xref: /linux/mm/gup.c (revision cfda8617e22a8bf217a613d0b3ba3a38778443ba)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <asm/mmu_context.h>
22 #include <asm/pgtable.h>
23 #include <asm/tlbflush.h>
24 
25 #include "internal.h"
26 
27 struct follow_page_context {
28 	struct dev_pagemap *pgmap;
29 	unsigned int page_mask;
30 };
31 
32 /**
33  * put_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
34  * @pages:  array of pages to be maybe marked dirty, and definitely released.
35  * @npages: number of pages in the @pages array.
36  * @make_dirty: whether to mark the pages dirty
37  *
38  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
39  * variants called on that page.
40  *
41  * For each page in the @pages array, make that page (or its head page, if a
42  * compound page) dirty, if @make_dirty is true, and if the page was previously
43  * listed as clean. In any case, releases all pages using put_user_page(),
44  * possibly via put_user_pages(), for the non-dirty case.
45  *
46  * Please see the put_user_page() documentation for details.
47  *
48  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
49  * required, then the caller should a) verify that this is really correct,
50  * because _lock() is usually required, and b) hand code it:
51  * set_page_dirty_lock(), put_user_page().
52  *
53  */
54 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
55 			       bool make_dirty)
56 {
57 	unsigned long index;
58 
59 	/*
60 	 * TODO: this can be optimized for huge pages: if a series of pages is
61 	 * physically contiguous and part of the same compound page, then a
62 	 * single operation to the head page should suffice.
63 	 */
64 
65 	if (!make_dirty) {
66 		put_user_pages(pages, npages);
67 		return;
68 	}
69 
70 	for (index = 0; index < npages; index++) {
71 		struct page *page = compound_head(pages[index]);
72 		/*
73 		 * Checking PageDirty at this point may race with
74 		 * clear_page_dirty_for_io(), but that's OK. Two key
75 		 * cases:
76 		 *
77 		 * 1) This code sees the page as already dirty, so it
78 		 * skips the call to set_page_dirty(). That could happen
79 		 * because clear_page_dirty_for_io() called
80 		 * page_mkclean(), followed by set_page_dirty().
81 		 * However, now the page is going to get written back,
82 		 * which meets the original intention of setting it
83 		 * dirty, so all is well: clear_page_dirty_for_io() goes
84 		 * on to call TestClearPageDirty(), and write the page
85 		 * back.
86 		 *
87 		 * 2) This code sees the page as clean, so it calls
88 		 * set_page_dirty(). The page stays dirty, despite being
89 		 * written back, so it gets written back again in the
90 		 * next writeback cycle. This is harmless.
91 		 */
92 		if (!PageDirty(page))
93 			set_page_dirty_lock(page);
94 		put_user_page(page);
95 	}
96 }
97 EXPORT_SYMBOL(put_user_pages_dirty_lock);
98 
99 /**
100  * put_user_pages() - release an array of gup-pinned pages.
101  * @pages:  array of pages to be marked dirty and released.
102  * @npages: number of pages in the @pages array.
103  *
104  * For each page in the @pages array, release the page using put_user_page().
105  *
106  * Please see the put_user_page() documentation for details.
107  */
108 void put_user_pages(struct page **pages, unsigned long npages)
109 {
110 	unsigned long index;
111 
112 	/*
113 	 * TODO: this can be optimized for huge pages: if a series of pages is
114 	 * physically contiguous and part of the same compound page, then a
115 	 * single operation to the head page should suffice.
116 	 */
117 	for (index = 0; index < npages; index++)
118 		put_user_page(pages[index]);
119 }
120 EXPORT_SYMBOL(put_user_pages);
121 
122 #ifdef CONFIG_MMU
123 static struct page *no_page_table(struct vm_area_struct *vma,
124 		unsigned int flags)
125 {
126 	/*
127 	 * When core dumping an enormous anonymous area that nobody
128 	 * has touched so far, we don't want to allocate unnecessary pages or
129 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
130 	 * then get_dump_page() will return NULL to leave a hole in the dump.
131 	 * But we can only make this optimization where a hole would surely
132 	 * be zero-filled if handle_mm_fault() actually did handle it.
133 	 */
134 	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
135 		return ERR_PTR(-EFAULT);
136 	return NULL;
137 }
138 
139 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
140 		pte_t *pte, unsigned int flags)
141 {
142 	/* No page to get reference */
143 	if (flags & FOLL_GET)
144 		return -EFAULT;
145 
146 	if (flags & FOLL_TOUCH) {
147 		pte_t entry = *pte;
148 
149 		if (flags & FOLL_WRITE)
150 			entry = pte_mkdirty(entry);
151 		entry = pte_mkyoung(entry);
152 
153 		if (!pte_same(*pte, entry)) {
154 			set_pte_at(vma->vm_mm, address, pte, entry);
155 			update_mmu_cache(vma, address, pte);
156 		}
157 	}
158 
159 	/* Proper page table entry exists, but no corresponding struct page */
160 	return -EEXIST;
161 }
162 
163 /*
164  * FOLL_FORCE can write to even unwritable pte's, but only
165  * after we've gone through a COW cycle and they are dirty.
166  */
167 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
168 {
169 	return pte_write(pte) ||
170 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
171 }
172 
173 static struct page *follow_page_pte(struct vm_area_struct *vma,
174 		unsigned long address, pmd_t *pmd, unsigned int flags,
175 		struct dev_pagemap **pgmap)
176 {
177 	struct mm_struct *mm = vma->vm_mm;
178 	struct page *page;
179 	spinlock_t *ptl;
180 	pte_t *ptep, pte;
181 
182 retry:
183 	if (unlikely(pmd_bad(*pmd)))
184 		return no_page_table(vma, flags);
185 
186 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
187 	pte = *ptep;
188 	if (!pte_present(pte)) {
189 		swp_entry_t entry;
190 		/*
191 		 * KSM's break_ksm() relies upon recognizing a ksm page
192 		 * even while it is being migrated, so for that case we
193 		 * need migration_entry_wait().
194 		 */
195 		if (likely(!(flags & FOLL_MIGRATION)))
196 			goto no_page;
197 		if (pte_none(pte))
198 			goto no_page;
199 		entry = pte_to_swp_entry(pte);
200 		if (!is_migration_entry(entry))
201 			goto no_page;
202 		pte_unmap_unlock(ptep, ptl);
203 		migration_entry_wait(mm, pmd, address);
204 		goto retry;
205 	}
206 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
207 		goto no_page;
208 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
209 		pte_unmap_unlock(ptep, ptl);
210 		return NULL;
211 	}
212 
213 	page = vm_normal_page(vma, address, pte);
214 	if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
215 		/*
216 		 * Only return device mapping pages in the FOLL_GET case since
217 		 * they are only valid while holding the pgmap reference.
218 		 */
219 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
220 		if (*pgmap)
221 			page = pte_page(pte);
222 		else
223 			goto no_page;
224 	} else if (unlikely(!page)) {
225 		if (flags & FOLL_DUMP) {
226 			/* Avoid special (like zero) pages in core dumps */
227 			page = ERR_PTR(-EFAULT);
228 			goto out;
229 		}
230 
231 		if (is_zero_pfn(pte_pfn(pte))) {
232 			page = pte_page(pte);
233 		} else {
234 			int ret;
235 
236 			ret = follow_pfn_pte(vma, address, ptep, flags);
237 			page = ERR_PTR(ret);
238 			goto out;
239 		}
240 	}
241 
242 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
243 		int ret;
244 		get_page(page);
245 		pte_unmap_unlock(ptep, ptl);
246 		lock_page(page);
247 		ret = split_huge_page(page);
248 		unlock_page(page);
249 		put_page(page);
250 		if (ret)
251 			return ERR_PTR(ret);
252 		goto retry;
253 	}
254 
255 	if (flags & FOLL_GET) {
256 		if (unlikely(!try_get_page(page))) {
257 			page = ERR_PTR(-ENOMEM);
258 			goto out;
259 		}
260 	}
261 	if (flags & FOLL_TOUCH) {
262 		if ((flags & FOLL_WRITE) &&
263 		    !pte_dirty(pte) && !PageDirty(page))
264 			set_page_dirty(page);
265 		/*
266 		 * pte_mkyoung() would be more correct here, but atomic care
267 		 * is needed to avoid losing the dirty bit: it is easier to use
268 		 * mark_page_accessed().
269 		 */
270 		mark_page_accessed(page);
271 	}
272 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
273 		/* Do not mlock pte-mapped THP */
274 		if (PageTransCompound(page))
275 			goto out;
276 
277 		/*
278 		 * The preliminary mapping check is mainly to avoid the
279 		 * pointless overhead of lock_page on the ZERO_PAGE
280 		 * which might bounce very badly if there is contention.
281 		 *
282 		 * If the page is already locked, we don't need to
283 		 * handle it now - vmscan will handle it later if and
284 		 * when it attempts to reclaim the page.
285 		 */
286 		if (page->mapping && trylock_page(page)) {
287 			lru_add_drain();  /* push cached pages to LRU */
288 			/*
289 			 * Because we lock page here, and migration is
290 			 * blocked by the pte's page reference, and we
291 			 * know the page is still mapped, we don't even
292 			 * need to check for file-cache page truncation.
293 			 */
294 			mlock_vma_page(page);
295 			unlock_page(page);
296 		}
297 	}
298 out:
299 	pte_unmap_unlock(ptep, ptl);
300 	return page;
301 no_page:
302 	pte_unmap_unlock(ptep, ptl);
303 	if (!pte_none(pte))
304 		return NULL;
305 	return no_page_table(vma, flags);
306 }
307 
308 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
309 				    unsigned long address, pud_t *pudp,
310 				    unsigned int flags,
311 				    struct follow_page_context *ctx)
312 {
313 	pmd_t *pmd, pmdval;
314 	spinlock_t *ptl;
315 	struct page *page;
316 	struct mm_struct *mm = vma->vm_mm;
317 
318 	pmd = pmd_offset(pudp, address);
319 	/*
320 	 * The READ_ONCE() will stabilize the pmdval in a register or
321 	 * on the stack so that it will stop changing under the code.
322 	 */
323 	pmdval = READ_ONCE(*pmd);
324 	if (pmd_none(pmdval))
325 		return no_page_table(vma, flags);
326 	if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
327 		page = follow_huge_pmd(mm, address, pmd, flags);
328 		if (page)
329 			return page;
330 		return no_page_table(vma, flags);
331 	}
332 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
333 		page = follow_huge_pd(vma, address,
334 				      __hugepd(pmd_val(pmdval)), flags,
335 				      PMD_SHIFT);
336 		if (page)
337 			return page;
338 		return no_page_table(vma, flags);
339 	}
340 retry:
341 	if (!pmd_present(pmdval)) {
342 		if (likely(!(flags & FOLL_MIGRATION)))
343 			return no_page_table(vma, flags);
344 		VM_BUG_ON(thp_migration_supported() &&
345 				  !is_pmd_migration_entry(pmdval));
346 		if (is_pmd_migration_entry(pmdval))
347 			pmd_migration_entry_wait(mm, pmd);
348 		pmdval = READ_ONCE(*pmd);
349 		/*
350 		 * MADV_DONTNEED may convert the pmd to null because
351 		 * mmap_sem is held in read mode
352 		 */
353 		if (pmd_none(pmdval))
354 			return no_page_table(vma, flags);
355 		goto retry;
356 	}
357 	if (pmd_devmap(pmdval)) {
358 		ptl = pmd_lock(mm, pmd);
359 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
360 		spin_unlock(ptl);
361 		if (page)
362 			return page;
363 	}
364 	if (likely(!pmd_trans_huge(pmdval)))
365 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
366 
367 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
368 		return no_page_table(vma, flags);
369 
370 retry_locked:
371 	ptl = pmd_lock(mm, pmd);
372 	if (unlikely(pmd_none(*pmd))) {
373 		spin_unlock(ptl);
374 		return no_page_table(vma, flags);
375 	}
376 	if (unlikely(!pmd_present(*pmd))) {
377 		spin_unlock(ptl);
378 		if (likely(!(flags & FOLL_MIGRATION)))
379 			return no_page_table(vma, flags);
380 		pmd_migration_entry_wait(mm, pmd);
381 		goto retry_locked;
382 	}
383 	if (unlikely(!pmd_trans_huge(*pmd))) {
384 		spin_unlock(ptl);
385 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
386 	}
387 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
388 		int ret;
389 		page = pmd_page(*pmd);
390 		if (is_huge_zero_page(page)) {
391 			spin_unlock(ptl);
392 			ret = 0;
393 			split_huge_pmd(vma, pmd, address);
394 			if (pmd_trans_unstable(pmd))
395 				ret = -EBUSY;
396 		} else if (flags & FOLL_SPLIT) {
397 			if (unlikely(!try_get_page(page))) {
398 				spin_unlock(ptl);
399 				return ERR_PTR(-ENOMEM);
400 			}
401 			spin_unlock(ptl);
402 			lock_page(page);
403 			ret = split_huge_page(page);
404 			unlock_page(page);
405 			put_page(page);
406 			if (pmd_none(*pmd))
407 				return no_page_table(vma, flags);
408 		} else {  /* flags & FOLL_SPLIT_PMD */
409 			spin_unlock(ptl);
410 			split_huge_pmd(vma, pmd, address);
411 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
412 		}
413 
414 		return ret ? ERR_PTR(ret) :
415 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
416 	}
417 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
418 	spin_unlock(ptl);
419 	ctx->page_mask = HPAGE_PMD_NR - 1;
420 	return page;
421 }
422 
423 static struct page *follow_pud_mask(struct vm_area_struct *vma,
424 				    unsigned long address, p4d_t *p4dp,
425 				    unsigned int flags,
426 				    struct follow_page_context *ctx)
427 {
428 	pud_t *pud;
429 	spinlock_t *ptl;
430 	struct page *page;
431 	struct mm_struct *mm = vma->vm_mm;
432 
433 	pud = pud_offset(p4dp, address);
434 	if (pud_none(*pud))
435 		return no_page_table(vma, flags);
436 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
437 		page = follow_huge_pud(mm, address, pud, flags);
438 		if (page)
439 			return page;
440 		return no_page_table(vma, flags);
441 	}
442 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
443 		page = follow_huge_pd(vma, address,
444 				      __hugepd(pud_val(*pud)), flags,
445 				      PUD_SHIFT);
446 		if (page)
447 			return page;
448 		return no_page_table(vma, flags);
449 	}
450 	if (pud_devmap(*pud)) {
451 		ptl = pud_lock(mm, pud);
452 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
453 		spin_unlock(ptl);
454 		if (page)
455 			return page;
456 	}
457 	if (unlikely(pud_bad(*pud)))
458 		return no_page_table(vma, flags);
459 
460 	return follow_pmd_mask(vma, address, pud, flags, ctx);
461 }
462 
463 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
464 				    unsigned long address, pgd_t *pgdp,
465 				    unsigned int flags,
466 				    struct follow_page_context *ctx)
467 {
468 	p4d_t *p4d;
469 	struct page *page;
470 
471 	p4d = p4d_offset(pgdp, address);
472 	if (p4d_none(*p4d))
473 		return no_page_table(vma, flags);
474 	BUILD_BUG_ON(p4d_huge(*p4d));
475 	if (unlikely(p4d_bad(*p4d)))
476 		return no_page_table(vma, flags);
477 
478 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
479 		page = follow_huge_pd(vma, address,
480 				      __hugepd(p4d_val(*p4d)), flags,
481 				      P4D_SHIFT);
482 		if (page)
483 			return page;
484 		return no_page_table(vma, flags);
485 	}
486 	return follow_pud_mask(vma, address, p4d, flags, ctx);
487 }
488 
489 /**
490  * follow_page_mask - look up a page descriptor from a user-virtual address
491  * @vma: vm_area_struct mapping @address
492  * @address: virtual address to look up
493  * @flags: flags modifying lookup behaviour
494  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
495  *       pointer to output page_mask
496  *
497  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
498  *
499  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
500  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
501  *
502  * On output, the @ctx->page_mask is set according to the size of the page.
503  *
504  * Return: the mapped (struct page *), %NULL if no mapping exists, or
505  * an error pointer if there is a mapping to something not represented
506  * by a page descriptor (see also vm_normal_page()).
507  */
508 static struct page *follow_page_mask(struct vm_area_struct *vma,
509 			      unsigned long address, unsigned int flags,
510 			      struct follow_page_context *ctx)
511 {
512 	pgd_t *pgd;
513 	struct page *page;
514 	struct mm_struct *mm = vma->vm_mm;
515 
516 	ctx->page_mask = 0;
517 
518 	/* make this handle hugepd */
519 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
520 	if (!IS_ERR(page)) {
521 		BUG_ON(flags & FOLL_GET);
522 		return page;
523 	}
524 
525 	pgd = pgd_offset(mm, address);
526 
527 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
528 		return no_page_table(vma, flags);
529 
530 	if (pgd_huge(*pgd)) {
531 		page = follow_huge_pgd(mm, address, pgd, flags);
532 		if (page)
533 			return page;
534 		return no_page_table(vma, flags);
535 	}
536 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
537 		page = follow_huge_pd(vma, address,
538 				      __hugepd(pgd_val(*pgd)), flags,
539 				      PGDIR_SHIFT);
540 		if (page)
541 			return page;
542 		return no_page_table(vma, flags);
543 	}
544 
545 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
546 }
547 
548 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
549 			 unsigned int foll_flags)
550 {
551 	struct follow_page_context ctx = { NULL };
552 	struct page *page;
553 
554 	page = follow_page_mask(vma, address, foll_flags, &ctx);
555 	if (ctx.pgmap)
556 		put_dev_pagemap(ctx.pgmap);
557 	return page;
558 }
559 
560 static int get_gate_page(struct mm_struct *mm, unsigned long address,
561 		unsigned int gup_flags, struct vm_area_struct **vma,
562 		struct page **page)
563 {
564 	pgd_t *pgd;
565 	p4d_t *p4d;
566 	pud_t *pud;
567 	pmd_t *pmd;
568 	pte_t *pte;
569 	int ret = -EFAULT;
570 
571 	/* user gate pages are read-only */
572 	if (gup_flags & FOLL_WRITE)
573 		return -EFAULT;
574 	if (address > TASK_SIZE)
575 		pgd = pgd_offset_k(address);
576 	else
577 		pgd = pgd_offset_gate(mm, address);
578 	if (pgd_none(*pgd))
579 		return -EFAULT;
580 	p4d = p4d_offset(pgd, address);
581 	if (p4d_none(*p4d))
582 		return -EFAULT;
583 	pud = pud_offset(p4d, address);
584 	if (pud_none(*pud))
585 		return -EFAULT;
586 	pmd = pmd_offset(pud, address);
587 	if (!pmd_present(*pmd))
588 		return -EFAULT;
589 	VM_BUG_ON(pmd_trans_huge(*pmd));
590 	pte = pte_offset_map(pmd, address);
591 	if (pte_none(*pte))
592 		goto unmap;
593 	*vma = get_gate_vma(mm);
594 	if (!page)
595 		goto out;
596 	*page = vm_normal_page(*vma, address, *pte);
597 	if (!*page) {
598 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
599 			goto unmap;
600 		*page = pte_page(*pte);
601 	}
602 	if (unlikely(!try_get_page(*page))) {
603 		ret = -ENOMEM;
604 		goto unmap;
605 	}
606 out:
607 	ret = 0;
608 unmap:
609 	pte_unmap(pte);
610 	return ret;
611 }
612 
613 /*
614  * mmap_sem must be held on entry.  If @nonblocking != NULL and
615  * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
616  * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
617  */
618 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
619 		unsigned long address, unsigned int *flags, int *nonblocking)
620 {
621 	unsigned int fault_flags = 0;
622 	vm_fault_t ret;
623 
624 	/* mlock all present pages, but do not fault in new pages */
625 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
626 		return -ENOENT;
627 	if (*flags & FOLL_WRITE)
628 		fault_flags |= FAULT_FLAG_WRITE;
629 	if (*flags & FOLL_REMOTE)
630 		fault_flags |= FAULT_FLAG_REMOTE;
631 	if (nonblocking)
632 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
633 	if (*flags & FOLL_NOWAIT)
634 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
635 	if (*flags & FOLL_TRIED) {
636 		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
637 		fault_flags |= FAULT_FLAG_TRIED;
638 	}
639 
640 	ret = handle_mm_fault(vma, address, fault_flags);
641 	if (ret & VM_FAULT_ERROR) {
642 		int err = vm_fault_to_errno(ret, *flags);
643 
644 		if (err)
645 			return err;
646 		BUG();
647 	}
648 
649 	if (tsk) {
650 		if (ret & VM_FAULT_MAJOR)
651 			tsk->maj_flt++;
652 		else
653 			tsk->min_flt++;
654 	}
655 
656 	if (ret & VM_FAULT_RETRY) {
657 		if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
658 			*nonblocking = 0;
659 		return -EBUSY;
660 	}
661 
662 	/*
663 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
664 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
665 	 * can thus safely do subsequent page lookups as if they were reads.
666 	 * But only do so when looping for pte_write is futile: in some cases
667 	 * userspace may also be wanting to write to the gotten user page,
668 	 * which a read fault here might prevent (a readonly page might get
669 	 * reCOWed by userspace write).
670 	 */
671 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
672 		*flags |= FOLL_COW;
673 	return 0;
674 }
675 
676 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
677 {
678 	vm_flags_t vm_flags = vma->vm_flags;
679 	int write = (gup_flags & FOLL_WRITE);
680 	int foreign = (gup_flags & FOLL_REMOTE);
681 
682 	if (vm_flags & (VM_IO | VM_PFNMAP))
683 		return -EFAULT;
684 
685 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
686 		return -EFAULT;
687 
688 	if (write) {
689 		if (!(vm_flags & VM_WRITE)) {
690 			if (!(gup_flags & FOLL_FORCE))
691 				return -EFAULT;
692 			/*
693 			 * We used to let the write,force case do COW in a
694 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
695 			 * set a breakpoint in a read-only mapping of an
696 			 * executable, without corrupting the file (yet only
697 			 * when that file had been opened for writing!).
698 			 * Anon pages in shared mappings are surprising: now
699 			 * just reject it.
700 			 */
701 			if (!is_cow_mapping(vm_flags))
702 				return -EFAULT;
703 		}
704 	} else if (!(vm_flags & VM_READ)) {
705 		if (!(gup_flags & FOLL_FORCE))
706 			return -EFAULT;
707 		/*
708 		 * Is there actually any vma we can reach here which does not
709 		 * have VM_MAYREAD set?
710 		 */
711 		if (!(vm_flags & VM_MAYREAD))
712 			return -EFAULT;
713 	}
714 	/*
715 	 * gups are always data accesses, not instruction
716 	 * fetches, so execute=false here
717 	 */
718 	if (!arch_vma_access_permitted(vma, write, false, foreign))
719 		return -EFAULT;
720 	return 0;
721 }
722 
723 /**
724  * __get_user_pages() - pin user pages in memory
725  * @tsk:	task_struct of target task
726  * @mm:		mm_struct of target mm
727  * @start:	starting user address
728  * @nr_pages:	number of pages from start to pin
729  * @gup_flags:	flags modifying pin behaviour
730  * @pages:	array that receives pointers to the pages pinned.
731  *		Should be at least nr_pages long. Or NULL, if caller
732  *		only intends to ensure the pages are faulted in.
733  * @vmas:	array of pointers to vmas corresponding to each page.
734  *		Or NULL if the caller does not require them.
735  * @nonblocking: whether waiting for disk IO or mmap_sem contention
736  *
737  * Returns either number of pages pinned (which may be less than the
738  * number requested), or an error. Details about the return value:
739  *
740  * -- If nr_pages is 0, returns 0.
741  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
742  * -- If nr_pages is >0, and some pages were pinned, returns the number of
743  *    pages pinned. Again, this may be less than nr_pages.
744  *
745  * The caller is responsible for releasing returned @pages, via put_page().
746  *
747  * @vmas are valid only as long as mmap_sem is held.
748  *
749  * Must be called with mmap_sem held.  It may be released.  See below.
750  *
751  * __get_user_pages walks a process's page tables and takes a reference to
752  * each struct page that each user address corresponds to at a given
753  * instant. That is, it takes the page that would be accessed if a user
754  * thread accesses the given user virtual address at that instant.
755  *
756  * This does not guarantee that the page exists in the user mappings when
757  * __get_user_pages returns, and there may even be a completely different
758  * page there in some cases (eg. if mmapped pagecache has been invalidated
759  * and subsequently re faulted). However it does guarantee that the page
760  * won't be freed completely. And mostly callers simply care that the page
761  * contains data that was valid *at some point in time*. Typically, an IO
762  * or similar operation cannot guarantee anything stronger anyway because
763  * locks can't be held over the syscall boundary.
764  *
765  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
766  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
767  * appropriate) must be called after the page is finished with, and
768  * before put_page is called.
769  *
770  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
771  * or mmap_sem contention, and if waiting is needed to pin all pages,
772  * *@nonblocking will be set to 0.  Further, if @gup_flags does not
773  * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
774  * this case.
775  *
776  * A caller using such a combination of @nonblocking and @gup_flags
777  * must therefore hold the mmap_sem for reading only, and recognize
778  * when it's been released.  Otherwise, it must be held for either
779  * reading or writing and will not be released.
780  *
781  * In most cases, get_user_pages or get_user_pages_fast should be used
782  * instead of __get_user_pages. __get_user_pages should be used only if
783  * you need some special @gup_flags.
784  */
785 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
786 		unsigned long start, unsigned long nr_pages,
787 		unsigned int gup_flags, struct page **pages,
788 		struct vm_area_struct **vmas, int *nonblocking)
789 {
790 	long ret = 0, i = 0;
791 	struct vm_area_struct *vma = NULL;
792 	struct follow_page_context ctx = { NULL };
793 
794 	if (!nr_pages)
795 		return 0;
796 
797 	start = untagged_addr(start);
798 
799 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
800 
801 	/*
802 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
803 	 * fault information is unrelated to the reference behaviour of a task
804 	 * using the address space
805 	 */
806 	if (!(gup_flags & FOLL_FORCE))
807 		gup_flags |= FOLL_NUMA;
808 
809 	do {
810 		struct page *page;
811 		unsigned int foll_flags = gup_flags;
812 		unsigned int page_increm;
813 
814 		/* first iteration or cross vma bound */
815 		if (!vma || start >= vma->vm_end) {
816 			vma = find_extend_vma(mm, start);
817 			if (!vma && in_gate_area(mm, start)) {
818 				ret = get_gate_page(mm, start & PAGE_MASK,
819 						gup_flags, &vma,
820 						pages ? &pages[i] : NULL);
821 				if (ret)
822 					goto out;
823 				ctx.page_mask = 0;
824 				goto next_page;
825 			}
826 
827 			if (!vma || check_vma_flags(vma, gup_flags)) {
828 				ret = -EFAULT;
829 				goto out;
830 			}
831 			if (is_vm_hugetlb_page(vma)) {
832 				i = follow_hugetlb_page(mm, vma, pages, vmas,
833 						&start, &nr_pages, i,
834 						gup_flags, nonblocking);
835 				continue;
836 			}
837 		}
838 retry:
839 		/*
840 		 * If we have a pending SIGKILL, don't keep faulting pages and
841 		 * potentially allocating memory.
842 		 */
843 		if (fatal_signal_pending(current)) {
844 			ret = -ERESTARTSYS;
845 			goto out;
846 		}
847 		cond_resched();
848 
849 		page = follow_page_mask(vma, start, foll_flags, &ctx);
850 		if (!page) {
851 			ret = faultin_page(tsk, vma, start, &foll_flags,
852 					nonblocking);
853 			switch (ret) {
854 			case 0:
855 				goto retry;
856 			case -EBUSY:
857 				ret = 0;
858 				/* FALLTHRU */
859 			case -EFAULT:
860 			case -ENOMEM:
861 			case -EHWPOISON:
862 				goto out;
863 			case -ENOENT:
864 				goto next_page;
865 			}
866 			BUG();
867 		} else if (PTR_ERR(page) == -EEXIST) {
868 			/*
869 			 * Proper page table entry exists, but no corresponding
870 			 * struct page.
871 			 */
872 			goto next_page;
873 		} else if (IS_ERR(page)) {
874 			ret = PTR_ERR(page);
875 			goto out;
876 		}
877 		if (pages) {
878 			pages[i] = page;
879 			flush_anon_page(vma, page, start);
880 			flush_dcache_page(page);
881 			ctx.page_mask = 0;
882 		}
883 next_page:
884 		if (vmas) {
885 			vmas[i] = vma;
886 			ctx.page_mask = 0;
887 		}
888 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
889 		if (page_increm > nr_pages)
890 			page_increm = nr_pages;
891 		i += page_increm;
892 		start += page_increm * PAGE_SIZE;
893 		nr_pages -= page_increm;
894 	} while (nr_pages);
895 out:
896 	if (ctx.pgmap)
897 		put_dev_pagemap(ctx.pgmap);
898 	return i ? i : ret;
899 }
900 
901 static bool vma_permits_fault(struct vm_area_struct *vma,
902 			      unsigned int fault_flags)
903 {
904 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
905 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
906 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
907 
908 	if (!(vm_flags & vma->vm_flags))
909 		return false;
910 
911 	/*
912 	 * The architecture might have a hardware protection
913 	 * mechanism other than read/write that can deny access.
914 	 *
915 	 * gup always represents data access, not instruction
916 	 * fetches, so execute=false here:
917 	 */
918 	if (!arch_vma_access_permitted(vma, write, false, foreign))
919 		return false;
920 
921 	return true;
922 }
923 
924 /*
925  * fixup_user_fault() - manually resolve a user page fault
926  * @tsk:	the task_struct to use for page fault accounting, or
927  *		NULL if faults are not to be recorded.
928  * @mm:		mm_struct of target mm
929  * @address:	user address
930  * @fault_flags:flags to pass down to handle_mm_fault()
931  * @unlocked:	did we unlock the mmap_sem while retrying, maybe NULL if caller
932  *		does not allow retry
933  *
934  * This is meant to be called in the specific scenario where for locking reasons
935  * we try to access user memory in atomic context (within a pagefault_disable()
936  * section), this returns -EFAULT, and we want to resolve the user fault before
937  * trying again.
938  *
939  * Typically this is meant to be used by the futex code.
940  *
941  * The main difference with get_user_pages() is that this function will
942  * unconditionally call handle_mm_fault() which will in turn perform all the
943  * necessary SW fixup of the dirty and young bits in the PTE, while
944  * get_user_pages() only guarantees to update these in the struct page.
945  *
946  * This is important for some architectures where those bits also gate the
947  * access permission to the page because they are maintained in software.  On
948  * such architectures, gup() will not be enough to make a subsequent access
949  * succeed.
950  *
951  * This function will not return with an unlocked mmap_sem. So it has not the
952  * same semantics wrt the @mm->mmap_sem as does filemap_fault().
953  */
954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
955 		     unsigned long address, unsigned int fault_flags,
956 		     bool *unlocked)
957 {
958 	struct vm_area_struct *vma;
959 	vm_fault_t ret, major = 0;
960 
961 	address = untagged_addr(address);
962 
963 	if (unlocked)
964 		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
965 
966 retry:
967 	vma = find_extend_vma(mm, address);
968 	if (!vma || address < vma->vm_start)
969 		return -EFAULT;
970 
971 	if (!vma_permits_fault(vma, fault_flags))
972 		return -EFAULT;
973 
974 	ret = handle_mm_fault(vma, address, fault_flags);
975 	major |= ret & VM_FAULT_MAJOR;
976 	if (ret & VM_FAULT_ERROR) {
977 		int err = vm_fault_to_errno(ret, 0);
978 
979 		if (err)
980 			return err;
981 		BUG();
982 	}
983 
984 	if (ret & VM_FAULT_RETRY) {
985 		down_read(&mm->mmap_sem);
986 		if (!(fault_flags & FAULT_FLAG_TRIED)) {
987 			*unlocked = true;
988 			fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
989 			fault_flags |= FAULT_FLAG_TRIED;
990 			goto retry;
991 		}
992 	}
993 
994 	if (tsk) {
995 		if (major)
996 			tsk->maj_flt++;
997 		else
998 			tsk->min_flt++;
999 	}
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(fixup_user_fault);
1003 
1004 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1005 						struct mm_struct *mm,
1006 						unsigned long start,
1007 						unsigned long nr_pages,
1008 						struct page **pages,
1009 						struct vm_area_struct **vmas,
1010 						int *locked,
1011 						unsigned int flags)
1012 {
1013 	long ret, pages_done;
1014 	bool lock_dropped;
1015 
1016 	if (locked) {
1017 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1018 		BUG_ON(vmas);
1019 		/* check caller initialized locked */
1020 		BUG_ON(*locked != 1);
1021 	}
1022 
1023 	if (pages)
1024 		flags |= FOLL_GET;
1025 
1026 	pages_done = 0;
1027 	lock_dropped = false;
1028 	for (;;) {
1029 		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1030 				       vmas, locked);
1031 		if (!locked)
1032 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1033 			return ret;
1034 
1035 		/* VM_FAULT_RETRY cannot return errors */
1036 		if (!*locked) {
1037 			BUG_ON(ret < 0);
1038 			BUG_ON(ret >= nr_pages);
1039 		}
1040 
1041 		if (ret > 0) {
1042 			nr_pages -= ret;
1043 			pages_done += ret;
1044 			if (!nr_pages)
1045 				break;
1046 		}
1047 		if (*locked) {
1048 			/*
1049 			 * VM_FAULT_RETRY didn't trigger or it was a
1050 			 * FOLL_NOWAIT.
1051 			 */
1052 			if (!pages_done)
1053 				pages_done = ret;
1054 			break;
1055 		}
1056 		/*
1057 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1058 		 * For the prefault case (!pages) we only update counts.
1059 		 */
1060 		if (likely(pages))
1061 			pages += ret;
1062 		start += ret << PAGE_SHIFT;
1063 
1064 		/*
1065 		 * Repeat on the address that fired VM_FAULT_RETRY
1066 		 * without FAULT_FLAG_ALLOW_RETRY but with
1067 		 * FAULT_FLAG_TRIED.
1068 		 */
1069 		*locked = 1;
1070 		lock_dropped = true;
1071 		down_read(&mm->mmap_sem);
1072 		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1073 				       pages, NULL, NULL);
1074 		if (ret != 1) {
1075 			BUG_ON(ret > 1);
1076 			if (!pages_done)
1077 				pages_done = ret;
1078 			break;
1079 		}
1080 		nr_pages--;
1081 		pages_done++;
1082 		if (!nr_pages)
1083 			break;
1084 		if (likely(pages))
1085 			pages++;
1086 		start += PAGE_SIZE;
1087 	}
1088 	if (lock_dropped && *locked) {
1089 		/*
1090 		 * We must let the caller know we temporarily dropped the lock
1091 		 * and so the critical section protected by it was lost.
1092 		 */
1093 		up_read(&mm->mmap_sem);
1094 		*locked = 0;
1095 	}
1096 	return pages_done;
1097 }
1098 
1099 /*
1100  * get_user_pages_remote() - pin user pages in memory
1101  * @tsk:	the task_struct to use for page fault accounting, or
1102  *		NULL if faults are not to be recorded.
1103  * @mm:		mm_struct of target mm
1104  * @start:	starting user address
1105  * @nr_pages:	number of pages from start to pin
1106  * @gup_flags:	flags modifying lookup behaviour
1107  * @pages:	array that receives pointers to the pages pinned.
1108  *		Should be at least nr_pages long. Or NULL, if caller
1109  *		only intends to ensure the pages are faulted in.
1110  * @vmas:	array of pointers to vmas corresponding to each page.
1111  *		Or NULL if the caller does not require them.
1112  * @locked:	pointer to lock flag indicating whether lock is held and
1113  *		subsequently whether VM_FAULT_RETRY functionality can be
1114  *		utilised. Lock must initially be held.
1115  *
1116  * Returns either number of pages pinned (which may be less than the
1117  * number requested), or an error. Details about the return value:
1118  *
1119  * -- If nr_pages is 0, returns 0.
1120  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1121  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1122  *    pages pinned. Again, this may be less than nr_pages.
1123  *
1124  * The caller is responsible for releasing returned @pages, via put_page().
1125  *
1126  * @vmas are valid only as long as mmap_sem is held.
1127  *
1128  * Must be called with mmap_sem held for read or write.
1129  *
1130  * get_user_pages walks a process's page tables and takes a reference to
1131  * each struct page that each user address corresponds to at a given
1132  * instant. That is, it takes the page that would be accessed if a user
1133  * thread accesses the given user virtual address at that instant.
1134  *
1135  * This does not guarantee that the page exists in the user mappings when
1136  * get_user_pages returns, and there may even be a completely different
1137  * page there in some cases (eg. if mmapped pagecache has been invalidated
1138  * and subsequently re faulted). However it does guarantee that the page
1139  * won't be freed completely. And mostly callers simply care that the page
1140  * contains data that was valid *at some point in time*. Typically, an IO
1141  * or similar operation cannot guarantee anything stronger anyway because
1142  * locks can't be held over the syscall boundary.
1143  *
1144  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1145  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1146  * be called after the page is finished with, and before put_page is called.
1147  *
1148  * get_user_pages is typically used for fewer-copy IO operations, to get a
1149  * handle on the memory by some means other than accesses via the user virtual
1150  * addresses. The pages may be submitted for DMA to devices or accessed via
1151  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1152  * use the correct cache flushing APIs.
1153  *
1154  * See also get_user_pages_fast, for performance critical applications.
1155  *
1156  * get_user_pages should be phased out in favor of
1157  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1158  * should use get_user_pages because it cannot pass
1159  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1160  */
1161 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1162 		unsigned long start, unsigned long nr_pages,
1163 		unsigned int gup_flags, struct page **pages,
1164 		struct vm_area_struct **vmas, int *locked)
1165 {
1166 	/*
1167 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1168 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1169 	 * vmas.  As there are no users of this flag in this call we simply
1170 	 * disallow this option for now.
1171 	 */
1172 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1173 		return -EINVAL;
1174 
1175 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1176 				       locked,
1177 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1178 }
1179 EXPORT_SYMBOL(get_user_pages_remote);
1180 
1181 /**
1182  * populate_vma_page_range() -  populate a range of pages in the vma.
1183  * @vma:   target vma
1184  * @start: start address
1185  * @end:   end address
1186  * @nonblocking:
1187  *
1188  * This takes care of mlocking the pages too if VM_LOCKED is set.
1189  *
1190  * return 0 on success, negative error code on error.
1191  *
1192  * vma->vm_mm->mmap_sem must be held.
1193  *
1194  * If @nonblocking is NULL, it may be held for read or write and will
1195  * be unperturbed.
1196  *
1197  * If @nonblocking is non-NULL, it must held for read only and may be
1198  * released.  If it's released, *@nonblocking will be set to 0.
1199  */
1200 long populate_vma_page_range(struct vm_area_struct *vma,
1201 		unsigned long start, unsigned long end, int *nonblocking)
1202 {
1203 	struct mm_struct *mm = vma->vm_mm;
1204 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1205 	int gup_flags;
1206 
1207 	VM_BUG_ON(start & ~PAGE_MASK);
1208 	VM_BUG_ON(end   & ~PAGE_MASK);
1209 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1210 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1211 	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1212 
1213 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1214 	if (vma->vm_flags & VM_LOCKONFAULT)
1215 		gup_flags &= ~FOLL_POPULATE;
1216 	/*
1217 	 * We want to touch writable mappings with a write fault in order
1218 	 * to break COW, except for shared mappings because these don't COW
1219 	 * and we would not want to dirty them for nothing.
1220 	 */
1221 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1222 		gup_flags |= FOLL_WRITE;
1223 
1224 	/*
1225 	 * We want mlock to succeed for regions that have any permissions
1226 	 * other than PROT_NONE.
1227 	 */
1228 	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1229 		gup_flags |= FOLL_FORCE;
1230 
1231 	/*
1232 	 * We made sure addr is within a VMA, so the following will
1233 	 * not result in a stack expansion that recurses back here.
1234 	 */
1235 	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1236 				NULL, NULL, nonblocking);
1237 }
1238 
1239 /*
1240  * __mm_populate - populate and/or mlock pages within a range of address space.
1241  *
1242  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1243  * flags. VMAs must be already marked with the desired vm_flags, and
1244  * mmap_sem must not be held.
1245  */
1246 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1247 {
1248 	struct mm_struct *mm = current->mm;
1249 	unsigned long end, nstart, nend;
1250 	struct vm_area_struct *vma = NULL;
1251 	int locked = 0;
1252 	long ret = 0;
1253 
1254 	end = start + len;
1255 
1256 	for (nstart = start; nstart < end; nstart = nend) {
1257 		/*
1258 		 * We want to fault in pages for [nstart; end) address range.
1259 		 * Find first corresponding VMA.
1260 		 */
1261 		if (!locked) {
1262 			locked = 1;
1263 			down_read(&mm->mmap_sem);
1264 			vma = find_vma(mm, nstart);
1265 		} else if (nstart >= vma->vm_end)
1266 			vma = vma->vm_next;
1267 		if (!vma || vma->vm_start >= end)
1268 			break;
1269 		/*
1270 		 * Set [nstart; nend) to intersection of desired address
1271 		 * range with the first VMA. Also, skip undesirable VMA types.
1272 		 */
1273 		nend = min(end, vma->vm_end);
1274 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1275 			continue;
1276 		if (nstart < vma->vm_start)
1277 			nstart = vma->vm_start;
1278 		/*
1279 		 * Now fault in a range of pages. populate_vma_page_range()
1280 		 * double checks the vma flags, so that it won't mlock pages
1281 		 * if the vma was already munlocked.
1282 		 */
1283 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1284 		if (ret < 0) {
1285 			if (ignore_errors) {
1286 				ret = 0;
1287 				continue;	/* continue at next VMA */
1288 			}
1289 			break;
1290 		}
1291 		nend = nstart + ret * PAGE_SIZE;
1292 		ret = 0;
1293 	}
1294 	if (locked)
1295 		up_read(&mm->mmap_sem);
1296 	return ret;	/* 0 or negative error code */
1297 }
1298 
1299 /**
1300  * get_dump_page() - pin user page in memory while writing it to core dump
1301  * @addr: user address
1302  *
1303  * Returns struct page pointer of user page pinned for dump,
1304  * to be freed afterwards by put_page().
1305  *
1306  * Returns NULL on any kind of failure - a hole must then be inserted into
1307  * the corefile, to preserve alignment with its headers; and also returns
1308  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1309  * allowing a hole to be left in the corefile to save diskspace.
1310  *
1311  * Called without mmap_sem, but after all other threads have been killed.
1312  */
1313 #ifdef CONFIG_ELF_CORE
1314 struct page *get_dump_page(unsigned long addr)
1315 {
1316 	struct vm_area_struct *vma;
1317 	struct page *page;
1318 
1319 	if (__get_user_pages(current, current->mm, addr, 1,
1320 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1321 			     NULL) < 1)
1322 		return NULL;
1323 	flush_cache_page(vma, addr, page_to_pfn(page));
1324 	return page;
1325 }
1326 #endif /* CONFIG_ELF_CORE */
1327 #else /* CONFIG_MMU */
1328 static long __get_user_pages_locked(struct task_struct *tsk,
1329 		struct mm_struct *mm, unsigned long start,
1330 		unsigned long nr_pages, struct page **pages,
1331 		struct vm_area_struct **vmas, int *locked,
1332 		unsigned int foll_flags)
1333 {
1334 	struct vm_area_struct *vma;
1335 	unsigned long vm_flags;
1336 	int i;
1337 
1338 	/* calculate required read or write permissions.
1339 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1340 	 */
1341 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1342 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1343 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1344 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1345 
1346 	for (i = 0; i < nr_pages; i++) {
1347 		vma = find_vma(mm, start);
1348 		if (!vma)
1349 			goto finish_or_fault;
1350 
1351 		/* protect what we can, including chardevs */
1352 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1353 		    !(vm_flags & vma->vm_flags))
1354 			goto finish_or_fault;
1355 
1356 		if (pages) {
1357 			pages[i] = virt_to_page(start);
1358 			if (pages[i])
1359 				get_page(pages[i]);
1360 		}
1361 		if (vmas)
1362 			vmas[i] = vma;
1363 		start = (start + PAGE_SIZE) & PAGE_MASK;
1364 	}
1365 
1366 	return i;
1367 
1368 finish_or_fault:
1369 	return i ? : -EFAULT;
1370 }
1371 #endif /* !CONFIG_MMU */
1372 
1373 #if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1374 static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1375 {
1376 	long i;
1377 	struct vm_area_struct *vma_prev = NULL;
1378 
1379 	for (i = 0; i < nr_pages; i++) {
1380 		struct vm_area_struct *vma = vmas[i];
1381 
1382 		if (vma == vma_prev)
1383 			continue;
1384 
1385 		vma_prev = vma;
1386 
1387 		if (vma_is_fsdax(vma))
1388 			return true;
1389 	}
1390 	return false;
1391 }
1392 
1393 #ifdef CONFIG_CMA
1394 static struct page *new_non_cma_page(struct page *page, unsigned long private)
1395 {
1396 	/*
1397 	 * We want to make sure we allocate the new page from the same node
1398 	 * as the source page.
1399 	 */
1400 	int nid = page_to_nid(page);
1401 	/*
1402 	 * Trying to allocate a page for migration. Ignore allocation
1403 	 * failure warnings. We don't force __GFP_THISNODE here because
1404 	 * this node here is the node where we have CMA reservation and
1405 	 * in some case these nodes will have really less non movable
1406 	 * allocation memory.
1407 	 */
1408 	gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1409 
1410 	if (PageHighMem(page))
1411 		gfp_mask |= __GFP_HIGHMEM;
1412 
1413 #ifdef CONFIG_HUGETLB_PAGE
1414 	if (PageHuge(page)) {
1415 		struct hstate *h = page_hstate(page);
1416 		/*
1417 		 * We don't want to dequeue from the pool because pool pages will
1418 		 * mostly be from the CMA region.
1419 		 */
1420 		return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1421 	}
1422 #endif
1423 	if (PageTransHuge(page)) {
1424 		struct page *thp;
1425 		/*
1426 		 * ignore allocation failure warnings
1427 		 */
1428 		gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1429 
1430 		/*
1431 		 * Remove the movable mask so that we don't allocate from
1432 		 * CMA area again.
1433 		 */
1434 		thp_gfpmask &= ~__GFP_MOVABLE;
1435 		thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1436 		if (!thp)
1437 			return NULL;
1438 		prep_transhuge_page(thp);
1439 		return thp;
1440 	}
1441 
1442 	return __alloc_pages_node(nid, gfp_mask, 0);
1443 }
1444 
1445 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1446 					struct mm_struct *mm,
1447 					unsigned long start,
1448 					unsigned long nr_pages,
1449 					struct page **pages,
1450 					struct vm_area_struct **vmas,
1451 					unsigned int gup_flags)
1452 {
1453 	unsigned long i;
1454 	unsigned long step;
1455 	bool drain_allow = true;
1456 	bool migrate_allow = true;
1457 	LIST_HEAD(cma_page_list);
1458 	long ret = nr_pages;
1459 
1460 check_again:
1461 	for (i = 0; i < nr_pages;) {
1462 
1463 		struct page *head = compound_head(pages[i]);
1464 
1465 		/*
1466 		 * gup may start from a tail page. Advance step by the left
1467 		 * part.
1468 		 */
1469 		step = compound_nr(head) - (pages[i] - head);
1470 		/*
1471 		 * If we get a page from the CMA zone, since we are going to
1472 		 * be pinning these entries, we might as well move them out
1473 		 * of the CMA zone if possible.
1474 		 */
1475 		if (is_migrate_cma_page(head)) {
1476 			if (PageHuge(head))
1477 				isolate_huge_page(head, &cma_page_list);
1478 			else {
1479 				if (!PageLRU(head) && drain_allow) {
1480 					lru_add_drain_all();
1481 					drain_allow = false;
1482 				}
1483 
1484 				if (!isolate_lru_page(head)) {
1485 					list_add_tail(&head->lru, &cma_page_list);
1486 					mod_node_page_state(page_pgdat(head),
1487 							    NR_ISOLATED_ANON +
1488 							    page_is_file_cache(head),
1489 							    hpage_nr_pages(head));
1490 				}
1491 			}
1492 		}
1493 
1494 		i += step;
1495 	}
1496 
1497 	if (!list_empty(&cma_page_list)) {
1498 		/*
1499 		 * drop the above get_user_pages reference.
1500 		 */
1501 		for (i = 0; i < nr_pages; i++)
1502 			put_page(pages[i]);
1503 
1504 		if (migrate_pages(&cma_page_list, new_non_cma_page,
1505 				  NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1506 			/*
1507 			 * some of the pages failed migration. Do get_user_pages
1508 			 * without migration.
1509 			 */
1510 			migrate_allow = false;
1511 
1512 			if (!list_empty(&cma_page_list))
1513 				putback_movable_pages(&cma_page_list);
1514 		}
1515 		/*
1516 		 * We did migrate all the pages, Try to get the page references
1517 		 * again migrating any new CMA pages which we failed to isolate
1518 		 * earlier.
1519 		 */
1520 		ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
1521 						   pages, vmas, NULL,
1522 						   gup_flags);
1523 
1524 		if ((ret > 0) && migrate_allow) {
1525 			nr_pages = ret;
1526 			drain_allow = true;
1527 			goto check_again;
1528 		}
1529 	}
1530 
1531 	return ret;
1532 }
1533 #else
1534 static long check_and_migrate_cma_pages(struct task_struct *tsk,
1535 					struct mm_struct *mm,
1536 					unsigned long start,
1537 					unsigned long nr_pages,
1538 					struct page **pages,
1539 					struct vm_area_struct **vmas,
1540 					unsigned int gup_flags)
1541 {
1542 	return nr_pages;
1543 }
1544 #endif /* CONFIG_CMA */
1545 
1546 /*
1547  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1548  * allows us to process the FOLL_LONGTERM flag.
1549  */
1550 static long __gup_longterm_locked(struct task_struct *tsk,
1551 				  struct mm_struct *mm,
1552 				  unsigned long start,
1553 				  unsigned long nr_pages,
1554 				  struct page **pages,
1555 				  struct vm_area_struct **vmas,
1556 				  unsigned int gup_flags)
1557 {
1558 	struct vm_area_struct **vmas_tmp = vmas;
1559 	unsigned long flags = 0;
1560 	long rc, i;
1561 
1562 	if (gup_flags & FOLL_LONGTERM) {
1563 		if (!pages)
1564 			return -EINVAL;
1565 
1566 		if (!vmas_tmp) {
1567 			vmas_tmp = kcalloc(nr_pages,
1568 					   sizeof(struct vm_area_struct *),
1569 					   GFP_KERNEL);
1570 			if (!vmas_tmp)
1571 				return -ENOMEM;
1572 		}
1573 		flags = memalloc_nocma_save();
1574 	}
1575 
1576 	rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1577 				     vmas_tmp, NULL, gup_flags);
1578 
1579 	if (gup_flags & FOLL_LONGTERM) {
1580 		memalloc_nocma_restore(flags);
1581 		if (rc < 0)
1582 			goto out;
1583 
1584 		if (check_dax_vmas(vmas_tmp, rc)) {
1585 			for (i = 0; i < rc; i++)
1586 				put_page(pages[i]);
1587 			rc = -EOPNOTSUPP;
1588 			goto out;
1589 		}
1590 
1591 		rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1592 						 vmas_tmp, gup_flags);
1593 	}
1594 
1595 out:
1596 	if (vmas_tmp != vmas)
1597 		kfree(vmas_tmp);
1598 	return rc;
1599 }
1600 #else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1601 static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1602 						  struct mm_struct *mm,
1603 						  unsigned long start,
1604 						  unsigned long nr_pages,
1605 						  struct page **pages,
1606 						  struct vm_area_struct **vmas,
1607 						  unsigned int flags)
1608 {
1609 	return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1610 				       NULL, flags);
1611 }
1612 #endif /* CONFIG_FS_DAX || CONFIG_CMA */
1613 
1614 /*
1615  * This is the same as get_user_pages_remote(), just with a
1616  * less-flexible calling convention where we assume that the task
1617  * and mm being operated on are the current task's and don't allow
1618  * passing of a locked parameter.  We also obviously don't pass
1619  * FOLL_REMOTE in here.
1620  */
1621 long get_user_pages(unsigned long start, unsigned long nr_pages,
1622 		unsigned int gup_flags, struct page **pages,
1623 		struct vm_area_struct **vmas)
1624 {
1625 	return __gup_longterm_locked(current, current->mm, start, nr_pages,
1626 				     pages, vmas, gup_flags | FOLL_TOUCH);
1627 }
1628 EXPORT_SYMBOL(get_user_pages);
1629 
1630 /*
1631  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1632  * paths better by using either get_user_pages_locked() or
1633  * get_user_pages_unlocked().
1634  *
1635  * get_user_pages_locked() is suitable to replace the form:
1636  *
1637  *      down_read(&mm->mmap_sem);
1638  *      do_something()
1639  *      get_user_pages(tsk, mm, ..., pages, NULL);
1640  *      up_read(&mm->mmap_sem);
1641  *
1642  *  to:
1643  *
1644  *      int locked = 1;
1645  *      down_read(&mm->mmap_sem);
1646  *      do_something()
1647  *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
1648  *      if (locked)
1649  *          up_read(&mm->mmap_sem);
1650  */
1651 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1652 			   unsigned int gup_flags, struct page **pages,
1653 			   int *locked)
1654 {
1655 	/*
1656 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1657 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1658 	 * vmas.  As there are no users of this flag in this call we simply
1659 	 * disallow this option for now.
1660 	 */
1661 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1662 		return -EINVAL;
1663 
1664 	return __get_user_pages_locked(current, current->mm, start, nr_pages,
1665 				       pages, NULL, locked,
1666 				       gup_flags | FOLL_TOUCH);
1667 }
1668 EXPORT_SYMBOL(get_user_pages_locked);
1669 
1670 /*
1671  * get_user_pages_unlocked() is suitable to replace the form:
1672  *
1673  *      down_read(&mm->mmap_sem);
1674  *      get_user_pages(tsk, mm, ..., pages, NULL);
1675  *      up_read(&mm->mmap_sem);
1676  *
1677  *  with:
1678  *
1679  *      get_user_pages_unlocked(tsk, mm, ..., pages);
1680  *
1681  * It is functionally equivalent to get_user_pages_fast so
1682  * get_user_pages_fast should be used instead if specific gup_flags
1683  * (e.g. FOLL_FORCE) are not required.
1684  */
1685 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1686 			     struct page **pages, unsigned int gup_flags)
1687 {
1688 	struct mm_struct *mm = current->mm;
1689 	int locked = 1;
1690 	long ret;
1691 
1692 	/*
1693 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1694 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1695 	 * vmas.  As there are no users of this flag in this call we simply
1696 	 * disallow this option for now.
1697 	 */
1698 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1699 		return -EINVAL;
1700 
1701 	down_read(&mm->mmap_sem);
1702 	ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1703 				      &locked, gup_flags | FOLL_TOUCH);
1704 	if (locked)
1705 		up_read(&mm->mmap_sem);
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(get_user_pages_unlocked);
1709 
1710 /*
1711  * Fast GUP
1712  *
1713  * get_user_pages_fast attempts to pin user pages by walking the page
1714  * tables directly and avoids taking locks. Thus the walker needs to be
1715  * protected from page table pages being freed from under it, and should
1716  * block any THP splits.
1717  *
1718  * One way to achieve this is to have the walker disable interrupts, and
1719  * rely on IPIs from the TLB flushing code blocking before the page table
1720  * pages are freed. This is unsuitable for architectures that do not need
1721  * to broadcast an IPI when invalidating TLBs.
1722  *
1723  * Another way to achieve this is to batch up page table containing pages
1724  * belonging to more than one mm_user, then rcu_sched a callback to free those
1725  * pages. Disabling interrupts will allow the fast_gup walker to both block
1726  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1727  * (which is a relatively rare event). The code below adopts this strategy.
1728  *
1729  * Before activating this code, please be aware that the following assumptions
1730  * are currently made:
1731  *
1732  *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1733  *  free pages containing page tables or TLB flushing requires IPI broadcast.
1734  *
1735  *  *) ptes can be read atomically by the architecture.
1736  *
1737  *  *) access_ok is sufficient to validate userspace address ranges.
1738  *
1739  * The last two assumptions can be relaxed by the addition of helper functions.
1740  *
1741  * This code is based heavily on the PowerPC implementation by Nick Piggin.
1742  */
1743 #ifdef CONFIG_HAVE_FAST_GUP
1744 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1745 /*
1746  * WARNING: only to be used in the get_user_pages_fast() implementation.
1747  *
1748  * With get_user_pages_fast(), we walk down the pagetables without taking any
1749  * locks.  For this we would like to load the pointers atomically, but sometimes
1750  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
1751  * we do have is the guarantee that a PTE will only either go from not present
1752  * to present, or present to not present or both -- it will not switch to a
1753  * completely different present page without a TLB flush in between; something
1754  * that we are blocking by holding interrupts off.
1755  *
1756  * Setting ptes from not present to present goes:
1757  *
1758  *   ptep->pte_high = h;
1759  *   smp_wmb();
1760  *   ptep->pte_low = l;
1761  *
1762  * And present to not present goes:
1763  *
1764  *   ptep->pte_low = 0;
1765  *   smp_wmb();
1766  *   ptep->pte_high = 0;
1767  *
1768  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1769  * We load pte_high *after* loading pte_low, which ensures we don't see an older
1770  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
1771  * picked up a changed pte high. We might have gotten rubbish values from
1772  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1773  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1774  * operates on present ptes we're safe.
1775  */
1776 static inline pte_t gup_get_pte(pte_t *ptep)
1777 {
1778 	pte_t pte;
1779 
1780 	do {
1781 		pte.pte_low = ptep->pte_low;
1782 		smp_rmb();
1783 		pte.pte_high = ptep->pte_high;
1784 		smp_rmb();
1785 	} while (unlikely(pte.pte_low != ptep->pte_low));
1786 
1787 	return pte;
1788 }
1789 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1790 /*
1791  * We require that the PTE can be read atomically.
1792  */
1793 static inline pte_t gup_get_pte(pte_t *ptep)
1794 {
1795 	return READ_ONCE(*ptep);
1796 }
1797 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
1798 
1799 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
1800 					    struct page **pages)
1801 {
1802 	while ((*nr) - nr_start) {
1803 		struct page *page = pages[--(*nr)];
1804 
1805 		ClearPageReferenced(page);
1806 		put_page(page);
1807 	}
1808 }
1809 
1810 /*
1811  * Return the compund head page with ref appropriately incremented,
1812  * or NULL if that failed.
1813  */
1814 static inline struct page *try_get_compound_head(struct page *page, int refs)
1815 {
1816 	struct page *head = compound_head(page);
1817 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
1818 		return NULL;
1819 	if (unlikely(!page_cache_add_speculative(head, refs)))
1820 		return NULL;
1821 	return head;
1822 }
1823 
1824 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1825 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1826 			 unsigned int flags, struct page **pages, int *nr)
1827 {
1828 	struct dev_pagemap *pgmap = NULL;
1829 	int nr_start = *nr, ret = 0;
1830 	pte_t *ptep, *ptem;
1831 
1832 	ptem = ptep = pte_offset_map(&pmd, addr);
1833 	do {
1834 		pte_t pte = gup_get_pte(ptep);
1835 		struct page *head, *page;
1836 
1837 		/*
1838 		 * Similar to the PMD case below, NUMA hinting must take slow
1839 		 * path using the pte_protnone check.
1840 		 */
1841 		if (pte_protnone(pte))
1842 			goto pte_unmap;
1843 
1844 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
1845 			goto pte_unmap;
1846 
1847 		if (pte_devmap(pte)) {
1848 			if (unlikely(flags & FOLL_LONGTERM))
1849 				goto pte_unmap;
1850 
1851 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1852 			if (unlikely(!pgmap)) {
1853 				undo_dev_pagemap(nr, nr_start, pages);
1854 				goto pte_unmap;
1855 			}
1856 		} else if (pte_special(pte))
1857 			goto pte_unmap;
1858 
1859 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1860 		page = pte_page(pte);
1861 
1862 		head = try_get_compound_head(page, 1);
1863 		if (!head)
1864 			goto pte_unmap;
1865 
1866 		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1867 			put_page(head);
1868 			goto pte_unmap;
1869 		}
1870 
1871 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
1872 
1873 		SetPageReferenced(page);
1874 		pages[*nr] = page;
1875 		(*nr)++;
1876 
1877 	} while (ptep++, addr += PAGE_SIZE, addr != end);
1878 
1879 	ret = 1;
1880 
1881 pte_unmap:
1882 	if (pgmap)
1883 		put_dev_pagemap(pgmap);
1884 	pte_unmap(ptem);
1885 	return ret;
1886 }
1887 #else
1888 
1889 /*
1890  * If we can't determine whether or not a pte is special, then fail immediately
1891  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1892  * to be special.
1893  *
1894  * For a futex to be placed on a THP tail page, get_futex_key requires a
1895  * __get_user_pages_fast implementation that can pin pages. Thus it's still
1896  * useful to have gup_huge_pmd even if we can't operate on ptes.
1897  */
1898 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1899 			 unsigned int flags, struct page **pages, int *nr)
1900 {
1901 	return 0;
1902 }
1903 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1904 
1905 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1906 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1907 		unsigned long end, struct page **pages, int *nr)
1908 {
1909 	int nr_start = *nr;
1910 	struct dev_pagemap *pgmap = NULL;
1911 
1912 	do {
1913 		struct page *page = pfn_to_page(pfn);
1914 
1915 		pgmap = get_dev_pagemap(pfn, pgmap);
1916 		if (unlikely(!pgmap)) {
1917 			undo_dev_pagemap(nr, nr_start, pages);
1918 			return 0;
1919 		}
1920 		SetPageReferenced(page);
1921 		pages[*nr] = page;
1922 		get_page(page);
1923 		(*nr)++;
1924 		pfn++;
1925 	} while (addr += PAGE_SIZE, addr != end);
1926 
1927 	if (pgmap)
1928 		put_dev_pagemap(pgmap);
1929 	return 1;
1930 }
1931 
1932 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1933 		unsigned long end, struct page **pages, int *nr)
1934 {
1935 	unsigned long fault_pfn;
1936 	int nr_start = *nr;
1937 
1938 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1939 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1940 		return 0;
1941 
1942 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1943 		undo_dev_pagemap(nr, nr_start, pages);
1944 		return 0;
1945 	}
1946 	return 1;
1947 }
1948 
1949 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1950 		unsigned long end, struct page **pages, int *nr)
1951 {
1952 	unsigned long fault_pfn;
1953 	int nr_start = *nr;
1954 
1955 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1956 	if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1957 		return 0;
1958 
1959 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1960 		undo_dev_pagemap(nr, nr_start, pages);
1961 		return 0;
1962 	}
1963 	return 1;
1964 }
1965 #else
1966 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1967 		unsigned long end, struct page **pages, int *nr)
1968 {
1969 	BUILD_BUG();
1970 	return 0;
1971 }
1972 
1973 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1974 		unsigned long end, struct page **pages, int *nr)
1975 {
1976 	BUILD_BUG();
1977 	return 0;
1978 }
1979 #endif
1980 
1981 #ifdef CONFIG_ARCH_HAS_HUGEPD
1982 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1983 				      unsigned long sz)
1984 {
1985 	unsigned long __boundary = (addr + sz) & ~(sz-1);
1986 	return (__boundary - 1 < end - 1) ? __boundary : end;
1987 }
1988 
1989 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1990 		       unsigned long end, unsigned int flags,
1991 		       struct page **pages, int *nr)
1992 {
1993 	unsigned long pte_end;
1994 	struct page *head, *page;
1995 	pte_t pte;
1996 	int refs;
1997 
1998 	pte_end = (addr + sz) & ~(sz-1);
1999 	if (pte_end < end)
2000 		end = pte_end;
2001 
2002 	pte = READ_ONCE(*ptep);
2003 
2004 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2005 		return 0;
2006 
2007 	/* hugepages are never "special" */
2008 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2009 
2010 	refs = 0;
2011 	head = pte_page(pte);
2012 
2013 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2014 	do {
2015 		VM_BUG_ON(compound_head(page) != head);
2016 		pages[*nr] = page;
2017 		(*nr)++;
2018 		page++;
2019 		refs++;
2020 	} while (addr += PAGE_SIZE, addr != end);
2021 
2022 	head = try_get_compound_head(head, refs);
2023 	if (!head) {
2024 		*nr -= refs;
2025 		return 0;
2026 	}
2027 
2028 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2029 		/* Could be optimized better */
2030 		*nr -= refs;
2031 		while (refs--)
2032 			put_page(head);
2033 		return 0;
2034 	}
2035 
2036 	SetPageReferenced(head);
2037 	return 1;
2038 }
2039 
2040 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2041 		unsigned int pdshift, unsigned long end, unsigned int flags,
2042 		struct page **pages, int *nr)
2043 {
2044 	pte_t *ptep;
2045 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2046 	unsigned long next;
2047 
2048 	ptep = hugepte_offset(hugepd, addr, pdshift);
2049 	do {
2050 		next = hugepte_addr_end(addr, end, sz);
2051 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2052 			return 0;
2053 	} while (ptep++, addr = next, addr != end);
2054 
2055 	return 1;
2056 }
2057 #else
2058 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2059 		unsigned int pdshift, unsigned long end, unsigned int flags,
2060 		struct page **pages, int *nr)
2061 {
2062 	return 0;
2063 }
2064 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2065 
2066 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2067 			unsigned long end, unsigned int flags,
2068 			struct page **pages, int *nr)
2069 {
2070 	struct page *head, *page;
2071 	int refs;
2072 
2073 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2074 		return 0;
2075 
2076 	if (pmd_devmap(orig)) {
2077 		if (unlikely(flags & FOLL_LONGTERM))
2078 			return 0;
2079 		return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
2080 	}
2081 
2082 	refs = 0;
2083 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2084 	do {
2085 		pages[*nr] = page;
2086 		(*nr)++;
2087 		page++;
2088 		refs++;
2089 	} while (addr += PAGE_SIZE, addr != end);
2090 
2091 	head = try_get_compound_head(pmd_page(orig), refs);
2092 	if (!head) {
2093 		*nr -= refs;
2094 		return 0;
2095 	}
2096 
2097 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2098 		*nr -= refs;
2099 		while (refs--)
2100 			put_page(head);
2101 		return 0;
2102 	}
2103 
2104 	SetPageReferenced(head);
2105 	return 1;
2106 }
2107 
2108 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2109 		unsigned long end, unsigned int flags, struct page **pages, int *nr)
2110 {
2111 	struct page *head, *page;
2112 	int refs;
2113 
2114 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2115 		return 0;
2116 
2117 	if (pud_devmap(orig)) {
2118 		if (unlikely(flags & FOLL_LONGTERM))
2119 			return 0;
2120 		return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
2121 	}
2122 
2123 	refs = 0;
2124 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2125 	do {
2126 		pages[*nr] = page;
2127 		(*nr)++;
2128 		page++;
2129 		refs++;
2130 	} while (addr += PAGE_SIZE, addr != end);
2131 
2132 	head = try_get_compound_head(pud_page(orig), refs);
2133 	if (!head) {
2134 		*nr -= refs;
2135 		return 0;
2136 	}
2137 
2138 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2139 		*nr -= refs;
2140 		while (refs--)
2141 			put_page(head);
2142 		return 0;
2143 	}
2144 
2145 	SetPageReferenced(head);
2146 	return 1;
2147 }
2148 
2149 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2150 			unsigned long end, unsigned int flags,
2151 			struct page **pages, int *nr)
2152 {
2153 	int refs;
2154 	struct page *head, *page;
2155 
2156 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2157 		return 0;
2158 
2159 	BUILD_BUG_ON(pgd_devmap(orig));
2160 	refs = 0;
2161 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2162 	do {
2163 		pages[*nr] = page;
2164 		(*nr)++;
2165 		page++;
2166 		refs++;
2167 	} while (addr += PAGE_SIZE, addr != end);
2168 
2169 	head = try_get_compound_head(pgd_page(orig), refs);
2170 	if (!head) {
2171 		*nr -= refs;
2172 		return 0;
2173 	}
2174 
2175 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2176 		*nr -= refs;
2177 		while (refs--)
2178 			put_page(head);
2179 		return 0;
2180 	}
2181 
2182 	SetPageReferenced(head);
2183 	return 1;
2184 }
2185 
2186 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
2187 		unsigned int flags, struct page **pages, int *nr)
2188 {
2189 	unsigned long next;
2190 	pmd_t *pmdp;
2191 
2192 	pmdp = pmd_offset(&pud, addr);
2193 	do {
2194 		pmd_t pmd = READ_ONCE(*pmdp);
2195 
2196 		next = pmd_addr_end(addr, end);
2197 		if (!pmd_present(pmd))
2198 			return 0;
2199 
2200 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2201 			     pmd_devmap(pmd))) {
2202 			/*
2203 			 * NUMA hinting faults need to be handled in the GUP
2204 			 * slowpath for accounting purposes and so that they
2205 			 * can be serialised against THP migration.
2206 			 */
2207 			if (pmd_protnone(pmd))
2208 				return 0;
2209 
2210 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2211 				pages, nr))
2212 				return 0;
2213 
2214 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2215 			/*
2216 			 * architecture have different format for hugetlbfs
2217 			 * pmd format and THP pmd format
2218 			 */
2219 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2220 					 PMD_SHIFT, next, flags, pages, nr))
2221 				return 0;
2222 		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2223 			return 0;
2224 	} while (pmdp++, addr = next, addr != end);
2225 
2226 	return 1;
2227 }
2228 
2229 static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
2230 			 unsigned int flags, struct page **pages, int *nr)
2231 {
2232 	unsigned long next;
2233 	pud_t *pudp;
2234 
2235 	pudp = pud_offset(&p4d, addr);
2236 	do {
2237 		pud_t pud = READ_ONCE(*pudp);
2238 
2239 		next = pud_addr_end(addr, end);
2240 		if (pud_none(pud))
2241 			return 0;
2242 		if (unlikely(pud_huge(pud))) {
2243 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2244 					  pages, nr))
2245 				return 0;
2246 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2247 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2248 					 PUD_SHIFT, next, flags, pages, nr))
2249 				return 0;
2250 		} else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2251 			return 0;
2252 	} while (pudp++, addr = next, addr != end);
2253 
2254 	return 1;
2255 }
2256 
2257 static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
2258 			 unsigned int flags, struct page **pages, int *nr)
2259 {
2260 	unsigned long next;
2261 	p4d_t *p4dp;
2262 
2263 	p4dp = p4d_offset(&pgd, addr);
2264 	do {
2265 		p4d_t p4d = READ_ONCE(*p4dp);
2266 
2267 		next = p4d_addr_end(addr, end);
2268 		if (p4d_none(p4d))
2269 			return 0;
2270 		BUILD_BUG_ON(p4d_huge(p4d));
2271 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2272 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2273 					 P4D_SHIFT, next, flags, pages, nr))
2274 				return 0;
2275 		} else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
2276 			return 0;
2277 	} while (p4dp++, addr = next, addr != end);
2278 
2279 	return 1;
2280 }
2281 
2282 static void gup_pgd_range(unsigned long addr, unsigned long end,
2283 		unsigned int flags, struct page **pages, int *nr)
2284 {
2285 	unsigned long next;
2286 	pgd_t *pgdp;
2287 
2288 	pgdp = pgd_offset(current->mm, addr);
2289 	do {
2290 		pgd_t pgd = READ_ONCE(*pgdp);
2291 
2292 		next = pgd_addr_end(addr, end);
2293 		if (pgd_none(pgd))
2294 			return;
2295 		if (unlikely(pgd_huge(pgd))) {
2296 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2297 					  pages, nr))
2298 				return;
2299 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2300 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2301 					 PGDIR_SHIFT, next, flags, pages, nr))
2302 				return;
2303 		} else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
2304 			return;
2305 	} while (pgdp++, addr = next, addr != end);
2306 }
2307 #else
2308 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2309 		unsigned int flags, struct page **pages, int *nr)
2310 {
2311 }
2312 #endif /* CONFIG_HAVE_FAST_GUP */
2313 
2314 #ifndef gup_fast_permitted
2315 /*
2316  * Check if it's allowed to use __get_user_pages_fast() for the range, or
2317  * we need to fall back to the slow version:
2318  */
2319 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2320 {
2321 	return true;
2322 }
2323 #endif
2324 
2325 /*
2326  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2327  * the regular GUP.
2328  * Note a difference with get_user_pages_fast: this always returns the
2329  * number of pages pinned, 0 if no pages were pinned.
2330  *
2331  * If the architecture does not support this function, simply return with no
2332  * pages pinned.
2333  */
2334 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2335 			  struct page **pages)
2336 {
2337 	unsigned long len, end;
2338 	unsigned long flags;
2339 	int nr = 0;
2340 
2341 	start = untagged_addr(start) & PAGE_MASK;
2342 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2343 	end = start + len;
2344 
2345 	if (end <= start)
2346 		return 0;
2347 	if (unlikely(!access_ok((void __user *)start, len)))
2348 		return 0;
2349 
2350 	/*
2351 	 * Disable interrupts.  We use the nested form as we can already have
2352 	 * interrupts disabled by get_futex_key.
2353 	 *
2354 	 * With interrupts disabled, we block page table pages from being
2355 	 * freed from under us. See struct mmu_table_batch comments in
2356 	 * include/asm-generic/tlb.h for more details.
2357 	 *
2358 	 * We do not adopt an rcu_read_lock(.) here as we also want to
2359 	 * block IPIs that come from THPs splitting.
2360 	 */
2361 
2362 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2363 	    gup_fast_permitted(start, end)) {
2364 		local_irq_save(flags);
2365 		gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
2366 		local_irq_restore(flags);
2367 	}
2368 
2369 	return nr;
2370 }
2371 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2372 
2373 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2374 				   unsigned int gup_flags, struct page **pages)
2375 {
2376 	int ret;
2377 
2378 	/*
2379 	 * FIXME: FOLL_LONGTERM does not work with
2380 	 * get_user_pages_unlocked() (see comments in that function)
2381 	 */
2382 	if (gup_flags & FOLL_LONGTERM) {
2383 		down_read(&current->mm->mmap_sem);
2384 		ret = __gup_longterm_locked(current, current->mm,
2385 					    start, nr_pages,
2386 					    pages, NULL, gup_flags);
2387 		up_read(&current->mm->mmap_sem);
2388 	} else {
2389 		ret = get_user_pages_unlocked(start, nr_pages,
2390 					      pages, gup_flags);
2391 	}
2392 
2393 	return ret;
2394 }
2395 
2396 /**
2397  * get_user_pages_fast() - pin user pages in memory
2398  * @start:	starting user address
2399  * @nr_pages:	number of pages from start to pin
2400  * @gup_flags:	flags modifying pin behaviour
2401  * @pages:	array that receives pointers to the pages pinned.
2402  *		Should be at least nr_pages long.
2403  *
2404  * Attempt to pin user pages in memory without taking mm->mmap_sem.
2405  * If not successful, it will fall back to taking the lock and
2406  * calling get_user_pages().
2407  *
2408  * Returns number of pages pinned. This may be fewer than the number
2409  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2410  * were pinned, returns -errno.
2411  */
2412 int get_user_pages_fast(unsigned long start, int nr_pages,
2413 			unsigned int gup_flags, struct page **pages)
2414 {
2415 	unsigned long addr, len, end;
2416 	int nr = 0, ret = 0;
2417 
2418 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2419 		return -EINVAL;
2420 
2421 	start = untagged_addr(start) & PAGE_MASK;
2422 	addr = start;
2423 	len = (unsigned long) nr_pages << PAGE_SHIFT;
2424 	end = start + len;
2425 
2426 	if (end <= start)
2427 		return 0;
2428 	if (unlikely(!access_ok((void __user *)start, len)))
2429 		return -EFAULT;
2430 
2431 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2432 	    gup_fast_permitted(start, end)) {
2433 		local_irq_disable();
2434 		gup_pgd_range(addr, end, gup_flags, pages, &nr);
2435 		local_irq_enable();
2436 		ret = nr;
2437 	}
2438 
2439 	if (nr < nr_pages) {
2440 		/* Try to get the remaining pages with get_user_pages */
2441 		start += nr << PAGE_SHIFT;
2442 		pages += nr;
2443 
2444 		ret = __gup_longterm_unlocked(start, nr_pages - nr,
2445 					      gup_flags, pages);
2446 
2447 		/* Have to be a bit careful with return values */
2448 		if (nr > 0) {
2449 			if (ret < 0)
2450 				ret = nr;
2451 			else
2452 				ret += nr;
2453 		}
2454 	}
2455 
2456 	return ret;
2457 }
2458 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2459