595 out: 1596 if (vmas_tmp != vmas) 1597 kfree(vmas_tmp); 1598 return rc; 1599 } 1600 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */ 1601 static __always_inline long __gup_longterm_locked(struct task_struct *tsk, 1602 struct mm_struct *mm, 1603 unsigned long start, 1604 unsigned long nr_pages, 1605 struct page **pages, 1606 struct vm_area_struct **vmas, 1607 unsigned int flags) 1608 { 1609 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas, 1610 NULL, flags); 1611 } 1612 #endif /* CONFIG_FS_DAX || CONFIG_CMA */ 1613 1614 /* 1615 * This is the same as get_user_pages_remote(), just with a 1616 * less-flexible calling convention where we assume that the task 1617 * and mm being operated on are the current task's and don't allow 1618 * passing of a locked parameter. We also obviously don't pass 1619 * FOLL_REMOTE in here. 1620 */ 1621 long get_user_pages(unsigned long start, unsigned long nr_pages, 1622 unsigned int gup_flags, struct page **pages, 1623 struct vm_area_struct **vmas) 1624 { 1625 return __gup_longterm_locked(current, current->mm, start, nr_pages, 1626 pages, vmas, gup_flags | FOLL_TOUCH); 1627 } 1628 EXPORT_SYMBOL(get_user_pages); 1629 1630 /* 1631 * We can leverage the VM_FAULT_RETRY functionality in the page fault 1632 * paths better by using either get_user_pages_locked() or 1633 * get_user_pages_unlocked(). 1634 * 1635 * get_user_pages_locked() is suitable to replace the form: 1636 * 1637 * down_read(&mm->mmap_sem); 1638 * do_something() 1639 * get_user_pages(tsk, mm, ..., pages, NULL); 1640 * up_read(&mm->mmap_sem); 1641 * 1642 * to: 1643 * 1644 * int locked = 1; 1645 * down_read(&mm->mmap_sem); 1646 * do_something() 1647 * get_user_pages_locked(tsk, mm, ..., pages, &locked); 1648 * if (locked) 1649 * up_read(&mm->mmap_sem); 1650 */ 1651 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1652 unsigned int gup_flags, struct page **pages, 1653 int *locked) 1654 { 1655 /* 1656 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1657 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1658 * vmas. As there are no users of this flag in this call we simply 1659 * disallow this option for now. 1660 */ 1661 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1662 return -EINVAL; 1663 1664 return __get_user_pages_locked(current, current->mm, start, nr_pages, 1665 pages, NULL, locked, 1666 gup_flags | FOLL_TOUCH); 1667 } 1668 EXPORT_SYMBOL(get_user_pages_locked); 1669 1670 /* 1671 * get_user_pages_unlocked() is suitable to replace the form: 1672 * 1673 * down_read(&mm->mmap_sem); 1674 * get_user_pages(tsk, mm, ..., pages, NULL); 1675 * up_read(&mm->mmap_sem); 1676 * 1677 * with: 1678 * 1679 * get_user_pages_unlocked(tsk, mm, ..., pages); 1680 * 1681 * It is functionally equivalent to get_user_pages_fast so 1682 * get_user_pages_fast should be used instead if specific gup_flags 1683 * (e.g. FOLL_FORCE) are not required. 1684 */ 1685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1686 struct page **pages, unsigned int gup_flags) 1687 { 1688 struct mm_struct *mm = current->mm; 1689 int locked = 1; 1690 long ret; 1691 1692 /* 1693 * FIXME: Current FOLL_LONGTERM behavior is incompatible with 1694 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on 1695 * vmas. As there are no users of this flag in this call we simply 1696 * disallow this option for now. 1697 */ 1698 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM)) 1699 return -EINVAL; 1700 1701 down_read(&mm->mmap_sem); 1702 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL, 1703 &locked, gup_flags | FOLL_TOUCH); 1704 if (locked) 1705 up_read(&mm->mmap_sem); 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(get_user_pages_unlocked); 1709 1710 /* 1711 * Fast GUP 1712 * 1713 * get_user_pages_fast attempts to pin user pages by walking the page 1714 * tables directly and avoids taking locks. Thus the walker needs to be 1715 * protected from page table pages being freed from under it, and should 1716 * block any THP splits. 1717 * 1718 * One way to achieve this is to have the walker disable interrupts, and 1719 * rely on IPIs from the TLB flushing code blocking before the page table 1720 * pages are freed. This is unsuitable for architectures that do not need 1721 * to broadcast an IPI when invalidating TLBs. 1722 * 1723 * Another way to achieve this is to batch up page table containing pages 1724 * belonging to more than one mm_user, then rcu_sched a callback to free those 1725 * pages. Disabling interrupts will allow the fast_gup walker to both block 1726 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs 1727 * (which is a relatively rare event). The code below adopts this strategy. 1728 * 1729 * Before activating this code, please be aware that the following assumptions 1730 * are currently made: 1731 * 1732 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to 1733 * free pages containing page tables or TLB flushing requires IPI broadcast. 1734 * 1735 * *) ptes can be read atomically by the architecture. 1736 * 1737 * *) access_ok is sufficient to validate userspace address ranges. 1738 * 1739 * The last two assumptions can be relaxed by the addition of helper functions. 1740 * 1741 * This code is based heavily on the PowerPC implementation by Nick Piggin. 1742 */ 1743 #ifdef CONFIG_HAVE_FAST_GUP 1744 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH 1745 /* 1746 * WARNING: only to be used in the get_user_pages_fast() implementation. 1747 * 1748 * With get_user_pages_fast(), we walk down the pagetables without taking any 1749 * locks. For this we would like to load the pointers atomically, but sometimes 1750 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What 1751 * we do have is the guarantee that a PTE will only either go from not present 1752 * to present, or present to not present or both -- it will not switch to a 1753 * completely different present page without a TLB flush in between; something 1754 * that we are blocking by holding interrupts off. 1755 * 1756 * Setting ptes from not present to present goes: 1757 * 1758 * ptep->pte_high = h; 1759 * smp_wmb(); 1760 * ptep->pte_low = l; 1761 * 1762 * And present to not present goes: 1763 * 1764 * ptep->pte_low = 0; 1765 * smp_wmb(); 1766 * ptep->pte_high = 0; 1767 * 1768 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 1769 * We load pte_high *after* loading pte_low, which ensures we don't see an older 1770 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 1771 * picked up a changed pte high. We might have gotten rubbish values from 1772 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 1773 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 1774 * operates on present ptes we're safe. 1775 */ 1776 static inline pte_t gup_get_pte(pte_t *ptep) 1777 { 1778 pte_t pte; 1779 1780 do { 1781 pte.pte_low = ptep->pte_low; 1782 smp_rmb(); 1783 pte.pte_high = ptep->pte_high; 1784 smp_rmb(); 1785 } while (unlikely(pte.pte_low != ptep->pte_low)); 1786 1787 return pte; 1788 } 1789 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1790 /* 1791 * We require that the PTE can be read atomically. 1792 */ 1793 static inline pte_t gup_get_pte(pte_t *ptep) 1794 { 1795 return READ_ONCE(*ptep); 1796 } 1797 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */ 1798 1799 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start, 1800 struct page **pages) 1801 { 1802 while ((*nr) - nr_start) { 1803 struct page *page = pages[--(*nr)]; 1804 1805 ClearPageReferenced(page); 1806 put_page(page); 1807 } 1808 } 1809 1810 /* 1811 * Return the compund head page with ref appropriately incremented, 1812 * or NULL if that failed. 1813 */ 1814 static inline struct page *try_get_compound_head(struct page *page, int refs) 1815 { 1816 struct page *head = compound_head(page); 1817 if (WARN_ON_ONCE(page_ref_count(head) < 0)) 1818 return NULL; 1819 if (unlikely(!page_cache_add_speculative(head, refs))) 1820 return NULL; 1821 return head; 1822 } 1823 1824 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL 1825 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1826 unsigned int flags, struct page **pages, int *nr) 1827 { 1828 struct dev_pagemap *pgmap = NULL; 1829 int nr_start = *nr, ret = 0; 1830 pte_t *ptep, *ptem; 1831 1832 ptem = ptep = pte_offset_map(&pmd, addr); 1833 do { 1834 pte_t pte = gup_get_pte(ptep); 1835 struct page *head, *page; 1836 1837 /* 1838 * Similar to the PMD case below, NUMA hinting must take slow 1839 * path using the pte_protnone check. 1840 */ 1841 if (pte_protnone(pte)) 1842 goto pte_unmap; 1843 1844 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 1845 goto pte_unmap; 1846 1847 if (pte_devmap(pte)) { 1848 if (unlikely(flags & FOLL_LONGTERM)) 1849 goto pte_unmap; 1850 1851 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); 1852 if (unlikely(!pgmap)) { 1853 undo_dev_pagemap(nr, nr_start, pages); 1854 goto pte_unmap; 1855 } 1856 } else if (pte_special(pte)) 1857 goto pte_unmap; 1858 1859 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 1860 page = pte_page(pte); 1861 1862 head = try_get_compound_head(page, 1); 1863 if (!head) 1864 goto pte_unmap; 1865 1866 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 1867 put_page(head); 1868 goto pte_unmap; 1869 } 1870 1871 VM_BUG_ON_PAGE(compound_head(page) != head, page); 1872 1873 SetPageReferenced(page); 1874 pages[*nr] = page; 1875 (*nr)++; 1876 1877 } while (ptep++, addr += PAGE_SIZE, addr != end); 1878 1879 ret = 1; 1880 1881 pte_unmap: 1882 if (pgmap) 1883 put_dev_pagemap(pgmap); 1884 pte_unmap(ptem); 1885 return ret; 1886 } 1887 #else 1888 1889 /* 1890 * If we can't determine whether or not a pte is special, then fail immediately 1891 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not 1892 * to be special. 1893 * 1894 * For a futex to be placed on a THP tail page, get_futex_key requires a 1895 * __get_user_pages_fast implementation that can pin pages. Thus it's still 1896 * useful to have gup_huge_pmd even if we can't operate on ptes. 1897 */ 1898 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, 1899 unsigned int flags, struct page **pages, int *nr) 1900 { 1901 return 0; 1902 } 1903 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ 1904 1905 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1906 static int __gup_device_huge(unsigned long pfn, unsigned long addr, 1907 unsigned long end, struct page **pages, int *nr) 1908 { 1909 int nr_start = *nr; 1910 struct dev_pagemap *pgmap = NULL; 1911 1912 do { 1913 struct page *page = pfn_to_page(pfn); 1914 1915 pgmap = get_dev_pagemap(pfn, pgmap); 1916 if (unlikely(!pgmap)) { 1917 undo_dev_pagemap(nr, nr_start, pages); 1918 return 0; 1919 } 1920 SetPageReferenced(page); 1921 pages[*nr] = page; 1922 get_page(page); 1923 (*nr)++; 1924 pfn++; 1925 } while (addr += PAGE_SIZE, addr != end); 1926 1927 if (pgmap) 1928 put_dev_pagemap(pgmap); 1929 return 1; 1930 } 1931 1932 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1933 unsigned long end, struct page **pages, int *nr) 1934 { 1935 unsigned long fault_pfn; 1936 int nr_start = *nr; 1937 1938 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1939 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1940 return 0; 1941 1942 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 1943 undo_dev_pagemap(nr, nr_start, pages); 1944 return 0; 1945 } 1946 return 1; 1947 } 1948 1949 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 1950 unsigned long end, struct page **pages, int *nr) 1951 { 1952 unsigned long fault_pfn; 1953 int nr_start = *nr; 1954 1955 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 1956 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr)) 1957 return 0; 1958 1959 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 1960 undo_dev_pagemap(nr, nr_start, pages); 1961 return 0; 1962 } 1963 return 1; 1964 } 1965 #else 1966 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 1967 unsigned long end, struct page **pages, int *nr) 1968 { 1969 BUILD_BUG(); 1970 return 0; 1971 } 1972 1973 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr, 1974 unsigned long end, struct page **pages, int *nr) 1975 { 1976 BUILD_BUG(); 1977 return 0; 1978 } 1979 #endif 1980 1981 #ifdef CONFIG_ARCH_HAS_HUGEPD 1982 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, 1983 unsigned long sz) 1984 { 1985 unsigned long __boundary = (addr + sz) & ~(sz-1); 1986 return (__boundary - 1 < end - 1) ? __boundary : end; 1987 } 1988 1989 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, 1990 unsigned long end, unsigned int flags, 1991 struct page **pages, int *nr) 1992 { 1993 unsigned long pte_end; 1994 struct page *head, *page; 1995 pte_t pte; 1996 int refs; 1997 1998 pte_end = (addr + sz) & ~(sz-1); 1999 if (pte_end < end) 2000 end = pte_end; 2001 2002 pte = READ_ONCE(*ptep); 2003 2004 if (!pte_access_permitted(pte, flags & FOLL_WRITE)) 2005 return 0; 2006 2007 /* hugepages are never "special" */ 2008 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 2009 2010 refs = 0; 2011 head = pte_page(pte); 2012 2013 page = head + ((addr & (sz-1)) >> PAGE_SHIFT); 2014 do { 2015 VM_BUG_ON(compound_head(page) != head); 2016 pages[*nr] = page; 2017 (*nr)++; 2018 page++; 2019 refs++; 2020 } while (addr += PAGE_SIZE, addr != end); 2021 2022 head = try_get_compound_head(head, refs); 2023 if (!head) { 2024 *nr -= refs; 2025 return 0; 2026 } 2027 2028 if (unlikely(pte_val(pte) != pte_val(*ptep))) { 2029 /* Could be optimized better */ 2030 *nr -= refs; 2031 while (refs--) 2032 put_page(head); 2033 return 0; 2034 } 2035 2036 SetPageReferenced(head); 2037 return 1; 2038 } 2039 2040 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2041 unsigned int pdshift, unsigned long end, unsigned int flags, 2042 struct page **pages, int *nr) 2043 { 2044 pte_t *ptep; 2045 unsigned long sz = 1UL << hugepd_shift(hugepd); 2046 unsigned long next; 2047 2048 ptep = hugepte_offset(hugepd, addr, pdshift); 2049 do { 2050 next = hugepte_addr_end(addr, end, sz); 2051 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr)) 2052 return 0; 2053 } while (ptep++, addr = next, addr != end); 2054 2055 return 1; 2056 } 2057 #else 2058 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr, 2059 unsigned int pdshift, unsigned long end, unsigned int flags, 2060 struct page **pages, int *nr) 2061 { 2062 return 0; 2063 } 2064 #endif /* CONFIG_ARCH_HAS_HUGEPD */ 2065 2066 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr, 2067 unsigned long end, unsigned int flags, 2068 struct page **pages, int *nr) 2069 { 2070 struct page *head, *page; 2071 int refs; 2072 2073 if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) 2074 return 0; 2075 2076 if (pmd_devmap(orig)) { 2077 if (unlikely(flags & FOLL_LONGTERM)) 2078 return 0; 2079 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr); 2080 } 2081 2082 refs = 0; 2083 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); 2084 do { 2085 pages[*nr] = page; 2086 (*nr)++; 2087 page++; 2088 refs++; 2089 } while (addr += PAGE_SIZE, addr != end); 2090 2091 head = try_get_compound_head(pmd_page(orig), refs); 2092 if (!head) { 2093 *nr -= refs; 2094 return 0; 2095 } 2096 2097 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { 2098 *nr -= refs; 2099 while (refs--) 2100 put_page(head); 2101 return 0; 2102 } 2103 2104 SetPageReferenced(head); 2105 return 1; 2106 } 2107 2108 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr, 2109 unsigned long end, unsigned int flags, struct page **pages, int *nr) 2110 { 2111 struct page *head, *page; 2112 int refs; 2113 2114 if (!pud_access_permitted(orig, flags & FOLL_WRITE)) 2115 return 0; 2116 2117 if (pud_devmap(orig)) { 2118 if (unlikely(flags & FOLL_LONGTERM)) 2119 return 0; 2120 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr); 2121 } 2122 2123 refs = 0; 2124 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); 2125 do { 2126 pages[*nr] = page; 2127 (*nr)++; 2128 page++; 2129 refs++; 2130 } while (addr += PAGE_SIZE, addr != end); 2131 2132 head = try_get_compound_head(pud_page(orig), refs); 2133 if (!head) { 2134 *nr -= refs; 2135 return 0; 2136 } 2137 2138 if (unlikely(pud_val(orig) != pud_val(*pudp))) { 2139 *nr -= refs; 2140 while (refs--) 2141 put_page(head); 2142 return 0; 2143 } 2144 2145 SetPageReferenced(head); 2146 return 1; 2147 } 2148 2149 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr, 2150 unsigned long end, unsigned int flags, 2151 struct page **pages, int *nr) 2152 { 2153 int refs; 2154 struct page *head, *page; 2155 2156 if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) 2157 return 0; 2158 2159 BUILD_BUG_ON(pgd_devmap(orig)); 2160 refs = 0; 2161 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT); 2162 do { 2163 pages[*nr] = page; 2164 (*nr)++; 2165 page++; 2166 refs++; 2167 } while (addr += PAGE_SIZE, addr != end); 2168 2169 head = try_get_compound_head(pgd_page(orig), refs); 2170 if (!head) { 2171 *nr -= refs; 2172 return 0; 2173 } 2174 2175 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { 2176 *nr -= refs; 2177 while (refs--) 2178 put_page(head); 2179 return 0; 2180 } 2181 2182 SetPageReferenced(head); 2183 return 1; 2184 } 2185 2186 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, 2187 unsigned int flags, struct page **pages, int *nr) 2188 { 2189 unsigned long next; 2190 pmd_t *pmdp; 2191 2192 pmdp = pmd_offset(&pud, addr); 2193 do { 2194 pmd_t pmd = READ_ONCE(*pmdp); 2195 2196 next = pmd_addr_end(addr, end); 2197 if (!pmd_present(pmd)) 2198 return 0; 2199 2200 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) || 2201 pmd_devmap(pmd))) { 2202 /* 2203 * NUMA hinting faults need to be handled in the GUP 2204 * slowpath for accounting purposes and so that they 2205 * can be serialised against THP migration. 2206 */ 2207 if (pmd_protnone(pmd)) 2208 return 0; 2209 2210 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags, 2211 pages, nr)) 2212 return 0; 2213 2214 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { 2215 /* 2216 * architecture have different format for hugetlbfs 2217 * pmd format and THP pmd format 2218 */ 2219 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr, 2220 PMD_SHIFT, next, flags, pages, nr)) 2221 return 0; 2222 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr)) 2223 return 0; 2224 } while (pmdp++, addr = next, addr != end); 2225 2226 return 1; 2227 } 2228 2229 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end, 2230 unsigned int flags, struct page **pages, int *nr) 2231 { 2232 unsigned long next; 2233 pud_t *pudp; 2234 2235 pudp = pud_offset(&p4d, addr); 2236 do { 2237 pud_t pud = READ_ONCE(*pudp); 2238 2239 next = pud_addr_end(addr, end); 2240 if (pud_none(pud)) 2241 return 0; 2242 if (unlikely(pud_huge(pud))) { 2243 if (!gup_huge_pud(pud, pudp, addr, next, flags, 2244 pages, nr)) 2245 return 0; 2246 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { 2247 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr, 2248 PUD_SHIFT, next, flags, pages, nr)) 2249 return 0; 2250 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr)) 2251 return 0; 2252 } while (pudp++, addr = next, addr != end); 2253 2254 return 1; 2255 } 2256 2257 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end, 2258 unsigned int flags, struct page **pages, int *nr) 2259 { 2260 unsigned long next; 2261 p4d_t *p4dp; 2262 2263 p4dp = p4d_offset(&pgd, addr); 2264 do { 2265 p4d_t p4d = READ_ONCE(*p4dp); 2266 2267 next = p4d_addr_end(addr, end); 2268 if (p4d_none(p4d)) 2269 return 0; 2270 BUILD_BUG_ON(p4d_huge(p4d)); 2271 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { 2272 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr, 2273 P4D_SHIFT, next, flags, pages, nr)) 2274 return 0; 2275 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr)) 2276 return 0; 2277 } while (p4dp++, addr = next, addr != end); 2278 2279 return 1; 2280 } 2281 2282 static void gup_pgd_range(unsigned long addr, unsigned long end, 2283 unsigned int flags, struct page **pages, int *nr) 2284 { 2285 unsigned long next; 2286 pgd_t *pgdp; 2287 2288 pgdp = pgd_offset(current->mm, addr); 2289 do { 2290 pgd_t pgd = READ_ONCE(*pgdp); 2291 2292 next = pgd_addr_end(addr, end); 2293 if (pgd_none(pgd)) 2294 return; 2295 if (unlikely(pgd_huge(pgd))) { 2296 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags, 2297 pages, nr)) 2298 return; 2299 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { 2300 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr, 2301 PGDIR_SHIFT, next, flags, pages, nr)) 2302 return; 2303 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr)) 2304 return; 2305 } while (pgdp++, addr = next, addr != end); 2306 } 2307 #else 2308 static inline void gup_pgd_range(unsigned long addr, unsigned long end, 2309 unsigned int flags, struct page **pages, int *nr) 2310 { 2311 } 2312 #endif /* CONFIG_HAVE_FAST_GUP */ 2313 2314 #ifndef gup_fast_permitted 2315 /* 2316 * Check if it's allowed to use __get_user_pages_fast() for the range, or 2317 * we need to fall back to the slow version: 2318 */ 2319 static bool gup_fast_permitted(unsigned long start, unsigned long end) 2320 { 2321 return true; 2322 } 2323 #endif 2324 2325 /* 2326 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to 2327 * the regular GUP. 2328 * Note a difference with get_user_pages_fast: this always returns the 2329 * number of pages pinned, 0 if no pages were pinned. 2330 * 2331 * If the architecture does not support this function, simply return with no 2332 * pages pinned. 2333 */ 2334 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 2335 struct page **pages) 2336 { 2337 unsigned long len, end; 2338 unsigned long flags; 2339 int nr = 0; 2340 2341 start = untagged_addr(start) & PAGE_MASK; 2342 len = (unsigned long) nr_pages << PAGE_SHIFT; 2343 end = start + len; 2344 2345 if (end <= start) 2346 return 0; 2347 if (unlikely(!access_ok((void __user *)start, len))) 2348 return 0; 2349 2350 /* 2351 * Disable interrupts. We use the nested form as we can already have 2352 * interrupts disabled by get_futex_key. 2353 * 2354 * With interrupts disabled, we block page table pages from being 2355 * freed from under us. See struct mmu_table_batch comments in 2356 * include/asm-generic/tlb.h for more details. 2357 * 2358 * We do not adopt an rcu_read_lock(.) here as we also want to 2359 * block IPIs that come from THPs splitting. 2360 */ 2361 2362 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2363 gup_fast_permitted(start, end)) { 2364 local_irq_save(flags); 2365 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr); 2366 local_irq_restore(flags); 2367 } 2368 2369 return nr; 2370 } 2371 EXPORT_SYMBOL_GPL(__get_user_pages_fast); 2372 2373 static int __gup_longterm_unlocked(unsigned long start, int nr_pages, 2374 unsigned int gup_flags, struct page **pages) 2375 { 2376 int ret; 2377 2378 /* 2379 * FIXME: FOLL_LONGTERM does not work with 2380 * get_user_pages_unlocked() (see comments in that function) 2381 */ 2382 if (gup_flags & FOLL_LONGTERM) { 2383 down_read(¤t->mm->mmap_sem); 2384 ret = __gup_longterm_locked(current, current->mm, 2385 start, nr_pages, 2386 pages, NULL, gup_flags); 2387 up_read(¤t->mm->mmap_sem); 2388 } else { 2389 ret = get_user_pages_unlocked(start, nr_pages, 2390 pages, gup_flags); 2391 } 2392 2393 return ret; 2394 } 2395 2396 /** 2397 * get_user_pages_fast() - pin user pages in memory 2398 * @start: starting user address 2399 * @nr_pages: number of pages from start to pin 2400 * @gup_flags: flags modifying pin behaviour 2401 * @pages: array that receives pointers to the pages pinned. 2402 * Should be at least nr_pages long. 2403 * 2404 * Attempt to pin user pages in memory without taking mm->mmap_sem. 2405 * If not successful, it will fall back to taking the lock and 2406 * calling get_user_pages(). 2407 * 2408 * Returns number of pages pinned. This may be fewer than the number 2409 * requested. If nr_pages is 0 or negative, returns 0. If no pages 2410 * were pinned, returns -errno. 2411 */ 2412 int get_user_pages_fast(unsigned long start, int nr_pages, 2413 unsigned int gup_flags, struct page **pages) 2414 { 2415 unsigned long addr, len, end; 2416 int nr = 0, ret = 0; 2417 2418 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM))) 2419 return -EINVAL; 2420 2421 start = untagged_addr(start) & PAGE_MASK; 2422 addr = start; 2423 len = (unsigned long) nr_pages << PAGE_SHIFT; 2424 end = start + len; 2425 2426 if (end <= start) 2427 return 0; 2428 if (unlikely(!access_ok((void __user *)start, len))) 2429 return -EFAULT; 2430 2431 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && 2432 gup_fast_permitted(start, end)) { 2433 local_irq_disable(); 2434 gup_pgd_range(addr, end, gup_flags, pages, &nr); 2435 local_irq_enable(); 2436 ret = nr; 2437 } 2438 2439 if (nr < nr_pages) { 2440 /* Try to get the remaining pages with get_user_pages */ 2441 start += nr << PAGE_SHIFT; 2442 pages += nr; 2443 2444 ret = __gup_longterm_unlocked(start, nr_pages - nr, 2445 gup_flags, pages); 2446 2447 /* Have to be a bit careful with return values */ 2448 if (nr > 0) { 2449 if (ret < 0) 2450 ret = nr; 2451 else 2452 ret += nr; 2453 } 2454 } 2455 2456 return ret; 2457 } 2458 EXPORT_SYMBOL_GPL(get_user_pages_fast); 2459